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Abstract

Serialization Management is the Best-Effort Hardware Transactional Memory (BE-

HTM) counterpart to Software Transactional Memory (STM) Contention Manage-

ment. A serialization manager uses non-speculative serialization to provide a forward-

progress guarantee while simultaneously attempting to provide high application per-

formance. Historically, non-speculative serialization management has been done

through a simple policy of allowing a fixed number of retries. This thesis investi-

gates the proposition that application performance can be improved through better

Serialization Management.

This thesis explores seven serialization managers and their tuning parameters

on Blue Gene/Q’s BE-HTM system using the Stanford Transactional Applications

for Multi-Processing (STAMP) and the Recognition, Mining and Synthesis (RMS-

TM) benchmark suites. It presents the first large-scale investigation of Serialization

Management for BE-HTM in the literature. This investigation experiments with a

large number of values for each tuning parameter on multiple platforms. The main

finding is that program performance can be improved by changing the serialization

manager. However, performance is actually dominated by the tuning of parameters

for each manager and this tuning depends on the benchmark, the thread count, and

the platform.
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Preface

Parts of Chapter 4 have been previously submitted to the 2013 ACM Student Re-

search Competition Grand Finals, titled Transactional Event Profiling in a Best-Effort

Hardware Transactional Memory System.

Appendix A is a collaborative work, with authorship shared among Amy Wang,

myself, Peng Wu, Martin Ohmacht, José Nelson Amaral, Christopher Barton, Raul

Silvera, and Maged M. Michael. I ran the experimentation and data analysis for the

paper, with the majority of writing having been done by the remaining authors. It has

been accepted for publication in the IEEE Transactions on Computers, however it has

not yet appeared at the time of thesis submission, and so is included as an appendix.
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It’s like, French is a great idea, but nobody is going to invent French if
they’re constantly being attacked by bears. Do you see? SYSTEMS

HACKERS SOLVE THE BEAR MENACE. Only through the constant
vigilance of my people do you get the freedom to think about

croissants and subtle puns involving the true father of Louis XIV.
— James Mickens, The Night Watch
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Chapter 1

Introduction

For almost five decades computer architecture has followed a trend dubbed Moore’s

Law, under which the number of transistors in a computer processor has doubled

roughly every two years [54]. For much of the lifetime of Moore’s Law, gains in

transistor counts were accompanied by increases to processor clock speeds leading

to a long period in which software would be made faster purely though hardware

improvements. In the last decade, however, frequency scaling slowed dramatically

due to concerns about power usage and heat dissipation [12, 60]. While Moore’s law

has continued to dramatically increase the transistor count in microprocessors, the

new transistors are being funnelled into multiple cores as opposed to the improvement

of performance of a single monolithic core.

The transition from frequency-scaling to ‘core-scaling’ has necessitated that soft-

ware begin to change — and become parallel — in order to exploit new generations

of processors.

Parallel programming, however, has a reputation for being difficult. Paul E.

McKenny divides the tasks a programmer faces when programming in parallel into

four categories [51]:

1. WorkPartitioning: This is the task of splitting the algorithm and its inputs into

pieces that can be run in parallel across threads, processes or computers. This

thesis discusses parallel threads, which are streams of execution that happen

concurrently in the same memory space.

2. Resource Partitioning & Replication: This is the task of ensuring that the

1



required resources are partitioned or replicated for the parallel tasks to remove

the requirement of access control.

3. InteractingWithHardware refers to the necessary understanding of the under-

lying hardware and it’s limitations when programming in parallel. Depending

on the model of parallel programming, this interaction ranges from a very

small to very large fraction of the parallel programming task.

4. Parallel Access Control, which is required to avoid race conditions on shared

resources. A race condition is an uncontrolled interleaving of parallel access to

a shared resource, which is considered an error in most domains because the

result being computed will vary on seemingly random timing fluctuations that

change the interleaving of accesses occurring between threads1.

For the purposes of this thesis shared-memory machines are assumed. A shared-

memory machine is a type of parallel architecture where all the processors working

on a problem work in a shared address space, as opposed to distributed parallel

computation where processors working in parallel do not share memory and, instead,

must communicate explicitly through messages.

In a shared-memory machine, a race-condition interleaving typically involves

instructions accessing memory across two or more threads in the machine. These

race conditions are called data races and are discussed further in Section 2.1. Higher-

level programming abstractions may also be subject to race-conditions, and thus

semantically require similar parallel access control, however this thesis focuses on

memory-level data races.

In order to avoid data races some form of control must be applied to shared

resources. There are a number of synchronization primitives that can be used, however

a lock is the most common [51]. Lock variables allow a single thread to declare

ownership of a resource. While a lock is held, other threads attempting to acquire the

same lock should either wait for the lock to become unlocked or proceed down an

alternate path of execution that does not require access to the resource.
1Algorithms can be created to be race-tolerant so that either races do not affect results or the results

are acceptable even in the face of races. However, it is difficult to ensure that such algorithms are
correct.
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Lock-based programming has been successfully used for parallel programming,

however, the paradigm does have some challenges:

• From the perspective of correctness, locks can be misused in such a way that

progress can no longer be made. This failure condition is called a deadlock,

and is caused by a cycle of lock dependencies created by two or more threads.

In the simplest version of this situation two threads each hold a lock that the

other thread requires for progress. Another related failure condition — that

also applies to a number of other programming systems — is called livelock,

which describes a situation where threads become looped in a cycle of actions

without making progress.

• From the perspective of productivity, locks require large amounts of program-

mer effort to achieve maximum performance.

A pathology in lock-based programming is lock contention. This is when multi-

ple threads require the same lock simultaneously to make progress. The other

threads must simply wait to acquire the lock in order to proceed, because, by

definition, only one thread can hold the lock. Lock contention can dramatically

affect program performance if the contended lock is on the critical path. While

lock contention can be inherent in an algorithm or data-structure, sometimes

lock-contention can be the result of protecting too much data with the same

lock. If multiple threads are waiting for the lock, but all the threads are to access

different data, then the lock contention is spurious.

Figure 1.1 illustrates the problem with a hash-table that has a single lock. The

accesses to be performed by fifteen threads are indicated by arrows pointing

to the hashtable buckets. Of the fifteen accesses, all but three are to different

buckets, and thus such accesses do not require synchronization. The bottom

left part of the figure shows the resulting lock contention: all the threads wait

to acquire the single lock. This is true even for threads that have independent

accesses. The bottom right of Figure 1.1 shows how performance can be dra-

matically improved by locking only where conflicts can occur, as only three of

the fifteen locking operations are required.
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Figure 1.1: Lock Contention visualized on a hashtable. The accesses in green would
produce spurious locking, but the accesses in red require some synchronization.
White buckets are not accessed by any thread.
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To work around spurious lock contention in a program, typically the single

contended lock must be broken into multiple locks, each protecting a set of hash

table buckets, in order to still guarantee safety. For example, if the contended

lock is guarding access to a large array or hashtable, then lock striping could be

applied to break the array or table into chunks, each guarded by its own lock [41].

Splitting locks must be carefully considered, however, because multiple locks

combined with poor lock-discipline can introduce bugs that did not exist in

the single-lock version of the algorithm.

• From the perspective of performance, locks add computation and memory

accesses to memory locations that are not needed by the algorithm. These

accesses are a waste of resources and time in the absence of contention on the

data.

The difficulties imposed by deadlock and contention raise the burden of par-

allelization on the programmer. However, reducing the burden of parallelization

is highly desirable because parallelization appears to be the main driver of future

performance.

1.1 Transactional Memory

One proposed approach to parallelization with a reduced programming burden is

called Transactional Memory (TM) [40].

Transactional Memory introduces a high-level construct called a transaction. A

transaction is a region of code whose execution semantically cannot overlap with

another transaction. A transaction must run in isolation from other transactions,

must not be able to see partial results computed in another transaction, and must

commit its results indivisibly (atomically) so that partial state cannot be seen.

Transactions are a higher-level construction in comparison with locks. Locks are

akin to imperative programming, in that the user instructs the system how to achieve

safe interleaving. In contrast TM programming is akin to declarative programming,

where the user tells the system what is required for safe execution, leaving the actual

mechanics to the system.
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A side effect of this higher level of abstraction is that TM systems can provide

improved performance by optimistically allowing execution to overlap. The TM system

then can monitor the reads and writes performed by parallel executing transactions.

Whenever a transaction attempts to execute an operation that would violate the

isolation guaranteed offered by TM, one or more transactions can be aborted, and

rolled-back to transaction start. A rollback resets the state of execution to what it

was at the beginning of the transaction. Once the transaction has been rolled back, it

may retry in hopes of succeeding on the next attempt, or it may switch to an alternate

method of synchronization. This model is similar to database transactions, hence the

name Transactional Memory.

First proposed in 1993 by Herlihy and Moss as a hardware modification, the idea

has gained much popularity in the research community, which has been active in the

area for the last 20 years [40]. In order to allow exploitation of TM for systems that

already use locks, Transactional Lock Elision (TLE) can be used to replace lock pairs

with transactions.

When discussing transactions, it is important sometimes to distinguish between

the source code level transaction and an instance of a transaction at execution time. In

this thesis I will refer to the the former, a region of code in the program text, as a static

transaction. During program execution, a static transaction will likely be executed

many times (i.e. being in a loop or function call), generating a unit of computation

that must be executed in isolation and committed atomically. In this thesis I call this

a dynamic transaction.

1.1.1 Software Transactional Memory

One of the popular pieces of TM research in the last two decades has been the

exploration of Software Transactional Memory (STM) [66]. The promise of STM is to

provide a high-level transactional construct on existing machines with no hardware

changes. In STM systems the detection and rollback of conflicts is achieved through

the use of a software library and the instrumentation of reads and writes in the

program. This instrumentation can be done by the user, or automatically by an

STM-aware compiler.
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1.1.2 Best-Effort Hardware Transactional Memory

One of the most recent developments2 in the area of Transactional Memory has been

the appearance of commercially available, user-accessible, Hardware Transactional

Memory (HTM) systems.

While Transactional Memory was originally specified as a hardware feature, the

cost of producing hardware has meant that TM research has been done through either

Software Transactional Memory or through system simulators for HTM.

In the last two years three HTM systems have shipped: IBM’s Blue Gene/Q, IBM

zEC12 and Intel’s Haswell-based processors [44, 45, 74]. In a short while, IBM will

be shipping a third platform with TM support, the POWER8 processors [14]. One

characteristic that these three systems share is that they are all ‘Best-Effort’ HTM

systems (BE-HTM). Best-effort HTM means that they do not guarantee that any

transaction may be completed speculatively [25]. This is a practical side effect of

these being early HTM designs adapted to existing architectures. These machines

all can store only limited amounts of speculative state, and will abort a transaction

that exceeds that amount of speculative state. The architectures also restrict the state

changes that may occur within a transaction to those that can be easily buffered,

typically in one of the data caches or buffers.

1.2 Performance in TM systems

Transactional-Memory performance often depends on perspective. While creating a

new transactional program, it would be unfair to not account for the productivity

gains brought by the simpler synchronization model.

However, if one is considering converting an existing lock-based program to

transactions as a way of improving performance, then comparing against the per-

formance of the lock-based version is important. This thesis does not focus on

comparing against different synchronization mechanisms so much as it focuses on

performance among different transactional variants, and therefore the performance
2Azul Systems shipped a version of their Vega processor with HTM several years ago, however it

was deployed completely transparently to the user, and has not been widely evaluated in the research
community.
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study focuses on absolute speedup, i.e. ratio of wall-clock running time of the parallel

implementation to the wall-clock running time of the fastest available sequential

implementation.

In general, TM performance is dominated by two elements.

1. TM systems can optimistically run, possibly conflicting, transactions spec-

ulatively in parallel. One component of transactional performance is what

proportion of transactions that started have successfully commited, as opposed

to aborting and rolling back to the starting point.

2. The overhead to set up and execute a transaction speculatively in a TM system

is higher than that of a simple locking solution. This overhead comes from

sources such as instrumentation in the Software Transactional Memory (STM)

case, or from mechanisms required to provide forward progress in BE-HTMs.

This overhead varies from system to system. It is relatively high — hundreds

of cycles — for STM systems and BG/Q, and quite low — tens of cycles — for

Intel Haswell, and zEC12.

A transaction that rarely, or never, aborts is an excellent candidate for TM in a

comparison against a lock-based implementation that suffers from lock contention.

However, if a TM is used to elide a lock that is never contended, then the TM overhead

could turn this lock elision into a net loss.

On the other hand, a transaction that aborts in the majority of its attempts to

execute could still be a net-gain, if the alternative is a lock-based version of the

program where waiting on the lock dominates the execution time.

In general, it is speculation that is key to the promise of TM’s productivity and per-

formance. Speculation is the key to TM’s productivity because it allows programmers

to declaratively specify the synchronization required, with the system providing the

actual safety guarantee. It is key to the performance of TM systems because successful

speculations allow computation to proceed in spite of the appearance of required

synchronization, even though unsuccessful speculation may waste execution cycles.
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1.3 Programming Models and Forward Progress

There are two different programming paradigms for STM systems: user-instrumented

and compiler-instrumented STM systems. While the former generally has better

performance because it allows a skilled user to instrument only the required ac-

cesses for safety, the latter provides an excellent programming model. In a compiler-

instrumented STM system, the user needs only to indicate to the compiler which

regions of code cannot overlap in execution. Instrumentation is done automatically

by the compiler, and forward progress is guaranteed by the runtime system.

An important question in STM systems is: When a conflict between two or more

transactions occurs , what transaction(s) should be rolled back? The answer to this

question has important consequences. An inappropriate answer can cause starvation

— where a particular thread is unable to make progress; livelock — where the system as

a whole is unable to make progress because it is trapped in a cycle of execution states;

or simply poor performance. Attempts to answer this question in STM systems came

to be known largely as the area of Contention Management, which explores policies,

called contention managers, that decide which in-flight transactions to rollback [42].

Contention Management has been a rich area of research in STM systems.

An STM system with a correctly designed contention manager can always guaran-

tee forward progress. For example, a contention manager that always ensures that the

eldest transaction involved in a conflict is not aborted will trivially guarantee forward

progress.

Forward progress is a very important property for TM systems because program-

ming without it would be substantially more difficult, requiring the programmer to

provide an alternate path that doesn’t require a transaction, leading to an increased

amount of code and maintenance burden.

1.4 ProgrammingModels andForwardProgress forBest-

effort HTMs

When programming for a best-effort HTM system there are different possibilities

for programming models that can be provided to programmers. One of the most
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accessible programming models for programmers is a model that provides a high-level

model similar to that of a compiler-instrumented STM.

In this programming model a user is only responsible for specifying the bound-

aries of a transaction. In order to avoid putting platform-dependent burdens on the

programmer, this model allows transaction bodies to contain any code, including

irrevocable actions or code that generate so much speculative state that the hardware

will not be able to store such state.

Irrevocable actions are those that the system cannot rollback or buffer appropri-

ately. For instance, executing a function that prints to a terminal is an irrevocable

action: once the text appears on the terminal, the action cannot be undone. Irrevoca-

ble operations can take many forms, such as a reference to a memory-mapped I/O

address that cannot reasonably be buffered, or system calls that cannot be rolled back.

To understand how useful it is to allow irrevocable actions inside a transaction,

consider a program where an irrevocable operation that appears inside a transaction

is only rarely executed at runtime: e.g. a warning message printed on an exceptional

result.

The code is greatly simplified by allowing the irrevocable operation to appear

within the transaction region. Allowing irrevocable operations inside a transaction is

also a great advantage when legacy code is converted to transactions. An unpleasant

alternative would be for the runtime to signal a fatal error upon encountering an

irrevocable operation, or for the compiler to require no irrevocable actions statically.

Either case would likely require significant programmer’s effort to rewrite code to

make it transactional.

Similarly the ability to specify transactions that require more speculative state

than is available in the hardware allows the creation of TM applications that can be

ported to other systems, even though its performance may be affected by the hardware

limitations in the new system.

The freedom to specify transactions outside the limits of the hardware in a TM

programming model improves programmability but puts the burden of providing

forward-progress guarantee on the platform.
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1.5 Non-speculative Serialization and the Serialization

Manager

In a best-effort HTM system, a contention manager would not suffice to provide a

forward-progress guarantee. The nature of a best-effort HTM means that a strategy

similar to STM cannot always ensure forward progress because when a transactional

execution failure occurs in a best-effort HTM, there is no guarantee that any of the

aborted transactions may be able to continue execution. For instance, consider a

capacity-limited transaction, i.e. a transaction that creates more speculative state than

the hardware can store. No matter which conflict-resolution policy the contention

manager uses, forward progress will never occur without additional action from the

system. Therefore the only failure-proof way to guarantee forward progress is to

execute such a transaction non-speculatively.

Non-speculative serialization is a technique that allows a transaction to safely

run non-speculatively if the transaction is deemed unable to succeed in a hardware

transaction. It is called serialization because, to avoid a failure of isolation semantics,

there is at most one non-speculative transaction running at any moment. Concurrent

speculative transactions may not commit until after the non-speculative transaction

completes3.

Though non-speculative serialization has been described before, there has been

very little discussion of how to decide when non-speculative serialization is to occur.

Most previous publications that discuss non-speculative serialization for forward

progress use a simple policy that limits retries to some maximum value [78].

This thesis introduces the concept of a serialization manager as the BE-HTM

counterpart to the STM contention manager. Similar to the specification of contention

managers, serialization managers separate the responsibility for forward-progress

from the responsibility for correctness. The serialization manager is the policy, along
3Non-speculative serialization assumes that all threads accessing shared data structures use trans-

actions. Non-speculative serialization will not match the hardware isolation semantics should there be
a thread not using transactions when writing shared-data, as that non-speculative thread is invisible
to the TM system and cannot be held-back while the transaction executes. This could be fixed at great
cost by serializing the whole system, however the proportional response is to consider this case a
programming error.
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with any required state, that decides, when a transaction aborts, if the aborted trans-

action should be retried speculatively or if non-speculative serialization is required.

1.6 Serialization-Manager-Driven Performance

Improved STM Contention Management can improve program performance by mak-

ing better decisions about what transactions to abort when conflicts occur [42]. This

thesis argues that improved Serialization Management may also be able to improve

BE-HTM performance because serialization4 forms a key safety net in the face of

high contention. The thesis also argues that better decisions about when to serialize

can improve performance while guaranteeing forward-progress.

A key tension in a serialization manager design is the tradeoff between forward

progress and speculation. An upper bound on execution time would be desirable

to prevent inefficient use of resources and lots of wasted work. However, such up-

per bound comes at a cost because performance in a BE-HTM system is rooted in

speculation. Enforcing the upper bound may eliminate beneficial speculation. If the

upper bound is too high the program wastes work. If it is too low the overzealous

serialization manager eliminates too much speculative execution.

This thesis presents six new serialization managers — and one that has been

the default used in previous explorations of non-speculative serialization — along

with the first through exploration of Serialization Management in the literature. The

evaluation explores a large number of values for each parameter of each manager

on a TM architecture that has two different modes, each having different conflict-

detection granularity and access latencies. These two modes are considered for the

purposes of this thesis to be two different, though closely related, platforms for

TM. This TM implementation was the first commercially available offering of HTM,

introduced by IBM, and equipped the IBM BG/Q machine — a machine that was

the top-performing computer in the world circa 2013. The thorough evaluation of

these serialization managers, along with their tuning on multiple platforms, provides

insight into the amount, and type, of control afforded to a serialization manager.
4For the remainder of this thesis we will use the terms serialization and non-speculative serialization

interchangeably.
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The remainder of this thesis is structured as follows:

Chapter 2 provides more background on race conditions, Transactional Memory

and the experimental platform for this thesis, Blue Gene/Q.

Chapter 3 discusses the problem further, generating some smaller research questions

to help guide the study. Once the research questions are established, the research

methodology is described.

Chapter 4 introduces a tool that was designed and built to help explore questions

around serialization.

Chapter 5 introduces the serialization managers.

Chapter 6 introduces a pair of modifications that can be made to all serialization

managers, and evaluates them on the MaxRetry manager, before recommending

they both be adopted for all serialization managers.

Chapter 7 evaluates the new serialization managers across parameter values for those

managers that have parameters.

Chapter 8 contains the experimental results, where our research questions are an-

swered.

Chapter 9 discusses related work.

Chapter 10 discusses some limitations to the thesis.

Chapter 11 discusses directions for future work.

Chapter 12 concludes the thesis.

The thesis relies heavily on the contents of Software Support and Evaluation of

Hardware TransactionalMemory onBlueGene/Q for background. For ease of reference

I have included it as Appendix A.
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Chapter 2

Background

This chapter provides background on race conditions, Transactional Memory and

the Blue Gene/Q’s Transactional Memory system to support the reader through the

rest of the thesis.

2.1 Race Conditions

A race condition is an uncontrolled interleaving of accesses to a shared resource,

where at least one of the accesses modifies the shared resource. In this thesis the

interleaving discussed is between instructions accessing memory in a shared-memory

machine that has more than one processor. Shared-memory race conditions can be

classified as Read-after-Write (RAW), Write-after-Write (WAW) or Write-after-Read

(WAR).

Listing 2.1: Race Condition Demonstration

int main(int argc, char** argv) {
int iterations = atoi(argv[1]);
printf("Running with %d iterations\n",iterations);
int counter = 0;

#pragma omp parallel for
for (int i=0; i < iterations; i++) {

counter = counter+1; // Racy Update
}

printf("%s: Counter is %d, expected %d\n",
counter == iterations ? "PASSED" : " FAILED",
counter,
iterations);

}
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Listing 2.1 shows a simple program that suffers from a data race that may cause

updates to the variable counter to be lost, leading to a mismatch between the

expected and actual value in the output of the program, contained in Listing 2.2.

Listing 2.2: Race Condition Output

> g++ -fopenmp race_condition.c -o race
> OMP_NUM_THREADS=1 ./race 90000000
Running with 90000000 iterations
PASSED: Counter is 90000000, expected 90000000

> OMP_NUM_THREADS=2 ./race 90000000
Running with 90000000 iterations
FAILED: Counter is 50095286, expected 90000000

To show in more detail how this race affects the values computed by the program,

Listing 2.3 contains a pseudo-assembly of the loop body that contains the race condi-

tion. Figure 2.1 shows an interleaving of instructions between two threads where the

update intended by Thread 1 is lost. An update was lost because both threads loaded,

incremented, and stored the same value, a WAW race.

Listing 2.3: Pseudo Assembly of Race Condition loop

/* Initialize variables */
ST [counter],0
ST R0,0 /* R0 will be the loop variable i */

L:
LD R1,[counter]
ADD R1,1
ST [counter],R1
ADD R0,1
CMP R0,[iterations]
BEQ L

...

Figure 2.1: Snippet of execution showing a data race with lost updates.

(a) Thread 1

T1: LD R1,[counter]
T2:
T3: ADD R1,1
T4: ST [counter],R1
T5:

(b) Thread 2

T1:
T2: LD R1,[counter]
T3: ADD R1,1
T4:
T5: ST [counter],R1
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2.2 Transactional Memory

Transactional processing has existed for a long time, with one of the earliest widely

deployed examples being the SABRE airline reservation system of the early 1960s [9].

Since SABRE the area has gone through much evolution, with large amounts of

formalization driven by the development and evolution of relational databases.

Part of the formalization of relational databases was the description of four prop-

erties to guarantee consistent processing of transactions: Atomicity, Consistency,

Isolation and Durability, known as ACID [34, 35, 37].

Atomicity A transaction is atomic if the changes it makes to storage appear to happen

indivisibly: either all the changes must be seen at once, or none of the changes

can be seen.

Consistency The system remains consistent after the execution of a transaction. If a

transaction would leave the system in an inconsistent state, then the transaction

is not allowed to complete. For instance, a transaction that changes a set of

records in a database must appropriately change all required records.

Isolation Transactional isolation is the inability of any component of the system

to see partial results from an in-progress transaction. Isolation is a key part

of proving consistency because, without isolation, invalid results could be

produced by using invalid temporary results produced during the execution of

a transaction.

Durability Once a transaction commits the results are preserved even in the event

of a system crash.

As can be seen from the D in the ACID definitions, historically transaction

processing has referred to persistent data, mostly stored in files on hard drives and

tapes. The first three properties — Atomicity, Consistency and Isolation — are

powerful concepts and were adapted to transient storage and parallel programming.

Though atomic updates for single variables had existed in various forms in com-

puter architecture (such as Compare-and-Swap, Test-and-Set, or Load-linked/Store
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Conditional) previously, the Oklahoma Update1 was different in providing a form

of atomic updates to multiple values [73]. In an example of independent discovery,

Herlihy and Moss described Transactional Memory at almost the same time, differing

from the Oklahoma Update mostly in implementation and terminology [40].

Herlihy and Moss’ description of Transactional Memory has been more persistent

than the Oklahoma update. Herlihy and Moss added six instructions to an archi-

tecture’s ISA: Load-transactional (LT) that loads a memory location and marks the

location as transactionally read, Load-transactional-exclusive (LTX) that loads a mem-

ory location marking it as read and hinting that it will be updated, Store-transactional

(ST) that writes speculatively to a location, Commit (Commit) that commits a transac-

tion if all the values written and read are still valid. In addition, the Herlihy and Moss

paper also added two instructions that are less important for our discussion here:

Abort (Abort) that discards transactional state, and Validate (Validate) that tests

whether or not the currently executing transaction’s read- and write-sets are valid,

aborting if not. A transaction is implicitly started at the first transactional access and

continues until Commit, Abort or a failed Validate.

Similar to Compare-and-Swap, a transaction can fail if another thread has altered

any of the values in the read set or the write set while the transaction is in flight. In

Herlihy’ s and Moss’ paper validation occurs on the execution of a Commit instruction

that can return true, if the transaction is committed, or false if the transaction

commit failed and the speculative state has been discarded. If a transaction fails it is

up to the programmer to handle this case, either retrying or choosing an alternate

method of synchronization.

Both the Oklahoma Update and Herlihy’s Transactional Memory provide Atom-

icity, Consistency and Isolation2 to those values loaded and stored transactionally.

Though the advantage of transaction-inspired parallel programming could be seen,

both the Oklahoma Update and Transactional Memory were specified as hardware

features. Hardware being both complicated and expensive to build meant that research
1Referring to the song All ’Er Nuthing from the musical Oklahoma!
2To be precise, the Oklahoma Update does not provide Isolation because the authors describe a

situation under which a failed update could lead to variables becoming inaccessible. However, the
authors also sketch a fault-tolerance system that can work around this situation and provide isolation.
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on Hardware Transactional Memory work was done on hardware simulators until

much later.

2.2.1 Software Transactional Memory

However, Transactional Memory was not forgotten. Effort simply moved towards

providing the transactional memory paradigm using software, leading to the research

area of Software Transactional Memory (STM), which has remained active to this

day [66]. The goal of STM systems is to provide the transactional programming

model on un-modified hardware by using a runtime system and instrumentation

of reads and writes, done either by an STM compiler or by the user. An example of

instrumentation is contained in Figure 2.2.

Figure 2.2: An example of STM instrumentation

(a) Before instrumentation

stm_transaction {
A[i] = B[i] + C[i]
}

(b) After STM instrumentation

stm_begin();
b_tmp = stm_load(&(b[i]));
c_tmp = stm_load(&(c[i]));
stm_store(&(a[i]), b_tmp + c_tmp);

stm_commit();

Software Transactional Memory has followed its own evolution, and has intro-

duced a number of concepts and design dimensions. One addition to the TM model

was the idea of guaranteed forward progress. This addition meant that programmers

no longer had to handle the case where the transaction aborted explicitly — rather the

STM system would deal with retry and guarantee that the system would eventually

commit every transaction.

One dimension in STM designs is the distinction between strongly atomic and

weakly atomic STMs. This distinction refers to the STM system’s guarantees regarding

non-transactional access to memory locations in the read sets and write sets of in-

flight transactions [10].3 A strongly atomic STM system acts like Herlihy’s and Moss’

TM design: a non-transactional access causes a transaction to abort if the transaction
3Blundell et al. argue that the programming-language research area has historically used the term

Atomicity to refer to what would be known in databases as Atomicity and Isolation. Thus, while
the strong vs weak atomicity dichotomy appears to be an isolation issue, the name is nevertheless
appropriate.

18



has the accessed location in its read set or write set. A weakly atomic STM system does

not specify what occurs when there is a non-transactional access to a transactionally

tracked location — typically the argument in defence of weakly atomic STMs is that

the existence of such an access is a programming error.

Strongly atomic STM systems make it easier to interact with non-transactional

code by ensuring that the TM execution remains correct in the face of conflict with

non-transactional code. However, strong-atomicity increases the overhead incurred

by a TM system. As a result, most high-performance STM systems are weakly atomic.

One of the keys to STM performance is the notion of privatization, which is

the ability to have non-instrumented accesses inside a transaction. Privatization is

important because instrumentation in an STM is costly in comparison to normal

memory accesses. Privatized accesses are a powerful performance tool. However,

they are difficult for an STM compiler to achieve and also STM programmers find it

difficult to use them correctly.

The combination of automatic (or no) privatization and instrumentation creates

a very simple programming model for transactions, as in Figure 2.2(b), where the

programmer indicates the scope of the transaction, the contents are executed in

isolation and the results are committed atomically. This programming model has

been empirically validated as easier than locks for novice parallel programmers [61].

Though STM has existed for almost twenty years now, it has produced relatively

little impact on day-to-day programming. A number of challenges faced by STM

systems have prevented broad adoption. The instrumentation and the computation

required for conflict detection introduce overhead, in STM systems, causes some

concern about performance [17]. As well, interaction with non-transactional code

and non-transactional libraries and kernels can be complicated depending on the

atomicity model and guarantees provided by the TM system [10, 17, 24]. Efforts

continue to improve STM performance through new TM systems such as SwissTM.

Other efforts aim at shoring up the guarantees provided by TM systems through

improved sandboxing and further investigation of strongly-atomic STM systems [8,

24, 29].
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Contention Managers

The contention manager is the software component in a Software Transactional

Memory system responsible for determining, when a conflict occurs, what subset

of transactions need to be aborted. Contention management was first proposed by

Herlihy et al. as a generic interface to guarantee progress in transactional systems [42].

One of the key concepts behind their original specification of contention managers

was that the responsibility for correctness, and for forward progress, ought to be kept

separate.

There has been a substantial amount of work done in this area because Contention

Management can change the performance of STM systems [3, 43, 64, 70].

More recently, there have been a number of efforts surrounding Transactional

Scheduling, a technique that takes a slightly different approach to forward-progress

and performance [28, 56, 79]. Where contention managers control what occurs when

conflicts are detected, Transactional Schedulers attempt to proactively avoid conflicts

by delaying or moving transactions to avoid interleavings expected to conflict.

2.2.2 Hardware Transactional Memory

HTM research initially was limited to the development of system simulators due

to the cost of implementing new designs in real silicon. These HTM simulators

range vastly in capability and structure, from very limited forms of TM similar to

the original Herlihy and Moss proposal all the way to unbounded HTM systems that

allow arbitrary transaction sizes by allowing conflict detection at much higher levels

in the memory-hierarchy: from evicted cache lines to swapped out pages [1, 55, 67].

In the last five years Hardware Transactional Memory has begun to appear outside

of simulators. The first implementation was by Azul Systems, though it was not

broadly described outside of a presentation and some patents, and was only used for

Transactional Lock Elision in Java [21]. The next implementation was to be Sun’s Rock

processor, which was cancelled before it became commercially available, though not

before some research into its HTM facilities [26].

IBM’s Blue Gene/Q was the first commercially available HTM available. It is

on this HTM that we based our study. Further details on the implementation of
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HTM in the BG/Q appear in Section 2.3 and Appendix A. IBM has since produced

two more HTM implementations, one on zEC12, the current mainframe processor,

and one on the upcoming POWER8 processor [14, 45]. Intel has also shipped an

HTM implementation called ‘Restricted Transactional Memory’ (RTM) in its Haswell

micro-architecture [44].

All existing HTM systems are strongly-atomic. In contrast to the original specifi-

cation by Herlihy and Moss, all existing HTM systems provide a Begin instruction

to start a transactional region. Within the transactional region all loads and stores

are transactional, similar to the STM compiler programming model. Only zEC12

supports limited privatization in the form of a Non-transactional Store instruction
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Figure 2.3: A rough summary of existing TM systems in the TM design space. This
graphic does not address the additional dimensions of TM induced memory latency
or TM overheads.

Figure 2.3 positions the existing TM systems on two dimensions of the design

space: conflict-detection granularity and amount of storage available for speculative

state. The conflict-detection granularity refers to how close together two accesses

from different threads may be before the hardware signals a false conflict — a conflict

21



that is not present in the actual application but that occurs in the HTM because of

the inability of the hardware to determine that two referenced locations are not the

same location. In an ideal system there would be no false conflicts. However, in most

HTM systems the conflict-detection granularity is some fraction of the cache-line

size because this detection uses existing data caches. The storable speculative state in

Figure 2.3 is the maximum space that can be occupied by data written by speculative

writes.

The two shaded areas for BG/Q in Figure 2.3 indicate the ranges of conflict-

detection granularity are a side effect of a configuration parameter supported by

BG/Q, the running-mode. The running mode changes the behaviour of the TM system

to favour either short-running or long-running transactions. The running modes of

BG/Q are discussed in more detail in Section 2.3.1, but in brief the long-running mode

(BG/Q LR in Figure 2.3) reduces the latency — the time it takes a cache to serve a

request — of accesses within a transaction at the cost of affecting cache locality across

transactions, while the short running mode (BG/Q SR in Figure 2.3) preserves locality

across transactions at the cost of increased latency within transactions.

Latency is just one dimension not addressed by Figure 2.3. Other design parame-

ters that are not included in the figure include when conflicts are detected or signalled

(this can be either at the point where the conflict occurs, or when the transaction

attempts to commit) and the overhead of the TM system and the code required to

provide a forward-progress guarantee.

2.3 Blue Gene/Q

IBM’s Blue Gene/Q is a supercomputing solution designed for the solution of peta-

scale computational problems [39]. The core of the Blue Gene/Q system is the compute

node consisting of a 1.6 GHz POWER A2 chip with 16 GB of memory running the

Compute Node Kernel (CNK) [32]. These compute nodes are combined together in

larger groupings to form the total Blue Gene/Q supercomputing system.

Blue Gene/Q shipped with a Transactional-Memory programming system that

22



functions within a single compute node4. Blue Gene/Q’s TM support is implemented

in four layers, shown in Figure 2.4, and described below.

User Program + 
Compiler	


TM Runtime	


BG/Q Hardware	


User code: 	

#pragma	  tm_atomic	  
{	  code;	  	  }	  	  
	  
Compiler: Runtime 
Calls, Save registers	


Transaction 
management	


Speculative State 
management, conflict 
detection	


CNK	
 Interrupt Handling	


Figure 2.4: BG/Q Transactional Memory Stack

2.3.1 Hardware Support

Each BG/Q compute node has 16 user-accessible POWER A2 cores, and each core

has 16K of private L1 cache that is 8-way set-associative, with 64-byte cache lines. The

cores all share a 32MB L2 cache that is 16-way set associative.

BG/Q’s TM support is implemented in the L2 cache, which has been modified

to be multi-versioned so that it can store multiple versions of the same physical line.

Each version occupies a different L2 way [57]. By default (and in all our experimen-

tation) six of the sixteen sets are reserved for holding non-speculative state. In this

configuration the hardware guarantees that speculatively written ways lines will not

be evicted by non-speculative writes5. The hardware supports sandboxing that allows

hardware exceptions and access to memory-mapped I/O to be trapped and reduced

to a transaction abort.

Transactions are identified by one of 128 Speculation IDs that form part of the

cache tag. These Speculation IDs are managed by the L2 cache, which must reclaim
4Across-node synchronization must therefore be achieved with a different method.
5The hardware can be configured to allow speculative writes into up to 15 of 16 ways, however, if less

than six ways are reserved for non-speculative state then non-speculative ways may evict speculatively
written ways, aborting the corresponding transactions
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them by walking the cache contents. The reclamation process, called ID scrubbing,

happens at a fixed interval. Therefore the starting of a transaction may have to wait

for a Speculation ID to be reclaimed. Reclamation occurs when all the lines marked

with a Speculation ID are marked as invalid, or are merged into the non-speculative

state.

When the cache directory finds that two transactions have conflicted, it updates

the conflict register, a status register for the current associated Speculation ID, and

triggers an interrupt that is handled by the kernel. The conflict register contains a

status bit to indicate if the transaction failed because it would have required evicting

a speculative line — called the capacity bit – and a bit that indicates if there was

one, or multiple. conflicting transactions. If there are conflicting transactions, the

Speculation ID of the conflicting transaction is also available in the conflict register.6

Only memory state is tracked transactionally. Thus, support to restore register

values must be provided through compiler-generated code for register save and

restore.

The L1 cache is unmodified from a standard A2 core. Thus BG/Q supports two

transactional execution modes that change how the L1 cache is handled in order to

correctly track speculative state:

Short-running mode evicts speculatively written lines from the L1, forcing subse-

quent reads and writes to go to the L2 cache. Short-running mode is named so

because it preserves the contents of the L1 cache across transactions, at the cost

of extra read-after-write latency inside the transaction — therefore this mode

is suitable for short-running transactions.

A side effect of the short-running mode is aliasing on the bit that indicates

that the transaction was aborted because it required another speculative line.

The signal aliasing means that the contents of a conflict bit are not accurate in

short-running mode, as shown experimentally in Section 6.2.

Long-running mode removes the transactional read-after-write latency of short-

running mode by allowing lines to remain in the L1 after writes, at the cost of
6We did not explore using conflicting Speculation ID data for policies because the mapping from

Speculation ID to transaction is volatile and available infrequently.
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flushing the L1 cache at the beginning of a transaction. Long-running mode is

suitable for transactions that run for a longer time.

BG/Q supports both eager and lazy conflict resolution for transactions. Eager

conflict resolution raises an interrupt to the kernel as soon as a conflicting access is

detected. Lazy conflict resolution on BG/Q raises an interrupt to the kernel when

either a jail-mode violation or a capacity overflow occurs. However, for a memory-

reference conflict the interrupt is suppressed until commit time. The jail mode is used

to sandbox transactions. A transaction that attempts to execute an operation that it

is not allowed to execute, such as printing to a terminal, is said to incur a jail-mode

violation.

Lazy conflict resolution can allow some transactions that would have aborted in

the case of eager conflict resolution to commit safely, when the conflicting transaction

has itself been aborted and invalidated before commit is attempted.

All the experiments in this thesis use eager conflict resolution because it was

previously found to perform as well as, or better than, lazy conflict resolution [74].

2.3.2 Software Support

Compiler Support

Software support for BG/Q’s TM begins in the compiler. IBM’s XL C, XL C++ and

XLF Fortran compilers for BG/Q provide support to create transactions in a program

in the form of compiler pragmas, as shown in Listing 2.4

Listing 2.4: A TM pragma example

#omp parallel for
for (int i=0; i < N; i++) {
#pragma tm_atomic
{

A[i] = B[ C[i] ];
}

}

The code region marked by the pragma as a transaction is compiled into register

save code and calls into the TM runtime.
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TM Runtime

The TM runtime manages transactional execution, starts speculation, handles roll-

backs, controls non-speculative serialization and commits state. The runtime consists

of functions to initialize the TM system, a transaction-begin function, a transaction-

end function, and a rollback handler. The begin and end functions are inserted by

the compiler. By design the vast majority of state is thread local to avoid the need for

synchronization inside the runtime.

When the kernel aborts a transaction, the rollback handler in the TM runtime is

called. Inside the rollback handler, the TM runtime can query the conflict register

for more information on the rollback, and can decide whether or not to run the

transaction with non-speculative serialization.

Non-speculative serialization in BG/Q is accomplished by acquiring a lock, known

as the irrevocable token. The irrevocable token is used to prevent new transactions

from committing while that token is held. Allowing a transaction to commit while

the irrevocable token is held would violate the isolation property.

Let TN be a transaction executing non-speculatively and TS be another transac-

tion that starts speculative execution while TN is executing. There are two possible

solutions to prevent the commit of TS while TN is running:

• With Eager Lock Checking TS reads the status of the token after it begins specu-

lative execution, but before any of the TS user code has executed. TS has to abort

with a conflict because the irrevocable token is both in the write set of TN and

in the read set of TS . With eager lock checking any time the irrevocable token

is acquired (written) by a non-speculative transaction all in-flight transactions

must abort because all transactions have the irrevocable token in their read-set.

• With Lazy Lock Checking TS reads the status of the irrevocable token imme-

diately before commit. Checking the token at the end allows TS to continue

executing simultaneously with TN . However, TS will abort if the lock is held at

its commit time to prevent violations of atomicity.7

7For example: 1) A TN could write a value x. 2) TS could then read x, use it in a computation, write
the result of that computation, and commit. 3) If TN subsequently updates the x, then TS would have
computed based on an internal state of TN , violating the atomicity guarantee of TN .
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In BG/Q the short-running mode uses eager lock checking while the long-running

mode uses lazy lock checking. This choice of lock-checking policy is based on prior

investigation into lock checking, though that investigation found only a small effect

from changing lock checking from eager to lazy in real benchmarks. In both cases,

the lock is also checked prior to transaction start to avoid wasting Speculation IDs.

The TM runtime collects summary statistics on transactional events, counting

transactions committed, aborted transactions, transactions serialized for JMV and

transactions serialized by the serialization manager8. The counters are collected

thread-locally and summarized across all threads in our presentation.

Kernel Support

In BG/Q the kernel support for TM consists of a handler for the conflict interrupt

raised by the hardware. The conflict handler examines the relevant conflict registers

and calls the rollback handler with a return code to indicate why the transaction has

been rolled back.

For more details on BG/Q’s TM design, please see the included Appendix A.

8In some cases the serialization cause is split into further counters.
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Chapter 3

The Effect of Serialization

Management on Performance

This thesis studies the effect of Serialization Management on performance. To un-

derstand this effect, a through investigation of both existing and new serialization

managers must be undertaken.

An ideal serialization manager would have the following properties besides high

performance:

1. Consistent Performance: Different applications will likely have different de-

mands for serialization. Ideally a single tuning would accommodate as many

applications as possible because most users will not tune their setup. Therefore,

the default parameters should be performant.

2. Simple Tuning: In cases where tuning is required, the tuning should be as

simple as possible. Ideally there would be a single parameter. A single parameter

makes tuning reasonably easy, even for relatively inexperienced programmers.

Multiple parameters introduces complexity in the search for a good set of values,

while also dramatically increasing the search space.

3.1 Evaluation Pitfalls

The evaluation of serialization managers in order to compare and contrast them faces

a number of pitfalls that could mislead a simple exploration.
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The first pitfall is the existence of a number of new BE-HTM systems. As was seen

(partially) in Figure 2.3 different HTM implementations occupy different positions

in the TM design space. Different placement in the TM design space will change

TM execution, and adjust the requirements on a serialization manager. For instance,

systems with finer-granularity conflict detection may see less aborts and require less

serialization leading to lower demands on the serialization manager.

A second pitfall is TM applications themselves. Serialization-manager tuning is

an important element in the comparison of managers because real-world applications

using TM are likely to have varying contention levels, as are found in TM benchmarks.

A very desirable property of serialization management would be configuration

portability, referring to the question of how a particular set of choices for serialization

management adapts to different programs or platforms. A portable solution to serial-

ization management should provide similar results for similar programs, or similar

scaling on new platforms.

How these elements of BE-HTM systems interact has not been widely studied,

and thus their combination raises a number of new research questions that this thesis

answers:

1. How much does a serialization manager’s performance depend on the tuning

of its parameters?

2. How stable is a particular serialization manager’s performance across different

programs with the same tuning?

3. How stable is a serialization manager’s performance across different BE-HTM

systems for the same tunings?

3.2 New Serialization Managers

To understand how Serialization Management affects performance, this thesis needs

to explore the design space of serialization managers. Serialization Management is

the BE-HTM counterpart to STM Contention Management. Thus the question “Can
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advice or inspiration be obtained from STM Contention Management to develop

HTM serialization managers?” drove part of the exploration presented here.

One dimension of the serialization-manager design space is whether or not the

manager is static or dynamic. A dynamic serialization manager reacts using the history

of the program being executed, making different decisions in the same circumstance

based on changed history. A static manager makes the same decision in the same

circumstance, regardless or history. While dynamic policies are intuitively attractive,

this thesis asks the question: Is there evidence that dynamic serialization managers

should be pursued?

While trying to determine how Serialization Management relates to TM system

design, another question was raised: Are there serialization related policies that are

independent of the manager, and how do they affect performance? For example, one

policy followed by all managers in this thesis is ‘Serialize on Sandboxing Violation’.

Once the serialization managers are built, some design decisions that were rooted

in intuition can be studied. For instance, is it important for a serialization manager

to minimize wasted work? While intuition drives us in this direction, careful thought

seems to argue that this is not a good metric because the performance in TM systems

is partially provided by speculation that is, in a sense, wasted work.

3.3 Answering the Research Questions: My Approach

In order to help answer all the research questions, a large-scale study of serialization

managers was performed on BG/Q, consisting of the following elements.

1. To help understand transactional program performance in more detail I devel-

oped a tool that gives deep insights into transactional execution on BG/Q. We

call it the Transactional Event Profiler (TEP), and it is described in Chapter 4.

2. I also designed and built seven new serialization managers. Some of these

serialization managers were inspired by STM contention managers, however,

they required adaptation to the unique controls available to a serialization

manager.
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3. A very large-scale examination of the serialization managers used the method-

ology described in Section 3.4.

To help answer the research questions, whenever a serialization manager pre-

sented a meaningful choice of parameter tuning, I explored a broad range of

values for each parameter. This is not to suggest that the average program-

mer should have to pursue a tuning strategy similar to this. The goal of this

exploration is to provide bounds on performance across tunings.

4. All experiments were run in both long-running and short-running mode to

allows us to investigate the generalizability of tunings. These modes are two

separate (though nearby) points in the BE-HTM design space (Figure 2.3) with

differing conflict-detection granularity and latencies.

3.4 Experimental Methodology

Blue Gene/Q is the experimental platform because the forward-progress-guarantee

programming model was already implemented. Thus, exploring serialization policies

required minimal additional implementation effort.

All programs were compiled with the IBM XL C/C++ compilers, using a pre-

release version, with the compiler flags -O3 -qhot -qtm. The flags activate the

third level of optimization, ‘Higher-Order Transformations’ on loops, and transac-

tional memory.

Timers are inserted into the programs that measure the wall-clock time to execute

only the parallel section. This is done so that the ideal speedup would be linear – e.g.

4x for 4 threads – making scaling comparable across benchmarks.

In a parallel system, it is expected that there will be run-to-run variance in the

execution time: A lucky execution could avoid waiting on synchronization and

complete sooner than an unlucky execution that spends time waiting. To account

for run-to-run variance, each benchmark was run 5 times, and in many plots the

mean-speedup is plotted, along with a 95% confidence interval computed from the

t-distribution, assuming that speedups are normally distributed. In other plots where

the mean is not meaningful, all data points are plotted to show general trends.
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All runs used the BG/Q Hardware Performance counters to collect statistics about

L1 misses and the number of instructions executed [49]. The counters collected were:

• PEVT_L1P_BAS_MISS: Counts prefetchable load misses in the L1P unit.

• PEVT_LSU_COMMIT_LD_MISS: Counts loads that missed the L1 data cache1.

In general, the number of L1 misses reported in this thesis is the sum of this

and the previous counter.

• PEVT_INST_ALL: Counts instructions completed. This counter is useful for

measuring the amount of work done, and will be used to investigate the nature

of ‘wasted’ work.

3.4.1 Metrics

We computed two metrics, measures of transactional execution, to help describe and

compare the execution of our benchmarks at a high level.

Serialization Fraction This could also be described as serializations-per-commit,

and is computed as the ratio of serialized transactions to those committed. By

the nature of serialization, this value is bounded within the [0, 1] interval.

Abort Fraction The number of aborts-per-commit, computed as the ratio of the

number of serialized and rolled-back transactions to committed transactions.

This value is not bounded within any interval because there can be more aborts

than commits.

Capacity Fraction The number of capacity-aborts-per-commit, computed as the

ratio of the number of serialized and rolled-back transactions where capacity

overflow was reported to committed transactions. This value is not bounded

within any interval because there can be more capacity aborts than commits.
1According to the BGPM documentation, the PEVT_LSU_COMMIT_LD_MISS event does not

include cache-inhibited loads. However, it is unclear from the documentation if the event captures the
forced L1 misses caused by short-running mode.
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3.5 Benchmarks

This evaluation uses the STAMP benchmark suite, version 0.9.10 [52], and the RMS-

TM benchmark suite, version R3 [47].

3.5.1 STAMP

The STAMP suite is the de-facto standard in TM evaluations, containing eight appli-

cations that span a variety of transactional workload characteristics and domains:

bayes A machine-learning benchmark that learns a bayesian network.

genome A genomics benchmark that reconstructs a genome from gene-sequences.

intruder An implementation of a signature-based network-intrusion detection sys-

tem.

kmeans A version of the k-means clustering algorithm from machine-learning.

labyrinth A parallel maze-solving algorithm.

ssca2 Kernel 1 from the HPCS graph benchmark [6].

vacation A simulation of a travel reservation system.

yada (Yet Another) Delaunay mesh refinement Algorithm.

The STAMP benchmarks are used for two reasons: First, since it is the de-facto

standard suite, this allows relatively easy comparison against other work due to the

common deployment of this suite. Second, the STAMP benchmarks as a whole reflect

one particular belief about what transactional memory programs will look like —

relatively large transactions with long running times, where the majority of time in

the program is spent inside of transactions.

The benchmarks were run with the options recommended by the suite authors

for real hardware, presented in Table 3.1.
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Benchmark Running Options
bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1
genome -g16384 -s64 -n16777216
intruder -a10 -l128 -n262144 -s1
kmeans -m40 -n40 -t0.00001 -i inputs/random-n65536-d32-c16.txt
kmeans-high -m15 -n15 -t0.00001 -i inputs/random-n65536-d32-c16.txt
labyrinth -i inputs/random-x512-y512-z7-n512.txt
ssca2 -s20 -i1.0 -u1.0 -l3 -p3
vacation -n2 -q90 -u98 -r1048576 -t4194304
vacation-high -n4 -q60 -u90 -r1048576 -t4194304
yada -a15 -i inputs/ttimeu1000000.2

apriori <input> -s 0.0075
fluidanimate ⟨threads⟩ 5 in_300K.fluid
hmmcalibrate -num 500 -seed 33 globin.hmm
hmmpfam Pfam_ls_300 7LES_DROME
hmmsearch globin.hmm 2000_uniprot_sprot.fasta
scalparc F26-A32-D125K.tab 125000 32 2
utilitymine ⟨input⟩ logn1000_binary 0.01

Table 3.1: Benchmark Options

Though the STAMP suite provides eight benchmarks, most of the experimental

evaluation reports only results for five benchmarks. Three benchmarks are very unin-

formative for the purposes of the investigation because their behaviour is dominated

by effects that are not within the scope of fallback policies:

1. bayes is excluded because it is a non-deterministic benchmark. The time to

complete execution depends on the order in which transactions are committed.

A side effect of bayes’ non-determinism is that run-to-run variance is very high.

This high variance prevents accurate description of any effects from changing

the TM runtime without a larger number of repetitions than was feasible.

2. labyrinth is excluded because its running time is dominated by a transac-

tion that never completes on BG/Q. This transition copies a large array inside

the transaction. This copy exceeds that amount of speculative state that can be

stored by BG/Q.

3. ssca2 is excluded because its bottleneck is waiting for new SpecIDs to be

made available, as its high rate of transaction creation exceeds the rate of SpecID

reclamation in the L2 cache [74].
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kmeans and vacation have two variations described in the STAMP docu-

mentation, one for low contention and the other for high contention. However, most

of the performance study presents only the results for the low-contention version

because, from the perspective of Serialization Management, the low and high variants

typically show similar behaviour. When they differ, results for both variants are

presented or discussed.

We have attempted to account for many of the weaknesses of the STAMP bench-

mark suite [62], though have shied away from major changes to the suite in order to

attempt to preserve comparability between different publications.

Normally, the sequential version of the STAMP suite uses the system allocator

malloc but the parallel version uses a parallel allocator (memory.c). STAMP’s

parallel allocator does not free memory, and is simpler than malloc, leading to

misleading speedups. It is important to specify the allocator when discussing STAMP

results because the suite is known to be sensitive to allocation patterns [7]. STAMP’s

speedups presented in this thesis are relative to a sequential version of the bench-

mark, using the included parallel allocator for both parallel and sequential runs.

The sequential time used to compute speedups is the minimum of five trials. In

our experimentation some benchmarks — yada , vacation and intruder —

showed a substantial performance difference due to the allocator, that introduces a

constant-factor difference when compared to the results published in other papers

where malloc is used for the sequential baseline.

3.5.2 RMS-TM

RMS-TM is a newer benchmark suite that takes its applications for the field of "Recog-

nition, Mining and Synthesis":

aprori An association rule mining algorithm.

fluidanimate A hydrodynamics simulation.

hmmcalibrate Calibrates a genome sequence profile model

hmmpfam Searches a Hidden Markov Model database.
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hmmsearch Find similar sequences from a database.

ScalParC A decision tree algorithm.

utilitymine A rule mining algorithm.

The options used to run RMS-TM are shown in Table 3.1. Results for utility

mine and apriori only exist for 1-8 threads because the input file needs to be

split among threads according to an ‘offset file’, however offset files exist only for

1-8 threads, and the method for creating them does not appear to be documented.

Similar to STAMP, speedups presented are relative to the fasted sequential execution

with no TM overhead of five trials.

Most benchmarks from RMS-TM exhibit a low relative critical-section size (the

ratio of time spend inside a transaction vs outside during parallel execution) and

have low contention. Therefore there is little opportunity to exercise serialization

management.

This benchmark suite was used to reflect another view of future transactional

memory programs, essentially programs where fine and medium grained locking has

been replaced with transactions.

3.6 Benchmark Characterization

Each benchmark has particular characteristics that affect the response to changing

the serialization managers.

This section is supplemented by Section A.5 and Table A.1 in Appendix A.

3.6.1 Contention

The amount of contention experienced by the STAMP benchmarks vary dramatically.

To quantify the amount of contention, Table 3.2 shows the ratio of aborted to com-

mitted, in long- and short-running modes. This percentage can be greater than 100%

because of transaction retry.

One particular stand-out data point is vacation, that sees dramatically fewer

aborts in short-running mode than in long running mode. This variation is due to the
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Table 3.2: Aborts per commit and Capacity-overflow aborts per commit in the STAMP
and RMS-TM benchmarks run with Max-Retry set to allow 10 retries with capacity-
induced serialization and rollback delay enabled. The results for 2 threads are elided
because they have negligible counts even in short-running mode.

Name threads Abort Fraction
(Short)

Abort Fraction
(Long)

Capacity Fraction
(Short)

Capacity Fraction
(Long)

apriori 4 0.4405 0.3294 0.0069 0.0000
8 1.0441 0.8118 0.0364 0.0000

fluidanimate

4 0.0000 0.0001 0.0000 0.0000
8 0.0001 0.0001 0.0000 0.0000
16 0.0002 0.0001 0.0000 0.0000
32 0.0012 0.0006 0.0001 0.0000
64 0.0010 0.0011 0.0000 0.0000

genome

4 0.0034 0.0213 0.0008 0.0000
8 0.0134 0.0420 0.0018 0.0000
16 0.0393 0.1073 0.0034 0.0000
32 0.0744 0.1185 0.0040 0.0000
64 0.1559 0.1187 0.0088 0.0011

hmmcalibrate

4 1.3582 0.3447 0.0057 0.0000
8 2.6838 0.7622 0.0405 0.0000
16 3.6589 1.4703 0.1311 0.0000
32 4.1091 3.4674 0.2593 0.0000
64 4.4687 5.9864 0.3972 0.0000

hmmpfam

4 3.5068 1.8278 0.0063 0.0000
8 5.3166 3.9553 0.0420 0.0000
16 5.9488 6.5306 0.2276 0.0000
32 5.9438 7.1801 0.3700 0.0000
64 6.4394 7.3492 0.3350 0.0012

hmmsearch

4 0.3667 0.1712 0.0027 0.0000
8 1.0680 0.5204 0.0075 0.0000
16 2.0539 1.1161 0.0171 0.0000
32 3.5236 2.4567 0.0353 0.0000
64 4.7928 4.0839 0.0630 0.0060

intruder

4 0.1233 0.1140 0.0082 0.0000
8 0.3433 0.2491 0.0224 0.0000
16 0.6386 0.4487 0.0427 0.0000
32 0.8874 0.7142 0.0521 0.0000
64 1.0254 0.8166 0.0598 0.0000

kmeans

4 0.0129 0.0030 0.0000 0.0000
8 0.0780 0.0402 0.0000 0.0000
16 0.5073 0.4131 0.0002 0.0000
32 1.3458 1.2705 0.0037 0.0000
64 1.6456 1.5995 0.0078 0.0000

ScalParC

4 0.0911 0.1496 0.0002 0.0000
8 0.2044 0.3548 0.0003 0.0000
16 0.4709 0.8685 0.0007 0.0000
32 1.5086 1.8051 0.0018 0.0000
64 1.5957 1.8067 0.0025 0.0000

UtilityMine 4 0.0135 0.0043 0.0036 0.0000
8 0.0180 0.0110 0.0013 0.0000

vacation

4 0.0001 0.1180 0.0000 0.0000
8 0.0003 0.2261 0.0000 0.0000
16 0.0017 0.3229 0.0000 0.0000
32 0.0111 0.3653 0.0002 0.0000
64 0.0375 0.2608 0.0002 0.0000

yada

4 0.5709 0.4079 0.0030 0.0000
8 0.7418 0.5590 0.0057 0.0000
16 1.1090 0.7756 0.0186 0.0000
32 1.8556 1.0128 0.0676 0.0000
64 2.4957 1.4211 0.1101 0.0000
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change in the conflict-detection granularity between long and short running modes.

The change in detection granularity renders vacation in short-running mode largely

insensitive to changes in serialization manager and tuning.

3.6.2 Capacity Overflow

Table 3.2 also shows that the dramatic difference in capacity-overflow reporting

between long- and short-running modes in BG/Q is caused largely by the aliasing on

the conflict bit discussed in Section 2.3.1.
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Chapter 4

The Transactional Event Profiler

Many TM implementations, including BG/Q, provide summary counters of the

number of committed and aborted transactions. However, to investigate the potential

efficacy of more sophisticated serialization managers, these counters are insufficient.

For instance, consider two transactional workloads each of which incurs 10,000

aborts, where the first transactional application takes 1 second to run, and the other

application runs in 10 seconds. Clearly these two programs experience very different

contention levels, yet this difference remains invisible in summary counters.

Disambiguating these kinds of confusing situations was the main motivation

behind the design of the Transactional Event Profiler (TEP), a tool that gives us

insight into dynamic conditions by capturing the time series of transactional events

inside the TM system.

4.1 TEP Design and Implementation

The Transactional Event Profiler (TEP) a is a software profiling system that provides a

high-resolution time-series view of transactional behaviour in programs run on BG/Q.

The TEP system allows both macro and micro views of transactional behaviour that

have influenced our understanding of benchmarks, serialization, and serialization

managers.

Event profiles are gathered by the TM runtime, triggered by events such as begin,

rollback, serialization and commit. These events are stored in per-thread buffers, and

are dumped to a log-file at the end of program execution by the runtime’s atexit
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shutdown handler. An event profile consists of a list of event tuples: (TS, T, TX, TID,

[A1, A2]), where:

TS is the timestamp read from a high-resolution counter.

T is an event type.

TX is a unique identifier for each static transaction. In our implementation, TX is

the address of the instruction that starts the transaction

TID is the event’s originating thread ID.

A1 and A2 are optional auxiliary data that can be used to save other data to the profile.

For example, A1 could be used to save the number of rollbacks used on each

serialization.

The event profiles collected are post-processed by analyzers, which are discussed

in more detail in Section 4.3.

4.2 Limitations of the TEP approach

The TEP design currently requires large amounts of memory for the buffers. Appli-

cations will fail if the program’s working set and TEP buffers are larger than 16GB

because the BG/Q compute node does not implement virtual memory. Experimental

evaluation revealed that most TEP logs for the STAMP benchmarks remain less than

1GB, however, larger programs would be expected to have larger logs.

Transaction IDs are currently derived directly from the binary file for the trans-

actional application. This source of IDs is not ideal because comparing TEP logs

between different compilations of the same benchmark requires inferring a mapping

between the two IDs and it is very labour intensive to recover the mapping between a

transaction ID and a source location.

Ideally, compiler support should be deployed to provide (1) smaller TX IDs,

reducing log size, and (2) a constant mapping between each ID and a source file

location. However such support is not yet implemented in the TEP.
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4.2.1 Probe Effects

Event profiles are imprecise because probe effects may change the behaviour under

study, as the insertion of instrumentation may change interleavings, caches and

other aspects of the system. The imprecision introduced by probe effects may be

acceptable for analyses that use aggregated values or that are interested in relative rates

between events, transactions or applications. However the overhead and interference

of instrumentation must always be kept in mind.

While probe effects are impossible to avoid completely without a hardware solu-

tion, we made design choices to try to minimize them:

1. The profile buffers are thread local to avoid any synchronization overhead for

the profiling.

2. The event-profiling functions are made as short as possible and are inlined to

avoid function-call overhead inside the runtime handlers.

3. The event-profiling system avoids memory allocation overhead as much as

possible by allocating buffers in very large chunks. A typical profiled execution,

in our experience, allocates less than ten buffer-chunks per thread.

4. To save space, and to avoid one memory write per logged event, the TEP does

not explicitly store the thread origin in the memory buffer or in the saved file.

The buffers are saved on disk, one thread buffer at a time, in thread order.

Analyzers can infer the thread ID of the transactions by watching for breaks in

timestamp monotonicity as they process the profiles. Each such break indicates

a thread change.1 This is safe for BG/Q as the timestamp counter we use is

synchronized across cores and there is no thread-migration in BG/Q.

Figure 4.1 compares the STAMP benchmarks’ runtimes (the left two columns of

graphs) and rollback counts (the right two columns of graphs) when run with the
1Thread ID recovery can be accomplished with one line when processing the profile output with

the language R: log$thread=cumsum(c(FALSE, diff(log$timestamp) < 0)). This
R statement creates a new column thread on the data frame log that contains the thread ID. Many
thanks to G. Grothendieck on StackOverflow for this elegant and idiomatic R solution.
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Transactional Event Profiler (dark blue bars) and without (light blue bars). vacation

and yada (long running mode, 64 threads) are at the opposite ends of spectrum for

probe effects because both have their results badly distorted by the TEP in opposite

directions. vacation’s performance at 64 threads is improved by 60% when run

with TEP, and yada degrades by 280%. The number of aborts for yada is tripled by

the addition of the TEP, whereas vacation sees up to a 30% drop in aborts.

Despite the distortions caused by the TEP, in most cases the trends as the thread

count changes remain similar, but with changed magnitude.
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Figure 4.1: Comparing runtime and rollback counts for STAMP benchmarks run
both with (dark blue bars) and without (light blue bars) Transactional Event Profiling,
using Max-Retry allowing 10 retries as the serialization manager, in both Long and
Short running mode.
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4.2.2 Hardware Limitations

Some proposed transactional profiling systems not only track begin and end events,

but also the read and write sets [48]. Read and write set information can provide

interesting data on conflicting data. However, it is impossible to collect this data, in

the current form of BG/Q’s TM system, because read and write sets are managed in

the hardware in such a way that they are not exposed to the software system2.

4.3 A Sample of Event Log Analyzers

The raw event profiles can undergo a variety of analyses and visualizations, limited

only by the imagination of the implementor. I have made substantial use of the event

profiles, and have created a number of bespoke analyzers to answer specific questions

about implementations. Here I discuss analyses and visualizations that I believe

should help in answering our research questions.

4.3.1 Visualizing Event Rates

By looking at the rate of events over time we can discover interesting properties of

benchmarks, such as relative rates between transactions, or phased behaviour in

benchmarks.

Figure 4.2 shows the rate of each transactional event type aggregated across

all threads. Phased behaviour can be seen in the dramatic change in transaction

starts, and the small drop in MaxRetry-induced serializations that occurs about 9

seconds into execution. The rate of retry in Figure 4.2 never drops beneath the rate

of transaction starts. Given that the retry rate is between two and three times the

start rate, it can be inferred that the average transaction is retried between two and

three times over the course of execution, indicating that yada is a high-contention

benchmark.

Event rates can be split per-thread, such as in Figure 4.3, to show how transactional

behaviour need not be uniform across threads: For example, genome’s thread 0 has a
2Read and write sets on BG/Q can be read, however they must be read before commit, and need to

access the cache via a backdoor that is very slow to access. The capability was intended for debug and
is far too slow for profiling use.
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Figure 4.2: Event rates for yada demonstrating program phases and consistent rate
of serialization. Run with 16 threads in long-running mode with Max-Retry and 10
allowed retries

substantially different profile than thread 1 during genome’s second phase (3 seconds

onward). Different profiles for different threads could be rooted in the application

algorithm, as appears to be the case forgenome, or could provide a visual indicator of

starvation by showing reduced rate of commits for a subset of the executing threads.
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Figure 4.3: Transaction rates for genome showing how transaction activity can vary
across application threads. Run with 16 threads in long running mode, using the
Max-Retry with 10 retries allowed

4.3.2 Visualizing andComparingDynamicTransactionExecution

Lengths

An event log can be processed to provide the execution length of each dynamic

transaction, from start to commit. This data can be aggregated in histograms by each

static (source-code level) transaction as can be seen for genome in Figure 4.4. This

figure shows the dynamic transaction lengths for the six transactions in genome.3

Histograms of dynamic transaction lengths reveal the variability in the runtime

of transactions, both static and dynamic. For instance, the histograms in Figure 4.4

indicate that transaction TX 1 runs 10 times longer (notice the different scales for

frequency), on average, than any other transaction in genome, while also being one

of the most common by frequency.

Some transactions exhibit multi-modal behaviour with regards to execution time.

This is the combined result of multiple control flow paths through transactions,

varying amounts of contention and changing cache contents leading to abort and
3For better reading of this presentation the transaction IDs reported by TEP were replaced by

labels TX 1, TX 2, etc.
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to avoid the plots being swamped by outliers, and has 100 bins. Note the non-linear
y-axis and the different scales in the plots.

restarts, possibly many.

47



4.3.3 Micro-level analysis and visualization

Analysis of the behaviour of individual dynamic transactions allows insight into the

process by which an individual transaction is committed, and the timeline of events

that lead to that point.
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Figure 4.5: Individual events plotted for the first 1
4000 th of transactional execution

time for yada Run with 16 threads and no rollback delays in Long Running Mode.

One possible microscopic analysis for an event log is to show the timeline of

execution, such as the graph in Figure 4.5 which contains the timeline for the first
1

4000 th of transactional execution time for the benchmark yada. Each row corresponds

to a single thread, and each dot corresponds to a single transactional event. Time 0 is

set to the time of the earliest transactional event.

The sea of blue dots — corresponding to aborted transactions retrying — and

red dots — corresponding to transactions serializing to complete — in Figure 4.5

indicates a high-contention portion of yada’s execution. This particular log was

made with no attempt to space out transactions on retry through backoff. Thus, the

vertical columns correspond to the Convoy effect described by Bobba et al.. The

convoy effect appears because after a first abort the transactions restart sufficiently

close to each other that the same conflict repeats and slows progress [11].

48



4.3.4 Visualizing Parameter Evolution

We have made use of the event profiles to understand the behaviour of new serial-

ization managers with a variety of bespoke analyzers. Event profile tuples can be

annotated with any value from the runtime to visualize parameter values as they

fluctuate over time. This visualization has helped discover flaws in some designs and

inspired new approaches.

Section 5.4 introduces a serialization manager called LimitMeanST that models

the mean transaction length — µexec — during program execution. Dumping the

calculated mean to the event log enabled the generation of the plot in Figure 4.6, that

shows the serialization manager modelling the mean for each static transaction4.
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Figure 4.6: Showing LimitMeanST modelling µexec for genome run with 64 threads,
Long running mode. Note the non-linear y-axis. Only 0.06% of data points were
plotted to avoid exceeding technical limits in the document.

LimitMeanST adapts to changing execution time for transactions, as can be seen

by the kink in the curve for transaction TX 1 occurring at around 1
4 seconds.

4The transaction IDs in Figure 4.6 are incomparable with the transaction IDs in Figure 4.4 because
these profiles are generated from different binary files, as described in Section 4.2.
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4.4 Lessons from the TEP

The phasing of retry rates with drastic changes seen at certain points in execution seen

in both Figures 4.2 and 4.3, as well as the large variance in transaction execution time

recorded in Figure 4.4 suggest that dynamic policies that can change their behaviour

over time may be required to extract maximum performance from BE-HTM.

Dramatic changes in abort rates indicate that there are likely points in transactional

execution that demand different responses from the serialization manager. Higher

contention could demand more retries before serialization to reduce the chance of

serialization convoy, or could demand more serialization because less work is being

accomplished.

The large variance in transaction execution time shows that some transactions

may benefit from being treated differently. This applies both to static (source code

level) transactions, where some transactions may demand serialization more often,

and dynamic (a particular instance) transactions, where some transactions run much

longer than average.
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Chapter 5

Explored Serialization Managers

We developed a number of serialization managers, some from scratch and others

inspired by approaches from the STM literature. Often the inspired policies look quite

different from the original STM ones because there is little overlap in the information

available to BE-HTM and STM systems. However we attempted to preserve the

fundamental insights of each particular policy, as best as possible, when translating

to BE-HTM systems.

For those policies that can be tuned through a parameter, this chapter also con-

tains the results of that tuning. A more detailed investigation and across-policy

comparisons are presented in Chapter 8.

5.1 Max-Retry

Max-Retry is perhaps the simplest serialization manager imaginable. Max-Retry

allows a fixed number of rollbacks before forcing a transaction to serialize. This

policy trivially ensures forward progress and accepts different tunings for different

programs.

Most previous work in BE-HTM systems have used policies very similar or iden-

tical to Max-Retry.

5.2 SerializationControl

SerializationControl is built upon Max-Retry, but encourages fast serialization

for transactions that are predicted to have little chance of committing speculatively.
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Each thread has a local serialization table1 to support SerializationControl. For

each static transaction, this table keeps track of the number of times that the transac-

tion is committed, the number of times it is serialized, and a black-list counter that

flags transactions for immediate serialization on retry.

The serialization-commit ratio for a static transaction is the ratio between the

number of times the transaction is serialized to the number of times the transaction

is committed. When a transaction serializes by retrying more than N times, the

transaction entry in the serialization table is used to compute its serialization-commit

ratio. If the serialization-commit ratio exceeds a predefined threshold, then the black-

list counter in the serialization table entry is set to N . In the event of a transaction

failure when the black-list counter is greater than zero, the transaction is serialized

immediately and the black-list counter is decremented. Serializations that happen

while a transaction is black listed do not contribute to the serialization count, thus

allowing the serialization-commit ratio to decrease while the transaction is black

listed.

The goal of SerializationControl is to improve performance in the worst cases

for non-speculative execution when feedback is limited. This case happens when

transactions continually fail when executed speculatively. Recording the history of

static transactions per-thread leads to a better predictor of whether instances of the

transaction will abort in the future. The per-transaction predictor should help in

benchmarks where a subset of the static transactions require serialization more often

than others.

5.3 Limit, inspired by Karma

Karma is a classic contention manager from the STM literature [64]. The goal of

Karma is to increase throughput by aborting the transaction that has done the least

amount of work. Karma estimates the amount of work done by a transaction by the

number of objects that the transaction has accessed. The intuition behind Karma is
1The serialization table is keyed by static transaction address in the program text and uses linear

probing to attempt to resolve collisions. However, if collisions are not resolved after two probes, then
the element is recycled, leading to table aliasing.
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that it is preferable to abort a smaller transaction that has done little work than to

abort a larger transaction that could soon commit and has done larger amounts of

work. In order to be fair, however, a dynamic transaction accumulates its completed

work — called karma — across aborts to provide an element of karmic fairness. The

idea is that small transactions should be allowed to build up enough karma so that

they eventually complete even when they conflict with larger transactions.

Karma requires an estimation of the amount of work done by a transaction. This

estimate is provided by the transaction read-write set size so that Karma can favour

transactions that have done more work. A serialization manager inspired by Karma

will need an alternative way to estimate the transaction size because existing HTMs

do not expose the size of the read or write sets to software.

One solution is to budget an amount of execution time (in cycles) for each dynamic

transaction to attempt to execute speculatively. We call this policy Limit. In Limit

each dynamic transaction is given a budget of time to complete. While that budget

is not exhausted, an aborting transaction may continue to retry. Once the budget is

exhausted, the transaction must execute non-speculatively.

When Limit is run with exponential randomized backoff on retry, it could be

said that Limit emulates the intentions of the contention manager Polka, which is

precisely Karma with exponential backoff [64].

The intuition behind Limit is that it would be better to allow a short-running

transaction to retry more often than to allow a long-running transaction to keep

retrying. The idea is that both the risk of abortion and the amount of wasted work in

case of abortion are lower for a short-running transaction than for a long-running

transaction. In Limit a long-running transaction will serialize after fewer retries and

thus will be favoured for resource allocation, just like in Karma.

5.4 LimitMean and LimitMeanST

Limit performs well when the budget parameter is tuned correctly. However, budget

tuning is difficult because it depends on many factors. We have developed two

modifications to Limit to attempt to address the tuning difficulty.
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The first is called LimitMean. LimitMean computes, per thread, the cumulative

moving arithmetic mean of the transaction execution time µ̄exec, computed as:

µexec∶(N+1) =
Nµexec∶(N) + Texec

N + 1
(5.1)

The mean execution time is updated each time a transaction completes either

serially or with no aborts. At transaction start, the budget is computed as M × µ̄exec

for some parameter M provided at program start.

LimitMean follows similar intuition to Limit, preferring to allow small trans-

actions to retry and large transactions to serialize quickly. However, LimitMean

adjusts the definition of small and large depending on the actual transaction lengths

observed in the program, effectively self-tuning the budget.

LimitMeanST (Static Transaction) modifies LimitMean by tracking µ̄exec at a per-

static-transaction level using the same hash-table scheme as SerializationControl.

The intuition behind LimitMeanST is a little different, and relies on the fact, seen

in Figure 4.4, that transactions have varying running lengths. LimitMeanST is based

on the idea that the serialization manager should not unduly punish naturally large

transactions, but rather it should punish only the outliers of transactional execution

time, i.e. only the transactions that run many times longer than average.

In both LimitMean and LimitMeanST transactions are pre-loaded with an

estimate of the execution length of 10000 cycles if the transaction has not been seen

previously, or if the hash table entry has been recycled.

5.5 Best-EffortAdaptiveTransactional Scheduling (BE-

ATS)

Adaptive Transactional Scheduling (ATS) is an idea from the STM literature [79].

ATS is not a contention manager, but instead it is a transactional scheduler that

can be combined with any contention manager. A transaction scheduler adjusts

when transactions execute, as opposed to a contention manager that decides what

transactions survive a conflict. The motivation for including ATS in this study is

to show how other techniques, besides contention managers, can be deployed as
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serialization managers on a Best-Effort HTM system, broadening the pool of ideas

that can be drawn upon.

In a transactional-memory system experiencing low levels of conflict, retrying

an aborted transaction speculatively — instead of acquiring a lock to ensure its

completion — is a high-performance choice. However, when the contention levels

are high, the amount of work wasted by frequent retries may outweigh the benefits of

parallel execution. ATS aims to prevent the concurrent execution of transactions that

have a high probability of conflict, without completely serializing execution.

The intuition behind ATS is that threads can detect high-contention situations

and those threads experiencing contention can cooperate by waiting in a queue

before executing a transaction. ATS uses Conflict Intensity (CI) — a parameterizable

distributed measurement of contention — to decide whether transactions executing

on a thread must consult a central queue before starting.

Conflict Intensity is recurrently defined as shown in equation 5.2. The value of

CC is 0 for a commit and 1 for an abort, and CI0 = 0. The parameter α runs from 0

to 1 and controls the amount of history preserved, and thus the rate of adaptation. A

high α value preserves more history and slows adaptation to changing circumstance.

CIn = α × CIn−1 + (1 − α) × CC (5.2)

When a transaction starts (or restarts), its conflict intensity is compared against

a QueueIntensity threshold. If the QueueIntensity threshold is exceeded,

the transaction is stalled and enqueued in a global scheduler. When the transaction

reaches the head of the queue, it is allowed to proceed regardless of its conflict

intensity. ATS attempts to reduce contention by preventing concurrent execution of

transactions that have a high probability of generating a conflict.

ATS can be implemented on BG/Q very simply and efficiently by tracking the

conflict intensity2 and acquiring a ticket lock when the conflict intensity goes above

the QueueIntensity threshold. The ticket lock handles waiting threads using a

first-in-first-out order, and thus emulates a queue.
2Tracking conflict intensity is slightly different in BG/Q. The compiler liveness analysis for register-

save and restore expects the runtime does not use any floating point registers, and so the FP registers
are not saved or restored. Therefore CI is computed using libfixmath, a Q16.16 fixed point library.
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ATS alone does not guarantee forward progress. Even if all threads are in the

queue for the lock, a livelock may occur if the executing thread is attempting to execute

a transaction that requires irrevocability to complete. For instance, the executing

transaction may perform an I/O operation.

To compensate for transactions that will always fail, we modified ATS into Best-

Effort Adaptive Transactional Scheduling, or BE-ATS that defines aMaxIntensity

threshold. If the CI computed for the thread is above MaxIntensity any transac-

tions that execute on that thread are executed through non-speculative serialization,

turning ATS into a serialization manager.

5.6 Percentage Of Effective Work (Pew)

A common hypothesis in TM systems is that it is best to minimize wasted time

through some bound.

One measure of wasted time is given by the metric Percentage of Effective Work

(PEW), described in a forthcoming contribution by Pereira et al. [59].

PEW is computed per static transaction t and, in our implementation, is com-

puted thread-locally. In addition, PEW is specified based on an execution slice, a

group of k attempts to execute a transaction t.

To compute PEW(t, n) for a transaction t in slice n, five quantities are tracked:

1. WC(t, n) is the amount of work committed in slice n for transaction t.

2. WA(t, n) is the amount of work wasted in a slice n for transaction t.

3. c(t) is a counter that tracks progress of an execution slice for transaction t.

4. T(t, n) is the total work performed by the transaction, including wasted work.

This value is smoothed by the history of previous slices.

5. E(t, n) is the effective (committed) work performed by the transaction in slice

N. This value, like total work, is smoothed by history.

Whenever c(t) = k the runtime recomputes PEW(t, n). First the runtime com-

putes WT(t, n) = WC(t, n) +WA(t, n). WT(t, n) is the total amount of execution
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time for transaction t. From these two values, the total (Equation 5.3) and effective

(Equation 5.4) work can be computed, with a history parameter α to provide some

discounting to past values.

T(t, n) = α × T(t, n − 1) + (1 − α) ×WT(t, n) (5.3)

E(t, n) = α × E(t, n − 1) + (1 − α) ×WC(t, n) (5.4)

The percentage of effective work is defined as the ratio between these two values

(Equation 5.5):

PEW(t, n) = E(t, n)
T(t, n)

(5.5)

On rollback, if PEW(t, n) drops beneath some threshold T , then the runtime

will serialize that execution, increasing PEW(t, n + 1).

As in BEATS, PEW was implemented using a fixed-point math library to perform

the fractional calculations.

5.7 Other Investigated Serialization Managers

Though this thesis focuses on the seven serialization managers described above,

they are far from the only possible serialization managers, and far from all that we

investigated.

Table 5.1 contains a short discussion of a number of policies that were also investi-

gated and rejected, sorted by the reason for their rejection. RuntimeWork contains

policies that are feasible candidates for BE-HTMs but would require more engineering

resources than were available. Insufficient Information contains policies that do not

successfully translate to BE-HTMs due to the limited feedback provided by HTMs.

Insufficient Control are polices that require more control than an HTM provides.

There were also some policies that were implemented but that either overlapped

substantially with existing policies or did not perform well enough to be worth

describing in detail.
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RuntimeWork

adaptSTM [58] Could be used for switching between long– and short-
running modes, however would require a redesign of the
TM runtime.

Insufficient

Information

CAR-STM [28] Would require implementing higher-order transactions that
can be manipulated; moved from one core to another core
for example. Would also require information on enemy
transactions.

LUTS [56] Need enemy-transaction information to model conflicts
Eruption [43] Need enemy-transaction information to pass along priority.
Steal-on-abort [4] Need enemy-transaction information to choose target

thread, as well as requiring higher-order transactions that
can be moved from core to core.

Insufficient Control

Various contention
managers [64]

Very weak control of transactions to abort on conflict

Table 5.1: Dismissed potential policies, grouped by reason for rejection
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Chapter 6

Manager-Independent Policies

While trying to understand how serialization management fits together with existing

HTM systems, the question was raised as to whether there are manager-independent

policies that can be added to any serialization manager. In our exploration we dis-

covered two such policies, Rollback Delay and Capacity Serialization, described

below.

In the experiments in this chapter we use the serialization manager Max-Retry

as a vehicle to explore the two policies and their effect on performance. The results

in this chapter will justify enabling these two policies in all subsequent experiments.

Section 7.1 will discuss Max-Retry itself.

6.1 Rollback Delay

Bobba et al. described a pathology called Convoy, where a large group of transactions

abort near-simultaneously, usually because of conflicting references on the same cache

line, and retry near-simultaneously, leading to waves of rollbacks and little progress

or livelock [11]. To avoid a Convoy, restart after rollback can be delayed through a

randomized exponential backoff [73].

Figure 6.1 shows the results of a comprehensive exploration of exponential back-

off ’s effect on performance on the STAMP benchmarks. The horizontal axis records

the number of rollbacks that were allowed and the vertical axis reports the absolute

speedup over an efficient sequential execution reported for each individual execution

of the benchmark as a single point in the plots. For each allowed retry value, from
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1 to 39, each benchmark was executed five times. The number of threads used in

each execution is shown at the top of each column of plots. The graph shows the

mean of the measured speedups, along with a 95% confidence interval in grey. For

instance, the plots for kmeans with 16, 32, and 64 threads show a higher variance in

the measured speedups in comparison with all other plots. The red line represents

the mean speedup without rollback delay while the blue dotted line represents the

mean speedup with rollback delay.

Figure 6.1 shows that most benchmarks see performance improvements from

enabling exponential random backoffs. The improvements typically are seen at higher

thread counts combined with higher numbers of allowed-retries. The result can be

dramatic, doubling the performance of yada in Long Running mode and improving

the performance of intruder especially when a large number of retries is allowed.

However, the improvement is not universal. Some configurations see higher

performance without rollback delays. This is the case, for example, when running

intruderwith two and four threads. Rollback delay can reduce performance where

simultaneous retry is uncommon, or where simultaneous retry does not cause more

aborts.

Degradations caused by exponential backoff are rare and of low magnitude com-

pared to the improvements delivered by exponential backoff. Therefore all subsequent

experiments in this part will have exponential backoff enabled.
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Figure 6.1: The relationship between allowed-rollbacks and absolute speedup, showing
the effect of exponential backoff. Using Max-Retry and no capacity serialization.
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6.2 Capacity Serialization

The BG/Q TM hardware provides some feedback to the TM runtime system. One

element of the feedback is a capacity bit that indicates that the transaction was aborted

because a speculatively loaded line was evicted, meaning that conflicts could no longer

be detected safely. When designing a policy the capacity bit can be used to serialize

early, ideally saving one or more useless subsequent retries.

However, the capacity bit can be misleading. In both long- and short-running

mode, when a transaction is retried, other parallel threads and transactions may

have changed the state of the cache or the system – other transactions may have

committed, freeing speculative state for use, for example – possibly allowing the

capacity-aborted transaction to complete speculatively on retry. In addition, as

mentioned in Section 2.3.1, in short-running mode there is some aliasing on the

capacity bit, where the hardware sets the capacity bit even on aborts that are not

actually caused by capacity limitations.

Figures 6.2 and 6.3 show the results of a comprehensive exploration of the ef-

fects of capacity-induced serialization on performance on the STAMP and RMS-TM

benchmarks.

Each point in the figure corresponds to a single execution. Similar to Figure 6.1 the

plots here also show the mean and 95% confidence interval of the measured absolute

speedup of five runs of the benchmark for each number of allowed rollbacks. The red

line show the speedup for runs without capacity-induced serialization while the blue

dotted-line is for runs with capacity serialization. All the plots in a column are for

the same thread count, listed at the top of the column, and each row of plots is for a

given benchmark at a given running mode as indicated to the right of the figure.

The results in Figures 6.2 and 6.3 indicate very small effects on performance

from capacity-induced serialization for most benchmarks in either running mode.

The largest effects are improvements due to capacity-induced serialization in short-

running mode with large amounts of retries allowed — seen in genome, intruder

andhmmcalibrate. The effect of capacity-induced serialization on performance in

long-running mode seems to be almost entirely negligible, with a very small amount
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of change noticeable for intruder running with 16 threads.

The different responses to capacity-induced serialization in the two modes are

explained partially by Table 3.2 that shows the percentage of transactions that report

a capacity overflow in each benchmark.

All subsequent experiments in this thesis will have capacity-induced serialization

enabled because capacity-induced serialization seems to provide more benefit than

harm.
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Figure 6.2: The relationship between allowed-rollbacks and absolute speedup, showing
the effect of capacity-induced serialization on the STAMP benchmarks. Using Max-
Retry and exponential-backoff.
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Figure 6.3: The relationship between allowed-rollbacks and absolute speedup,
showing the effect of capacity-induced serialization on the RMS-TM benchmarks.
Using Max-Retry and exponential-backoff. apriori, fluidanimate and
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Chapter 7

Serialization Manager Tunings

All the serialization managers described in Chapter 5 have at least one tuning variable

that can be changed to vary the behaviour of the manager. A generous evaluation of

serialization managers requires understanding the behaviour of the manager across

a wide range of its parameter values. This chapter performs that study for each

serialization manager described in Chapter 5.

7.1 Tuning Max-Retry

Max-Retry requires that all transactions complete successfully within a limited

number of retries. If a transaction exceeds that limited number of retries, Max-

Retry serializes execution in order to enforce forward progress.

Figures 7.1 and 7.2 show how the absolute speedup achieved by the STAMP and

RMS-TM benchmarks changes with both the running mode and the number of

allowed retries when using Max-Retry as the serialization manager.

The two figures show clearly that tuning for the number of rollbacks allowed has

some effect. However, the number of rollbacks for which the maximum speedup is

achieved depends not only on the running-mode but also on the benchmark and the

number of threads used for execution.

The STAMP benchmarks spend substantially more time inside transactions than

the RMS-TM benchmarks. Thus, the STAMP benchmarks are much more sensitive

to tuning as compared to the RMS-TM benchmarks, where only hmmcalibrate,

hmmpfam and scalparc appear to be affected by tuning.
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Where the RMS-TM benchmarks appear to universally perform best with only

one retry leading to serialization, the STAMP benchmarks vary dramatically on

where the best speedup is achieved. For example, vacation, in long-running mode

performs best with a large number of retries allowed (> 10), yet for kmeans, any

more than one or two retries reduces performance for all thread counts more than 4.

intruder is notable for a dramatic reversal of behaviour between thread counts

≤ 8 and thread counts ≥ 16.

No benchmark in our tests improved in performance after 25 retries.

7.1.1 Mode Generalizability

According to the results for the the Max-Retry tuning, the benchmarks can be

divided into two groups. In one group — consisting of intruder , kmeans (both

low and high contention) and all the RMS-TM benchmarks excluding scalparc

run with 64 threads — the tuning between long and short running mode largely

follow the same general trend. Most of these benchmarks are mode-insensitive,

seeing relatively small differences between achievable speedup between long- and

short-running mode. The tuning for the second group — consisting of scalparc

run with 64 threads,and the remaining STAMP benchmarks — follow very different

trends between long- and short-running mode. scalparc is the exception, as

it is largely mode-insensitive, yet sees a dramatic change in program behaviour for

long-running mode when more than ten rollbacks are allowed in comparison to

short-running mode.
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Figure 7.1: Absolute Speedup for STAMP relative to the number of allowed-rollbacks
in Max-Retry for both short and long-running mode. vacation-high and kmeans-
high are elided because their behaviour is indistinguishable from their low contention
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Figure 7.2: Absolute Speedup for RMS-TM relative to the number of allowed-rollbacks
in Max-Retry for both short and long-running mode.
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7.2 Tuning SerializationControl’s BlacklistingThresh-

old

SerializationControl modified Max-Retry to handle transactions that serialize

often by blacklisting them, forcing them to serialize immediately on subsequent aborts

for a period of time.

In the vast majority of benchmarks — all of the RMS-TM benchmarks, genome,

ssca2 — SerializationControl does not change performance relative to Max-

Retry across all the values of threshold explored. In the case of the RMS-TM bench-

marks, this is due to the relatively low amount of time spent in transactions. In

the case of genome and ssca2 the lack of effect of SerializationControl on

performance is because rare serializations never trigger blacklisting.

What is the effect of the blacklisting threshold of SerializationControl on

performance? The results of an experiment that varies the blacklisting threshold

from 0.05 to 1 — for 5, 10 and 40 allowed retries — for the benchmarks whose

performance is affected by SerializationControl is presented in Figure 7.3. Each

graph presents the raw data-points of the results for five runs. In these plots, variance

is seen through the width of the lines. The darkness of a dot indicates the black-list

threshold according to the key at the bottom of the figure. A black-listing threshold

of 1 indicates that the blacklist will only be activated once per static transaction, if

it has failed 100% of the executions. This threshold value mimics the behaviour of

Max-Retry in the vast majority of situations and provides a point of comparison for

very little or no blacklisting.

In most of the benchmarks a lower threshold for black listing is too aggressive,

causing a reduction in performance relative to higher thresholds. The exceptions are

benchmarks with high amounts of contention and serialization: yada running with 8

threads andkmeans running with more than 16 threads where the number of allowed

retries is low. These are also the configurations and benchmarks that performed best

with a very-low number of retries in Max-Retry, as expected. intruder andyada

show discontinuities where there exists a minimum (in the case of intruder) or

maximum (in the case of yada) threshold requirement. In the majority of cases
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it appears that it is much more important to choose the correct number of retries

than the correct black-listing threshold. Black listing has a relatively minor effect in

those cases where it improves performance, except for kmeans that sees a substantial

improvement from avoiding transactional execution as much as possible.
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Figure 7.3: Absolute speedup of the benchmarks affected by SerializationControl
relative to Threshold and 5, 10 and 40 allowed rollbacks in SerializationControl.
A threshold of 1 approximates Max-Retry in almost all cases, only blacklisting
transactions when the transaction has failed 100% of executions.
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7.3 TuningLimit’s Per-TransactionExecution-CycleBud-

get

Limit provides a static execution-cycle budget for each dynamic transaction as dis-

cussed in Section 5.3. This budget is the same for all transactions and is determined

by the user at program start. The intuition is that a sufficient budget will encourage

large transactions to serialize while allowing smaller ones to keep attempting spec-

ulative execution. The hope is that less computation will be wasted retrying larger

transactions.
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Figure 7.4: Absolute speedup of STAMP benchmarks relative to cycle budget for
Limit. kmeans-high is excluded because it under-performs in all configurations,
similar to yada

Figures 7.4 shows the effect of tuning the per-transaction cycle budget for the

benchmarks from 1000 to 96000 budgeted cycles on the STAMP benchmark suite.

Results for the RMS-TM benchmarks are not presented because they were found
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to be entirely insensitive to the cycle budget except for a small amount of performance

degradation with very low (< 3000) cycle budgets.

The results for genome show how sensitive Limit can be to tuning. genome

has a sharp increase in speedup when the time budget passes a required minimum

budget of 55,000 cycles. After the minimum budget is achieved, speedup continues

to improve with a larger cycle budget.
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Figure 7.5: Serialization fraction for genome in long running mode, relative to the
cycle budget in Limit showing the dramatic effect of achieving the minimum budget.

The required minimum budget for genome stays relatively constant for 4, 8, 16

and 32 threads. However at 64 threads the required minimum jumps higher, possibly

due to increased pressure on shared resources in 4-way SMT mode.

The tuning curves for long- and short-running modes appear largely consistent

for kmeans and intruder. The highest performance for kmeans occurs at the lowest

budget because kmeans prefers serialization to speculation.

Figure 7.5 shows the dramatic effect the cycle budget has on the fraction of trans-

actions serialized. The continued improvement shows up here as a decrease in serial-

ization.

When compared to the previous serialization managers, all benchmarks, except

for kmeans, perform far worse than the highest performance seen. The expectation

here is that in most cases the range of explored cycle budgets was insufficient. The

challenge of choosing the cycle budget correctly is what inspired LimitMean and

LimitMeanST.
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7.4 Tuning M in LimitMean and LimitMeanST

LimitMean and LimitMeanST attempt to alleviate the challenge of choosing the

correct cycle budget by estimating it as some multiple M of µ̄exec, the estimated mean

execution time.

Figures 7.6 and 7.7 contain the results of a tuning study of M for LimitMean and

LimitMeanST. In addition, the results of changing the allowed number of retries

for Max-Retry have been included because the three serialization managers are so

closely related that comparing allowed retries and M is very sensible.

For most tests the maximum speedup of the three managers is achieved by either

LimitMeanST or Max-Retry, with the single exception of yada in short-running

mode run with 32 threads. In all other cases LimitMean at best matches the perfor-

mance of the other two policies.

genome is an interesting success case for LimitMeanST. Compared to Max-

Retry, LimitMeanST’s ability to distinguish based on transaction appears to dra-

matically improve performance over Max-Retry and LimitMean for many larger

values of M. A similar benefit, at a different point in the tuning space appears to

occur for intruder in long-running mode.

In contrast, vacation has a cliff in its performance with LimitMean and

LimitMeanST that occurs consistently with more than ten retries. There is a small

jump in serialization fraction that happens at that point, however, it is not clear why

this occurs though it seems to be inherent in the application.

The key difference between Max-Retry, LimitMean and LimitMeanST is

how they decide when to serialize. Figures 7.8 and 7.9 explore how the fraction of

transactions serialized relates to absolute speedup through a scatter plot of all the

samples obtained. The idea behind the figures is to show any relationship between

the empirical serialization fraction and speedup.

Roughly speaking Figures 7.8 and 7.9 contain three groups of benchmarks (and

configurations): those like genome and intruder (in long-running mode) that

see improved results with increased serialization up to a limit, those like kmeans

and hmmcalibrate where the performance keeps improving as the amount of
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serialization increases; and those like yada and hmmsearch that see only reduc-

tions in performance when serialization increases. These results are rooted in the

algorithms and data access patterns of the benchmarks.

The notable feature of LimitMeanST is the ability to make different decisions

based on what static transaction is being executed. intruder and yada appear to

be the only two benchmarks that benefit from this ability as can be seen by improved

performance over Max-Retry and LimitMean with the same serialization fraction.

The vertical bar for ScalParC executing with 64 threads in long-running mode

corresponds to the decrease in performance when more retries are allowed in the

Max-Retry policy as seen in Figure 7.7.
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Figure 7.6: Absolute Speedup for the STAMP benchmarks relative to M or allowed
retries when run with Limit, LimitMean or LimitMeanST. The results for 2 threads
are elided because they don’t vary much over the range values explored.
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Figure 7.7: Absolute Speedup for the RMS-TM benchmarks relative to M or allowed
retries when run with Max-Retry, LimitMean or LimitMeanST. The results for
2 threads are elided because they don’t vary much over the range values explored.
apriori and utilitymine are excluded because they don’t see any change
from policy or tuning.
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Figure 7.8: Absolute Speedup as related to serialization fraction for STAMP bench-
marks run with the Max-Retry, LimitMean and LimitMeanST serialization man-
agers with M or allowed retries between 1 and 39.
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Figure 7.9: Absolute Speedup as related to serialization fraction for RMS-TM bench-
marks run with the Max-Retry, LimitMean and LimitMeanST serialization man-
agers with M or allowed retries between 1 and 39. apriori and utilitymine
are elided from this figure because they see no relationship between serialization ratio
and speedup.
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7.5 Tuning α in BE-ATS

BE-ATS tracks contention per thread using Conflict Intensity, which is updated

using a parameter α that controls the amount of history preserved. Higher α means

slower adaptation to changing circumstance, and lower α means faster adaptation to

changing circumstance.

When a thread’s measured Conflict Intensity goes above a thresholdQueueIntensity,

subsequent transactions on that thread are queued to reduce overlapped execu-

tion. If a thread’s Conflict Intensity increases beyond a second threshold, named

MaxIntensity, then transactions are serialized upon aborting.

Figure 7.10 shows how benchmark performance is affected by varying α for both

STAMP and RMS-TM. In this experimentation, QueueIntensity was arbitrarily

set to 0.6 and MaxIntensity to 0.9. Though a complete examination of BE-ATS

would require also examining where the thresholds are set, a static pair of thresholds

gives a good overview of the range of behaviours expected modulo some shifting

based on α.

Previous experimentation has showed that kmeans and scalparc perform

best when serialization happens immediately after abort. This trend holds true with

BE-ATS with the highest performance occurring when α is low, which ignores most

of the previous value of Conflict Intensity. Similarly hmmcalibrate’s performance

drops as α increases.

As we have seen previously, intruder, kmeans and the RMS-TM benchmarks

have similar speedup curves between short- and long running-mode, while the

remaining benchmarks see different behaviour curves across the values of α.

One of the fundamental elements of BE-ATS is the idea that threads can self-

throttle in order to reduce contention and increase program performance. Figure 7.11

examines the relationship between the fraction of transactions that enter the queue

and absolute speedup.

intruder in both modes andgenome,yada andvacation in long-running

mode appear to benefit from small amounts of queueing. The remaining benchmarks’

performance is largely determined by serialization, with performance either entirely
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unrelated to the fraction of transactions queued or with their highest performance

happening when no transactions are queued. While some benchmarks queue more

than 20% of total executed transactions, typically large fractions of queued transac-

tions appear to harm speedup overall, and few benchmarks queue many transactions.
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Figure 7.10: Absolute Speedup for STAMP and RMS-TM benchmarks relative to α
parameter in BE-ATS. Results for thread counts less than 8 and the missing RMS-TM
benchmarks are not presented because changing α has no effect. The ‘high’ contention
versions of kmeans and vacation are excluded because they behave identically
to the low contention versions presented here.
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Figure 7.11: The relationship between the fraction of transactions queued and absolute
speedup in the RMS-TM and STAMP benchmarks. UtilityMine, apriori, fluidanimate,
hmmpfam, and hmmsearch are excluded because they see no relationship between
speedup and the fraction of transactions queued.

84



7.6 Tuning PEW’s T and α

PEW controls serialization by estimating the amount of wasted work a thread has

done. This policy serializes if history (controlled by a parameter α in a similar manner

to BE-ATS) indicates that the thread has been wasting too much work, determined

by the ratio of committed to uncommitted work PEW dropping beneath a threshold

T . A higher threshold is less lenient about wasted work, serializing more often than a

lower threshold which allows substantially more wasted work.

PEW requires updating an average for every transaction start or abort. To accom-

plish that the serialization manager has a third parameter k that chunks the updates

to reduce overhead, The computed PEW is only updated every k operations.

Figure 7.12 shows the results of an experiment that varies the threshold and α

parameters for PEW while executing the STAMP benchmarks. In the plots in the four

left columns k = 0 leading to the updating of PEW in every execution. For the plots

in the four right columns k = 10 and therefore PEW is updated every tenth execution.

The performance of the RMS-TM benchmarks does not vary when the parameters of

the PEW policy are changed. Therefore, results for that suite are not presented.

Before these experiments, the expectation was that k = 0 would lead to higher

overhead. Surprisingly, the overhead of updating PEW does not appear to have the

largest effect on performance. Changing k appears to instead have a dramatic effect, in

many cases reducing performance substantially, and dramatically altering the tuning

curves for the STAMP benchmarks. For instance, genome in long running mode at

32 threads sees a complete reversal of speedup trend when varying α between k = 0

and k = 10. Updating PEW too aggressively causes overly aggressive serialization, as

seen in Figure 7.13. This figure plots the serialization fraction relative to the threshold

and α values. Overly aggressive serialization explains most of the poor-performing

cases for k = 0.

One of the interesting results from Figure 7.13 is how successfully the threshold

parameter is able to control the serialization rate, as designed, when using PEW and

k = 10. Almost every benchmark has a very similar curve of serialization fraction.

Performance is then dependent on the program and algorithm’s requirements and
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resource usage.

These results provide clear evidence that speculation is one of the key elements

for TM performance in most cases. The performance is terrible for genome in

long-running mode with a high threshold T because genome, when run in long-

running mode, needs speculation in order to perform well. The serialization-fraction

results help explain the subset of the benchmarks that do not perform as expected

in transactional memory: genome in short-running mode and kmeans. In both

cases PEW performs best with as little speculation as possible, which is accomplished

with low α and high T . These cases are pathological failures in the BG/Q’s BE-HTM

system.
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Figure 7.12: Varying the threshold and alpha parameters in STAMP running PEW for
two values of k in Long and Short Running mode, for 8-64 threads. Results for 1-4
threads and the RMS-TM benchmarks are not presented because they are insensitive
to parameter values.
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Figure 7.13: Varying the threshold and alpha parameters in PEW for two values of E
in Short Running mode on STAMP, showing fraction of transactions serialized for
8-64 threads.
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7.7 Tuning, a summary

The summary of the tuning exercise presented in this chapter is that manager perfor-

mance is highly dependent on the combination of tuning, benchmark, and running-

mode. This means that comparing performance between managers is difficult, as

being fair requires paying attention to tuning.

The benchmarks themselves appear to have preferences as to the tuning, and the

kind of behaviour the tuning promotes: benchmarks like genome in short-running

mode and kmeans find no benefit from speculative execution, and almost invariably

prefer a tuning that promotes serialization over speculation. On the other hand,

benchmarks like yada prefer tunings that promote speculation, with almost any

serialization reducing performance.

With the limited exception of LimitMeanST, the changed decision making

processes explored among the differing serialization managers have little effect on

changing outcomes through a ‘better’ serialization. LimitMeanST is the exception

due to its ability to improve the performance of intruder in a limited sense.
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Chapter 8

Serialization-Manager-Driven

Performance Effects

8.1 Performance Unpredictability

Chapter 3 raised two pitfalls that need to be kept in mind before drawing any con-

clusions about serialization management. (1) We must consider the effect that the

BE-HTM platform has on a serialization manager’s performance at a particular tun-

ing setting on a particular benchmark. (2) Applications have different transactional

profiles that have different demands on the TM system and its serialization manager,

therefore a broad set of applications need to be included in the experimental evalua-

tion. Furthermore, it was discussed how desirable it would be for there to be some

level of generalizability in serialization management — a good tuning for a particular

benchmark should work well on the same benchmark on another platform, or on

another benchmark on the same platform.

The results presented in Chapter 7 show that unpredictability in serialization man-

agement seems to be the norm, as there don’t seem to be many generalizable rules.

The lack of generalizabilities indicate that 1) the platform has a very substantial effect

on serialization management for many benchmarks. Across all the serialization man-

agers explored in this section, each revealed a set of benchmarks (typically genome,

intruder and vacation) that found opposite effects in long- and short-running

mode when varying the parameters of the serialization manager. 2) The individual

benchmarks often require very different handling, with opposite reaction to parame-

ters in the same running-mode being common. For instance, to achieve maximum
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performance kmeans requires aggressive serialization and speculative retries are al-

most never a good idea for kmeans. In contrast, yada’s highest performance occurs

with zero serialization. 3) There is almost no generalizability in tuning of parameters

for serialization management. Finding the correct parameter value is essential for

performance, even within the same benchmark running with a different number of

threads. This can be seen with intruder often changing the best tuning from one

extreme at 2-8 threads to another extreme at 16 or more threads (see Figure 7.1).

8.2 Stable Trends

Though there is little in the way of generalizability in the tuning of parameter values

for serialization managers that would allow for a generalization of performance trends

across benchmarks or platforms, there is at least one property that appears to hold

relatively stable for each benchmark across serialization managers. Figure 8.1 plots

the relationship between the serialization fraction — the fraction of transactions

committed in serialization mode — and absolute speedup at 16 threads for each of

the RMS-TM and STAMP benchmarks across all serialization managers. By looking

at the datapoint trends across the rows, corresponding to benchmarks, it can be

seen that despite the varying strategies deployed by the serialization managers, the

performance trend for a particular benchmark appears to remain relatively constant,

aside from a small number of exceptional cases previously discussed. For example,

intruder sees a different serialization fraction curve using LimitMeanST over

the other serialization managers.
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Figure 8.1: Serialization Fraction and its relationship to absolute speedup for 16
threads, run in both long and short running mode
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8.3 Wasted-Work Hypothesis

Section 5.6 raised a common hypothesis in TM systems: that wasted work is important

to avoid. Wasted work here means instructions executed in aborted transactions.

The expectation is that performance should be best executing the minimum possible

number of instructions, because it indicates that the computation was performed with

maximum efficiency. Using the data on instructions executed aggregated across all

threads collected using the Blue Gene Performance Monitor hardware event counters

(BGPM counters) we can explore this hypothesis in more detail.

Figure 8.2 shows a strong relationship for the benchmark genome between the

number of executed instructions and speedup. As expected, the best performance

appears when the fewest instructions are executed. This relationship is not a universal

trend though. Figure 8.3 plots the same data for yada, which finds some configu-

rations running best with more instructions executed, with the results at 8 threads

being particularly different.

Another measure of wasted work would be the fraction of dynamic transaction

executions that are aborted, or the ratio between the number of aborts and the number

of committed transactions. This ratio is also presented in Figures 8.2 and 8.3 in the

form of the point sizes. These point sizes corroborate the conclusions drawn from

the instructions executed, showing yada performing better when more aborts occur

at lower thread counts, and genome performing better with less total computation

and fewer aborts across all configurations.
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Figure 8.2: Instructions Executed compared to Absolute Speedup for genome run
with 8-64 threads in long running, plotting the top 30% of executions, where the size
of each point corresponds to the number of Aborts per commit, with smaller dots
having fewer aborts.
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8.4 Serialization Management and Performance

The results in Chapter 7 showed how performance was affected for each individual

serialization manager described in Chapter 5 as the parameters that control the

serialization managers were varied. Figures 8.4 and 8.5 summarize the results of all

the experimentation presented in Chapter 7. They show the distribution of Absolute

Speedups achieved for each benchmark in each running mode by each serialization

manager, across all the parameter values explored in the form of violin plots.1 A

tight distribution for a particular serialization manager indicates that the benchmark

performance does not change much over the tunings explored in Chapter 7.

This thesis hypothesized that improved serialization management can improve

the performance of BE-HTM parallelized programs, much in the same way that

improved Contention Management can improve the performance of STM parallelized

programs. The distribution of speedups in the figures show that overall the RMS-TM

benchmarks (Figure 8.5) are markedly less sensitive to the effects of serialization

management than the STAMP benchmarks (Figures 8.4). In the STAMP benchmarks

the improvement from the worst to the best performance can often exceed 1000% (in

the case ofgenome executing in long-running mode). This result can be explained by

the low proportion of time spent in transactions in the RMS-TM benchmarks relative

to the STAMP benchmarks. This result also indicates that for heavily transactional

applications, such as the STAMP benchmarks, serialization management is a critical

aspect of performance.

The best-achieved performance for each runtime is the highest point on the violin

plot. Most combinations of benchmarks and mode see some change in performance

across different serialization managers and tunings. However, despite these changes,

most serialization managers appear to achieve equally high speedup on most bench-
1A violin plot uses the variable width of a "violin" to show the empirical distribution of values: thin

violin sections have low density (or few data-points), and thicker sections have high density (or many
data points). Figures 8.4 and 8.5 use modified violin plots that normalize the width of the violin such
that each violin has the same widest point. This can cause distortion — in comparison to a violin plot
that normalizes area — because wide uniform distributions will have substantially more visual weight
than deserved. However, it is appropriate for the plots presented here because (1) we are interested
in relative distributions rather than absolute distributions; and (2) each serialization manager has a
different number of samples relating to the size of the explored parameter space.
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marks for at least one tuning. While we don’t have an oracle that would indicate if this

is the highest possible speedup, the fact that multiple serialization managers achieve

the same speedup indicates that it may be the highest speedup achievable within the

serialization manager paradigm.

The large range of speedups in the STAMP benchmarks, caused by changing

serialization manager or by tuning for a particular serialization manager, provides

substantial support for the hypothesis of this thesis: improved serialization man-

agement can improve performance much like improved Contention Management

can improve STM program performance. Similarly, poor serialization management

can destroy all possible performance gains, especially for applications similar to the

STAMP benchmarks that spend the majority of application time in transactions.

For many benchmarks each individual serialization manager has a large range of

speedups across the possible tunings indicating that it is far more important to choose

the correct tuning for the deployed serialization manager than it is to choose the

serialization manager. Even a simple serialization manager, like Max-Retry, is a high

performer for most benchmarks with at least one particular value of allowed rollbacks.

The exceptions are: kmeans, that sees a better result with either BE-ATS or Limit,

and intruder executing in long-running mode, genome and yada executing in

short-running mode, all three of which see a better speedup with LimitMeanST.

Across all the presented configurations there is no consistent ordering of serial-

ization managers in terms of the best-achieved speedup. The results are completely

dependent on the application, the thread-count, and the platform (running mode).

This extensive experimental evaluation appears to put to rest the hope that there could

be a ‘best’ serialization manager for the BG/Q BE-HTM. Further experimentation is

required to determine if this is also the case for other BE-HTMs.
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Chapter 9

RelatedWork

Related work for this thesis can be split into categories: HTM Performance analyses,

non-speculative serialization and similar systems, enhancements to non-speculative

serialization and transactional profiling.

9.1 HTM Performance Analyses

Christie et al. evaluate the AMD ASF proposal on a number of transactional memory

benchmarks [19]. To provide forward progress they provide a non-speculative serial-

ization mode, using a Max-Retry policy (though the allowed number of retries is

not discussed) with capacity-induced serialization. Unlike the study in this thesis that

focuses on serialization management, their evaluation fixes serialization management

and instead varies the implementation parameters for ASF, changing the amount of

supported speculative state.

Yoo et al. investigate Intel’s RTM system with CLOMP-TM [65] and STAMP [78].

Their investigation uses a serialization manager similar to Max-Retry with a fixed

number of allowed rollbacks (5) that they state that performes ‘best’. Given the results

of the study in this thesis, it is not clear how they determine what ‘best’ means under

the competing constraints of different benchmarks, though by tuning their version of

Max-Retry they acknowledge the problem described here.

Wang et al. investigate a limited form of tuning for a serialization manager very

similar to Max-Retry running on Intel’s RTM system [76]. They investigate an

array-access microbenchmark and a molecular-dynamics simulation, and found a
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dramatic improvement in both speedup and abort rate by increasing the number

of allowed retries within the range of 1-10. They note that there is likely no fixed

optimum and on-line tuning may be desirable, as has also been indicated through

the much more extensive study here.

Diegues and Romano describe a similar — though smaller scale — exploration of

serialization management (named by them as software-based fallback) to the study

presented in this thesis, as well as a serialization manager called Tuner that uses

online-learning techniques from reinforcement learning to learn an appropriate tun-

ing for each transaction in an application at runtime [27]. Their study involves two

key elements: Varying the strategy for handling capacity aborts (which is substantially

more important on Intel’s Haswell because it can store much less speculative state) and

adjusting the number of aborts allowed to each transaction. Their study draws many

of the same conclusions as this study: 1) application performance can be dramatically

affected by the choice of serialization management, 2) the best performing serializa-

tion manager changes from application to application. Driven by this conclusion,

they present the serialization manager Tuner, which uses reinforcement-learning

techniques to learn for each static transaction the highest performing strategy for

dealing with capacity aborts, and the appropriate number of aborts for each static

transaction. This path of self-tuning is expected to be very fruitful for serialization

management, likely becoming the default approach in light of the challenges to static

tuning exposed by this study.

9.2 Non-Speculative Serialization

Non-speculative execution as a method for handling poorly behaved speculation is a

common theme in the literature of speculative parallelism. In addition, the notion

has appeared in STM systems as a method for supporting actions that do not fit in

the transactional model, such as I/O.
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9.2.1 Hardware Systems with Non-speculative Execution

The proposed Transactional-Memory Coherence and Consistency (TCC) model exe-

cutes the majority of code speculatively [38]. Similar to BG/Q, in order to support

transactions that exhaust the speculative storage, or that execute irrevocable actions

such as I/O, TCC supports a form of non-speculative execution that makes trans-

actions inevitable and propagates their writes immediately. Transactions that are

executed in non-speculative mode are overflowing or irrevocable transactions. In

contrast to BG/Q’s software implementation, TCC’s non-speculative execution is

a hardware mechanism built directly into its coherency protocol. TCC only uses

non-speculative mode for overflowing transactions, and so has no policy to evaluate.

The STAMPede Thread-Level Speculation framework, which allows speculating

loops and other control flow, provides a home-free token that indicates when a thread

is executing the oldest work, at which point speculative state may overflow, and

irrevocable actions may be taken safely [72]. STAMPede’s home-free token serves

much the same purpose as the global lock used for serialization in BG/Q, however

it is used to provide irrevocability to the eldest piece of work. Compared to BG/Q,

STAMPede has no tuning with regards to the home-free token, as there is only ever

one eldest piece of work.

9.2.2 STM Analogues to Non-speculative Execution

Non-speculative serialization in Best-Effort HTM systems is similar to a concept

from the STM literature described slightly differently by two different authors:

Irrevocable Transactions, described by Welc et al., are software transactions that

have been granted immunity to rollback by the TM system [77]. As in non-speculative

serialization, these transactions can be allowed to perform I/O or system calls because

their commit is guaranteed — and only one irrevocable transaction may be executing

at any given time. Welc et al. describe irrevocable transactions as a programmer-

accessible enhancement to the TM programming model both to allow actions that

cannot be rolled back and to force completion of transactions that may be expected

to induce large amounts of aborts if allowed to proceed speculatively – a hash-table

resize operation for example. Inevitable Transactions is the name given to much the
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same concept by Spear et al. concurrently to the work of Welc et al. [69]. Spear

et al. contributes multiple methods for supporting inevitable transactions, each

allowing more concurrency than the base method — a Global Write Lock. Non-

speculative serialization, as implemented in BG/Q, is effectively the Global Write

Lock as described by Spear et al.. The remaining mechanisms described are applicable

only to STM systems, unless hardware modifications are made to expose transactional

read and write sets.

Welc et al. explores a naïve policy for automatic transition into irrevocable exe-

cution to improve performance by providing a quicker forward-progress guarantee

similar to non-speculative serialization in BG/Q. Similar to the findings in this study,

that serialization management is an important part of transactional performance.

Welc et al. found that automatic transition into irrevocable execution could dramati-

cally affect transactional performance, however their investigation was limited to a

simple heuristic. The evaluation in Spear et al. found, as this study did, a dependence

on workload characteristics for the selection of an inevitability mechanism, though

their inevitability is only user-specified and tested on synthetic benchmarks.

9.3 HTM Serialization Enhancements

Calciu et al. presents a compiler-assisted improvement to non-speculative serial-

ization that reduced the rate of lock acquisition, as well as a number of theoretical

schemes to improve HTM systems [15]. Lazy lock checking was combined with a

compiler transformation to ensure that any indirect jumps that occur within a trans-

action are instrumented with checks to the global lock in order to avoid the possibility

of reading a value written by a non-speculative transaction, and using that value to

jump to a transaction-ending instruction, prematurely ending the transaction and

violating atomicity1. Despite providing an enhanced non-speculative serialization,

unlike this thesis the authors did not discuss the policy under which they reverted

to non-speculative serialization, nor the settings of whatever policy they did use. As

seen in our evaluations, this can be critical when evaluating performance.
1Indirect jumps are disallowed as part of the programming specification for BG/Q TM, thus no

instrumentation is required for BG/Q even in lazy-lock checking mode.
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9.4 Transactional Profiling

Time-series analysis of transactional memory programs has been rare. Previous

work has been done on Software Transactional Memory Systems, or has required

specialized hardware to be added to the processors [2, 18, 80]. The existence of the

TM runtime in BG/Q’s HTM makes inserting the event profiling trivial as compared

to other HTM systems where the TM code is tightly woven with application code.

Lev describes a prototype transactional profiler called T-PASS —Transactional

Program Analysis System — that used stub calls read by the DTrace dynamic tracing

framework to implement the profiling. Lev’s profiler could profile at a deeper level than

the TEP presented in this thesis, including being able to profile conflict sets and finding

silent-writes. However, these features rely on it having been built specifically for the

SkySTM runtime [48]. Lev’s profiler included some aggregate analyses, including

computing dynamic transaction lengths, as were computed for Figure 4.4.

Zyulkyarov et al. describe a transactional profiler for an STM augmented C# sys-

tem, and describe a visualization technique that inspired the visualization in Figure 4.5,

though they did not explore the possible insight of aggregate data visualization [80].

Gottschlich et al. presents TMProf, a transactional memory profiler intended for

end-user usage [33]. They create application traces similar to ours. However, instead

of offline analyzers, they provide an interactive graphical front-end in order to display

a micro-level analysis of the transactional execution in order to visually indicate areas

of possible improvement in the algorithms. The focus of TMProf is on micro-level

interactions and thus aggregate analyses are not discussed.
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Chapter 10

Study Limitations

Though the study in this thesis is very comprehensive, it does not entirely cover the

possible experimental space for Blue Gene/Q BE-HTM. Had time and resources

permitted, further study could have explored:

• Eager vs. Lazy conflict resolution. Section 2.3.1 stated that BG/Q can resolve

memory conflicts either eagerly or lazily. Eager conflict resolution was used

throughout the experimental evaluation because a previous study, comparing

the absolute speedup of Max-Retry obtained with eager and lazy conflict

resolution on the STAMP benchmarks, found that eager performed as well as, or

better than, lazy conflict resolution. While I believe that the outcome of testing

with lazy conflict resolution would only be a different tuning curve for each

manager, it is possible that it could provide substantially better performance

when paired with a new serialization manager.

• Eager vs. Lazy Lock acquisition. Section 2.3.2 explained that BG/Q can check

the irrevocable token either at transaction start (eagerly) or transaction finish

(lazily). The runtime defaults were used to check the lock eagerly in short-

running mode and lazily in long-running mode. While my expectation would

be that experimentation with eager vs lazy lock checking would prove to just be

another dimension for tuning, similar to conflict resolution, it is also possible

that an interaction between serialization managers and lock checking could

have remained hidden in this study.
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• Software Stack Modifications. More aggressive modification of the software

stack could have provided some interesting possibilities for optimization. In

particular, exposing more information available at the kernel level to the se-

rialization managers could have allowed for the design of more intelligent

managers.

Another option would be to raise the contention management decision to the

runtime level to allow the run-time system to collect statistics, and possible be

more intelligent than the kernel.

• Exploring Sandboxing for Protection. Similar to capacity-induced serializa-

tion, all serialization managers presented here serialized on the detection of a

sandboxing violation. This is a safe assumption when TM programs expect to

operate entirely on consistent state when executing a transaction. However, it

is possible to write TM programs that use the hardware sandboxing as a safety

guarantee for speculation— for example, allowing some non-transactional

writes to a data structure, and relying on sandboxing and memory-protection

to ensure that transactions do not commit when accessing invalid or unmapped

pointers. Some STAMP benchmarks do precisely this— which may be a high-

performance choice. If this form of TM programming were to become common,

immediate serialization on a sandboxing violation may be too aggressive and

may dramatically reduce performance.

Though exploration on Intel’s Haswell [44], IBM’s zEC12 [45] or POWER8 [14]

would be possible and desirable in order to understand more points in the BE-HTM

design space, it would require porting the transactional memory runtime built for

BG/Q, and, in the case of Haswell, the XLC compiler to the new platform, both of

which are beyond the scope of this thesis.
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Chapter 11

Future Work

There are a number of possible directions that could be pursued in future work.

11.1 Formalization and Abstraction

Serialization management is very tightly intertwined with the TM runtime in BG/Q.

This is an artifact of history, however in the course of this study I elected not to

disentangle the dependencies. Future investigation of serialization management

should specify an interface in order to provide pluggable serialization management.

11.2 Invasive Serialization Managers

Some contention managers or transactional schedulers created for STM cannot be

implemented in BG/Q because of limitations imposed by the hardware and kernel

implementations. For instance, a policy called Collision Avoidance and Resolution

for Software Transactional Memory (CAR-STM) reschedules transactions that are

predicted to cause failure with the goal of reducing the chances of repeated con-

flicts [28]. In its simplest version, CAR-STM only reschedules transactions that have

already conflicted. The policy enters an aborted transaction into an execution queue

owned by the thread that aborted the transaction. An implementation of CAR-STM

on BG/Q would require changing how BG/Q saves transaction context in order to

support rescheduling transactions on different threads, which would involve changes

to the compiler and to the TM run-time system.

Another policy that would require changes to the BG/Q run-time system is
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adaptSTM that uses a variety of adaptation strategies to change, at runtime, thread-

local parameters in an STM in order to improve performance [58]. Opportunities

for performance benefits may exist by changing running modes online in a similar

fashion at quiescent points in transactional execution, such as serialization. However,

the BG/Q TM runtime was not designed with dynamic mode switching in mind, and

would require substantial modification to do so safely.

Investigation of an adaptive policy, like that described by Diegues and Romano

for Haswell, would be desirable [27]. Their adaptive policy learns, per transaction, an

appropriate serialization response over the course of a program’s execution, leading

to a single policy that can adapt to multiple dynamic conditions. As described in this

thesis, policy tuning is important on BG/Q, so it would be interesting to reproduce

their policy for BG/Q.

11.3 Hardware Non-speculative Serialization

Some of the tradeoffs faced through non-speculative serialization could be amelio-

rated with hardware-supported non-speculative serialization. By having the hardware

be aware of the semantics and requirements for non-speculative serialization there is

a possibility that more overlap could be allowed during serialization.
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Chapter 12

Conclusion

This thesis introduces a new area of research: serialization management, the mech-

anism for guaranteeing forward progress and high performance, decoupled from

correctness, in Best-Effort HTM systems.

Seven serialization managers were described, some inspired by STM Contention

Managers (the inspiration for serialization management). These contention managers

were subjected to a very rigorous evaluation, the first of its kind, involving hundreds of

thousands of experiments across two benchmark suites, two experimental platforms —

represented by the two running modes of BG/Q — and seven different thread counts.

The conclusion of the experimental evaluation is that serialization management

is a critical part of BE-HTM performance. The improvements provided by judicious

serialization indicate that, for many applications, it may be worthwhile to provide

non-speculative serialization and a serialization manager even on HTM platforms

that guarantee forward progress through other mechanisms, such as LogTM [55].

Across the serialization managers it was shown that most serialization managers

can achieve high performance on many benchmarks with the correct tuning. The take

away from this is that tuning may be more important than serialization managers,

though, there were exceptions for which the choice of serialization manager did affect

maximum performance.

Each serialization manager was evaluated across a swath of its tuning parameters,

in each of BG/Q’s two modes. These two modes are neighbours in the design space of

TM systems, and yet we found that the parameter tunings were often fragile, in that

the correct tuning for one BG/Q mode was often not the correct tuning for the other.
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This finding further emphasizes that tuning is a must, especially when deploying an

application on a new platform.

Results from at least one combination of benchmark and serialization manager

(intruder and LimitMeanST) combined with insight provided by the Transac-

tional Event Profiler, a tool designed for this thesis, indicate that more intelligent

policies than those designed here may yet be able to improve performance further.
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Appendix A

Software Support and Evaluation of

Hardware Transaction Memory on

Blue Gene/Q

This appendix contains the contents of the paper “Software Support and Evaluation

of Hardware Transaction Memory on Blue Gene/Q”, which is to be published in the

IEEE Journal Transactions On Computers [75].

The contents of this appendix is the result of a collaborative work, and authorship

is shared among Amy Wang, myself, Peng Wu, Martin Ohmacht, José Nelson Amaral,

Christopher Barton, Raul Silvera, and Maged M. Michael.

A.1 Introduction

Transactional memory (TM) was proposed more than twenty years ago as a hardware

mechanism to enable atomic operations on an arbitrary set of memory locations [40,

73].

The following code snippet is an example of a typical transactional memory

programming interface.

transaction
{

a[b[i]] += c[i];
}

A transaction is a synchronization construct that allows operations inside a trans-

action to be executed as one (atomic) operation with respect to operations in other
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concurrent transactions. The semantics of a transaction can be implemented in sev-

eral ways. The simplest implementation is to acquire and release a global lock when

entering and exiting a transaction. Such an implementation, however, can be overly

pessimistic in the amount of concurrency allowed. For instance, if all concurrent

transactions in the previous example update different elements of array a, a global

lock implementation would allow only one transaction to proceed, while ideally all

non-conflicting transactions should be able to execute at the same time. Transactional

memory is such a mechanism to allow maximal concurrency among non-conflicting

transactions. The basic idea is to allow all transactions to execute speculatively and

concurrently. During a speculative execution, the TM system will monitor and detect

conflicts among memory accesses of all concurrent transactions. Once a conflict

is detected, the TM system has the ability to abort one of the transactions as if the

transaction was never executed and retry the transaction at a later time. In a nutshell,

the ability to speculatively execute and abort a computation and to detect memory

conflicts among transactions is the building block of any TM implementation.

There has been a long history of research exploitation of TM implementations.

Given the high cost of implementing TM in hardware, the research community early

on developed several implementations of software transactional memory (STM) [23,

31,63,68] and conducted simulation-based studies of hardware transactional memory

(HTM) [11, 13, 53]. More recently real HTM implementations start to emerge. An

early implementation of HTM was reported but never distributed commercially [22].

For the HTM by Azul, there is little public disclosure on the implementation and no

performance study of the TM support [21]. The specification of a hardware extension

for TM in the AMD64 architecture has yet to be released in hardware [20]. Recently

IBM [14, 39, 45] and Intel [44] disclosed that they are releasing implementations of

HTM.

This paper studies and evaluates BG/Q HTM, one of the first commercially avail-

able HTM implementations today. We make three important contributions. First, it

provides a detailed description of the BG/Q HTM implementation (Section A.3) and

an in-depth analysis of its major sources of overheads (Section A.6). One large pain

point of STM is the high overhead associated with monitoring memory accesses and
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maintaining speculative state inside a transaction [16]. While it is widely expected

that transactional execution overheads can be significantly reduced in an HTM imple-

mentation, a surprising finding of this study is that the BG/Q HTM overhead, while

much smaller than that of STM’s, is still non-trivial. Some of the overheads are the

result of hardware design choices. For instance, in order to allow transactions with a

large memory footprint, the BG/Q HTM is implemented mainly in the L2 cache. To

simplify the design of the in-core L1 without breaking transactional memory func-

tionality, the L1 cache is either bypassed during a transactional execution or flushed

when entering a transaction. The result is that a transaction executing on BG/Q HTM

may suffer a loss of locality in the L1 cache.

Second, the paper presents a thorough evaluation of two TM benchmark suites

— STAMP [52] and RMS-TM [47] — running on BG/Q TM (Sections A.5 and A.6).

The performance study aims at answering the question of how effective BG/Q TM is

to improve performance with respect to sequential execution as well as alternative

concurrent implementations using locks and TinySTM [30]. The performance study

leads to a division of typical concurrent applications into three categories. 1) There are

applications that use medium-to-large transactions but that often execute successfully

in the BG/Q HTM without many aborts. These applications are suitable for BG/Q

HTM and can achieve good performance with little additional programming efforts.

2) There are applications that scale well with conventional locks, therefore should

not use either STM or BG/Q TM because both incur a larger single-thread overhead

than a lock-based implementation. 3) Some applications use small transactions that

usually do not result in memory conflicts. These small transactions appear frequently,

for instance, by residing inside a loop, and thus constitute the critical path of an

application. Such applications may be better suited for STM because the single-thread

overhead of an STM system may be compensated by the concurrency that the STM

enables.

Third, the paper describes how the HTM support in BG/Q can be complemented

by the software stack — which includes the kernel, the compiler, and the runtime

system — to deliver the simplicity of a TM programming model (Sections A.2 and A.4).

The HTM support in BG/Q is best effort in nature because not all computation may
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execute successfully in a hardware transaction. This limitation is mainly due to the

boundedness of the hardware implementation, such as having a limited capacity to

maintain speculative state during transactional execution. The TM software stack

provides a fall-back mechanism to execute the transaction non-speculatively under a

special mode called the irrevocable mode.

In terms of programmability, HTM is a clear win over STM. A TM programming

model based on an STM implementation often requires the programmer to annotate

codes and/or instrument memory references that may execute inside a transaction.

The BG/Q TM programming model, on the other hand, is much simpler and requires

only a block annotation of transactional codes. It is also worth pointing out the

performance-productivity aspect of different TM implementations because there is a

noticeable difference in the effort required to achieve good performance using STM

versus HTM. For example, the STM version of the STAMP benchmark is manually

instrumented to minimize the read- and write-set maintained by the STM in order

to achieve a good performance, whereas the BG/Q TM version of these benchmarks

is not.1

The rest of the paper is organized as follows. Sections A.2, A.3, and A.4 describe

the TM programming model, BG/Q HTM implementation, and the software stack

that supports the TM programming model, respectively. Section A.5 describes the

evaluation methodology and the benchmarks. The performance study of BG/Q TM is

presented in Section A.6 (comparison between the short- and long-running modes),

Section A.7 (single-thread performance), and Section A.8 (scalability). A discussion

of related work appears in Section A.9, and we conclude in Section A.10.

A.2 Transactional Memory Programming Model

BG/Q provides a simple programming model based on the abstraction of transaction.

The semantics of a transaction is similar to that of a critical section or a relaxed

transaction as defined in [36]. In a concurrent execution, transactions appear to

execute sequentially in some total order with respect to each other. Specifically,
1Note that BG/Q TM provides no mechanism to selectively allow non speculative memory accesses

in a transactional execution.
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for (i = start; i < stop; i++) {
index = common_findNearestPoint(feature[i],

nfeatures, clusters, nclusters);
if (membership[i] != index) delta += 1.0;
membership[i] = index;

#pragma tm_atomic
{
new_centers_len[index]++;
for (j = 0; j < nfeatures; j++) {

new_centers[index][j] += feature[i][j];
}

}
}

Figure A.1: The main transaction of STAMP/kmeans benchmark using the BG/Q
TM annotation.

operations inside a transaction appear not to interleave with any operation from other

concurrent transactions. Two transactions are nested if one transaction is entirely

inside the other transaction. Nested transactions are flattened: the entire nest commits

at the end of the outermost level of nesting. A failed nested transaction rolls back to

the beginning of the outermost nesting level.2 BG/Q TM, as a programming model, is

privatization-safe, but not obstruction free because when a transaction fails to execute

as a hardware transaction, it will be executed non-speculatively in the irrevocable

mode, which may block the progress of other transactions (see Section A.4.3).

The BG/Q TM programming model syntactically defines a transaction as a single-

entry and single-exit code block using the annotation #pragma tm_atomic.

The specification of transactional code region is orthogonal to the threading model,

such as the use of OpenMP or pthreads. Any standard language construct is allowed

in a transaction, and the computation inside a transaction can be arbitrarily large and

complex. The only constraint is that the boundary of a transaction must be statically

determinable in order for the compiler to insert proper codes to end a transaction.

As a result, certain unstructured control-flow constructs that may exit a transactional

block may result in a compile- or run-time error. Similarly, exceptions thrown by a

transaction are unsupported.
2The nesting support is implemented purely in software in the TM runtime.
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Figure A.1 shows a critical section from a STAMP benchmark expressed in the

BG/Q TM programming interface. Note the simplicity of this programming interface.

In contrast, programming models based on STM implementations require more code

annotations for the compiler and, to achieve good performance, often require careful

manual instrumentation of memory accesses inside transactions.

A.3 HardwareTransactionalMemory Implementation

in BG/Q

In BG/Q each compute chip has 16 processor cores and each core can run four

hardware Simultaneous Multi-Threaded (SMT) threads. A core has a dedicated 16K-

byte L1 cache that is 8-way set-associative with a cache line size of 64 bytes and a

2K-byte prefetching buffer. All 16 cores share a 32M-byte L2 cache with a cache line

size of 128 bytes.

BG/Q provides the following hardware mechanisms to support transactional

execution:

• Buffering of speculative state. Stores made during a transactional execution

form the speculative state. In BG/Q, transactional speculative state is buffered

in the L2 cache and is only made visible (atomically) to other threads after a

transaction commits.

• Conflict detection. During a transactional execution, the hardware detects

read-write, write-read, or write-write conflicts among concurrent transac-

tions and conflicts resulted from a transactional access followed by a non-

transactional write to the same line. When a conflict is detected, the hardware

sends interrupts to threads involved in the conflict that execute transactions. A

special conflict register is flagged to record various hardware events that cause

a transaction to fail.

The above hardware support is used to provide both ordered and unordered

memory transactions on BG/Q. The former is also known as thread-level speculation

(TLS) [71]. Since the BG/Q support for TLS is beyond the scope of this paper, the rest
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of the paper focuses exclusively on the unordered transactional-memory support of

BG/Q.

A.3.1 Hardware Support for Transactional Execution in L2

BG/Q’s hardware support for transactional execution is implemented primarily in

the L2 cache, which serves as the point of coherence. The L2 cache is divided into 16

slices, where each slice is 16-way set-associative. To buffer speculative state, the L2

cache can store multiple versions of the same physical memory line. Each version

occupies a different L2 way.

Upon a transactional write, the L2 allocates a new way in the corresponding set for

the write. A value stored by a transactional write is private to the thread until either

it is made visible to other threads when the transaction commits or it is discarded

when the transaction is aborted.

For each access, the L2 directory records whether it is read or written and whether

it is speculative. For speculative accesses, the L2 directory also tracks which thread

has read or written the line by recording a unique ID, called the spec-ID, associated

with the transaction. This tracking provides the basic bookkeeping to detect conflicts

among transactions and between transactional and non-transactional accesses.

The commit of a transaction is done by the hardware in two phases. First a central

speculation control unit notifies all L2 slices its intention to commit a spec-ID and

waits for responses. Slices that acknowledge the feasibility of a commit enter a fail-

prevention state that disallows any action that may disrupt the on-going commit.

After collecting all responses, the central unit notifies all slices whether the commit is

successful or not. The commit latency is defined by the round-trip latency from the

cores to the central speculation control unit, which is about 100 cycles and can be

fully pipelined, and the duration of the two-phase commit, which is about 18 cycles.

At the hardware level, an abort has practically no overhead because it requires the

issuing of a single store to invalidate the spec-ID. However, the detection of a conflict,

the invocation of the software handler, and the recycling of spec-IDs do have a cost.

Moreover, conflicts detected by the L2 slices are reported to the cores as they occur,

setting a flag in a core accessible register. This register may be polled by the software

124



during lazy conflict detection, which takes about 30 cycles.

BG/Q provides 128 spec-IDs to distinguish memory accesses made by concurrent

transactions. Each new transaction, including retrying transactions, needs to apply

for a spec-ID when it starts. If the system runs out of available spec-IDs, the start

of the transaction is blocked until a spec-ID becomes available. When a spec-ID

is invalidated, it is still stored in the L2 slices’ directories and needs to be removed

before it can be re-used. Invalid spec-IDs are removed whenever a load or store

accesses the set that contains the spec-ID. An automatic background scrub accesses

sets at a programmable rate — with a minimum of 12 cycles between set visits — to

reclaim invalid spec-IDs.At predetermined intervals, the L2 cache examines all cache

lines and checks whether they are associated with spec-IDs from transactions that

are either aborted or committed. After all lines associated with a spec-ID are either

marked as invalid or merged with the non-speculative state (i.e., committed), the

spec-ID is reclaimed and made available again. This reclamation process is called

spec-ID scrubbing. The interval between two starts of the scrubbing process is the

scrubbing interval. The default scrubbing interval is 132 cycles but can be altered by

the runtime via a system call. Note that setting the scrub interval too high may lead to

the blocking of new transactions, while setting it too low may cause more interference

to normal operations of the L2 cache.

The buffering of speculative state in the L2 requires cooperation from components

of the memory subsystem that are closer to the processor pipeline than the L2, namely,

the L1 cache and the L1 prefetcher (L1P).3 In BG/Q there is little hardware modification

to support transactional execution in the L1 because it uses a pre-existing core design.

As such, BG/Q supports two transactional execution modes for proper interaction

between the L1, the L1P, and the L2, each with a different performance consideration.

From herein L1 refers to both L1 and L1P unless otherwise stated. The main difference

between the two modes is in how the L1 cache keeps a transactional write invisible to

other threads that share the same L1.

• Short-runningmode (via L1-bypass). In this mode, when a transaction stores

a speculative value, the core evicts the line from the L1. Subsequent loads from
3Prefetched data may evict speculative state from L2 leading to unnecessary aborts.
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the same thread have to retrieve the value from that point on from L2. As the

L2 stores multiple values for the same address, it is able to return the thread-

specific data along with a flag that instructs the core to place the data directly

into the register of the requesting thread, without storing the line in the L1

cache. In addition, for any transactional load served from the L1, the L2 is

notified of the load via an L1 notification. The notification from L1 to L2 goes

out through the store queue.

• Long-runningmode (viaTLBaliasing). In this mode, speculative state can be

kept in the L1 cache. The L1 cache can store up to 5 versions, 4 transactional ones

for the 4 SMT threads and a non-transactional one. To achieve this, the software

creates an illusion of versioned address space via Translation Lookaside Buffer

(TLB) aliasing. The TLB translates virtual into physical memory addresses.

The illusion created allows a single virtual address to be translated to multiple

physical addresses at the L1 level. For each memory reference issued by a

transaction, some bits of the physical address in the TLB are used to create

an aliased physical address by the memory management unit. Therefore, the

same virtual address may be translated to four different physical addresses

for each of the four threads that share the same L1 cache. However, when the

load or store exits the core, the bits in the physical address that are used to

create the alias illusion are masked out because the L2 maintains the multi-

version through the bookkeeping of spec-IDs. The L1 cache is invalidated upon

entering a transaction. Such invalidation makes all first transactional accesses

to a memory location visible to the L2 as an L1 load miss.

The short- and long-running modes are designed to exploit different locality

patterns. The long-running mode is the default running mode, but one can specify an

environment variable to enable the short-running mode before starting an application.

The main drawback of the short-running mode is that it nullifies the benefit of the

L1 cache for read-after-write access patterns within a transaction. Thus it is best

suited for short-running transactions with few memory accesses. The long-running

mode, on the other hand, preserves the locality within a transaction. However, by
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invalidating L1 at the start of a transaction, it prevents reuse between codes that run

before entering the transaction, and codes that run within the transaction, or after

the transaction ends. Thus, this mode is best suited for long-running transactions

with plenty of intra-transactional locality.

A.3.2 Causes of Transactional Execution Failures

BG/Q supports bounded and best-effort transactional execution. A hardware trans-

action may fail in the following scenarios:

• Transactional conflicts are detected by the hardware at the L2 cache level as

described earlier. The conflict-detection granularity is the minimum distance

between two memory accesses distinguishable by the conflict detection system.

That is, accesses closer than the granularity may be flagged as a conflict even

when there is no actual overlap. In the short-running mode, conflicts are

detected at a granularity of 8 bytes if no more than two threads access the same

cache line, or 64 bytes otherwise. In the long-running mode the granularity is

64 bytes and can degrade depending on the amount of prefetching done by a

speculative thread.

• Capacity overflow causes a transaction to fail when the L2 cache cannot

allocate a new way for a speculative store. By default, the L2 guarantees 10 of

its 16 ways to be used for speculative storage without an eviction.4 Therefore,

up to 20M-bytes (32M*10/16) of speculative state can be stored in the L2. A set

may contain more than 10 speculative ways if speculative ways have not been

evicted by the least-recently-used replacement policy. In practice, capacity

failures may occur at a much smaller speculative-state footprint, for instance,

when the number of speculative stores mapped to the same cache set exceeds

the number of ways available in the set.

• Jail mode violation (JMV) occurs when a transaction performs irrevocable

actions, that is, operations whose side-effects cannot be reversed, such as writes
4This default can be changed but it is advisable to leave a reasonable number of ways for other

threads using this shared cache in a non-speculative way.
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Figure A.2: Transactional Memory Execution Overview.

to I/O-device address space. Irrevocable actions are detected by the kernel

under a special mode called the jail mode and lead to a JMV interrupt to the

owner thread of the event.

A.4 Software Support for TM Programming Model

While a computation may fail in a hardware transactional execution in various ways,

a transaction, as defined by the programming model, is guaranteed to eventually

succeed. The TM software stack is developed to bridge the gap between the TM

programming model and the hardware TM implementation. The software stack

includes the TM run-time system, extensions to the kernel, and the compiler.

Figure A.2 illustrates the main state transition flow of the TM software stack.

Register check-pointing is a necessary step to restore register state during a transac-

tion rollback. Since BG/Q does not support hardware register check-pointing, this

functionality is implemented in software as Step a of Figure A.2.
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The task of determining which other registers require saving and restoring is left

to the compiler. The compiler uses live-range analysis to determine the set of registers

that are modified inside a transaction and remain live after the transaction commits,

and generates codes to check-point these registers.

A.4.1 Managing Transaction Abort and Retry

The TM runtime activates a hardware transactional execution by writing to a memory-

mapped I/O location. When a transaction is started, the current time is recorded

through a read of the timebase register. This recorded time is then used by the

kernel as a priority value during conflict resolution. When the execution reaches the

end of the transaction, it enters the TM runtime routine that handles transaction

commit in Step d . The TM runtime attempts to commit a transaction. If the commit

fails, the transaction is invalidated (by invalidating its spec-ID) and retried at a later

time. Specifically, if a transaction TA fails to commit due to a conflict with another

transaction TB, the runtime invalidates the spec-ID associated with TA, by executing

a store to the status control register and a store to the conflict register — both in the

central speculation control unit5, causing the hardware to clear the conflict register of

TB so that TB now has a chance to commit.

For transactional failures caused by memory conflicts, the runtime can configure

the hardware to trigger a conflict interrupt for eager conflict detection as shown in Step

g . Under the eager detection scheme, once the hardware triggers an interrupt, the

interrupt handler performs conflict arbitration by comparing the starting time of the

conflicting transactions and favours the survival of an older transaction. Alternatively,

transactional conflicts can be detected lazily when the execution reaches the end of a

transaction. Lazy detection is achieved by suppressing interrupts caused by conflicts

with other transactions and by relying on the runtime to check the status of the

conflict register before committing a transaction. The lazy conflict detection scheme

cannot suppress interrupts caused by conflicts with non-transactional accesses. Such

interrupts are necessary to ensure the strong-isolation guarantee of BG/Q HTM so

that a transaction will not observe any inconsistent state. By default, the TM runtime
5These two stores are fully pipelined and the core does not need to wait for their completion.
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uses the eager conflict detection scheme.

For transactional failures caused by capacity overflow, the hardware immediately

aborts the transaction and triggers an interrupt. A failed transaction due to capacity

overflow is retried in the same way as a failed transaction due to conflicts because

capacity overflow may also be a transient failure.

For transaction failures caused by JMV, the kernel immediately aborts the current

transaction and invokes the restart handler. The handler restores the appropriate

context, transfers the execution back to the start of the failing transaction, and executes

the transaction in the irrevocable mode.

A.4.2 Sandboxing of Speculative Execution

Since transactional execution is speculative by nature, critical system resources must

be protected from being corrupted by a transaction that is later aborted. BG/Q uses

a sandbox called the jail mode to prevent speculative transactions from performing

irrevocable actions. The jail mode is entered and exited via system calls during the

start and commit/abort of a transaction. There are two forms of irrevocable actions:

writes to protected address space and system calls. Under the jail mode, protected

address space such as the memory-mapped I/O space is indicated in the TLB. Any

access to protected TLB entries as well as system calls under the jail mode generate

an access-violation exception called Jail-Mode Violation (JMV). This is shown as Step

f in Figure A.2.

The kernel also provides sandboxing during interrupt handling. The interrupt

handler always checks whether the thread triggering an interrupt is speculative or

not. System-level side effects during a transactional execution — such as TLB misses,

divide-by-zero and signals triggered by program fault — cause the interrupt handler

to abort the transaction and invoke the restart handler.

A.4.3 Ensuring Forward Progress via Irrevocable Mode

The TM software stack ensures that a transaction eventually succeeds. Such guarantee

is provided by judiciously retrying failed transactions in a special mode called the irre-

vocable mode. Under the irrevocable mode, a transaction executes non-speculatively
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and can no longer be rolled back. To execute in the irrevocable mode, a thread

must acquire a single lock called the irrevocable token that is associated with all

tm_atomic blocks in the program. Token acquisition, as shown in Step e , is im-

plemented using BG/Q’s fast L2 atomic operations. Transactions executing under the

irrevocable mode are essentially serialized by a single lock and behave like unnamed

critical sections. Interference between the irrevocable token and user-level locking

may cause deadlock. In some cases, however, certain degree of concurrency can be

allowed between a speculative transaction and an irrevocable transaction. Such con-

currency is possible because speculative transactions acquire the irrevocable token at

the end of the transaction, whereas irrevocable transactions acquire the irrevocable

token at the beginning of the transaction. For instance, if a speculative transaction

TA reads the token after a concurrent irrevocable transaction TB releases the token,

both TA and TB can commit successfully while overlapping much of their execution.

A.4.4 Runtime Adaptation

How to retry a transaction can have a significant impact on BG/Q TM performance.

Unlike STM systems that have almost unlimited resources, too many immediate

retries can lead to serious resource contention for BG/Q TM such as the depletion of

the number of available spec-IDs.

To address this issue, the runtime employs a simple adaption scheme: it retries a

failed transaction a fixed number of times before switching to the irrevocable mode.

After the completion of a transaction in the irrevocable mode, the runtime computes

a metric called the serialization ratio, which is the percentage of total transactions

executed in the irrevocable mode, for the executing thread. If the serialization ratio

is above a threshold, the runtime records this transaction into a hash table that tracks

problematic transactions. Once a transaction is entered into the hash table, the next

time the transaction fails, it will be retried immediately in the irrevocable mode. This

scheme allows a problematic transaction to have a single rollback. The amount of time

that a transaction remains in the hash table is controlled via a runtime parameter.
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Suite Benchmark Description Running Options Relative critical

section size

STAMP bayes Machine learning.
Learns a Bayesian
net.

-v32 -r4096 -n10 -
p40 -i2 -e8 -s1

100%

genome Genomic sequenc-
ing

-g16384 -s64
-n1677721

99.7%

intruder Network security
simulation

-a10 -l128 -n262144
-s1

66.6%

kmeans (low) Clustering -m40 -n40 -
t0.00001 -i ⟨input⟩

2.8%

kmeans (high) Clustering -m15 -n15 -t0.00001
-i ⟨input⟩

5.06%

labyrinth Maze solver -i inputs/random-
x512-y512-z7-
n512.txt

100%

ssca2 Kernel 1 from
SSCA2 in
HPCS [5]

-s20 -i1.0 -u1.0 -l3 -
p3

16.6%

vacation (low) Simulates travel
reservations

-n2 -q90 -u98
-r1048576 -t4194304

94.6%

vacation (high) Simulates travel
reservations

-n4 -q60 -u90
-r1048576 -t4194304

95.0%

yada Delauney Mesh Re-
finement

-a15 -i inputs/t-
timeu1000000.2

100%

RMS-TM apriori Association rule
mining algorithm

⟨input⟩ -s 0.0075 0.05%

fluidanimate Hydrodynamics
simulation

⟨threads⟩ 5
in_300K.fluid

NA

hmmcalibrate Calibrates genome
sequence profile
model

–num 500 –seed 33
globin.hmm

1.3%

hmmpfam Hidden Markov
Model Database
search

Pfam_ls_300
7LES_DROME

8.7%

hmmsearch Finds similar se-
quences from a
database

globin.hmm
2000_uniprot_sprot.fasta

0.5%

scalparc Decision Tree Algo-
rithm

F26-A32-D125K.tab
125000 32 2

0.01%

utilitymine Rule mining algo-
rithm

⟨input⟩
logn1000_binary
0.01

35%

Table A.1: Benchmark Descriptions
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A.5 Experimental Setup and Benchmarks

This evaluation of the BG/Q TM performance uses two benchmark suites. The

STAMP benchmark suite [52] is the most widely used TM benchmark and has largely

coarse-grain transactions. The RMS-TM benchmark suite consists of 7 real-world

applications from the Recognition, Mining, and Synthesis (RMS) domain [47]. Each

benchmark provides the original sequential code and the parallel codes using different

critical-section implementations including pthread lock, OpenMP critical section,

and HTM. For the HTM implementation, the TM_BEGIN and TM_END macros

were replaced by BG/Q TM pragmas. For the OpenMP critical-section implementa-

tion, the macros were replaced by omp critical pragma. The STM version of

the STAMP benchmarks uses TinySTM 1.0.3 [31] and is manually instrumented to

minimize the amount of tracked state. Table A.1 summarizes the benchmarks and

the running options. All runs use the large input set for the STAMP benchmarks.

All experiments run on a single 16-core, 1.6 GHz, compute node of a production

BG/Q machine. The binaries are compiled by a prototype version of the IBM XL

C/C++ compiler. The study reports the mean of five runs with an error bar. In

the absence of more information, the measurements are assumed to be normally

distributed. Thus, the length of the error bar is four standard deviations, two above and

two below the mean, to approximate 95% confidence. When reporting the speedups,

the baseline is always a sequential, non-threaded version of the benchmark running

with the one thread input.

To build a model of expected speedups for various critical-section implemen-

tations, we evaluate two critical section characteristics of the parallel benchmarks

running in a single-thread execution.

• Relative critical section size. This metric measures the ratio between the time

spent in critical sections and the time spent in parallel regions during a single-

thread execution of the code. Relative critical section size is an indicator of

how much the serialization of critical sections would limit the concurrency in

the parallel execution.

• Absolute critical section size. This metric measures the average time spent
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Figure A.3: Average time spent (in cycles) per dynamic instance of critical sections
in the STAMP and RMS-TM benchmark suites.

(in cycles) per dynamic instance of critical sections during a single-thread

execution of the code. The absolute critical section size is an indicator of the

size of a dynamic transaction.

Figure A.3 shows the absolute critical section sizes of both benchmark suites

in a log scale. This metric helps to reason about the transactional footprint of a

benchmark. In general, benchmarks with a larger absolute critical section size, such

as labyrinth, tend to have a larger transactional footprint.

As shown in Table A.1, the relative critical section sizes of the two benchmark suites

differ significantly. While many STAMP benchmarks spend more than 50% of the par-

allel region in critical sections, all RMS-TM benchmarks, except utilitymine,

spend a tiny fraction of the parallel region in critical sections.

To better understand characteristics of applications running on BG/Q TM, we

instrumented the TM runtime to collect the following statistics:

• Transaction serialization ratio is the percentage of total committed transactions

that are executed in the irrevocable mode. This metric is an indicator of the

degree of concurrency in a TM execution.
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• Transaction abort ratio is the percentage of total executed transactions that are

aborted. This metric is an indicator of the amount of wasted computation in a

TM execution.

A.6 Long- vs. Short-Running TMMode

This section focuses on understanding the performance implications of the short-

running (SR) and the long-running (LR) modes of BG/Q TM. It turns out that

choosing the right running mode is an important aspect of performance tuning

for BG/Q TM. Altering the running mode of a BG/Q node involves a system call

that requires the node to be in a certain state. Therefore, the running mode is only

specified via an environment variable at the start of the program and may not be

changed during the execution of the program.

Figure A.4 shows the speedup of BG/Q TM running under the SR and LR modes

over the sequential baseline.

The relative performance between the SR and LR modes corresponds nicely with

the absolute critical section sizes of the benchmarks. For example, the SR mode per-

forms better than the LR mode for benchmarks ssca2, fluidanimate, kmeans,

and utilitymine. All of those benchmarks use short-running transactions that

are reflected as relatively small absolute critical section sizes in Figure A.3. Likewise,

the LR mode outperforms the SR mode for the rest of the benchmarks that use rela-

tively long transactions. In fact, executing a long-running transaction in the SR mode

may result in serious performance degradation from the LR mode as shown in the

case of vacation and genome.

The rest of the section examines three factors that contribute to the performance

difference between the LR and the SR modes: loss of L1 cache locality, capacity

overflow, and conflict-detection granularity.

A.6.1 Loss of cache locality

There are significant differences in L1 cache behaviors under the LR and the SR

modes. When a transaction is executed in the LR mode, the L1 cache is flushed
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Figure A.4: Speedup of different critical section implementations of the STAMP and
RMS-TM benchmark suites over the original sequential version of the benchmarks
(vacation-low results were similar tovacation-high andhmmcalibrate
were similar to hmmsearch — both are omitted).

before starting the transaction. The L1 cache flush destroys any locality between codes

executed before and after entering a transaction. For short-running transactions,

the performance penalty of flushing the L1 cache can be severe, therefore the SR

mode is better suited for such transactions. On the other hand, when a transaction is

executed in the SR mode, the L1 cache is bypassed, which prevents locality of access
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Figure A.5: LR mode: ratio of total transactions aborted due to capacity overflow.
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Figure A.6: SR mode: ratio of total transactions aborted due to capacity overflow.
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# L1 misses per 100 instructions (thread=1) Instruction path length relative to serial (thread=1)
Benchmark sequential BG/Q Short BG/Q Long omp critical/lock BG/Q Short BGQ Long

bayes 1.0 12.2 0.8 71.5 % 231.7 % 219.3 %
genome 0.5 1.8 0.7 99.9 % 101.0 % 101.3 %
intruder 1.2 2.6 2.1 96.7 % 105.2 % 108.1 %
kmeans_low 0.1 0.3 2.6 101.7 % 104.8 % 106.1 %
kmeans_high 0.2 0.7 3.2 103.8 % 110.6 % 113.5 %
labyrinth 0.9 1.0 1.0 99.5 % 100.2 % 100.2 %
ssca2 3.1 1.8 4.5 122.4 % 175.9 % 193.3 %
vacation_low 1.9 8.1 3.0 89.3 % 92.8 % 93.9 %
vacation_high 2.0 8.5 2.9 89.2 % 91.7 % 92.5 %
yada 0.9 19.9 0.7 73.5 % 74.6 % 74.9 %
apriori 2.4 2.4 2.4 105.6 % 103.3 % 100.2 %
fluidanimate 0.2 0.2 0.2 118.6 % 106.6 % 106.6 %
hmmcalibrate 0.5 0.6 0.5 100.0 % 100.0 % 100.0 %
hmmpfam 1.0 1.9 1.0 100.0 % 100.7 % 100.7 %
hmmsearch 0.5 0.6 0.5 100.0 % 100.0 % 100.0 %
scalparc 0.5 0.5 0.5 101.9 % 102.3 % 99.9 %
utilitymine 2.4 2.1 4.6 174.7 % 141.5 % 145.0 %

Table A.2: Hardware performance monitor stats.
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Figure A.7: The abort ratio of genome and vacation.

within a transaction from benefiting from the L1. For long-running transactions, the

performance penalty of bypassing the L1 cache during transactional execution can be

severe, therefore the LR mode is better suited for such transactions.

Hardware performance counter statistics collected for all the performance runs

validate this explanation. Table A.2 shows the number of L1 misses per 100 instructions

and the instruction-path-length statistics6 of the benchmarks running under different

configurations. As shown in Table A.2, the LR mode suffers from much fewer L1

misses than the SR mode for all but ssca2, kmeans, and utilitymine. These

three benchmarks all use small transactions according to the measured absolute

critical section sizes. Kmeans has a significant increase in L1 misses for both the SR

and the LR modes over the sequential baseline. This increase is because kmeans has

locality of access both within and across transactions.

A.6.2 Capacity overflow

Due to hardware implementation differences of the two running modes, the SR mode

triggers significantly more capacity overflows than the LR mode. Figure A.6 and

Figure A.5 show the percentage of total transactional executions that are aborted due

to capacity overflow for the SR and LR modes, respectively. Benchmarks without any

capacity overflow are omitted from the figures.
6Instruction path length is measured as the total number of dynamic instructions executed in the

parallel region.
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Figure A.8: The abort ratio of kmeans and calibrate.

As shown in Figure A.5, under the LR mode, only two benchmarks, labyrinth

and bayes, experience significant capacity overflow. The capacity overflow in

labyrinth is persistently triggered in one of its two main transactions that in-

volves the copying of a global grid of 14M bytes. As a result, 50% of the transactions

in labyrinth experience capacity overflow. For bayes only 3% of committed

transactions trigger capacity overflow. However, each of the aborted transaction with

capacity overflow is retried up to 10 times, resulting in close to 25% of the transactions

in bayes with capacity overflow. The percentage of executed transactions with ca-

pacity overflow in bayes and labyrinth decreases as the thread count increases.

This is because transactional conflicts become the leading cause for a transaction to

abort. An insignificant amount of capacity overflow occurs in genome, intruder

and yada running with more than 16 threads. This is due to the limited number of

ways in L2 for speculative writes by concurrent threads.

As shown in Figure A.6, the SR mode exhibits significantly more capacity overflow

than the LR mode because of hardware implementation issues. Under the SR mode,

the hardware state used to indicate capacity overflow is also used to indicate another

hardware event: a race at the L2 between hit notifications from the L1 of multiple cores.

In such a situation, an abort is triggered because the hardware cannot determine the

precedence between the hits. This abort occurs because the hardware must establish

the ordering amongst committing transactions. Even though such ordering is not
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required for TM, it is implemented as such because the same hardware is also used to

support TLS where such ordering is necessary.

A.6.3 Conflict detection granularity

The SR and the LR modes use different conflict detection granularity that could

result in different number of transactional aborts. For instance, the SR mode detects

conflicts at an 8- or 64-byte granularity depending on the number of concurrent

accesses to the same cache line. The LR mode detects conflicts at a 64-byte granularity

at best.

One would expect that the SR mode with a finer conflict detection granular-

ity would trigger fewer transaction aborts than the LR mode. This is the case for

vacation and genome where the abort ratio (measured as the percentage of total

executed transactions that are later aborted) of the two benchmarks under the LR

mode is several times higher than that of the SR mode. This also means in this case,

it is more prudent to preserve intra-transactional locality offered by the LR mode,

despite of its coarser granularity. Figure A.7 shows the abort ratio of vacation and

genome.

However, for the rest of the benchmarks, the abort ratio of the SR mode is in fact

higher than that of the LR mode, especially on benchmarks using small transactions

such as kmeans and hmmcalibrate. The abort ratio of the latter two benchmarks

is shown in Figure A.8. This may seem counter intuitive because we expect that, with

a finer conflict detection granularity, the SR mode should reduce the number of false

conflicts and consequently the number of aborts. There are three other factors that

may affect the abort ratio. First, the SR mode may trigger more capacity overflow (as

described in Section A.6.2), as is the case for kmeans, hmmcalibrate, hmmpfam,

and scalparc. Second, the SR mode may run slower because of the longer latency

to satisfy read-after-write dependences, resulting in a longer overlapping window

among transactions, thus causing more aborts. Third, runtime adaptation may affect

how many times a transaction is retried, especially for those aborted due to capacity

overflow.
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Figure A.9: Single-thread slowdown of the RMS-TM benchmarks.
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Figure A.10: Single-thread slowdown of the STAMP benchmarks.

A.7 Single-thread TMOverhead

When parallelizing a program, one needs to be mindful of the overhead introduced

by parallelization and synchronization. While this is true for parallel execution,

such overhead may also manifest in the single-thread execution of a parallel code,

especially when TM is used for synchronization. The slowdown caused by a single-

thread execution of a parallel code over the execution of the sequential code is the

single-thread overhead. This section studies the single-thread overhead of BG/Q TM

in comparison to those of STM and locks.

Figure A.9 shows the single-thread overhead of the RMS-TM benchmarks. The

single-thread overhead of both BG/Q TM and locks is insignificant except for pfam
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running under the SR mode and utilitymine. This is because the critical sections

of the RMS-TM benchmarks are relatively small compared to the overall parallel

regions (as shown in Figure A.3). There is an anomaly in utilitymine where the

lock implementation increases the instruction path length by more than 70% in a

single-thread execution (as shown in Table A.2).

Figure A.10 shows the single-thread overhead of parallel implementations of

the STAMP benchmarks. The single-thread overhead of TinySTM is significantly

higher than that of other implementations. This is because STM overhead is usually

proportional to the number of memory accesses in transactions and many STAMP

benchmarks use large transactions. Interestingly, yada and bayes, under the lock

implementation, experience an improvement in the single-thread performance be-

cause the compiler outlines OpenMP regions into functions. Function outlining

sometimes can result in reduced register pressure and better code generation. The

single-thread speedup of yada running under the LR mode is the result of a similar

code outlining effect.

The rest of this section examines the single-thread overhead of BG/Q TM in detail.

There are three causes to the single-thread overhead in BG/Q TM due to increase

either of L1 cache misses or of instruction path lengths.

A.7.1 Cache performance penalty

The loss of L1 cache locality due to L1 cache flush or bypass is one of the most dominant

source of the BG/Q TM overhead. Table A.2 shows the number of L1 cache misses per

100 instructions in both running modes of BG/Q TM relative to that of the sequential

baseline.

When running a large transaction in the SR mode, the locality loss is especially

severe because there is significant locality within a large transaction. When the L1 is

bypassed this locality of access does not benefit from L1’s lower latency. For instance,

yada, under the SR mode, suffers from 20 times as many L1 misses as the sequential

version does (Table A.2), which in turn causes a three-fold single-thread slowdown

(Figure A.10). The L2 cache and L1P buffer load latencies are 13 and 5 times higher

than the L1 load latency, respectively.
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For not-so-small transactions, the LR mode preserves more locality than the SR

mode. However, there are still non-trivial increases in L1 misses due to the flush of

the L1 cache at the start of a transaction.

A.7.2 Capacity overflow

It is possible to have capacity overflow during a single-thread execution. Among

all the benchmarks evaluated, only bayes and labyrinth experience capacity

overflow in a single-thread execution (Figure A.6 and Figure A.5).

Of the two, labyrinth incurs little single-thread overhead. This is because

capacity overflow happens in consecutive transactions, in which case, the TM runtime

detects a high serialization ratio and is able to retry transactions in the irrevocable

mode immediately with few retries.

On the other hand, bayes suffers a significant single-thread overhead because

capacity overflow is sporadically triggered on 3% of transactions, leading to a low

serialization ratio. As a result, each aborted transaction is retried 10 times before being

executed in the irrevocable mode. These retries cause more than 2-fold increases in

the instruction path length (Table A.2).

There is one more benchmark, hmmpfam, that has non-zero serialization ratio at

a single-thread. But that is caused by JMV rather than by capacity overflow.

A.7.3 Transaction entry and exit overhead

When starting or committing a transaction, the TM runtime performs the following

tasks: 1) register check pointing, 2) applying for a spec-ID, 3) writing to the memory-

mapped I/O to start or commit a transaction, 4) toggling kernel sandboxing via

system calls, and 5) other runtime bookkeeping. These operations also contribute to

the single-thread TM overhead

To quantify this overhead, we measure the time spent in a transaction that imple-

ments a single atomic update operation. The overhead is in the order of hundreds

of cycles for both BG/Q TM and TinySTM, but less in BG/Q TM. Specifically, the

overhead for BG/Q TM is 44% of that of TinySTM for the SR mode, and 76% of

that of TinySTM for the LR mode. The LR mode incurs a higher overhead than the
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Serialization ratio (# threads) Abort ratio (# threads)
Benchmark 1 2 4 8 16 32 64 1 2 4 8 16 32 64
bayes 2 % 16 % 21 % 24 % 23 % 18 % 18 % 25 % 50 % 59 % 67 % 71 % 76 % 76 %
genome 0 % 0 % 0 % 0 % 1 % 1 % 0 % 0 % 2 % 3 % 8 % 27 % 23 % 16 %
intruder 0 % 0 % 0 % 7 % 19 % 20 % 20 % 0 % 4 % 18 % 57 % 64 % 66 % 66 %
kmeans_low 0 % 0 % 0 % 0 % 1 % 5 % 9 % 0 % 0 % 0 % 4 % 49 % 62 % 64 %
kmeans_high 0 % 0 % 0 % 1 % 6 % 18 % 20 % 0 % 0 % 5 % 38 % 64 % 66 % 67 %
labyrinth 24 % 22 % 14 % 25 % 27 % 27 % 23 % 50 % 55 % 71 % 67 % 69 % 70 % 74 %
ssca2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
vacation_low 0 % 0 % 0 % 0 % 7 % 13 % 0 % 0 % 15 % 13 % 21 % 57 % 57 % 21 %
vacation_high 0 % 0 % 0 % 0 % 5 % 13 % 0 % 0 % 12 % 11 % 18 % 49 % 53 % 23 %
yada 0 % 3 % 3 % 5 % 17 % 19 % 19 % 0 % 40 % 45 % 51 % 58 % 62 % 62 %
apriori 0 % 3 % 5 % 13 % NA % NA % NA % 0 % 9 % 32 % 51 % NA % NA % NA %
hmmcalibrate 0 % 1 % 3 % 6 % 10 % 17 % 20 % 0 % 6 % 16 % 31 % 38 % 50 % 67 %
hmmpfam 4 % 9 % 16 % 24 % 30 % 27 % 21 % 4 % 27 % 44 % 57 % 65 % 69 % 74 %
hmmsearch 0 % 1 % 1 % 3 % 7 % 15 % 23 % 0 % 8 % 13 % 28 % 37 % 43 % 53 %
fluidanimate NA % 0 % 0 % 0 % 0 % 0 % 0 % NA % 0 % 0 % 0 % 0 % 0 % 0 %
scalparc 0 % 0 % 2 % 11 % 25 % 29 % 29 % 0 % 5 % 40 % 51 % 57 % 60 % 60 %
utilitymine 0 % 0 % 0 % 0 % NA % NA % NA % 0 % 0 % 0 % 1 % NA % NA % NA %

Table A.3: Percentage of irrevocable and aborted transactions in BG/Q TM execution.



SR mode because accesses to internal TM run-time data structures before and after

transactional execution also suffer from L1 misses due to the L1 cache invalidation.

The overhead of entering and exiting transactions is most pronounced in pro-

grams with small and frequent transactions. As shown in Table A.2, the instruction

path length increase in utilitymine, ssca2, and kmeans is the result of this

overhead.

A.8 Scalability

This section examines the scalability of different parallel implementations of the

benchmarks using BG/Q TM, locks, and TinySTM. The speedups of these parallel

implementations over the sequential baseline are shown in Figure A.4.

The relative critical section size is a good predictor of the scalability of certain

parallel implementations. Therefore, the rest of the section uses the following classifi-

cation of the benchmarks:

• Loosely synchronized. Applications whose relative critical section sizes are

less than 1/64. This category includes all the RMS-TM benchmarks except for

hmmpfam and utilitymine. fluidanimate performs no synchro-

nization at 1-thread and hence its critical section size is shown as NA.

• Moderately synchronized. Applications whose relative critical section sizes are

less than 1/3. This category includes kmeans, ssca2, and hmmpfam.

• Heavily synchronized. Applications whose relative critical section sizes are more

than 1/3. This category includes all the STAMP benchmarks except for ssca2

and kmeans.

A.8.1 Locks

The relative critical section size is a good indicator of the scalability of the lock

implementation of a parallel code. For instance, loosely synchronized applications

are expected to scale well using locks. As shown in Figure A.4, all applications in the
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loosely synchronized category scale to 64 threads except for scalparc that scales

up to 32 threads.

On the other hand, heavily synchronized applications exhibit no scalability using

locks except forintruder because all butintruder have a relative critical section

size of close to 100%. In contrast, intruder has a relative critical section size of

66% and is able to scale beyond eight threads but only reaches a speedup of 2.5 times.

Moderately synchronized applications start with good scalability until reaching

a plateau. The thread count at the point where the plateau is reached corresponds

roughly to the inverse of the relative critical section size of the application. One

exception is utilitymine, which scales up to 8 threads despite having a relative

critical section size of 35%.

A.8.2 BG/Q TM

The classification according to the amount of synchronized execution provides a

model to predict where BG/Q TM is likely to show benefits over conventional locking.

For instance, BG/Q TM is unlikely to outperform locks for loosely synchronized

benchmarks, but may improve over locks for moderately or heavily synchronized

benchmarks, provided that BG/Q TM does not suffer from other serialization bottle-

necks.

To quantify the amount of serialization in a TM execution, Table A.3 shows the

serialization ratio and the abort ratio (defined in Section A.5) computed from statistics

collected by the TM runtime. These ratios are determined by the amount of optimistic

concurrency inherent in the program, hardware conflict detection granularity, and

the retry adaptation of the TM runtime. Sometimes the abort ratio decreases with

higher number of threads — as shown in Table A.3 for labyrinth and vacation

— because aborts caused by conflicts are highly dependent on the start and commit

timing for the various transactions. Therefore, changing the number of threads may

change this ratio in unexpected ways. Our runtime adaptation scheme usually limits

the number of retries for failed transactions. Thus, its effects are generally to lower

the abort ratio at the expense of increasing the serialization ratio. There are two

groups of applications that scale well under BGQ TM:
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• Good scaling due to loose synchronization: apriori, hmmcalibrate,

and hmmsearch scale fine under lock and TM implementations. All three

are loosely synchronized, serialization of critical sections is not a scalability

bottleneck and transaction retries incur negligible overheads.

Having a certain amount of transaction aborts, or irrevocable execution, does

not necessarily limit scalability. For instance,hmmcalibrate andhmmsearch

exhibit significant serialization ratio (up to 23%) and abort ratio (up to 67%) at

high thread counts.

• Good scaling via effective HTM: genome, vacation, scalparc, and

utilitymine exhibit a good scalability and a low serialization ratio7. Both

genome and vacation are heavily synchronized leading the lock implemen-

tation to completely serialize and the TM implementation scales much better.

Performance boosts beyond 16 threads come from SMT threads multiplexing

on the processor pipeline and from hiding in-order processor stalls.

The rest of the applications all exhibit various scaling bottlenecks that prevent

them from scaling to high thread counts under BG/Q TM:

• Spec-ID bottleneck. Despite zero abort and serialization ratios, ssca2 and

fluidanimate scale only up to 4 and 16 threads, respectively. Both bench-

marks use short and frequent transactions leading the system to quickly exhaust

spec-IDs. In this case, the start of a new transaction is blocked until after a

spec-ID is recycled. BG/Q TM has only 128 spec-IDs and they are recycled

periodically based on a pre-determined interval called the scrub interval. Fig-

ure A.11 shows a sensitivity study on the impact of the scrub interval on the

performance of ssca2 and fluidanimate. With the default scrub interval

of 132 cycles, ssca2 and fluidanimate run out of spec-IDs beyond 2

and 16 threads respectively. As shown in Figure A.11, the scalability of both

benchmarks improves significantly with a much lower scrub interval.
7 utilitymine and apriori do not have inputs for 16-64 threads and hence NA’s are shown

in Table A.3.
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Figure A.11: Effect of varying scrub intervals for ssca2and fluidanimate

HTM BG/Q Rock Azul zEC12 Haswell POWER
Buffer capacity 20MB 32 lines 16 KB unknown unknown unknown
Speculative buffer L2 store queue L1 Gathering Store Cache unknown unknown
Register save/restore no yes no yes yes yes
Unsupported ISA none yes none none (except in constrained trans-

actions)
yes yes

Conflict detection 8-64B n/a 32B 265B unknown unknown
User-level abort no yes n/a yes yes yes

Table A.4: Basic features of real HTM implementations.

• Contentionbottleneck. Foryada,bayes,intruder,kmeans, andhmmpfam,

high serialization ratios at higher thread counts are the main bottleneck for

scalability. Since all 5 benchmarks are moderately or heavily synchronized, the

serialization of critical sections limits the scalability of the applications. The

high variability in the execution time of bayes is because the termination

condition of bayes is sensitive to the commit order of the transactions.

• Capacity bottleneck. The main transactions of labyrinth are always exe-

cuted in the irrevocable mode due to capacity overflow (see Section A.7.2). As

a result, the performance of BG/Q TM is similar to that of locks and exhibits

no scalability.

A.8.3 TinySTM

This section compares the scalability of TinySTM and BG/Q TM on the STAMP bench-

marks. The strength of BG/Q TM is best demonstrated on genome, vacation,
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Benchmark Read Write
bayes 26.8 2.1
genome 36.0 0.9
intruder 23.3 1.6
kmeans_low 4.0 13.0
kmeans_high 4.0 13.0
labyrinth 116.3 177.0
ssca2 1.0 2.0
vacation_low 280.6 5.2
vacation_high 389.2 7.7
yada 42.2 10.8

Table A.5: Average read- and write-set size (in words) of STAMP using TinySTM (1
thread).

and kmeans where BG/Q TM has both a steeper and a longer ascending curve than

TinySTM does. For these benchmarks, BG/Q TM does not suffer from any HTM-

specific scaling bottlenecks and benefits from a much lower single-thread overhead.

In addition, the lower overhead of BG/Q TM likely reduces the window of overlap

among concurrent transactions which in turn may reduce transactional conflicts.

For the rest of benchmarks, BG/Q TM incurs a much lower single-thread overhead,

but TinySTM exhibits a better relative scalability, that is, scalability with respect to

a single-thread TM execution. The better relative scalability of TinySTM is due to

its finer conflict detection granularity (word-level) and the fact that it rarely suffers

from capacity overflow and does not have spec-ID issues.

The good scaling of labyrinth and bayes on TinySTM is the result of a STM

programming style that relies heavily on manual instrumentation. Table A.5 shows

the average read- and write-set size per transaction using TinySTM. On the only

two benchmarks with capacity overflow during a single-thread BG/Q TM execution,

the STM executions incur no single-thread overhead because instrumented state is

aggressively reduced to a tiny fraction of the actual footprint of the transactions.
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A.9 RelatedWork

Despite many HTM proposals in the literature for hardware support for transactional

memory [13,40,50,55,67], only recently real HTM implementations became available.

Besides the earlier Rock processor [26] and Vega Azul system [21], now we have Intel

Haswell [46], the IBM zEC12 enterprise server [45], and IBM TM support for the

POWER architecture [14]. While all are best-effort HTMs, their design points differ

drastically. Table A.4 compares the key characteristics of these systems in detail.

Both Rock HTM and Vega from Azul have small speculative buffers, compared

to BG/Q’s 20Mbytes of speculative state. Rock imposes many restrictions on what op-

erations can happen in a transaction excluding function calls, divide, and exceptions.

Rock also restricts the set of registers that functions may save/restore to enable the

use of save/restore instructions that use register windows [26]. In contrast, in BG/Q

TM, the entire instruction set architecture is supported within a transaction and the

compiler saves/restores registers.

The method used to build a software system to offer guarantee of forward progress

on top of a best-effort HTM could be an elegant solution to the requirement that TM

programmers provide an alternative code sequence for transaction rollbacks in Intel’s

Transactional Synchronization Extensions (TSX) [44], and could thus unburden the

TM programmer from the need to reason about hardware limitations [46].

The TM system in Azul deals with more expensive transaction entry/exit opera-

tions by restricting speculation to contended locks that successfully speculate most

of the time.

A closely related study of HTM on BG/Q corroborates our findings [65].

The implementation of HTM in the IBM zEC12 enterprise server uses the L1

and a modified MESI cache protocol to store speculative state [45]. In this machine

both L1 and L2 use a write-through policy, thus the complexity of tracking dirty lines

does not exist in this machine. Contrary to the BG/Q design, the System z HTM

support includes the implementation of transaction-specific instructions. That system

also implements more extensive support for the testing of HTM support and for the

debugging of TM code.
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A.10 Conclusion

This detailed performance study of one of the first commercially available HTM

systems has some surprising findings. The reduced single-thread overhead in com-

parison with STM implementations is still significant. The use of L2 to support TMs

is essential to enable a sufficiently large speculative state. However, for many TM

applications recovering the lower latency of L1 for reuse inside a transaction, through

the use of the long-running mode in BG/Q, is critical to achieve performance. The

end-to-end solution presented here is a programming model that supports the entire

ISA and thus delivers the simplicity promised by TMs.
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