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Abstract

The primary goal of this thesis is to address a key problem with UIMSs: their inability to help in the
initial design of uscr interfaces. Because of this inahility, existing UIMSs require the interface designer to
work at very low levels of syntactic and lexical details, which can be very time-consuming and expensive in
terms of effort required. Also, the detailed design produced by the desiyner must be provided to the TJIMS
in a notation that it can process, which makes the UIMS difficult to use and increases the chance of etror as
the interface descriptions tend to be quite large.

The approach followed in this thesis to tackle this problem is to automatically produce the initial
design of the user interface and implement it, and then enable the interface designer to improve its
appcarance and effectiveness by refining it. The inte:face designer, in this approach, works at the
concepiual level of the user interface and produces a high level description of the commands the interface is
to support. Based on this description the syntactic and lexical levels of the interface are automatically
designed and implemented. This interface can be refined by the designer to improve the resulling
interaction with the user. A UIMS bascd on this approach has been developed, and the research leading to
its design and implementation is described in this thesis.

The two important contributions of this research are:

, The rescarch shows that it is possible to automatically produce the initial lexical and syntactic
design of graphical user interfaces. This initial design can then be refined very easily and
rapidly by the designer, and automatically implemented by the UIMS. To the best of our
knowledge, the UIMS presented in this thesis is amongst the first to follow such an approach,
and takes the state-of-the-art beyond the capabilities of a "conventional” UIMS.

. This research makes a significant step forward in the direction of increasing the ease of usc of
UIMSs. The interface designer is no longer required to deal with detailed interface
specifications, which are often cryptic, too time-consuming to produce, and error-prone. In our
UIMS, a high level description of the commands supported by the application is directly
transformed into the interface design and implemented. In addition, when editing interfacces,
the changes are immediately visible and executable. This makes it much easier to develop
interfaces.

The UIMS has been used to develop interfaces for a number of applications, including a three-
dimensional skeleton editor and a distributed network editor. Experience with these examples has shown
that the UIMS cuts down tremendously on the time and effort required for developing inierfaces. Also,
since it does not take much time and effort to produce an interface, a number of variants of an interface can
be built and tested till the "right" look and feel is achieved.
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Chapter 1

Introduction

1.1. The Problem

The importance of user interfaces for interactive systems is widely recognized. The user interface
has become one of the most important bases for marketing systems. As a result, 8 gonsidcrablc clfort is
invested in producing good interfaces. Despite its recognized importance, systems with bad interfaces are
still being produced. The reason being that the dcvclopment of good intcrfaces is time consuming and
expensive in terms of manpower requirements. To help improve this situation rescarchers have come up
with the notion of a User Interface Management System (UIMS) [Thomas83], [Olscn84], {Pfalig&5],
[Olsen87]. A UIMS is a set of software tools designed to facilitate all aspects of uscr.imcrl‘acc develop-
ment and management. Over the past few years a number of UIMSs have been developed. Most existing

UIMS, however, handle only a part of the uscr interface development.

The cost of developing an interface can be divided into two parts. The first part is the result of the
time and cffort expended in creating the initial design of the interface. And, the sccond part relates to the
implementation of the initial design and its successive refinements. The majority of the existing UIMSs
have concentrated on reducing the second part of the cost. These UIMSs help in reducing the cost of
developing user interfaces by reducing the time and effort required for programming the interface. The user
interface designer first designs the interface and then uscs a UIMS for implementing it. The main emphasis

in the UIMS is on facilitating the implementation of the design.

The interface designers spend a great deal of time and effort in creating the initial design. It is well

documented in the literature how expensive this process can be [Morgan83, Smith82], Typically, while

Previous papers about this research are [Singh87], [Singh88b], {Singh88a], [Singh89b], and {Singh89aj.



creating the initial design, interface designers are concerned witli macro level decisions, such as the choice
of interaction techniques and parsing sequence for commands; and micro level decisions, such as the size,
Jocation, and colour of each interaction technique, and default and initial values of command arguments.
The cost incurred in the initial design can be significantly reduccd by automatically creating the initial
design, or by helping the interface designer in doing so. To date, little work has been done in this direction.
The goal of this work is to develop an approach and a means to automatically design and implement user
interfaces. We restrict attention to graphical user interfaces (GUIs) only. This eliminates command
language type interfaces from consideration. The coverage, however, remains wide enough to be interest-

ing and of practical use.

1.2. Automating the Design of Graphical User Interfaces

It is useful to divide the uscr interface into various parts. This helps us organize the discussion better
and concentrate on one part of the system at a time. Based on the Secheim model [Green85b], a user inter-
face is divided into threc components; the prescntation component, the dialogue control component, and the
application interface model (sce figure 1.1). The presentation component is responsible for accepting user
input and passing it to the other components of the interface, and presenting application output to the uscr.
The dialoguc control component is responsible for managing the dialogue between the uscr and the applica-
tion. The application interface model is a representation of the functionality of the application from the

uscr interface’s view.

In this work we devote attention to the issues involved in the design and implementation of the
presentation and the dialoguc control components. The presentation component for a GUI presents a graph-
ical front-cnd 1o the user of the system. To provide input to the system, the user interacts with techniques
which have graphical appearance. And, the system provides application output to the uscr in terms of the
images displayed on the screen. The design of the prescntation component for a GUI involves determining
graphical techniques for entering user input, and determining how to represent the application output in a

graphical manner. For this thesis, we will ignore the issuc of automatically determining the presentation of
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Figure 1.1 Seeheim Model of User Interfaces

the application output, and assume that this part of the design is handled by the interface designer.

The dialogue control component for a GUI is responsible for checking the syntactic correctness of the
user’s interactions with the presentation component of the interface. Therefore, designing the dialoguc con-

trol component involves designing a system to do so.

1.2.1. Designing the Presentation Component

The presentation component for a GUI enables the user to enter input through intcraction with graph-
ical interaction techniques, and see application output in terms of images on the display screen. As stated
carlier, we will be concerned with the input side of the presentation only. Designing the presentation com-
ponent involves determining interaction techniques (ITs) that make up the user interface, determining IT
parameters, and placing ITs on the display screen. The decision as to which ITs can be used depends upon
the dialogue requircments, the availability of ITs, the user’s preferences, and the hardware for implement-

ing the interface. Each of these concerns limits the sct of ITs that can be used.

After selecting the ITs used in the user interface, the next step is o decide on the attributes of the ITs,
Each IT has a set of attributcs, such as location, size, and colour. Suitable values for these attribules have to

be found. The ITs may have constraints on the valucs the attributes can take. For example, an IT may



constrain its location on the display screen.
After the selections are made and auribute values are determined, the ITs are placed on the display
screen. The placing of ITs on the screen depends upon the IT requirements, user’s preferences, and the

physical dimensions of the display screen.

1.2.2. Designing the Dialogue Control Component

The main responsibility of the dialogue control component is to check the syntactic correctness of the
user’s actions. Designing the dialogue control component involves designing a system to match the
sequence of user’s actions with the acceptable sequence(s). In GUISs, a command often has multiple correct
scquences. That is, the user is allowed some flexibility in the way he can sequence his actions. The system

must be able to recognize such cases and handle them correctly.

An important requirement for the dialogue control component is to support 2 variety of syntaxcs.
User interface designers often use prefix, postfix, and nofix (or free-form) syntaxes for parsing commands.

For a command of the form
command (argl, arg2)

the prefix syntax mcans sclecting the command before selecting the arguments. The arguments could be
sclected in the sequence of their specification or in an arbitrary scquence. The postiix syntax for the com-
mand would mean sclecting the arguments followed by the command. The nofix syntax means following

the prefix, postfix, or any arbitrary sequence for selecting the arguments and the command.

Another issue related to command syntax is the open-ended selection of commands. Open-ended
commands accept an arbitrary number of complete arguments. For example, the interface could support an
Add-Object command which, once sclected, allows multiple objects to be added, one after the other, until

another command is sclected. A typical input sequence for ihe above command would be



command
argl arg2
argl arg2
argl arg2

commandl
args

Another syntactic consideration is the use of default and initial values for command arguments.

There is no apparent difference in default and initial values in graphical user interfaces. These terms will be

defined later and used where helpful.

1.2.3. Refining the User Interface

In the cument state of the art in user interface development the initial dasign undergoes a number of
refinement cycles before it is finalized. The refinements cre necessary to fine-tune the intesface to take into
account the users’ feedback [Buxton80], [Swartout82], [Mason83), [Boies85]. In this approuach the uscr
interface is developed based on the initial design, and cvaluated by examining the performance of uscrs
using the system. The results of the evaluation are uscd to refine the initial design. This cycle is repeated
until a "satisfactory" interface is produced. Several systems with highly rated uscr interfaces were
developed using ti.ic approach. Examples include the Xerox Star [S=nith82], the Apple Lisa [Morgan83],

the electronic mail system described in [Good84], and the Olympic Messaging System [Boies85].

It is useful to follow a similar approach here, and allow the designer opportunities for “creative doo-
dling" and fine-tuning the interface. Both, the prescntation as well as the dialogue control components may
need refining by the intcrface designer. Since the presentation componcent is inherently graphical, it is best
1o support its refining through a "what-you-see-is-what-you-get" (WYSIWYG) mode of cditing. It is how-
ever difficult to come up with an casy visual way of refining the dialogue control componcnt. The problem
lies with determining a suitable graphical representation, or visual metaphor, for the dialogue control com-

ponent which is casy to understand and usc for the interface designer. State Transition Diagrams have been



used for a long time to handle this [Newman68], [Parnas69)], [Jacob83], [Wasserman85). But, as will
become clear later this notation is not suitable for all types of dialogue. Therefore, the altemative is to
change either the input or the output of the system that designs the dialogue control component. In our sys-

tem it is easier to change the input.

1.3. Contributions

The primary goal of this thesis is to address a key problem with UIMSs: their inability to help reduce
the cost of initial design of uscr interfaces. Because of this inability, existing UIMSs require the interface
designer to work at very low levels of syntactic and lexical details, which can be very timc-consuming and
expensive in terms of effort required. Also, the detailed design produced by the designer must be provided
10 the UIMS in a notation that it can provess, which makes the UIMS difficult to usc and increases the

chances of crrors as the interface descriptions tend to be quite large.

The approach followed in this thesis to tackle this problem is to automatically produce the initial
design and implement it, and then enable the interface designer to improve its appearance and/or
effcctiveness by refining it. The interface designer, in this approach, works at the conceptual level of the
user interface and produces a high level description of the commands the interface is to support. Based on
this description the syntactic and lexical levels of the interface are automaticaily designed and imple-

mented. This interface can be refined by the designer to improve the resulting interaction with the user.

This approach is a novel contribution to the field of UIMSs, and takes the state-of-the-art beyond the
capabilitics of a "conventional” UIMS. It forms the basis of a powerful UIMS that can reduce the cost of

developing user interfaces tremendously. Ours is amongest the first UIMSs to follow such an approach.
Three key elements of a UIMS that supports this approach have been developed. These are:

. A system, called Chisel (Creating highly interactive screen layouts) for designing graphical presenta-
tion components. The presentation components designed by Chiscl consist of a collection of interac-

tion techniques.



. A system, called Diction (Dialogue Control Generation) for designing dialogue control components,
Diction is capable of producing dialogue control components suitable for implementing prefix,

postfix, and nofix command syntaxes.

. A system, called vu (visual user-interface design workshop) for reiining graphical presentation com-
ponents designed by Chisel. Vu is a highly interactive visual programming cnvironment which
cnables User Interface designers to refine presentation components without having to deal with con-
ventional programming,.

Both Chisel and Diction demonstrate that a part of the designer’s work can be automated, leaving the
designer with more resources to devote to other parts of the interface. The designs produced by Chisel and

Diction arc automatically implemented, which climinatcs the nced to program or to write the design in

some special notation for the UIMS.
Other contributions of this thesis include the following:

. As far as we know, Chisel is the first system to handle the design of graphical presentation com-
ponents at a detailed level. It is concerned with high level decisions, such as the sclection of interac-
tion techniques, as well as low level decisions, such as the size, location, and colour of interaction

techniques.
. Chisel demonstrates that it is possible to gencrate prescntation components which are sensitive to:
- user’s prefences
- user interface designer’s guidelines, and
- hardware devices.

. As far as we know, Diction is amongst the first systems to demonstrate that variety of syntax types

(prefix, postfix, and nofix) can be automatically designed and implemented.

. Diction demonstrates that prefix, postfix, and nofix type syntaxes can co-exist in the same interface,

and can be successfully parsed.



Vu demonstrates that it is possible to refine highly intcractive and graphical presentation components
without using conventional programming.
The run-time environment allows parameters 1o be passed to interaction techniques at run-lime. This

greatly increases the flexibility of the system and the range of interfaces that can be supported.

By restricting the range of data produced by the intcraction techniques, the presentation component
does a part of the job of the dialogue control component. This results in increased efficiency of the
gencrated interface.

Chisel and Diction promote structured design and produce well structured code. The presentation
component is organized as a collection of interaction techniques, and each command in the interface
is implemented as a separate event handler. An interaction technique or event handler is imple-

mented as a scparate program module and may reside in a separate file.

The systems Chisel, Diction, and vu demonstrate that it is possible to provide extremely rapid proto-
typing. It takes very little time to create interfaces from scratch. For the three-dimensional skeleton
cditing system discussed in section 3.3 of chapter 3, it took me nearly two hours. This is around a
factor of 28 faster than using a "conventional” UIMS (sce section 8.2.2). The interface designer can
quickly create different prototypes by modifying system parameters. The case and efficiency of
creating prototypes encourages experirnentation, and may therefore result in better user interfaces.
Significant portions of the presentation component can be changed without affecting the dialogue
control componcnt, and vice-versa. This greatly increases the ease of exploring different designs to
choose the most appropriate one.

This rescarch makes a significant step forward in the direction of increasing the case-of-usc of
UIMSs. The interface designer is no longer required to deal with detailed user interface descriptions.

A high level specification is directly transformed into the interface design and implemented.

The interfaces designed by our system are consistent in many respects. The consistency in user inter-
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faces helps uscrs in learning new sysiems.

J The significant reduction in the cost of producing the initial design makes it possible to devote more
time and resources to refining the interface. This moves the staie of the art in user interface develop-
ment closer to the point where the halting condition for the development becomes the creation of a
satisfactory interface, instead of resource exhaustion. The overall result should be an improvement in

the quality of interfaces.

. The implementation of the user inierface can be physically scparated from the implementation of the
application routines, yet these two components can communicale at run-time. This scparation is an
implicit goal of most, if not all UIMSs, but few existing systems achicve it to the extent it is achicved

in our system.

1.4, Non-Contributions

This thesis does not attempt 10 develop a comprehensive UIMS. This is a complex task and needs
more resources than we have at our disposal. In particular the parts which arc ignored are support for
designing the presentation of the application output and the application interface model. The systems

developed are prototypes, built to show the key concepts behind the research.

The rescarch reported here concentrates on GUIs only, therefore the issues dealt with are specifictoa
special class of interfaces. There are multiple reasons for this restriction, The first being that by consider-
ing a restricted class of interfaces we can focus our efforts better and be morz thorough in addressing the
issues involved. Second, there are few similarities between the issues in GUIs and other types of interfaces.

This indicates that it is better to address the problems separately.
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1.5. Thesis Outline

Chapter 2 Jascribes basic concepts and discusses background material necessary fcr understanding
the rest of the thesis. In particular, the background material covers a brief hiztory of UIMSSs, the general
structure of UIMSs, some existing UIMSs, and shortcomings of existing UIMSs, A model for a comprehen-
sive UIMS is also discussed in this chapter.

Chapter 3 contains an overview of the system. It begins by describing the overall approach followed,
and introduces Chisel, vu, and Diction. How these systems fit together is also explaincd in this chapter. In
order 1o demonstrate how to create interfaces using the UIMS, this chapter provides a detailed example of
exactly how an interface for a three-dimensional skeleton editing system is created.

Chapter 4 is concerned with the design of dialogue control components. The requirements for the
design system arc discussed, followed by a description of Diction. A number of example are used to show
how interface designers use Diction to produce dialogue control components.

Chapter S discusses the design of graphical presentation components. The Chisel system is used for
designing presentation componcnts. Chisel selects interaction techniques, determines their attribute values,
and places them on the screen of the display device. This chapter discusses the working and design of
Chisel,

After Chisel has proctuced the input part of the presentation component, the interface designer refines
it and adds the information regarding the output part to it. This is done by using the Chisel’s companion

system vu discussed in chapter 6.

Chapter 7 discusses the issucs involved in, and the structure of the run-time environment. A descrip-

tion of its implementation is also provided.

Chapter 8 summarizes the thesis, and provides suggestions for future work.



Chapter 2

Basic Concepts and Related Research

2.1, Definition of Terms

In the literature related to user interfaces there is often a conflicting use of tcrms. To remove the con-

fusion arising because of this, we will start by defining the terminology used in this thesis.

We define the user interface as the software part of an interactive system that handles the interaction
between the user and the application. In order to communicate with the user the systcm accepts inputs and
presents outputs through the user interface (figure 2.1). Other terms commonly used in the literature for a
user interface include human-computer interface, man-machine interface, uscr-system interface, and atten-

tion processor.

Interactive System

User S Ingigce - App] ication

Figure 2,1 User Interface

An interaction technique (IT) is defined as a way of using a physical input device to enter a certain
type of word (command, value, location, etc.), coupled with the simplest form of feedback from the system

0 the user [Foley84b). It manipulates the raw data gencrated by the interactions 10 produce more

11
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mecaningful information,

A User Interface Management System (UIMS) [Thomas83], [Olsen84}, [Pfaff85], [Olsen87] is a set
of software tools designed to facilitate all aspects of user interface development and management., Most
existing UIMSs, however, handle only a part of the user interface development. Other terms used in the
literawre for a UIMS include Dialogue Management System [Roach82], Abstract Interaction Handler

[Feldman82], and User Interface Development System [Hill87a].

There arc a number of specialists involved in uscr interface development. The person who designs
the UIMS (c.g., me) is called the U/MS designer. The person who designs the user interface is called the
user interface designer, or simply the interface designer. An interface designer, also known as Interaction
Designer [Thomas83], Interaction Programmer [Tanner85], or User Interface Architect [Foley84a], uses a
UIMS 1o develop quality user interfaces. An interface designer has software development/design skills,
knowledge of human factors, and experience in the area of human-computer interaction [Betts87]. The
term application designer refers to the person who designs applications. The application programmer and
application designer will refer to the same person, even though in practice they may be different. This per-
son creates the application which has as its front end the user interface created by the interface designer.

The term user refers to the end user of the system, the person for whom the user interface is designed.

2.2, Motivation for UIMSs

The realization of the importance of the user interface has lead to the development of some of the
most claboratc interfaces. The creation of these interfaces is characterized by large programming and
design cfforts. A study by Sutton and Sprague [Sutton78) indicated that for interactive business applica-
tions the size of the interface in terms of lines of code averaged 59% (varied from 29% to 88%) of the total
system, An expert system project [Mittal86] reported that the user interface contributed nearly 40% of the
total code. Much effort is also involved in designing good interfaces. Interface designers devoted about 36

work-ycars to the design of the Xcrox Star’s user interface [Smith82). The design of the Apple Lisa’s inter-
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face also required a great deal of effort [Morgan83].

The cost of developing a quality interface is further compounded by the need to build a number of
prototypes leading to the final product. The most often recommended approach to building good user inter-
faces involves creating and testing prototypes with end users, and modifying the design based on the results
of the tests. This approach is called the "iterative design approach” and is suggested in [Buxton80], [Swar-
tout82], [Mason83], [Sheil83}, and [Boies85). The itcrative design approach has been used in the creation
of several highly rated interfaces: the Xerox Star [Smith82), the Apple Lisa [Wiiliam83], the clectronic

mail system described in [Good84], and the Olympic Messaging System {Boics8S].

In the absence of appropriate design and implementation tools, the creation of inierfaces consumes
large amounts of money and time, and leads to the development of software which is hard to debug and
modify. This leads to the resources becoming the critical factor, limiting the number of ilcrations the

design can go through, thus forcing the creation of less than satisfactory interfaces.

A UIMS facilitates the creation of good user interfaces by alleviating some of the problems discussed
above. It supports rapid prototyping and also makes the creation of the final uscr interface casicr and
cheaper. A UIMS can be viewed as a productivity tool which reduces the cost of developing user interfaces
rremendously. The Apple MacApp has been reported to reduce the development time by a factor of four or
five [Schmucker86). For some examples Peridot can reduced the development time by a factor of 50 (cf.

[Myers87a] page 12).
2.2.1. Advantages of UIMSs

The advantages of using UIMSs include the following.

. The usc of a UIMS reduces the cost of developing the uscr interface by providing tools for increasing

the productivity of the people involved in user interface development.

. UIMSs encourage cxperimentation by facilitating rapid prototyping. This may result in improve-

ments in the quality of the interface.
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. The use of a UIMS provides a more consistent interface both within and across applications. This
may expedite the learning of new systems.

J Once the UIMS is debugged, the software it generates should be more reliable than the hand-coded
software. -

’ The UIMS provides a suiiable environment for exploiting the skills of various specialists involved in
user interface development. It does so by represcnting and supporting the prober roles of various
people involved ir: the development.

’ It facilitates the distribution of functionality across systems and processors.

. The separation of the managément of user dialogues from the application and the graphics package
should allow a better exploitation of various physical devices and interaction techniques.

. There should be cost savings due to the reduced construction cost and the increased usability of the

product.

2.3. A Bit of History

The earliest system which had a structure and supported the facilities expected of a UIMS appears to
be Reaction Handler developed by Newman [Newman68]. It provided a special language, called the Net-
work Definition Language in which the transfer of control within the program, in response 0 the user’s
actions, was specified. The language was based on a finite statc inachine model. Other parts of the system
were written in procedural languages. The structure of Reaction Handlers is remarkably similar to a
number of UIMSs developed many years later, and the basic techniques used in it (state transition net-
works) are still being uscd. The Reaction Handler is the ultimate ancestor of the UIMSs based on state

transition nctworks.
The next major development after the Reaction Handler appears to be LANG-PAK developed by

Heindel and Roberto {Heindel7S]. As opposed to the Reaction Handler which dealt with graphical interac-

tion, LANG-PAK aimed at keyboard based interaction. LANG-PAK accepts a BNF-like specification of
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the intcraction language with embedded calls to application routines. The specification can be tested during
development, without the need to supply the application routines. The interface of LANG-PAK was
developed using LANG-PAK itself. LANG-PAK appears to be the ultimate ancestor of the UIMSs based

on BNF.

There was a remarkable incx;ease in the research and development of tools for user interface develop-
ment after the mid 1970°s. This is evident from the number of workshops and conferences, and the increas-
ing number of systems being reported. The first important cvent appears to be the Workshop on Methodol-
ogy of Interaction, also called Seillac II, held in May 1979 in Scillac, France [Gucdj80]. The next itsipor-
tant workshop, called the Workshop on Graphical Input Interaction Téchniquc, was held in Bauctle, Scaule
in June 1982 [Thomas83]. The term "User Interface Management System" was coined at this workshop.
The next workshop, called the Workshop on User Interface Management Systems was held in Sceheim,
FRG in November 1983 [Pfaff85]. The Seeheim Model of user interfaces [Green85b] was developed at this
workshop. The next workshop devoted to software tools for user interface development and management
was named the Workshop on Software Tools for User Interface Management and was held in November
1986 in Battele, Scattle [Olsen87]. In addition to these workshops a number of conferences focusing on
human-computer intcraction were also organized. Annual conferences are now sponsorcd by Eurographics
and the ACM Special Interest Group on Computer-Human Interaction (SIGCHI). The ACM Spccial
Interest Group on Graphics (SIGGRAPH) annual conference also holds a special session on the rescarch

related to UIMSs, and some of the best work in this area has been reported in this conference.

The most notable systems reported in the literature include Hanau and Leronovitz's prototyping ools
[Hanau80], a BNF-based system [Reisner81], TIGER [Kasik82], UofT UIMS [Buxton83), SYNGRAPH
[Olscn83], a state-transition UIMS [Jacob83-Jacob85], COUSIN [Hayes83), GRINS [Olscn85], UofA
UIMS [Green85a, Singh86], Trillium [Henderson86), GWUIMS [Siben86], Peridot [Myers86-Mycers87b],
a state-transition UIMS for direct-manipulation interfaces [Jacob86], MIKE (Olsen86], Sassafrus [Hill86-

Hili87b], and UIDE [Foley87a, Foley87b, Foley88b, Foley89].
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2.4. Structure of UIMSs

Section 2.1 defines a UIMS as a tool or tool set that facilitates all aspects of user interface develop-
ment and management. But in pract‘ice this term is used for any tool that facilitates the creation of any part
of the user interface. Figure 2.2 shows a model of a UIMS by Tanner and Buxton [Tarner85). This model
identifics three main phases of a UIMS, namely pre-processing or preparation, run-time support, and post-
processing or follow-up. The preparation phase involves the creation of the user interface definition in
terms of interaction techniques. The role of the UIMS in this phase is to provide access to the library of
interaction techniques and provide the administrative support required to bind these techniques to each
other and to the application. The Interaction Technique Builder is a program that creates interaction tech-
niques. Examples of systems which help in creating interaction techniques include Peridot (Myers86], Pan-
ther [Helfman87], and Squeak [Cardelli8S]. Icon Builder is somewhat similar to a paint or sketch systcm,
and is used for creating icons. Examples of icon bqilders include [Furuya87] and [Mussio87]. It should be
noted that in this model the selection of interaction techniques and their attribute value determination is the

responsibility of the interface designer.

The run-time support component provides the mechanism for executing the user interface. It handles
the communication with the user and within the system. The run-time support component also records
information (such as, time and location) about user interactions and user errors, which is used during the
follow-up to discover errors in the interface and to fine-tune the interface to incrcase the efficiency of

interaction. Virtually none of the existing UIMSs provide this component.

There arc a number of UIMSs that fit this model very well. But this model is somewhat outdated as
it assumes that the interface designer is solely responsible for interface design, and that the UIMS can nei-
ther design the interface nor provide any assistance to the interface designer in doing so. Our rescarch
shows that it is possible to include this activity as a part of the UIMS. The model of a comprehensive

UIMS (figure 2.3) should, therefore, include the following four phases:
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Pre-Processor Run-Time Post-Processor

Run-Time
Support

Designer Glue

System Analysis
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Icon Interaction || Definition

Library || Technique ‘
Library

Icon
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Technique
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Figure 2.2 Model of a UIMS (from [Tanner85])

+» Design

+» Generation

+ Ran-Time Support
+» Follow-up

The design phase supports tools for designing verious components of the interface, or tools which

help the designer in designing the interface.
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Figure 2.3 Model of a Coniprehensive UIMS

2.5. A Survey of Existing UIMSs

Most UIMSs concentrate on supporting only a part of user interface development, some concentrate

on supporting screen layout while others concentrate on supporting dialogue control, These systems can be

classificd into various groups depending on the main technique used for specifying or developing the inter-

face.
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2.5.1. Libraries or Toolkits

There are a number of systems that provide libraries of routines that can be used while developing the
interface. These systems cannot be classified as UIMS because they lack the structure of a UIMS and do
not provide the support expected of a UIMS. But these systems do reduce the cost of developing uscr inter-

faces. Examples of systems in this category include SunView and Macintosh Toolbox.

Tﬁere are a number of limitation of this approach. First, to use librarics a knowledge of program-
ming is essential. This is a major limitation of this ap;;roach. Another limitation, related o the first one is
that the person developing the interface must also be familiar with other tools, such as editors, compilers,
and linkers, which he must use in order to build an interface. The next limitation of this approach is that 1o
test or modify a prototype the code must be compiled and exccuted or interpreted, giving risc 10 a long

feedback loop.

2.5.2. Object-Oriented UIMSs

UIMSs in this group provide a kernel of graphical objects that can be used dircctly or customized by
the interface designer for specialized application. The objects are arranged in a taxonomic hicrarchy in
which procedures and data can be shared through inheritance. The saving in cost occurs because of the

reuse of code. Often these systems are accessible only to programmers.

Examples of systems in this group include MacApp [Schmucker86], GWUIMS (George Washington

User Interface Management System) [Sibert86], and GROW (GRaphical Object Workbench) [Barth86).



20

2.5.3. Grammar Based Systems
Since user-system interaction can be viewed as a dialogue between two parties, grammars, to many
rescarchers appear as a good way of describing it. A number of user interface description techniques based

on grammars have been developed. Many interesting techniques are based on BNF (Backus Naur Form).

When BNF is used to describe user interfaces the terminals correspond to the primitive actions the
uscr can perform. These actions include pressing a button, moving the mouse, or typing a character string.
The non-terminals are used to structure these primitive actions into phrases and commands. Reisner [Reis-
ner81] made use of BNF to describe the user interface of two functionally equivalent slide layout pro-
grams. SYNGRAPH (SYNtax dirccted GRAPHics) [Olsen83] is another system which uses interface
descriptions in extended-BNF to produce programs in Pascal.

One of the main advantages of BNF is that the specification of the dialogue can be automatically
chchcd for inconsistencics, ambiguities, and incompletencss. Another advantage is that parser generators
can be used to automatically produce a part of the user interface given a grammar for it.

The main disadvantage of BNF is that it provides facilities for describing only the user actions, which
is only half of the dialogue. The grammar needs to be extended to provide facilities for describing the sys-
tem actions as well. Ben Shneiderman extended the concept of BNF to multiparty grammars [Shneider-
man82]. A multiparty grammar is essentially a BNF grammar where the non-terminals may be labeled by

the party which generates them.

2.5.4. Transition Network Based Systems

The carliest use of transition networks to describe user interfaces is by William M. Newman [New-
man68]. He used transition networks to specify the transfer of control within the program in response to

the user’s actions. Other parts of the user interface were written in procedural languages.

A transition network consists of a collection of states and transitions connecting one state to another.

The states can be represented as circles and transitions between them as labeled arcs. In their simplest



form, the arc labels represent the actions that the user can perform. These actions are expressed in terms of
the hardware devices used by the program. For example, an arc label could be pressing a particular button,

or moving the light pen.

Each transition nctwork has a start state and onc or many termination states. The start state
represents the state of the system before the user starts interacting with it. When the uscr performs a legal
action the system moves to a new state. This current state depends upon the old state and the user action,
One state may lead to many different states depending upon the user action. If an arc with a label
corresponding to the user’s action does not exist then the user has committed an error. The tcrmination

state represents a state that takes the user out of the transition network.

The transition networks for real user interfaces tend to be quite large and complex. As a result tech-
niques for partitioning the network have been developed. A large transition network can be divided into a
main network and a number of sub-networks. The sub-networks are scparate networks describing one part
of the system, There are two ways in which a sub-network can be referenced. One way is by using the
name of the sub-network as an arc label. In order to traverse the arc, the sub-network must be traversed
from its start to a terminal state. The other way of referring to a sub-network is by making it a state in the
main network. When the main network enters onc of these states the corresponding sub-network is

invoked.

Many extensions have been proposed to add more power L0 the basic transition nctwork notation,
Jacob [Jacob83-Jacob85) uscs output tokens to display messages and prompt users for input (sce figure
2.4), He also uses conditionals to make arbitrary tests on external variables, which must be truc for the
transition to take place. Wasserman and Stinson [Wasserman79, Wasserman85] usc arcs with no labels to
catch user errors. In their notation, at most one arc leaving a state can have a blank label. This arc is
traversed if the user action does not match any of the other arc labels. They also extend the transition nct-

work notation to include variables to store input information.
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Figure 2.4 Transition Networks for a Simple Desk Calculator (from [Jacob85.])

One of the criticisms of transition network UIMSs has been that since transition networks are most
useful when a large amount of syntactic parsing is necessary (or when the interface has a large number of
modcs, as each state can be viewed as mode), they are not suitable for creating systems, such as direct-
manipulation systems, which attempt to be mode-free (c.f. page 21 in [Myers87a]). Jacob argues that
direct-manipulation systems, though they appear to be mode-less, in fact have a highly moded structure
with many distinct modes (Jacob86]. He treats a direct-manipulation interface as a collection of many rela-
tively simple dialogues which relate to each other as coroutines, and presents a technique where state transi-

tion networks arc used to specify direct-manipulation interfaces.



2.5.5. Graphical Environments

Many UIMSs provide direct-manipulation facilities for describing the uscr interface. These environ-
ments are quite similar to paint programs, and some of these systems can be used by non-programmers.
The focus in these environment is on the screen layout or the presentation component of the interface, as
opposed to grammar cr state transition network based systems, which concentrate on the dialogue control
component. Many UIMSs in this group enable the interface designer to test the interface under construc-

tion, whereas others require that the specification be compiled before execution.

The main advantage of systems in this group is that the interface designer is able to sce and fcel the
end product while under construction, thus reducing the fecdback time to almost nil. The effects of changes
made in the specification are visible without delay. The disadvantage is that not all components of the

interface can be described in a graphical fashion.

Menulay (front-end of the UofT UIMS [Buxton83]) enables the designer, using interactive graphic
techniques, to define user interfaces which are made up of networks of menus. The specification made by
using Menulay is compiled into the C programming language through the usc of a companion program,

called Makemenu. The scmantic routincs are written in a conventional programming language.

Ipcs (Interactive Prescntation Component Specification) {Singh86], a part of the UofA UIMS
[Green85a], provides graphical facilities for creating presentation components for graphical user interface.
A prescntation component created by ipes is organized as a hicrarchy of windows. With cach window the
interface designer can associate an interaction technique or a network of menus. The presentation com-
ponents created by ipcs communicate with other parts of the interface by using input and output tokens.

Ipcs is described in greater detail in section 2.6.1.

Peridot (Programming by Example for Real-time Interface Design Obviating Typing) [Myers86-
Myers87b] is a User Interface Management System which uscs programming by cxample and visual pro-
gramming to allow the user interface designer to create interaction techniques. To specify an interaction

technique the interface designer demonstrates how it should look and act by drawing the screen display that
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the cnd user will see, and then manipulating the mouse and other input devices to show what the end user
will do.
Other UIMSs in this group include GRINS (GRaphical INteraction System) [Olsen85], Trillium

[Henderson86), and Cardelli's UIMS [Cardelli87].

2.5.6. Others

There are a number of UIMSs that clearly do not fit into any of the groups described so far. One such
systems is TIGER (Thc Interactive Graphics Engincering Resource) [Kasik82], used for developing
engincering applications. TIGER provides a special block-structured language, called TICCL (TIGER
Interactive Command and Control Language) for defining and organizing interactive dialogue sequences.
A preprocessor compiles TICCL specification into a formatted menu file that is read by the run-time inter-

preter.

The UofA (University of Alberta) UIMS [Green85a] provides multiple techniques for describing the
interface. The presentation component is specified using Ipcs, described in section 2.5.5, and the dialogue
control component can be specified in state transition networks (similar to Jacob’s system [Jacob83]) or in
an event-based notation. The designer is free to choose the technique he finds most appropriate for describ-

ing the dialogue control component, The UofA UIMS is described in greater detail in section 2.6.1.

Sassafras [Hill86-Hill87b] is a prototype UIMS based on ERL (Event-Response Language) and
LEBM (Local Event Broadcast Method), and focuses on the dialogue control component of the user inter-
face. ERL is a textual language for specifying the syntax of the dialogue and looks similar to programs in

production systems. LEBM provides the run-time structure for the interface.

MIKE (Menu Intcraction Kontrol Environment) [Olsen86] generates menu based interfaces from the
definition of semantic commands that the interaction supports. The default syntax is refined using an inter-
face cditor that allows modification of the presentation of the interface. MIKE is described in greater detail

in scction 2.6.2.



2.6. Some Existing UIMSs

Three UIMSs, the UofA UIMS, MIKE, and UIDE are described in detail in this scction. There arc a
number of reasons for selecting these UIMSs. First, these UIMSs provide a large part of the background
required for this thesis, and are, therefore specially relevant. Second, these systems represent the state-of-

the-art in the issues they address. Third, these systems arc widely known,

2.6.1. The UofA UIMS

The UofA UIMS [Chia85, Green85a, Lau85, Singh8S, Singh86] is bascd on the Secheim Model of
user interfaces [Green85b], which divides the interface into three components: the presentation component,
the dialogue control component, and the application interface model. The UlMS provides design tools for -
each component and a run-time environment which binds the three components together and provides

mechanisms for communication.

Designing the Presentation Component

The design of the presentation component can be divided into three activities, screen layout, intcrac-
tion techniques, and display techniques. These activities are supported by an interactive layout program,

called ipcs (interactive presentation component specification) [Singh85, Singh86].

Ipcs (see figure 2.5) cnables the designer to divide the screen into a number of overlapping windows.
The designer specifies the size and position of a window by pointing at two opposing corners. The designer
can then specify the background colour of the window, its coordinate system, a name for the window, and
an output token. The output token associated with a window is used to indicate when the window is to be
displayed. When the presentation component receives this token the window is displaycd on the screen, A
network of menus can be associated with each of the windows. A menu can cither be static (always
displayed in the same position) or pop-up (the current cursor position is the upper left corner of the menu).
Each menu is viewed as a collection of menu items. A menu item consists of an input token, and a text

string or icon. When the menu item is selected its input token is sent to the dialoguc control componcent.
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Ipcs allows the designer to associate display procedures with each of the output tokens that can be
processed by the prescntation componerit. For each output token the designer specifics the name of a
display procedure and a window where the information is to be displayed. The display procedure is either

chosen from a library of standard display procedures or written by the designer.

The description of the presentation coinponent is stored in a database. This database stores the statc

of the design betwecn ipes sessions and is used to generate the presentation component at run time,

Designing the Dialogue Control Component

The UofA UIMS supports two notations, recursive transition networks (RTNs) and event language,
for the dialogue control component. This gives the user interface designer some flexibility in his approach
to the design of this component. In order to provide this flexibility the UIMS supports a common format
that the two notations can be translated into. This common format forms the basis for the run-time support
of the dialogue control component. The common format, calicd EBIF (Event Based Internal Format) is

based on the event notation.
Recursive Transition Networks

In the UofA UIMS an interactive approach is taken to the design of recursive transition networks.
The interactive transition diagram editor [Lau85] is used to cnter and edit RTNs. This editor is based on a
graphical display of the transition nctwork. The designer can use a tablet or mouse to enter and edit the
nodes and arcs in a diagram. Each arc in the diagram has an input token, and optional output tokens to be
scnt to the presentation component and application interface model when the arc is traversed. One interest-
ing feature of this editor is the ability to select and save a group of nodes and arcs. This group can then be

added to another diagram in the user interface.

The transition diagrams are stored in a database. This database is used to store the diagrams between
cditing scssions and is uscd to generate the EBIF for the dialogue control component. A separate program

is uscd 1o convert the transition diagrams to EBIF.
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Event Language

The event language used in the UofA UIMS is based on the C programming language. A program in
the event language consists of a number of event handlers. The text of the program contains one or more
cvent handler definitions. When the program is executed instances of these event handlers are created. It is
the instances that perform computations, not the event handlers themselves. There may be several instances

of the same cvent handler, parameters can be used to establish the state of an instance when itis created.

Eventhandler event_handler_name Is
Token
tokcn_name event_name

Var
type variable_name = initial_value;

Event event_name:type{
statements
)

event event_name:type(
statements
)

end event_handler_name;

Figure 2.6 Structure of an Event Handler (from [Green85a])

The structure of an cvent handler declaration is shown in figure 2.6. An event handler declaration is
divided into three sections. The first scction lists the tokens (either input or output) that the event handler

can process. This information is used to map tokens into events for the event handler.

The sccond section of an event handler declaration contains the declarations of the event handler’s

local variables. Each instance of the event handler has its own set of locat variables, there is no sharing of



storage between instances. A variable declaration consisis of a type, a variable name, and an optional initial

value.

The third section consists of event declarations. An event declaration starts with the keyword Event
followed by the name of the event and its type. The body of the event declaration consists of one or more C
statements. These statements are executed when an instance of the event handler receives this event. The
statements can refcrence the instance’s local variables and the global variables in the program. The data
associated with the event is assigned to the event name before the execution of the statements in the cvent

declaration. The implementation of the event compiler is described in detail in [Chia85].

Designing the Application Interface Model

The main use of this component is to map between tokens and the routines in the application. The
mapping between tokens and application routines may not be one-to-one. A token may cause sceveral appli-
cation routines to be executed, or it may contain data used in a subsequent call of an application routine. In
order to support this behavior the application interface model must provide storage for saving token values

and a means of associating a sequence of actions with a token.

In the UofA UIMS a written notation is used for describing the application interface model. This

notation is converted into C code and tables which become part of the user interface at run-time.

The complete sequence for developing interfaces using the UofA UIMS is shown in figure 2.7.

2.6.2. MIKE

MIKE [Olscn86] generates a default syntax from the specification of the semantic commands that the
interaction supports. Instcad of using detailed syntactic specifications, as is gencraily the case with many
UIMSs, MIKE uscs a concise specification of commands the application supports. From this specification,

MIKE generates a default interface which is refined by the designer by using an interface editor.

Olsen claims that the syntactic specification required by many UIMSs is the source of most of the
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learning problems related to the use of UIMSs. Thercfore, the syntactic specification in MIKE is replaced

by a high-level specification of scmantic commands in the user interface.

The components that make up a MIKE interface specification are (1) the command procedures and
functions that define the application semantics, (2) bindings between these procedures and the specific pro-
cedures to be used for interactively expressing them, and (3) a set of viewport definitions that define how

the screen will appear and how interactive behaviors are attached to visual objects.

Generating the Default Interface

In MIKE the basic definition of an interface is a set of types and a set of functions and procedures
that can operate on data objects of those types. In addition 10 the object types defincd for the interface,
there are a number of types (integer, real, point, key, and instring) that are predefined and automatically
supplied by MIKE. An example specification for MIKE is shown in figure 2.8. This information is entered
using MIKE's interactive interface editor.

After the commands have been entered, a working user interface can be generated. Figure 2.9 shows
the general architecture for generating interactive programs. First the semantic commands are defined, and
then the presentation (screens, function buttons, icons) is added to the commands. The command
definitions which are entered using the interface editor are stored in the interface profile, which contains all
the information about the user interface. The editor also gencrates a piece of Pascal code containing
definitions necessary for interfacing the application-independent user interface code to the application-
specific code that implements the commands given in the interface definition. The generated code is com-
piled and linked to the application specific code and to the standard MIKE user-interface code to create the

intcractive application program.

In the default interaction created by MIKE, the functions and the types they rctumn form the basic
control mechanism. MIKE creates menus of all commands in the interface based on the type of result

returncd by the commands. All procedures or functions that return a result of a particular type are placed in
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CreateResistor(Ohms: Integer; C1:Connection; C2: Connection)
CreateCapacitor(Farads: Integer; C1:Connection; C2:Connection)
CreateWire(C1:Connection; C2:Connection)
PickConnection{(Where: Point) : Connection
If Where is over an existing connection, then that connection is returned.
Otherwise a new connection is generated at Where
PickResistor(Where: Point) : Resistor
PickCapacitor(Where: Point) : Capacitor
PickWire(Where: Point) : Wire
DeleteResistor(R : Resistor)
DeleteCapacitor(C: Capacitor)
DeleteWire(W: Wire)
MoveResistor(R: Resistor; To: Point)
MoveCapacitor(C: Capacitor; To: Point)
MoveWire(W: Wire; To: Point)
ChangeResistance(Of: Resistor; Ohms: Integer)
ChangeCapacitance(Of: Capacitor; Farads:Integer)
ResistanceOf(R: Resistor) : Integer;
CapacitanceOf(C: Capacitor) : Integer;
SaveCircuit(FileName: InString)

DiscardCircuit
LoadCircuit(FileName: InString)

Figure 2.8 An Example Specification for MIKE (from [Olsen86])

one menu. Using this menu structuring, MIKE parses for command arguments in the specific order in
which they are specified in the command definition.

The user can select a command from the current menu either by pointing at it with the locator or by
typing a unique abbreviation of the command’s name. Once the command is selected, MIKE then prompts
for the first parameter of the selected command and fills the menu with all of the functions that return that
parameter’s type. Using the new menu of functions, the command selection proceeds as before. If the
parameter’s type is one of those that are predefined, then the appropriate interactive technique (such as, typ-
ing in an integer number, typing in a real number) is enabled, in addition to the menu. As the command is

parscd in this manner, an echo of the partially constructed command is displayed, along with the prompts.
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Figure 2.9 MIKE architecture (from [Olsen86])

Refining the Default Interface

The default interface created by MIKE is almost completely keyboard oriented and is not in any way
wilored to the needs of the end user. It can be improved by the interface designer by editing the presenta-
tion information in the interface profile. The presentation can be improved by restructluring menus, provid-

ing help messages, echoes and prompt messages, and improving screen layout.

The default menus generated by MIKE can be too large to fit on the screex. One large menu can be
divided into smaller menus organized in a tree structure. This is accomplished by associating external
names with commands, which consist of a list of terms separated by periods. These terms form the basis of
organizing menus. Figure 2.10 shows renamings for the commands shown in figurc 2.8. This renaming is

used to define the forest of menu trees shown in figure 2,11, Each menu tree in the forest is identified by
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CreateResistor => New.Resistor
CreateCapacitor => New.Capacitor
CreateWire => New.Wire
PickConnection => Pick

PickResistor => Pick
PickCapacitor => Pick

PickWire => Pick
DeleteResistor => Remove.Resistor
DeleteCapacitor => Remove.Capacitor
DeleteWire => Remove.Wire
MoveResistor => Move.Resistor
MoveCapacitor => Move.Capacitor
MoveWire => Move.Wire
ChangeResistance => Change.Resistance
ChangeCapacitance => Change.Capacitance
SaveCircuit => Save
DiscardCircuit => Remove.File
LoadCircuit => Load

Figure 2.10 Renamings of Coramands (from [Olsen86])

the type of result that its members return.

Using the interface editor the designer can associate textual prompts, echo and help messages with
commands. Up to this point, the interface that has been created is highly textual in nature, and does not
support quality graphical interaction. Active viewports arc the mechanism that MIKE uses to map visual
objects and behaviors on to its normal command parsing syntax. Viewport definitions consist of layouts
and action expressions attached to viewports.

MIKE uses a hicrarchical system of viewports. Each viewport is uniquely defined by a path riame
from the root of the viewport tree. Within the interface editor, layouts can be attached to certain viewport

names. Layouts consist of graphical primitives and initial placement of subviewports, and can be drawn by

using the interface editor.
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Nil
New
Resistor, Capacitor, Wire
Remove
Resistor, Capacitor, Wire, File
Move
Resistor, Capacitor, Wire
Change .
Resistance, Capacitance
Save
Load
Integer
ResistanceOf, CapacitanceOf
Resistor
Pick
Capacitor
Pick
Connection
Pick
Wire
Pick

Figure 2.11 New Structure of Menus (from [Olsen86])

In order to create a direct-manipulation behavior, action expressions can be attached to viewports.
Each viewport definition is assumed to have attached to it a list of action expressions that defincs how that
viewport is to behave. Whenever the cursor is within a specified viewport and onc of the specified cvents
occurs, the action list for that viewport is scarched for a command expression suitable for exccution.
Action lists can also be used in conjunction with layouts to create iconic menus. Each iconic menu items is

subviewport of the menu viewport and has a layout(which is the icon) and an action expression attached 10

it
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2.6.3. UIDE
The development of UIDE [Foley87a-Foley89] took place at the George Washington University
around the same time as that of our UIMS. UIDE is a high-level conceptual design tool in which the inter-

face is described as a knowledge base consisting of

. the class hicrarchy of objects which exist in the system,
. properties of the objects,

. actions which can be performed on the objects,

. units of information required by the actions,

. and pre- and post-conditions for the actions.

UIDE can algorithmically transform the knowledge base into a number of functionally equivalent inter-
faces, each of which is slightly different from the original interface. The transformed interface definition
can then be input to SUIMS (Simple UIMS) which automatically implements the interface. Figure 2.12
shows the overall organization of UIDE.

The input to UIDE is provided interactively in a language called IDL (Interface Definition
Language). The input design information can be automatically checked by UIDE for consistency and com-
pleteness. Figure 2.13 shows IDL representation of the knowledge base for a simple square-and-triangles
application. Two types of objects - squares and triangles - are subclasses of shape. The auributes of each

object are colour, angle, and position. The objects can be created, deleted, and rotated.

UIDE cnables the designer to apply transformations on the input to produce designs which arc

slightly different from the original design. The following generic design paradigms are supported by UIDE.

. Factoring, special cases of which are creating a selected object, a selected command, and a selected

attribute value.

. Establishing a sclected set as a generalization of the sclected-object concept.
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Figure 2.12 Overall organization of UIDE (from [Foley89.])

. Establishing initial values.
. Specializing and generalizing commands based on object and command hicrarchics, and
J Modifying the scope of some types of commands.

A transformation is a way to precisely specify the alternatives by simply adding or modifying appropriate
pre-conditions and post-conditions or by adding entirely ncw system-defined actions. Figurc 2.14 shows

the set of actions that result when the example of figure 2.13 is transformed to have a sclected set.

The transformed design of figure 2.14 does not prescribe any prescntation style, dialogue syntax, or
set of interaction techniques. To define this information, the designer uses SUIMS. SUIMS lets the
designer define these aspects of the interface and save them for reuse if further ransformations are cflecicd.

Figurc 2.15 shows SUIMS in action.



{object class hicrarchy}

type shope
superclasses: ()
subclasses : (triangle, square)
actions : (create_shape, delete_shape, rotate_shape)
attributes : (position, angle, color)

triangle, square
superclasses : (shape)
subclasses : ()
actions: (create_shape, delete_shape, rotate_shape)
attributes : (position, angle, color)

{auributes types: Max_X and Max_Yare designerdefined constants. Set(N, M)
gives the cardinality for the choice from the set of enumerated values that fol-
lows. The attribute must have a minimum of N and a maximum of M values

chosen from the set.)

color 1 set (1, 1) of (white, gray, black)
angle  : range [0..360] of integer
positon : range [x:(0..Max_X)},y:(0..Max_X)] of integer

{actions on the objects)
initial: number(shape) =0

pre<condition: true
create_shape (obj_type: shape_class, anchor_pt: position, color_value: color,
orientation: angie)
postcondition: number(shape) = number(shape) + 1

pre-condition: number(shape) >0
rotate_shape(obj_type: shape, orientation: angle)
postcondition: none

pre-condition: number(shape) >0
delete_shape (obj_type: shape)
post-condition: number(shape) = number(shape) ~ 1

Figure 2,13 IDL Representation for the Square-And-Triangles Example(from [Foley89])

SUIMS uses both the conceptual knowledge base and an additional knowledge base that describes
the run-time context for both SUIMS and the application. It also has a sct of rules that operate on the
knowledge basc. The SUIMS window frames control the screen layout with both initial and updated set-

tings. SUIMS provides initial settings, window sizes and positions, and the way new windows will be



initial: number(shape) =0
initinl: nunber (CSS_shape) =0 {CSS initially empry.}
initial: number(NSS_shape) =0 {NSS initinlly empiy}

+

+ 4+ + + + 4+ 4+ +

+ +

pre<condition: number(NSS, shape) >0
sclect_shape(ohj_type: shape)
postcondition: number(NSS, shape) = number(NSS, shape) +
number(CSS, shape)
postconditon: number(CSS, shape) = |

pre-condition: number(NSS, shape) >0
add_to_CSS_shape(obj_type: shape)

postcondition: number(CSS, shape) = number(CSS, shape) + 1

postcondition: number(NSS, shape) = number(NSS, shape) - |

pre<condition: number(CSS, shape) >0
remove_from_CSS_shape(obj_type: shape)

postcondition: number(CSS, shape) = number(CSS, shape) - 1

postcondition: number(NSS, shape) = number(NSS, shape) + |

pre-condition: number(CSS, shape) >0
clear_CSS_shape()
postcondition: number(NSS, shape) = number(NSS, shape) +
number(CSS, shape)
[All selected shapes become nonselected shapes.}
postcondition: number(CSS, shape) =0
1Size of the selected set of type shape becomes 0.1

pre-condition: true
create_shape(obj_type: shape_class, anchor_pt: position, color_value:

color, orientation: angle)

postcondition: number(shape) = number(shape) + 1

postcondition: number(NSS, shape) = number(NSS, shape) +
number(CSS, shape)

[When a shape is created, the selected setof type shape, ifany, is descelected,

thus adding members of that set to the nonselected set of type shape.}

postcondition: number(CSS, shape) = |

{Size of the selected set aftera creation action is 1: the newly created shape. |

pre-condition: number(CSS, shape) >0
{To rotate a shape, you must first select it.]
pre-condition: number(shape) >0
rotate_shape (obj_type: shape implicit, orientation: angle)
{The shape to rotate is implicit in the selected set.}
postconditon: none

pre-condition: number(CSS, shape) >0
{To delete a shape, you must first selectit.|
pre-condition: number(shape) >0
delete_shape(obj_type: shape implicit)
{The shape to delete is implicit in the selected set)
postcondition: number{shape) = number(shape) -
post-condition: number(shape) = number(shape) - number(CSS, shape)
{Deletion decreases the total by the number of shapes in the selected set}
postconditon: number(CSS, shape) =0
{The size of the selected set of type shape becomes 0.}

Figure 2.14 The Transformed Specification (from [Foley89))
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added when the user crcates a window. Once the window is created, SUIMS maintains all the changes (size
and position), even if the window is temporarily deleted or made invisible.

SUIMS provides a prefix type syntax in which the command is selected before providing its argu-
ments values, except for arguments that have been factored out by a transformation algorithm and that thus
can be sct globally. The user can change argument values, as long as the command has not been performed
or cancelled.

UIDE also implements a keystroke-analysis tool that automates the Card, Moran and Newell
Keystroke-Level Model {Card80]. This model predicts how much time a skilled user who makes no miis-

takes will take to perform a short task using a given design and set of interaction techniques.

UIDE's help system uses the conceptual design and SUIMS run-time knowledge bases to gerierate
context-sensitive help messages. Two kinds of help are provided: explanation of why a command is dis-
abled and of command semantics. The system’s explanations of why a command is disabled are based on
the unsatisfied pre-conditions for that command. Explanations of what a command does are based on the

command semantics as represented by the command’s post-conditions.

2.7. Shortcomings of Existing UIMSs

As stated in Chapter 1, the major contribution of this thesis is the development of an approach and
mcans 1o help in the design of user interfaces. It was demonstrated in Chapter 1 that it is an important
problem to tackle. This section will show that existing UIMSs do not address this and related problems
adequately.

Consider developing an interface for a geometrical object ¢ditor. This cxample is chosen as it is
widely known, fairly easy to understand, and demonstrates the main points of the discussion. This editor
cnables the user o add, remove, and move two types of geometrical objects, circles and squares, on the
display screen. The objects have variable sizes, The editor also supports a help facility, which when turned

on, provides descriptive messages about the currently selected command.
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SUIMS executing the squares-and-iriangles application, with the angle attri-
bute factored out. The application window contains abject instances and their names.
The command window is used for textual input. The selected action is create_shape;
values for allits parameters are provided, as shown in the Create Shape menu window.
A parameter Orientation (shown inreverse video) has been selected; additionalinforma-
tion foritis at the bottom of the screen explaining that its value is provided by the system
(because the attribute Angle is factored out). Anchor_pt was selected by pointing the
mouse in the application window, thus there is no text in the command window.
Color_value and obj_type are selected from the menus at the bottom of the screen. Con-
firmation is requested, aithough you could provide new values for parameters as long as
neither Cancel nor Confirm has been selected. You can also rearrange the screeniayout
or change selected interaction techniques with the menu in the top right corner.

Figure 2.15 SUIMS in Action (from [Foley89])
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The designer starts off by determining the commands the editor must support. One of the ways the
editor could provide the above functionality is by supporting AddCircle, AddSquare, Remove, Move, Hel-
pOn, HelpOff, and Exit commands. Now the parameters for each command must be determined. The
AddSquare and AddCircle commands have two paramelers each, indicating the location and size of the
object to be placed. The Remove command needs a parameter to identify the object to remove. The Move
command needs two parameters, first identifying the object to move, and the second indicating the new
location of the object. The HelpOn, HelpOff, and Exit commands do not need any explicit parameters from

the uscr.

The next step determines the flow of information between the application and the interface. This can
be represented by input tokens gencrated by the interface and output tokens generated by the application.

The following list of tokens can be used for this purpose:

Input Tokens  Output Tokens

circle drawcircle
square drawsquare
remove erasecircle
move erasesquare
helpon

helpoff

exit

point

At this point the designer determines how the information will be presented to the user and how the
user will_imcracl with the interface to convey his requirements. This can be divided into two parts, first
dealing with the presentation and the second dealing with the dialogue control. In the prescntation part, the
designer determines how the user will select commands and provide parameters, and how the help informa-
tion will be presented. Menus are one way of selecting commands. For this simple interface, the designer
determines the area, and location on the screen where the menu will be located, which is affected by a
number of factors, including the number of commands in the interface, characteristics of the display device,

and user’s preferences. Other issues to consider at this time include background and drawing colours, and
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icons used in the menu,

One of the ways of presenting help information to the user is by using textual messages. The
designer must determine where on the screen to present these messages and how much space should be
rescrved for this facility. The third set of considerations relates to the work arca. Size, location, and

colours must be determined for the work area.

While designing the dialogue control component for the editor the designer is concerned with the
sequence of parameter entry, and sending the information to the application. A number of choices exist at
this point, and the designer chooses the one he finds most appropriate. For the example cditor, prefix is one

possible syntax for parsing commands in the interface.

Now the design of the interface to the application remains to be completed. The designer must deter-

mine how to map the information generated by the interactions on to the application.

After all of the steps mentioned above have been completed by the designer, the impicmentation of
the interface begins. First, the detailed design information must be written in a form acceptable to the
UIMS. Often this information must be provided in a textual notation. The specification of presentation
components includes location, size, and colour of various windows, menus, and other interaction tech-
niques, and other relevant details about these objects. The textual specification of this information is usually
clumsy, unnatural and difficult to modify (sce, for example [Reisner81] and [Shneiderman82] for BNF-
based specification languages for interactive systems). In some UIMSs this detail can be entered graphi-
cally, which is easier and faster than the textual specification. The dialogue control component also nceds
to be specified in a textual notation. This specification includes the syntax of the interaction and calls to the
application routines, and for some UIMSs it looks very much like a program. Figure 2.16 shows the
specification for the example editor in the event notation used in the UofA UIMS. In some UIMSs this can
be specified in visual notations, such as transition networks. To complete the specification, the designer
needs to specify the interface to the application. Often a program is written to implement this part. The

complete specification of the interface is compiled and linked with run-time support routines from the
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UIMS and the application routines to produce a complete system. This system is given to the users for test-
ing and the results are used to modify the interface for a better interaction. Modifying the interface includes
modifying the interface specification and regenerating the interface. This cycle may be repeated a number

of times till a satisfactory interface is produced.

Two important observations can be made on the role and use of UIMS as an aid in developing inter-
faces. First, the UIMS provides litde or no help while designing the interface. This part of the develop-
ment is entirely the responsibility of the interface designer. The designer must determine, without any help
from the UIMS, high level details, such as which interaction techniques to use, as well as low level details,
such as size and location of interaction techniques. The second observation relates to the specification of the
interface. The majority of the UIMSs require detailed specification of the interface to be produced. It takes
a great deal of cffort and time to provide this information, and is error-prone. Often the specificationis ina

cryptic textual notation, which increases the difficulty of use of the UIMS.

These are two key problems associated with existing UIMSs. To alleviate the first problem, the
UIMS must be extended to help in the design of interfaces, which is the aim of this thesis. The second
problem can be solved if the extended UIMS can produce the interface directly from the design it creates or
helps in creating. This means that the designer does not have to write the detailed interface specifications
required by the UIMS. In the UIMS described in this thesis, the design is produced directly in a UIMS-

acceptable specification.



eventhandler ged is
token
point pointE;
circle circleE;
square squarcE;
remove removeE;
move moveE;
exit exitE;
helpon helponE;
helpoff helpoffE;
var
int state = 0, point = 1;
int object, shape, pos;
int hh = -1; /*name of the "help” event handler instance®/
event circleE (
if (hh==-1)state=1;
)
event squareE{
if (hh ==-1) state = 2;

event removeE(
if (hh ==-1) state = 3;

event moveE (
if (hh ==-1) state = 4;

event exitE(
if (hh ==-1) stop(Q);

event helponE (
if (hh ==-1){
hh = create_instance (help, 0, NULL);
send_event (hh, helponE, 0);
}

}
event helopoffE(

if ¢hh !=-1)(
destroy_instance (hh);
hh=-1;
)
}

Figurc 2.16 Event Based Specification of the Dialogue Control Component
(continucd on ncxt page)
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event pointE(
swilch (state)(
case 1: if (point == 1){
pos.x1 = event_value->x;
pos.yl = event_value->y;
point=2;
} else {
pos.x2 = event_value->x;
pos.y2 = event_value->y;
send_token (PRESENTATION, 1, drawcirc, pos);
send_token (APPLICATION, 1, drawcirc, pos);
point=1;
}
break;
case 2: if (point == 1){
pos.x1 = event_value->x;
pos.yl = event_value->y;
point=2;
} else {
pos.x2 = event_value->x;
pos.y2 = event_value->y;
send_token (PRESENTATION, 1, drawsq, pos);
send_token (APPLICATION, 1, drawsq, pos);
point=1;
)
break;
case 3: send_token (APPLICATION, 1, erase, event_value);
break;
case 4: send_token (APPLICATION, 1, erase, event_value);
break;
case 5: shape = object->type;
if (shape == 1) send_token (PRESENTATION, 1, erasecirc, object);
else if (shape == 2) send_token (PRESENTATION, 1, erasesg, object);
objcct = event_value;
if (shape == 1) send_token (PRESENTATION, 1, drawcirc, object);
else if (shape == 2) send_token (PRESENTATION, 1, drawsq, object);
state = 4;
break;

Figure 2.16 Event Based Specification of the Dialogue Control Component
(continued from previous page, continued on next page)




event craseE(
if (shape == 3){
shape = event_value->type;
if (shape == 1) send_token (PRESENTATION, 1, crasccirc, cvent_valuc);
clsc if (shape == 2) send_token (PRESENTATION, 1, crasesq, cvent_value);

if (state == 4)(
object = event_value;
state = 5;

)

}
end ged;

eventhandler help is

token
circle circleE;
square squarcE;
remove removceE;
movc movcE;
exit exitE;
helpon helponE;

event circleE
display_message (circle_cmd);

event squarcE{
display_message (square_cmd);

event removeE(

display_message (remove_cmd);
)
avent moveE {

display_message (move_cmd);

event exitE (
display_message (exit_cmd);

event helponE {

display_message (help_cmd);
}

Figure 2.16 Event Based Specification of the Dialogue Control Component
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2.8. Chapter Summary

To remove the confusion because of non-standard terminology used in the user interface literature,
erms used in this thesis have been defined. The motivation and advantages of using UIMSs have been
described. A brief history of UIMSs has been presented, followed by a descriptive structure of UIMSs
cmphasizing the design phase of user interface development. This structure provides a framework for
organizing new UIMSs.

A survey of UIMSs has been presented. The discussion is divided into vartous groups based on the
main description technique used by the UIMS. Two existing UIMSs, the UofA UIMS and MIKE, that
represcnt the current state of the art in the issues they address were discussed. Finally, two key limitations
of cxisting UIMSs were discussed: their inability to help in the design phase, and the need for detailed
interface specifications.

The next chapter proposes a solution to the problems associated with existing UIMSs. An overview
of the tools built to implement this approach is provided. The remainder of the thesis describes these tools

in detail and shows how to use the tools to build interfaces.



Chapter 3

Overview and Extended Example

This chapter describes the basic approach followed to address the inability of cxisting UIMSs 10
assist in the initial design of graphical user interfaces. An overview of the UIMS based on this approach is
provided, and how various pieces of this system fit together is discussed. These picces are then discussed

in detail in the following chapters.

In order to demonstrate how to create graphical interfaces using this UIMS, this chapter provides a

detailed example of exactly how an interface for a three-dimensional skeleton editing system is created.

3.1, The Approach

To overcome the inability of existing UIMSs to help in the design of user interfaces, we have
developed an approach in which the initial design of the interface is automatically produced and imple-
mented. This initial interface can then be successively refined. Many existing UIMSs follow a similar
approach in which the initial design produced by the interface designer is implemented by using the UIMS,
and successively refined by the designer. Our approach is different in that the initial design is produced by

the UIMS,

This approach enables the interface designer to work at a higher level of abstraction without worrying
about how the interface will be organized and produced. The designer is mainly concermned with the func-
tionality of the application, and produces a high-lcvel description of the commands supported by the appli-
cation, which includes the names and arguments of commands in the interface. From this description and
some additional information about the devices and the end-user of the application, lexical and syntactic
design of the interface is automatically produced and implemented. This initial interface can then be

improved by the interface designer to increase its usability.
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Two important observations can be mads on this approach. First, by elimirating the need for the
interface designer to produce the lexical and syntactic design, it enables him or her to concentrate on the
conceptual and semantic design of the interface. The extra effort devoted to the conceptual and semantic
design should result in better interfaces as this part of the design deals with the facilities provided to the
uscr.

The second obscrvation relates to the specification of the design for the UIMS. The majority of exist-
ing UIMSs require a detailed specification of the interface to be produced. This specification for a non-
wivial user interface tends to be quite large, and hence difficult to produce and crror-pronc. In our
approach, since the design is handled by the UIMS, the specification is produced directly in a UIMS-
acceptable form, This eliminates the need for the interface designer to convert the design into a special

specification for the UIMS, thus substantially reducing the time required and chance of error.

3.2. The System

A UIMS based on the above approach has been developed and an overview of it is presented in this

scction.

3.2.1. The Designer’s Interface

The components that make up the input to the UIMS are:

1.  high-level description of commands supported by the application,
2. characteristics of the device on which the interface is to be implemented, and
3. end-user’s preferences.

The last part of the input, namely the end-user’s preferences is optional and may be omitted from the
input altogether. Based on these inputs the UIMS determines the details of the presentation and dialogue
control components of the interface, and produces an implementation of it. The designer then adds the

information regarding the application output to the presentation component and provides the routines
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implementing the application interface and application semantics to complete the system.

The default interface produced by the UIMS can be refincd by the interface designer. Ofien the
refinement involves associating icons with command names, and moving and/or resizing objects on the
display screen. The refinements are performed by using an interactive facility. This facility cnables the
designer to see the effects of refinements without delay and also enables him or her 10 interact with the

interface under development.

Device [ Users Command
Description Preferences Description
(from Library) | (Optional)

Designer

Dialogue

User <¢——| Presentation |« ® Control

Figure 3.1 Flow of Information within the UIMS

The flow of information within the UIMS is shown in figure 3.1. An overview of various parts of the

UIMS is provided later in this section.
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3.2.2. Design Principles

One of the chief design goals of our UIMS was that it should enable the interface designer to produce
a working prototype of the interface quickly, and enable the designer to refine it. From the interface
designer's point of view this translates into being able to produce an implementation of the interface from a
minimum amount of detail, and being able to add additional detail afterwards. To realize this goal, the
UIMS expects the designer to provide a very high-level description of the commands supported by the
application and a bricf description of the device on which the interface is to be implemented. From this
description the UIMS designs and implements the presentation and dialogue control components of the
interface. Tt is uscful to note that the device descriptions for a number of devices can be created once, and
the relevant descriptions from this sct provided to the UIMS. So the only input the designer must produce
afresh is the high-level description of commands supported by the application. The UIMS enables the
designer (o interact with the interface without having to provide the routines implementing the semantics of

the application. This facilitates the parallel development of the application and its interface.

Another design goal of the UIMS was to increase the ease of exploring different alternatives in inter-
face design. The UIMS enables the interface designer to quickly produce different interfaces for the same
application. This is achieved by changing the parameters which control the behavior of the UIMS. The
designer can not only produce interfaces which look and behave different from each other, he can keep the
look the same and change the behavior and vice-versa. This leads to two advantages. First, it greatly
increases the number of prototypes that can be built. Second, it reduces the time required for creating pro-

lotypes.

Onc of the important design decisions involved in building the UIMS was the issue of interface
designer control versus the UIMS designer control. Many UIMSs impose strict style rules on the interfaces
they produce. This considerably restricts the designer’s freedom and hence leads to the creation of unsatis-
factory user interfaces. We have devoted special attention to allowing the designer to control macro as well

micro level behavior of the UIMS. To achieve this the UIMS uses a number of parameters which



determine the behavior of the UIMS. The designer can change the valucs of these parameters and control
the behavior of the UIMS. When the designer does not assign any valuc to these parameters, defoult values
are used. The interface designer’s control of the UIMS is not without its cost in terms of speed of the
UIMS. By using parameters, instcad of hard-coded options, the UIMS has to sacrifice some speed, but the

benefits outweigh the cost in this case.

The next important design decision was the ease of use of the UIMS. Many UIMSs require detailed
"design specifications before the interface can be constructed. Producing this specification is ofien crror-
prone and ume consuming. We have eliminated this requirement from our UIMS. The UIMS converts
high-level description of the commands directly into the interface. After the initial interface is gencrated
the refinements are performed by using a graphical facility. This facility enables the designer to use graphi-
cal techniques to refine graphical presentation componenis and sce the effects of the refinements without

delay. More details about how this is achieved are provided in chapter 6.

3.2.3. Overview of the UIMS

The complete UIMS can be divided into four distinct but inter-related subsystems. Each of these
subsystems performs a well defined function and interfaces with other subsystems through a well defined
interface. The subsystems that make up the UIMS are: Diction, Chisel, vu, and the Run-Time Support.
Figure 3.1 shows how the first three of these subsystems relate to cach other in the UIMS. The Run-Time
Support subsystem provides support routines for the interfaces created by using the UIMS. An overview of

the subsystems is provided in the following scctions. Each of these subsystems is discussed in detail in the

following chapters.
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3.2.3.1. Diction

Diction is mainly responsible for producing the dialogue control component of user interfaces and a
part of the input for Chisel. It accepts a high-level description of commands in the application, and pro-
duces a file which contains procedures (called event handlers) for implementing the dialogue control com-
ponent. These procedures are produced in a special C-based language, called Event Language. A special
asscmbler converts the programs in the Event Language into programs in the C programming language.
The sccond part of Diction’s output forms the input for Chisel. This is a lisp procedure and contains infor-

mation for creating the presentation components,

3.2.3.2. Chisel

Chiscl is responsible for designing graphical presentation components for user interfaces. It accepts
as inputs a file of dialogue rcquirements produced by Diction, a file containing description of the device on
which the interface will be implemented, and a file containing user's preferences. The last part of the input
is optional, and may be omitted from the input altogether. From this input it produces design information

(an ASCII file) for presentation components which can be refined by using its companion system vu.

3.23.3. vu

Vu is used for refining the presentation components designed by Chisel. It provides dircct manipula-
tion facilitics for editing graphical information and shows the effect of changes made by the interface
designer without delay. Vu also provides facilities for rehearsing or simulating the interface. The input of
vu is the design information produced by Chisel and its output includes a database which is used at applica-
tion run-time to generate the presentation component and two token definition files which provide the inter-

face betwecn the presentation component and the other parts of the system.



3.2.3.4. Run-Time Support

The run-time support subsystem is responsible for managing the communication between the user
and the application, and among various components of the user interface. Figure 3.2 shows how this com-
munication is managed. At run-time, the user of the application is not aware of the presence of this com-

ponent.

3

RO 2R

ﬁﬁn-'l'ime -
Support /.

BB

: Dialogue Application .
User 4—" Presentation Control terface Application

Figure 3.2 Communication at Run-Time

22 ¥
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3.2.4. Implementation

The UIMS has been implemented on a VAX-11/780 running UNIXt 4.3BSD. The primary graphical
device used for testing the UIMS has been AED-767 colour graphics terminal equipped with a keyboard
and a four-button tablet. The subsystem Diction is written in Lex [Lesk75] and Yacc [Johnson75]. Chiscl
is written in Franz-Lisp, whereas Vu and the run-time support subsystems are written in the C programming
language. Vu uses a window-based graphics package called WINDLIB [Green84a) and a graphical data-

base package called FDB (Frame Database) [Green83].

+ Registered trademark of AT&T in the USA and other countrics.
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3.3. Detailed Example

The best way to demonstrate how designers use our UIMS is through an example. This section
presents the sequence of steps that a designer might perform to creaie an interface for a three-dimensional
skeleton editing application. There are a number of reasons for selecting this example. The first being that
it represents a non-trivial functionality. The second reason being that it is different from the "canonical”
example of paint programs, which has been used for such a long time to demonstrate the capabilities of
UIMSs (see c.g. [Green84b), [Olsen86], [Foley87al, and [Hill86]), that it has almost become a drag 1o
read. The third reason being that it shows that the UIMS is being used to create interfaces for various pro-
jects in our department. The implementation of the skeleton editing system is used by the animation

research group in the department.

The main purpose of this program is to enable the user to interactively enter and edit the skeleton of
an arbitrary character. The skeletons created by this program are used to drive the dynamics routincs
developed by Armstrong and Green [Armstrong85a, Armstrong85b]. The dynamics software views the
character to be animated as a tree of limbs. Each limb in the trce has length, mass, center of mass, rotation
matrix, and other dynamics parameters. The skeleton editing program ailows the user to enter the limbs in
the skeleton. This includes identifying the root of the skeleton and how the limbs are connected. This pro-

gram also allows the user to enter and edit the parameters associated with the limb.

The main function of the program can be divided into two sub-functions: entering skeleton informa-
tion, and cditing skeleton information. The enter skeleton sub-function can be divided into a number of
smaller functions. The first function the user must perform when entering skeleton information is to choose
the root for the skeleton. This is the three-dimensional position that the tree defining the skelcton is
attached to. Once the root has been defined, the user can start entering the topology of the skeleton. The
topology covers how the limbs are connected to cach other and not the positions of the limbs. For each
limb its length, mass, and center of mass must be specified. The length of a limb is a real number that indi-

cates how long the limb is in some unit of measure. The mass of the limb, a real number, indicates how
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heavy the limb is in some unit of measure. The center of mass is a fraction that indicates the distance along
the limb where the center of mass is located. At this point the use: can specify the initial orientation of the
limbs. This orientation is defined in terms of bend and rotate angles which give the orientation of the limb
with respect to its proximal joint. If both bend and rotation angles are zero the limb is assumed to be

oricnted vertically with its distal link below its proximal link.

One of the important parameters associated with cach limb is its torque function. The torque function
determines the natural range of motion for the joint at the proximal end of the limb. This function gives the
torque applied to the joint (by the animation system) as a function of the angle the limb makes with its

parent. The user needs some mechanism for assigning these functions to limbs.

The other main sub-function is editing skcleton information. This sub-function involves changing
any of the information that was entered in the enter skeleton sub-function. The functions in this sub-
function are based on the functions in the enter skeleton sub-function. We need the ability to change the
root position, At any point in time there must be onc and only one root position. Therefore, we do not
need functions to remove and add root positions. For the topology information we nced the ability to re-
arrange the limbs in the skeleton. This gives rise to add, remove, and move functions for limbs. When a
limb is removed or moved all its children are similarly affected. The other parameters associated with the
limb and its children remain unaffected. We also need the ability to change the values of length, mass,
center of mass, and torque function for a limb. In addition to these functions, we will nced a funciion to
display the current values of length, mass, center of mass, torque function, bend angle, and rotation angle

for a limb.

The two main sub-functions, enter skeleton and edit skeleton can now be combined to produce the
complete task decomposition for the skeleton editing program. Figure 3.3 shows the list of functions that

must be supported by this program.

A number of arguments used in the commands can be assigned maximum and minimum values. The

center of mass is the simplest to handle, it ranges from 0.0 to 1.0. Typical maximum and minimum valucs
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Change_Root (position)

Add_Limb (parent_limb, mass, length, cofm, bend, rotate, torque)
Remove_Limb (limb)

Move_Limb (limb, new_parent)

Show_Auttributes (limb)

Change_Orientation (limb, new_rotation, new_bend)
Change_Length (limb, new_length)

Change_Mass (limb, new_mass)

Change_Cofm (limb, new_cofm)

Change_Torque (limb, new_torque)

Save()

Load()

Exit)

Figure 3.3 Commands in the Skeleton Editing Program

for length and mass can be used to limit the range of values for these arguments. For this program, assume
that the length can vary from 1.0 to 5.0, and mass can vary from 1.0 to 20.0. We can also use a library of
torque functions that can be assigned to limbs. The names of these functions can be provided to the user for
sclection, Since we are dealing with three-dimensional structures, we need some way of cniering three-
dimensional data and picking three-dimensional objects. We also need some place for showing autribute

values for limbs. We can rewrite the command description for this system as shown in figure 3.4.

The device for implementing this system is AED-767. The device description for AED-767 can be
selected from the library of device descriptions and provided to the UIMS. The description for this device
is shown in figure 3.5. At this point we have sufficient information for producing the interface. The
(default) interface produced by the UIMS will allow the uscr to select commands and provide argnment
values for the commands through graphical interaction techniques. This interface parses commands in the
prefix mode in which the command is sclected before entering argument values. The sclected command in
this interface remains active until another command is sclected, and all argument values must be provided

afresh each time a command is exccuted. Clearly, a number of improvements can be made in this interface,
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/* declare global arguments. Center of Mass (COFM), length of the limb (LENGTH)
and mass of the limb (MASS) are subranges of real numbers, whereas band
(BEND) and rotation (ROTATE) angles are subranges of integers.

TORQUE represents a list of torque functions that the uscr can assign to limbs.
LIMB is an interaction technique which implements a 3-dimensional pick.
The INFO window is used to display limb attributes. ¥/

COFM =[0.0:1.0]

LENGTH=[1.0:5.0]

MASS ={1.0:20.0]

BEND = [0: 360]

ROTATE = [0: 360]

TORQUE = (TorqueFunc1 TorqueFunc2 TorqueFunc3 TorqueFuncd
TorqueFunc5 TorgueFunc6)

LIMB = pick3d;

INFO = window;

/* The commands are declared as follows. Command name is optionaly
followed by the syntax type, and the sclection type of the command.
After this come the argument declarations. For cach argument its
type, range or enumerations, if any, and default value, if any, is
specified. In the following declarations none of the commands specifics
syntax or selection type. */

Change_Root (position : LIMB)
Add_Limb (parent_limb : LIMB, mass : MASS,
length : LENGTH, cofm : COFM, bend : BEND,
rotate : ROTATE, torque : TORQUE )
Remove_Limb (limb : LIMB)
Move_Limb (limb : LIMB, new_parent : LIMB)
Show_Attributes (limb : LIMB)
Change_Orientation (limb : LIMB, new_rotation : ROTATE, new_bend : BEND)
Change_Length (limb : LIMB, new_length : LENGTH)
Change_Mass (limb : LIMB, new_mass : MASS)
Change_Cofm (limb : LIMB, new_cofm : COFM)
Change_Torque (limb : LIMB, new_torque : TORQUE)
Save()
Load()
Exit()

Figure 3.4 Command Description
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(dcfun define-device Q
(scrcen 768 :x resolution

565 ;y resolution

8 isize of achar in x
12 sizeof achariny
64 ;pixcls/inch

’yes)  scolour?

(input-devices ’(mouse))

(colour 'red 255 0 0)
(colour "green 0 255 0)
(colour ’blue 0 0 255)
(colour "white 255 255 255)
(colour ’black 0 0 0)

(colour ’grey 128 128 128)

Figure 3.5 Device Description for AED-767

The first improvement can be made in entering argument values. For example, for the Add_Limb com-
mand we can use current values of length, mass, center of mass, and torque function. What this means is
that to add a limb in the skeleton the user must provide only the parent limb value, the rest of the arguments
assume the currently sclected values from their respective interaction techniques. The second improvement
can be made in the command selection. We do not want all commands to work in the close-ended mode.
The Add_Limb, Remove_Limb, Move_Limb, Show_Attributes, Change_Orientation, Change_Length,
Change_Mass, Change_Cofm, and Change_Torque commands should be open_ended, i.e. the sclected
command should be active till another command is selected. Figure 3.6 shows the description for this inter-

facc after making the above improvements. Let us name the file containing this description as “skeleton”.

For this example we will skip the user’s preferences part, and produce the interface with defaults (we

will come back to this later). Figure 3.7 shows the steps performed in producing the complete system. The
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COFM =[0.0: 1.0]

LENGTH=[1.0:5.0]

MASS ={1.0:20.0]

BEND = [0: 360]

ROTATE = [0: 360]

TORQUE = (TorqueFunc1 TorqueFunc2 TorqueFunc3 TorqueFunc4
TorqueFunc5 TorqueFunc6)

LIMB = pick3d;

INFO = window;

Change_Root (position : LIMB)
Add_Limb {OPEN_ENDED) (parcnt_limb : LIMB, mass : MASS (CSV],
length : LENGTH (CSV}, cofm : COFM {CSV},
bend : BEND {CSV}, rotate : ROTATE (CSV},
torque : TORQUE)
Remove_Limb {OPEN_ENDED]} (limb : LIMB)
Move_Limb {OPEN_ENDED] (limb : LIMB, ncw_parent : LIMB)
Show_Attributes {OPEN_ENDED] (limb : LIMB)
Change_Orientation {OPEN_ENDED} (limb : LIMB,
new_rotation : ROTATE, new_bend : BEND)
Change_Length {OPEN_ENDED)] (limb : LIMB, new_length : LENGTH)
Change_Mass {OPEN_ENDED)] (limb : LIMB, new_mass : MASS)
Change_Cofm {OPEN_ENDED)] (limb : LIMB, ncw_cofm : COFM)
Change_Torque {OPEN_ENDED)] (limb : LIMB, new_torque : TORQUE)
Save ()
Load
ExitQ

Figure 3.6 Revised Command Description (skeleton)

first step is to use Diction to produce event handlers for the dialogue control component and the input for
Chisel. The description shown in figure 3.6 is input to Diction, and Diction’s output is two ASCII files.

The first file implements the dialogue control component and the second file contains the input for Chiscl.

In the next step Chisel is used to design the presentation component. To do so we need to provide it
with two inputs: the file produced by Diction, and the device description for AED-767. The output of

Chiscl is an ASCII file containing design information (called "design_file") for the presentation component.

We now use vu to refine the design produced by Chisel and add the output tken information 1o it.
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AED-767
description

skeleton.]

skeleton

token def
files
presentation generated
database Ccode Run-Time
routines
compile & ]
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Figure 3.7 Producing the Example Interface
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Figure 3.8 Vu Containing the Default Design

The display screen of vu containing the design before refining is shown in figure 3.8. Let us first add the
output token information to the presentation component. Table 3.1 shows the token and display procedure
names for the example. The window for the skeleton display (LIMB) will receive two output tokens. The
first token (SKL) is uscd for adding new limbs to the skeleton and the second 1oken (DEL) is used for delet-
ing existing limbs from the skelcton. We also need display procedures which transform these tokens into
images. We need onc output token (INF) and a display procedure (Show) for the window (INFO) which
displays limb attributes. The output tokens are associated by selecting the output tokens command from the

vu menu and typing in the token and display procedure names.



Table 3.1 Output Tokens

Window | Token Name | Display Procedure
LIMB SKL Display

LIMB DEL Delete

INFO INF Show

We can refine the interface shown in figure 3.8 by moving and resizing objects on the screen. This is
done by using dircct-manipulation techniques supported by vu. The presentation component after refining
is shown in figure 3.9. When we save this design, vu produces a database describing the presentation com-
ponent and two ASCII files containing the input and output token definitions. The database is used at the
application run-time to gencrate the presentation component, and the token definition files provide an inter-

face between the presentation component and other parts of the system.

At this point we have completed the production of the presentation component. The dialogue control
component is still in the event notation. This is converted into procedures in the C programming language
by using an assembler. We can now compile the generated code, and produce the complete system by load-

ing the application and run-time routines with it.

Figure 3.10 shows the completed system in action. The window across the bottom of the screen pro-
vides help messages about the commands in the interface. When the user selects a command the system
prints messages explaining the command and its arguments. These help messages are automatically pro-
duced by the UIMS and serve the purpose of reminding the user about how the commands work and their
argument requirements. The help facility can be turned off by selecting the Help Off button. It is possible
to run the system without the help facility. By typing the -h flag when starting the system, the user can dis-
able this facility for the complete session. In this case the system allocates the complete screen to the appli-

cation.

Let us now sce how this interface behaves as the user interacts with it. ' When the user sclects the

Change_Origin command from the command menu, the system highlights the command and prints a help
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Figure 3.9 Vu Containing the Refined Design

message in the help window. The only argument needed for this command is the three-dimensional point
denoting the root of the skeleton. To enter this argument, the user intcracts with the interaction technigque
which implements three-dimensional pick. After the user has entered this argument, the run-time support
subsystem informs the application to execute the command, and since the command selection is closc-
ended, the support system deactivates the command automatically. What actually happens in the run-time
system is explained in the following chapters of this thesis. To add limbs in the skeleton the user sclects
the Add_Limb command. This command has several arguments, but the only argument value the user must
provide is the parent_limb. Other argrments assume the current values of the interaction techniques they
are ticd t0. Of course, the user can change these values as well as providing the value for the parent limb.

The parent limb is the identifier of a limb in the skeleton. The inicmaction technique implementing three-
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Figure 3.10 Completed Interface

dimensional pick makes it possible for the user to pick limbs by using a two dimensional mouse. It
displays three orthogonal views (side, front, and top) of the skeleton. The user can pick limbs from these
vicws, and send the value when the proper limb is selected. The interaction technique helps in performing
the pick operation by highlighting currently picked objects. When the uscrs sends the parent_limb value
the run-time system asks the application to execute the Add_Limb command. The gpplication updates its
data structures and sends an output token to the presentation component to display it. The run-time system
determines the appropriate window and display procedure for this token, and executes the display pro-
cedure. This display procedure updates the display in the skeleton display window. Since Add_Limb was
specified as an open-cnded command, it remains active, and the user can enter as many limbs as he or she

wants without having to reselect the command.
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The Delete_Limb command deletes limbs from the skeleton. This command needs the limb to be
deleted as its argument, which is entered in the same way as the parent_limb argument for the Add_Limb
command. The application in this case sends a different output token to the presentation component. The
display procedure for this token erases the limb and all its children from the display. Since the command is
close-ended, it is de-selected after execution. The Move_Limb command moves the selected commnand to a

new parent. The children of the moved limb follow it.

The argument for the Show_Attributes command is entered in the same way as for the Delete_Limb.
The difference is in the effect of the command on the display. The command in this case causes the attri-

butes of the selected limb to be displayed in the window reserved for this purpose.

The Change_Length command needs the limb and new_length as arguments. Both the arguments
must be entered. The Change_Mass and Change_Cofm commands also work in a similar way. The Save
command does not requirc any arguments. When the user sclects this command the dialogue control com-
ponent asks the application to execute the command. The application saves the skeleton information in the
application databasc. The command is de-selected after execution. The Load command loads the skelcton

information from the application database. The Exit command causes the system (0 stop.

3.3.1. Producing Other Variants

In the previous section we created an interface for the threc-iincensiinal skeleton editing system.
With a little extra effort a number of variants of this interface can be produced. There are two ways of pro-
ducing variants of this interface. First, we can kecp one of the componcnts the same and change the other.
Second. = can produces new interfaces from scratch which differ from the one we created carlicr in both

the presentation and the dialogue.

Let us first keep the presentation the same and change the dialogue control. We can change the pars-
ing sequence and Lhe selection mode of commands, and the command argument specification. For exam-

ple, let us change the Change_Length command to accept the currently selected value of Length, The com-
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COFM =[0.0: 1.0]

LENGTH =[1.0:5.0]

MASS =[1.0:20.0]

BEND = [0: 360]

ROTATE = [0: 360]

TORQUE = (TorqueFunc1 TorqueFunc2 TorqueFunc3 TorqueFuncé
TorqueFunc$ TorqueFunc6)

LIMB = pick3d;

INFO = window;

Change_Root (position : LIMB)
Add_Limb {OPEN_ENDED) (parent_limb : LIMB, mass : MASS {CSV},
length : LENGTH {CSV}, cofm : COFM {CSV],
bend : BEND (CSV}, rotate : ROTATE {CSV}, -
torque : TORQUE)
Remove_Limb {OPEN_ENDED] (limb : LIMB)
Move_Limb {OPEN_ENDED]} (limb : LIMB, new_parent : LIMB)
Show_Attributes {OPEN_ENDED} (limb : LIMB)
Change_Orientation {OPEN_ENDED} (limb : LIMB,
new_rotation : ROTATE, new_bend : BEND)
Change_Length {OPEN,_ENDED] (limb : LIMB, new_length : LENGTH (CSV})
Change_Mass {OPEN_ENDED} (limb : LIMB, new_mass : MASS)
Change_Cofm {OPEN_ENDED)] (limb : LIMB, new_cofm : COFM)
Change_Torque {OPEN_ENDED]} (limb : LIMB, new_torque : TORQUE)
Save ()
Load
Exit Q)

Figure 3.11 Modified Change_Length

mand specification for the modified interface is shown in figure 3.11. We can now produce the new dialo-
guc control component by using Diction and then assembling and compiling the generated programs. The
presentation component necd not be generated again in this case. This saves us the time we devoted to
creating and refining the presentation component. A number of variants of the interface can be produced

and tested in this way, and the one which feels most natural can be kept.

The presentation component can be changed in two ways. The first way is to change the presentation

component by using vu. The designer might want to move interaction techniques to different places on
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screen, and change their sizes or colours. In this case the designer makes the changes by using vu, saves
the database, and runs the system with the new database. There is 1o nced to recompile the system again,
as no additional code has been produced. If the new version of the presentation component contains new
output tokens and display procedures, the system must be relinked to load new display procedures. The
second way of producing new variants of the presentation components is by changing the defaults assumed
by Chisel. For example, if the user prefers command menus along the left side of the screen, the designer
can produce the user’s preferences file and get Chiscl to produce a new prescntation component. This
design can be refined by using vu, and a new version of the system produced without a major recompile,
The dialogue control component of the system remains same, the only thing that has changed is the data-

base which contains the presentation component description.

In cases where changes in the dialogue control componert affcct changes in the presentation com-
ponent, the complete interface must be produced from the beginning, Cases where this may be necessary
include addition of new commands in the interface: and addition of new arguments in commands. Such a

change is usually required when the conceptual and semantic design of the interface changes.

3.4. Chapter Summary

This chapter has described the approach foliowed in this thesis to overcome the inability of UIMSs to
help in the design of uscr interfaces, and provided an overview of the UIMS bascd on this approach, A
bricf introduction to subsystems of this UIMS has been provided. These subsystems are cxplained in

greater detait in the following chapters.

A detailed description of exactly how an interface for a three-dimensional skeleton cditing applica-

tior: can be created has been provided. Methods of producing variants of this interface were also discussed.



Chapter 4

Designing the Dialogue Control Component

To create a user interface for an application using our UIMS, the interface designer first produces a
high-level description of the commands supported by the application, and then uses Diction to generate the
dialogue control component of the interface. The output of Diction consists of program modulcs, called
cvent handlers, which implement the dialogue control. In addition to producing the event handlers for
dialogue control, Diction produces a part of the input for Chisel, which is used for designing presentation
components.

In this chapter, the design and implementation of Diction is presented. How event handlers imple-
ment the dialogue control is discussed. A number of examples are used to show how interface designers

use Diction to produce dialogue control components.

4.1. Diction

The main responsibility of Diction is to produce dialogue control compenents for user interfaces. Its
sccondary responsibility is to produce input for Chisel, which is used for designing presentation com-

ponents for user interfaces (see figure 3.1 in chapter 3). In this section an overview of Diction is presented.

4.1.1. Design Principles

The chief design goal of Diction was that it should be able to handle a variety of syntaxes. Diction
cnables the interface designer to implement prefix, postfix, and nofix {or free-form) types of dialogues. For

a command of ¢.> form
command (argl, arg2)

the prefix syntax means that the command must be selected before the arguments are selected. The

70
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arguments could be t..ccted in an arbitrary sequence. In the case of a postfix command, arguments must be
selected before the command is selected. The nofix syntax means following the prefix, postfix, or any arbi-

trary sequence for selecting the arguments and the command.

Diction also enables the designer to implement individual commands in the interface in open-ended
or close-ended fashion. Open-ended commands accept an arbitrary number of complet: arguments. For
example, an interface could support an Add-Object command which, once sclected, allows multiple objects
10 be added, one after the other, until another command is selected. A typical input scquence for the above
command would be

command
argl arg2
argl arg2
argl arg2

commandl
args

Diction also cnables the interface designer to use default and initial values for command arguments.
There is no apparent difference in default and initial values in grerhical user interfaces. We put the follow-
ing restrictions on the arguments. Only globally declared arguments can have initial values. Such argu-
ments are set to their initial values when the interface is first startcd. The user can change the argument
values through interaction with the interface. The arguments which are not global (hence, are command or
local level) can have default values. The value of such an argument is set to its default value every time the
command containing the argument is selected. This argument valuc can also be changed by the user. The
difference between the use of default and initial values is that initial values are sct just once, when the inter-
face is initialized, whereas the default values arc set every time the command containing the default argu-

ments is sclected.

The second major design goal of Diction was that it should facilitate rapid prototyping of interfaccs.
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This means that it should cnable the designer to produce a number of variants of an interface without much
additional effort. In Diction, the designer can produce interfaces which are different from each other by
changing the global parameters of Diction, or by changing command-level parameters. The macro as well

as micro level behavior of the interface can easily be controlled by the interface designer.

The third design goal of Diction was that it should be easy to use. Unlike a number of existing
UIMSs, Diction does not require detailed specifications to produce the dialogue control components. It
accepts a high-level specification of commands and converts the specification into program modules which
implement the dialogue control. Even though the command description is at a much higher level than in

many UIMSs, it cnables the designer to control the interface behavior to a very low level.

Another design goal of Diction was that it should expedite the production of user interfaces by
automating many of the time-consuming activities. One of the ways Diction achieves this is by automati-
cally producing help messages from the command descriptions provided by the designer. The help infor-
mation produced by Diction explains the syntactic structure of the command and reminds users about the

arguments of commands.

4.1.2. Input of Diction

The input of Diction is an ASCII file containing a high-level description of commands supported by
the application. This description can be divided into three parts. The first part is optional, and may contain
a declaration of parsing sequence and selection type to be applied to commands. The parsing sequence can
be one of PREFIX, POSTFIX, and NOFIX. The selection type can be either OPEN_ENDED or
CLOSE_ENDED. In the absence of this declaration, Diction assumes default values for parsing sequence,

which is PREFIX, and for sclection type, which is CLOSE_ENDED.

The second part of the description contains a declaration of all the global arguments used by the com-
mands. For cach argument its name, type, and if applicable, range or enumerations and initial value are

specified.
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The third, and the last part of the description contains a declaration of commands supported by the
application. For each command, the description includes its name, optionally followed by its parsing
sequence and selection type, followed by argument declarations. The parsing scquence and selection type
may take the valucs described above. The declarations made here override the declarations made in the first
part of _the input. If a command does not declare its parsing scquence and sclection type, the global (or
default) values are used. For each argument in a command, its name followed by type, and if applicable,
range or enumerations and défault value are specified. A command may have a variable number of argu-

ments.

‘A BNF (Backus-Naur Form) description of the input to Diction is provided in Appendix Al.

4,1.3. Output of Diction

The output of Dictica consists of two parts. The first part contains program modules which imple-
ment the dialogue control component of the user interface, whercas the sccond part contains information
which is used by Chisel for designing graphical presentation components. Details of the output of Diction

are presented in the rest of this chapter.

4.2, The Dialogue Control Component

The dialogue control components produced by Diction consist of program modules called event
handlers. The complete dialogue control component consists of a number of event handlers, and cach cvent
handler is responsible for one well defined function. For example, an event handler may be responsible for
parsing a particular command or for generating help messages. Diction produces onc cvent handler per
command, which is responsible for handling default values for the command arguments, parsing the com-
mand, notifying the presentation component when errors occur, and notifying the application when the
command is successfully parsed. In addition to producing event handlers for commands, Diction produces
wwo event handlers responsible for house-keeping and producing help information for commands. The

details of how event handlers implement the dialogue control are provided later in this chapter.
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4.2.1. The Event Model

The event handlers are used in the event model for describing dialogue control componentst. This
model is based on the concept of input evenis that is found in a number of graphics packages. In these
packages the input devices are viewed as a source of events. Each input device generates one or more
events when the user interacts with it. An cvent has an identifier and a number of data values associated
with it. The events generated by the devices are placed on a queue, and the application program removes

the events one at a time from the queue and processes them.

The event model is an extension of this basic idea. In the event model, there is an arbitrary number
of cvent types, which can be generated by the input devices or inside of the dialogue control component.
When an event is generated, it is sent to one or more event handlers. An event handler is a process (defined
by a procedure or module) that is capable of processing certain types of events. When an event handler
receives one of the events it can process, it executes a procedure. This procedure can perform some compu-
wation, generate new cvents, call application procedures, create new event handlers, or destroy existing

cvent handlers.

The behavior of an event handler is defined by a template. A ‘emplate consists of several sections
that define the parameters to the event handler, its local variables, the events it can process, and the pro-
cedures used to process these events, When an event handler is created, its template must be specified,
along with values for its parameters. The result of the creation process is a unique name that is used to
reference the event handler. Several event handlers can be created from the same template. Each of the

event handlers created from a template can have a different local state.

Once an event handler has been created, it is in the active state, It remains in this state until it is des-
royed, cither by itsclf or by another event handler. Only the active event handlers can respond to events,

In the event model, a dialogue control component is described by the set of templates that define the event

t This section presents a suminary of the event model discussed in greater detail in [Green86}.
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handlers it uses. At the start of execution an instance of one of these templates is created to scrve as the
main event handler in the dialogue control component. This event bandler will then create (possibly
indirectly) all the other event handlers. Conceptually, all the cvent handlers in the dialoguc control com-

ponent execute concurrently, processing events as they arrive.

The brief description of the event model presented in this section should be sufficient to understand
how Diction uses event handlers to implement dialogue control components. However, if additional detail

is of interest, [Green86] can be consulted.

4.2.2. Structure of Event Handlers

The structure of event haadlers produced by Diction is shown in figure 4.1, The keywords in figure
4.1 are printed in bold. An event handler declaration is divided into four scctions. The first scction
declares the name of the event handler. In the event handlers produced by Diction, the event handler name

is the same as the name of the command parsed by the cvent handler; only the case is inverted.

The second section lists the input tokens that the event handler can process. This information is used
10 map tokens into events for the event handler. In the event handlers produced by Diction, command argu-

ments are represented by input tokens, and the event name for a token name is produced by prefixing it with

IN

The third section of an event handler declaration contains the declarations of the event handler’s local
variables. Each instance of the event handler has its own sct of local variables, there is no sharing of
storage between instances. A variable declaration consists of a type, a variable name, and an optional initial

value. In the event handlers produced by Diction, this part of event handlers is rarely uscd.

The fourth section consists of event declarations. An cvent declaration starts with the wemwaord
"event” followed by the name of the event. The body of the event declaration consists of . winser o0 €
statements. These statements are executed when an instance of the event handler receives this event. “i'he

statements can reference the instance's local variables and the global variables in the program. How event



76

eventhandler sample is
token
token_name event_name

.

var
type variable_name = initial_value;

event event_name(
statements

)

event event_name(
statemenis

)

end sample;

Figure 4.1 Structure of an Event Handler

handlers are used to implement the dialogue control is explained in the rest of this section.

When the user interacts with the presentation component, input tokens are produced. These tokens
arc added at the end of a token queue reserved for the dialogue control component. The run-time control
removes ihese tokens from the front of the queue, one at a time, and processes them. Processing a token
involves sending the event corresponding to the token to the event handlers (see figure 4.2). An event

handler receives only those events which it can process.

When the application is first started, the run-time control instantiates two event handlers. The first
event handler is called the HOUSE_KEEPER, It remains active throughout the interactive scssion, and its
main responsibilitics include initializing interaction techniques, instantiating event handlers for commands,
and maintaining data-structures used by the dialogue control component. The second event handler, called

HELPER, gencrates help messages for commands selected by the user. The discussion on how help is



77

Queue for Input Tokens
- for Dialogue Control Component
Presentation

User €% Component (¥ D

/'" /”T_-‘
; vent
\\D Run-Time Handler

Control

Event
Handler

Event
Handler

Figure 4.2 Run-Time Control

implemented is postponcd until section 4.4.3. None of the cvent handlers corresponding to the commands
in the application have been instantiated au this time.

The input tokens generated by the presentation component are sent 10 the HOUSE_KEEPER and if
activated, to the HELPER. When the user sclects a command, an input token identifying the command is
sent to the dialogue control componeﬁt. The run-time control converts this token into an cvent and sends
the event to the HOUSE_KEEPER and the HELPER. The HELPER gencrates a number of output tokens

for the presentation component which produce help messages for the sefected command. The
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HOUSE_KEEPER, on receiving the event, instantiates the event handler for the command selected by the
user. On instantiation, an INIT event is sent to the newly created event handler automatically by the run-
time system. The new cvent handler, with some help from the HOUSE_KEEPER, is responsible for pars-
ing the command.

When the user interacts with the presentation component to provide argument values, tokens after
conversion into cvents are sent to the HOUSE_KEEPER. The HOUSE_KEEPER updates the stalus and
values of the command arguments tied to the event received. After doing so it generates a CHECK token
which is sent to the active command event handler. The command event handlers treat the CHECK token
as a signal for a change in argument status and values. So on receiving this token the event handlers check
whether the argument values they need are available or not. When the required argument values become
available a token is gencrated for the application. On recciving this token the application executcs the
selected command.

For example, consider an Add_Object command, which accepts two arguments, size and position.
Both the arguments must be provided afresh by the user to exccute the command. Assume that the com-
mand is parsed in PREFIX OPEN_ENDED fashion. The event handler produced by Diction for this com-
mand is shown in figure 4.3, In the event handlers produced by Diction, argument names provided by the
designer are replaced by the argument names prefixed with the command name they belong to, This is

necessary in order to create unique argument names.

When the user selects the Add_Object command, its event handler shown in figure 4.3 is instantiated,
and an INIT event is sent to it automatically, On receiving this event, the Add_Object cvent handler sets
the status of size and position arguments to UNDEF. When the user provides either the size or the position
value, corresponding events (IN_SIZE or IN_WORK) are sent to the HOUSE_KEEPER by the Tun-time
control, For cach of the events, the HOUSE_KEEPER updates the status and value of the corresponding
argument, and generates a CHECK token. The CHECK token triggers the Add_Object event handler to

determine whether the command can be executed or not. When both arguments are defined, the
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Add_Object {PREFIX OPEN_ENDED)
(position : WORK_AREA; size : SIZE)

cventhandler aDD_oBJECT is /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT{
Add_Object_position.status = UNDEF:
Add_Object_size.status = UNDEF;

}
cvent IN_CHECK({
if (Add_Object_position.status == DEF && Add_Object_size.status== DEF){
values = (int *) calloc( 2, sizeof( int ));
values[0} = Add_Object_position.value;
values[1] = Add_Object_size.value;
send_token( APPLICATION, INPUT, Add_Object, valucs);
Add_Object_position.status = UNDEF;
Add_Object_size.staus = UNDEF;
}

)
end aDD_oBJECT;

Figure 4.3 Event Handler for Add_Object Command

Add_Object event handler gencrates a token for the application. After doing so it resets the status flags for
size and position to UNDEF. The Add_Object event handler remains active, cnabling the user to repeatedly
exccute the command without having to reselect it. This event handler is killed by the HOUSE_KEEPER

when the user selects another command.

4.3. Producing HOUSE_KEEPER

The HOUSE_KEEPER is mainly responsible for three activities. The first activity is (0 initialize
interaction techniques when the interactive application is started, The second activity is to control the
instantiation of event handlers for parsing commands. And the third activity is to maintain the staws and

values of command arguments,

To initialize interaction techniques for global arguments the HOUSE_KEEPER gencrates output

tokens (of type INITIAL) which are sent to the prescntation component. The interaction techniques, after
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initializing themsclves, gencrate input tokens for the dialoguce control compenent. On receiving these
wokens the dialogue control component (actually the HOUSE_KEEPER) updates the status and valucs of
command arguments which are tied to the tokens.

The HOUSE_KEEPER also produces an INITIAL token for the application. On receiv.ng this token,
the application initializes its data structures and sends some setup information 1o the presentation com-
ponent.

When the user sclects a command, an input token identifying the command is sent from the presenta-
tion component to the dialogue control component. After conversion into an event, this token is sent to the
HOUSE_KEEPER. On receiving the event, the HOUSE_KEEPER first destroys command event handlers
that may be active at that time. Secondly, the HOUSE_KEEPER instantiates the ¢vent handler for parsing
the sclected command. The new event handler is automatically sent an INIT event by the run-time control
system.

The third main activity of the HOUSE_KEEPER involves maintaining information for command
arguments. When the HOUSE_KEEPER receives input tokens (or events) for arguments, it updates the
status of command arguments tied to the received token (or event) to DEF and stores the event_value (or
the teken value) in the argument values. The HOUSE_KEEPER never changes the status of an argument 1o

UNDEEF; this is done by the event handlers for commands.

The HOUSE_KEEPER updates the argument values and status only; it does not determine whether
the selected command can be executed or not. This is done by the event handler for the command. The
HOUSE_KEEPER, every time it receives an event for a command argument, generates a CHECK token.
This token is sent to the command event handlers which detcrmine whether the command can be executed

or not.



4.4. Producing Event Handlers for Commands

Depending on the parsing sequence and the selection type of the command, Diction produces ¢vent
handlers to parse it. In this section, three algorithms, one each for PREFIX, POSTFIX, and NOFIX syntax
types, are presented. Based on these algorithms, Diction produces event handlers to implement the dialo-

gue control.

The algorithms are presented in a pseudo-code. In the algorithms, the command arguments which
have currently selected values are called CSV-type arguments, whereas the ones which have default values
are called default-type arguments. The arguments which are neither CSV-type nor default-type are called

regular-type arguments.

1. Generate code for INIT event
for all default-type arguments
produce tokens for presentation component
to initialize interaction techniques.
for all regular-type arguments
set argument.status to UNDEF.
2. Generate code for IN_CHECK event
if all argument values are available
produce a list of argument values.
send token to application.
2a, Reset status of other command arguments
for all CSV-type and regular-type arguments
produce a set S of tokens the arguments are ticd to.
for all POSTFIX and NOFIX commands
for all regular-type arguments
if argument is tied to a token from the set S
set argument.status to UNDEF.
2b. Handle selection type
if command selection is CLOSE_ENDED
deactivate_self.
else
for all default-type arguments,
produce tokens for presentation component
1o initialize interaction techniques.
for all regular-type arguments
sct argument.status to UNDEF.

Figure 4.4 Producing Code fer PREFIX commands
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For a PREFIX command, the user first selects the command, and then provides its arguments. The
entry of arguments is unordered. The algorithm for generating event handlers for commands of this type is
shown in figure 4.4, Diction first produces code for the INIT event, which gets executed immediately after
the event handler is instantiated. In this part of the code, tokens for initializing default-type arguments are
produced, which are sent to the presentation component. The status flags of all regular-type arguments are

also set to UNDEF in this part of the code.

The rest of the event handler code handles the CHECK token generated by the HOUSE_KEEPER.
On recciving an input token corresponding to a c‘ommand-argumcm, the HOUSE_KEEPER updates the
status and values of arguments tied to the token and generates a CHEEK token, The CHECK token after
conversion into an IN_CHECK event is sent to the active command event handler. On receiving the
IN_CHECK event, the event handler checks whether the values for all the arguments are available or not.
If all the values are not available, the event handler simply returns, Otherwise, the application is notified by
sending a token which identifies the command. A list of argument values is also sent to the application

along with the token,

The HOUSE_KEEPER, when it receives an argument entry token, updates the status of all the argu-
ments tied to the token, Some of these arguments should now be reset to UNDEF as the purpose for which
the uscr entered the argument valucs has been served. When a token affects a CSV-type or regular-type
argument from the current (PREFIX) command and it also affects some regular-type arguments from other
POSTFIX or NOFIX commands in the interface, the values of the affected arguments from the POSTFIX o}

NOFIX commands should be reset to UNDEF,

If the command selection is CLOSE_ENDED, the event handler commits suicide, and the command
is disabled. The event handler, before Gommitting suicide, resets the status of the command status to OFF,
which indicates to the HOUSE_KEEPER that the command has been disabled. However, if the command
selection is OPEN_ENDED, the event handler resets its default-type arguments to their default values by

generating tokens for the presentation component, and resets all regular-type arguments to UNDEF.



33

Rescting regular-type arguments to UNDEF insures that the command will not be re-cxccuted until the user
provides fresh values for the arguments. The command is kept active in this case, which allows the user to

repeatedly execute the same command without having to reselect it.

1. Generate code for INIT event
for all default-type arguments
if argument.status is UNDEF
send token to presentation component to initialize
interaction techniques.
for all regular-type arguments
if argument.status is UNDEF
send error token to presentation component.
deactivate self.
retum,
if all argument values are available
produce a list of argument values.
send token to application.
for all regular-type arguments
set argument.status to UNDEF.
1a. Reset status of other command arguments
for all CSV-type and regular-type arguments
produce a set S of tokens the arguments are tied to.
for all POSTFIX and NOFIX commands
for all regular-type arguments
if argument is tied to a token from the set
set argument.status to UNDEF.
deactivate self.
2. Generate code for IN_CHECK event
if all argument values are available
produce a list of argument values.
send token to application.
for all regular-type arguments
set argument.status to UNDEF.
2a. Reset status of other command arguments
for all CSV-type and regular-type arguments
produce a set S of tokens the arguments are tied to.
for all POSTFIX and NOFIX commands
for all regular-type arguments
if argument is tied to a token from the set S
set argument.status to UNDEF.
deactivate self

Figure 4.5 Producing Code for POSTFIX commands
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In the case of POSTFIX type commands, the algorithm shown in figure 4.5 is used. For a POSTFIX
command to parse correctly, the user must provide all argument values before selecting the command. An
exception occurs in the case of default-type arguments. If the value for a default-type argument is not pro-
vided, the event handler sends an INITTIAL token to { = presentation component. The presentation com-
ponent on recsiving the INITIAL token initializes the intzraction technique and generates an input token for
the dialogue control component. This token is sent to the HOUSE_KEEPER which after updating the argu-
ment values generates 8 CHECK token. On receiving the CHECK token the event handler informs the
application to execute the command. It then resects the status of all the regular-type arguments to UNDEF.
The regular-type arguments from all POSTFIX and NOFIX commands which are‘ticd to the same token as
one of the CSV-type or regular-type argunients from the current command are also sct to UNDEF. After
this the event handler commits suicide. However, if a regular type parameter does not have a value when
the event handler is instantiated, an error message is sent to the presentation component, and the cvent
handler commits suicide. The OPEN_ENDED selaction mode does not make sense in case of POSTFIX

type commands.

The algorithm shown in figure 4.6 is used for producing cvent handlers for NOFIX type commands.
In NOFIX commands, the selection of the command and its arguments is unordered. The user can follow
PREFIX, POSTFIX, or any other sequence for selecting the command and entering its arguments. When
the user selects the command, its event handler is instantiated, and an INIT event is sent to it. On receiving
the INIT event, the avent handler initializes all default-lype arguments which do not have valucs. After
doing so it checks whether all argument values are available. If so, it creates a list of all argument values
and informs the application to execute the command. It then resets the status of all the regular-type argu-
ments to UNDEF, and sends tokens to the presentation component to initialize default-type arguments. The
regular-type arguments from all POSTFIX and NOFIX commands which are tied to the same token as onc
of the CSV-type or regular-type arguments from the current command are now sct to UNDEF. If the com-

mand sclection is CLOSE_ENDED, the event-handler commits suicide.
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1. Generate code for INIT event
for all default-type arguments
if argument.status is UNDEF
produce tokens for the presentation component to iritialize ITs.
if all argument values are available
produce a list of argument values.
send token to application.
for all regular-type arguments
resct argument.status to UNDEF.
for all default type arguments
produce tokens for the presentation component to initialize ITs.
2a. Reset status of other command arguments
for all CSV-type and regular-type arguments
produce a set S of tokens the arguments are tied to.
for all POSTFIX and NOFIX commands
for all regular-type arguments
if argument is tied to a token from the sct S
set argument.status to UNDEF.
if commard sclection is CLOSE_ENDED
deactivate sclf.
2. Generate code for IN_CHECK event
if all argument valyz3s are available
produce a list of aigument values,
send token to application.
for all regular-type arguments
reset argument.status to UNDEF.
for all default type arguments
produce tokens for the presentation component
to initialize interaction techniques.
2a. Reset status of other command arguments
for all CSV-type and regular-type arguinents
produce a set S of tokens the arguments are tiec to.
for all POSTFIX and NOFIX commands
for all regular-type arguments
if argument is tied to a token from the set S
set argument.status to UNDEF.
if command selection is CLOSE_ENDED
deactivate self.

Figure 4.6 Producing Code for NOFIX commands

If all the argument values were not available, the evont handler waits for the user to provide argument
valucs. On receiving the IN_CHECK event from the HOUSE_KEEPER, the event handler checks the

status of its command arguments. And, when all argument values become available, the application is
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asked 10 execute the command, rcgular-type arguments arc reset to UNDEF, and tokens are sent to the
presentation component to initialize interaction techniques for default-type arguments. The regular-type
arguments from all POSTFIX and NOFIX commands which are tied to the same token as onc of the CSV-
type or regular-type arguments from the current command are sct to UNDEF. The event-handler then com-
mits suicide if the selection type for the command is CLOSE_ENDED. Otherwise, it remains active an.d

waits for further input.

4.5. Producing HELPER

Diction produces an event handler, called HELPER, which generates help messages for all the com-
mands in the application. The help messages for a command explain its syntax and sclection type, and its
argument requirements. For each argument the messages cxplain its type, i.c. whether the argument is
CSV, default, or regular type. The help facility can be tumed OFF when the interactive session is started or
it can be turned OFF or ON any time during the interaction. If the help facility is turned off when the

interactive session is started, the run-time control system docs not instantiate the HELPER.

When the user selects a command, the run-time control sends its corrcsponding cvent to the
HELPER. In addition to the HOUSE_KEEPER, the HELPER is the only cvent handler which can process
input tokens which are produced as a result of command selection. If the help facility is ON, the HELPER
sends a numver of tokens to the presentation component. These tokens contain the text strings which

explain the command. If the help facility has been turned off by the user, token generation is suppressed.

4.6. Caveats

Diction is capable of producing dialogue control components in which the prefix, postfix, and nofix
types of syntaxes can co-exist. But there are certain cases where caution must be exercised as the behavior
of the dialogue control component may differ from what the user expects. The problem occurs il the sys-
tcm has to parse postfix or nofix type commands whose arguments are a subset of that of a prefix open-

cnded type command. For example, assume that the dialogue control component were (o parse the
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following two commands.

cmdl {PREFIX OPEN_ENDEDY] (argl arg2)
cmd2 {POSTFIX CLOSE_ENDEDY} (argl arg2)

When the user sclects cmdl and provides all it argument values, the cmdl command gets executed. Since
the cmd1 command is open-ended, it remains active for further executions. Now, if the user wants to exe-
cute the cmd2 command, he should provide the argument values before selecting the command since cmd2
is a postfix type command. But when the user provides the arguments values the system executes cmdl as

it was alrcady active and all its argument values were provided.

There are two ways of avoiding this problem. The first way is make the prefix type command as
closc-cnded, so that the command gets deselected after each execution. And the second is to change the

postfix or nofix type command to a prefix type command, or vice-versa.

4.7. An Example
Consider a system which supports three commands shown in figure 4.7. The Add_Object_pr com-
mand is a PREFIX CLOSE_ENDED type command, whereas the Add_Object_ps command is POSTFIX

CLOSE_ENDED type. The Add_Object_nf command is a NOFIX OPEN_ENDED command.

Appendix A5 shows the event handlers produced by Diction to implement the desired dialogue con-
trol. When the user starts the interactive session the run-time control system instantiates
HOUSE_KEEPER, and HELPER. On instantiation, each of the event handlers is sent an INIT event. The
HOUSE_KEEPER on receiving the INIT token resets the status of all the commands and arguments in the
system 1o UNDEF., It also generates two output tokens. The first token is sent to the presentation com-
ponent and is used for initializing the interaction technique named SIZE to 0.5. After initializing itself, the
interaction technique will generate an input token for the dialogue control component. The second token is
sent to the application. The application on receiving this token can initialize its data structures and send
some set up information to the presentation component. The HELPER event handler does not do anything

on receiving the INIT event.
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SIZE: [0.0: 1.0] {INITIAL = 0.5}
WORK : pick2d

Add_Object_pr {PREFIX CLOSE_ENDED)
(where : WORK;
size : SIZE {CSV);
colourl : (RED GREEN BLUE) (DEFAULT =RED})

Add_Object_ps {(POSTFIX CLOSE_ENDED}
(where : WORK;
size : SIZE {CSV};
colour2 : (RED GREEN BLUE) {(DEFAULT =RED})

Add_Object_nf {NOFIX OPEN_ENDED}
(where : WORK;
size : SIZE {CSV});
colour3 : (RED GREEN BLUE) {DEFAULT =RED})

Figure 4.7 Command Description for the Example System

The SIZE interaction technique initializes itself to 0.5 and gencrates an input token named SIZE for
the dialogue control component. On receiving the token the run-time control system determines the aclive
event handlers which can process this token. At this time, the HOUSE_KEEPER is the only event handier
capable of processing the token. Therefore the SIZE token, after conversion into an IN_SIZE event, is sent
to the HOUSE_KEEPER. The HOUSE_KEEPER, on receiving the event, changes the status of the size
argument for all the three commands to DEF and stores the event value in the value field of the size argu-

ment for the commands.

When the user selects the Add_Object_pr command an input token named Add_Object_pr is gen-
erated by the presentation component and sent to the dialogue control component. Since both the HELPER
and HOUSE_KEEPER event handlers can process the token, the IN_Add_Object_pr event is scnt to them.
The HELPER on receiving the event, sends a number of output tokens to the presentation component.
These tokens explain the syntax and argument requircments of the Add_Object_pr command. On receiving

the IN_Add_Object_pr cvent, the HOUSE_KEEPER first kills any other active command cvent handlers.
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At this time there are no active command event handlers. It then instantiates the event handler for the
Add_Object_pr command,

When the event handler for the Add_Cbject_pr command is instantiated, an INIT event is sent to it
by the run-time control system. On receiving the INIT event, it does two things. First it generates a token
for the colour] interaction technique to set its value to the default value which is RED. This token is sent to

the presentation component. Secondly it resets the status of its where argument to UNDEF.,

The colour] interaction technique after initializing its value to RED, gencrates an input token named
colourl for the dialogue control component, On receiving this token, the run-time control sysiem dcter-
mines that amongst the active event handlers only the HOUSE_KEEPER can prucess this token. Therefore
the colourl token, after conversion into an IN_colourl event is sent to the HOUSE_KEEPER, which
updates the status and value of the colourl argument and generates a CHECK token. This CHECK token,
after conversion into an IN_CHECK event is sent to the Add_Object_pr event handler. The Add_Objcct_pr

event handler determines that all arguments are not available yet, so it returns.

When the user interacts with the WORK interaction technique to provide the value for the where
argum:cat, the presentation component generates the input token named WORK, After conversion into the
IN_WORK event, this token is sent to the HOUSE_KEEPER. The HOUSE_KEEPER updates the status
and value of the where arguments for all the three commands and generates a CHECK token. Since all
argument values are defined at this moment, the Add_Object_pr event handler sends an AAdd_Object_pr
input 1oken to the application. This input token identifies the command that the application should execute.
After sending this token, the event handler resets the status of its where argument to UNDEF anul reinitial-
izes the colourl interaction technique. The where arguments of Add_Object_ps and Add_Object_nf com-

mands are also set to UNDEEF, and the event handler commits suicide.

It should be noted that the user could have changed the values of SIZE and colour! interaction tech-
niques for the Add_Object_pr command. When the user changes the value of SIZE interaction technique,

IN_SIZE cvent is sent to the HOUSE_KEEPER. The HOUSE_KEEPER updates the values of size
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arguments of all three commands, and generates a CHECK token. This ensures that size argument of all
three commands has the most current value. In the case of colourl interactior “2chnique, IN_colourl event
is sent to the AOUSE_KEEPER which updates the status and value of the colour! argument of the

Add_Object_pr command.

When the user selects the Add_Object_ps or Add_Object_nf command, the HOUSE_KEEPER
instantiates the event handler for the selected command. Since the Add_Object_ps command is of POST-
FIX type, the user must provide all argument values before selecting the command. In this case the user
must provide the value for the where argument. When the uscr interacts v-ith the WORK interaction tech-
nique, an IN_WORK event is sent to the HOUSE_KEEPER which updates the value of the where argu-
ments for all of the commands. The HOUSE_KEEPER then generates a CHECK token. On receiving this
value the Add_Object_ps event handler generates an Add_Object_ps input token for the application. It then
resets the status of the where arguments of the Add_Object_ps and Add_Object_nf commands 1o UNDEF

and commits suicide.

In the case of Add_Object_nf command, the selection of command and argument entry arc unor-
dered. When the user provides argument values before selecting the command the HOUSE_KEEPER
maintains them. After the command event handler is instantiated it checks whether the command can be

executed. If not, it waits till the user provides the required argument values.

4.8. The Input for Chisel

As explained in section 4.1, Diction’s output consists of two parts: event handlers for dialogue con-
trol component, and input for Chisel which is used for designing graphical presentation components. From
the command description provided to Diction, it produces a procedure in Franz-lisp, which drives Chisel 1o

produce the presentation component for the application.

For each global argument and local argument, Diction produces a call to onc of the procedures in

Chisel. The parameters to this procedure include the name of the argument, type of the argument, and the
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range or enumeraiions of the argument. For each command supported by the appilication, a different pro-

cedure call is produced. The name of the command is the parameter to this procedure. Additional discus-

sion on what this {ile contains is presented in chapter 5.

4.9. Chapter Summary

In this chapter, the generation of the dialogue control component of user interfaces is discussed The
system Diction is uscd for producing the dialogue control components. The input to Diction is a high-level
specification of commands supported by the application. And, its output contains event handlers which
implement the dialcgue control, and a procedure in Franz-lisp which is used by Chisel for designing presen-
tation components.

The algorithms uscd by Diction to produce event handlers for parsing commands in PREFIX, POST-
FIX, and NOFIX fashion are presented. In addition to producing one event handler per command, Diction
produces two event handlers which are responsible for house-keeping, and generating help ressages for
commands.

Finally, how event handlers produced by Diction implement the desired dialogue control is explained
by using an example,

How the graphical presentation components are produced is discussed in the next chapter.



Chapter §

Designing the Presentation Component

The presentation coraponent of a graphical user interface presents a graphical front end 1o the uscr.
The user provides input by interacting with graphical intcraction techniques, and the system presents output
in terms of images displayed on the screen. As stated in chapter 1, we will concern oursclves with the

design of the input part only; the design of the output part remains the responsibility of the interface

designer.

The Chisel system is used for designing presentation components. Chisel sclects interaction tech-
niques, determines their attribute values, and places them on the screen of the display device. While doing
this, it is capable of considering user’s preferences, interface designer’s guidelines, and characteristics of
the display device. This chapter discusses the working and design of Chisel. A number of examples arc

used to clarify the discussion.

After Chisel has produced the input part of the presentation component, the interface designer adds
the information regarding the output part to it. This is done by using the Chisel's companion system vu.

Vu can also be used for refining the designs produced by Chiscl, as explained in the next chapter.
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§.1. Chisel

8.1.1. Design Principles

The chief design goal for the presentation component design system was that it should cnable the
interface designer to quickly produce a working prototype of the presentation component, and enable him to
refine the prototype afterwards. To achieve this goal two major design decisions were made. The first
design decision was to reduce to 2 minimum the amount of information necded to produce a prototype.

Chiscl’s input may consist of the following three parts:

1. dialogue requirements,

2. description of the device on which the presentation component will be implemented, and

3. user’s preferences.

Of these three inputs, the designer does not have prepare the first two, and the third is optional. As
explained in section 4.7, the dialogue requirements part of the Chisel’s input is prepared by Diction. The
device description can be sclected from a library of device descriptions. The last part of the input, namely
the user’s preferences, is optional and may be omitted from the input altogether, Therefore, if the designer
chooscs not to provide the user’s preferences, he does not have to prepare any input for Chisel at all. This
is explained in greater detail in section 5.1.2. The second design decision was to provide interactivr facili-
tics for refining the prototypes produced by Chisel. The vu system, described in the next chapter, is used
for this purposc.

An important design issue was the interface desigrer’s control versus the UIMS control. Chisel pays
special atlentio.: to allowing the interface designer to control a number of featurcs of the prescntation com-
ponents it designs. Often this control is achieved by providing optional inputs which override the defaults
used by Chisel. By providing these inputs the designer can get Chisel to consider some of the user’s prefer-
ences and also consider his guidelines while designing the presentaiion components. A number of things

can be controlled by the interface designer; examples include the maximum number of items in a menu,
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placement of interaction techniques on the screen, and the selection of particular interaction techniques.

This is explained in greater derail in section 5.2.4.

The final design goal of Chisel was that it should be easy to use. Unlike a number of existing
UIMSs, Chisel does not require detailed specifications from the interface designer. As explained above, the
major part of the Chisel’s input is cither automatically gencrated or sclected from libraries. Once the input
is provided to Chiscl, it starts designing prescntation components without asking for additional intormation
during the design. The fact that the interface designer does not have to deal with cryptic specifications

makes the system extremely easy 10 use.

5.1.2. Chisel’s Input

This section explains Chisel’s inputs in detail.

5.1.2.1. Dialogue Requirements

The first part of the Chisel’s input, called the dialogue requirements, is an ASCIH file produced by
Diction which depends on the application for which the user interface is being produced. Note that the
designer is not concemed with the contents of this file. The general structure of the dialogue requirements
file is shown in figure 5.1. It contains a function in Franz Lisp, named "start", which describes the com-

mands and their arguments in the interface.

In figure 5.1, the "init" function initializes Chiscl’s data structures. For cach command in the inter-
face, this file contains a call to the Chisel function called "command”. The only parameter to this function is

the name of the command, A variable number of commands may cxist in the interface.

For each global argument and local argument in the interface, a call to the Chiscl function called
"argument" is produced. The parameters to this {unction include the name of the argument, type of the
argument, low_range and high_range if applicable, and enumerations, if applicable. In the case of a
subrange type argument, the low_range and high_range parameters describe the range of valucs the argu-

ment can assume, whereas in the case of a window, pick2d, or pick3d type argument, they denote the
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window drawing limits. In the case of an cnumeration typc argument, the values of low_range and
high_range arc sct to "nil" and the parameter called "cnumerations” is uscd to represent the list of enumera-

tions. The function called "finish” denotes that all the input has been entered.

(defun start O
(init)
{(command 'name)

(argument "name 'type low_range high_range '(enumerations. . .))

(Ginish)

Figure 5.1 General Structure of the Dialogue Requirements File

5.1.2.2. Device Description

The second part of the input describes the graphical device selected for implementing the presenta-
tion component. This description can be pulled from the library of device descriptions, and is provided to
Chiscl in an ASCII file called "device.l". Figure 5.2 shews the description for the AED-767 colour graph-
ics terminal. The Franz Lisp function "define-device" describes a device to Chisel. This functica coutains
calls to a number of Chisel functions which initialize device properties. The function called “screen” is
used for conveying screen properties to Chisel. The parameters to this function are the x and y resolution of
e screen, size of character in terms of pixels in the x and y directions, the number of pixels per inch on the

screen, and whether the device is colour or monochrome.

The available input devices are also mentioncd in this tile. A number of colours for the display dev-
ice can also be defined in this file. A colour is defined by giving it a name and describing the amounts of

red, green, and blue components that make the colour.
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(defun define-device
(screen 768 1x resolution
565 ;y resolution
8 isizeof acharin x
12 isizeofachariny
64 ;pixels/inch
'yes)  icolour?

(input-devices '(mouse))

(colour 'red 255 0 0)
(colour ’green 0 255 0
{colour 'blue 0 0 255)
(colour 'white 255 255 255)
(colour 'black 0 0 0)

(colour "grey 128 128  128)

Figure 5.2 Device Description for AED-767

5.1.2.3. User’s Preferences

The third part of the input, called the user’s preferences, is optional and may be omitted from the
iny ut altogether. This part of the input is used to generate presentation components which are sensitive Lo
the user’s preferences. This input is provided through an ASCII file named "user.l" which contains a func-
tion in Franz Lisp called "vser-preferences”. An example user’s preferences input is shown in figure 5.3.
The function "command-menu-location” is used to force the placing of command menu according 1o the
user’s preference. In case this information is not provided the default command menu location is used
which is along the right side of the display screen. The user’s favorite background and drawing colours can
be specified by using the "favorite-bg” and "favorite-dr” functions. The colour names used with these func-
tions sheuld be defined in the device description file. In the absence of these preferences default back-

ground and drawing colours are used. The function "assign-colour” is used to assign particular background
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and drawing colours 1o interaction techniques for command arguments. The name of the argument, the
background colour, and the drawing colour are the parameters to the assign-colour function. The "select-
interaction-technique” function is used to force the sclection of the named interaction technique for a partic-
ular command argument. The parameters to this function are the name of the command argument and the
name of the interaction technique that must be uscd to enter the argument value. In the absence of this

information Chisel decides which interaction will be used to enter the argument value.

(defun user-preferences()
;location of the command menu left/right/top/bottom
(command-menu-location 'left)

;favorite background colour
(favorite-bg "grey)

;favorite drawing colour
(favorite-dr 'white)

;usc brown as bg and whiite as dr for interaction technique for Limb
(assign-colour "Limb *brown ’whitc) :

:select vertical gpot for the argument named Size
(select-interaction-technique ’Size "v-gpot)

Figure 5.3 An Example nf User’s Preferences
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§.1.3. Chisel’s Output

Chisel produces an ASCII file called "design_file" which is uscd as the input to vu. This file defines
the interaction techniques that are used in the presentation component. Figures 5.4 shows an example of
Chisel’s output. It is important to note that the designer is not concemed with the contents of this file. The
information stored in this file is used by vu to show the presentation component and allow the editing of

the presentation component in a highly interactive, direct, and graphical manner.

Chisel divides the display screen into a number of windows, and defines each window's name, back-
ground colour, drawing colour, and location in terms of screen coordinates. If an interaction technique is
associated with s window, the name of the interaction technique and its parameters arc defincd immediately
after the window definition. At the application run time the interaction technique occupies the same space

on the screen and inherits the drawing and background colours of the window it is associated with.

5.2. Designing Presentation Components

Once the designer has provided all the inputs, Chiscl starts designing the presentation component,
During the design Chisel docs not ask for any additionai information from the designer. There are three
main steps involved in designing a presentation component: selecting intcraction techniques used in the
presentation component, determining attribute valucs for the selected interaction techniques, and placing

interaction techniques on the display screen. Each of these steps is discussed in the following sub-scctions.

5.2.1. Interaction Technique Selection

The system has three main concerns while deciding on interaction techniques. These concerns relate
to the typc and range (or enumerations) of the command argument, user’s preferences, and the device
requirements of intcraction techniques. Each of these concems limits the set of interaction techniques that
can be used to enter the argument values. For example, an interaction technique which gencrates real

numbers cannot be used for entering text.
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WINDOW
Name cmenuQ-v
Bg 128 128 128
Dr 255 255 255
Llx 152.0 Lly 38.0
Urx 191.0 Ury 115.0
MENU
Menu_type V_STATIC
Ttem
Name add_Limb
Itcm
Name remove_Limb
Item
Name move_Limb
Item
Name exit
WINDOW
Name Length
Bg 128 128 128
Dr 255 255 255
Lix 84.0Lly 0.0
Urx 147.0 Ury 15.0
I_TECH
Itech_name int_hgpot
PARA
Ipara_name min_value
Ipara_type DOUBLE
Ipara_value 1.0
PARA
Ipara_name max_value
Ipara_type DOUBLE
Ipara_value 5.0
PARA
Ipara_name label
Ipara_type CHAR
Ipara_value Length
END

Figure 5.4 Example Qutput of Chisel

The interaction technique implementing the argument must be able to produce the type of data the
argument represents. An interaction technique which cannot produce the required type of data cannot be

used as it will cause syntax and/or semantic errors in the system. After making sure the data type of the
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interaction technique is the same as the type of the argument, Chisel determines whether the interaction
technique is good for handling the range (or enumerations) of the argument. In doing so, the system marks
those interaction techniques as unsuitable which produce data in a different range than that of the parame-
ter. For example, an interaction technique which is designed to produce integers from 0 to 100 cannot be
used for entering integers ranging from -10 to 10. There can be interaction techniques which do.not have
any pre-defined ranges. These techniques can also be uscd to enter the argument values. The system
prefers techniques with ranges which match the range of the argument, The implication of this strategy is
that Chisel selects special purpose interaction techniques for special ranges (e.g. angle technique for enter-

ing values between 0 and 360).

For arguments which do not have ranges, Chiscl uses other rules for sclecting suitable interaction
techniques. For example, for enumerated type paramcters, it marks vertical and horizontal menus as suit-

able.

All the commands in the dialogue requirement are implemented as menu items, Chisel uses the
number of commands, the device resolution, and the height of a menu item in the gencration of menus. The
systcm is capable of gencrating both horizontal and vertical menus. If all the commands cannot fit into one
menu, the system creates multiple menus. In the case of multipic menus, the system can create both over-
lay and static menus. Chisel has its own defaults for the orientation (vertical) and type (static) of mcenus,
but is capable of considering the designer’s preferences for these options. The designer can also control the
number of items in a menu or the space occupied by a menu item in the menu. This is explained in greater

detail the following section.

The designer can force the selection of particular interaction techniques for command arguments. To
do so the designer provides the user’s preferences part of the input (sce figure 5.3). The "sclect-
interaction-technique" function is used for forcing the selection of interaction techniques for command

arguments. The user’s preferred interaction techniques are used instead of the ones selected by Chisel.
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The last thing the system determines is whether the device requirements of the interaction techniques
can be met. If the device requircments of a particular interaction technique cannot be met, it cannot be
used.

Based on the above three criteria the system selects or rejects interaction techniques. It is not always
possible for the system to select one interaction technique which is most suitable. Often it has two or more
interaction techniques which can fulfill the role equally well (for example, vertical and horizontal graphical
potentiometers) and the system has no grounds for selecting onc or the other. In such cases, the system

continues with the design until it has some reason for rejecting extra techniques.

8.2.2. Attribute Determination

After the system has made a preliminary selection of interaction techniques, the next step is to deter-
mine attribute values for them. The attributes for interaction techniques can be divided into two categories;
one for the attributes which depend upon the dialogue requirements, and the other for the attributes which

are interaction technique and device related.

In the first category we have attributes such as the range and enumerations of arguments. The system
does not have to do much for this category of attributes, it simply copies the attribute values from the dialo-
gue requirement into the interaction techniques. These attribute values are used to generate values in spe-

cial ranges or from special sets of choices.

The sccond category of attributes consists of size, location, and cclour of interaction techniques on
the display screen. For size and location, there is a data dependency problem which must be solved by
Chiscl. For some interaction techniques sizes are predetermined, whereas for others the size may depend
upon the technique’s other attributes, device characteristics, and designer’s guidelines. For cxample, the
size of a menu depends upon the number of characters in menu items, number of menu items, and device
dimensions etc. Unlike for some other intcraction techniques, the size of a menu cannot be fixed in

advance. It can only be calculated after all the nccessary information is available. The prototype of an
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interaction technique (explained in section 5.4) can specify the name of the function which computes its
size. Chise! automatically invokes this function when it needs the size of the interaction technique. There
is another possibility of interaction techniques for which sizes cannot be determinea umntil after other
interaction techniques have been placed on the screen. Interaction techniques such as windows for work
areas should be allocated all the space that is available after placing other interaction techniques on the
screen. The size calculation for such interaction techniques is postponed until all other interaction tech-

niques have been placed and it is possible to compute free space on the screen.

An interaction technique can constrain its position on the display screen. For example, command
menus constrain their position according to the uscr's preference. If an interaction technique does not
specify any positional constraint, the system generates it. While generating positional constraints for
interaction techniques the system considers the designer’s guidclines, the type of the intcraction technique,
and the size of the interaction technique. For example, the designer can instruct the system to place com-
mand menus along the right edge of the screen and other interaction techniques along the bottom of the
screen. While generating positional constraints the system also follows its own criterion for good screen
layouts. It likes to place objects with bigger width than height along the horizontal edges of the screen and
objects with bigger height than width along the vertical edges. This criterion is used to avoid gencrating

highly fragmented screen layouts.

We will illustrate by an example how the designer’s guidclines and Chisel’s own preferences are
combined to generate positional constraints. Assume that an object has a width of 5 units and height of 1
unit. The designer’s guideline is to place objects along the top edge of the screen. The sysiem looks at the
dimensions of the object and figures that it should be placed along an horizontal edge (top or bottom). It
then looks at the designer’s guideline and generates a constraint which states that the object be placed along
the top edge. In the case where the two guidelines conflict, the system gencrates constraints according Lo
what it thinks is more appropriate and considers designer’s guideline while actually placing objects on the

screen (This is explained in greater detail in the following scction).
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While generating positional constraints the system has one last opportunity for deleting extra intcrac-
tion techniques. If the designer’s guideline states that all objects be placed along the top edge, then the sys-
tem prefers to retain objects which can be placed along the horizontal edges over the objects which should
be placed along the vertical edges. It does so in its cffort to follow the designer’s guideline as far as possi-
ble without violating its own criterion for good screen layouts. If after this stage the system is left with
more than one interaction technique representing an argument, it simply selects one interaction technique
arbitrarily and ignores others.

Chisel also determines the background and drawing colours for interaction techniques. In the
abscnce of the uscr’s preferences for colours, Chiscl assigns default background and drawing colours to all
intcraction techniques. The default background and drawing colour values are designer definable. By pro-

viding the user’s preferences part of the input, colours for individual interaction techniques can be set.

§.2.3. Placing Interaction Techniques

After Chiscl has made the finai selection of one interaction technique per argument, it starts placing
them on the display screen. While doing so the system is concemned with the dimensions of the display
screen and interaction technique sizes and their positional constraints. To handle positional constraints the
system has the notions of corers, edges, halves, and quadrants. It starts by satisfying more specific posi-
tional constraints first (upper-right corner is more specific than any corner). If for some reason a constraint
cannot be satisfied, the system relaxes it to a less specific one and tries to satisfy the new constraint. It
keeps relaxing constraints till the interaction technique is placed on the screen. To achieve its aim of satis-
fying more specific constraints first, it assigns a measure of specificity to each interaction technique accord-
ing to the interaction technique’s positional constraint. After doing so it starts placing interaction tech-
niques with higher measures first. Table 1 shows the measures of specificity for different positional con-

straints.
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Table §.1 Measures of Specificity

Constraint Measure of Specificity

A particular Corner 100
Left or Right Corner 95
Top or Bottom Comer | 95
Any Comer 90
A particular Edge 80
Vertical Edge 75
Horizontal Edge 75
Any Edge 70
A particular Quadrant | 60
A particular Half 50
Top or Bottom Half 45
Left or right Half 45
Anywhere 0

For example, consider trying to place an interaction technique along the bottom cdge of the screen
and there is not enough free space to accommodate the interaction technique along that edge. The system
changes the constraint to bottom half and tries to satisfy it. It keeps relaxing the constraint till it can find

enough space on the screen to place the interaction technique.

As mentioned in section 5.2.2 there are some interaction techniques whose size is such that following
the designer’s guidelines could lead to cluttered screen layouts. Recall that for such interaction techniques
the system ignores the designer’s guidclines and generates positional constraints according to what it thinks
more appropriate. While placing such interaction techniques on the screen, Chiscl makes onc final attempt
at getting as close to the designer’s guidelines as possible. Assume that the designer’s guideline is to place
objects along the bottom of the screen, and for a particular object Chisel generated a constraint to place it
along a vertical edge. While trying 1o place this objcct along the vertical edge, the system starts looking for
free space from the bottom of the screen rather than the top. This way it trics to place as many interaction

techniques along the bottom edge as possible and produce an uncluttered screen.
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There are some interaction techniques for which sizes could not be determined by the system in the
carlicr steps. After placing all interaction techniques with known sizes the system determines the free area
that can be allocated to interaction techniques with unknown sizes. The free arca is divided equally

amongst all interaction techniques with undefined sizes.

5.2.4. Interface Designer’s Control

All UIMSs are restricted in the type of interfaces they can generate [Tanner85]. The interface
designer therefore has to select a UIMS which can generate the required type of interfaces. While working
within this high level restriction, the UIMSs should allow the interface designer a considerable flexibility in
designing interfaces. This issue becomes more important in high level UIMSs, such as ours, which make a
large number of decisions about the interface being generated. The UIMS should allow the interface
designer to control or influence a large number of decisions it makes. At the same time it should not ask
excessive amounts of information from the designer. Clearly, there is trade-off between the amount of
information required from the interface designer versus the amount of decision making by the UIMS. If the
UIMS requires too much information from the interface designer, it becomes too low level. Whereas if the
UIMS makes most of the decisions by itself, it does not allow enough designer control. Using defaults in
the UIMS is a way of balancing this trade-off. In the absence of input from the interface designer the UIMS
uses its own defaults for the decisions it makes. But when the designer’s input is present, it overrides the

UIMS’s defaults.

Chisel pays special attention 1o allowing the interface designer to control a number of features of the
presentation components it designs. In the case of menus the interface designer can specify the height of a
menu item or the maximum number of items in a menu., The default type of menus (static or overlay) can
also be changed by the interface designer. The default background and drawing colour values used by
Chisel can be changed according the designer’s preferences. The designer can also instruct Chisel about the
location of interaction techniques on the screen. In addition to changing the defaults, the designer can

influence the decisions made by Chiscl by providing the user’s preference part of the input discussed in
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section 5.1.2.3.

§.3. An Example

This section explains the generation of the presentation component for the three dimensional skeleton
editing system discussed in section 3.3. The input to Chisel for generating the presentation component
shown in figure 3.8 consisted of the dialogue requirements produced from the command description shown
in figure 3.6 and the device description for the AED-767 shown in figure 3.5. The user's preferences part of

the input was not provided for generating the presentation component shown in figure 3.8,

In the presentation shown in figure 3.8 (in the vu environment) all the commands in the interface arc
placed in the command menu which is located in the top right corner of the display screen. The size of the
command menu depends on the number of commands supported by the application and on the maximum
width and height of a menu item. In producing the command menu shown in figure 3.8 Chisel uses the
defauits for the type of menu, height of a menu item, colours, and the location of the command menu.
Chisel initially marks vertical and horizontal menus as suitable, but later decides to retain the vertical menu

as the menu needs to be placed along the right edge (default location) of the scteen.

To select the interaction techniques for command arguments, Chisel considers the data type and the
range or enumerations of the arguments. For the COFM argument Chisel marks the veriical and horizontal
graphical potentiometers as suitable. Both types of potentiomecters can be used to produce rei! numbers in
the range from 0.0 10 1.0. The reason for selecting these interaction techniques was that Chisel could not
find any other interaction technique which was specially designed to enter real number from 0.0 to 1.0.
Later, while placing the interaction techniques along the bottom of the display screen, Chisel sclains the
horizontal potentiometer. The same reason applies to the selection of graphical potentiometer for
LENGTH. The potentiometer for MASS produces real numbers from 1.0 to 20.0. The size for a graphical

potentiometer is already known, so Chisel does not have to determine it.

For entering the BEND argument Chisel sclects the angle input intcraction technique. This interac-
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tion technique is speciailv designed to enter angle values (integers) from O to 360. For the same reason
Chisc! sclects angle input technique for the ROTATE argument also. The size for an angle input technique
is known to Chisel.

For entering the TORQUE argument vertical and horizontal menus are marked as suitable. The hor-
izontal menu is finally selected as Chisel decides to place the interaction technique along the bottom edge
of the screen. The size of the TORQUE menu is based on the number of items in the menu and maximum
size of items,

For the LIMB argument Chisel sclects an interaction technique which implements three dimensional
pick. An ordinary window is selected for the INFO argument. The sizes for the LIMB and INFO interac-
tion techniques are not known in the beginning. After placing all interaction techniques with known sizes
Chiscl determines the frec screen area and distributes the free area equally amongst the LIMB and INFO

interaction techniques.

The placing of interaction techniques was guide:d by Chisel’s own defaults. It chose to place the
command menu along the right edge of the screen and place other interaction techniques along the bottom
edge. An exception to this strategy occurs in the case of interaction techniques which have a bigger height
than width which should be placed along the right edge of the screen, Foilowing this strategy, Chisel first
placed the (vertical) command menu along the right edge of the screen. It then placed the (horizomal)‘
menu for TORQUE along the bottom edge of the screen. Whén Chisel tries to place the (horizontal) graph-
ical potentiometers for MASS, LENGTH, and COFM along the bottom edge it discovers that the screen
space along the bottom edge is already occupied by the TORQUE menu. So it places the potentiometers in
the bottom half of the screen. The angle input techniques have a bigger height than width, so according to
the placing strategy they should be place along the right vertical edge. But since the space along the right
cdge is taken by the command menu, Chisel places the angle input techniques in the right half. After plac-
ing the interaction techniques with known sizes, Chisel computes the biggest free rectangle on the screen

and divides the rectangle equally amongest LIMB and INFO interaction techniques. As a result of its
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placing strategy, Chisel produces the screen layout shown in figure 3.8.

§.3.1. Producing Other Variants

As explained in section 5.2.4, the interface designer can use Chisel to produce presentation com-
ponents which are sensitive to user's preferences and to the designer’s guidelines. To produce user scasi-
tive presentation components the designer needs to provide input through the user's preferences file
("user.l") discussed in section §.1.3 and the designer can provide his guidelines in the defaults file
("defaults.]"). A large number of variants of a presentation component can be produced by using Chiscl,
and discussing each variant will take a large amount of space. Therefore only a few example will be dis-
cussed in this section. For producing each variant we will start with the input discussed in scction 3.3 and
modify it.

Using Chisel the designer can force the selcction of interaction techniques for commands arguments.
To force the selection of a horizontal graphical potentiometer for the BEND argument, the designer cnters

the following command in the user.! file and uses Chisel to produce the new presentation component shown

in figure 5.5.

(select-interaction-technique "BEND ’h-igpot)

To get Chisel to place the command menu along the left cdge of the screen the designer adds the fol-

lowing command in the user.] file and Chisel produces the presentation component shown in figure 5.6.

(command-menu-location "left)

The designer can also modify other defaults used by Chisel. This is done by modifying the defaults
file ("defaults.]") used by Chisel. To instruct Chisel o place at most nine items in a menu the designer adds

the following command at the end of the defaults file.

(sct-items-per-menu 9)
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Figure 5.5 Forcing the Selection of Interaction Techniques

The new presentation: component produced by Chisel is shown in figure 5.7. Notice that the command
menu has been divided into multiple menus and the menus are placed side-by-side. While generating the
presentation component shown in figure 5.7 Chisel assumed the default menu type which is static. To

change the menu type to overlay, the designer adds the foliowing command at the end of the defaults file,

(overlayed-menus)

The new layout produced by Chisel is shown in figure 5.8,
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Figure 5.6 Command Menu Placed Along the Left Edge

5.4, Structure of Chisel

The system architecture and flow of information within the system is shown in figure 5.9. At the
highest level the system can be logically divided into two parts. The first part stores information regarding
the interaction techniques that the system uses for designing presentation components. This part is
represented by the frame system in figure 5.9. The second part of the system uses the information stored in
the frame system for designing presentation components. As shown in figure 5.9, the three main activitics
of this part include selecting interaction techniques, determining interaction technique attributes, and plac-

ing interaction techniques on the display screen.
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Figure 5.7 Menus with At Most Nine Items

Initially the frame system contains a description of the interaction techniques the system uses for
designing prescntation components. A prototype frame for an interaction technique has various slots con-
taining its name, its range (if relevant), its size or the name of the func: .,n generating its size, constraints on
its position if any, and input device requirement. The system uses this information to determine suitable
interaction techniques for various dialogue reqﬁirements. While designing the presentation component, the
system creates new instances of interaction techniques and destroys instances no longer required. An
instance of an interaction technique contains actual (rather than default) slot (or attribute) values. An
instance may contain some slots which do not appear in its prototype. Slots for location of objects on the

display screen, for example, do not appear in prototype frames. Chisel generates positional constraints for
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Figure 5.8 Overlayed Menus

placing interaction techniques on the display screen. These constraints are also stored as frames. When the
system has completed the design it saves important information from the instance frames in the
"design_file" discussed in section 5.1.3. This information is used for generating the presentation com-

ponent.
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§.5. Chapter Summary

The Chisel system is used for generating the input part of graphical presentation components. The
inputs and outputs of Chisel are discussed. The strategies used by Chisel to generate the presentation com-
ponents are discussed in detail. Chisel enables the interface designer to produce a number of variants of a
presentation component without much additicnal effort. This is demonstrated by crcating a number of vari-

ants of an cxample prescntation component. Finally the structure of Chisel is discussed.

The presentation components generated by Chisel are refined by using a companion system called vu,

discussed in the next chapter.



Chapter 6

Refining the Presentation Component

The system Chisel, discussed in chapter $, is used for gencrating the input part of graphical presenta-
tion components. To complete a presematidn component generated by Chisel the interface designer needs
to add the information regarding the application output to it. After this information is added, the presenta-
tion component can be used to provide a front end to the interactive application. But the appearance and
effectiveness of this presentation component can be greatly improved by refining it. These refinements
include operations such as changing colours of interaction techniques, resizing interaction techniques, repo-
sitioning interaction techniques, and repiacing interaction techniques selected by Chisel with other interac-
tion techniques. The vu system is used to perform these refinements and add the information regarding the
application output to the presentatiqn cdmponents generaied by Chisel. Vu provides a visual. highly

interactive, and graphical facilitics for refining the presentation components generated by Chiscl.

This chapter discusses the key issucs involved in refining graphical presentation components. How
these issues influenced the design of vu is also discussed. A number of examples are uscd to demonstrate

the ease-of-use of vu.

6.1. vu

The two main functions accomplished by using vu are refining the presentation components gen-
erated by Chisel and adding the information regarding the application output to the presentation com-
ponents. The designs principles of vu along with the designer’s interface of vu are presented in the follow-

ing sub-sections.

114
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6.1.1. Design Principles

One of the chief design goals of vu was that it should be easy to edit the graphical presentation com-
ponents generated by Chisel. This goal was realized by providing facilities to perform the editing in a
highly visual and direct manner. Vu provides a visual programming environment
[Chang87, MacDonald82, Mycrs86a] in which the editing of graphical information is performed by using
graphical techniques. There arc a number of rcasons why visual programming is specially suited for this
purpose. The first reason is that it eliminates the need for the interface designer to write or modify pro-
grams writien in conventional languages. This eliminates the necessity to deal with one dimensional (tex-
tual) abstractions for two or three dimensional graphical objects. Since visual programming is itself based
on using graphical techniques for programming, the graphical objects to be edited can be displayed in their
natural representation and manipulated in a natural manner. The second reason for using visual program-
ming is that it climinates the delay in feedback which is introduced by modify-compile-executes cycles in
conventional programming languages. In vu the effect of each editing operation is immediately reflected on
the screen, and an accurate and complete picture of the presentation component is always available io the
designer. Visibility and direct manipulation of objects of interest coupled with little or no delay in feed-

back are the important features of vu that make it easy to use.

The second design issue was related to facilitating the editing by providing a large amount of high-
level functionality. Although rarely used, one of the operations in editing the designs generated by Chisel
is to replace the interaction techniques selected by Chisel with other interaction techniques. To facilitate
this the vu environment provides prototypes of a number of interaction techniques. The designér can select
interaction techniques from this set and include them in the presentation component being refined. By pro-
viding the prototypes of interaction techniques vu saves the interface designer a large amount of time and
clfort. The designer only necds to select prototypes of interaction techniques and customize them by
changing their attributes. Another feature of vu which is of great importance in interactive design is its

ability to support the rehearsal of the presentation component under construction. The designer can, at any
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time, enter the rehearsal mode and interact with the presentation component just as the end user would.

This allows the designer to "feel” the presentation component and modify the parts he is not satisfied with.

6.1.2. Vu’s Interface

Vu provides a highly interactive and visual programming environment which enables interface
designers to edit and create graphical presentation components in a very natural manner. The general stra-
tegy of vu is to enable the designer to draw the screen display that the end user will see, and to perform
actions just as the end user would, such as, selecting menu items, selecting valucs from a potentiometers, or

entering text.

Presentation components in vu are treated as a collection of «” " ts (or interaction techniques). The
designer can select objects of interest from a large collection of objects provided by vu. These objects can
be customized and "glued" together to form a complete presentation component. The design of vu is
influenced by our desire to make presentation component design as visual and as cﬁsy as possible, Vu capi-
walizes on the interactive graphical capabilitics of modern devices to allow a very high bandwidth communi-
cation with the designer. It sup.ports a visual language which allows programming with visual expressions.
Interactive graphic communication and object-oriented design in vu yield a powerful source of exploration
in user interface design. Vu pays special attention to minimizing extraneous activities that would otherwise
compete for the designer’s atiention. It does so by removing unnecessary interruptions, such as leaving the
environment to test the design and reloading it to make changes, and by supporting a sclf-documenting help

system. How vu achieves these featurcs and its interface are explained in the rest of this scction.

When using vu the interface dcsigner‘sces the screen layout (shown in figure 6.1) which consists of
five subsystems: workshop, objects, simulation, help, and menu subsystems. Each subsystem accomplishes
a well defined function and interacts with other subsystems through a well defined interface. Each subsys-
tem, except the simulation subsystem, is allocated a separate window on the display screen. The simulation

subsystem uses the window allocated to the workshop, as only one of these subsystems is active at any
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Figure 6.1 A Typical vu Screen

given time,

6.1.2.1. The Workshop Subsystem

The workshop subsystem handles the customization of objects in the presentation component being
designed. It occupics the window, called the work window, located in the central part of the screen. The
designs generated by Chisel are loaded in the workshop for editing. The objects in the presentation com-
ponent can be resized and moved until they are the desired size and in the desiicd nlace. These operations
are pe?formed by using a mouse or tablet. To move an object in the work window, the designer points at a

corner of the object and drags it to a new position. To change the size of the object the designer selects a
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corner of the object. The system fixes the comer diagonally oppusite the selected corner and redraws the

object following the mouse. An object can be deleted by reducing ii to size zero.

Workshop also enables the designer to customize other attributes of the objects. To do this the
designer points at the desired object and the system displays the default (or current) values of the atiributes
of ihe object. For example, in the case of a window, its drawing limits and name are displayed. The win-
dow has a background colour, and its attributes are displayed in its drawing colour. To change the window
timits or name of the window, the designer moves the cursor on top of the attribute and cnters a new value,
In situations like this, the designer uses the keyboard, all other operations are performed using the mouse or
tablet. To change the background colour of the window, the desigaer clicks the first mouse button inside
the window which accepts the colour displayed at the bottom right hand side of the screen. The designer
can create colours of his choice by mixing different amounts of red, green, and bluc through the use of three
colour potentiometers. To change the drawing colour of the window, the designer clicks the sccond mouse
button inside the window which accepts the colour. This facility lets the designer sce the colours seen by
the end user, and avoids the use of colour numbers or colourmap indices to name colours. The colours can

be changed as often as desired until a suitable combination is achieved.

In the case of a menu, the system displays the number of items associated with the menu, which can
be changed by typing a new value. The system divides the menu area equally for each item. The designer
can associate icons or text with a menu item. To associate an icon, the designer selects an icon from the
object window (discussed in the following sub-section) and places it in onc of the menu items. To modify
or to associate new text with a menu item, the designer sclects a position inside the space reserved for the
menu item and enters the text to be displayed. The text or icon associated with a menu item can be changed
as often as desired. Attributes of other interaction techniques, such as the minimum and maximum values

of a graphical potentiometer, can be similarly changed by entering new values.

The werkshop subsystem also provides facilities for saving the design, loading a previously created

design and modifying it, and creating more than one design without having to re-load the environment. The
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designer can save a partially completed design in a database and work on it later. The system does not
differentiate between starting a fresh design and starting from a partial design. This helps designers in
dividing a complicated design into various sessions and being more thorough in addressing requirements of

various parts of the presentation component.

6.1.2.2. The Objects Subsystem

The objects subsystem handles a hierarchy of graphical objects provided by the environment. It
occupies the window, called the object window, located across the top of the display screen. There are four
basic types of objects managed by this subsystem: windows, menus, interaction techniques, and icons.
These objects definc the top level of the object hierarchy. Icons corresponding to each type of object are
displayed when the environment is first started. Each icon represents a coilection of objects differing from
each other in some respect, but similar in the general purpose serve&. When the designer points at an
object, the objects subsystem reveals the next level of the hierarchy. The designer can select the objects at
the lowest level of the hierarchy (the leaf nodes) and usc them in the presentation component he is creating,
Examples of leaf nodes include static menus, pull-down menus, pop-up menus, light buttons, radio buttons,
various types of graphical potentiometers, interaction techniques for 2 and 3-dimensional picks, text win-
dows, and graphic windows. Each object is represented by a unique name or icon. The tesults of the
hierarchical cbject organization are that the designer never needs to scan too much information at a time,
and because each object in the hierarchy has a distinctive appearance he never becomes confused. The leaf
nodes in the hierarchy are distinguished from the internal nodes by the use of colour. Each leaf node con-
tains the prototypical definition of the object it repeesents. The designer can start with this definition and
modify it to suit his requirements. This results in large saving in time and effort. When the designer selects
an object (at the leaf node), an instance of it is created in the workshop where it can be customized. Any

number of instances of a particular object can be created and used.
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6.1.2.3. The Simulation Subsystem

The third subsystem in the vu environment is the simulation subsystem which uses the work window.
This subsystem cnables the designer to rehearse the presentation component being created. The design
creaicd in the workshop is passed to the simulation subsysticm which creaies windows and activates menus
and other interaction techniques defined in the presentation component. The designer can interact with the
presentation component just as the end user would by preforming actions such as selecting values from
potentiometers, selecting menu items, and entering text. This provides feedback to the designer on how the
presentation component will behave when it is compleiely implemented. The designer can leave the rehear-
sal and go back to the workshop to make changes in the design and simulate the new design to test the
changes. This featare of vu, though extremely useful in interactive design, is not supportcd by most sys-

tems (except Peridot {Myers86b]) which attempt to support visual programming.

6.1.2.4. The Help Subsystem

The help facility in vu is designed to reduce the need to memorize what each command does and
what function is served by each object in the vu environment. The information prr ' by vu is always
up-to-date and reflects any object customization by the designer. Each object in the objects subsystem has
a small description associated with it. This description includes its typical use in the user interface and
explains its modifiable attributes. When an instance of this object is created in the workshop this descrip-
tion is copied in to the instance. When the designer modifies any of the instance’s attributes this descrip-

tion is automatically updated by the system to reficct the change in attribute values.

To obtain information about the user interface under development, the designer selects the help com- a
mand and points at the work window. The system provides the names and other important attributes of all
the objects used in the user interface. The self-documenting capability in vu is achicved by generating
descriptions by referring 1o the same data structures which control lﬁe functioning of the system. In this

way vu avoids a mismatch between an object and its description.
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6.1.2.5. The Menu Subsystem
The menu subsystem in the vu environment manages the display and seiection of commands sup-
ported by the system. The menu is displayed in the window located in the top right comer of the screen.

The command selected by the designer is highlighted to show the selection.

6.2. Defining Output Tokens

As cxplained in Chapter 4, in the user interfaces developed using our UIMS, ouiput tokens arc used
for passing application output to the presentation component. The designer can associate any number of
output tokens with a window by selecting the "Output Tokens" command from the vu command menu.
Each output token is displayed by a different display procedure. While associating an output token with a
window, the designer specifies the token name and the name of the display procedure for it. Different out-
put tokens associated with a window are used for displaying different pictures in the same window. The
responsibility of identifying the output token and calling the appropriate display procedure rests with the

run-time support cnvironment of the UIMS, whereas the responsibility of interpreting the output token
correctly and displaying it rests with the display procedure.

Each object created by the designer is assignec_i a unique output token name, usually the name of the
object. By sending a request to display a particular output token, the other parts of the system can control
what is displayed by the presentation component. This mechanism makes the organization very flexible

and enables the application 1o conurol the display at run time.



6.3. vu in Action

The best way to show the use of vu is to work through an cxample. This section presenis the
sequence of operations that a designer might perform to refine, and to add the application output informa-

tion to the three-dimensional skeleton editing system discusscd in section 3.3.
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Figure 6.2 Vu Screen with Default Presentation Component

By selecting the "Load Design" command from the vu command menu the presentation component
generated by Chiszl is loaded for editing. The vu screen at this time is shown in figure 6.2. First the
designer associates output tokens with INFO and LIMB windows (see table 6.1). To associatc output
tokens the designer selects the "Output Tokens" command from the vu command menu and points at the

window with which tokens are to be associated. The system shows two smaller text windows within the
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sclected window. The top text window shows the default output token name generated by vu and the bot-
tom text window is uscd for entering the display procedure name for the token name displayed in top text

window (figure 6.3 shows the default output token in the INFO window).
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Figure 6.3 Defining Output Tokens

The designer can change the default output token name by typing a new name on top of this name
(figure 6.4 shows the "INF" output token in the INFO window). The designer can add or delete tokens

when in this mode. Similarly output tokens can be associated with the LIMB window.

Now the designer can resize the bottom menu (named "TORQUE") so that it fills the blank space
towards its left. This is done selecting the top left corner of the menu and dragging it to its new location.

Vu redistributes the size of the menu amongest its items and displays the new menu (figure 6.5).
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Figure 6.4 Changing Default Token Names

The designer now changes the size of the INFO window and repositions it so that it can {it on top of

the angle input techniques (figure 6.6). These operations are performed by using the mouse.

In the next step the designer resizes the LIMB window so that it takes up the space freed by the INFO
window (figure 6.7). The designer can now save the design by selecting the "Save db" command from the
vu command menu and exit. This completes the editing and produces the presentation component shown in

figure 3.10,

This example has so far not demonstrated all the cditing that the could be performed by using v,
One of the editing operaticns is replacing objects selected by Chisel with other objects. To replace, for

example, the angle input interaction technique for BEND the designer first deletes it by selecting the
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Figure 6.5 Resizing Interaction Techniques

"Create Object” command and reducing the interaction technique to a very small size. In the next step the

designer explores the object hierarchy provided by the objects subsystem and locates the desirad interaction

technique (graphical potentiometer in this case). An instance of this interaction technique can be created in

the workshop by pointing at its icon in the objects window. This instance of the interaction technique can

be placed and resized by using the techniques described above (figure 6.8).

The name cf this intéraction technique should be changed to "BEND" so that the right input token is

generated when the user interacts with it. This is done pressing the third mouse button inside the interac-

tion technique window so that its name and window limits are displayed. The window name can be

changed by typing new name on top of the default name (figure 6.9).
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Figure 6.6 Resizing and Repositioning Interaction Techniques

To change the drawing colour of the interaction technique the designer presscs the second mouse but-
ton inside the interaction technique window and creates the desired colour by using the colour potentiome-
ters and accepts the colour. Vu redisplays the window attributes in the new drawing colour. To change the
background colour the designer presses the first mouse button inside the interaction technique window and
creates the desired colour and accepts it. This causes the window to be redisplaycd with the new back-

ground.

To adjust other attributes of the interaction technique the designer sclects the "Object Attributes”
command from the vu command menu and points at the interaction technique. Vu displays the current

(default) values of the interaction technique’s attributes (figure 6.10) which can be changed by entering new
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Figure 6.7 The Refined Presentation Component

values (figure 6.11).
While textual description and pictures describing the designer’s actions take a fair amount of space, it

takes only a few minutes to refine presentation components using this system,
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Figure 6.8 Creating New Interaction Techniques

6.4. Output of vu

The output of vu consists of a database which describes the presentation component, two token
definition tables - one for input tokens and the other for output tokens, and a file of gencrated C code. The
database is used by the run-time system to generate the pregentation component when the interactive appli-
cation is started. The input and output token tables are used when compiling the cvent handlers produced
by Diction to C programs. The C code generated by vu is uscd to load the display procedures for the output

tokens.
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Figure 6.9 Changing Name of Inieraction Techniques

6.5. Implementation and Structure of vu

Vu is implemented on a VAX$ 11/780 running UNIX 4.3 BSD. It uses an AED-767 colour graphics
terminal with a tablet, Vu can also be run on J upitor-7 colour graphics terminal, Sun microsystems works-
tation, and VT1235 terminal. The programs implementing vu are written in the "C" programming language
[Kernighan78]. Vu uscs a window based graphics subroutine package called WINDLIB [Green84a] and a

graphical database package called FDB (Frame Data Base) [Green&3].

The logical organization and the interactions between various subsystems in vu are shown in figure

% VAN is atrade mark of Digital Equipment Corporation.
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Figure 6.10 Default Attribute Values of Interaction Techniques

6.12. The objects subsystem loads the interaction technique descriptions from the database of interaction
techniques. This database describes the modifiable attributes of each interaction technique. The database
describing the user interface being developed is produced by the menu subsystem. The menu subsystem

can load this database for further modifications or extensions.
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Figure 6.11 Changing Attribute Values of Interaction Techniques

6.6. Comparison with Existing Systems

In this section we compare vu to systems which tend to be visual in some way, we will not compare
vu with systems which require a program-like specification of graphical user interfaces. In our opinion, the

textual description of something which is graphic and dynamic is usually clumsy and unnatural.

The U of T UIMS [Buxton83], developed at the University of Toronto, allows the designer to implec-
ment menu based user interfaces in an interactive and graphical manner. The front end of this UIMS, called
MENULAY, enables the designer to define user interfaces which are raade up of networks of menus. The
specification made by using MENULAY is converted into the C programming language and compiled and

linked with the application-specific routines. Like vu, MENULAY allows the designer to enter geomeltrical
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information graphically. But MENULAY does not allow the designer to create morc than onc window.
This is one of the major drawbacks of MENULAY, which restricts the structured design of user interfaces.

MENULAY also does not provide prototype objects which the designer can customize for his use.

Peridot [Myers86b] is a User Interface Managemem System which uses programming by example
and visual programming to allow the user interface designer 10 create user interfaces. The major difference
between vu and Peridot is that vu does not support programming by example. The visual programming
component in vu is easier to use than in Peridot. The reason for this being that in vu, prototypes of all

objects available to the designer already exist in the objects sub-system. The designer only needs to cus-
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tomize them to suit his/her requiremenis. The equivalent of this does not exist in Peridot. Both vu and

Peridot support facilities for interacting with the interface under development.

Trillium [Henderson86] is a system used for designing interfaces organized as collection of "func-
tioning frames”. A frame is a collection of items, whose attributes can be changed by the designer. The
concept of frames used in Trillium is similar to the one used in COUSIN [Hayes83]. The objects in vu are
similar to the items in Trillium, but vu does not.use frames as a means for organizing interfaces. The items
or frames in Trillium are incapable of self-description whereas the vu system can, at all times, provide an

up-to-date description of the interface and the objects used in the interface.
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Figure 6.13 Flow of Tokens

The UIMS developed by Luca Cardelli [Cardelli87, Cardelli88] uses direct manipulation techniques
for building graphical user interfaces. There are many similarities between Cardelli’s system and vu, Like
vu, Cardelli’s system also provides a collection of objects (or interactors) which are customized by using

direct manipulation techniques and glued tegether to form a complete interface. The apprbach followed for
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adjusting the object attributes (property sheets) is similar 10 the one followed in ipcs [Singh86). Vu
exploits the graphical appearance of objects to display and customize object attributes, as shown in figure

6.12. The interactors in Cardelli’s system are incapable of sclf-description,

6.7. Run-Time Support

The presentztion component generated by vz communicates with other parts of the system by the use
of input and output tokens. The use of output tokens is explained earlier in this chapter. The presentation
component receives user input in the form of events and converts them into input tokens. An input token is
used for identifying things such as commands, values, and locations etc. Vu automatically generates the
names of input tokens depending upon the name and type of the object. These tokens are sent to dialogue
control component for further processing. Figure 6.13 shows the flow of tokens within the presentation

component.

6.8. Chapter Summary

This chapter discusses the vu sysiem which is used for refining the presentation components gen-
erated by Chisel. Vu provides a highly interactive, graphical, and visual programming environment for
editing graphical information. How designers use vu to refine presentation components is cxplained by
working through a detailed example. The interface of vu is compared with other systems which also use

visual programming techniques to create graphical user interfaces.



Chapter 7

Run-Time Support

The run-time support environment is responsible for managing the communication amongst the com-
ponents of the interactive system and for handling the creation and destruction of event handlers for the
dialogue control component. The run-time support environment provides a number of routines and
manages a number of data structures. This chapter discusses how the communication between the com-

ponents of the interactive system is handled and explains the creation and destruction of event handlers.

7.1. Managing Communication

The run-time suppert suvironment treats each component in the interactive system as a single logical
unit. These components communicate with each other by sending aind receiving tokens. The direction and
the component that will process a tcken is known when the token is generated. All the tokens are passed
through the run-time support environment, which distributes the tokens to various components and
schedules their exccution. The run-time structure of a typical interactive system is shown in figure 7.1.
Although this structure allows any component to communicate with any other, usually only a few of the

possible communication paths are user: (see figure 7.2).

The presentation component consists of a number of interaction techniques which generate input
tokens for the dialogue control component when the user interacts with them. The dialogue control com-
ponent reccives inpat tokens generated bv the presentation component énd processes them. While process-
ing the input tokens the dialogue control component may generate input tokens for itself and for the appli-
cation, and output tokens for the presentation component. The application receives input tokens generated

by the dialogue control component and generates output tokens for the presentation component.

The prescntation component receives output tokens generated by both the dialogue control com-

135
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Figure 7.1 Run-Time Structure of a Typical Interactive System

ponent and the application. These tokens are used to adjust the attributes of the interaction techniques,

display error messages, and display images.

When a token is genemtéd it is inserted at the end of the token queue associated with the receiving
component. An exception occurs in the case of input tokens for the dialcgue control component gencrated
from within the dialogue control component. These tokens, called the internal tokens, arc placed in the
front of the token queue for the dialogue control component. Figure 7.2 shows the token passing amongst
the components of interactive system. In this figure the application interface model and the application are

merged together and labeled as the application.

The run-time support component examines the token queuc asspcialcd with cach of the componcnts
and schedules tokens for execution. It removes tokens from the front of the selected queue one at a time,
converts them into events, and schedules their execution. The output token queuc associated with the
presentation component has a higher priority than the other token queues. All the tokens in the output
token queue for the presentation component are processed before the input token queues for the dialogue

control and the application interface model are selected. Only one token from the input token queucs for
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Figure 7.2 Token Passing Amongst Various Components

the dialogue control component and the application is scheduled for execution in one cycle of the scheduler.

Before the scheduler can process a token, the presentation component determines if any of its input
devices has a value ready. If this is the case the value is converted into an event and processed by the
presentation component, Often this means that one of the interaction techniques will generate an input

token for the dialogue control component. The steps in the scheduling process are shown in figure 7.3

1. If an input device has input ready,
call the presentation component to process it.
2. Process a token from the token queues.
2a. Select all tokens from the output token queue
for the presentation component.
2b. Select a token from the input token queues.
Alicrnate between the input token queues for the dialogue
control component and the application.
3. Gotostep 1.

Figure 7.3 Steps in the Scheduling Process

There arc two notable effects of this scheduling process. First, by processing the input device data
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before anything else it ensures that the feedback to the lexical op2rations is provided as quickly as possible.
Second, by processing all the output tokens for the presentation component before other tokens, it ensures

that the semantic feedback is provided to the user as soon as it is available.

7.2. Creating and Destroying Event Handlers

In addition to scheduling tokens for execu;ion, the run-time support environment is responsible for
creating and destroying instances of event handlers for the dialogue control component, When the interuc-
tive system is first started, the run-time support environment instantiates the HOUSE_KEEPER and the
HELPER. The HOUSE_KEEPER then causes the creation and destruction of event handlers for commands
depending on the user’s actions. The HOUSE_KEEPER calls onc¢ of the routines provided by the run-time

support environment (called "create_instance”) which actually instantiates event handlers.

The creation of an event handler involves updating the run-time support cnvironment's data struc-
tures and sending an INIT event to the newly instantiated event handler. It is important to note that the
INIT event is sent to the event handler as soon as it is instantiated and not put in the scheduler queues. The

new event handler, on receiving the INIT event, initializes its state and gets ready to process the user input.

The destruction of event handlers can be caused by the event handlers themselves or by the
HOUSE_KEEPER by calling a routine (called "destroy_instance™) provided by the run-lime support
environment. On receiving a request for destroying an event handler the run-time support environment

updates its data structures and removes the entry for the event handler from its scheduling tables,
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7.3. Chapter Summary

The componcnts of an interactive system communicate with each other by sending and receiving
tokens. All tokens are passed through the run-time support environment which distributes the tokens and
schedules their execution. When a token is generated it is added at the end of the token queue associated
with the recciving component. An exception occurs in the case of internal tokens, which are added at the
front of the token queue of the receiving component. The run-time support environment removes tokens
from the front of the queue, one at a time, converts them into events, and calls the appropriate procedures to

exccute them,



Chapter 8

Summary and Conclusions

This chapter summarizes the research presented in this thesis. The range of interfaces that the UIMS
can create is described, the experience with developing the UIMS and with using it is presented, and the
contributions of the research are reviewed. In addition, some features which could add to the usefulness of

the UIMS, and directions for future research are presented.

8.1. Range of the UIMS

All UIMSs are designed with several restrictions in mind. One of the main restrictions is the type of
interfaces generated by the UIMS. The UIMS presented in this thesis is only aimed at graphical user inter-
faces. It does not help with command language interfaces. It also does not help with the programming of
the semantics of the application. Even within graphical interfaces, it cannot producc all kinds of interfaces.
The classification of the three user interface control mechanisms presented in [Thomas83] cun be used (o

get an idea about the range of interfaces that the UIMS can generate.

External Control

In this type of control structure, the user interface is in control and calls the application in responsc to
user commands (figure 8.1). The application is modeled as a set of subroutines which can be invoked by
the user interface at appropriate limes during the interaction with the user. The UIMS presented in this
thesis is capable of generating user interfaces which usc this type of control mechanism. The three-
dimensional skeleton editing system, described in section 3.3 in chapter 3, is an example of this type of

control mechanism.

140
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Figure 8.1 External Control (adapted from [Thomas83])

Internal Control

This is the opposite of external control. The application is in control and calls user interface routines
when needed (figure 8.2). The user interface routines correspond to atomic input/output actions as far as
the application is concerned. The UIMS presented in this thesis is not well suited for this type of control.
The rcason being that applications of this type bypass the dialogue control component, as only they know

about the input required and which user interface routine should be invoked.

Mixed Initiative

The mixed control structure is similar to the external control structure except that the application rou-
tines, in addition to returning in the normal way, can call user interface routines to ask for additional infor-
mation from the uscr (figure 8.3). The UIMS presented in this thesis is capable of handling this type of

control. The application can ask the UIMS to invoke specific user interface routines, such as a dialogue
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Figure 8.2 Internal Control (adapted from [Thomas83))

box, through which the application can communicate directly with the user.

—

User Interface | Application

Graphics System

Figure 8.3 Mixed Initiative

In addition to external or mixed control, the interfaces generated by the UIMS are characterized by
relatively static screens. The screen of a user interface does not change dramatically over a short period of
time. The change in screen display is usually incremental. It is not possible to express interfaces for win-

dow managers which allow a variable number of windows, each running a different application. The reason
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being that to send information to a window, the application nceds to generate output tokens. To handle the

output correctly, the binding between the window and the tokens it displays should be done at run-time,

which our UIMS cannot handle.

8.2. Experience

This scction discusses experience with developing the UIMS and with using it.

8.2.1. Experience with Developing the UIMS

The UIMS was developed in the UNIX 4.3 BSD environment on a VAX 11/780 machine. The pri-
mary device for testing graphics was an AE'D-767>colour graphics terminal. The complete UIMS, cxcept
Chisel, has also been ported over to Sun microsystems environment. The UIMS requires nearly 745K bytcs
of source code. The tools that make up the complete UIMS were developed using facilities which seemed
most convenient to use.

Diction was developed using Lex [Lesk75] and Yacc [Johnson75]. The use of Lex and Yacc saved
me a great deal of time and effort as I could quickly develop a parser for the input grammer. The code gen-

eration in Diction is handled by routines written in the C programming language.

Chisel was developed in Franz Lisp. The interpretive nature of Lisp made the development of Chisel
much faster as no time was wasted waiting for compilation, and it was much easier to try out different pos-
sibilitics quickly and see how they work. Developing Chisel in a compiled langunage, such as C, would

have taken much longer and the source code would be much larger.

Vu was developed in the C programming language. It uses a window based graphics package callcd
WINDLIB (Green84a] and a graphical database package called FDB [Green83). The main reasons for
choosing WINDLIB were the effort I had already invested in producing interaction techniques and familiar-
ity with the package. The use of FDB saved me the time and effort which I would have otherwise spent in
writing routines for creating and manipulating special file formats. The choice of WINDLIB and FDB

imposcd the sclection of C as these packages can be called only from C programs.
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Additional details about the implementation and structurc of the UIMS are provided in scctions ‘

(overview) 3.2, (chisel) 5.4, (vu) 6.5, 6.7, (run-time structure) 7.1, and 7.2.

Looking back at the choices made for the development tools, I feel that the choice of Lex and YACC
for Diction and the choice of Lisp for Chisel were very appropriate. It would have been better to develop
vu in an interpretive language which would have saved the time spent in compiling programs and allowed
run-time loading of procedures. The run-time loading of procedures is very desirable for loading new icons

when vu is running,.

8.2.2. Experience with Using the UIMS

The UIMS has been used by a number of users for creating user interfaces for a varicty of systems
iﬁcluding a three-dimensional skeleton editor used by the animation research group, a distributed network
editor used by the distributed systems research group, a stickman animation system, and a paint program.
Table 8.1 shows a summary of the users’ background and some of the interfaces they developed. The inter-
face for the three-dimensional skeleton editor is described in section 3.3 of chapter 3, and the interface for
the distributed network editor is described in Appendix A2. The stickman animation system cnables the
user to change the orientation of the stickman’s limbs and store the orientations as frames. This sequence
of frames can then be played back by the user at a desired frame rate. The paint program allows the user to
place, move, and remove geometrical shapes of different types and colours on a canvas. The program was
designed to handle triangles, rectangles, and diamonds in red, green, blue, and yellow colours. The fish ani-
mation system is used for creating an animation of fish in a fish bowl. The user can control the number of
fish, their average velocity, the standard deviation in the velocily, the number of frames produced in an ani-
mation scquence, and the rate at which the animation is played back. This system has a number of similari-

ties with particle systems [Reeves83].
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User Background, Previous Experience | Application Complexity
Specialization with UIMSs

me Ph.D. Candidate Builder, User 3-d Skeleton Editor High
UIMSs, Graphics

<A> Comp. Sci. Undergrad | Used one User Distributed Network Moderate

Interface Toolkit Editor

<B> Ph.D. Candidate None Paint Program Low
Distributed Systems

<C> Ph.D. Candidate Builder, User Stickman Animation Low
UIMSs

<D> M.Sc. Student None Fish Animation Modcrate
Graphics

<E> Ph.D. Provisional None Stickman Animation Low
Theory

<B> Ph.D. Candidate None Distributed Network High
Distributed Systems Editor (modified)

Since there are no user manuals for the UIMS, it was necessary for me to guide the other users ini-
tially, They also had the complete skeleton editor for an example. The distributed network editor was
developed by a fourth year computing science undergraduate student. His experience with the UIMS, as
described by the user himself, is presented in Appendix A3. The feedback of the users was very encourag-
ing,

Not surprisingly, the main positive aspect of the experience was that the UIMS cuts down tremen-
dously on the time and effort required for developing user interfaces. All of the users were able te develop
their interfaces quickly and easily. Most of the users were surprised at how fast they could develop the first
version of the interface and refine it. In an informal experiment, it took me nearly two hours (wall clock
time) for devcloping the interface for ihe skeleton editor using the UIMS. When developing a similor inter-
face for the same application by using the UofA UIMS I spent nearly 56 hours (wall clock time). A
speedup of nearly 2800% was achieved over a "conventionol” UIMS. The difference in time and effort

would have been even greater if a conventional programming language were used.

The sccond positive aspect of the experience was that all the users found the UIMS to be easy to
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learn and easy to use. The users mentioned this as one of their main comments on tlie UIMS. One user
described the experience as "fun”. Since it did not take much time and effort to produce an interface, the
users built and tested a number of variants of the interfaces. The ability to do so lead to substantially
different and better interfaces than were originally planned for. This helped them achieve the "right” look

and feel.

One of the aspects of the UIMS, which turned out be very useful when refining preseatation com-
ponents, was the ability to see the refinements without delay. This reduced the number of (unpleasant)
surprises to a minimum and increased the confidence in the UIMS. The users of the UIMS scemed to enjoy
using the system. I had observed some of the users playing with the facility even after their main task was
over. Most people who had seen the UIMS in action also appreciated the ability to make changes and sce

the effect of the changes immediately.

A result of using the UIMS for building interfaces for a variety of applications was that a number of
problems with the UIMS’s own interface were disﬁovcrcd. These did not involve any majer changes to the
UIMS, and were mostly oversights on my part or were minor annoyances that I had just ignored. The inter-
face of the UIMS was revised to fix these problems as they were discovered. Examples of these problems
included cryptic error messages, unlabeled interaction techniques, and miror inconsisiencics in interaction

in vu.

When performing refinements using vu, some of the users did not like enlarging smaller objccts 1o
change the objects’ colours (see, e.g. page 169 sccond last paragraph). This is necessary as changing autri-
butes is treated as one step in the sysiem, and therefore to display all of the attributes the smaller objects .
have 1o be enlarged. A better aliernative would have been for the UIMS to enlarge the smaller objects

automatically, and bring them back to their original sizes when the changes are over.

Some of the users did not use the facilities in an optimal fashion. An example is when moving
objects on the screen, users often did not select the corner which made the final placing of the object the

easiest. But once told, they realized the inefficient use of the facilities and improved in future. A sccond
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example is the usc of the dialogue handling capabilities of Diction. One of :he users wanted an extension
made to Diction for handling a special requirement (variable number of a particular argument in a com-
mand) in his interface. But it turned out that his requirement could be handled within the existing facilities.
Both of these problems could be avoided by providing the users with a manual which explained the efficient

and effective use of the UIMS.

8.3. Implications of the Approach

There are a number of interesting implications of the approach followed by the UIMS. The most
important advantage is that the interface is described in a simple and concise notalior_x. As the experience of
the uscrs of the UIMS indicates, this notation is readily learned and understood. Also since the description
is quite concise, it is easily modified and a vncw interface produced without a major investment of time or
cffort. This makes it possible for the designer to devote more resources to trying out different alternatives,
rather than to geiting a new version of the interface produced. This compares favourably with systems

which require detailed program-like specification of the interface.

The second advantage of the kind of specification accepted by the UIMS is that the UIMS can
automatically provide a number of sophisticated facilities. An example is the help facility provided by the
UIMS. The UIMS automatically generates help messages which explain the syntax, selection, as well as
the argument requirements of commands. This is a direct consequence of the UIMS "knowing” about the
command structure. A second example is the repeated execution of a command by changing just one of the
argument values. In this type of a scenario the user provides a number of values for a particular command
argument and the UIMS repeatedly executes the selected command for each argument value, Providing this

type of a facility will be harder, if not impossible, in a grammar or transition networks based specification.

The third advantage of the approach is that it leads to separation between the application and the user
interface. Because of this scparation it is possible to alter the complete user interface with litite or no

change to the application code. This makes it possible to move the complete application to other devices
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and change the dialogue style completely. This has been demonstrated by porting the complete distributed
network editor and the skeleton editor from an AED-767 colour graphics device to a SUN3 workstation.
Both the applications were ported in a matter of 2-3 hours, rather than in wecks or months which is usually

the case.

The next advantage of the approach is its extensibility and flexibility. The UIMS can be tailored 10
handle different interface styles. For example, it is possible to extend the UIMS to produce interfaces
which conform to the OPEN LOOK style of interfaces [OPEN LOOKS8)]. Once the core of the UIMS is

produced it is then possible to keep extending it by adding more interaction techniques and dialogue styles,

Another advantage is the interfaces produced by the UIMS have a uniform and consistent style within
an application as well as across applications. The consistency in interfaces helps users leam new applica-
tions quickly. To a large axtent, this consistency is achieved by a uniform application of design rules by the

UIMS, rather than the designer enforcing various interface design guidelines.

There are a number of limitations of the approach. This approach docs not work very well with inter-
nal control user interfaces in which the application controls the interaction. To be able to support the
development of internal control interfaccs a different input and control structure for the UIMS will be
required. Another limitation is because there is a loose coupling between the application and its interface,
certain kinds of semantic feedoack becomes very slow or impossible to produce. These include the oncs

which require knowledge about the application computed data, or output which is closcly ticd to the input,

8.4. Relation to Existing Approaches/UIMSs

The research prescnted in this thesis has benefited from earlier work in the arca of user interfaces and
UIMSs. As a result of this, the approach and UIMS described in this thesis is closely related to a number of
existing systems. This section compares and contrasts our research with other approaches and UIMSs. The

discussion can be divided into two parts based on the abstractions used by the UIMS.
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8.4.1. Low-Level UIMSs

There is a Jarge number of UIMSs which use "programmed style” of specification of the interface.
The specification could be textual in which case the designer specifies low-level lexical and syntactic detail
of the interface in a textual notation accepted by the UIMS, or the specification could be non-textual, in
which case a visual or graphical specification is used. Examples of UIMSs which use textual specification
include Reisner’'s UIMS [Reisner81], SYNGRAPH [Olsen83], UofA UIMS ([Green85b), and Sassafras
[Hill86]. Examples of UIMSs which use non-textual specification include Jacob’s State Transition Net-
work UIMSs [Jacob85,Jacob86], Wasserman’s UIMS [Wasserman85], MENULAY [Buxton83], Peridot
[Myers86a), Cardelli’s UIMS [Cardelli87, Cardelli88]. In these UIMSs, the level of abstractions for
describing the information communicated between the user and system is very low. The events used in
such specifications may range from primitives of the underlying graphics package (e.g. picks, valuators,
strings) to more complex I/O events (e.g. menu selections, bargraphs). A number of problems result
becausc of this. First, the applications quite often have to convert data into its graphical representation and
request the UIMS to display the result. As a consequence, any modification in the user-visible parts of the
system means modifications in the application. A second problem is that applications generally expect to
receive input in the form of keystrokes and mouse movements. This makes for a poor environment for
integrating various applications. When two applications have to be integrated, the output from one applica-
tion has to be converted into keysirokes and mouse movements for the other application. Such a conver-
sion can be very difficult to perform. A third problem is that it is very difficult to move application from

one device to another as a large amount of device dependent interface code resides in the application,

Another problem with low-level UIMSs relates to the degree of abstraction in specifying the ordering
of 1/O events. In these UIMSs, the interface definition explicitly specifies what sequences of I/O events
constitute a valid dialogue between user and application. In this type of specification, it is very hard to pro-
duce modeless interaction. The modelessness has to be programmed into the interface definition. Which

means that the specification could become very hard to construct and manage. Another problem with expli-
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cit event ordering is the handling of exception conditions. In this type of specification, all exception condi-

tions must he foreseen and incorporated into the interface definition.

Our approach is based on a high-level semantic definition rather than on lexical/syntactic definition
of the interface, as is the case in low-level UIMSs. In our approach, the communication between the user
and the application is specified in terms of information that the application needs to obtain from the uscr.
The interface definition does not specify the I/O events necessary to achieve this exchange of information.
In our UIMS, more work is shifted from the application to the UIMS which is responsible for gathering low
level device inputs, converting them into tokens for the application, and displaying the application dats. As
a result the application does not have to deal with low-level device input/output primitives. This provides

for a better framework for intergrating applications.

In our approach, the interface definition does not explicitly specify the 1/0 event ordering in the com-
munication between the user and application. Instead, it declares sets of events without mentioning a
specific ordering. Any ordering restrictions are implicit in the UIMS. As a result of this it is easy to pro-
vide a modeless interaction. Also, since the UIMS has a complete knowledge atout the data requirements
of commands, it can automatically provide support for a number of useful facilities such as helip, erase, and

cancel.

8.4.2. High-Level UIMSs

Our approach is similar in spirit to the approaches followed in COUSIN (COnperative USer INter-
face) [Hayes83-Hayes85), MIKE (Menu Interaction Kontrol Environment) [Olsen86], and UIDE (User
Interface Design Environment) {Foley87a-Foley89]. All of these systems emphasize on producing inter-
faces from highly abstracted interface descriptions. Differences lie in the kind of abstractions used and how

the interface definition is used.

COUSIN provides coarse-grained command interaction centered around a form-based metaphor of

communication, Using this abstraction, an interface definition for a given application specifics a form con-
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taining a field for each piece of information that the user and application need to exchange. This definition
is interpreted by COUSIN 10 realize a graphical representation of the form which shows the current value of
cach field, which the user or the application can update. This type is abstraction is suitable for a limited
class of applications only, such as a print command and elcctronic mail applications. When a number of
different commands exist in an interface, the form based abstraction does not produce very good interac-
tion,

MIKE uses a "command procedure” metaphor for describing the user interface. Corresponding to
each command in the interface there is a procedure/function in the application which implements the
semantics of the command. While the interface definitions used in MIKE and in our approach look quite
similar there are differences in how this definition is used. The first difference is the default interfaces gen-
crated by MIKE are almost completely keyboard oriented. In MIKE, the interface definition is used almost
solely for syntax purposes. In our approach the data type and other properties of the commands and com-
mand arguments are used to produce graphical interfaces. Also, by considering the device properties, our
UIMS does a mote comprehensive job of designing interfaces than MIKE. The second difference is in the
control mechanism. As described in section 2.6.2, the use of functions and the types they return form the
basic control mechanism in MIKE’s syntax. This makes it very natural to support a prefix type of syntax in
which first the command is selected and then the command arguments are entered in the sequence of their
specification in the interface definition, This is the only one possible style supported by MIKE, which is
highly moded in structure. A number of ambiguities would have to be resolved if MIKE were to parse for
command arguments in any order, or if it were to implement other syntax types. Providing these facilities
may rcquire a complete overhaul of MIKE's control méchanism. The cor;uol mechanism in our UIMS is
very flexible, which makes it possible to support modeless interaction. Currently, it supports prefix,
postfix, and nofix syntax types. Providing support for additional syntaxes simply means extending Diction

10 produce event handlers for them,

UIDE provides a high-level conceptual design tool in which the interface is described as a knowledge
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base consisting of the class hierarchy of objects, properties of the objects, actions which can be performed
on the objects, and pre- and post-conditions for the actions. UIDE can algorithmically transform the
knowledge base into a number of functionally equivalent interfaces, each of which is slighuy different from
the original interface. The transformed interface definition can then be used to automatically implement the
interface. UIDE facilitates the creation and testing of design alicrnatives by performing transformations on
the knowledge base which defines the interface. There are two points to note about the creation of design
alternatives in UIDE. First, the alternatives differ only slightly from one another. It scems hard 1o producc
radically different interfaces for an application. As a result, it may be proper to conclude that UIDE facili-
tates the exploration of designs alternatives in a close vicinity of the initial design provided by the designer.
The second point to note is that when producing design alternatives the designer decides which transforma-
tions to apply. Once the designer provides this information, UIDE performs the mechanics of creating
implicit parameters and adding commands etc. As opposed to UIDE, our UIMS enables the designer to
easily create interface designs which are radically different from one another. Changing the syntax of com-
mands or influencing the selection of interaction techniques is more easy and automatic in our UIMS than
in UIDE. An area where UIDE provides more help than our UIMS is in producing consistent designs. An
example is when the designer wants to factor a command argument, UIDE makes sure that all the affecied
commands are updated. This does not happen automatically in our UIMS; the designer has to update all the

affected commands.

Other notable differences between our UIMS and other UIMSs discussed in this section are in the
consideration of user’s preferences and in the designer’s control of the UIMS. None of the other UIMSs
place much emphasis on user’s preferences and on the designcr’; control ovf the UIMS's functioning. In our
UIMS, optional inputs can be provided to tailor the gencrated interface according to the user’s preferences.,

Our UIMS provides the designer with a number of ways of enfluencing the decisions made by the UIMS.

This is supported by using designer-modifiablc defaults in the UIMS.
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8.5. Review of Contributions

The research presented in this thesis shows that it is possible to automatically produce the initial
design of graphical user interfaces. This initial design can then be refined very easily and rapidly by the
designer, and automatically implemented by the UIMS. To the best of our knowledge, the UIMS presented
in this thesis is amongst the first to follow such an approach, and takes the state-of-the-art beyond the capa-

bilities of a "conventional” UIMS.

The UIMS supports extremely rapid prototyping of user interfaces by reducing the time and effort
involved in creating user interfaces. The designer can quickly create different protol).fpes by modifying the
UIMS's defaults or by providing optional inputs. Also, significant portions of the presentation component
can be changed without affecting the dialogue control component, and vice-versa. The ease and efficiency
of creating prototypes encourages experimentation and may therefore lead to better user interfaces. The
interfaces generated by the UIMS are efficient enuugh so that they can be used with actual applications.

This means the UIMS is not merely used for prototyping; the actual interfaces are being implemented.

This rescarch makes a significant step forward in the direction of increasing the ease of use of
UIMSs. The interface designer is no longer required to deal with detailed interface specifications, which
are often cryptic, too lime-consuming to produce, and error-prone. In our UIMS, a high level description of
the commands supported by the application is directly transformed into the interface design and imple-
mented. In addition, when editing interfaces, the changes are immediately visible and executable. This

makes it much easier to develop interfaces.

The implementation of the user interface is physically separated from the implementation of the
application routines, yet these two components can communicate at run-time. This separation is an implicit

goal of all UIMSs, but few existing UIMSs achieve it to the extent it is achieved in our system.
The system Diction demonstrates that a variety of syntax types can be automatically designed and
implemented, and that different syntax types can co-exist in the same interface. As far as we know, Diction

is amongst the first systems to allow this,
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To the best of our knowledge, Chisel is the first system to handle the design of graphical presentation
components at a detailed level. Chiscl demonstrates that it is possible to generate presentation components

which are sensitive to user preferences, designer guidelines, and hardware devices.

The vu system allows the editing of graphical presentation components in a manner which is highly
interactive, graphical and direct. It combines visual programming, object oricnted design, and self-updating
help systems to achieve ease of use. Visibility and direct manipulation of the objects of intcrest, and the

ability to interact with the interface under development arc the major strengths of vu.

8.6. Future Work

Although the UIMS described in this thesis allows interfaces to be created, edited, and used in actual
applications, there is a great deal that could be done to make it better. The experience gained through this
research and the development of the UIMS has suggested some new approaches and directions that might

be profitably investigated in the {uture,

8.6.1. Additional Features

This section lists some additional features that could be added to the UIMS to make it morc usclul.

These do not involve radical changes to the UIMS's interface or implementation.

8.6.1.1. Chisel Reading in Refined Presentation Components

Currently, Chisel cannot read in presentation components after they are revised through vu. It always
starts afresh from the dialogue requirements file and produces a new design. This design is then revised by
the designer by using vu. If Chisel were able to read in revised designs and incrementally add new interac-
tion techniques 1o it, the designer could save the time he has alrcady spent in revising the old design. This
feature was not added to Chisel as it did not present any interesting research questions, and due to the time

constraint on the implementation.
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8.6.1.2. Chisel Producing Presentaiicn Database

An important feature that is missing from Chisel is its ability to produce the database for the presen-
tation component that is used at the run-time. Currently, Chisel produces a "design_file" which is read by
vu which produces the database. As a result, even if the designer does not want to refine or add output
token information to the design produced by Chisel he still has to use vu to convert the design into a data-
base. This feature was not added because of the large implementation effort involved in doing it. Since
Chisel is written in Franz Lisp, and the database can only be accessed through C programs, I would have to

write code which could interface them properly. And, this required substantial effort.

8.6.1.3. Interactive Entry of the Input Syntax
Currently, the dialogue requirements file for Diction is produced by using a text editor. It would be
casier to enter the same information through an interactive syntax-directed editor which could flag syntax

crrors and provide help during the entry,

8.6.2. Areas for Future Research

As stated in section 1.4, this thesis does not provide the final solution to the user interface design
problem, ncither does it produce a comprehensive tool for designing user interfaces. This is a very large
and complicated task and nceds more time and resources than available to a graduate student. There is a
considerable amount of work yet to be done in the area of user interface design and user interface design

tools. This section prescnts some interesting areas for future research.
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8.6.2.1. Run-Time Structures

An important area for research is to compare run-time structures of UIMSs. The comparison can be
based on factors such as efficiency of the structure, reliability of the structure, and suitability for various
types of interfaces. It may then be possible to pioduce a UIMS which can support multiple run-time struc-
wres, and depending on the type of interface being supported select the one which matches the require-

ments the best.

8.6.2.2. Automatic Analysis

One of the areas where not much work has been done is the evaluation of graphical user interfaces.
The results of this research could be profitably used in a high level UIMS such as ours. If Chisel had an
evaluation system built in it, it could evaluate the designs it generates and improve upon them. This could

reduce the time the interface designer spends in manually refining the user inierface.

The transparent, automated interaction monitors can be extremely useful for evaluating and improv-
ing interface designs, but not much work has been done in this area. Buxton ct al [Buxton83] and Olsen
and Halversen [Olsén88] produce data from the user/system interaction, but they have not built tools for
analyzing this data. Considerable additional rescarch attention needs to be given to the use of such moni-

tors while evaluating user interfaces.

8.6.2.3. Application Output

Another issue which needs more research is the issue of handling the application fecdback in user
interfaces. In a number of UIMSs, including ours, this is left for the interface designer to design and pro-
gram. Some recent UIMSs which have initiated work in this area include {Hudson86, Hudson88], [Mackin-
lay86] and [Zanden88]. An interesting approach could be to produce interactive tools which cnable the
designer to establish relationship between application information (variables) and the graphical dispiay of a
user interface. The designer should be allowed to use graphical marks, such as points, lincs, and areas, 10

encode information via their positional, temporal, and retinal properties.
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8.6.2.4. Higher Level Design Tools

Great interest is beginning to arise in creating high level UIMSs. This thesis along with Dan Olsen’s
[Olsen86] and James Foley et al's [Foley87a-Foley89] work provide a beginning in this direction. An
interesting approach could be to automatically determine the commands along with their arguments, and the
application routines to perform certain actions. In this type of a scenario each application routine is
specificd in terms of its data requirements, its pre-conditions, and its post-conditions. The designer
specifics the pre- and post-conditions of the actions that the user wants to perform. Given this information,
the UIMS determines the commands to perform these actions and selects the application routines required
to implement the semantics. Once this is done, a UIMS, such as the one presented in this thesis, can be

used to design and implement the interface.

This basic idea couid be extended to produce user interfaces which adapt to the user’s level of exper-
tise or security clearance. Each command in the interface can be assigned a severiiy or security rating. The
system could then prevent users below a certain expertise or sccurity rating from executing commands
which have a higher rating. The other option could be to ask novice users for confirmation before execut-

ing a potentially dangerous command.

8.6.2.5. User Interface Design Guidelines

Though great advances have been made over the past few years, the state of the art in user interface
design is still in its infancy. The area that scems to be in greatest need of work has to do with user interface
design puidelines. A number of guidelines for user interface design do exist (see, e.g., [Shneidermang0]
and [Foley82] for a compilation of guidclines), but most of these guidelines are too general and therefore do
not help much when dealing with specific situations. Also a number of the guidelines have not been
evaluated experimentally for their usefulness and validity. A recent effort by AT&T, Xerox, and Sun
Microsystems has resulted in a document called the OPEN LOOK Graphical User Interface Functional

Specification [OPEN LOOKS8]. This specification describes guideliues for graphical user interfaces. The
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aim of this document is to "bring ... consistent interface to users, no matter who builds the application and
what hardware the software runs on" [Kannegaard88]. The guidclines presented in this document arc more
specific than the ones which were available so far. We need to get user feedback on the interfaces based on
these guidelines to check the guidclines’ validity. Also, we need to keep similar efforts going at other
research and development institutions. The hope is that in future when we have enough good guidelines

and appropriate tools, designing user interfaces will become more predictable and more enjoyable.



References

Armstrong85a.
William W. Armstrong and Mark Green, The Dynamics of Articulated Rigid Bodies for Purposes of

Animation, Proc. Graphics Interface’ 85, Montreal, Canada, May 27-31, 1985, 407-415.

Armstrong85b.

William W. Armstrong and Mark Green, The Dynamics of Tree Linkages for Purposes of Animation,

The Visual Computer 1,4 (1985), 231-240.

Barth86.

Paul S. Barth, An Object-Oriented Approach to Graphical Interfaces, ACM Transactions on Graphics
5,2 (Apr. 1986), 142-172.

Beusg7.
Bill Beuts, David Burlingame, Gerhard Fischer, Jim Foley, Mark Green, David Kasik, Stephen T.
Kerr, Dan Olsen and James Thomas, Goals and Objectives for User Interface Software, Compter

Graphics 21, 2 (Apr. 1987), 73-78.

Boics8s.
Stephen J. Boics, John D. Gould, S. Levy, J.T. Richards and J.W. Schoonard, The 1984 Olympic

Message System - A Case Study in System Design, IBM Research Report RC-11138, 1985.

Buxton80.
Wiiliam A. S. Buxton and R. Snidermar, Iteration and the Design of the Human-Computer Interface,

Proc. 13th Annual Meeting of the Human Factors Association of Canada, 1980, 72-81.

Buxton83.
William A. S. Buxton, M. R. Lamb, D. Sherman and K. C. Smith, Towards a Comprehensive User
Interface Management Systcm, Computer Graphics 17,3 (July 1983), 35-42. (Proc. SIGGRAPH’83

Conf., July 25-29, 1983, Detroit, Michigan).

159



160

Cardg0.
Stuart K. Card, Thomas P. Mcran and Allen Newell, The Keystroke-Leve! Model for User
Performance Time with Interactive Systems, Comm. ACM 23, (1980), 396-410.
Cardelli8Ss.
Luca Cardelli and Rob Pike, Squeak: A Language for Communicating with Mice, Computer
Graphics 19, 3 (1985), 199-204. (Proc. SIGGRAPH'8S Conf., July 22-26, 1985, San Francisco,
CA).
Cardelli87.
Luca Cardelli, Building User Interfaces by Direct Manipulation, Technical Repon# 22, Digital,
System Research Center, 130 Lytton Av., Palo Alto, California 94301, Oct. 1987.
Cardel!i88.
Luca Cardelli, Building User Interfaces by Direct Manipulation, Proc. ACM SIGGRAFPH Syinposium
on User Interface Software, Baqff, Alberta, Canada, Oct, 17-19, 1988, 152-166.
Chang87.
Shi-Kuo Chang, Visual Languages: A Tutorial and Survey, /EEE Sofiware 4, 1 (Jan, 1987), 29-39.
Chia8s.
M. 8. Chia, An Event Based Dialogue Specification for Automatic Generation of User Interfuces,
M.Sc. Thesis, Dept. of Computing Science, Univ. cf Alberta, Edmonion, Alberia, Canada, 1983.
Feldman82.
M. Feldman and G. Rogers, Towards the Design and Devclo;;ment of Style Independent Interactive
Systems, Proc. 15t Annual Conf. on Human Factors in Computer Systems, Gaithersburg Maryland,
Mar. 1982, 111-116.
Foley82.

J. D. Foley and A. Van Dam, Fundamentals of interactive Computer Graphics, Addison Wesley,



161

Reading Mass., 1982.
Foley84a.
James D. Foley, Managing the Design of User-Computer Interfaces, Proc. Fifth Annual NCGA Conyf.

and Exposition, Ancheim, CA, Vol II,, May 13-17, 1984, 436-451.

Folcy84b.

J. D. Foley, V. L. Wallace and P. Chan, The Human Factors of Computer Graphics Interaction

Techniques, IEEE-Computer Graphics and Applications 4, 11 (Nov. 1984), 13-48.

Foley87a.

James D. Foley, Transformations on a Formal Specificaiion of User-Computer Interfaces, Computer

Graphics 21,2 (Apr. 1987), 109-113,

Foley87b.
James D. Feley, Won Chul Kim and Christina A. Gibbs, Algorithms to Transform the Formal
Specification of a User-Computer Interface, Human-Compter Interfuce - INTERACT 87, B.V.(North

Holland), 1987, 1001-1005.

Foley88a.
James D. Foley, Won Chul Kim, Srdjan Kovacevic and Kevin Murray, The User Interface Design
Environment, Technical Report# GWU-IIST-88-4, Dept. of EE&CS, The George Washington
University, Wasington, DC 20052, Jan. 1988. (16 pages).

Foley88b.
James D. Foley, Christina Gibbs, Won Chul Kim and Srdjan Kovacevic, A Knowledge-Based User
Interface Management System, Proc. CHI'88 Human Factors in Computer Systems, Washington,
D.C., May 15-19, 1988, 67-72.

Folcy89.

James D. Foley, Won Chul Kim, Srdjan Kovacevic and Kevin Murray, Defining Interfaces at a High



162

Level of Abstractions, JEEE Software, Jan. 1989, 23-32.

Furuya87.
Katsuji Furuya, Shuichi Tayama, Eiko Kutsuwada and Kazuo Matsumura, Approach to Standardize
Icons, Proc. 1987 Workshop on Visual Languages, Linkoping, Sweden, Aug. 19-21, 1987, 29-38.
Good84.
Michael D. Good, John A. Whiteside, Dennis R. Wilson and Sandra J. Jones, Building a User-
Derived Inteiface, Comm. ACM 27, 10 (Oct. 1984), 1032-1043,
Green83.
Mark Green, M. Bumnell, H. Vernjak and M. Vernjak, Experience with a Graphical Data Base
System, Proc. Graphics Interface' 83,1983, 257-270.
Green84a.
Mark Green and Nancy Bridgeman, WINDLIB l_’rogrammcr's Manual, Dept. of Computing Science,
Univ. of Alberta, Edmonton, Albertz, Canada, 1984.
Green84b.,
Mark Green, The Design of Graphical User Interfaces, Ph.D. Thesis, Univ. of Toronto, Toronto,
Canada, 1984.
Green85a.
Mark Green, Report on Dialogue Specification Tools , in User Interface Management Sysiems,
Gunther E. Pfaff (ed.), Springer-Verlag, 1585, $-20.
Green85b.
Mark Green, The University of Alberta User Interface Management System, Computer Graphics !9,
3 (July 1985), 205-213. (Proc. SIGGRAPH'85 ~onf., July 22-26, 1985, San Francisco, California).
Greeng6.

Mark Green, A Survey of Three Dialogue Modcls, ACM Fransactions or Greshics 5.3 (July 1986),



163

244-275.

Green87.,
Mark Green and Jonathan Schaeffer, FrameWorks: A Disuibuted Computer Animation System,
Proc. CIPS (Edmonton) Annual Conf., Edmonton, Alberta, Nov. 16-19, 1987, 305-310.

Guedj80.
R. A. Guedj, P. J. W. ten Hagen, F. R. A. Hopgood, H. A. Tucker and D. A. Duce, eds., Methodology
of Interaction, North-Holland Publishing Company, Amsterdam, 198C. |

Hanau80.
P.R. Hanau and D.R. Leronovitz, Prototyping and Simulation Tools for Uscr/Comﬁutcr Dialogue
Design, Computer Graphics 14,3 (1980), 271-278. (Proc. SIGGRAPH'80 Conf., July 14-18, 1980,
Seattle, Washington).

Haycs83.
Phil J. Hayes and P, A. Szekely, Graceful interaction through the COUSIN Command Ihtefface,
Internation Journal of Man-Machine Studies 19, 3 (Sep. 1983), 285-305.

Hayes84,
Phil J. Hayes, An Exccutable Specification Technique for Describing Human-Computer Interface, in

Advances in Human-Computer Interaction, H. R. Hartson (ed.), Ablex, New Jersey, 1984, 161-189.

Hayes85.
Phil J. Hayes, Pedro A. Szekely and Richard A. Lerner, Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN, Proc. CHI'85 Human Factors in
Computing Systems, San Francisco, Apr. 14-18, 1985, 169-175.

Heindel75.
L.E. Heindei and J.T. Roberto, LANG-PAK - An Interactive Language Design System, American

Elsevicer Publishing Company, Inc., New York, 1975.



164

Helfman87.
Janathan Helfman, Panther: A Tabular User-Interface Specification System, Proc. CHI+GI'87
Human Factors in Computing Systems, Toronto, Ont., Canada, Apr. 5-9, 1987, 279-284.

Henderson86.
D. A. Henderson, The Trillium User Interface Design Environment, Proc. CHI' 86 Human Factors in
Computing Systems, Boston, MA, Apr. 13-17, 1986, 221-227.

Hili86.Ralph D. Hill, Supporting Concurrency, Communications and Synchronization in Human-Computer
Interaction-The Sassafras User Interface Management Systems, ACM Transactions on Graphics 5,3
(July 1986), 179-210.

Hillg7a.
Ralph D. Hill, Supporting Concurrency, Communication, and Synchronization in Human-Computer
Interaction, Tech. Report CSRI-197, Computer Systems Research Institute, Univ. of Toronto, May
1987. (Ph.D. Thesis, 206 pages).

Hill87b,
Raloh D. Hill, Event-Response Systems - A Technique for Specifying Multi-Threaded Dialogucs,
Proc. CHI+GI'87 Human Factors in Computing Systems, Toronto, Ontario, Canada, Apr. 5-9, 1987,
241-248.

Hudson86.
Scott E. Hudson, A Generator for Direct Manipulation Office Systems, ACM Trarsactions on Office
Systems 4,2 (Apr. 1986), 132-163.

Hudson88.
Scott E. Hudson and Roger King, Semantic Feedback in the Higgins UIMS, /EEE Transactions on

Software Engineering SE-14, 8 (Aug. 1988), 1188-1206.

Jacob83.



165

Robert J. K. Jacob, Exccutable Specifications for a Human-Computer Interface, Proc. CHI 1983

Human Factors in Computing Systems, Boston, MA, Dcc. 12-15, 1983, 28-34.

Jacob84.
Robert J.K. Jacob, An Executable Specification Technique for Describing Human-Computer
Interaction, in Advances in Human-Computer Interaction, HR. Hartson (ed.), Ablex Publishing Co.,

1984,

Jacob8S.
Robert J. K. Jacob, A State Transition Diagram Language for Visual Programming, IEEE Computer
18, 8 (Aug. 1985), 51-59.

Jacobg6.
Robert J.K. Jacob, A Specification Language for Direct-Manipulation User Interfaces, ACM
Transaction on Graphics 5, 4 (Oct. 1986), 283-317.

Johnson75.
Stephen C. Johnson, Yacc: Yet Another Compiler-Compiler, Technical Report 32, AT&T Bell Labs,
Murray Hill, New Jersey, 1975.

Kanncgaard88.

Jon Kannegaard, OPEN LOOK: Outlook/Overview, Sun Technology 1,4 (1988), 58-62 .

Kasik82.
David J. Kasik, A User Interface Managementi System, Computer Graphics 16, 3 (July 1982), 99-
106.

Ker:ighan78,
Brian W, Kcmighan and Dennis M. Ritchie, The C Programming Language, Prentice_Hall,

Englewood-Cliffs, NJ, 1978.

Lau83.S. C. Lau, The Use of Recursive Transition Networks for Dialogue in User Interfaces, M.Sc. Thesis,



166

Dept. of Computing Science, Univ. of Alberta, Edmonton, Canada, 1985.

Lesk7S.
M. E. Lesk and E. Schmidt, Lex - A Lexical Analyser Generator, Technical Report 39, AT&T Bell

Labs, Murray Hill, New Jersey, 1975,
MacDonald82.
Alan MacDonald, Visual Programming, Daramation 28, 11 (1982), 132-140.
Mackinlay86.
Jock Mackinlay, Automating the Design of Graphical Presentations of Relatic: Information, ACM
Transactions on Graphics 5, 2 (Apr. 1986), 110-141. |
Mason83.
R.E.A. Mason and T.T. Carey, Prototyping Intcractive Infromation Systems, Comm. ACM 26, 5
(May 1983), 347-354.
Mittal86.
Sanjay Mittal, Clive L. Dym and Mahesh Morjaria, Pride: An Expert System for the Design of Paper
Handling Systems, IEEE Computer 19,7 (July 1986), 102-114.
Morgan83.
C. Morgan, G. William and P. Lemmons, An Interview with Wayne Rosing, Bruce Danicls, and
Larry Tesler, Byte 8, 2 (Feb. 1983), 90-114.
Mussio87.
P. Mussio, M. Padula and M. Protti, Description Based Icon Design, Proc. 1987 Workshop on Visual
Languages, Linkoping, Sweden, Aug. 19-21, 1987, 118-129.
Myers86a.
Brad A. Myers and William A, S. Buxton, Creating Highly-Interactive and Graphiéal User Interfaces

by Demonstration, Computer Graphics 20,4 (1986), 249-258. (Proc. SIGGRAPH’86 Conf., Aug.



167

18-22, 1986, Dallas, Texas).

Myers86b.
Brad A. Myers, Visual Programming, Programming by Example, and Program Visualization: A
Taxonomy, Proc. CHI'86 Human Factors in Computing Systems, Boston, MA, Apr. 13-17, 1986,
59-66.

Myers87a.
Brad A. Myers, Creating Dynamic Interaction Techniques by Demonstration, Proc. CHI+GI'87

Human Factors in Computing Systems, Toronto, Ont., Canada, Apr. 5-9, 1987, 271-278.

Myers87b.

Brad A. Myers, Creating User Interfaces by Demonstration, Tech. Report CSRI-196, Computer

Systems Research Institute, Univ. of Toronto, May 1987. (Ph.D. Thesis, 266 pages).

Newman68.

William M. Newman, A System for Interactive Graphical } rogramming, Proc. Spring Joint
Computer Conf., 1968, 47-54.

OPEN LOOKSS.
OPEN LOOK, OPEN LOOK Graphical User Interface Functional Specification, Sun Microsystems,
San Francisco, CA, 1988.

Olsen83.
Dan R, Olscn and Elizabeth P. Dempsey, SYNGRAPH: A Graphical User Interface Generator,
Computer Graphics 17,3 (July 1983), 43-50. (Proc. SIGGRAPH'83 Conf., July 25-29, 1983,
Detroit, Michigan).

Olscn84.
Dan R. Olsen, William A. S Buxton, R, Ehrich, David Kasik, James Rhyne and John Sibert, A

Context for User Interface Management, IEEE Computer Graphics and Applications 4, 12 (Dec.



1984), 33-42.

Olsen8S.
Dan R. Olscn, Elizabeth P. Dempsey and Roy Rogge, Input/Output Linkage in a User Interface
Management System, Computer Graphics 19,3 (July 1985), 191-197. (Proc. SIGGRAPH'85 Conf.,

July 22-26, 1985, San Francisco, California).

Olsen86.
DanR. Olsen, MIKE: The Menu Interaction Kontrol Environment, ACM Transactions on Graphics

5,4 (Oct. 1986), 318-344,

Olsen87.
Dan R. Olsen, David Kasik, James Rhyne and James Thomas, eds., Proc. ACM SIGGRAPH
Workshop on Software Tools for User Interface Management, Nov. 1986, Batelle, Scattle,
Washington, Computer Graphics 21, 2 (Apr. 1987), 71-147.

Olsen88.
Dan R. Olsen and Bradley W. Halversen, Interface Usage Measurements in a User Interface
Management System, Proc. ACM SIGGRAPH Symposium on User Interface Software, Banlf,
Alberta, Canada, Oct. 17-19, 1988, 102-108,

Pamas69.
David L. Parnas, On the Use of Transiti.on Diagrams in the Design of a User Interface for an

Interactive Graphics System, Proc. 24th National ACM Conf., 1969, 379-385.

Pfaff85.
Gunther E. Pfaff, in User Interface Management Systems, Springer-Verlag, 1985.
Reeves83.
William T. Reeves, Particle Sysiems - A Technique for Modeling a Class of Fuzzy Objects, ACM

Transactions on Graphics 2,2 (1983), 9.1 -109.



169

Reisncr81.

Phyllis Reisner, Formal Grammar and Human Factors Design of an Interactive Graphics System,
IEEE Transactions on Software Engineering SE-7, 2 (Mar. 1981), 229-240.

Roach82.
J. Roach, R. Hartson, R. Ehrich, T. Yunten and D. Johnson, DMS: A Comprehensive System for
Managing Human-Computer Dialogue, Proc. 1st Annual Conf. on Human Factors in Coinputer
Systems, Gaithersburg Maryland, Mar. 1982, 102-105.

Schmicker86.

K.J. Schmucker, MacApp: An Application Framework, BYTE, Aug. 1986, 189-192.

Sheil83.

Bcau Sheil, Power Tools for Programmers, Datamation 29,2 (Feb. 1983), 131-144,
Shnciderman80.
Ben Shneiderman, Software Psychology, Winthrop Publishers, Inc., Cambridge, Massachusetts,
1980.
Shneiderman82.
Ben Shneiderman, Multiparty Grammars and Related Features for Defining Interactive Systems,
IEEE Transactions on Systems, Man and Cybernetics SMC-12, 2 (1982), 148-154.
Sibert86.
John L. Sibert, William D. Hurley and Teresa W, Bleser, An Object-Oriented User Interface
Management System, Computer Graphics 20, 4 (1986), 259-268. (Proc. SIGGRAPH'86 Conf., Aug.
18-22, 1986, Dallas, Texas).
Singh8s.
Gurminder Singh, Presentation Component for the U of A UIMS, M.Sc. Thesis, Dept. of Computing

Science, Univ. of Alberta, Edmonton, Canada, 1985.



170

Singh86.
Gurminder Singh and Mark Green, Automatic Generation of Graphical User Interfaces, Proc.
Graphics Interface '86 , Vancouver, B.C., May 26-30, 1986, 71-76.

Singh87.
Gurminder Singh and Mark Green, Visual Programming of Graphical User Interfaces, Proc. 1987

Workshop on Visual Languages, Linkoping, Sweden, Aug. 19-21, 1987, 161-173.

Singh88a.
Gurminder Singh and Mark Green, vu - visual user-interface design workshop, Graphics Interface
'88 - Film Show , Edmonton, Alberta, Canada, June 6-10, 1988, video tape.
Singh88b.
Gurminder Singh and Mark Green, Designing the Interface Designer’s Interface, Proc. ACM
SIGGRAPH Symposium on User Int2rface Software, Banff, Alberta, Canada, Oct, 17-19, 1988, 109-
116. |
Singh89a.
Gurminder Singh and Mark Green, A High Level User Interface Management System, Proc. CI{I'89
Human Factors in Computing Systems, Austin, Texas, Apr, 30-May 4, 1989, (in press).
Singh89b.
Gurminder Singh and Mark Green, Generating Graphicai User Interfaces from High-Level
Descriptions, Graphics Interface’ 89, London, Ontario, Canada, June 19-23, 1989, (in press).
Singh89c.
Ajit Singh, FrameWorks Model of Distributed Computing in Workstation Znvironment, Ph.D. Thesis,
Univ. of Alberta, Edmonton, Alberta, Canada, 1989. (expected).
Smith82.

David C. Smith, Charles Irby, Ralph Kimball, Bill Verplank and Erik Harslem, Designing the Star



171

User Interface, Byte Magazine, Apr. 1982, 242-282.

Sutton78.
Jimmy A. Sutton and Ralph H. Sprague, A Survey of Interactive Business Applications, IBM
Research Report RJ2388, Nov. 9, 1978,

Swartout82.
W. Swartout and R. Blazer, The Inevitable Intertwining of Specification and Implementation, Comim.
ACM 25,7 (1982), 438-440.

Tanner8S5.
Peter Tanner and William A. S. Buxton, Some Issues in Future User Interface Management System
(UIMS) Development, in User Interface Management Systems, Gunther E. Pfaff (ed.), Springer-
Verlag, 1985, 67-80.

Thomas§83.
James J. Thomas and Griffith Hamlin, eds., Graphics Input Interaction Technique (GIIT) Workshop

Summary, June 2-4, 1982, Battelle Seattle, Computer Graphics 17, 1 (Jan. 1983), 5-66.
Wasserman79.
Anthony I. Wasserman and S. K. Stinson, A Specification Method for Interaétive Systems, Proc.
IEEE Conf. on Specification of Reliable Sofiware, Long Beach, CA, 1979, 68-79.
Wasserman85.
Anthony I. Wasscrman, Extending State Transition Diagrams for the Specification of Human-

-Computcf Intcraction, IEEE Transactions on Software Engineering SE-11, 8 (Aug. 1985), 699-713.

William83,

Gregg William, The Lisa Computer System, Byte Magazine, Feb. 1983, 33-50.

Zanden88.

Bradley T. Vander Zanden, Constraint Grammars in User Interface Management Systems, Proc.



172

Graphics Interface’ 88, Edmonton, Alberta, Canada, Junc 6-10, 1988, 176-184,



Appendix Al

BNF Specifiction for Diction

Note: the following symbols are meta-symbols belonging to the BNF formalism, and are not part of

the interface specification

When curly brackets arc part of the specification, they are printed in bold. The curly brackets denote

possible repetition of the enclosed symbols zero or more times. In general,
A = (B}
is a short form for the purcly recursive rule;

A :=<empty> | AB

<description> ::= <parse selection> <global args> <commands>

<parse selection> ::= <empty> | <parse> <selection> | <selection> <parse>
<parse> ;:= <cmpty> | PARSE <parse type>

<selection> ::= <empty> | SELECTION <selection type>

<global args> ::= {<global arg>)
<global arg> ::= <identifier> : <garg spec>
<garg spec> 1= <garg type> <initval>

<garg type> 1= <types> | <subrange> | <enumerated>
<subrange> ::= [ <number> ¢ <number> ]
<cnumerated> ::= ( <identificr> {<identifier>) )

<initval> ::= <empty> | { INITIAL = <val>}
<val> i:= <number> { <identifier>

<commands:> ::= <command> (<command>)
<command> ::= <identifier> <pstype> ( <args> )
<pstype> = <empty> | { <ptype> <stype> }
<plype> 1= <cmpty> | <parsc type>

<slype> = <emply> | <sclection type>

<args> = <cmply> | <arg> {; <arg>}

<arg> = <identificr> ¢ <arg spec>

<arg spee> 1= <arg type> <defval>

<arg type> = <identifier> | <garg type>
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<defval> ::= <empty> | { DEFAULT = <val>}

<parse type> i:= PREFIX | POSTFIX'I NOFIX
<selection type> ::= GPEN_ENDED | CLOSE_ENDED
<type> ::= int | real | char | window | pick2d | pick3d
<number> ::= <integer number> | <real number>
<integer number> ::= <sign> <unsigned integer>
<unsigned integer> = <digit> {<digit>]

<sign> = <cmpiy> |+ |-

<real number> ::= <sign> <unsigned integer> . <digit> {<digit>)
<identifier> ::= <letter> {<leuter or digit>)

<letter or digit> ::= <letter> | <digit>

<letter> :i=AIBl..YI|Zlalbl..lylz
<«digit>::=1121...81910

<empty> =
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Appendix A2

Developing an Interface for FrameWorks

This section presents an introduction to the FrameWorks model of distributed computing and
discusscs the creation of its interface using the UIMS described in this thesis. This interface is designed for
use in the distributed computing research [Green87, Singh89c] in our department. The primary developar
of this interface was Glenn Klettke, a fourth year computing science undergraduate student at the
University of Alberta. Glenn’s experience with using the UIMS is presented in Appendix A3. The

introduction to the FrameWorks model was written by Ajit Singh, and edited by me.

1. Introduction

The FrameWorks model offers the designers of distributed applications a conceprual framework to
support facile consiruction of distributed programs. In this model, the organization of processes is
described in a high level language using basic structuring primitives of the mode! called templates. These
tcmplates can be viewed analogically as sub-structures commonly four d in human organizations. From the
architectural point of view the resulting structure is similar o a data Tow neiwork of processes. Since
processes are organized in a network 50 that the output of a process ca:: .~ fed into appropriate input of

other processes, all the processes whose input values are ready can be executed simultaneously.

The (cmplates provide simple structures that can further be used for building much more complicated

organizations. A process's inter-connection with other processes can be described by a 3-wple:

(input_template, output_template, body_template)

The designer sclects a suitable template from a set of templates for cach type. Input templates describe the
interface through which a process receives its input. There are three options for input template: executive,

pipeline and assimilator. A process with executive template has its standard input connected to the user's
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terminal. Only one process in the whole application is aliowed to have this swatus. In a sequential
cnvironment it is analogous to the main program. A process with pipcline input receives its input from a
single process, whereas in the case of an assimilator, several processes supply parts of input data needed by

the process,

Similarly, there are three choices for describing the output characteristics of a process: pipeline,
manager, and terminal. A pipeline process passes all its output to a single process. A manager distributes
its output among a number of processes. A process whose output is marked as terminal does not pass its
output to any process. Normally, by the time processing of data is completed by a process whose output is
of type terminal, any useful output is already stored in files or tables. Together, input and output templates

provide several ways of structuring the input and output of a process.

In a network of processes very often there are processes that require much more computation than
other processes. In order to achieve more flexibility at execution time in using idle processors and relicving
the designer from specifying the exact number of processors required by such processes (and conscquently
by the complete application), the model provides a body tempiate iype called contractor. When a
process’s bedy is declared as contractor, it means that the process gets its work done by employee

processes, A contractor process hires an unspecified number of employee processes to get the job done.

Processes in a distributed environment often need o access resources such as files, tables, devices
etc. The last of the primitives used by the FrameWorks model is designed precisely for this purpose. It is
called resource manager. A process that is supposcd to regulate access to a shared resource is declared as
resource manager. The only way other processés can perform operations on any resource is by sending a

request 1o its resource manager,

Although a textual description of the processcs’ characteristics and their interconnection is possible,
it is ccrtainly not very convenicnt., A graphical user interface is more convenicnt for systems that need to
deal with designs that have scveral components interconnected together. A graphical representation is much

easier to produce and understand as compared 1o the textual description.
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Load (application_namc)

Add_First_Template (icon_name, place, process_name, script_file)
Add_Second_Template (icon_name, place)

Remove_Template (place)

Make_Contractor (process_name)

Remove_Contractor (process_name)

Add_Resource_Manager (process_name, place, script_file)
Add_Routines (process_name, calling_frame, reply_frame, routine_name)
Remove_Resource_Manager (place)

Add_Link (templatel, template2, calling_frame, reply_frame)
Remove_Link ( templatel, template2)

Save (application_name)

Close (application_name)

Quit O

Figure A2.1 Commands Supported by the Distributed Network Editor

2. Developing the Distribuied Network Editor

The main purpose of the distributed network editor is o interactively enter and edit temp’.ites and
conncctions between them. A preliminary task analysis of the editor by the designer resuited in the
commands shown in figure A2.1. The editor Qvas designied to allow ihe creation and editing of template
networks for multiple applications in the same editing session. This necessitated the addition of Load,
Close, Save, and Quit commands in the editor. The Add_First_Template command is used to create either
an input or an output type template. Each template created by the Add_First_Template command is placed
at a particular location on the display, and assigned a process name and a script file name by the user of the
cditor. The argument script_file is the name of the file which contains the location of the program for the
process, and the structure definitions of the input and output data of the program. The
Add_Sccond_Template command is used to create the second template in the input-output templaie pair.
The Make_Contractor and Remove_Contractor commands are used to handle the creation and destruction
of contractor templates. The Add_Resource_Manager and Add_Routines commands are used to creat a
resource manager and update its properties. The calling_frame and reply_frame argumecnts in the

Add_Routines cominand define the structures of the data received and generated by the resource manager.
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ICONS : (executive inﬁipeline pipeline terminal assimilator ranager),

APPLICATION_NAME : char,

PROCESS_NAME : char,

FRAME_NAME : char,

ROUTINE_NAME : char,

FILE_NAME : char,

WIND : pick,

Load (application_name : APPLICATION_NAME)

Add_First_Template (icon_name : ICONS, place : WIND,
process_name : PROCESS_NAME, script_file : FILE_NAME)

Add_Second_Template (icon_name : ICONS, place : WIND)

Remove_Template (place : WIND)

Make_Contractor (process_name : PROCESS_NAME)

Remove_Contractor (process_name : PROCESS_NAME)

Add_Resource_Manager (process_name : PROCESS_INAME,
place : WIND, script_file : FILE_NAME)

Add_Routines (OPEN_ENDED] (process_name : PROCESS_NAME {CSV},
calling_frame : FRAME_NAME, reply_frame : FRAME_NAME,
routine_name : ROUTINE_NAME)

Remove_Resource_Manager (place : WIND)

Add_Link (templatel ; WIND, template2 : WIND,
calling_frame : FRAME_NAME, reply_frame : FRAME_NAME)

Remove_Link (templatel : WIND, template2 : WIND)

Save (application_name : APPLICATION_NAME)

Close (appiication_name : APPLICATION_NAME (CSV})

Quit

Figure A2.2 Command Description for the UIMS

(d=fun user-preferences()
(assign-colour "WIND ’black 'white)
)

Figure A2.3 User’s Preferences

And, the routine_name argument is used to add action routines to the resource manager. A resouree
manager can be destroyed by using the Remove_Resource_Manager command. The Add_Link and

Remove_Link commands are used to create and remove links between a pair of templates,



Table A2.1 Output Tokens

WINDOW | Token Name Display Procedure
WIND IICON Display_.input_icon
WIND - OICON Display_output_icon
WIND [ERASE Erase_input_icon
WIND OERASE Erase_output_icon
WIND MAN Display_manager
WIND ERASEMAN | Erase_manager
WIND CONT Display_contractor
WIND ERASECONT | Erase_contractor
WIND LINK Display_link
WIND UNLINK Erase_link
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The description of commands shown in figure A2.1 was refined and described in the notation

accepted by the UIMS. This resulted in the command description shown in figure A2.2. It was decided to

parse all commands, except the Add_Routines command, in PREFIX CLOSE_ENDED fashion. The

Add_Routines command is parsed in PREFIX OPEN_ENDED fashion which allows the user add a number

of routings to a resource manager without having to reselect the command. The process_name argument in

the Add_Routines command and the application_name argument in the Close command are of CSV type;

all other arguments are of regular type.
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Figure A2.4 Presentation Component Generated by Chisel

The editor was to be implemented on AED-767 colour graphics terminal, so the device description
for AED-767 (shown in figure 5.2 in chapter 5) was selected from the library of device uescriptions and
provided to the UIMS. The user’s preferences part of the input was used to assign preferred colours o

interaction techniques. This input is shown in figure A2.3.
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Figure A2.5 Refined Presentation Component

Table A2.1 shows the output tckens that are used by the editor. All of the output tokens are
associated with the window named WIND. Five of these token (IICON, OICON, MAN, CONT, and
LINK) are used when templates are added and the other five are used when templates are deleted. The
UIMS was then used to produce the presentation and dialogue control components of the editor. The initial
presentation component generated by Chisel is shown in figure A2.4. This presentation componcent after
adding the output token information to it and after refining is shown in figure A2.5. The refining was done

by using the facilities provided by vu. The completed editor in action is shown in figurc A2.6.
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Appendix A3

Experience with Using the UIMS

This appendix presents Glenn Kelttke's experience with using the UIMS for developing the
distributed network editor described in appendix A2. The rest of this appendix has been written by Glenn

himself.

In neced of a graphical user interface for a distributed processing application, I decided to give the
UIMS described in this thesis a chance. One of my goals was to produce a working prototype as quickly as
possible with minimum effort and allow successive refinements as needed. This was an important issuc
since all the details of the project were nct known in advance. I wanted to be able to develop the application
and interface in a parallel manner and be able to interact with the interface under development. The project
was to be device independent so the UIMS would have to allow a mechanism whereby simple adjustments

could be made to allow independence.

The project was to produce a interactive graphics facility. In its simplest form, the user would interact
with the system and produce a picture of a distributed network system. The user by selecting commands
from a ma‘n menu, controls the addition., deletion, linking, and removal of icons representing processors,
Other commands were to be provided for loading and saving current or previously gencrated network

sysiems.

Producing the initial specification for the prototype was simple using the UIMS. All that was requircd
was to write a simple specification. I did not have to spend a great deal of time learning a complex
spgciﬁcalion language nor worry about a large number of details. One of the nice advantages was that the
entire design was handled by the UIMS, thus, I did not have to produce a design and convert into a special

format that the UIMS would understand.
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Once the initial design was complete, I started adding more details to my interface. Successive
refinement was very simple and did not require a great deal of effort. The UIMS allowed me a great deal of
freedom to control almost all aspects of style. The ability to sce the effect of refinements without delay was
very satisfying and allowed me to see if in fact my refinements were satisfactory or not. The ability to
create a large number of interfaces quickly, each with different behavior and look, allowed me to compare

diffcrent models and choose the one I thought best.

Using the UIMS saved me a great deal of time and trouble. To program the whole interface {from
scratch would have taken considerably more effort. There was no need to create menu or interaction
technique code and the code required to maintain them. 1 did not have to worry about the syntax checking
or make sure that all information required to execute a command had been in fact entered since the UIMS
does all of this. In the past I have used the Macintosh Toolbox for a few applications. As far as I know,
there is no mechanism whereby the same effect or versatility can be achieved. Using the presentation
componcent of the UIMS I could move a menu around the display window, change background and
foreground colors, and resize a menu in minutes. Comparatively, to do the same thing from scratch woulci
have neccssitated changing a fair amount of code for each operation each time a change was required.
Another example of time saving would be the fact that I wrote the initial application on a AED 767

Colorware computer and ported my application to a SUN3 workstation in less than one hour.

There were a few things that I would have liked to see included or changed in the UIMS. Onc of
these is a way to allow a variable number of arguments for a particular command. Another was that in order
to change the color of a small window, one had to enlarge it to a reasonable size and then change the color,
and finally reduce it back to it's initial size. Finally, the initial layout of the interface by the UIMS tends to

be less than ideal; however, the initial layout is easily and quickly changed.

I believe that the savings in programming time and effort provided by the UIMS where substantial. I

would not hesitate to use the UIMS again in the future and look forward in doing so.



Appendix Ad

Event Handlers for the Skeleton Editor (section 3.3)

This appendix contains the event handlers produced by Diction for the example dialogue shown in

figure 3.6.

eventhandler help is
token

Change_Root IN_Change_Root;
Add_Limb  IN_Add_Limb;
Remove_Limb IN_Remove_Limb;
Move_Limb IN_Move_Limb;
Show_Atributes  IN_Show_Atwibutes;
Change_Orientation IN_Change_Orientation;
Change_Length IN_Change_Length;
Change_Mass IN_Change_Mass;
Change_Cofm IN_Change_Cofm;
Change_Torque IN_Change_Torque;

Save IN_Save;
Load IN_Load;
Exit  IN_Exit;

event IN_Change_Root{
if ({ee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELPI, "Change_Root: select command
followed by args in any sequence” );
send_token( PRESENTATION, HELP, HELP, "command sclection valid for one
execution only”" );
send_token( PRESENTATION, HELP, HELP, "args:position - must be selected” );

}

event IN_Add_Limb(
if (lee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP1, "Add_Limb: select command
foilowed by args in any sequence” );
seird _token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );
send_token( PRESENTATION, HELP, HELP, "args:limb - must be sclected” );
send_token( PRESENTATION, HELP, HELP, "  mass length cofm bend rotate
torque - have current values” );
}

event IN_Remove_Limb(
if (lec_command_help) return(1);
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send_token( PRESENTATION, HELPI, HELP1, "Remove_Limb: select command
followcd by args in any sequence” );

send_token( PRESENTATION, HELP, HELP, "command remains active till
another cotamand is selected” );

send_token( PRESENTATION, HELP, HELP, "args:limb - must be selected” );

}

event IN_Move_Limb{

if (‘ee_command_help) return(1);

send_token! PRESENTATION, HELP1, HELP1, "Move_Limb: select command
followed by args in any sequence” );

send_token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );

send_token( PRESENTATION, HELP, HELP, "args:limb new_parent - must
be selected” );

}

event IN_Show_Attributes{
if (lee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELPI, "Show_Attributes: select command
‘ollowed by args in any sequence” );
send_token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );
send_token( PRESENTATION, HELP, HELP, "args:limb - must be selected” )X

]

event IN_Change_Orientation {

if ({ec_command_help) return(1);

send_token( PRESENTATION, HELP1, HELFi, "Change_Orientation: select
command followed by args in any sequence” );

send_token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );

send_token( PRESENTATION, HELP, HELP, "args:limb new_bend new_rotation
- must be selected" );

}

cvent IN_Change_Length{

if (ec_command_help) return(1);

send_token( PRESENTATION, HELP1, HELP1, "Change_Length: select command
followed by args in any sequence” );

send_token( PRESENTATION, HELP, HELP, "command remains active tiil
ancther command is selected” );

send_token{ PRESENTATION, HELP, HELP, "args:limb new_length - must be
selected” );

}

event IN_Change_Mass(
if (‘ec_command_help) return(1);
scnd_token( PRESENTATION, HELP1, HELPI, "Change_Mass: select command
fo'' wed by args in any sequence” );
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send_token( PRESENTATION, HELP, HELP, "command remains active till
" another command is selected” );
send_token( PRESENTATION, HELP, HELP, "args:limb ncw_mass - must be
selected” );
}

event IN_Change_Cofm(
if (tee_command_help) return(1);
send_token( PRESENTATION, HELPI, HELP1, "Change_Cofm: select comuiand
followed by args in any sequence” )
send_token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );
send_token( PRESENTATION, HELP, HELP, "args:limb new_cofm - must be
selected” ),
}

event IN_Change_Torque({
if (tee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP1, "Change_Torque: sclect command
followed by args in any sequence” );
send_token( PRESENTATION, HELP, HELF, "command rcmains active till
another command is selecied” );
send_token( PRESENTATION, HELP, HELP, "args:limb new_torque - must be
selected" );
}

event IN_Save(
if (fee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP1, "Save: sclect command followed
by args in any sequence” );
send_token( PRESENTATION, HELP, HELP, "command sclection valid {or one
execution only" );
send_token( PRESENTATION, HELP, HELP, "args:No args requircd.” );
)

event IN_Load{
if (lee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP1, "Load: select command followed
by args in any sequence” );
send stoken( PRESENTATION, HELP, HELP, "command sclection valid for one
execution only” );
send_token( PRESENTATION, HELP, HELP, "args:No args required.” );
}

event IN_Exit{
if (ee_command_help) return(1);
scnd_token( PRESENTATION, HELP1, HELP1, "Exit: select command followed
by args in any sequence” );
send_token( PRESENTATION, HELP, HELP, "command sclection valid for one
execution only" );
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send_token({ PRESENTATION, HELP, HELP, "args:No args required.” );
)

end help;

cventhandler HOUSE_KEEPER is

token
Change_Root IN_Change_Root;
Add_Limb IN_Add_Limb;
Remove_Limb IN_Remove_Limb;
Move_Limb IN_Move_Limb;
Show_Attributes IN_Show_Attributes;
Change_Orientation IN_Change_Orientation;
Change_Length IN_Change_Length;
Change_Mass IN_Change_Mass;
Change_Cofm IN_Change_Cofm;
Change_Torque IN_Change_Torque;
Save IN_Save;
Load IN_Load;
Exit IN_Exit;
LENGTH IN_LENGTH;
MASS IN_MASS;
COFM IN_COFRM;
BEND IN_BEND;
ROTATE IN_ROTATE;
TORQUE IN_TORQUE;
LIMB IN_LIMB;
INFO IN_INFO;

event INIT(
cmd_Change_Root.status = OFF;
cmd_Add_Limb.status = OFF;
cmd_Remove_Limb.staws = OFF,;
cmd_Move_Limb.status = OFF;
cmd_Show_Attributes.status = OFF;
cmd_Change_Orientation.status = OFF;
cmd_Change_Length.status = OFF;
cmd_Change_Mass.status = OFF;
cmd_Change_Cofm.status = OFF;
cmd_Change_Torque.status = OFF;
cmd_Save.status = OFF;
cmd_Load.status = OFF;
cmd_Exit.status = OFF;
Change_Root_position.status = UNDEF;
Change_Root_position.value = NULL;
Add_Limb_limb.status = UNDEF;
Add_Limb_limb.value = NULL;
Add_Limb_mass.status = UNDEF;
Add_Limb_mass.value = NULL;
Add_Limb_length.status = UNDEF;



Add_Limb_length.value = NULL;
Add_Limb_cofm.status = UNDEF;
Add_Limb_cofm.value = NULL;
Add_Limb_bend.status = UNDEF:
Add_Limb_bend.value = NULL;
Add_Limb_rotate.status = UNDEF;
Add_Limb_rotate.value = NULL;
Add_Limb_torque.status = UNDEF;
Add_Limb_torque.value = NULL;
Remove_Limb_limb.status = UNDEF;
Remove_Limb_limb.value = NULL;
Move_Limb_limb.siatus = UNDEF;
Move_Limb_limb.value = NULL;
Move_Limb_new_parent.status = UNDEF;
Move_Limb_new_parent.value = NULL;
Show_Attributes_limb.status = UNDEF,
Show_Attributes_limb.value = NULL;
Change_Orientation_limb.status = UNDEF;
Change_Orientation_limb.value = NULL;
Change_Orientation_new_bend.status = UNDEF;
Change_Orientation_new_bend.value = NULL;
Change_Orientation_new_rotation.status = UNDEF;
Change_Orientation_new_rotation.value = NULL;
Change_Length_limb.status = UNDEF;
Change_Length_limb.value = NULL;
Change_Length_new_length.status = UNDEF;
Change_Length_new_length.value = NULL;
Change_Mass_limb.status = UNDEF;
Change_Mass_limb.value = NULL;
Change_Mass_new_mass.status = UNDEF;
Change_Mass_new_mass.value = NULL;
Change_Cofm_limb.status = UNDEF;
Change_Cofm_limb.value = NULL;
Change_Cofm_new_cofm.staws = UNDEF;
Change_Cofm_new_cofm.value = NULL;
Change_Torque_limb.status = UNDEF;
Change_Torque_limb.value = NULL;
Change_Torque_new_torque.status = UNDEF;
Change_Torque_new_torque.value = NULL;

dptr = (double *)malloc( sizeof( double ));

*dptr = 2.000000;

send_token( PRESENTATION, INITIAL, "LENGTH", dptr);
dptr = (double *)malloc( sizeof( double ));

*dpir = 10.000000;

send_token( PRESENTATION, INITIAL, "MASS", dptr);
dptr = (double *)malloc( sizeof( double ));

*dptr = 0.500000;

send_token( PRESENTATION, INITIAL, "COFM", dptr);
send_token( PRESENTATION, INITIAL. "BEND", 0);
send_token( PRESENTATION, INITIAL, "ROTATE", 0);



send_token( PRESENTATION, INITIAL, "TORQUE", "TorqueFuncl");
send_token( APPLICATION, INITIAL, INITIAL, NULL );
}
event IN_Change_Root{
if (cmd_Change_Root.status == OFF){;
deactivate_other_commands();
cmd_Change_Root.status = ON;
instantiate( cHANGE, rOOT );

}
}
cvent IN_Add_Limb{
if (cmd_Add_Limb.status == OFF){;
deactivate_other_commands();
cmd_Add_Limb.status = ON;
instantiate( aDD_IIMB );
}
)

event IN_Remove_Limb{
if (cmd_Remove_Limb.status == OFF){;
deactivate_other_commands();
cmd_ Remove_Limb.status = ON;
instantiatc( tEMOVE_IIMB );

)
)
event IN_Move_Limb{
if (cmd_Move_Limb.status == OFF)(;
deactivate_other_commands();
cmd_Move_Limb.status = ON;
instantiate( mMOVE_IIMB );
}

event IN_Show_Auttributes
if (cmd_Show_Autributes.status == OFF)(;
deactivate_other_commands();
cmd_Show_Attributes.status = ON;
instantiate( sHOW_aTTRIBUTES );
}
}

event IN_Change_Orientation
if (cmd_Change_Orientation.status == OFF){;
deactivate_other_commands();
cmd_Change_Orientation.status = ON;
instantiate( cHANGE_oRIENTATION );

)
)
event IN_Change_Length({
if (cmd_Change_Length.status == OFF){;
deactivate_other_commands();
cmd_Change_Length.status = ON;
instantiate( cHANGE_IENGTH );
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}
}
svent IN_Change_Mass |
if (cmd_Change_Mass.status == OFF)(;
deactivate_other_commands();
cmd_Change_Mass.status = ON;
instantiate( cHANGE_mASS );
)
)
event IN_Change_Cofm(
if (cmd_Change_Cofm status == OFF){;
deactivate_other_commands(;
cmd_Change_Cofm.status = ON;
instantiate( cHANGE_cOFM );
}
)
cvent IN_Change_Torque(
if (cmd_Change_Torque.status == OFF){;
deactivate_other_commands();
cmd_Change_Torque.status = ON;
instantiatc( cHANGE_tORQUE ),
}

event IN_Save(
if (cmd_Save.status == OFF){;
deactivate_other_commands();
cmd_Save.status = ON;
instantiate( SAVE );
}
}
event IN_Load{
if (cmd_Load.status == OFF){;
deactivate_other_commands();
cmd_Load.status = ON;
instantiate( IOAD );
)
)
event IN_Exit(
if (cmd_Exit.stats == OFF){;
deactivate_other_commands();
cmd_Exit.status = ON;
instantiate( eXIT );
}
}
event IN_LIMB(
Change_Root_position.status = DEF;

Change_Root_position.value = event_value;

Add_Limb_limb.status = DEF;
Add_Limb_limb.value = event_value;
Remove_Limb_limb.status = DEF;
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Remove_Limb_limb.value = event_value;
if (Move_Limb_limb.status == UNDEF)(
Move_Limb_limb.siatus = DEF;
Move_Limb_limb.value = cvent_valuc;
Jelse{
Move_Limb_ncw_parent.status = DEF;
Move_Limb_new_parent.value = event_value;
)
Show_Attributes_limb.status = DEF;
Show_Altributes_limb.value = event_value;
Change_Orientation_limb.status = DEF;
Change_Orientation_limb.value = event_value;
Change_Length_limb.status = DEF;
Change_Length_limb.value = event_value;
Change_Mass_limb.status = DEF;
Change_Mass_limb.value = event_value;
Change_Cofm_limb.status = DEF;
Change_Cofm_limb.value = event_value;
Change_Torque_limb.status = DEF;
Change_Torque_limb.value = event_valuc;
send_token({ DIALOGUE, INPUT, CHECK, NULL );

}

cvent IN_MASS{
Add_Limb_mass.status = DEF;
Add_Limb_mass.value = event_value;
Change_Mass_new_mass.status = DEF;
Change_Mass_new_mass.value = cvent_value;
scnd_token( DIALOGUE, INPUT, CHECK, NULL );

)

event IN_LENGTH{
Add_Limb_length.status = DEF;
Add_Limb_length.value = event_value;
Change_Length_new_length.status = DEF;
Change_Length_new_length.value = event_value;
send_token( DIALOGUE, INPUT, CHECK, NULL);

}

cvent IN_COFM{
Add_Limb_cofm.status = DEF;
Add_LirY_cofm.valuc = event_value;
Change_Cofm_new_cofm.status = DEF;
Change_Cofm_ncw_cofm.value = event_valuc;
send_token( DIALOGUE, INPUT, CHECK, NULL );

)

event IN_BEND(
Add_Limb_bend.status = DEF;
Add_Limb_bend.value = event_value;
Change_Oricentation_new_bend.status = DEF;
Change_Orientation_new_bend.value = event_value;
send_token({ DIALOGUE, INPUT, CHECK, NULL );

)
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event IN_ROTATE(
Add_Limb_rotate.status = DEF;
Add_Limb_rotate.value = event_value;
Change_Orientation_new_rotation.status = DEF;
Change_Orientation_new_rotation.value = event_valuc;
send_token( DIALOGUE, INPUT, CHECK, NULL );

}

cvent IN_TORQUE(
Add_Limb_torque.status = DEF;
Add_Limb_torque.value = cvent_value;
Change_Torque_new_torque.status = DEF;
Change_Torque_new_torque.value = event_value;
send_token( DIALOGUE, INPUT, CHECK, NULL );

)
end HOUSE_KEEPER;

cventhandler cHANGE_rOOT is /* PREFIX CLOSE_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT{
Change_Root_position.status = UNDEF;
break;

}
event IN_CHECK({
if (Change_Root_position.status == DEF)
values = (int *) calloc( 1, sizeof(int));
values[0] = Change_Root_position.value;
send_token( APPLICATION, INPUT, Change_Root, values);
send_token( PRESENTATION, INITIAL, "cmenu”, "-1");
cmd_Change_Root.status = OFF;
destroy,_instance( self_id );

)
}
end cHANGE_rOOT;

eventhandler aDD_IIMB is /* PREFIX OPEN_ENDED */
tcken  /* token declaration */
CHECK IN_CHECK:
event INIT{
Add_Limb_limb.s ¢wus = UNDEF,
break;

}
event IN_CHECK({
if (Add_Limb_limb.status == DEF && Add_Limb_mass.status== DEF & &

Add_Limb_length.status== DEF && Add_Limb_cofm.status== DEF &&
Add_Limb_bend.status== DEF && Add_Limb_rotate.status== DEF &&
Add_Limb_torque.status== DEF){
values = (int *) calloc( 7, sizeof( int ));
vilues[0] = Add_Limb_limb.value;
values{1] = Add_Limb_mass.value;



values[2] = Add_Limb_length.value;

values[3] = Add_Limb_cofm,value;

values{4] = Add_Limb_bend.value;

values[S] = Add_Limb_rotate.value;

values[6) = Add_Limb_torque.value;

send_token( APPLICATION, INPUT, Add_Limb, values);
Add_Limb_limb.status = UNDEF;

)
}
end aDD_IIMB;

eventhandler IEMOVE_IIMB is /* PREFIX OPEN_ENDED ¥/
token  /* token declaration ¥/
CHECK IN_CHECK;
cvent INIT{
Remove_Limb_limb.status = UNDEF;
break;

}
cvent IN_CHECK(
if Remove_Limb_limb.status == DEF){
values = (int *) calloc( 1, sizeof( int ));
values[0] = Remove_Limb_limb.value;
send_token{ APPLICATION, INPUT, Remove_Limb, values);
Remwe_Limb_limb.status = UNDEF,

}
] .
end rEMOVE _IIMB;

eventhandler mOVE_IIMB is /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT{
Move_Limb_limb.status = UNDEF;
Move_Limb_new_parent.status = UNDEF;
break; :

}
cvent IN_CHECK(

if (Move_Limb_limb.status == DEF && Move_Limb_new_parent.status== DEF){

values = (int *) calloc( 2, sizeof(int ));

values[0] = Move_Limb_limb.value;

values[1] = Move_Limb_new_parent.value; .

send_token( APPLICATION, INPUT, Move_Limb, values);
Move_Limb_limb.status = UNDEF;
Move_Limb_new_parcnt.siatus = UNDEF;

}

)
cend mOVE_IIMB;

cventhandler sSHOW_aTTRIBUTES is /* PREFIX OPEN_ENDED */
token  /* token declaration */
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CHECK IN_CHECK;
event INIT{
Show_Attributes_limb.status = UNDEF;

break;

)
event IN_CHECK(
if (Show_Autributes_limb.status == DEF)(
values = (int *) calloc( 1, sizeof( int ));
values[0] = Show_Attributes_limb.value;
send_token( APPLICATION, INPUT, Show_Attributes, valucs);
Show_Attributes_limb.status = UNDEF;

}
}
cnd sHOW_aTTRIBUTES;

eventhandler cHANGE_oRIENTATION is /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT(
Change_Orientation_limb.status = UNDEF;
Change_Orientation_new_bend.status = UNDEF;
Change_Orientation_new_rotation.status = UNDEF;
break;
)
event IN_CHECK(
if (Change_Orientation_limb.status == DEF &&
Change_Orientation_new_bend.status== DEF &&
Change_Orientation_new_rotation.status== DEF){
values = (int ¥) calloc( 3, sizeof( int ));
values[0] = Change_Orientation_limb.value;
values{1} = Change_Orientation_new_bend.value;
values[2] = Change_Orientation_new_rotation.value;
send_token( APPLICATION, INPUT, Change_Orientation, valucs)
Change_Orientation_limb.status = UNDEF;
Change_Orientation_new_bend.status = UNDEF;
Change_Orientation_new_rotation.status = UNDEF;

}

}
end cHANGE_oRIENTATION;

eventhandler cHANGE_IENGTHis /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT{
Change_Length_limb.status = UNDEF;
Change_Length_new_length.status = UNDEF;
break;
)
event IN_CHECK{
if (Change_Length_limb.status == DEF &&
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Change_Length_new_length.status== DEF){

values = (int *) calloc( 2, sizeof( int ));

values[0] = Change_Length_limb.value;

values[1] = Change_Length_new_length.value;

send_token( APPLICATION, INPUT, Change_Length, values);
Change_Length_limb.status = UNDEF;
Change_Length_new_length.status = UNDEF;
}

)
end cHANGE _IENGTH;

cventhandler cHANGE_mASS is /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT( )
Change_Mass_limb.status = UNDEF;
Change_Mass_new_mass.status = UNDEF;
break;

}
event IN_CHECK{

if (Change_Mass_limb.status == DEF && Change_Mass_new_mass.status==

values = (int *) calloc( 2, sizeof( int ));

values[0] = Change_Mass_limb.value;

values(1] = Change_Mass_new_mass.value;

send_token( APPLICATION, INPUT, Change_Mass, values)
Change_Mass_limb.status = UNDEF;
Change_Mass_new_mass.status = UNDEF;
}

)
end cHANGE_mASS;

eventhandler cHANGE_cOFM is /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT(
Change_Cofm_limb.status = UNDEF;
Change_Cofm_new_cofm.status = UNDEF;
break;

}
event IN_CHECK

if (Change_Cofm_limb.status == DEF && Change_Cofm_new_cofm.status== DEF){

values = (int *) calloc( 2, sizeof( int ));

values[0] = Change_Cofm_limb.value;

values[1] = Change_Cofm_new_cofm.value;

send_token( APPLICATION, INPUT, Change_Cofm, values),
Change_Cofm_limb.status = UNDEF;
Change_Cofm_new_cofm.status = UNDEF;
}

}
end cHANGE_cOFM;

DEF){
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eventhandler cHANGE_tORQUE is /* PREFIX OPEN_ENDED */
token  /* token declaration ¥/
CHECK ILJ_CHECK;
cvent INIT{
Change_Torque_limb.status = UNDEF;
Change_Torque_ncw_torque.status = UNDEF;
break;

)
event IN_CHECK({
if (Chenge_Torque_limb.status == DEF &&
Change_Torque_new_torque.status== DEF){
values = (int *) calloc( 2, sizeof( int ));
values[0] = Change_Torque_limb.value;
values{1] = Change_Torque_new_torque.value;
send_token( APPLICATION, INPUT, Change_Torquc, valucs);
Change_Torque_limb.status = UNDEF;
Change_Torque_new_torque.status = UNDEF,
}

)
end cHANGE_tORQUE;

eventhandler sSAVE is /* PREFIX CLOSE_ENDED ¥/
event INIT(
send_token( APPLICATION, INPUT, Save, NULL),
send_token( PRESENTATION, INITIAL, "cmenu”, "-1");
cmd_Save.status = OFF,;
destroy_instance( self_id );
break;

}
end SAVE;

eventhandler IOAD is /* PREFIX CLOSE_ENDED ¥/
event INIT( '
send_token( APPLICATION, INPUT, Load, NULL);
scnd_token( PRESENTATION, INITIAL, "cmenu”, "-1");
cmd_Load.status = OFF;
destroy_instance( self_id );
break;

)
end 10AD;

eventhandler eXIT is /* PREFIX CLOSE_ENDED */
event INIT{
send_token( APPLICATION, INPUT, Exit, NULL);
send_token( PRESENTATION, INITIAL, “cmenu"”, "-1");
cmd_Exit.status = OFF;
destroy_instance( self_id );
break;

}
end eXIT;
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Appendix A3

Event Handlers for the Example Dialogue of Figure 4.7

This appendix contains the event handlers produced by Diction for the example dialogue shown in

figurc 4.7.

eventhandler help is

token
Add_Object_pr IN_Add_Object_pr;
Add_Object_ps IN_Add_Object_ps;
Add_Object_nf IN_Add_Object_nf;

event IN_Add_Object_pr{
if (lee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP], "Add_Object_pr: select command

followed by args in any sequence” );
send_token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );

send_token( PRESENTATION, HELP, HELP, "args:where - must be selected" );
send_token( PRESENTATION, HELP, HELP, "  colourl - have defaults” );
send_token( PRESENTATION, HELP, HELP, "  size - have current values" );

)

event IN_Add_Object_ps{
if (‘ee_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP], "Add_Object_ps: sclect args
followed by command"” );
send_token( PRESENTATION, HELP, HELP, "command sclection valid for
one execution only" );
send_token( PRESENTATION, HELP, HELP, "args:where - must be selected” );
send_token( PRESENTATION, HELP, HELP, "  colour2 - have defaults” );
send_token( PRESENTATION, HELP, HELP, "  size - have current values” );

}

event IN_Add_Object_nf{
if (lec_command_help) return(1);
send_token( PRESENTATION, HELP1, HELP], "Add_Object_nf: select command
and args in any sequence” );
send_token( PRESENTATION, HELP, HELP, "command remains active till
another command is selected” );
send_token( PRESENTATION, HELP, HELP, "args:where - must be selected" );
send_token( PRESENTATION, HELP, HELP, "  colour3 - have defaults" );
send_token( PRESENTATION, HELP, HELP, "  size - have current values” );
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end help;

eventhandler HOUSE_KEEPER is
token
Add_Object_pr IN_Add_Object_pr;
Add_Object_ps IN_Add_Object_ps;
Add_Object_nf IN_Add_Object_nf;
SIZE IN_SIZE;
WORK IN_WORK;
colourl IN_colourl;
colour2 IN_colour2;
colour3 IN_colour3;

event INIT{
cmd_Add_Object_pr.status = OFF;
cmd_Add_Object_ps.status = OFF;
cmd_Add_Object_nf.status = OFF;
Add_Object_pr_where.status = UNDEF;
Add_Object_pr_where.value = NULL;
Add_Object_pr_size.status = UNDEF;
Add_Object_pr_size.value = NULL;
Add_Object_pr_colourl.status = UNDEF;
Add_Object_pr_colourl.value = NULL;
Add_Object_ps_where.status = UNDEF;
Add_Object_ps_where.value = NULL;
Add_Object_ps_size.status = UNDEF;
Add_Object_ps_size.value = NULL;
Add_Object_ps_colour2.status = UNDEF;
Add_Object_ps_colour2.value = NULL;
Add_Object_nf_where.status = UNDEF;
Add_Object_nf_where.value = NULL;
Add_Object_nf_size.status = UNDEF;
Add_Object_nf_size.value = NULL;
Add_Object_nf_colour3.status = UNDEF;
Add_Object_nf_colour3.value = NULL;
dptr = (double *)malloc( sizeof( double ));
*dptr = 0.500000;
send_token{ PRESENTATION, INITIAL, "SIZE", dptr);
send_token{ APPLICATION, INITIAL, INITIAL, NULL );
}
" cvent IN_Add_Object_pr{
if (cmd_Add_Object_pr.status == OFF){
deactivate_other_commands();
cmd_Add_Object_pr.status = ON;
instantiate( aDD_oBJECT_PR );
)
)
event IN_Add_Object_ps{
if (cmd_Add_Object_ps.status == OFF){
deactivate_other_commands(};



cmd_Add_Object_ps.status = ON;
instantiate( aDD_oBJECT_PS );
]

}
cvent IN_Add_Object_nf{
if (cmd_Add_Object_nf.status == OFF)(
deactivate_other_commands();
cmd_Add_Object_nf.status = ON;
instantiate( aDD_oBJECT_NF ),
)

)

event IN_WORK({
Add_Object_pr_where.status = DEF;
Add_Object_pr_where.value = event_value;
Add_Object_ps_where.status = DEF;
Add_Object_ps_where.value = event_value;
Add_Object_nf_where.status = DEF;
Add_Object_nf_where.value = event_value;
send_token( DIALOGUE, INPUT, CHECK, NULL );

)

event IN_SIZE(
Add_Object_pr_size.status = DEF;
Add_Object_pr_size.value = event_value;
Add_Object_ps_size.status = DEF;
Add_Object_ps_size.value = event_value;
Add_Object_nf_size.status = DEF;
Add_Object_nf_size.value = event_value;
send_token( DIALOGUE, INPUT, CHECK, NULL );

event IN_colourl{
Add_Object_pr_colourl.status = DEF;
Add_Object_pr_coiourl.value = event_value;
send_token{ DIALOGUE, INPUT, CHECK, NULL );
)
event IN_colour2{
Add_Object_ps_colour2.status = DEF;
Add_Object_ps_colour2.value = cvent_value;
send_token( DIALOGUE, INPUT, CHECK, NULL );
}
event IN_colour3{
Add_Object_nf_colour3.status = DEF;
Add_Object_nf_colour3.value = event_value;
send_token{ DIALOGUE, INPUT, CHECK, NULL );

}
cnd HOUSE_KEEPER;

cventhandler aDD_oBJECT_PR is /* PREFIX OPEN_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
event INIT{
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Add_Object_pr_where.status = UNDEF;
send_token( PRESENTATION, INITIAL, “colourl”, "RED");
break;

)
event IN_CFECK({
if (Add_Object_pr_where.status == DEF && Add_Object_pr_size.staus== DEF
&& Add_Object_pr_colourl.status== DEF){
values = (int *) calloc( 3, sizeof( int ));
values[0] = Add_Object_pr_where.valuc;
values[1] = Add_Object_pr_size.value;
values[2] = Add_Object_pr_colourl.value;
send_token( APPLICATION, INPUT, Add_Object_pr, values);
Add_Object_ps_where.status = UNDEF;
Add_Object_nf_where.status = UNDEF;
Add_Object_pr_where.status = UNDEF;
send_token( PRESENTATION, INITIAL, "colourl”, "RED");
}

]
end aDD_oBJECT_PR;

eventhandler aDD_oBJECT_PSis /* POSTFIX CLOSE_ENDED */
token  /* token declaration */
CHECK IN_CHECK;
var
int iflag=0;

event INIT{
if (Add_Object_ps_colour2.status == UNDEF)(
send_token( PRESENTATION, INITIAL, “"colour2”, "RED");
flag=1;
}
if (Mflag)
if (Add_Object_ps_where.status == DEF && Add_Object_ps_size.status == DEF
&& Add_Object_ps_colour2.status == DEF){
values = (int *) calloc( 3, sizeof(int ));
values[0] = Add_Object_ps_where.value;
values{1] = Add_Object_ps_size.value;
values[2] = Add_Object_ps_colour2.value;
send_token( APPLICATION, INPUT, Add_Object_ps, values),
Add_Object_ps_where.status = UNDEF;
Add_Object_nf_where.status = UNDEF;
} else
send_token( PRESENTATION, ERROR, ERROR, "arg sclection incomplete, resclect
command after complete arg selection” );
send_token( PRESENTATION, INITIAL, "cmenu”, "-1");
cmd_Add_Object_ps.status = OFF,;
destroy_instance( self_id );

)
event IN_CHECK(
if (Add_Object_ps_where.status == DEF && Add_Object_ps_size.status == DEF &&
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Add_Object_ps_colour2.status == DEF){
values = (int *) calloc( 3, sizeof(int));
values(0] = Add_Object_ps_where.value;
values[1] = Add_Object_ps_size.value;
values[2] = Add_Object_ps_colour2.value;
send_token( APPLICATION, INPUT, Add_Object_ps, values);
Add_Object_ps_where.status = UNDEF;
Add_Object_nf_where.status = UNDEF;
send_token( PRESENTATION, INITIAL, "cmenu”, "-1");
cmd_Add_Object_ps.status = OFF;
destroy_instance( self_id );

]
)
end aDD_oBJECT_PS;

cventhandler aDD_oBJECT_NFis /* NOFIX OPEN_ENDED ¥/
token  /* token declaration ¥/
CHECK IN_CHECK;
event INIT{
if (Add_Object_nf_colour3.status == UNDEF)
send_token( PRESENTATION, INITIAL, "colour3”, "RED");
if (Add_Object_nf_where status == DEF && Add_Object_nf_size.stats == DEF
&& Add_Object_nf_colour3.status == DEF){
values = (int *) calloc( 3, sizeof(int ));
values{0] = Add_Obiject_nf_where.value;
values[1] = Add_Object_nf_size.value;
values[2] = Add_Object_nf_colour3.valuc;
send_token( APPLICATION, INPUT, Add_Object_nf, values);
Add_Object_ps_where.status = UNDEF;
Add_Objeci_nf_where.status = UNDEF;
Add_Object_nf_where.status = UNDEF;
send_token( PRESENTATION, INITIAL, "colour3”, "RED");

}

}
event IN_CHECK( :
if (Add_Object_nf_where status == DEF && Add_Object_nf_size.status == DEF
&& Add_Object_nf_colour3.status == DEF){

values = (int *) calloc( 3, sizeof( int));
values{0] = Add_Object_nf_where.value;
values[1] = Add_Object_nf_size.value;
values[2) = Add_Object_nf_colour3.value;
send_token( APPLICATION, INPUT, Add_Object_nf, values);
Add_Object_ps_where.status = UNDEF;
Add_Object_nf_where.status = UNDEF;
Add_Object_nf_where.status = UNDEF;
send_token( PRESENTATION, INITIAL, "colour3", "RED");

}

)
end aDD_oBJECT _NF;



Appendix A6

Rules Used in Chisel

This appendix summarizes the functioning of Chiscl in terms of steps or rules. As explained in
Chapter S, there are three main steps followed by Chiscl: selecting interaction techniques, determining
attribute values for the selected interaction techniques, and placing interaction techniques on the display
screen. Each of these steps is summarized in the following sections. The content of this appendix may not

be clearly understood unless the reader has read chapter 5.

1. Selecting Interaction Techniques

Chisel has three main concerns while deciding on interaction techniques. These concerns relate to
the type and range (or enumerations) of the command argument, user’s preferences, and the device
requirements of interaction techniques. Each of these concems limits the sct of interaction techniques that
can be used to enter the argument values. The following table shows the selection of intcraction techniques
in the absence of user’s preferences and assuming that device requircments of the sclected interaction
techniques are satisfied. In the presence of user’s preferences or when the device requirements of the

following interaction techniques cannot be met, other interaction techniques may be selected.
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Table A6.1 Selecting Interaction Techniques

Type Interaction Technique

Command Horizontal and Vertical Static Menus

Enumerated Horizontal and Vertical Static Menus

Sub-Range - Real/lnieger Select Real/Integer interaction techniques which match the range
exactly.
If non):'. matches the range, sclect Real/Integer Horizontal and Vertical
graphical potcntiometers.

Real/Integer - No Range Select Real/Integer interaction techniques which do not have range
restrictions.

Text Select text windows in page mode.

pick2d/pick3d Select techniques which implement 2d/3d picks.

Window Select graphical window.

1. Determining Object Attributes

This section describes the computation of size, location, and colour of interaction techniques.

2. Determining Size

Type Computation
Fixed Sizes Copy the size from prototype to instance.
Menus Size depends on width of the biggest item in the menu, number of

menu items, maximum number of items to be placed in a menu, height
of a menu item, and the type of menu (overlay/non-overlay).

Unknown Sizes - but | Invoke the size function specified in the prototype.

computable
Unknown Sizes Leave the size computation for the last step.

3. Generating Positional Constraints

Command menus constrain Ehcir position depending upon the user’s preferences. If the prototype of
an interaction specifies a positional constraint, Chisel duplicates the constraint in the instance of the
intcraction technique. Otherwise, for objects with bigger height than width, Chisel generates constraints to
place them along vertical edges, and for objects with bigger width than height, Chiscl generates constraints
to place them along horizontal edges. For objccts with unknown sizes, Chisel generates constraints to place

them anywhere on the screen, Objects which violate the general or the designer’s strategy for placing
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objects are deleted by Chisel. If at this stage, an argument is represented by more than one interaction

techniques, Chisel selects one interaction technique randomly.

4. Determining Colour

All objects are assigned a default drawing and a default background colour. The defaults can be

changed by the designer. User's preferred colours can be assigned to objects.

1. Placing Interaction Techniques

Chisel assigns a measure of specificity 10 all objects based on their positional constraint. The

following table shows this measure for various constraints.

Table A6.2 Measures of Specificity

Constraint Measure of Specificity

A particular Comer 100
Left or Right Corner 95
Top or Bottom Comer | 95
Any Corner 90
A particular Edge 80
Vertical Edge 75
Horizontal Edge 15
Any Edge 70
A particular Quadrant | 60
A particular Half 50
Top or Bottom Half 45
Left or right Half 45
Anywhere 0

The objects are then sorted in the decreasing order of their measure of specificity. Objects with
higher measure are placed first. If a positional constraint cannot be satisfied, Chisel relaxes it 1o the next
lower level constraint, and tries to satisfy the ncw constraint. After all objects with known sizes are placed,

Chiscl computes frce space on the screen and divides the frec space cqually amongst all objects with

unknown sizes.



