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Abstract

Unmanned aerial vehicles or UAVs have largely become and continue to be an insep-

arable part of modern warfare, security and surveillance systems, first aid response,

aerial cinematography and many other sectors. Therefore, achieving full autonomy

for UAVs and drones would ensure mass mobilization and utilization of these de-

vices in large scale applications with more efficiency and precision without the need

for deploying extensive human resources. A key aspect of autonomous flights is the

capability of performing autonomous pursuits of target UAVs for military and civil

purposes. Conventional autonomous pursuit algorithms rely on utilizing LiDAR ,

radar and ultrasonic sensors or a combination and fusion of these devices. Each of

theses sensors come with their disadvantages and shortcoming including a limited

range of sight, massive data processing, expense and vulnerability to environment

conditions. Thus, this research proposes a new sensor-free and vision-based algo-

rithm for accomplishing fully autonomous UAV pursuit. This algorithm consists of

two major parts including control and pose estimation. The flight controllers incor-

porate a digital four-axis proportional integral derivative (PID) framework and the

pose estimator utilizes region-based convolutional neural networks (RCNN) for esti-

mating a 3D bounding box over the target. The 3D bounding box keypoints are then

extracted and combined with perspective-n-point (PnP) algorithm for estimating the

precise relative pose of the target and pursuing it accordingly.
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Chapter 1

Introduction

1.1 Background

Around 555 millions years ago, during the Ediacaran period the first creature with

vision appeared on earth [1]. They were called trilobite and soon their offsprings

dominated nature due to their visual superiority. The evolution of vision in animals

resulted in the creation of a collection of clustered neurons to process the input data

of the photosensitive cells, later this clustered organ became what we know today as

brain [2].

Throughout millions of years of evolution, both brain and and visual organs have

been evolved in a way to enable animals to better perceive and monitor the surround-

ing environment. A key ability to better perceive the surroundings is the ability to

detect objects and creatures as well as obtaining an estimation of their pose and

relative distance. This ability has enabled predators to better target and hunt other

animals.

Inspired by nature, scientists and engineers have been trying to implement the

same functionalities of natural vision in industrial and domestic applications. In fact,

the focal domain of interest of imitating natural image processing lays in field of

Robotics where the main purpose is to develop robots to automatically perform the

required tasks which were previously performed manually by animals or humans.

One of the pillars of autonomy is depth and pose estimations of objects and en-
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tities in the surrounding environments. In fact, all animals have some level of pose

estimation to perform the necessary tasks like grabbing tools, food or hunting a prey.

From robotics perspective, depth and pose estimation is a vital element for achiev-

ing full autonomy in autonomous vehicles. Considering the autonomous cars, it is

needed for the car to simultaneously obtain the pose and depth of all the consider-

able objects including humans, vehicles, obstacles, etc. Therefore, only by obtaining

the proper estimation of all important objects around the vehicle can we control the

autonomous vehicle in a safe and reliable way.

1.2 Motivation and Challenge

For enabling the autonomous machine to interact with the environment, we need

to equip the machine with sensors. Sensors are devices that translate one signal to

another and are used to measure the required variables from the environment.

After the invention of laser in 1960 [3], light-based distance sensors were then

developed to measure the distances by emitting light. Subsequently, by fusing the

new invention with the principles of radar, LiDAR was thereafter invented in 1980s.

LiDAR is in fact a remote-sensing technique for obtaining the distance of surround-

ing entities in the environment [4]. It utilizes Laser and radar principles to obtain

the distance of the objects by emitting and absorbing light beams. Subsequently, the

data is collected and represented as a point cloud map.

A common solution for the autonomous pose estimation in robotics is to fuse

LiDAR data with the camera vision. In this algorithm, the objects are first detected

and classified using deep learning algorithms and then by projecting the LiDAR point

cloud data into the camera, the distance of each pixel on the frame could be retrieved

[5].

Although this method has been widely used recently in self-driving cars to fulfill

autonomy in cars, it has its own obstacles and challenges. LiDAR is relatively ex-

pensive and requires huge amount of processing power and is eventually dependent
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on visual data for interpreting the point cloud data.

During Tesla Autonomy Day on 22nd of April 2019, Elon Musk pointed out that

“LiDAR is lame, it’s expensive and unnecessary and once you solve the vision it’s

worthless”[6]. In addition to the expense of LiDAR , it has more challenges in aerial

robotics. Most prominently, due to its relative high weight, it would cause instability

and would affect the agility and maneuverability of the aerial vehicles. Therefore, it

is needed to develop a LiDAR -free method to obtain autonomy and pose estimation

in aerial vehicles and robots.

1.3 Literature Review

Artificial intelligence and neural networks have been a focal point of research during

the past five decades and is an ever-growing filed of research. Neural networks have

become the key element in intelligent robotics and are used for image processing,

motion control, path planning and other aspects of autonomous robots including au-

tonomous cars, drones, etc. In this section, we shall investigate and review the recent

publications on object detection, pose estimation and data extraction using convolu-

tional neural networks, region-based neural networks and residual neural networks.

1.3.1 Object Detection

The first step to obtain the pose of an object, is to detect the object itself visually.

To do so, we need to utilize a computational tool called the artificial neural networks.

An artificial neural network is a computational tool inspired by the biological neural

networks in humans and other animals [7]. An artificial neural network is a network

of clustered neurons, each equipped with weight and an activation function [7].

An artificial neural network with two hidden layers is represented in Figure 1.1. As

it is shown, the network has four inputs and two outputs. By providing the proper

training data, the network would be enabled to translate the input vector to that of

intended output. Increasing the number of hidden layers and hidden neurons could

3



Figure 1.1: Schematic representation of an artificial neural network with two hidden
layers [8]

increase the accuracy of the model but it would require more processing power at the

time.

Using the proper input and corresponding labeled output data, the network could

be trained using gradient descent method to tune the weights in order enable the net-

work to perform the required calculations. This method is called supervised learning

as opposed to the unsupervised learning which is based on using untagged output

data. Supervised learning is commonly used for speech analysis, image and speech

recognition, whereas unsupervised learning is used for picture imagination, video gen-

eration and speech synthesis [9].

As it is shown in Figure 1.2, a convolutional network could consist of different

layers including convolution, max-pooling and dense layers. The purpose of applying

convolution in neural networks is to extract the required feature from the input image.

This takes considerably less amount of computation than resizing the input image into

a vector and applying it into a fully connected neural network.

This unique feature of convolutional networks has paved the way for the design
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Figure 1.2: Schematic representation of a convolutional neural network [8]

and utilization of more complex network for more advanced image processing task

including object detection.

After years of advancements in object detection area using convolutional neural

networks, the two prominent CNN object detection architectures are region-based

methods including R-CNN and fast R-CNN and regression/classification based meth-

ods including YOLO and DSSD as it is shown in Figure 1.3 [10][11][12][13].

Single stage object detection methods are based on applying one-step regression on

the whole input frame rather than segmenting the input frame into separate regions.

Through YOLO , the input frame is first processed through CNN layers and then

feature map is extracted and therefore fed into fully connected layers for obtaining

classes and bounding boxes. Single-step methods have higher speed compared to

two-step methods, although they are less precise and cannot extract more detailed

features including the keypoints and masks [12] [14].

On the contrary to the single-step object detection methods, the two-step algo-

rithms first divide the input image into different RoIs (region of interests) and then

would perform the object detection and classification separately on each RoI [14].

Although performing two-step object detection requires more processing time and

power, it is much more accurate and has less localization accuracy compared to single-
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CNN Detectors

Two-Step

R-CNN

SPP-Net

Fast R-CNN

Faster R-CNN

Single-Step

YOLO

SSD

DSSD

Figure 1.3: Classification chart of CNN Detectors [12]

step methods [12]. Furthermore, more features could be extracted using two-step

methods including instance segmentation, semantic segmentation and keypoints.

1.3.2 Pose Estimation

As mentioned earlier, pose estimation is an essential and necessary tool for achieving

autonomous robotics. The applications of pose estimation are huge and so are the

research and papers conducted on this area.

Object grasping is an essential task in industrial robotic which is reliant on pose
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estimation of the target objects. Wang et al. have developed a method to obtain

pose estimation through RGB-D frames. RGB-D frames have four layers of colour

data in addition to the depth layer. By fusing the visual data with that of depth,

the algorithm first detects and segments the object through CNN and then fuses the

point cloud to obtain the pose and depth of the object [15].

Human pose estimation is also one of the areas of deep pose estimation which has

numerous applications profoundly in medical robotics. Srivastav et al. discuss the

utilization of R-CNN and ResNet50 to obtain the human pose in surgical environment

by detecting humans, obtaining keypoints and translating the 2D keypoints them into

3D coordinates [16].

Object tracking and pursuit is another highly in-demand task in robotics and

mechatronics. This task has been widely investigated and researched to be performed

by deep image processing algorithms. Lai et al. have discussed the absolute distance

estimation of flying UAVs using deep VGG-16 model [17]. Jin et al. have presented

a method of obtaining 6D pose estimation of target UAV with relational graphs and

perspective-n-point (PnP) algorithms [18].

Yavarabadi et al. have designed FastUAV-Net, an architecture which detects and

tracks UAVs using YOLO-v3 with onboard Nvidia Jetson TX2 with the speed of 29

FPS. However, this paper only detects and tracks the UAV without obtaining the

relative distance and pose [19].

Furthermore, Rezaei et al. have designed Traffic-Net, a deep learning architecture

which detects, monitors and obtain the relative distance of vehicles and humans using

a monocular camera. This method too obtains the 2D bounding box of objects and

then translates the 2D bounding box into a 3D bounding box for distance estimation

[20].
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1.3.3 Flight Control and Pursuit

The proper utilization of earlier discussed deep learning algorithms is reliant on a

proper flight control system to properly control and fly the UAV into desired states.

With the development and vast production of drones, digital instruments and con-

trollers have experienced a thorough consideration by the researchers and developers.

Flight control systems were previously reliant on analog implementation using ei-

ther pneumatic valves, hydraulic valves or analog electrical boards with resistors and

capacitors. These flight control systems were later implemented digitally using mi-

crocontrollers, PLCs or any other digital processing units [21, 22].

Therefore, with the entwined advancement and popularity of drones and digital

controllers, flight control of quadcopters and drones has experienced a huge progress

in the previous decades[23].

Axel Reizenstein has developed a algorithm to control the trajectory and position

of a quadcopter using PID and LQR controllers. This work incorporates Kalman filter

to estimate the position, velocity and acceleration along z axis for height control and

utilizes IMU and GPS data for controlling position along x and y axes[24].

Surma and Barczyk have utilized PID and LMPC (linear model-predictive control)

control and pursue the position and trajectory of Parrot1 AR and Bebop drones.

This algorithm employs YOLO-v2 to detect the target drone and then obtains the

2D bounding box in order to estimate the pose and relative distance. C++ imple-

mentation of PID and LMPC of this work ensures the real-time positioning of the

drones due to the static typing discipline of C++ language [25].

1.4 Thesis Outline

The current chapter has discussed the motivation and challenge behind the undertak-

ing of this research and thesis in addition to the review and summary of the recent

1https://www.parrot.com/us/drones
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publications in the area of visual artificial intelligence, deep object detection, deep

pose estimation and modern flight control systems.

In the chapter 2, summarizes the hardware and software components which have

been utilized for this research. We shall investigate the properties of Parrot Anafi

and Parrot Bebop drones in addition to the Vicon motion capture system in hardware

components part. Furthermore, we shall review the software components including

PyTorch, Detectron2, Olympe, Sphinx and Robot Operating Systems (ROS) which

have been used to implement the deep learning algorithms in addition to the digital

flight control systems for automating and controlling the drones.

Chapter 3 discusses the design and implementation of feedback flight control sys-

tems to enable the Anafi drone to track and pursue the target Bebop drone in real-time

horizon on ROS. We shall first identify the dynamics of Anafi drone and then design

and tune a digital 4-axis PID controller which will be implement on ROS using C++.

Chapter 4 starts with an introduction on camera model and intrinsics for under-

standing the principals of object projection on image plane and camera calibration.

This introduction continues with detailed analysis on 3D bounding box geometry and

projection formulations on image plane by defining vertices and utilizing projection

matrix. Subsequently and most importantly, keypoint-RCNN sections discusses the

backbone of object and keypoint detection by analyzing the architecture and data

structure which is followed by training and validation results. Next, the basics of

perspective-n-point algorithm is discussed followed by its applications for pose esti-

mation.

In chapter 5, we shall evaluate and investigate the accuracy of the three proposed

deep learning methods alongside the flight control system. We shall replace Vicon

position data with the deep pose estimator estimations in order to assess the vision-

based pose estimation and pursuit.

Eventually, chapter 6 provides a summary of the contributions and findings of this

thesis in addition to an insight for future directions and undertakings in the area.
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1.5 Thesis Contributions

The scientific and engineering contributions of this research are listed as follows:

• Development of sphinx ros robotic package which provides a the necessary

tools for integrating ROS and Parrot Sphinx simulation environment. This

package enables the manual control of the drone in addition to PID tuning of

the simulated drone.

• Development of anafi ros robotic package which includes a variety of tools

for remote manual drone control, synchronized data acquisition, real-time PID

tuning and most importantly the Vicon-based and AI-based pursuit algorithms

and setups. This package incorporates different machine learning libraries like

PyTorch with Olympe library to provide a framework for integrating flight

controllers with deep neural networks.

• Design and implementation of 4-axis digital PID flight controller for x, y, z and

yaw axes on ROS Noetic through anafi ros and sphinx ros packages.

• Novel 3D bounding box estimation using keypoint-RCNN with 96.6% average

precision for keypoint estimation instead of conventional 2D to 3D conversion

methods.

• Novel mobile real-time pose estimation of target drones by integrating keypoint-

RCNN, 3D bounding box and perspective-n-point resulting in the state-of-the-

art mean average error of 0.05 [m] over x-axis, 0.12 [m] over y-axis and 0.06 [m]

over z-axis.

• Novel sensor-free pursuit algorithm for pursuing targets by eliminating the use of

LiDAR , radar and ultrasonic sensors and using mobile commercial monocular

cameras on drones integrated with deep keypoint-RCNN and perspective-n-

point instead.
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Chapter 2

Hardware and Software

In this chapter we shall have an overview of the utilized and Incorporated hardware

and software components throughout this research.

2.1 Hardware Components

2.1.1 Parrot Anafi

Figure 2.1: Parrot Anafi quadcopter drone

Founded in 1994, Parrot® is one of the main leading manufacturers in drone in-

dustry [28]. Parrot introduced Anafi in 2018 and its Python controlling interface,

11



Olympe, two years later in 2020 which will be discussed thoroughly in Section 2.2.1.

Anafi is a light drone with the weight of 320 g and can fly as fast as 54 km/h or 15

m/s for the maximum flight travel of 14 km for full battery charge [29]. The battery

has 2700 mAh capacity with an 8 V output which requires 90 minutes to be fully

charged to fulfill a flight-time of 25 minutes.

The onboard Sony IMX230 camera has a high video resolution of 4096x2160 and

a frame rate of 24 fps. Furthermore, the resolution is adjustable to 3840x2160 and D

1920x1080 pixels as well. However, the video streaming is only available on 720x1280

pixels with the frame rates of 24, 25 or 30 fps. The stream feed is encoded into H264

format for minimizing the impact of packet losses and to dilute errors by encoding

the frame 45 slices of 16 pixels height which is then refreshed by a batch of 5, every

3 images. [29]

Figure 2.2: Parrot Bebop 2 quadcopter drone

The main platform for connecting the software components to Anafi drone is
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Olympe which is a Python library that provides the packages and functions for flying

Anafi in both a simulated or real environment with is discussed in Section 2.2.1 in

details.

2.1.2 Parrot Bebop

Parrot Bebop 2 is another product of Parrot® which was introduced in November

2015. This drone has only been used as the target drone for the pursuer Anafi.

2.1.3 Vicon Motion Capture System

Motion capture is a process of recording the movement and poses of the objects, robots

or people using specific techniques. Academy Award® -winning Vicon is a brand

which manufactures and provides the required hardware and software components

for obtaining motion capture of the desired items.

Figure 2.3: Vicon Vero camera

There are several different methods for performing motion capture including optical-

passive method which is based on using retroreflective markers that are tracked by
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infrared cameras, optical-active method that uses LED-emitting markers that are

tracked by special cameras, video markerless method which is based on relying soft-

ware for tracking the objects’ movement and lastly the inertial method which is based

on utilizing inertial sensors without the use of cameras.

Among the aforementioned methods, optical-passive has proven to be the most

accurate, flexible and functional type of motion capture and is the most used method

in the industry. Vicon too utilizes the optical-passive method by providing infrared

cameras and passive markers.

Figure 2.4: Vicon calibration wand

The Vicon motion capture system install in the Mechatronic Systems Lab of the

University of Alberta has 10 Vero Vicon cameras in addition to the calibration wand

and the Vicon Tracker software installed on a specific computer dedicated for Vicon

only. Vicon has played a key-role in this research for obtaining the required training

data and precised pose and relative distance of the drones respective to the defined

origin.
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2.1.4 Graphics Processing Unit

Unlike the Central Processing Units (CPUs) that fulfill the processing thought serial

manner, the Graphics Processing Units (GPUs) are built to perform the processing

in parallel manner which distinguishes them as the primary tools for video processing

[30].

GPUs were initially designed to boost the performance of computers for gaming

industry, to better render and visualize the graphics of the games. However, with the

advances in the area of machine learning and the release of versatile libraries, GPUs

were later utilized to perform the training and evaluating the machine learning and

deep learning models and algorithms. Compute Unified Device Architecture (CUDA)

is the platform that is used for connecting the deep learning libraries to GPU and is

thoroughly discussed in Section 2.2.3.

Nvidia RTX 3090 is used in this research for training, evaluating and real-time

image processing of the streaming feed of the Anafi drone using PyTorch and ROS

which is discussed in Section 2.2.7. RTX 3090 has 10496 CUDA cores, boost clock of

1.70 GHz and a memory size of 24 GB which has made it the second top-performing

manufactured GPU in the industry.
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2.2 Software Components

2.2.1 Olympe

Olympe is an open-source Python controller programming interface for Parrot Drone

including Anafi and Anafi thermal. Olympe is part of the Parrot Ground SDK which

allows the developers to develop and implement Olympe on different platforms in-

cluding mobile or desktop applications [31].

DroneOlympe

connect

connected

TakeOff ()

FlyingStateChanged(state='motor_ramping')

FlyingStateChanged(state='takingoff')

PCMD (1, x_cmd, y_cmd, yaw_cmd, z_cmd)

SpeedChanged()

disconnect

disconnected

Landing()

FlyingStateChanged(state='landing')

Figure 2.5: Olympe PCMD command sequence [32]

Olympe utilizes ARSDK messages at its core to communicate with the drone. The

ARSDK is a protocol of sending flight commands as scripts to control the drone. The

command protocols could be summarized as follows [33]:
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• Ardrone3 Animations

• Ardrone3 GPS

• Ardrone3 Piloting and Speed Settings

• Ardrone3 Settings State

• Ardrone3 PRO State

• Ardrone3 Sound

PCMD (piloting command) is a function in Ardrone3 piloting library which takes

four input to control the roll, pitch, yaw and thrust of the drone as a signed percentage

from -100% to 100%. The change in Euler angles of the drone leads to the movement

and speed change which would enable the position and speed control of the drone in

a closed-loop manner.
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2.2.2 Sphinx

Parrot® Sphinx is a software package developed by Parrot to simulate Anafi, Anafi AI

and Anafi thermal on a simulated environment. Sphinx is founded on two components,

Gazebo and Unreal Engine [34].

Gazebo is a simulation toolbox for robotic applications which has been designed to

provide a graphical user interface for ROS users which shall be discussed thoroughly

in Section 2.2.7. Unreal Engine (UE) is a software framework for visualizing 3D

graphical environment. UE has been widely used in gaming industry as the core

game engine for simulating and rendering the virtual environment.

Sphinx utilizes both Gazebo (v.11) and Unreal Engine (v.4) to provide a versatile

simulation environment for Anafi drones which could be connected and monitored via

Olympe and ROS through the implemented pipelines.

2.2.3 CUDA

Compute Unified Device Architecture (CUDA® ) is an application programming

interface for parallel computing which enables the program to utilize the GPU for

processing. CUDA has been widely used in machine learning applications for deploy-

ing GPU as the core unit for training and validating the neural networks instead of

CPU which would lead to staggering difference in processing time [35].

2.2.4 PyTorch

Designed by Meta AI lab, PyTorch is a machine learning library which is written in

C, C++, Objective C, Python and CUDA. This library provides numerous functions

and packages for developing and training neural networks. PyTorch is able to utilize

CUDA in order to communicate with the GPU for processing enhancement, whereas

it is also able to do use CPU as the processing unit as well [36].
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2.2.5 Detectron 2

As stated, PyTorch has numerous amount of functions for machine learning, however,

it is a general-purpose library. To better utilize machine learning for object detection

and regional neural networks, Meta AI lab introduced Detectron in 2018 and Detec-

tron 2 in 2019. Detectron is a PyTorch-based machine learning which deploys RCNN

for instance segmentation, semantic segmentation and keypoint detection[37, 38].

Figure 2.6: Instance segmentation using Detectron [38]
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Detectron has prebuilt and pretrained RCNN models which could be used for

custom datasets as well. Detectron supports COCO format labeled data which is a

protocol for annotating RCNN datasets as JSON files.

2.2.6 Vicon Tracker

Vicon tracker an engineering motion capture software which is utilized for robotic

tracker, virtual engineering, human factors engineering, design method optimization

and pre-visualization of the drones in addition to facial and body capture of actors

for gaming and cinematic industry [39].

Vicon tracker could be linked to ROS using vicon bdridge and Datastream SDK

which is discussed thoroughly in 2.2.7.3. Tracker has the built-in tool for calibrating

the cameras and configuring the objects.

2.2.7 ROS

Robot operating system (ROS) is ironically not an operating system (OS) but a

set of software libraries and tools that enables the users to develop and build robot

applications. Developed by Stanford Artificial Intelligence Laboratory (SAIL), ROS

is an open-source suite which supports codes in C++, Python and Lisp [40].

Nodes and topics are the backbones of every ROS application or package. A node

is basically a piece of code written in C++ or Python which which could be executed

once or repeatedly to perform a task. Nodes could subscribe from or publish to other

nodes through topics. Topics are in fact messages of data which are sent and received

by nodes. For instance, a topic could be a frame, position data, speed set points

or any other data formats. Custom topics formats could be developed in ROS as

messages. Basically, messages define the format of the desired topics which are to be

received or sent by the node [41].

The ROS was initially released in March 2010 as ROS Box Turtle. There has

have another twelve distributions by ROS ever since once or twice in every two years.
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ROS Noetic Ninjemys is the latest distribution of ROS which has been chosen for this

project due to its exclusive compatibility to Ubuntu 20.04 [42].

ROS Noetic exclusively targets Python3 and has enabled the migration of the pre-

vious Python2 packages and libraries into the Python3 environment. In the following

sections, we shall summarize the ROS Noetic libraries and packages used throughout

this research.

2.2.7.1 tf

Transform (tf) library is a powerful tool for tracking and multiple coordinate frames

of one or more robots at the same time. The relationship between coordinates are

maintained on tf as a stamped data tree structure. Furthermore, tf provides the users

with the function to transform points, vectors or pose data into different systems of

coordinates.

There are two key features on library tf called tf broadcaster and tf listener.

A tf broadcaster basically broadcasts the coordinates of the objects and the broad-

casted frames which could be received or listened by other ROS nodes. This would

eliminates the need for defining publishers and subscribers individually for commu-

nication between nodes.

2.2.7.2 cv bridge

Based on ROS protocols, an image is transported as sensor msgs.mgs.Image which

is a class that transports the image frames as bgr8 format. On the other hand, im-

age data are usually processed and handled with OpenCV (Open Computer Vision)

which is a comprehensive library equipped with numerous amount of functions for

computer vision applications. OpenCV handles image data as numpy arrays with

one channel for black and white images and three channels for colour images. There-

fore, cv bridge provides a platform to transform the data from OpenCV format

to that of ROS and vice versa using cv bridge.CvBridge.cv2 to imgmsg and cv -
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bridge.CvBridge.imgmsg to cv2 functions.

2.2.7.3 vicon bridge

Similar to cv bridge, vicon bridge is tool for connecting the Vicon Tracker appli-

cations to ROS as tf messages and frames. vicon bridge was originally developed

by ETH Autonomous Systems Lab (ETHASL) as an open-source ROS driver. This

driver publishes the coordinates of the Vicon objects as a quaternion coordinates as

tf and also as separate topics with vicon/<subject name>/<segment name> format.

2.2.7.4 sphinx ros

sphinx ros is a ROS driver for Parrot Anafi and Anafi Ai flight simulation on Sphinx

and Gazebo using ROS Noetic as the middleware platform. This driver is based on

official Parrot arsdk-ng and arsdk-xlm1. This driver is developed in Mechatronic

Systems Lab of the University of Alberta by Amir Hossein Ebrahimnezhad and is

maintained by Dr. Martin Barczyk.

sphinx ros has several nodes for flying, PID controlling and data acquisition which

could be summarized as follow:

• sp ctrl streaming.py

This Python node is used for manual keyboard control of the Anafi drone and

publishing the streaming feed as /anafi/frames topic.

• sp pursuer.py

This Python node controls the Anafi drone automatically by subscribing to

sp pid in addition to publishing the frames as /anafi/frames.

• sp pid.cpp

This C++ node is responsible of generating the required command velocities

for controlling the Anafi drone by listening to Vicon data from the virtual

1https://github.com/Parrot-Developers/olympe
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tf broadcaster and then publishing the /cmd vel topic which contains the

command velocities for x, y, z and yaw.

• sp opencv sync.cpp

This c++ node subscribes to /anafi/frames and tf broadcaster to synchro-

nize the frames and the corresponding relative position of the target drone in

order to generate the precise and synchronized training data for deep learning

models.

2.2.7.5 anafi ros

anafi ros is also a ROS driver for Parrot Anafi physical drone flight, control and

maneuvering. Similar to sphinx ros, anafi ros too is based on official Parrot arsdk-

ng and arsdk-xlm. This driver is as well developed in Mechatronic Systems Lab of

the University of Alberta by Amir Hossein Ebrahimnezhad and is maintained by Dr.

Martin Barczyk.

anafi ros has versatile nodes for data acquisition, flying, controlling, implement-

ing and deploying deep learning models in a real-time horizon. Listed below, is a

summary of functional nodes of anafi ros:

• af ctrl streaming.py

This Python node is used for manual keyboard control of the Anafi drone and

publishing the streaming feed as /anafi/frames topic.

• af pursuer.py

This Python node controls the Anafi drone automatically by subscribing to

af pid in addition to publishing the frames as /anafi/frames.

• af pid.cpp

This C++ node is responsible of generating the required command velocities for

controlling the Anafi drone by listening to Vicon data from the tf broadcaster
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and then publishing the /cmd vel topic which contains the command velocities

for x, y, z and yaw.

• af opencv sync.cpp

This c++ node subscribes to /anafi/frames and tf broadcaster to synchro-

nize the frames and the corresponding relative position of the target drone in

order to generate the precise and synchronized training data for deep learning

models.

• af mask detector.py

Deep Python node for detecting and extracting the target drone mask by sub-

scribing to /anafi/frames and feeding it into trained mask-RCNN model. Sub-

sequently, this node publishes the predicted relative position of the target drone

as /anafi/relpos.

• af keypoint detector.py

This Python node utilizes the trained deep keypoint-RCNN model for obtaining

the keypoints of the target drone. Subsequently, this node feeds the extracted

keypoints into an MLP for obtaining the relative pose and publishing it as

/anafi/relpos.

• af vertix detector.py

This node utilizes the same keypoint-RCNN model to first detect the target

drone along with its keypoints. Then, by feeding the keypoints into an MLP,

it obtains the vertices of the 3D bounding box of the target drone and sub-

sequently, it extracts the relative pose from the 3D bounding box. This node

simultaneously visualizes the 3D bounding box of the target drone as well.

2.2.7.6 rqt

rqt (ROS Qt) is a framework for providing GUI development on ROS which is based

on Qt cross-platform GUI creating software. rqt has several plugins including rqt -
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graph for visualizing ROS computation graph, rqt dep for visualizing ROS depen-

dency graph, rqt plot for visualizing numeric values in 2D plot and rqt topic for

displaying debugging information about ROS topics [43].

2.2.7.7 rviz

rviz is also a GUI tool for visualizing on ROS as alike to rqt. rviz has many display

types including odometry, pointcloud, depthcloud, tf, etc. This GUI has been used in

this research for visualizing the pursuer and target drones with respect to the world

frame.

2.2.8 MATLAB

Originally developed by Cleve Moler as a library for linear algebra, MATLAB® (Ma-

trix Laboratory) has become one of the leading applications for numerical analysis in

difference branches of science and engineering [44].

Most notably, MATLAB has a variety of specialized toolboxes including control

system toolbox™and system identification toolbox™which are used in this research for

designing and evaluating digital position and speed control systems for the Anafi

drone [45].

Despite the existence of a myriad of functions and libraries in MATLAB, it is not

recommended to use MATLAB as the real-time control backbone due to the fact

that MATLAB is an interpreter and not a compiler. Therefore, executing codes on

MATLAB takes considerably more time compared to that of C++. As a result,

MATLAB is only used for design purposes throughout this research and the designed

controller are implemented on C++ for guaranteeing real-time position and speed

control.
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Chapter 3

Control and Pursuit

In this chapter we shall design and implement the proper control and pursuit algo-

rithms for positioning of the Anafi and Bebop drones using digital Proportional Inte-

gral Derivative (PID) controller. However, before getting into the controller design,

we shall first review the mathematical preliminaries of mobile robotics through linear

algebra and signal processing topics in Section 3.1.1 and 3.1.2. Consequently, discrete-

time model of the drones and parameters are obtained and identified in Section 3.2 in

addition to the control philosophy and ROS implementation of the controllers. Lastly,

the pursuit framework and implementation are discussed and assessed in Section 3.3.

3.1 Mathematical Foundation

This section outlines and reviews the concepts and definitions of linear algebra and

signal processing which are essential for design and implementation of digital flight

control systems. Section 3.1.1 is majorly based on Chapter 2 of the cited PhD thesis

[46].

3.1.1 Linear Algebra

Linear algebra is in fact the mathematical foundation of modern robotics which pro-

vides the necessary tools for modelling and analyzing the behaviour of dynamical

systems. Only by understanding the principals of linear algebra can we control and
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monitor the aerial robots, quad-copters and drones properly.

3.1.1.1 Vectors and Matrices

Vectors and matrices are the alphabets of linear algebra. A vector is a column repre-

sentation of a set of numbers which could refer to coordinates of an object or other

parameters. A Matrix is a multi-dimensional numerical or parametric representation

of different variables which could act as a function to perform mathematical oper-

ations on an input vector. A time vector with n elements could be represented as

follows:

v⃗t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

t2

t3
...

tn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.1)

Similarly, a matrix with m rows and n columns is defined as follows:

Mmn =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2)

3.1.1.2 Space and Subspace

A vector space is a set of vectors elements that could be added or multiplied by

scalars thought that space. A vector space could be consisted of real or complex

vectors which each has different applications in mobile robotics. A three-dimensional

real vector space could be defined as follows:
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∃ V : (v1, v2, v3) ∈ R3 (3.3)

Therefore for any vector in V we shall have:

V v⃗ = a1v1⃗ + a2v2⃗ + a3v3⃗ ; (a1, a2, a3) ∈ R (3.4)

A subspace is in fact a vector space which exists under the inherited operations. A

three-dimensional real spherical subspace could be defined as follows:

S = {

⎛⎜⎜⎜⎝
v1

v2

v3

⎞⎟⎟⎟⎠ | v31 + v22 + v33 = r3 , r ∈ R} (3.5)

3.1.1.3 Rotation Matrix

A rotation matrix is in fact transformation matrix and is both orthogonal and unitary

which maps coordinates with respect to different frames through Euclidean space by

using Euler angles of ϕ, θ and ψ. In mobile robotics, objects are described in three-

dimensional space and could rotate around three axes. Therefore, there are three

rotation matrices for each x, y and z axes as follows [46]:

Rx(ϕ) =

⎡⎢⎢⎢⎣
1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)

⎤⎥⎥⎥⎦ (3.6)
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Ry(θ) =

⎡⎢⎢⎢⎣
cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎦ (3.7)

Rz(ψ) =

⎡⎢⎢⎢⎣
cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤⎥⎥⎥⎦ (3.8)

Where ϕ is rotation on x or roll-axis angle, θ is rotation on y-axis or pitch and ψ

is rotation on z-axis or yaw angle. For obtaining the corresponding rotation matrix

to transform the world frame Sw to the vector space of the robot Sr, with rotation

angles of ϕ1 on x-axis, θ1 on y-axis and ψ1 on z-axis we can multiply the rotation

matrices of each axis commutatively as follows:

Sr
Sw
T = Rx(ϕ1) Ry(θ1) Rz(ψ1) (3.9)

=

⎡⎢⎢⎢⎣
1 0 0

0 cos(ϕ1) sin(ϕ1)

0 −sin(ϕ1) cos(ϕ1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
cos(θ1) 0 sin(θ1)

0 1 0

−sin(θ1) 0 cos(θ1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
cos(ψ1) −sin(ψ1) 0

sin(ψ1) cos(ψ1) 0

0 0 1

⎤⎥⎥⎥⎦
(3.10)

Therefore, we have:

Sr
Sw
T =

⎡⎢⎢⎢⎣
cθ1cψ1 sϕ1sθ1cψ1 − cϕ1sψ1 sϕ1sθ1cψ1 + sϕ1sψ1

cθ1cψ1 sϕ1sθ1sψ1 + cϕ1cψ1 cϕ1sθ1sψ1 − sϕ1cψ1
−sθ1 sϕ1sθ1 cϕ1cθ1

⎤⎥⎥⎥⎦ (3.11)

3.1.1.4 Quaternion System

As it was mentioned in the previous section, orientation of a mobile robot could be

represented by Euler angles and transformed using the rotation matrices. However,
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the rotation matrix of Euler angles require a lot of memory and are difficult to inter-

polate. Therefore, to solve this issue, quaternions are dominantly preferred to Euler

angles in robotics applications. A quaternion vector space of r ∈ H is defined as

follows:

r = r0 + r1i+ r2j+ r3k (3.12)

Where:

(r0, r1, r2, r3) ∈ R4 , {1, i, j,k} ∈ H (3.13)

R4 is the four-dimensional space of real numbers andH is in fact the four-dimensional

space of

R =

⎡⎢⎢⎢⎣
q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎤⎥⎥⎥⎦ (3.14)

3.1.2 Signal Processing

A signal is basically a function that represent and transmit information. A signal

could be continuous or discrete, quantized or unquantized, periodic or apreiodic [47].

An analog signal is a continuous-time unquantized signal, an instance is represented

below with its corresponding graph:

x(t) = cos(t) , t ∈ R (3.15)

On the contrary, a digital signal discrete-time signal with quantized values which

means that the output does not contain any real value, but it contains sampled quan-

tized values. Digital signal are represented with n as the their argument with belongs

to integer number set. A digital signal with its corresponding figure it represented

and plotted as follows:
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Figure 3.1: An Analog Signal

x[n] = cos[
2n

π
] , n ∈ Z (3.16)
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Figure 3.2: A Digital Signal

With the advances in digital processors, the use of digital signals over the analogs

has become a trend due to their higher accuracy and less noise, more security and

flexibility.
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3.1.2.1 LTI Systems

A system is in fact a process in which input signals are converted into output signals

uniquely. Systems could be as well analog or digital. A linear time-invariant (LTI)

system is a system that has the three following properties [48, 49]:

1. Homogeneity:

if: x[n] −→ y[n] ⇒ a x[n] −→ a y[n] (3.17)

2. Additivity :

if: x1[n] −→ y1[n] , x2[n] −→ y2[n] ⇒ x1[n] + x2[n] −→ y1[n] + y2[n]

(3.18)

3. Time-Invariance:

if: x[n] −→ y[n] ⇒ x[n− k] −→ y[n− k] (3.19)

LTI systems play a key-role in control systems design due to their simplicity and

comprehensibility. In fact, we try to convert the non-linear systems into LTI systems

to better understand and analyze them. Of course, this has its cons as well, and

in some applications it is needed to design non-linear controllers to control the non-

linear dynamics accordingly. However, in this research the dynamics of the drone are

considered as LTI although they are in fact non-linear in nature.

3.1.2.2 Fourier Transform

Introduced by Jean Baptiste Joseph Fourier in 1822 [50], Fourier transform is tech-

nically a mathematical tool for analyzing time-domain signals in frequency domain

and vice versa using inverse Fourier transform.

The formulations for continuous Fourier transform and its inverse are as follows:

Analysis Equation: X(jω) =

∫︂ +∞

−∞
x(t) e−jω t dt (3.20)
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Synthesis Equation: x(t) =
1

2π

∫︂ +∞

−∞
X(jω) ejω t dω (3.21)

For obtaining the Fourier transform of discrete-time signals we can use a modified

version of Fourier transform called Discrete-Time Fourier Transform (DTFT) which

is formulated as follows [51–53]:

DTFT: X(ejω) =
+∞∑︂

n=−∞

x[n] e−jω n (3.22)

IDTFT: x[n] =
1

2π

∫︂
⟨2π⟩

X(ejω) ejω n dω (3.23)

Although it is possible to obtain the frequency components of digital signals using

DTFT, it is challenging to store the X(ejω) due to its continuous nature. Therefore,

it needed obtain a sampled form of DTFT to have finite amount of frequency com-

ponents to store. To fulfil this need, Discrete Fourier Transform (DFT) was invented

and formulated as below [51]:

DFT: X[k] =
N−1∑︂
n=0

x[n] e−jk
2π
N
n ; k = 0, 1, ..., N − 1 (3.24)

IDFT: x[n] =
1

N

N−1∑︂
k=0

X[k] ejk
2π
N
n ; n = 0, 1, ..., N − 1 (3.25)

3.1.2.3 Z-Transform

DTFT and DFT are powerful tool for analyzing digital signals in frequency domain,

however the summation is only consistent for stable systems. For analyzing unstable

systems in frequency domain, it is needed to acquire Z-transform which is defined as

below [49]:

X(z) =
+∞∑︂
−∞

x[n] z−n (3.26)
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And the inverse Z-transform as:

x[n] =
1

2πj

∮︂
X(z)zn−1dz (3.27)

We shall acquire Z-transform for investigating the stability and performance of the

digital model and controllers.

3.1.2.4 Digital Filters

Filters are essential tools for handling signals. They are used for noise cancellation

and demodulation of both analog and digital signals.

H(jω)

ωPassband Stopband

Figure 3.3: Schematic representation of Magnitude Component of Low-Pass Filters

Digital filters are usually classified into different categories based on their transfer

function and functionality including low-pass, high-pass, band-pass and band-stop

filters.

In this research, we shall acquire low-pass digital filters for noise-cancellation and

smoothening velocity signals. Digital filters are categorized into two categories in-

cluding FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters.

FIR filters are easier to design, however they require more memory and are more
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difficult to implement. On the other hand, IIR filters require less memory and have

comparably better performance. There are different methods for designing IIR filters

including Butterworth, Chebyshev, and Elliptic methods [49].

In the following sections, we shall Butterworth filters to enhance the velocity signals

of different axes.

3.2 Control

Figure 3.4: Anafi Coordinates Cartesian Representation

3.2.1 Generalized Coordinates

The state of the Anafi drone with respect to the world frame could be represented by

the following generalized coordinates as follows:
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W q⃗ =

⎛⎜⎜⎜⎜⎜⎜⎝
Wq1

Wq2

Wq3

Wq4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
Wxa

Wya

Wza

Wψa

⎞⎟⎟⎟⎟⎟⎟⎠ (3.28)

As it is represented in Figure 3.4, Wxa,
Wya,

Wza mark the Cartesian position of

the centre of the mass of the Anafi drone with respect to the world frame of W and

Wψa is the angular rotation of the drone on z-axis. The reason of exclusion of Euler

angles of ϕa and θa is the that in fact, these two angles act as control parameters for

moving the drone on y and z axes respectively.

3.2.2 Modelling

Obtaining a proper model for the drone is an essential preliminary for designing the

proper controllers. State-space representation is a way to demonstrate the dynamics

of an LTI system and transform n second order ordinary differential equations into 2n

first order ordinary differential equations. A continuous-time state-space of an LTI

system has the following general form [21]:

ẋ(t) = Ax(t) +Bu(t) (3.29)

y(t) = Cx(t) +Du(t) (3.30)

The continuous-time state-space of the Anafi drone with respect to the defined set

of generalized coordinates is as follows:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)

ẋ6(t)

ẋ7(t)

ẋ8(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 ax 0 0 0

0 0 0 0 0 ay 0 0

0 0 0 0 0 0 az 0

0 0 0 0 0 0 0 aψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

x8(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

bx 0 0 0

0 by 0 0

0 0 bz 0

0 0 0 bψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1(t)

u2(t)

u3(t)

u4(t)

⎤⎥⎥⎥⎥⎥⎥⎦

(3.31)

y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

x8(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1(t)

u2(t)

u3(t)

u4(t)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.32)

Where:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

x8(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
(a)
x (t)

r
(a)
y (t)

r
(a)
z (t)

r
(a)
ψ (t)

v
(a)
x (t)

v
(a)
y (t)

v
(a)
z (t)

v
(a)
ψ (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)
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And:

⎡⎢⎢⎢⎢⎢⎢⎣
u1(t)

u2(t)

u3(t)

u4(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
u
(a)
x (t)

u
(a)
y (t)

u
(a)
z (t)

u
(a)
ψ (t)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.34)

The superscript denotes the drone type, (a) for Anafi and (b) for Bebop, and r and

v are position and speed vectors which each has four components of x, y, z and ψ as

represented.

As it is shown in Equation 3.31, the state space is represented with position and

velocities of generalized coordinates which results in having eight states of x(t). Ma-

trix A has four unknown parameters of ax, ay, az, aψ which will be identified in the

next section. The input vector of u(t) consists of four inputs which affect the acceler-

ations directly weighted by the unknown coefficients of bx, by, bz, bψ. As it was stated

earlier, ẋ(t) consists of the time-derivative of the continuous states which are related

to the states and inputs by A and B matrices. The output vector of y(t) consists of

eight outputs which are identical to the states and therefore matrix C is an identify

matrix of size eight and matrix D is an eight by four zero matrix as it is shown in

Equation 3.32.

As it was mentioned earlier in the previous section, the controllers are to be de-

signed and implemented digitally. Therefore, it is needed to transform the continuous-

time state-space into a discrete-time state space accordingly.

The discrete state-space has the following general form [54]:

x[k + 1] = Ad x[k] +Bd u[k] (3.35)

y[k] = Cd x[k] +Dd u[k] (3.36)

Using Euler’s forward difference method we have [54, 55]:
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ẋ ≈ x(t+ T )− x(t)
T

(3.37)

Where T is the sampling period of the discrete signal. By applying Equation 3.37

into Equation 3.31 we shall have:

x(t+ T )− x(t)
T

= Ax(t) +Bu(t) (3.38)

Therefore:

x(t+ T ) = (I + AT )x(t) +BT u(t) (3.39)

By rewriting Equation 3.31 into discrete form we shall have:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k + 1]

x2[k + 1]

x3[k + 1]

x4[k + 1]

x5[k + 1]

x6[k + 1]

x7[k + 1]

x8[k + 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 T 0 0 0

0 1 0 0 0 T 0 0

0 0 1 0 0 0 T 0

0 0 0 1 0 0 0 T

0 0 0 0 T ax + 1 0 0 0

0 0 0 0 0 T ay + 1 0 0

0 0 0 0 0 0 T az + 1 0

0 0 0 0 0 0 0 T aψ + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]

x2[k]

x3[k]

x4[k]

x5[k]

x6[k]

x7[k]

x8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

T bx 0 0 0

0 T by 0 0

0 0 T bz 0

0 0 0 T bψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1[k]

u2[k]

u3[k]

u4[k]

⎤⎥⎥⎥⎥⎥⎥⎦ (3.40)

Where:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]

x2[k]

x3[k]

x4[k]

x5[k]

x6[k]

x7[k]

x8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
(a)
x [k]

r
(a)
y [k]

r
(a)
z [k]

r
(a)
ψ [k]

v
(a)
x [k]

v
(a)
y [k]

v
(a)
z [k]

v
(a)
ψ [k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.41)

And:

⎡⎢⎢⎢⎢⎢⎢⎣
u1[k]

u2[k]

u3[k]

u4[k]

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
u
(a)
x [k]

u
(a)
y [k]

u
(a)
z [k]

u
(a)
ψ [k]

⎤⎥⎥⎥⎥⎥⎥⎦ (3.42)

Subsequently, for the digital y[k] = Cx[k] +Du[k] we have:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1[k]

y2[k]

y3[k]

y4[k]

y5[k]

y6[k]

y7[k]

y8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]

x2[k]

x3[k]

x4[k]

x5[k]

x6[k]

x7[k]

x8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ux

uy

uz

uψ

⎤⎥⎥⎥⎥⎥⎥⎦ (3.43)

Where:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1[k]

y2[k]

y3[k]

y4[k]

y5[k]

y6[k]

y7[k]

y8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
(a)
x [k]

r
(a)
y [k]

r
(a)
z [k]

r
(a)
ψ [k]

v
(a)
x [k]

v
(a)
y [k]

v
(a)
z [k]

v
(a)
ψ [k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.44)
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By substituting T ax+1, T ay+1, T az+1, T aψ+1 with a′x, a
′
y, a

′
z, a

′
ψ respectively

and T bx, T by, T bz, T bψ with b′x, b
′
y, b

′
z, b

′
ψ respectively as well we shall have:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k + 1]

x2[k + 1]

x3[k + 1]

x4[k + 1]

x5[k + 1]

x6[k + 1]

x7[k + 1]

x8[k + 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 T 0 0 0

0 1 0 0 0 T 0 0

0 0 1 0 0 0 T 0

0 0 0 1 0 0 0 T

0 0 0 0 a′x 0 0 0

0 0 0 0 0 a′y 0 0

0 0 0 0 0 0 a′z 0

0 0 0 0 0 0 0 a′ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]

x2[k]

x3[k]

x4[k]

x5[k]

x6[k]

x7[k]

x8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

b′x 0 0 0

0 b′y 0 0

0 0 b′z 0

0 0 0 b′ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1[k]

u2[k]

u3[k]

u4[k]

⎤⎥⎥⎥⎥⎥⎥⎦ (3.45)

Therefore, it is only needed to identify a′x, a
′
y, a

′
z, a

′
ψ parameters of Ad matrix and

b′x, b
′
y, b

′
z, b

′
ψ of Bd as well. The discrete position data is provided by Vicon system,

however , the velocity data should be retrieved by applying backward difference on

positions signals. Using this method for obtaining velocity would cause noises on ve-

locity signals. Therefore, it is needed to enhance the velocity signals before identifying

parameters.

3.2.3 Filter Design

Pose and orientation of the objects could be retrieved from the Vicon system, however

for obtaining the axial velocities, it is needed to obtain the speed through numerical
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methods. Using backward difference we have:

v(k)x =
x(k) − x(k−1)

t(k) − t(k−1)
(3.46)

Due to the noises on position signals, estimated velocity signals would contain

noises with higher amplitudes as well. Let’s take a look at the vx signal as below:
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Figure 3.5: Raw x axis Velocity Signal

As it is represented in Figure 3.5, huge oscillations are visible in the digital signal

of translational velocity of the drone which overshadow the real data.

3.2.3.1 Butterworth Filter

Butterworth is an approach for designing filters, either analog or digital. The idea

is to have a low-pass filter with the following analog magnitude-squared frequency

response [49]:

|H(jω)|2 = 1

1 + ( ω
ωc
)2N

(3.47)
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Where ωC is the analog cut-off frequency and N is in fact the order of the filter. To

fulfill the desired transfer function stated in Equation 3.47, the poles must be places

on a circle with the radius of wc around the origin. Consequently, the transfer will

have the following form:

H(s) =
1

1 + a1 (
s
ωc
) + a2 (

s
ωc
)2 + · · ·+ aN ( s

ωc
)N

(3.48)

To transform the analog filter to digital, we shall use the bilinear transform as

follows:

s =
2

T

1− z−1

1 + z−1
(3.49)

As a result, the discrete filter transfer function will have the following form:

H(z) =
1

1 + a1 (
2
Tωc

1−z−1

1+z−1 ) + a2 (
2
Tωc

1−z−1

1+z−1 )2 + · · ·+ aN ( 2
Tωc

1−z−1

1+z−1 )N
(3.50)

Which could be simplified into the following generalized form:

H(z) =
b′0 + b′1 z

−1 + b′2 z
−2 + · · ·+ b′N z

−N

1 + a′1 z
−1 + a′2 z

−2 + · · ·+ a′N z
−N (3.51)

It should be also noted that the bilinear transform results in the following relation-

ships between the angles of analog and digital horizons:
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Ω = tan(
ω

2
) (3.52)

ω = 2 tan−1(Ω) (3.53)

We aim to design a digital IIR (infinite impulse response) Butterworth signal, but

first we need to analyze the noise spectrum in frequency domain in order to determine

the cut-off frequency. For obtaining the frequency spectrum of vx we shall use FFT

(Fast Fourier Transform) using MATLAB fft() command [56].
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Figure 3.6: Frequency Spectrum of vx

As it is shown in Figure3.6 can be inferred that the noise covers frequencies higher

than 0.7 hz, and therefore the components below 0.7 hz belong to the actual data.

Therefore, by designing a low-pass IIR filter, we can properly apply noise cancellation

and obtain proper and smooth filtered speed data. Similarly, the cut-off frequencies

for y, z and ψ are respectively 0.5, 1.2 and 1.2 hz based on the spectrum signals

attached in Appendix B.

A second-order Butterworth filter has the following general form:
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H(z) =
b0 + b1 z

−1 + b2 z
−2

1 + a1 z−1 + a2 z−2
(3.54)

z
−1

z
−1

x[n] x̃[n]

−a1

−a2

−b0

−b1

−b2

Figure 3.7: Direct Form Realization of Second Order Butterworth Filter

Using MATLAB butter() function and the determined cut-off frequencies, we

shall have [57]:

• For x axis:

Hx(z) =
0.0069 + 0.0137 z−1 + 0.0069 z−2

1− 1.7523 z−1 + 0.7797 z−2
(3.55)

• For y axis:

Hy(z) =
0.0036 + 0.0072 z−1 + 0.0036 z−2

1− 1.8227 z−1 + 0.8372 z−2
(3.56)

• For z axis:

Hz(z) =
0.0187 + 0.0373 z−1 + 0.0187 z−2

1− 1.5782 z−1 + 0.6528 z−2
(3.57)
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• For Yaw axis:

Hψ(z) =
0.0187 + 0.0373 z−1 + 0.0187 z−2

1− 1.5782 z−1 + 0.6528 z−2
(3.58)

Consequently, the relationship between the raw and filtered signals in time-time is

as follows:

• For x axis:

ṽx[n] = 0.0069 vx[n] + 0.0137 vx[n− 1] + 0.0069 vx[n− 2] (3.59)

+1.7523 ṽx[n− 1]− 0.7797 ṽx[n− 2] (3.60)

• For y axis:

ṽy[n] = 0.0036 vy[n] + 0.0072 vy[n− 1] + 0.0036 vy[n− 2] (3.61)

+1.8227 ṽy[n− 1]− 0.8372 ṽy[n− 2] (3.62)

• For z axis:

ṽz[n] = 0.0187 vz[n] + 0.0373 vz[n− 1] + 0.0187 vz[n− 2] (3.63)

+1.5782 ṽz[n− 1]− 0.6528 ṽz[n− 2] (3.64)

• For Yaw axis:

ṽψ[n] = 0.0187 vψ[n] + 0.0373 vψ[n− 1] + 0.0187 vψ (3.65)

+1.5782 ṽψ[n− 1]− 0.6528 ṽψ[n− 2] (3.66)

The proper filters have been implemented as a class on C++ within anafi ros

package.
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3.2.4 System Identification

After obtaining the velocity signals and removing the noise, we can use the enhanced

data for obtaining the parameters of the discrete-time state space mentioned in Sec-

tion 3.2.2.

By rewriting the lower half of the Equation 3.40 based on time-samples as follows

we have:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(1)
5 x

(1)
6 x

(1)
7 x

(1)
8

x
(2)
5 x

(2)
6 x

(2)
7 x

(2)
8

x
(3)
5 x

(3)
6 x

(3)
7 x

(3)
8

...
...

...
...

x
(N)
5 x

(N)
6 x

(N)
7 x

(N)
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(0)
5 x

(0)
6 x

(0)
7 x

(0)
8 u

(0)
1 u

(0)
2 u

(0)
3 u

(0)
4

x
(1)
5 x

(1)
6 x

(1)
7 x

(1)
8 u

(1)
1 u

(1)
2 u

(1)
3 u

(1)
4

x
(2)
5 x

(2)
6 x

(2)
7 x

(2)
8 u

(2)
1 u

(2)
2 u

(2)
3 u

(2)
4

...
...

...
...

...
...

...
...

x
(N−1)
5 x

(N−1)
6 x

(N−1)
7 x

(N−1)
8 u

(N−1)
1 u

(N−1)
2 u

(N−1)
3 u

(N)
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ax 0 0 0

0 ay 0 0

0 0 aZ 0

0 0 0 aψ

bx 0 0 0

0 by 0 0

0 0 bz 0

0 0 0 bψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.67)

Now, we need rewrite the matrices for each axis separately so we could have:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(1)
x

v
(2)
x

v
(3)
x

...

v
(N)
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(0)
x u

(0)
x

v
(1)
x u

(1)
x

v
(2)
x u

(2)
x

...
...

v
(N−1)
x u

(N−1)
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣a′x
b′x

⎤⎦ (3.68)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(1)
y

v
(2)
y

v
(3)
y

...

v
(N)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(0)
y u

(0)
y

v
(1)
y u

(1)
y

v
(2)
y u

(2)
y

...
...

v
(N−1)
y u

(N−1)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣a′y
b′y

⎤⎦ (3.69)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(1)
z

v
(2)
z

v
(3)
z

...

v
(N)
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(0)
z u

(0)
z

v
(1)
z u

(1)
z

v
(2)
z u

(2)
z

...
...

v
(N−1)
z u

(N−1)
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣a′z
b′z

⎤⎦ (3.70)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(1)
ψ

v
(2)
ψ

v
(3)
ψ

...

v
(N)
ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
(0)
ψ u

(0)
ψ

v
(1)
ψ u

(1)
ψ

v
(2)
ψ u

(2)
ψ

...
...

v
(N−1)
ψ u

(N−1)
ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣a′ψ
b′ψ

⎤⎦ (3.71)

The N by 1 matrix on left is called the output matrix (y) and the N by 2 matrix

on the right side of the equation is the matrix of regressors (X) which is multiplied

by the matrix of the unknown parameters (β). To obtain the system parameters of

the β̂ matrix, we shall take the least square approach for obtaining the estimated

parameters as β̂ matrix which is formulated as follows [58, 59]:

β̂ = (XT X)−1XT y (3.72)

Therefore, by obtaining the proper data, β̂ could be identified using Equation 3.72.

For obtaining the proper identification dataset, a pulse input with time period of 10(s)

is applied to the drone separately on each four axes.
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Figure 3.8: Pulse Train and Corresponding Response on x-axis
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Figure 3.9: Pulse Train and Corresponding Response on y-axis

As it is represented in Figure 3.8, a periodic pulse input (ux) with the amplitude

of 10% and time period of 10 seconds is applied to the drone and and the velocity

response (vx) of the system is a periodic signal as well with an amplitude of 0.25 m/s.

Similarly, for y axis the same periodic pulse input has been applied and the output

has the average amplitude of 0.22 m/s as it is represented in Figure 3.9.

For the z axis as well, the input periodic signal has the same frequency and the

magnitude of 10% as the x and y axes, however as it is represented in Figure 3.10,

the dynamical nature of z is different from the previous two ones. In fact, z axis has
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Figure 3.10: Pulse Train and Corresponding Response on z-axis
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Figure 3.11: Pulse Train and Corresponding Response on ψ-axis

a faster dynamic than the previous two axes.

For identifying the ψ axis, a periodic pulse input with an amplitude of 20% has been

applied to the system with the same time period of 10 seconds. The system responds

to the input with an output periodic velocity signal with the same frequency and

magnitude of 0.15 rad/s as plotted in Figure 3.11.

Now, after obtaining the proper identification dataset, we can now acquire the least

square formulation to estimate the system parameters.

Using MATLAB lsqr() function we shall have [60]:
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βx̂ =

⎡⎣0.9969
0.0005

⎤⎦ , βŷ =
⎡⎣0.9985
0.0005

⎤⎦ , βẑ =
⎡⎣0.5377
0.0049

⎤⎦ , βψ̂ =

⎡⎣0.9486
0.0001

⎤⎦ (3.73)

Therefore, now we can rewrite Equation 3.40 and 3.32 as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k + 1]

x2[k + 1]

x3[k + 1]

x4[k + 1]

x5[k + 1]

x6[k + 1]

x7[k + 1]

x8[k + 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0.04 0 0 0

0 1 0 0 0 0.04 0 0

0 0 1 0 0 0 0.04 0

0 0 0 1 0 0 0 0.04

0 0 0 0 0.9969 0 0 0

0 0 0 0 0 0.9985 0 0

0 0 0 0 0 0 0.5377 0

0 0 0 0 0 0 0 0.9486

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]

x2[k]

x3[k]

x4[k]

x5[k]

x6[k]

x7[k]

x8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.0005 0 0 0

0 0.0005 0 0

0 0 0.0049 0

0 0 0 0.0001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1[k]

u2[k]

u3[k]

u4[k]

⎤⎥⎥⎥⎥⎥⎥⎦ (3.74)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1[k]

y2[k]

y3[k]

y4[k]

y5[k]

y6[k]

y7[k]

y8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[k]

x2[k]

x3[k]

x4[k]

x5[k]

x6[k]

x7[k]

x8[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1

u2

u3

u3

⎤⎥⎥⎥⎥⎥⎥⎦ (3.75)

Now that the system is identified, it is time to evaluate the identified model and

compare the estimated and actual response of the system. By defining the discrete

state space model on MATLAB using ss() function and simulating the response

using lsim() we would have the following results [61, 62].

As it is shown in Figures 3.12, 3.13, 3.14 and 3.15, the originals signals rx, ry, rz

and rψ and model estimated position signals r̂x, r̂y, r̂z and r̂ψ almost fit and thus the

model is able to properly represent the dynamics of the system.
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Figure 3.12: Original signal and the model output on x-axis
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Figure 3.13: Original signal and the model output on y-axis
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Figure 3.14: Original signal and the model output on z-axis
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Figure 3.15: Original signal and the model output on ψ-axis
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3.2.5 Digital PID Control

Developed in early 20th century by Nicolas Minorsky [63], Proportional Integral

Derivative (PID) control has proven to be the most practical, versatile and pop-

ular controller in the industry. The ingenuity of PID is that it can control most

systems with only three parameters. The only challenge then is to find the proper

three parameters for tuning the controller [21, 64].

Σ− G(s)

Kp

Kp

s

Kd s

r(t) y(t)u(t)e(t)

Figure 3.16: Block Diagram of Continuous PID Controller

Figure 3.16, represents the schematic block diagram of a continuous system with

PID controller. As it is shown, the PID block contains three components of gain

(Kp), integrator (
Ki

s
) and derivative (Kd s). The relationship between the command

signal u(t) and error e(t) is as follows [21]:

u(t) = Kp e(t) +Ki

∫︂ t

0

e(τ)dτ +Kd ė(t) (3.76)

However, as it was mentioned earlier, due to the digital nature of the processing

unit of ROS, it is needed to analyze PID controller in discrete-time horizon to fulfill

the performance requirements. By using the Z-transform and utilizing the same

architecture, we shall have the following block diagram of Figure 3.17.

As it is represented, the digital PID controller is composed of three components as

the analog one, however, the placement of the poles are dependant of the sampling
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Σ− G(z)

Kp

Ki
Ts z−1

1−z−1

Kd
1−z−1

Ts

r[n] y[n]u[n]e[n]

Figure 3.17: Block Diagram of Digital PID Controller

time Ts as well as the coefficients. The following equations expresses the relationship

between the control signal and error [55]:

u[n] = Kp e[n] +Ki Ts

n∑︂
i=0

e[n] +
Kd

Ts
(e[n]− e[n− 1]) (3.77)

The advantage of the digital controllers to the analog counterparts is the easy and

accessible implementation on microcontrollers or any other digital processing units

using programming languages like C++ or Python. Before the invention of digital

computers, the PID controllers were implemented using electronic devices including

op-amps, resistors and capacitors. Therefore, making changes to the controller would

require hardware manipulation of the controller whereas for digital controllers, it

would only a few seconds to edit the codes and recompile it.

Flight Control

For designing a flight controller for the Anafi drone, it is needed to utilize for PID

loop to control each four axes independently. Therefore, as it is represented in Figure

3.18, the controller consists of four PID loops tasked with controlling x, y, z and

ψ. The Vicon acts as the feedback sensor, feeding the pose data of the Anafi into

the controller through ROS topics. At the same time, the feedback data are quan-

tized and digitalized by Vicon and vicon bridge as well. Afterwards, the error is
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calculated by subtracting the feedback data (/anafi/fbData) from the setpoint data

(/anafi/spData) through the PID block. Consequently, the digital control signals

are transformed and transmitted to the drone by Olympe library and wi-fi routers.

PID AnafiOlympe

Vicon

SP

ux[n]

uy [n]

uz [n]

uψ [n]

u(t)

x[n]

y[n]

z[n]

ψ[n]

xsp[n]

ysp[n]

zsp[n]

ψsp[n]

Figure 3.18: 4-Axis Flight Control PID Framework

The framework of the flight controller is now set up and now it is only needed to

tune the PID parameters accordingly.

Tuning

There are a myriad of methods for tuning PID controllers, which could be categorized

into theoretical and experimental or continuous and discrete methods. Analytical

methods are solely based on the identified models whereas the experimental ones are

based on engaging the controller in real-time horizon with the system and tuning the

parameters by observing the corresponding responses.

As it was discussed earlier, systems could be expressed in continuous or discrete

time manners. Continuous systems are represented by Laplace transform whereas

discrete systems should be represented using Z-transform. Thus, the nature of the

system must be taken into consideration for tuning the controllers.

For tuning the flight controller, we shall use a combination of theoretical and ana-

lytical methods. First, by using pole-placement method [65] the parameters are tuned

to ensure the stability of the system, then by returning the parameters experimentally,

the output response is going to be enhanced and re-tuned.
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As it is shown in Figure 3.19, the open loop poles are in fact the eigenvalues of A

matrix and the eigenvalues are placed on the main diagonal of A as it is a triangular

matrix. Therefore, each axis has a stable real pole inside the unit circle and another

real pole on z = 1 which acts as an integrator. As a matter of fact, we need to either

move this pole into the centre of unit circle or cancel them by a zero to stabilize and

increase the speed of the system.

Figure 3.19: PID Control Implementation on ROS

The derived pole-placement parameters for PID flight controllers are summarized

in Table 3.1. Utilizing these coefficients into PID controllers in a close loop manner

would modify the open-loop poles and zeros into the new placement as represented
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Table 3.1: PID Coefficients

Axis Kp Ki Kd

Anafi World Frame X Axis (Wx) 4.603 0.901 7.604

Anafi World Frame Y Axis (Wy) 4.603 0.901 7.604

Anafi World Frame Z Axis (Wz) 7.5 5.094 0.12

Anafi World Frame Yaw Axis (Wψ) 7.538 0.98 0.452

in Figure 3.20.

Figure 3.20: PID Control Implementation on ROS

As it is shown in Figure 3.20, the open-loop poles near the unit circle are cancelled
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by two zeros and new poles are placed near the origin which results in stable and fast

response in the output. The evaluation and results of the designed controller shall be

discussed in Chapter 5 thoroughly.

3.2.6 ROS Implementation

As it was mentioned in the introduction of this chapter, the PID controllers and flight

control systems of the Anafi drones are to be implemented on ROS for integrating

different modules and processing units into a single entity.

Anafi
r[n]

af ctrl.pypid.cpppulse gen.cpp

Vicon Trackervicon bridge

u[n]

y(t)y[n]

u(t)

Figure 3.21: PID Control Implementation on ROS

Figure 3.21 illustrates the block diagram of the PID control implementation on

ROS. As it is shown, the pose of Anafi is captured by Vicon system and is then

transmitted to vicon bridge ROS package which then broadcasts the pose as a /tf

topic which could be listened by any ROS node. At the same time, the desired

setpoints (/anafi/spData) are published by the pulse gen.cpp C++ node [66] which

could be connected to rqt GUI as well to change the setpoints manually by user as

well. Then, the current state of the drone along with the desired setpoints are fed into

the PID block which then publishes the control as /cmd vel topic. Eventually, the

af ctrl.py subscribes to the /cmd vel topic and transmits the command velocities

to the drone using Olympe library through wireless communications.

Algorithm 1 details the steps for obtaining the control signals and command veloc-

ities by implementing the PID block on a C++ node on ROS. The algorithms is quite
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straightforward, the current state of the done is received as a stamped transform mes-

sage in additions to the setpoint data which is received through a custom ROS topic

called spData. Consequently, through the while loop the current states and setpoints

are stored and then in the for loop, the error is calculated and is then passed to PID

blocks to obtain the control signal. Anti-windup option has been implemented too

to ensure the proper performance of integrator. Subsequently, after the for loop, the

obtained control signals are pass to chopper if block to prevent malfunction of the

transmitter.

Algorithm 1 PID ROS Algorithm

Input: Anafi Stamped Transform, Setpoint Data
Output: Velocity Commands
nh← ros::NodeHandle
tranfsorm← tf::StampedTransform
while nh.ok() do

x, y, z, ψ ← transform
for i = 1 to 4 do

Calculate the Error (e)
Multiply the Error by Gain (ep)
Integrate the Error (ei)
Differentiate the Error (ed)
if ei > 50 then ▷ Integrator Anti-windup

e3 ← 50
else if ei < −50 then

ei ← −50
end if
ui ← ei + ep + ei ▷ Control Signal Calculation

end for
if ui > 100 then ▷ Signal Chopper

ui ← 100
else if ui < −100 then

ui ← −100
end if

end while
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3.3 Pursuit

As it was discussed in section 3.2.6, the PID block is tasked with tracking the desired

setpoints by sending the required flight control signals to the drone. For enabling the

drone to pursue a target, we need to obtain the pose of the target and transmit the

pose data as the setpoint into the PID block. In this research, the target is in fact a

Bebop drone.

The Bebop is going to be tracked by two approaches, Vicon and AI. As it was

mentioned earlier, Vicon tracker can captures the frame pose of Anafi and Bebop

drones and sending them to ROS using vicon bridge. On the other hand, we aim to

utilize deep learning methods to obtain the relative distance and pose of Bebop with

respect to Anafi. Therefore, Vicon is going to be employed for obtaining training data,

tuning data and evaluating pursuit algorithms in absence of deep learning nodes.

As a result, once the competency of the pursuit algorithms are evaluated with

Vicon, then the deep learning methods could be deployed to perform the pursuit

based on the estimated pose.

3.3.1 Formulation

For formulating the pursuit, we need to have an understanding of the geometric

topology of the drones in addition to their spatial representation.

Figure 3.22 illustrates the schematic representation of the frame coordinates of the

Anafi (A) and Bebop (B) drones with respect to the world frame (W). The goal here

is to find the coordinates of the desired setpoint, but first we need to go through some

definition. The displacement vectors of Anafi and Bebop are defined as follows:

d⃗a =

⎛⎜⎜⎜⎝
xa

ya

za

⎞⎟⎟⎟⎠ ; d⃗b =

⎛⎜⎜⎜⎝
xb

yb

zb

⎞⎟⎟⎟⎠ (3.78)

For performing the pursuit without annihilating the target, it is needed to fly the
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Figure 3.22: Geometric Schematics of Aerial Pursuit

Anafi over an offset zone with respect to Bebop meaning that a minimum distance

would be maintained for preventing the crash of the drones. For this research, the

offset is 1.5 meters over x axis as follows:

p⃗o =

⎛⎜⎜⎜⎝
xo

yo

zo

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1.5

0

0

⎞⎟⎟⎟⎠ (3.79)

Consequently, the setpoint coordinates could be calculated through the following

formulation:
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p⃗sp = d⃗b +Rb p⃗o (3.80)

Where Rb is the rotation matrix of Bebop drone. As a result, the error vector of

desired setpoint and current state of Anafi is as follows:

e⃗ = p⃗sp − d⃗a = d⃗b +Rb p⃗o − d⃗a (3.81)

Equation 3.81 is used for obtaining the setpoint error when the pose and coordi-

nates of Bebop are being tracked by the vicon. For obtaining the setpoint coordinates

using relative distance which is to be obtained from the AI algorithms we have:

p⃗sp = d⃗a +Ra p⃗rel +Rb p⃗o (3.82)

Therefore:

e⃗ = d⃗a +Ra p⃗rel +Rb p⃗o − d⃗a = Ra p⃗rel +Rb p⃗o (3.83)

Where Ra is the rotation matrix of Anafi drone.

3.3.2 Framework

As it was discussed earlier, we shall set two distinguished frameworks for pursuit

algorithms, one for Vicon and and one for deep learning methods.

The Vicon-based pursuit framework is represented in Figure 3.23. This frame-

works resembles the PID framework in some sense. The difference here though, is

that the fact that the setpoints are generated by vicon pursuit.cpp node which

receives the pose of Anafi and Bebop from the vicon bridge [67] and publishes the

/anafi/spData for the PID node which then sends the command to Python node

communicating with the drone.

On the other hand, for the AI-based pursuit it is aimed to obtain the relative

pose of the Bebop drone through vision data. Figure 3.24 demonstrates the proposed
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Anafi
r[n]

Vicon Tracker

u[n] u(t)

Bebop

PIDVicon Pursuit Olympe

Vicon Bridge
/tf

Figure 3.23: Vicon-Based Pursuit Framework on ROS

framework for processing and utilizing the vision data into pursuit mechanism.

As it is shown, Anafi drone captures the frames of Bebop and sends them as

/anafi/frames topic into RCNN node. This node utilizes PyTorch library and

Keypoint-RCNN architecture to obtain the keypoints (frame projection of the ver-

tices of the 3D bounding box circumscribing the Bebop), and then are published as

/anafi/kpData topic into PnP node.

PnP node is a C++ node which includes OpenCV library containing the solvePnP()

function which takes the object points, image points (keypoints), camera matrix and

distortion coefficients as input arguments and returns rvec, tvec or relative rotation

and translation of the target with respect to the camera. The relative pose data are

then published as /anafi/pnp topic into the Vicon Pursuit node.

As the Vicon-based pursuit method, Vicon Pursuit is tasked with generating the

reference signal or the setpoints for the PID block. As opposed to the previous

method, here Vicon Pursuit block subscribes to Vicon and PnP at the same time to

obtain the current world frame pose of the Anafi and then it calculates the world

frame pose of Bebop by using the relative distance and current pose of the Anafi.

The reference signal (r[n]) or setpoints are then published as /anafi/spData topic

into the PID block.

The rest of the process is the same as the PID block is independent of the method
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Figure 3.24: AI-Based Pursuit Framework on ROS

and only works by taking the references signal and then publishing and feeding the

control signal (u[n]) into the Olympe as /cmd vel. Consequently, as mentioned in

the previous method, the Olympe sends the control command velocities to the drone

via PCMD.
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Chapter 4

Pose Estimation

This chapter describes the basis of computer vision concepts by first going through

the camera model and projection matrix. These concepts are necessary for under-

standing the role played by the camera in transforming the spatial coordinates into

camera coordinates. Then, we shall review the concept of 3D bounding box and its

representation in world coordinate systems and in the one of the camera. In the next

section, the framework of the AI algorithms shall be discussed. This framework in-

cludes region-based convolutional neural networks which are utilized into a processing

entity to detect and drone and its circumscribing 3D bounding as keypoints. Eventu-

ally, the last section shall describe the procedure of obtaining the relative pose from

the detected 3D bounding box keypoints using Perspective-n-Point method.

4.1 Camera Model

Camera is a device which in fact maps the 3D spatial points into a 2D frame and

stores the corresponding visual data of each point as a one-channel black and white

image or a three-channel color one. Camera could store the visual as an analog signal

on negatives or as digital signal on memories. We discussed the nature of analog and

signals in Section 3.1.2 thoroughly.

Figure 4.1 represents the schematics of perspective projection from world frame

to image plane. For the know point of P could be represented by vector x⃗w in the
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Figure 4.1: Camera Perspective Projection Schematics

world plane. By using a matrix transformation which will later will be discussed as

extrinsic matrix, x⃗w would be transformed into x⃗c which is the spatial representation

of P with respect to Camera plane [68, 69].

xw =

⎡⎢⎢⎢⎣
xw

yw

zw

⎤⎥⎥⎥⎦ =⇒ xc =

⎡⎢⎢⎢⎣
xc

yc

zc

⎤⎥⎥⎥⎦ =⇒ xi =

⎡⎣xi
yi

⎤⎦ (4.1)

By using trigonometry over pinhole we shall have:

xi
f

=
xc
zc

;
yi
f

=
yc
zc

(4.2)

Therefore:

xi = f
xc
zc

; yi = f
yc
zc

(4.3)

As it was stated earlier, digital cameras digitize the image into pixels to store
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them as arrays. Thus, the image plane is transformed into pixel plane which as it is

represented in Figure 4.2. It is common to assign the left top corner of the image as

the origin for pixel coordinates which is called principal point represented as (ox, oy)

[70–72].

x̂i

ŷi

Image Plane Pixel Plane

u

v

(ox, oy)

Figure 4.2: Image and Pixel Planes

Rewriting Equation 4.3 into digital form yields the following formulations:

u = mx f
xc
zc

+ ox (4.4)

v = my f
yc
zc

+ oy (4.5)

Hence:

u = fx
xc
zc

+ ox (4.6)

v = fy
yc
zc

+ oy (4.7)

A 2D point on image plane represents infinite number of points in 3D spatial

plane. Therefore, to transform the 2D vector (u, v) into 3D plane homogeneously, it

is required to consider the w̃ coefficients into the vector as it is formulated below:
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u ≡

⎡⎢⎢⎢⎣
u

v

1

⎤⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎣
w̃ u

w̃ v

w̃

⎤⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎣
ũ

ṽ

w̃

⎤⎥⎥⎥⎦ (4.8)

Hence, the transformed homogeneous 3D vector ũ is:

ũ ≡

⎡⎢⎢⎢⎣
ũ

ṽ

w̃

⎤⎥⎥⎥⎦ (4.9)

Similarly, to represent the 3D spatial vector of (x, y, z) homogeneously, it is needed

to transform it into a 4D vector by adding w̃ coefficient as follows:

x ≡

⎡⎢⎢⎢⎢⎢⎢⎣
x

y

z

1

⎤⎥⎥⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎢⎢⎣
w̃ x

w̃ y

w̃ z

w̃

⎤⎥⎥⎥⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎢⎢⎢⎣
x̃

ỹ

z̃

w̃

⎤⎥⎥⎥⎥⎥⎥⎦ (4.10)

Thus:

x̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
x̃

ỹ

z̃

w̃

⎤⎥⎥⎥⎥⎥⎥⎦ (4.11)

4.1.1 Intrinsic Matrix

By rewriting Equation 4.9 and substituting w̃ with zc we shall have:
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ũ ≡

⎡⎢⎢⎢⎣
ũ

ṽ

w̃

⎤⎥⎥⎥⎦ ≡
⎡⎢⎢⎢⎣
zc u

zc v

zc

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
fxxc + zcox

fyyc + zcoy

zc

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
fx 0 ox 0

0 fy oy 0

0 0 1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
xc

yc

zc

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.12)

Consequently:

⎡⎢⎢⎢⎣
ũ

ṽ

w̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
fx 0 ox 0

0 fy oy 0

0 0 1 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
xc

yc

zc

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.13)

ũ =Mint x̃c (4.14)

The 3x4 matrix which transforms the xc into u is called the intrinsic matrix. The

3x3 left half of the intrinsic matrix which is composed of camera parameters is called

camera matrix consisting of focal and principle parameters.

Mc =

⎡⎢⎢⎢⎣
fx 0 ox

0 fy oy

0 0 1

⎤⎥⎥⎥⎦ (4.15)

4.1.2 Extrinsic Matrix

Intrinsic matrix transforms the 3D object coordinate xc (with respect to camera

frame) to ũ on image plane. However, in most cases the 3D object point is represented

with respect to the world coordinate frame. To transform the world coordinates
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into camera coordinates, it is needed to obtain the following matrix to perform the

transformation.

⎡⎢⎢⎢⎢⎢⎢⎣
xc

yc

zc

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
xw

yw

zw

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.16)

x̃c =Mext x̃w (4.17)

The 4x4 matrix transforming the xw into xc is called the extrinsic matrix. This

matrix consists of two sections of rotation matrix and translation matrix. Rotation

matrix is in fact the combination of 3 axial rotations explained in Section 3.1.1.3.

Additionally, the translation vector (tx, ty, tz) expresses the translational displacement

of camera frame with respect to the world frame.

4.1.3 Projection Matrix

Combining the intrinsic and extrinsic matrices leads to the following calculations:

ũ =MintMext x̃w = P x̃w (4.18)

⎡⎢⎢⎢⎣
ũ

ṽ

w̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
xw

yw

zw

1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.19)

Therefore, the derived 3x4 matrix which maps the world frame coordinates directly

to the image plane, is called the projection matrix.

4.1.4 Camera Calibration

The extrinsic matrix could be retrieved form the Vicon system by obtaining the

orientation and pose of the Anafi camera with respect to the world frame. However,
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Figure 4.3: Calibration Checkerboard

for obtaining the intrinsic matrix and obtaining the camera parameters, it is needed

to perform a process which is called camera calibration.

camera calibration is a ROS package which automatically obtain the camera

matrix by utilizing OpenCV library. The idea is to detect the corners of the squares

in an identified checkerboard, as shown in Figure 4.3, and find the best intrinsic

matrix to map the spatial coordinates of the checkerboard corners into the detected

edges as shown in Figure 4.4.

Figure 4.4: Calibration Process
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Using camera calibration package, the intrinsic parameters of Anafi camera are

as follow:

Mint =

⎡⎢⎢⎢⎣
941.35 0 638.96 0

0 948.55 375.83 0

0 0 1 0

⎤⎥⎥⎥⎦ (4.20)

4.2 3D Bounding Box

In a sense, a bounding box is a visual and geometric entity which circumscribes an

object. A 2D bounding box is in fact a rectangle which determines the 2D pose of

the detected object through image plane. Therefore, a 2D bounding box could be

identified using four parameters of corner coordinates (u0, v0) of the box in addition

to the length and width of the box (h,w) as it is represented in Figure 4.5.

Figure 4.5: 2D Bounding Box on Image Plane

As it was earlier mentioned in Section 1.3, it has been attempted in the literature

to extract the 2D bounding box information for pose estimation. Experimental trials

have proved the inefficiency and impracticality of 2D bounding box for depth and

pose estimation. On the other hand, a 3D bounding box provides us with the neces-

sary information for estimating the pose with PnP method with eight corresponding

vertices of the box.
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Figure 4.6: 3D Bounding Box Projection Schematics

Figure 4.6 represents the schematics of the spatial 3D bounding box and projected

on the image plane in details. The box has eight vertices (V0 ... V7) along with the

Bebop centre of mass denoted as Pb. The Cartesian coordinates of Pb could be

expressed in two ways with respect to world coordinate frame W as wx⃗b or with

respect to camera coordinate frame C as cx⃗b. Based on the set definitions we have:

cx⃗b =
w
c R [wx⃗b − wx⃗c] (4.21)

Where w
c R is the rotation transform matrix from W to C.
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4.2.1 Vertices

Based on the equations obtained in the previous section, we have obtained the for-

mulation for obtaining the position vector of Pb with respect to world and camera

frames. However, for obtaining the keypoints, we need to calculate the Cartesian

coordinates of vertices with respect to the camera. To do so, first we need to obtain

the vertices coordinates with respect to world frame defined as follows:

wxv =

⎡⎢⎢⎢⎣
wx

(0)
v

wx
(1)
v

wx
(2)
v

wx
(3)
v

wx
(4)
v

wx
(5)
v

wx
(6)
v

wx
(7)
v

wy
(0)
v

wy
(1)
v

wy
(2)
v

wy
(3)
v

wy
(4)
v

wy
(5)
v

wy
(6)
v

wy
(7)
v

wz
(0)
v

wz
(1)
v

wz
(2)
v

wz
(3)
v

wz
(4)
v

wz
(5)
v

wz
(6)
v

wz
(7)
v

⎤⎥⎥⎥⎦ (4.22)
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Figure 4.7: 3D Bounding Box Dimensions

Since the dimension of the box is known, we could augment the centroid coordinates

Pb to eight vertices using auxiliary vectors wλ⃗
(j)

v defined as follows:

wΛv =
[︂
wλ⃗

(0)

v
wλ⃗

(1)

v
wλ⃗

(2)

v
wλ⃗

(3)

v
wλ⃗

(4)

v
wλ⃗

(5)

v
wλ⃗

(6)

v
wλ⃗

(7)

v

]︂
(4.23)
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Based on the experimental measurements of the Bebop drone as shown in Figure

4.7, the circumscribing box has a dimension of 0.23 by 0.315 by 0.09 meters. Con-

sidering the centroid at (0.125, 0.1575,−0.04), the custom auxiliary matrix wΛv is as

follows:

wΛv =

⎡⎢⎢⎢⎣
0.1250 0.1250 0.1250 0.1250 −0.1050 −0.1050 −0.1050 −0.1050

0.1575 −0.1575 0.1575 −0.1575 0.1575 −0.1575 0.1575 −0.1575

−0.04 −0.04 0.05 0.05 −0.04 −0.04 0.05 0.05

⎤⎥⎥⎥⎦
(4.24)

Subsequently, for obtaining the wxv we can augment wx⃗b and add it to the wΛv as

follows:

wxv =
wx⃗bMa +

wRb
wΛv (4.25)

Where w
c Rb is the rotation matrix of Bebop drone with respect to world frame.

Applying this matrix to auxiliary matrix would take the drone rotation into consid-

eration for calculating the vertices. Consequently we have:

wxv =

⎡⎢⎢⎢⎣
wxb

wyb

wzb

⎤⎥⎥⎥⎦[︂
1 1 1 1 1 1 1 1

]︂
+ wRb

[︂
wλ⃗

(0)

v
wλ⃗

(1)

v
wλ⃗

(2)

v
wλ⃗

(3)

v
wλ⃗

(4)

v
wλ⃗

(5)

v
wλ⃗

(6)

v
wλ⃗

(7)

v

]︂
(4.26)
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=

⎡⎢⎢⎢⎣
wxb

wxb
wxb

wxb
wxb

wxb
wxb

wxb

wyb
wyb

wyb
wyb

wyb
wyb

wyb
wyb

wzb
wzb

wzb
wzb

wzb
wzb

wzb
wzb

⎤⎥⎥⎥⎦

+wRb

⎡⎢⎢⎢⎣
0.1250 0.1250 0.1250 0.1250 −0.1050 −0.1050 −0.1050 −0.1050

0.1575 −0.1575 0.1575 −0.1575 0.1575 −0.1575 0.1575 −0.1575

−0.04 −0.04 0.05 0.05 −0.04 −0.04 0.05 0.05

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
wx

(0)
v

wx
(1)
v

wx
(2)
v

wx
(3)
v

wx
(4)
v

wx
(5)
v

wx
(6)
v

wx
(7)
v

wy
(0)
v

wy
(1)
v

wy
(2)
v

wy
(3)
v

wy
(4)
v

wy
(5)
v

wy
(6)
v

wy
(7)
v

wz
(0)
v

wz
(1)
v

wz
(2)
v

wz
(3)
v

wz
(4)
v

wz
(5)
v

wz
(6)
v

wz
(7)
v

⎤⎥⎥⎥⎦ (4.27)

For projection calculation which will be discussed in following sections, it is required

to transform into wxv homogeneously into wx̃v as follows:

wx̃v =

⎡⎢⎢⎢⎢⎢⎢⎣
wx

(0)
v

wx
(1)
v

wx
(2)
v

wx
(3)
v

wx
(4)
v

wx
(5)
v

wx
(6)
v

wx
(7)
v

wy
(0)
v

wy
(1)
v

wy
(2)
v

wy
(3)
v

wy
(4)
v

wy
(5)
v

wy
(6)
v

wy
(7)
v

wz
(0)
v

wz
(1)
v

wz
(2)
v

wz
(3)
v

wz
(4)
v

wz
(5)
v

wz
(6)
v

wz
(7)
v

1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.28)

The next objective is calculating cxv. By taking another look into Figure 4.6, it

can be inferred that:

cx⃗(j)v = w
c R [wx⃗(j)v − wx⃗c] =

w
c R

wx⃗(j)v − w
c R

wx⃗c (4.29)

Equation 4.29 would lead us into calculating extrinsic matrix discussed in Section

4.1. Let’s take:

⎡⎢⎢⎢⎣
tx

ty

tz

⎤⎥⎥⎥⎦ = −wc R

⎡⎢⎢⎢⎣
wxc

wyc

wzc

⎤⎥⎥⎥⎦ (4.30)
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And:

w
c R =

⎡⎢⎢⎢⎣
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤⎥⎥⎥⎦ (4.31)

Subsequently:

Mext =

⎡⎣wc R −wc R wx⃗c

0 1

⎤⎦ (4.32)

=

⎡⎢⎢⎢⎢⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.33)

At the same time we have:

cx̃v =Mext
wx̃v (4.34)

Therefore:
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cx̃v =

⎡⎢⎢⎢⎢⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎦

=
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1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.35)

4.2.2 Keypoints

Keypoints are in fact the projected vertices on image plane. For a 3D bounding box

with eight vertices, there would be eight corresponding keypoints respectively. Figure

4.8 illustrates the projected 3D bounding box along with the eight keypoints on the

image plane. Each keypoint could be represented with a 2D vector u⃗
(i)
k on the image

plane consisting of two parameters of ui and vi.

The following matrix entails the keypoint coordinates as a matrix consisting of

eight vectors.

uk =

⎡⎣u0 u1 u2 u3 u4 u5 u6 u7

v0 v1 v2 v3 v4 v5 v6 v7

⎤⎦ (4.36)
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Figure 4.8: Projected 3D Bounding Box

However, as stated before, while projecting the vertices into keypoints, a third

axis appears into the vectors which then needs to be normalized. The un-normalized

keypoint matrix could be represented as follows:

ũk =

⎡⎢⎢⎢⎣
ũ0 ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 ũ7

ṽ0 ṽ1 ṽ2 ṽ3 ṽ4 ṽ5 ṽ6 ṽ7

w̃0 w̃1 w̃2 w̃3 w̃4 w̃5 w̃6 w̃7

⎤⎥⎥⎥⎦ (4.37)

Where:

ũk =Mint
cx̃v (4.38)

=

⎡⎢⎢⎢⎣
fx 0 ox 0

0 fy oy 0

0 0 1 0

⎤⎥⎥⎥⎦
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v
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v
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1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.39)

82



4.2.3 Projection

In this section, we going to review the whole process of creating the box in 3D manner

and then projecting it and normalizing the keypoints on the image plane.

wx⃗b
wΛv−−→ wxv −→ wx̃v

Mext−−−→ cx̃v
Mint−−−→ ũk

Norm−−−→ uk (4.40)

In brief, first the spatial coordinates wx⃗b of Bebop drone with respect to world frame

is obtained via Vicon. Then the derived vector is augmented into a matrix consisting

of eight position vectors of eight vertices. The vertices matrix is then augmented

as well into wx̃v. Thus, using extrinsic matrix,wx̃v is transformed into cx̃v which

entails the vertices coordinates with respect to camera frame. Consequently, applying

intrinsic matrix Mint would map cx̃v into image plane coordinates represented as ũk.

Eventually, ũk is normalized over the last element to substitute w̃i with one and

eliminate the last row for transforming ũk into a 2D matrix of uk.

4.3 Keypoint RCNN

This section entails the procedure of utilizing deep learning for detecting target and

corresponding keypoints. As it was discussed earlier in Chapter 1, recent advances in

computer vision and hardware engineering have enabled the design and utilization of

deep convolutional networks on commercial processors and computers.

The aim of this section is to train and utilize a proper neural network to first

detect the target drone on a 2D image and then extract the keypoints or bounding

box vertices out of the detected target. By doing so, we guarantee the provision of

necessary data for pose estimation by PnP algorithm in the next section.

4.3.1 Dataset

Before getting into the deep learning architecture and design, it is necessary to un-

derstand the structure of the data and what we feed as the input and what we expect
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as the output from the network.

Figure 4.9: Dataset structure

Figure 4.9 represents the input and output data structure. The input is a 3-

channel RGB color image which is in fact a 720x1280x3 matrix and the output is

a 2x8 matrix representing eight keypoints. Therefore, it is aimed to design a deep

learning architecture to process the input image and map the input matrix into the

proper output keypoint matrix.

Deep learning networks could be trained via supervised learning algorithms which

are based on feeding the right input and output data and applying gradient descent

on the network. Therefore, for the next section, we are going to discuss the data

acquisition and annotation algorithms to generate the proper training and validation

datasets.
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4.3.1.1 Acquisition

It is aimed to obtain 20,000 frames with their corresponding keypoints of each frame.

However, this huge amount of number of frames require an automatic procedure for

capturing and annotating the frames on a csv file for later training and validation.

For this undertaking, we shall use ROS as previous chapter to set up a data acqui-

sition platform for storing images and required data.

Anafi

Vicon Tracker

Bebop

PID Olympe

Vicon Bridge

Image

/anafi/frames

3D KeypointsSync

/vicon/bebop/bebop

/vicon/anafi/anafi

/tf

/anafi/vertices.csv

.jpg

Figure 4.10: Data Acquisition Framework on ROS

Data acquisition framework has been represented in Figure 4.10. It resembles the

frameworks discussed in Chapter 3. It all starts from Anafi where takes the image of

Bebop and transmits it through wi-fi and ROS. Simultaneously, the pose and coordi-

nates of Anafi and Bebop are recorded and transmitted ro ROS via vicon tracker

and Vicon Tracker. The transmitted poses are published into 3D Keypoints node

which then publishes the vertices, cx̃v discussed in Section 4.2.1, as /anafi/vertices

topic. Then published vertices are then received by Sync node. This node subscribes
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to three topics: /anafi/frames, /anafi/vertices and /tf. By doing so, it is able to syn-

chronize the images and corresponding vertices and pose information and save them

as jpg and csv files. Sync node saves the following information on csv file with order:

1. Frame ID

2. Time

3. Relative Pose (xrel, yrel, zrel)

4. Vertices (u0, v0, ..., u7, v7)

5. Anafi Pose (xa, ya, za, ϕa, θa, ψa)

6. Bebop Pose (xb, yb, zb, ϕb, θb, ψb)

As the images are saved separately as .jpg files, it is necessary to record the ID of

each frame to retrieve its corresponding pose and vertices data accordingly. Secondly,

time is recorded which indicates the relative time of each frame with respect to the

simulation commencement. Relative pose (xrel, yrel, zrel) is in fact the relative pose of

Bebop to the Anafi drone with respect to the world frame. This data should be later

transformed by rotation matrices to camera frame.

Most importantly, the eight vertices and sixteen respective coordinates are recorded.

This data will be later used as training and validation data for the deep neural net-

works. Anafi and Bebop pose data recorded as well for later analysis of the simulation

and pose estimation performance.
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4.3.1.2 Offset Removal

In practice, capturing frames and bounding box vertices via Vicon would cause an

offset between the box and the drone as it is shown in Figure 4.11.

Figure 4.11: Bounding Box Offset

Recalibrating the Vicon and Camera Matrix wouldn’t make any improvement.

Therefore it is needed to remove the offset through another methods. The solution

for removing the offset lies in 2D bounding box detection. For removing the offset,

we need to have a reference for the actual position of the drone on the image plane.

Therefore, by detecting the drone and its corresponding 2D bounding box, a support

vector could be sketched for moving the 3D bounding to the intended position.

Figure 4.12 illustrates the schematics of offset removal using 2D bounding box.

Let’s define the 2D bounding box centroid as C2 where:

C2 =

⎡⎣u(2)c
v
(2)
c

⎤⎦ (4.41)

And the 3D bounding box centroid as C3 where:
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Figure 4.12: Offset Removal Schematics

C3 =

⎡⎣u(3)c
v
(3)
c

⎤⎦ (4.42)

For calculating C3 we have:

C3 =

∑︁8
i=0Ki

8
=

1

8

⎡⎣∑︁8
i=0 u

(i)
k∑︁8

i=0 v
(i)
k

⎤⎦ (4.43)

Therefore:

v⃗o = C2 − C3 (4.44)

Thus, by having the v⃗o we can obtain the rectified keypoints by adding the offset

vector to the original keypoints as follows:

K ′
i = Ki + v⃗o (4.45)
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Now that the offset removal procedure has be laid out, the only remaining chal-

lenge is to detect the 2D bounding box circumscribing the drone. For doing so, we

shall acquire Detectron2 deep learning package for detecting the 2D bounding box.

Before training the network, it is needed to obtain a proper dataset of images and

corresponding 2D bounding box information. Using Labelme annotation package [73],

300 frames have been labeled and annotated for Detectron2.

Figure 4.13: 2D Bounding Box Manual Annotation

Using manually labeled dataset, Detectron2 RCNN network is trained for detecting

Bebop drone. The robustness of RCNN architecture is in that the network detects

the drone without the need of any curtains or any kind of manipulator.

Figure 4.14 represents the rectification process of bounding box. The red box is

the original uncalibrated box, whereas the green box is the rectified calibrated box

which perfectly fits the drone. This process is performed on all dataset frames in

order to adjust the whole dataset for later training purposes.
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Figure 4.14: Rectified Bounding Box in Green and Original One in Red

4.3.1.3 Annotation

The 3D bounding box information has been recorded as a .csv file. However, PyTorch

training engines required the annotation data or the box information in our case, to

be recorded as a .json file with the following format:

Listing 4.1: Annotation Protocol as JSON File
{

"bboxes" : [ [ 6 2 8 , 42 , 825 , 1 2 9 ] ] ,
"keypoints" : [ [ [ [ 6 23 , 135 , 1 ] ,

[ 8 08 , 136 , 1 ] ,
[ 8 08 , 82 , 1 ] ,
[ 6 23 , 82 , 1 ] ,
[ 6 30 , 93 , 1 ] ,
[ 8 45 , 94 , 1 ] ,
[ 8 45 , 31 , 1 ] ,
[ 6 30 , 31 , 1 ] ] ] ]

}

The .json file contains the information for the 2D bounding box as well as the key-

points or 3D bounding box vertices information according to COCO format. COCO

or common objects in context is a large dataset which contains raw and annotated

data for mask or keypoint detection. COCO’s protocols for annotation have become

the standard model for annotating datasets [74]. According to COCO each keypoint
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should be annotated as [xi, yi, vi] where xi and yi are the image plane coordinates of

the keypoint and vi is a binary value which represents the visibility of the keypoint.

4.3.2 Networks

As it was earlier discussed in Section 1.3.1, a convolutional neural network is a potent

and powerful tool for processing image frames to detect objects. However, detecting a

target drone is one of the essential requirements needed. Most needed, we are looking

for detecting the target and extracting the keypoints (or bounding box vertices) by

further processing.

Before making efforts into extracting keypoints, researchers were aimed into ob-

taining semantic segmentation of the target classes using fully convolutional U-net

architecture [75]. However, this network was only able to segment the image based

on classes rather than instances. To enhance U-net even further, region-based con-

volutional networks (RCNN) were introduced which were based on integrating FCNs

with region proposal networks (RPN) to better detect the targets by proposing target

regions and optimizing them on classes. RCNNs were then later enhanced into Fast-

RCNN and Mask-RCNN networks capable of instance segmentation of class members

instead of generalized semantic segmentation. Subsequently, Mask-RCNN paved the

way for target class keypoint extraction which has numerous and invaluable practi-

calities for pose estimation in robotic applications.

4.3.2.1 Architecture

The current model utilized for this project is KEYPOINT RCNN RESENT50 FPN developed

by Torch [76]. In fact, the Keypoint-RCNN is an augmented version of Mask-RCNN

which incorporates RPN with FPN and ResNet to extract the keypoints from the

instance region.

Generalized schematics of the network is represented in Figure 4.15. The input

raw image is fed into ROI and Deep ConvNet layers for extracting the features and
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Figure 4.15: Keypoint RCNN Schematic Architecture

target classes. The results are then processed by ROI pooling for fine-tuning the

targets. At this point, the output could be either processed by Mask Conv for instance

segmentation or by feature map and fully connected regressor layers for keypoint and

bounding box extraction. Fundamentally, Keypoint-RCNN is a special case of Mask-

RCNN as both anchor the region of interest (RoI) for feature extraction. Torch

KEYPOINT RCNN RESENT50 FPN is an optimized network for keypoint extraction by

removing the Mask Conv blocks.

4.3.2.2 Training and Validation

As earlier stated in Section 4.3.1.1, 20,000 frames were collected which were di-

vided into 18,000 (90%) training samples and 2,000 (10%) validation samples. There

datasets were then calibrated and annotated accordingly to Torch and COCO pro-

tocols. For training, PyTorch vision detection1 default engine has been utilized for

training and validating the dataset. However, Vision engine imports Pycocotool2

1https://github.com/pytorch/vision/tree/main/references/detection
2https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
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library and cocoeval.py for evaluating the average accuracy of the model which is

developed for 17 keypoints by default and it required to modify the source code and

number keypoint OKS validation coefficients to eight. Before understanding OKS,

we need to go through an earlier developed validation criterion for bounding box

detection called intersection over union or IoU defined as below:

IoU =
Ai
Au

(4.46)

Where Ai is the intersection area of the predicted bounding box and the ground

truth and Au is the union of the two. Thus, IoU is one if the predicting fully overlaps

the truth and IoU is zero if there’s no overlap or intersection.

Similar to IoU. object keypoint similarity or OKS is a criterion for evaluating the

similarity between ground truth keypoints and predicted ones formulated as follows:

OKS =
n∑︂
i=1

e
− d2i

2s2k2
i (4.47)

Where n is the number of keypoints, di is the Euclidean distance between ground

truth keypoint Ki and predicted one K̂i, s is the scale retrieved by dividing the area

of the object bounding box by the total image area and k is the keypoint fall-off

constant.

So, the earlier mentioned Pycocotools library incorporates IoU and OKS for obtain-

ing the average accuracy and recall of bounding box and keypoint detection network.

Table 4.1 and 4.2 summarize the average accuracy and recall of bounding box and

keypoint detection for different IoUs and areas after 20 Epochs. It’s common to take

IoU of 0.5 as reference and based on this criterion, our method has achieved 99.0%

average accuracy for bounding box detection and 97.8% average accuracy for key-

point detection and thus improving the state-of-the-art of drone keypoint detection.

It should be stated as well that the current state-of-the-art [18] relies on stationary

camera whereas our method has utilized mobile camera on drone for the keypoint
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detection appending another novelty to this research and corresponding results.

Figures 4.16a to 4.16f represent the loss trends over 20 epochs for overall, classifier,

box regressor, keypoints, objectness and RPN losses. It could be observed that the

overall trend of the loss functions is descending. The overall training of the network

took 15 hours for 20 epochs.

The accuracy and loss results ensures the robustness of keypoint-RCNN in pre-

dicting custom keypoints for aerial robots. The stated results validate the overall

performance of the network’s keypoint detection. However, a more detailed valida-

tion on box and individual vertex detection will be discussed in Section 5.2 of Chapter

5.

Table 4.1: Bounding Box Average Precision (AP) and Average Recall (AR)

Criterion IoU Area Value

AP 0.50:0.95 All 0.844

AP 0.50 All 0.990

AP 0.75 All 0.978

AP 0.50:0.95 Small -1.000

AP 0.50:0.95 Medium 0.834

AP 0.50:0.95 Large 0.848

AR 0.50:0.95 All 0.877

AR 0.50 All 0.877

AR 0.75 All 0..

AR 0.50:0.95 Small -1.000

AR 0.50:0.95 Medium 0.858

AR 0.50:0.95 Large 0.880
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Table 4.2: Keypoint Average Precision (AP) and Average Recall (AR)

Criterion IoU Area Value

AP 0.50:0.95 All 0.937

AP 0.50 All 0.978

AP 0.75 All 0.962

AP 0.50:0.95 Medium 0.934

AP 0.50:0.95 Large 0.934

AR 0.50:0.95 All 0.954

AR 0.50 All 0.984

AR 0.75 All 0.971

AR 0.50:0.95 Medium 0.961

AR 0.50:0.95 Large 0.953
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Figure 4.16: Keypoint RCNN Train and Validation Datasets Loss Over Epochs
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4.4 Perspective-n-Point

To understand the Perspective-n-Point algorithm, we need to go through a concept

called the computer vision trinity illustrated in Figure 4.17. In computer vision, there

are three main sets of parameters including camera matrix, world coordinates and

image coordinates. In fact, camera matrix acts as a transform which maps the world

coordinate into the image plane as image coordinates.

Camera

Matrix

World

CoordinatesCoordinates

Image

PnPProjection

Camera Calibration

Linear

Algebra

Figure 4.17: Computer Vision Trinity

Although, in most cases two of these parameters are known and the third needs

to be identified. If the world and image coordinates are known and camera matrix

needs to be identified, camera calibration could be utilized using linear algebra tools.

In other case, if the camera matrix and world coordinates are provided, image co-

ordinates could be retrieved using projection formulations. In our case, where the

camera matrix is obtained through calibration and image coordinates are detected

using R-CNN, the world coordinates are to be calculated through a method called
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Perspective-n-Point or commonly known as PnP.
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d31
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d23
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Figure 4.18: Perspective Three Point Projection

Consider Figure 4.18 where it illustrates a three-point object projection on camera

plane which is known as P3P problem. The objective of this problem is to retrieve the

distance of spatial points relative to camera. The dimension of the box is provided

meaning d12, d23 and d32 are known. T obtain the l parameters, first it is needed to

obtain the ray angles as follows [77, 78]:

cos γ =
k⃗1 . k⃗2

||k⃗1|| ||k⃗2||
(4.48)

Where k⃗i is the corresponding vector from camera centre to the keypoint. Similarly:

cosα =
k⃗2 . k⃗3

||k⃗2|| ||k⃗3||
(4.49)

cos β =
k⃗3 . k⃗1

||k⃗3|| ||k⃗1||
(4.50)

Now, by having the ray angles, we can write [79]:
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l21 + l22 − 2 l1 l2 cos γ = d212 (4.51)

l22 + l23 − 2 l2 l3 cosα = d223 (4.52)

l23 + l21 − 2 l3 l1 cos β = d231 (4.53)

By defining the following substitution:

u =
l2
l1
, v =

l3
l1

(4.54)

We have:

l21 =
d212

u2 + v2 − 2u v cosα
(4.55)

l21 =
d223

1 + v2 − 2 v cos β
(4.56)

l21 =
d231

1 + u2 − 2u cos γ
(4.57)

By solving one equation for u and substituting it into another equation we have

the following quartic equations [80]:

a4 v
4 + a3 v

3 + a2 v
2 + a1 v + a0 = 0 (4.58)

By solving Equation 4.58 for v going through the obtained calculations, we can

obtain l1, l2 and l3. However, the problem with P3P problem is that due to the nature

of quatric equations, there are four solutions for v and thus four sets of solutions for

the (l)s. To resolve this issue, there need to be more than three points which would

lead to PnP problem where (n > 3) leading to (n − 2) quatric equations. In this

project, we are dealing with eight points or vertices of the bounding box entailing

ten quatric equations. OpenCV library has a variety of functions for solving PnP

problem on C++ [81] including EPnP [82] or RANSAC [83]. For this project, the
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default cv::solvePnP() has been utilized on ROS for obtaining relative target pose

based on subscribed /anafi/keypoints topic.

4.4.1 Filtering

PnP output tends to have noises and spikes quite often which arises the need to resort

to designing low-pass digital filter as earlier discussed in Section 3.2.3.
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Figure 4.19: Sample Raw PnP Estimation for x-Axis

As it is illustrated in Figure 4.19, it is obvious that the signal needs filtering and

enhancement. Therefore, low-pass Butterworth filter are to be designed according to

the formulations discussed Section 3.2.3, however, one big difference in this section is

that the cut-off frequencies are set higher than the target ones in order to decrease

the delay.

Table 4.3: Cut-off Frequencies for PnP Low-Pass Filters

Axis Frequency [Hz]

X 2.0

Y 2.0

Z 2.5

Considering the specified cut-off frequencies summarized in Table 4.3 we have:
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• For x axis:

Hx(z) =
0.0675 + 0.1349 z−1 + 0.0675 z−2

1− 1.1430 z−1 + 0.4128 z−2
(4.59)

• For y axis:

Hy(z) =
0.0675 + 0.1349 z−1 + 0.0675 z−2

1− 1.1430 z−1 + 0.4128 z−2
(4.60)

• For z axis:

Hz(z) =
0.0976 + 0.1953 z−1 + 0.0976 z−2

1− 0.9428 z−1 + 0.3333 z−2
(4.61)

Figure 4.20 includes the raw and filtered signals for PnP estimation over x-axis. It

could be observed that the low-pass filter has successfully eliminated the noises and

enhanced the signal. All axes will be discussed thoroughly in the next Chapter.
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Figure 4.20: Sample Raw and Filtered PnP Signals for x-Axis
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Chapter 5

Experiments and Results

After a long journey of going through the preliminaries and concepts of control,

pursuit and deep learning in the previous chapters, we now aim to evaluate and

assess the performed experiments and verify the results in accordance with the desired

objectives.

The first step to achieve autonomous pursuit is a reliable control framework. There-

fore, we shall first evaluate the tracking performance of the designed PID controller

over four different axes of x, y, z and yaw in section 5.1. Subsequently, we need to val-

idate the 3D bounding box estimation of the Keypoint-RCNN network by comparing

the ground truth vertices coordinates with the predicted ones one by one. In Sec-

tion 5.3, pose estimation performance shall be evaluated in two offline and real-time

manners to demonstrate the delay factor in real-time pose estimation.

Eventually, Section 5.4 validates the autonomous pursuit of the target drone in

two scenarios of Vicon-based and PnP-based AI pursuits.

5.1 PID Performance Evaluation

PID design procedures were earlier discussed in Chapter 3. Now, in this section, it

is aimed to assess the controller tracking performance on different axes to ensure the

agility and dexterity of the controller in a real-time manner for autonomous flights.
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Figure 5.1: X-axis PID Tracking Assessment
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Figure 5.2: Y-axis PID Tracking Assessment
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Figure 5.3: Z-axis PID Tracking Assessment
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Figure 5.4: Ψ-axis PID Tracking Assessment

Figures 5.1 to 5.4 represent the input axial reference signals and the corresponding

output response of the system. The input is in fact a pulse train and is utilized

to evaluate the tracking performance of the controller in transient and steady state

zones. It could be inferred from the results that the controller has been able to track

the input properly and reliably with some overshoot. To have a more objective sense

of the controller performance, Table 5.1 entails the details of overshoot, rise time,

settling time and mean average error of the axial responses.

As it is summarized in Table 5.1, the controller has fast tracking rise time for X, Y
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Table 5.1: PID Axial Assessment

Axis Rise Time [s] Settling Time [s] Overshoot [%] MAE

X 2.76 8.78 12.52 0.0646 [m]

Y 2.61 6.69 15.65 0.0635 [m]

Z 2.41 5.094 NA 0.0637 [m]

Ψ 11.41 0.98 NA 0.0663 [rad]

and Z axes with a rise time less than three seconds. Although, due to the slow dynamic

of Ψ axis, the rise time takes over 11.41 seconds over this axis. Settling times are too

desirable with a maximum settling time of 8.78 seconds over S axis. No considerable

overshoot has been observed over Z and Ψ, however, X and Y have experienced an

overshoot of 12.52% and 15.65% which are acceptable. Most importantly, the mean

absolute error criterion expresses how accurate has the controller tracked the reference

signals over the experiment run-time. The MAE for X, Y and Z are all lest than 0.065

meters or 6.5 cm which means the average error for each sample output signals on

these axes has an average error of only 6.5 cm. The MAE for Ψ is almost 0.67 rad or

3.8 degrees. Overall, the axial MAE results indicate the robust tracking performance

of the designed flight controller.

5.2 Box Estimation Assessment

Estimating the right and proper 3D bounding box is essential for later pose estimation.

Any error in the box data would lead to amplified error in pose data. Therefore, it is

essential to verify the estimated box data in order to prevent any malfunctioning in

pose estimation and flight control. To assess the 3D bounding box, we need to assess

each predicted keypoint (or vertex) individually. As stated before in Chapter 4, each

keypoint is represented by two parameters (ui and vi) on image plane. Therefore, it

is needed to evaluate each axis data individually as well.
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To validate the data, 2,000 validation frames in addition to corresponding rectified

bounding box vertices data have been collected. The frames were then inputted

to the R-CNN network and the predicted data were recorded in the same csv file

along with the ground truth data. The results are plotted in Figures 5.7 to 5.14.The

results show robust and perfect performance of the R-CNN network and the predicted

data thoroughly match the Vicon data. It should be noted again that this dataset

is captured in a busy and noisy background without using any kind of curtain or

background manipulator.

Error and Accuracy

Before getting into the quantitative evaluation of the keypoint estimation, it is re-

quired to set up the preliminaries for error and accuracy calculation of vertices and

keypoints. As stated before, each keypoint is represented on image plane using two

axes of u and v. Hence, each axial error could be defined as follows:

e(i)u = u(i) − û(i) (5.1)

e(i)v = v(i) − v̂(i) (5.2)

What is meant by accuracy, is a metric which maps the error into a one-dimensional

parameter ranging from 100% for zero error, and 0% for infinite error. Exponential

function could satisfy this need accordingly. Thus, the axial accuracy could be for-

mulated as follows:

α(i)
u = 100 e−ζ |u

(i)−û(i)| (5.3)

α(i)
v = 100 e−ζ |v

(i)−v̂(i)| (5.4)

Where α is the accuracy metric in percentage and ζ is the accuracy scaling param-

eter. For one dimensional accuracy metric with ζ = 0.01, we have:
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Figure 5.5: One-Dimensional Accuracy Plot

Based on Figure 5.5, a twenty-pixel error would lead to 80% accuracy and a

hundred-pixel error would lead to 36% accuracy. Accuracy would converge to zero by

increasing the error to infinity.

For obtaining an accuracy metric for the keypoints, it is needed to incorporate both

u and v parameters at the same time. To do so, Euclidean distance of the estimated

keypoint and the original one is chosen as the basis for calculating error as follows:

e⃗
(i)
k =

⎡⎣u(i)
v(i)

⎤⎦−
⎡⎣û(i)
v̂(i)

⎤⎦ =

⎡⎣u(i) − û(i)
v(i) − v̂(i)

⎤⎦ (5.5)

Thus:

α
(i)
k = 100 e−ζ ||e⃗

(i)
k ||2 (5.6)

Where:

||e⃗(i)k ||2 =
√︂

(u(i) − û(i))2 + (v(i) − v̂(i))2 (5.7)

Figure 5.6 illustrates the two-dimensional accuracy plot of keypoint with respect

to u and v axes and ζ = 0.01. Based on this figure, the further we distance from
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Figure 5.6: Two-Dimensional Accuracy Plot

the target on concentric circles, the less accuracy we get. Estimated keypoints on the

same circle with same radius woud lead to same accuracy value.

The mean average error and accuracy data of each keypoint is summarized in Table

5.2. As it is represented, all keypoints have a MAE of less than 10 pixels ranging from

6.63 to maximum of 8.86 pixels for K7 on u axis and ranging from 2.96 to 5.06 pixels

on v axis. The accuracy results are based on Equation 5.3 and all axes have obtained

+90% accuracy for axial estimation. Furthermore, overall accuracy is higher on v

compared to u axis and this could be a results of wider domain of u axis with 1280

pixels compared to 720 pixels of v.

Table 5.3 entails the overall MAE and accuracy for keypoint assessment in a two-

dimensional manner instead of assessing the keypoints in axial manner. Based on

Equation 5.6, the accuracy column indicates how close the estimated keypoints are to
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the target ones. All eight estimated keypoints are more than 90% accurate. It should

be noted again that theses numbers are retrieved over 2,000 raw validation frames.

The MAE and accuracy results are the state-of-the-art results for this novel method

of 3D bounding box estimation.

Table 5.2: Bounding Box Keypoints’ Validation MAE and Accuracy

Keypoint MAE [u] MAE [v] Accuracy [u] Accuracy [v]

K0 6.92 3.04 93.88 97.09

K1 6.63 3.20 93.80 96.89

K2 6.87 3.57 93.60 96.62

K3 7.06 3.11 93.73 96.98

K4 8.84 2.96 91.86 97.24

K5 8.40 4.38 92.71 95.81

K6 8.53 5.06 92.62 95.22

K7 8.86 3.75 91.81 96.38

Table 5.3: Bounding Box Overall Validation MAE and Accuracy

Keypoint MAE Accuracy [%]

K0 8.16 92.74

K1 8.03 92.49

K2 8.43 92.23

K3 8.35 92.53

K4 9.90 90.98

K5 10.53 90.76

K6 10.83 90.56

K7 10.54 90.27
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Figure 5.7: K0 Estimation Assessment

0 500 1000 1500 2000

Frame No

400

500

600

700

800

900

1000

1100

1200

1300

Im
a

g
e

 P
la

n
e

 [
u

]

0 500 1000 1500 2000

Frame No

150

200

250

300

350

400

450

500

Im
a

g
e

 P
la

n
e

 [
v
]

Figure 5.8: K1 Estimation Assessment
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Figure 5.9: K2 Estimation Assessment
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Figure 5.10: K3 Estimation Assessment
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Figure 5.11: K4 Estimation Assessment
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Figure 5.12: K5 Estimation Assessment
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Figure 5.13: K6 Estimation Assessment
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Figure 5.14: K7 Estimation Assessment
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5.3 Pose Estimation Assessment

Being ensured by the performance of the keypoint detection and box estimation algo-

rithms paves the way for the next assessment section of pose estimation. It was earlier

discussed in Chapter 4 that by obtaining the proper projected vertices coordinates

on the image plane and feeding them into PnP algorithm, relative pose of the target

object could be retrieved accordingly.

However, as mentioned earlier, the PnP output contains noises caused by the delays

and errors in box estimation which are amplified while be processes through PnP.

To overcome the noises and removing the noises from the output pose data, low-

pass Butterworth filter were designed and introduced in Section 4.4.1. Although the

designed filters cancel the noise desirably, they cause delays in the output signals

which are added to the already existing delays caused by Wi-Fi transmission and

image processing.

As a result, to process the PnP performance, it is needed to assess it in two manners

of offline and real-time processing. In case of offline processing, pose estimation is

solely assessed through PnP without any delays as the images are processed one-by-

one in a queue manner which eliminates the delay. On the other hand, in real-time

pose estimation, delays are present and some images might even be missed which in

that case, the pose data is retrieved from the previously estimated data.

5.3.1 Offline Pose Estimation

For offline pose estimation, a flight test was run and the frames and pose were collected

in the same manner the deep learning training data were collected earlier described

in Section 4.3.1.1. Both drones were flown and the target Bebop was flown arbitrarily

to cover different poses and configurations. The frames and csv data were stored and

saved simultaneously while the test was being run.

For post processing the frames and obtaining offline pose data, first the stored raw
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frames were inputted into the R-CNN network one by one to obtain the keypoints.

The retrieved keypoints were then saved on the same csv file according to the cor-

responding frame IDs. After processing the frames and retrieving the keypoints, a

C++ node is run to post-process the keypoints and calculate the pose information.

The obtained PnP pose data are subsequently saved in the same csv file with respect

to frame IDs.

Table 5.4: Offline Pose Estimation MAE and Accuracy

Signal MAE [m] Accuracy [%]

cxb 0.0381 99.96

cxfb 0.0363 99.96

cyb 0.1199 99.88

cyfb 0.1191 99.88

czb 0.0562 99.94

czfb 0.0569 99.94

cdb 0.0366 99.96

cdfb 0.0359 99.96

Figures 5.15 to 5.17 illustrate the offline-pose estimation of Bebop drone with

respect to camera frame. Each plot contains three variables including:

• cxb Ground truth position based on Vicon

• cx̆b Estimated offline PnP position parameter

• cx̆fb Estimated filtered offline PnP position parameter

So, the ground truth is the Vicon position data retrieved from vicon bridge. Es-

timated offline PnP position parameter is in fact raw output of cv:solvePnP required

to be filtered due to unflattering and spikes on the output signals. Subsequently, the

filtered signals are included as well denoted by the (f) superscript.
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Moreover, Figure 5.18 represents the Euclidean distance between the Anafi and

the Bebop drones to bring more insight into overall distance estimation of the target

object.

To have a more numerical bedrock for analyzing the offline pose estimation we

should take a look at Table 5.4 which includes the MAE and accuracy for x, y, z axes

and Euclidean distance as well. The MAE and accuracy parameters are obtained for

both raw and filtered PnP signals with respect to ground truth Vicon signals.

As it is summarized in Table 5.4, the MAE and accuracy results demonstrate the

precise and accurate performance of our algorithm with 0.0381[m] mean absolute

error for x axis, 0.1199[m] for y, 0.0562[m] for z and 0.0366[m] for overall distance

estimation. By ensuring the offline performance of the RCNN-PnP algorithm, we

can now set sail to evaluate the more important real-time analysis of pose estimation

algorithm in next section.
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Figure 5.15: Original and Estimated Offline x Axis Signal
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Figure 5.16: Original and Estimated Offline y Axis Signal
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Figure 5.17: Original and Estimated Offline z Axis Signal
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Figure 5.18: Original and Estimated Offline Distance Signal
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5.3.2 Real-Time Pose Estimation

Real-time processing is indeed more demanding and desirable in robotics applications

as the due to the real-time nature of the tasks and applications and this project is

no exception. To fulfill this need, it is necessary to evaluate the pose estimation in a

real-time manner.

Meanwhile, it is necessary to have a bedrock for comparing our RCNN-PnP based

method with the real-time results with the sate-of-the-art algorithms to have a better

understating and insight on the robustness and dexterity of our method for real-time

pose estimation. We already discussed RGN (Relational Graph Networks) by Jin et

al. [18] in Chapter 1. This method utilizes relational graph networks with PnP for

obtaining the target drone pose. It should be noted that this method is based on

using a stationary camera, on the contrary, our method is reliant on mobile mounted

camera on the pursuer drone. Nevertheless, this method is a proper set-point for

comparing our method as purpose is to estimate the target pose of a Bebop drone

which is the same drone used in this research as well.

Table 5.5: Real-Time Pose Estimation MAE Comparison

Parameter

Method cxfb
cyfb

czfb df

RGN 0.0757 N/A N/A N/A

Ours 0.0485 0.1178 0.0582 0.0485

Table 5.5 summarizes the MAE results for filtered poses estimation for x, y, z

and Euclidean distance. Our methods provide the MAE results for all parameters;

however, RGN method only provides the MAE for x axis. Considering the provided

data, our method has improved the state-of-the-art pose estimation by decreasing the

MAE by almost 0.0272[m].

Our state-of-the-art results over y and z axes are as robust and precise as x axis
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as well by having 0.1178[m] and 0.0582[m] of MAE respectively. Euclidean distance

estimation proves robustness and agility as well by having only 0.0485[m] of MAE

over 400 sample frames and pose data.

Table 5.6: Real-Time Pose Estimation Accuracy

d Axis Accuracy [%]

cxb 99.95

cyb 99.88

czb 99.94

cdb 99.95

Table 5.6 summarized the accuracy results of the axial pose and Euclidean distance

estimation using Euler function. High accuracy results are also evident in Figure 5.19

to 5.22. The scale of precision and accuracy of our results are unprecedented in aerial

and mobile Robotics, paving the way for real-time monocular vision-based pursuit in

the next section.
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Figure 5.19: Original and Estimated Real-Time x Axis Signal
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Figure 5.20: Original and Estimated Real-Time y Axis Signal
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Figure 5.21: Original and Estimated Real-Time z Axis Signal
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Figure 5.22: Original and Estimated Real-Time Distance Signal
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5.4 Pursuit Assessment

All previous Sections including flight controller, 3D bounding box detection and pose

estimation were designed and assessed in order to set up a platform for implementing

deep autonomous pursuit algorithm to fulfill autonomous UAV pursuit needs. Now

that we are assured of the performance of the controllers and deep pose estimation

algorithms, we can set sail for performing tests to evaluate and assess pursuit.

For better understating over UAV pursuit, the assessment has been divided into

two sections including Vicon-based UAV pursuit (VUP) and PnP-based UAV pursuit

(PUP) in the following sections.

5.4.1 VUP

Vicon-based UAV pursuit algorithm is based on utilizing Vicon for retrieving position

data of Anafi and Bebop at the same time and obtaining the relative pose of the target

in order to generate the setpoint commands which was earlier discussed in Section 3.3.

It’s good to take a look at Figure 3.23 again to get another glimpse of the Vicon-based

pursuit framework. As it is shown, the Vicon pursuit block subscribes to /tf topic in

order to the retrieved the pose data, and subsequently publishes the reference signals

to PID block for tracking purposes.

For evaluating Vicon-based pursuit, a test with a runtime of 70[s] has been per-

formed and is visualized through Figures 5.23 to 5.26. The Figures demonstrate agile

and robust tracking of the dynamic reference signals. It should be noted that the

reference yaw angle has been set to zero and the controller has subsequently tried to

stabilize yaw angles which is evident in Figure 5.26.
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Figure 5.23: Pursuit Assess
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Figure 5.24: Pursuit Assess
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Figure 5.25: Pursuit Assess

25 30 35 40 45 50 55 60 65 70

Time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
x
ia

l 
P

o
s
it
io

n
 [
ra

d
/s

]

Figure 5.26: Pursuit Assess
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Table 5.7 summarizes the tracking MAE for four target axes. As demonstrated,

Anafi has pursued Bebop accurately and robustly with an overall MAE of less than

0.09[m] for x, y and z and 0.8[rad] for Ψ axis. The demonstrated results ensure the

proper tracking performance of the controller.

Table 5.7: VUP Assessment

Axis MAE

X 0.0744 [m]

Y 0.0592 [m]

Z 0.0598 [m]

Ψ 0.0834 [rad]

Figure 5.27: Vicon-Based Pursuit Trajectory

Overall Vicon-based pursuit trajectory has also been drawn in Figure 5.27. As
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shown, the Anafi (in blue) has successfully tracked the Bebop (in red) and maintained

the 1.5[m] distance to prevent collision.

5.4.2 PUP

As it was mentioned times and times in the previous sections, the whole idea of

integrating keypoint-RCNN, PnP and pursuit algorithms was to create a platform for

pursuing target drones using only vision without Vicon, LiDAR , radar or any other

sensor or measurement tools which is called for short PUP or PnP-RCNN based UAV

Pursuit.

PUP ROS implementation was earlier discussed in Chapter 3 Figure 3.24. As it

was demonstrated, the target Vicon pose data (/bebop/vicon/vicon) was replaced

by (/anafi/pnp) containing the relative pose of the target with respect to Anafi

camera frame.

For having better analysis on axial pursuit, PUP has been performed and tested

in an axis-based manner. To do so, while each axis is being tested, the other axes are

set to a fixed setpoint for restricting the pursuit to the desired axis.

X-Axis Pursuit

For x-axis pursuit, the ROS launch files have been modified in a way to generate a

static setpiont for y, z, and yaw axes according to the values recorded in Table 5.8 as

0.0 [m] for y, 1.0 [m] for z and 0.0 [rad] for yaw. The tracking performance for static

setpoints should demonstrate the same results as the Vicon-based pursuit which is

confirmed by the values summarized in Table 5.8. The only difference, is the MAE

of x-axis which is based on utilizing RCNN-PnP for estimating the pose and tracking

the estimated reference signal and target.

Figure 5.28 includes the graphs of real time depth estimation and pursuit over

x-axis depicted as 5.28a and 5.28b subfigures. As it is represented, the online-pose

estimation shows consistent and agile performance which only comes with the issue
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Table 5.8: X-axis PnP-based Pursuit Results

Axis Pursuit Type Setpoint Tracking MAE

X RCNN-PnP Dynamic 0.1694 [m]

Y Vicon 0.0 [m] 0.0258 [m]

Z Vicon 1.0 [m] 0.0167 [m]

Ψ Vicon 0.0 [rad] 0.0908 [rad]

of a 0.52 [s] delay caused by wireless signal transmission and filtering.

Even with the presence of delay, the drone has been able to track the estimated

reference signal (xref ) and the target drone over x-axis as demonstrated in Figure

5.28b.

Y-Axis Pursuit

Similarly to x-axis, three axes are set to fixed setpoints here except y-axis set to

dynamic PnP setpoints. The experimental results for the RCNN-PnP pursuit are

summarized in table 5.9.

The huge difference in y-axis pursuit is the oscillatory tracking response depicted

evidently in Figure 5.29b. A detailed look at the respective pose estimation plot in

Figure 5.29a reveals a delay of 0.81 [s] which is relatively more than the corresponding

delay of x-axis pursuit. According to control theory, delays destabilize systems quite

extensively.

Table 5.9: Y-axis PnP-based Pursuit Results

Axis Pursuit Type Setpoint Tracking MAE

X Vicon 0.0 [m] 0.0478 [m]

Y RCNN-PnP Dynamic 0.1278 [m]

Z Vicon 1.0 [m] 0.0112 [m]

Ψ Vicon 0.0 [rad] 0.0334 [rad]
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Z-Axis Pursuit

For the last part, z-axis pursuit is in fact tracking the elevation of target drone with

respect to camera frame. Similarly, all axes except z-axis are set to zero as detailed

in Table 5.10.

Table 5.10: Z-axis PnP-based Pursuit Results

Axis Pursuit Type Setpoint Tracking MAE

X Vicon 0.0 [m] 0.0599 [m]

Y Vicon 0.0 [m] 0.0355 [m]

Z RCNN-PnP Dynamic 0.0768 [m]

Ψ Vicon 0.0 [rad] 0.0454 [rad]

0.0768 [m] of MAE tracking error for z-axis is quite extraordinary and better than

two other axes. This could be contributed to the slow dynamic of vertical thrust and

relatively less delay of 0.7 [s] compared to y-axis. Consequently, the corresponding

pursuit response of z-axis comes with insignificant oscillations over the input.
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(a) Pose Estimation
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(b) Pursuit and Tracking

Figure 5.28: X-axis PnP-based Pursuit Assessment
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(a) Pose Estimation
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(b) Pursuit and Tracking

Figure 5.29: Y-axis PnP-based Pursuit Assessment
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(a) Pose Estimation
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(b) Pursuit and Tracking

Figure 5.30: Z-axis PnP-based Pursuit Assessment
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This study demonstrates the feasible implementation of real-time autonomous pur-

suit algorithms based on utilizing state-of-the-art networks and architectures. This

implementation is based on thorough investigations and designs on control theory on

one side and computer vision principals on the other hand. In accordance with this,

the mathematics of 3D bounding box were investigated from scratch and utilized in

ROS for pose estimation and pursuit.

All data acquisition, flight control, deep learning and PnP algorithms were imple-

mented into two developed ROS packages for simulated drone and the real one as

sphinx ros and anafi ros. Development of the algorithms into ROS packages cre-

ates a framework for knowledge transfer and future improvements and enhancements

on the codes and algorithms.

Design and implementation were then followed by through and comprehensive as-

sessments and validations on keypoint detection, bounding box estimation, flight

controller, offline and real-time mobile pose estimation in addition to Vicon based

and PnP-based target pursuit. The results proved robust keypoint detection of the

RCNN, precise mobile pose estimation of the target drone and vigorous performance

of the controller and pursuit algorithms.
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6.2 Future Directions

Despite the novel and promising results of this thesis, there are some certain fea-

tures which could be improved and enhanced for further research into the area of

autonomous flights and pursuits.

We used Parrot Sphinx for simulation purposes of Anafi along with the flight

controllers. However, Sphinx could be also used for testing and evaluating deep

learning and pose estimation algorithms. The challenge with the current Sphinx

version is its incapability of populating new simulated drone. In other words, only

one drone could be populated at the same time. Thus, developing an algorithm to

populate more drones at the same time would create a framework for testing pose

estimation and pursuit algorithms in a simulated environment which would result in

a decrease in the number of crashes and malfunctions.

As it was mentioned in Chapter 5, the pose estimation delay leads to instability and

more oscillatory repose and error in tracking. This processing delay could be overcome

by utilizing on-board processing units like NVIDIA Jetson which is an advanced

AI embedded system. Incorporating Jetson would eliminate the transmission delay

between the drone and the off-board GPU, leading to the attenuation of delay.

Another way to eliminate the delay it to substitute the Olympe library with

MAVROS MAVLink. As it was mentioned earlier, Olympe is a Python library for

communicating with the drone which was incorporated into ROS for this research.

However, Python is less faster than C++ due to the static typing discipline of C++

compared to the dynamic one of Python. Therefore, translating Olympe flight proto-

cols into MAVLink C++ commands would relatively speed up the communications.
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Appendix A: Sphinx Simulator
Setup

Developing codes for drones in a simulated drones has numerous benefits by pretesting

codes and algorithms to increase safety standards and reduce the chance of having

crashes. Parrot Sphinx is a simulated tool for populating parrot drones including

Anafi and Anafi Ai. Before installing Sphinx, it is required to install Olympe1. After

installing Olympe, now we can start installing Sphinx based on the official website2.

After installing both Olympe and Sphinx, the following commands need to be

entered in separate terminal for launching Sphinx and unreal engine simultaneously.

sudo systemctl start firmwared.service

sphinx "/opt/parrot sphinx/usr/share/sphinx/drones/anafi_ai.drone"

::firmware="ftp://<login>:<password>@ftp2.parrot.biz/versions/anafi2/

pc/%23latest/images/anafi2-pc.ext2.zip"

parrot-ue4-empty

The Sphinx environment is represented in Figure A.1. This environment could

be integrated with ROS for controller the drone and sending flight commands. The

stream feed and pose data are also accessible and could be published on ROS via

Olympe and Sphinx Python libraries.

1https://developer.parrot.com/docs/olympe/installation.html
2https://developer.parrot.com/docs/sphinx/installation.html
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Figure A.1: Parrot Sphinx simulation environment

Sphinx also has a visual interface with Gazebo simulator and could be launched

with the following command:

sphinx-gzclient

Figure A.2: Parrot Sphinx interface on Gazebo
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Appendix B: Filter Design and
Analysis

Table B.1: Anafi Velocity Filters’ Specifications

Axis Filter Type Filter Order Sampling Frequency Cut-off Frequency

X Low-pass 1st 25 Hz 0.7 Hz

Y Low-pass 1st 25 Hz 0.5 Hz

Z Low-pass 1st 25 Hz 1.2 Hz

Ψ Low-pass 1st 25 Hz 1.2 Hz

Table B.2: Bebop Velocity Filters’ Specifications

Axis Filter Type Filter Order Sampling Frequency Cut-off Frequency

X Low-pass 1st 25 Hz 0.7 Hz

Y Low-pass 1st 25 Hz 0.5 Hz

Z Low-pass 1st 25 Hz 1.2 Hz

Ψ Low-pass 1st 25 Hz 1.2 Hz
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Table B.3: PnP Estimated Pose Filters’ Specifications

Axis Filter Type Filter Order Sampling Frequency Cut-off Frequency

X Low-pass 1st 10 Hz 2.0 Hz

Y Low-pass 1st 10 Hz 2.0 Hz

Z Low-pass 1st 10 Hz 2.5 Hz

143



B.1 Anafi Velocity Filtering
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Figure B.1: Frequency Components of Estimated xpnp
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Figure B.2: Frequency Components of Anafi vx
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Figure B.3: Frequency Components of Anafi vy
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Figure B.4: Frequency Components of Anafi vz
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Figure B.5: Frequency Components of Anafi vψ
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Figure B.6: Butterworth Magnitude and Phase Diagrams of Anafi x-axis
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Figure B.7: Butterworth Magnitude and Phase Diagrams of Anafi y-axis
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Figure B.8: Butterworth Magnitude and Phase Diagrams of Anafi z-axis
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Figure B.9: Butterworth Magnitude and Phase Diagrams of Anafi ψ-axis
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Figure B.10: Z-plane of Anafi Designed Butterworth Filter on x-axis
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Figure B.11: Z-plane of Anafi Designed Butterworth Filter on y-axis
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Figure B.12: Z-plane of Anafi Designed Butterworth Filter on z-axis
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Figure B.13: Z-plane of Anafi Designed Butterworth Filter on ψ-axis

150



40 42 44 46 48 50 52 54 56 58 60

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
e
lo

c
it
y
 [
ra

d
/s

]
Original Signal

Filtered Signal

Figure B.14: Original and Filtered Signal of Anafi vx
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Figure B.15: Original and Filtered Signal of Anafi vy
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Figure B.16: Original and Filtered Signal of Anafi vz
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Figure B.17: Original and Filtered Signal of Anafi vψ
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B.2 Bebop Velocity Filtering
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Figure B.18: Frequency Components of Bebop vx
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Figure B.19: Frequency Components of Bebop vy
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Figure B.20: Frequency Components of Bebop vz
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Figure B.21: Frequency Components of Bebop vψ
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Figure B.22: Butterworth Magnitude and Phase Diagrams of Bebop x-axis
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Figure B.23: Butterworth Magnitude and Phase Diagrams of Bebop y-axis
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Figure B.24: Butterworth Magnitude and Phase Diagrams of Bebop z-axis
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Figure B.25: Butterworth Magnitude and Phase Diagrams of Bebop ψ-axis
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Figure B.26: Z-plane of Bebop Designed Butterworth Filter on x-axis
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Figure B.27: Z-plane of Bebop Designed Butterworth Filter on y-axis
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Figure B.28: Z-plane of Bebop Designed Butterworth Filter on z-axis
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Figure B.29: Z-plane of Bebop Designed Butterworth Filter on ψ-axis
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Figure B.30: Original and Filtered Signal of Bebop vx
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Figure B.31: Original and Filtered Signal of Bebop vy
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Figure B.32: Original and Filtered Signal of Bebop vz
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Figure B.33: Original and Filtered Signal of Bebop vψ
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B.3 PnP Estimated Pose Filtering
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Figure B.34: Frequency Components of Estimated ypnp
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Figure B.35: Frequency Components of Estimated zpnp
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Figure B.36: Butterworth Magnitude and Phase Diagrams of xpnp
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Figure B.37: Butterworth Magnitude and Phase Diagrams of ypnp
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Figure B.38: Butterworth Magnitude and Phase Diagrams of zpnp
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Figure B.39: Z-plane of Designed Butterworth Filter for xpnp

163



-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a

g
in

a
ry

 P
a

rt

Z-plance of the Filter

2

Figure B.40: Z-plane of Designed Butterworth Filter on ypnp
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Figure B.41: Z-plane of Designed Butterworth Filter on zpnp
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