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Abstract

Metamaterials are artificially nano engineered materials with unique electromagnetic

properties. They have applications in wave guiding, sensing, imaging, thermal, and

quantum optics. Recently, metamaterials have been proposed as optical elements

such as polarizers, analyzers, and diffraction gratings for on-chip photonic circuits.

This thesis focuses on the design and characterization of 2D nanowire and 1D mul-

tilayer metamaterials for applications in wave guiding, sensing, and polarization

manipulation.

We first report on the design, fabrication, and characterization of a straight

gold nanowire structure with two unique plasmonic resonances. One resonance is

omni directional and polarization insensitive while the second resonance is highly

dependent on nanowire diameter and wire to wire spacing, ideal for sensing applica-

tions. Inclined gold nanowire metmaterials along with titanium dioxide inclined and

helical nanowire structures are designed and characterized for polarization manip-

ulation to be integrated as nano devices in photonic circuits. Horizontally inclined

gold nanowires are shown to have strong anisotropy and manipulate the polarization

state of light over a highly tunable narrow wavelength range.

The geometric phase is examined on the Poincaré Sphere and momentum space in

optical fibers. A gold helical nanowire structure as a circular polarizer is introduced

with a highly tunable resonance in the mid infrared range.

Finally, relaxed total internal reflection is experimentally shown by measuring

the critical angle for total internal reflection by fabricating silica/silicon multilayer

structures on hemicylindrical silicon prisms. The critical angle for total internal

reflection is shown to be different for (p) and (s) polarized light. This experimental
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work is the first evidence of relaxed total internal reflection.

This work paves the way for further advancements for waveguides and polariza-

tion manipulation elements for photonic circuits.
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of America B - R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos, G.
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Chapter 1

Introduction

1.1 Metamaterials

The field of metamaterials was first introduced when scientists and engineers began

to search for materials that simultaneously had negative dielectric permittivity and

negative magnetic permeability to achieve a negative refractive index material [5].

It was later found that the electromagnetic responses achieved from metamaterials

could be used for more applications than just negative refractive index. The best

example is cloaking where a metamaterial with an anisotropic electromagnetic re-

sponse can be used to bend light smoothly around an object so it appears invisible

[9, 30]. Research has also been done in sub-diffraction waveguiding [13], imaging

[36, 14, 47], sensing [43], nano waveguiding [13], spontaneous [19] and thermal emis-

sion engineering [39]. Research in metamaterials began in the microwave regime

of the electromagnetic spectrum [9] and has progressed to shorter wavelengths in

the infrared and visible spectrum, enabled by advances in micro/nanofabrication

techniques.

For materials found in nature, the radius of each atom and inter atomic spacing

between atoms in the crystal structure of a material is much less than the wavelength

of radiation (figure 1(a)) [34]. Metamaterials are composed of nano inclusions (or

meta atoms) which are nano structures with critical dimensions much less than the

wavelength of radiation, engineered to achieve unique and highly anisotropic elec-

tromagnetic responses (figure 1(b)) [34]. The unique electromagnetic responses arise

from the near-field coupling between the sub wavelength building blocks. Recent

improvements in the field of micro and nanofabrication have considerably improved

the quality of the responses seen in the metamaterials.
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Figure 1.1: [34] (a) Periodic array of atoms with inter atomic spacing much less
than the wavelength of light. (b) Metamaterials are composed of meta atoms which
can be described as nano inclusions with critical dimensions much less than the
wavelength of light.

1.2 Hyperbolic Metamaterials and K-space Topology

In an isotropic medium, the response of the medium to an electromagnetic field is

the same in all directions and the electric permittivity is a scalar quantity. How-

ever, when a medium becomes anisotropic such that its electromagnetic response is

different in the −→x , −→y , and −→z directions, the dielectric constant becomes a second

degree tensor defined as

←→ε =

 εxx 0 0

0 εyy 0

0 0 εzz


where εxx, εyy, and εzz are the dielectric constants for the −→x , −→y , and −→z directions of

the material. For a uniaxial medium (two directions of the electromagnetic response

of the medium are different) the in-plane isotropic components are εxx = εyy = ε‖

and εzz = ε⊥ .

Hyperbolic Metamaterials are a specific type of metamaterial that get their name

from the shape of their dispersion relation. In a conventional dielectric material (ε >

0), the linear dispersion and isotropic behaviour imply that the isofrequency curve is

a sphere. The isofrequency surface of a propagating wave with linear dispersion and

isotropic behaviour can be derived from Maxwell’s equations and is given by k2x +

k2y + k2z = ω2

c2
(figure 1.2(a)) [34]. In this equation, the wave vector of a propagating

wave is given by
−→
k = [kx, ky, kz], ω is the frequency of operation, and c is the speed

of light in vacuum. Solving Maxwell’s equations for an extraordinary wave (TM or

2



(p) polarized) in an anisotropic uniaxial medium changes the isofrequency relation

to

k2x + k2y
εzz

+
k2z
εxx

=
ω2

c2
(1.1)

The spherical isofrequency surface will be distorted to an ellipsoid for the anisotropic

case. However, for extreme anisotropy such that ε‖ • ε⊥ < 0 the isofrequency surface

becomes a hyperbola as shown in figure 1.2(b) and 1.2(c) [34]. Such behaviour

requires the medium to behave like a metal (ε < 0) in one direction and a dielectric

or insulator (ε > 0) in another direction. Materials with these properties are not

readily available in nature at optical or near-infrared frequencies and thus artificial

nanostructures or metamaterials must be used to see these unique electromagnetic

properties.

The most important property related to the hyperbolic metamaterial is the be-

haviour of extremely large wave vectors. In vacuum, wave vectors larger than the

free space wave vector (ko = ω/c) are evanescent and decay away exponentially. In a

hyperbolic metamaterial, these high-k wave vectors that carry sub-diffraction limit

information can propagate to the far-field due to the shape of the isofrequency sur-

face. These high-k propagating wave vectors can be infinitely large in the idealistic

limit. This unique property allows hyperbolic metamaterials to be used in many

device applications.

There are two classes of hyperbolic metamaterials (HMMs) introduced to help

identify their unique properties. Type 1 HMMs have one component of the dielectric

tensor negative (εzz < 0; εxx, εyy > 0) while Type II HMMs have two components

less than zero (εzz > 0 ; εxx, εyy < 0). The isofrequency surface for Type I HMMs is

shown in figure 1.2(b) and for Type II HMMs in figure 1.2(c) [34]. It is important to

note that if all components of the dielectric tensor are negative, the medium behaves

as a metal and if all the components are positive, the medium behaves as a dielectric

or insulating material. The most striking difference between Type I and II HMMs

is the hyperboloid isofrequency surfaces are one and two sheeted respectively. The

Type II HMM is also highly reflective due to it having two components (−→x and
−→y ) of the dielectric tensor being negative compared to Type I where only the −→z
component is negative. HMMs can not be experimentally characterized, so we must

look at the resonance responses to characterize the anisotropic permittivity.
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Figure 1.2: [34] (a) Spherical Isofrequency relation for an isotropic dielectric mate-
rial. Inset is a plot of the linear relationship between energy and momentum with the
red dot indicating the operating frequency for the constant frequency isofrequency
surface. (b) Hyperboloid isofrequency surface for a Type I uniaxial medium with
extremely large anisotropy (εxx; εyy > 0 ; εzz < 0). (c) Hyperboloid isofrequency
surface for a Type II uniaxial medium with extremely large anisotropy (εxx; εyy < 0
; εzz > 0).

1.3 Effective Medium Theory, Epsilon-Near-Zero (ENZ)

and Epsilon-Near-Pole (ENP)

A numerical or theoretical model needs to be used to model the electromagnetic

response of metamaterials due to the complexity of the medium for electric field

excitations in the −→x , −→y , and −→z directions. For work in this thesis, the focus will

be on 1D multilayer and 2D nanowire metamaterials that will be analyzed with ho-

mogenization. Homogenization involves determining the effective electromagnetic

response of a metamaterial by averaging over the permittivities of its constituent

components. This is possible when the critical dimensions of each meta atom are

much less than the wavelength of radiation of excitation such that the magnitude of

the electric field does not change significantly over the thickness of each structure.

Figure 1.3 illustrates this process for multilayer metamaterials (figure1.3(a)) and

nanowire metamaterials (figure1.3(b)). The metamaterial can therefore be consid-

ered as an effective medium and the permittivity of both the −→x -−→y plane (paral-

lel) and −→z (perpendicular) is found by using the Maxwell-Garnet approach. This

method assumes an averaged displacement field and applying the appropriate bound-

ary conditions. A detailed derivation can be found in the Appendix [34] for both

the multilayer and nanowire structures. The final derived relations for a multilayer

structure are:
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ε‖ = ε2ρ+ (1− ρ)ε1 (1.2)

ε⊥ =
ε1ε2

ρε2 + (1− ρ)ε1
(1.3)

where ρ (the fill fraction) for the multilayer case is defined as

ρ =
d1

d1 + d2
(1.4)

where ε1 is the permittivity of material 1, ε2 is the permittivity of material 2 and

d1 and d2 are the thicknesses of material 1 (usually metal) and material 2 (usually

dielectric). Similarly for a nanowire structure

ε‖ =
(1 + ρ)ε1ε2 + (1− ρ)ε22
(1 + ρ)ε2 + (1− ρ)ε1

(1.5)

ε⊥ = ρε1 + (1− ρ)ε2 (1.6)

where ρ for the nanowire case is defined as

ρ =
nanowirearea

unitcellarea
=
na

A
(1.7)

where n is the number of nanowires per unit cell, a is the area of one nanowire, and

A is the area of a unit cell which is taken to be a hexagon.

The characterization of artificial media and retrieval of effective medium param-

eters has been a controversial topic in the field of metamaterials. This primarily

comes from the fact that unit cells are not deeply sub wavelength, the structures

are two dimensional and the effective dielectric constant of the medium can not be

strictly defined [34]. Metamaterials designed, fabricated, and characterized in this

thesis do not suffer from these setbacks. Both 1D and 2D HMMs are deeply sub

wavelength, the meta atoms are three dimensional, and the effective permittivity

shows extreme anisotropy for TM or (p) polarized light.

If we examine equations 1.2, 1.3, 1.5, and 1.6 that describe the effective medium

constants for nanowire and multilayer structures, we notice that it is possible to

have values of the permittivities of the constituent materials such that there will be

poles or zeros in each equation. This is ideal to characterize the resonances of the

metamaterials and from that, infer their hyperbolic behaviour. The effective medium

constants are plotted for both a multilayer and nanowire metamaterial in figure

1.4(a) and (b), respectively. The multilayer metamaterial consists of alternating

layers of silver and titanium dioxide with a metallic fill fraction of 35%. The nanowire

structure simulated is an array of silver nanowires embedded in a aluminum oxide
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(alumina) dielectric matrix with a metallic fill fraction of 15%. We note that figure

1.4(b) is for a silver nanowire structure in an alumina matrix. However, the main

focus of this thesis is on the design, fabrication, and characterization of gold nanowire

metamaterials. Figure 1.3(c) shows an Scanning Electron Microscopy (SEM) image

of a silver/silica multilayer structure. Figure 1.3(d) shows an SEM image of a gold

nanowire structure with the alumina matrix etched away to clearly show the gold

nanowires. There are wavelength ranges shown where both Type I and Type II

HMM behaviour are possible. Type I behaviour is shown in the nanowire structure

over a wider wavelength range than the multilayer structure where it is easier to

see Type II behaviour. The shaded regions on the plots in figure 1.4 [34]show the

Type I and Type II behaviour for each structure. Type II behaviour is easier to see

in multilayer structures because of the higher reflectance due to two components of

the permittivity tensor being less than zero or metallic. Type I behaviour is more

common in nanowire structures because of only one component of the tensor being

metallic or negative.

Another striking difference between nanowire and multilayer structures is the

direction of the Epsilon-Near-Zero (ENZ) and the Epsilon-Near-Pole (ENP) reso-

nances. The ENZ is defined where the permittivity crosses zero in either the parallel

or perpendicular direction while the ENP is where the permittivity approaches in-

finity due to the denominator of the permittivity relation approaching zero. The

reflection and transmission spectra change drastically depending on the direction of

these resonances. The ENZ occurs parallel to the thin film layers in the multilayer

structure and parallel to the long axis of the nanowire in the nanowire metamaterial.

This is intuitively satisfying as the Drude plasma frequency, which determines the

ENZ of a material, is in the direction of free electron motion. It is highly sensitive

to the metallic fill fraction of the metamaterial. The ENP occurs in the direction for

which there is no free electron motion in the material. It occurs perpendicular to the

thin film layers in the multilayer and perpendicular to the long axis of the nanowire

structure. Figure 1.3 shows the direction of the ENP and ENZ in each structure.

The effect of the ENZ, ENP, and hyperbolic behaviour on the propagating wave

reflection and transmission spectra will be discussed in detail in chapter 2.

1.4 Fabrication and Characterization

There were a few different techniques used to fabricate the multilayer and nanowire

metamaterials. Multilayer structures rely on the growth of ultra-smooth and ultra-

thin films. Sputter Deposition was used to grow amorphous silicon, silicon dioxide,

and tungsten films for the multilayer metamaterials. Titanium dioxide and gold

were grown using electron beam evaporation. Surface roughness is an issue for many

6



practical applications of thin films and accumulates very quickly when many layers

are being grown to form a multilayer structure. However, it has been shown that

minor deviations in the layer thicknesses do not significantly change the effective

medium response of the metamaterial [7]. Significant research is still being done to

grow smoother thin films in order to improve the quality of the plasmonic resonances

of the structure.

There is a standard procedure for growing 2D nanowire metamaterials [40, 41, 1].

It consists of growing metallic nanowires in alumina templates [41, 40]. Alumina

templates can either be bought off the shelf or grown by oxidizing aluminum foil

or aluminum thin films. Multiple groups have fabricated gold and silver nanowire

structures using both of these methods [1, 37, 41, 21]. For this thesis, the tem-

plate was grown by anodizing aluminum thin films. The process started with a

20nm thick titanium dioxide wetting layer being grown on a glass substrate via

atomic layer deposition (ALD). A 7nm gold film is then sputtered on top to act as

a cathode for the electrodeposition step of the growth process [41]. A 800nm film of

aluminum is the last layer deposited via sputter deposition to form the template. A

two step anodization process using 3% oxalic acid in an anodization cell to anodize

the aluminum forms a porous structure that acts as a dielectric medium to support

nanowire growth [41]. The concentration and type of acid controls the porosity or

fill fraction of the alumina template used for nanowire growth. Finally, a multi-step

electrodeposition process is used to grow silver or gold nanowires inside the alumina

template. Electrodeposition is similar to electroplating in that an electrolyte con-

taining ions of the metal to be deposited is used and voltages are applied to the

substrate (gold cathode) and counter electrode (anode). The multi-step process en-

sures consistent filling of silver or gold across the entire template to increase quality

of the ENZ and ENP resonances of the structure. Any overfilling of the template

can be addressed after fabrication using ion milling. In addition, nanowire samples

were annealed in a neutral gas atmosphere at 300oC to improve the mean free path

and overall quality of each gold wire.

Ellipsometry and Spectrophotometry were the two main methods used to char-

acterize multilayer and nanowire metamaterials for work in this thesis. Ellipsometry

and Spectrophotometry measure (p) and (s) polarized reflection and transmission

across a broad spectrum of wavelengths and angles. Peaks or valleys across the

reflection or transmission spectrum at specific wavelengths indicate the location of

ENP or ENZ resonances.
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1.5 Overview

The main challenge in this field involves taking metamaterials from the design stage

to the fabrication and characterization stage. This thesis focuses on taking many

different theoretical designs of nanostructures to the fabrication stage and charac-

terizing their optical properties to match theoretical simulations.

Chapter 2 focuses on the simulation of gold and titanium dioxide nanowires. The

structures simulated and fabricated were straight and inclined nanowires as well as

helical nanowires using CST Microwave Studio software and Maxwell Garnet Effec-

tive Medium Theory to match experimental results. We show that in straight gold

nanowires, there are two unique plasmonic resonances, both tunable to the type

of material used. The ENZ resonance is tunable to the geometry of the nanowire

structure. Inclined and helical nanowires were studied for applications in polariza-

tion manipulation in photonic circuits.

In chapter 3 we show theoretically that light can accumulate a non-dynamic Ge-

ometric Phase using the Jones matrix and Stokes parameters approach to represent

the state of polarization of light over a closed path in both interferometry exper-

iments and helically wound optical fibers. A new compact gold helical nanowire

metamaterial is also proposed that can act as a circular polarizer, different from

bulk polarizers seen in many of todays optical experiments.

Chapter 4 shows the first experimental proof of the recently proposed concept of

relaxed total internal reflection for higher confinement of light inside the core of a

waveguide for use in photonic circuits using a silicon/silica multilayer metamaterial

as the cladding material deposited directly onto glass and silicon prisms.

Finally, in some future work, we show some initial CST microwave studio sim-

ulation results on thermal metamaterials to control light absorption and thermal

radiation emission.
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Figure 1.3: [34] (a) A multilayer HMM with ENP perpendicular to the interface and
ENZ parallel to the interface can be homogenized to a bulk anisotropic material using
Effective Medium Theory (EMT) as long as the layer thicknesses are much smaller
than the wavelength of radiation. (b) A nanowire HMM with ENZ perpendicular to
the air/material interface and ENP parallel to the interface can be homogenized to
bulk anisotropic material using EMT with wire radius and interwire spacing much
less than the wavelength of radiation.
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(c) (d)

Figure 1.4: [34] Real part of the dielectric constant vs wavelength for a gold/titanium
dioxide multilayer structure with 35% fill fraction (a) and a silver/alumina nanowire
structure with 15% fill fraction (b). Scanning Electron Microscopy Images (SEM) of
a silver/silica multilayer structure (c) and gold nanowire structure (d). Insets show
schematics of the structures simulated.
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Chapter 2

Straight, Inclined, and Helical

Nanowires

Nanowires are a type of nanostructure that is becoming increasingly common for

applications in sensing [43] and nanowaveguiding [13]. Advancements in fabrication

are making the growth of nanowire structures simpler and faster with a wider range

of materials. For this thesis, we focus on the optical properties of straight, inclined,

and helical gold and titanium dioxide (TiO2) nanowire structures.

2.1 Straight Gold Nanowires

As a 2D HMM, nanowire arrays have special optical properties. These optical prop-

erties are most easily measured by examining the propagating wave reflection and

transmission spectra. Hyperbolic behaviour can only be observed with (p) polarized

light, so for our study we examine both (p) and (s) polarized light and contrast the

differences. This is apparent because in order to access free electron motion along

the z axis (long axis of the nanowire) a component of the incident electric field has

to lie in the same direction as free electron motion in order to excite free electrons

in the ENZ response of the metamaterial. In the nanowire structure, the ENP and

ENZ resonances interact with propagating waves and can lead to large absorption

or optical density. For this thesis, optical density (OD) or extinction is defined as

OD = −log(T ) (2.1)

where T is defined as the power transmitted through the nanowire structure. Near

the ENZ, we expect very large absorption. Very large absorption is the result of

very large electric field magnitudes inside the structure. If we examine the boundary

condition, ε0E0⊥ = ε1⊥E1⊥ , we see that when ε⊥ → 0 the electric field magnitude

must become incredibly large inside the structure for the condition to hold. The
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ENZ resonance only occurs for (p) polarized light and is highly sensitive to the metal

filling fraction. The ENZ makes the nanowire structure ideal for sensing applications

[20, 43].

The ENP resonance is only weakly dependent on fill fraction. This is because

the parallel part of the permittivity tensor interacts with both (p) and (s) polarized

light as the electric field for both (p) and (s) polarized light has a component that

lies in the parallel plane of the nanowire structure. In literature, the ENP is often

referred to as the Transverse (T) resonance and the ENZ as the Longitudinal (L)

resonance.

Simulations for a straight gold nanowire structure were performed using both

EMT and CST Microwave Studios software with a metal fill fraction of 22% and

wire length of 700nm. The computation was performed over the wavelength range

300nm to 1000nm at normal incidence, 40o, and 60o. The two absorption peaks seen

in figure 2.1(a) for (p) polarized light correspond to the T resonance or ENP and the

L resonance or ENZ. In figure 2.1(b) we only see the T resonance as (s) polarized

light was used to excite the structure in this example. Beyond the ENZ wavelength,

ε⊥ becomes negative and the nanowire structure exhibits Type I behaviour.

The T resonance does not change with angle and occurs for both (p) and (s)

polarizations at a wavelength of approximately 530nm. A slight discrepancy occurs

in the magnitude of the T resonance between EMT and CST due to the discrepancy

between the dielectric permittivity used for each method along with the difference

in computation algorithm. We emphasize that the main outcome is the resonance

occurring in the same location for both methods.

The L resonance for this structure occurs at 602nm and is only seen for (p) polar-

ized light as explained earlier. The magnitude of the resonance increases drastically

with increasing angle and is not seen at normal incidence. This occurs because at

normal incidence, the direction of the electric field vector lies entirely in the plane

perpendicular to the axis of the wire. However, as the angle of incident (p) polarized

light increases, a component of the electric field vector grows along the direction for

free electron motion along the long axis of the wire. The greater the magnitude of

the fields along this axis, the greater the magnitude of the resonance. The quality of

the resonances is dependent on the quality of the electrolyte solution used to grow

gold nanowires embedded in the alumina. A modified model from [38] was used to

more accurately describe the permittivity for gold for very small structures where

the mean free path of electrons is restricted.

A striking difference exists at higher angles for simulations performed between

CST and EMT. For the CST simulation at large incident angles, there is a shift

of the L resonance to shorter wavelengths. This has been examined in previous

papers and can be attributed to non-locality and material loss [38]. Non-locality

12



300 400 500 600 700 800 900 1000

S
-p

o
la

ri
z

e
d

 E
x

ti
n

c
ti

o
n

0

2

4

6

8

10
EMT 20 o

EMT 40 o

EMT 60 o

CST 20 o

CST 40 o

CST 60 o

Wavelength ( nm )

300 400 500 600 700 800 900 1000

P
-p

o
la

ri
z

e
d

 E
x

ti
n

c
ti

o
n

-2

0

2

4

6

8
EMT 20 o

EMT 40 o

EMT 60 o

CST 20 o

CST 40 o

CST 60 o

Wavelength ( nm )

400 600 800 1000

P
-p

o
la

ri
z

e
d

 R
e

!
e

c
ta

n
c

e

0

0.05

0.1

0.15

0.2

0.25

0.3
EMT 20 o

EMT 40 o

EMT 60 o

CST 20 o

CST 40 o

CST 60 o

Wavelength ( nm )

(a) (b)

(c) (d)

300 400 500 600 700 800 900 1000

S
-p

o
la

ri
z

e
d

 R
e

!
e

c
ta

n
c

e

0

0.2

0.4

0.6

0.8
EMT 2 0 o

EMT 40 o

EMT 60 o

CST 2 0 o

CST 40 o

CST 60 o

Wavelength ( nm )

Figure 2.1: Extinction for (p) polarized (a) and (s) polarized (b) light through a
straight gold nanowire structure with wire length of 700nm and a fill fraction of
22% using both EMT and CST Microwave Studios simulation software. Reflectance
for (p) polarized (c) and (s) polarized (d) light through a straight gold nanowire
structure using both EMT and CST Microwave Studios simulation software. An
excellent agreement is seen between the analytical model and numerical simulation.
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occurs due to spatial dispersion in metamaterials from variations in the fields on

the scale of material inhomogeneity. That is to say, the fields will be altered by the

response from surrounding unit cells, hence the name non-locality. The reason we

see the effect of non-locality in CST and not EMT, is because near the L-resonance,

the response becomes wave vector dependent. Conventional EMT theory can not

account for this and an additional spatial dispersion term has to be added to the

effective medium picture [38].

The reflection spectrum for (p) and (s) polarized light for our nanowire structure

is shown in figures 2.1(c) and 2.1(d), respectively. The three reflection peaks seen for

all angles and both polarizations are Fabry Perot resonances that occur from thin

film interference due to the change in location of reflection peaks for differing incident

angles. A second detail to observe from the reflection spectrum is the existence

of a Brewster Angle. This is evident as for (p) polarized light, the magnitude

of reflectance approaches zero as the angle of incident gets higher and reaches its

lowest point at 60o at wavelengths longer than the L resonance. This confirms

what is predicted from theory that the nanowire structure is a Type 1 HMM at

wavelengths longer than the L resonance. The reflection spectrum can also be used

to experimentally determine the quality of our samples based on diffuse scattering

measurements. A higher magnitude of reflection indicates that diffuse scattering

effects are limited for the particular sample and the wires are high quality.

Gold nanowire metamaterials were fabricated as explained in section 1.4 on rigid

BK7 glass substrates with various filling fractions. In order to change the fill fraction

of our samples, the wire diameter had to be varied which was done immediately after

the anodization stage by using a wet etch with 5% concentration phosphoric acid to

widen the pore diameters in the porous alumina film.

Angularly resolved transmission spectroscopy was used to measure the extinction

spectrum for various gold nanowire samples ranging from fill fractions of 10.5% to

26% using the experimental setup shown in figure 2.2(a). The spectra are measured

using an Ocean Optics fiber optic spectrometer and linearly polarized white light

from an incandescent light bulb coupled through a collimated optical fiber. A lens

was used to focus the incident light to a spot size of 0.5mm on our nanowire sample.

A second lens was used to focus the output transmitted spectrum into another

optical fiber coupled to the spectrometer. Figures 2.2(b)-(d) shows the extinction

spectrum for samples with fill fraction of 26% (b), 23% (c), and 10.5% (d). Fill

fractions were measured post processing as the samples had to be cleaved to take

images. A scanning electron microscopy (SEM) image was taken for each of the 3

samples. The image was then run through a code that outputs the ratio of “dark”

pixels to “light” pixels. “Dark” pixels were attributed to the pores as they had a

contrast below the boundary for electron detection to show up on the image while
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Figure 2.2: [41] (a) Experimental Setup for measurement of extinction (-log10(T))
for a gold nanowire structure. Experimental Extinction measurements a for
gold/alumina nanowire structure using fill fractions of 26% (b), 23% (c), and 10.5%
(d).

“light” pixels represented the alumina matrix with contrast above the minimum

threshold for detection of scattered electrons in the image.

The first absorption peak is located at 530 ± 10nm for all samples as expected

and corresponds to the ENP resonance. It’s location is generally only dependent on

the materials used to form the nanowire structure for fill fractions much less than

100%. The ENP is present for both (p) and (s) polarized light and the magnitude

of the resonance does not increase or decrease with incident angle of light.

The second absorption peak corresponds to the ENZ and only occurs when p-

polarized light is used for excitation. The ENZ occurs due to free electron motion
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along the long axis of the nanowire. As the angle of incidence increases, so does

the magnitude of the ENZ peak from the growing magnitude of the electric field

vector parallel to the nanowire long axis. This resonance can be tuned by adjusting

the fill fraction from 583nm for a fill fraction of 26% to 805nm at a fill fraction

of 10.5%. Beyond the ENZ resonance, the perpendicular permittivity component

of the dielectric tensor is negative and the sample is hyperbolic Type I. The ENZ

resonance blue shifts at higher incident angles due to the effect of non-locality and

material loss explained previously [38].

Diffuse scattering is a major source of uncertainty for extinction measurements.

It can be difficult to accurately determine exactly what fraction of the power is

being absorbed inside the nanowire metamaterial at the ENP and ENZ resonances.

We plotted the ratio of Tp/Ts to study the scattering effects from our samples. The

scattering effects should be canceled out in this ratio as scattering will be the same for

both (p) and (s) polarized light. Figure 2.3(a) shows good agreement between CST

and experiment indicating that our samples do not suffer from significant scattering

effects.

The experimentally determined locations of the ENZ and ENP are plotted in

figure 2.3(b) vs fill fraction along with the theoretical curves calculated from EMT

for a nanowire structure explained in section 1.3 for ENZ and ENP locations for all

fill fractions from 10% to 30%. The ENP resonances are weakly dependent on the fill

fraction of the nanowire metamaterial and are purely from plasmonic resonances. No

peaks exist in the extinction spectrum from Fabry-Perot resonances for our nanowire

samples. It was stated earlier that this was only true when ρ << 1, however, we

observe it holds true for larger values of ρ shown here. The experimental ENZ points

for each fill fraction agree well with the theoretical curve in this case. The shift at

higher incident angles from non-local effects or spatial dispersion is more evident

here as shown in the change in ENZ with incident angle by the varying size of the

data points in figure 2.3(b).

It has been demonstrated that highly tunable gold nanowire metamaterials can

be easily fabricated and characterized. Future experimental work with these samples

will explore biosensing [43, 20], quantum [45, 29, 19], and thermal applications [39].

2.2 Inclined Gold Nanowires

A second type of gold nanowire metamaterial designed in this work is the inclined

gold nanowire structure. This involves the tilting of the nanowires from vertical to an

inclined angle either in the vertical (out-of-plane) or horizontal (in-plane) direction

[17]. Tilting the nanowires creates a higher degree of anisotropy compared to vertical

nanowires and can be used for applications in polarization conversion [6]. This is
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a) b)

Figure 2.3: [41] (a) (p) polarized transmittance divided by (s) polarized transmit-
tance for a straight gold nanowire sample at an incident angle of 30o for a sample
with fill fraction 26%. Both experimental results and CST simulations show no dif-
fuse scattering from the nanowire samples. (b) The location of the ENP and ENZ
experiment vs fill fraction. The ENP stays at roughly the same location (530nm) for
all fill fractions while the ENZ is highly tunable from 583nm at ρ = 26% to 805nm
at ρ = 10.5%.

important as manipulation of the shape and phase of light is required in various

applications. Most polarizers are bulky and can not be integrated into photonic

circuits. On chip analyzers are important for the realization of photonic circuits.

The design requirement of this study was to find an anisotropic metamaterial that

could convert incident polarized light from (p) to (s) or (s) to (p) polarization at an

efficency of 100% over a tunable wavelength range.

With the tilting of nanowires for polarization conversion, it becomes apparent

that the traditional Fresnel equations and transfer matrix method for transmission

and reflection are not enough to fully describe the anisotropy of the tilted nanowire

structure. A 4x4 anisotropic transfer matrix method has been derived in detail in [16]

and can be used to predict the conversion of (p) to (s) or (s) to (p) polarization upon

reflection from or transmission through the interface of an anisotropic metamaterial.

These variables are referred to as Rps for conversion of (p) polarized light to (s)

polarized light while the opposite is true for Rsp. The same syntax applies for

transmittance as Tps represents conversion of (p) to (s) polarized light for light

transmitted through the metamaterial while Tsp is for the opposite case.

The first structure designed uses gold nanowires tilted vertically at an angle of
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40o measured from the surface normal vector of the metamaterial. The structure has

a wire radius of 16nm, inter wire spacing of 65nm, 300nm length, and is embedded

in an alumina matrix. This gives a filling fraction of 22%. The wire length is defined

as the thickness of the homogenized metamaterial. A schematic is shown in the inset

of figure 2.4(d). Gold is chosen as the material here to try and take advantage of

the ENZ that occurs in the visible region. Polarization conversion is more likely to

occur near the ENZ due to accumulation of phase for some polarizations but not

others. This is ideal to add an arbitrary phase to manipulate the polarization state

of light. The region of interest for this particular case is from 300nm to 1000nm.

Simulations were done using CST Microwave Studios to calculate the reflection and

transmission coefficients of the structure.

Isotropic reflection is where light remains in the same state of polarization for (p)

and (s) polarized light. Reflectance from our structure is shown at normal incidence,

40o, and 60o in figure 2.4(a) while the anisotropic case is shown in figure 2.4(b).

Anisotropic reflection occurs when the state of polarization is changed from (p) to

(s) or (s) to (p) polarizaiton upon reflection or transmission through a material. The

reflection peaks in the isotropic case are Fabry Perot resonances as the location of

the peaks change with change in incident angle. The anisotropic reflection in figure

2.4(b) show a small fraction (5-15%) of light is converted from (p) to (s) polarization

and vice versa. This is not ideal for a polarizer as it will mix (p) and (s) polarized

light and it won’t meet our requirement of 100% polarization conversion efficency.

The isotropic transmittance (figure 2.4(c)) shows high transmittance through

the sample. The anisotropic transmittance (figure 2.4(d)) shows a higher fraction

of light being converted from (p) to (s) and (s) to (p) polarized radiation (max of

approximately 55% at 900nm), however it still does not meet the requirement of the

design when the sample is used in transmission mode.

The vertically inclined gold nanowire sample can be rotated 90o about the surface

normal vector so that the nanowires are tilted in the plane of incidence or horizon-

tally in order for the wires to become coplanar with the incident electric field. This

allows the long axis of the wire to be in the same plane as the electric field vector

for (p) polarized light to excite the ENZ resonance. The simulated transmission and

reflection measurements for the isotropic case are shown in figure 2.5(a) and 2.5(c)

and the anisotropic case in figure 2.5(b) and (d). There is an ENZ resonance that

only occurs for (p) polarized light in the transmission spectrum at approximately

890nm. This is because the wires are tiled at an angle of 40o so the angle of inci-

dence has to be larger than normal incidence for a component of the electric field

vector to be along the wire axis. This resonance also shows up in the anisotropic

spectrum and can be used to convert (s) to (p) polarized light with 100% efficiency

at an incident angle of 40o. The conversion of (p) to (s) and (s) to (p) polarized light
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Figure 2.4: Isotropic (a) and anisotropic (b) reflectance of an out-of-plane vertically
inclined gold nanowire metamaterial. The wires are tilted at an angle of 400, have
a fill fraction of 22%, and the metamaterial slab is 300nm long. (c) and (d) show
the isotropic and anisotropic transmittance of the same inclined nanowire structure.
Inset in (b) shows a schematic of the structure.

comes from the phase accumulation for certain polarizations at certain wavelengths.

This is most likely to occur near the polarization sensitive ENZ wavelength of the

inclined nanowire structure [32].

2.3 Straight TiO2 Nanowires

TiO2 is another material we considered to use to study the optical properties of

nanowire structures. TiO2 is chosen because of the low loss in the visible and near
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Figure 2.5: Isotropic (a) and anisotropic (b) reflectance of an in-plane horizontally
inclined gold nanowire metamaterial. The wires are tilted at an angle of 400, have
a fill fraction of 22%, and the metamaterial slab is 300nm long. (c) and (d) show
the isotropic and anisotropic transmittance of the same inclined nanowire structure.
Inset in (d) shows a schematic of the structure.

infrared region. Simulations are performed using EMT and TMM. The reflectance

spectrum for (p) and (s) polarized light is shown in figure 2.6(a). There are no

interesting features in the anisotropic reflectance. The wire radius is 16nm with

wire to wire spacing of 65nm. The length of the wires is 300nm and the wires are

surrounded by air. A sample was fabricated in collaboration with the Dr. Mike Brett

research group [26] at the University of Alberta with approximately the parameters

predicted in simulation.

The resulting reflectance spectrum is measured using ellipsometry and plotted
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in figure 2.6(b). The reflectance spectrum from experiment matches what is seen in

simulations with a reflectance peak corresponding to an atomic resonance in TiO2

at approximately 330nm as predicted from the material dispersion.
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Figure 2.6: Comparison of theory (a) and experiment (b) for a straight TiO2
nanowire structure surrounded by air, with wire radius 16nm, wire to wire spac-
ing 65nm, and length 300nm. The minor discrepancy can be related to the larger
index of TiO2 in the fabricated sample.

2.4 Inclined TiO2 Nanowires

A higher degree of anisotropy can be created in TiO2 nanowires by tilting them

horizontally or vertically, similar to the gold nanowires. The first structure studied

has the TiO2 wires tilted vertically with the same length and fill fraction as the

straight TiO2 nanowires. Simulations were performed using CST (vertically tilted

wires) and EMT 4x4 anisotropic TMM method (horizontally tilted wires).

The reflectance spectrum for vertically tilted nanowires is shown in figure 2.7(a).

The reflectance peaks that exist are purely Fabry Perot modes as the peak location

changes with changing incidence angle. The anisotropic reflectance is plotted in

figure 2.7(c). Only a maximum of 5% of the reflected light is expected to go from

(p) to (s) or (s) to (p) polarization.

Tilted TiO2 nanowire samples were fabricated in collaboration with the Dr. Mike

Brett Research Group [26] at the University of Alberta with wire radius 16nm, wire

to wire spacing of 65nm, and length of 300nm using the Glancing Angle Deposition

(GLAD) technique. This involves tilting the substrates to very large angles during

deposition to grow tilted or helical structures [26]. The large angle of the substrate is
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required so that the wires will grow at an angle and not normal to the interface of the

substrate [26]. The isotropic and anisotropic reflectance spectra are measured using

ellipsometry and are found to match what was predicted by theory in magnitude

and locations of peaks as shown in figure 2.7(b) and 2.7(d).

This sample did not meet our design requirement because of the low polarization

conversion efficiency so we repeated the simulations and characterization measure-

ments with the same sample rotated by 90o so that the nanowires were now tilted

horizontally to lie in the same plane as the electric field vector for (p) polarized

light. The simulations for isotropic reflectance are shown in figure 2.8(a) with the

experimentally characterized reflectance in figure 2.8(b). Fabry-Perot resonances

exist due to the change in reflection peak with incident angle for each sample with

relatively low reflectance as expected for a TiO2 structure. The anisotropic re-

flectance is shown for the simulations in figure 2.8(c). Experimental measurements

for anisotropic reflectance for this sample aren’t shown as they showed no conversion

upon reflection at the air/metamaterial interface of (p) to (s) or (s) to (p) polarized

light. The degree of polarization conversion is very low and we conclude the design

for polarization conversion using TiO2 did not meet our design requirement. Other

materials with plasmonic or polariton resonances in the region of interest would

be a better candidate to meet our goal as polarization conversion occurs at a high

efficiency near plasmonic/polaritonic resonances.

2.5 Helical TiO2 Nanowires

TiO2 helical nanowires can be fabricated via the GLAD technique [26] and the struc-

ture is shown in figure 2.9(a). Helical structures require continuous rotation of the

substrate during deposition to form the helix pattern [26]. The simulated structure

had a wire radius of 5nm, helix radius of 50nm, and wire length of 500nm. The wire

length is defined as the thickness of the homogenized helical nanowire structure.

The helical wires were grown in vacuum on a glass substrate. Air is the surrounding

medium of the wires. This structure was designed to study circularly polarized light

in the mid infrared region of the electromagnetic spectrum. Figure 2.9(b) shows

the transmittance of left handed circularly polarized light (LCP) and right handed

circularly polarized light (RCP) simulated using CST Microwave Studios. From the

transmission spectrum we can infer that helical TiO2 wires will not work as a cir-

cular polarizer as the transmittance of LCP and RCP through the metamaterial is

approximately the same. In order to work as a circular polarizer, a material has to

absorb one circular polarization and transmitor reflect the other. We will see how

to optimize the difference between LCP and RCP absorption in the next chapter.

Straight, inclined, and helical nanowires have been designed and simulated for
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Figure 2.7: Theoretical CST simulations (a) and experimental measurements (b)
for the isotropic reflectance of vertically inclined TiO2 nanowires surrounded by air.
Anisotropic reflectance simulated using CST microvwave studios (c) and experimen-
tal results (d) for conversion of (p) to (s) and (s) to (p) polarization. The radius
of the wire is 16nm and the wire to wire spacing is 65nm. The thickness of the
metamaterial slab is 300nm.

polarization conversion for photonic circuits. They are simulated, fabricated and

characterized with horizontally tilted in-plane gold nanowires showing the best re-

sults to the design requirement of completely converting (p) to (s) or (s) to (p)

polarized light near the ENZ wavelength. The next design step is to make the op-

erating bandwidth of polarization conversion wider or find other materials to grow

nanowires that rotate polarization by a controlled amount at 100% conversion effi-

ciency in other regions of the electromagnetic spectrum.
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Figure 2.8: p and s-polarized reflectance calculated using EMT (a) and experimental
measurements (b) of a TiO2 inclined nanowire structure with the wires tilted hori-
zontally in-plane. Anisotropic reflectance simulated using CST microvwave studios
(c) for conversion of (p) to (s) and (s) to (p) polarization. (d) Schematic of the
in-plane horizontal inclined TiO2 nanowires. The fill fraction of the wire structure
surrounded by air is 22% and the thickness of the metamaterial slab is 300nm.
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Figure 2.9: (a) Schematic of helical TiO2 Nanowire Structure surrounded by air
grown on a BK7 glass substrate with wire radius of 5nm, helix diameter, D of
100nm, and length, L of 500nm. The TiO2 helix is surrounded by air on a glass
substrate. (b) Transmittance of Left Circularly Polarized Light (LCP) and Right
Circularly Polarized Light (RCP) through the Helical Nanowire.
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Chapter 3

Geometric Phase in Photonic

Nanostructures

Modern photonic components that alter the phase or polarization of light are large,

bulky, and can not be integrated into photonic circuits easily [10, 46]. With the

advancements of nanofabrication and the drastic decrease in size of circuit elements

over the last decade, this has become a major problem. Birefringent crystals are

commonly used as rotators of polarization but are very expensive and bulky. A new

type of device must be designed in order to manipulate beams of light for photonic

circuits.

Geometric phase is a type of adiabatic phase that occurs when light travels

around a closed path on the Poincaré Sphere or in Momentum space. Meta surfaces

and metamaterials that alter the phase of light have recently been proposed as on

chip polarizers, analyzers, and diffraction elements [10, 18, 46]. Geometric phase

can be used to order to alter the polarization state of the light without the use of

bulky and expensive crystals.

3.1 The Poincaré Sphere

The Poincaré Sphere is a convenient way to represent the polarization state of light

and show how the polarization state of light changes as it travels along a path

through different optical components in an optical experiment [2]. It is represented

by a sphere shown in figure 3.1(a). There are four parameters or components of the

Stokes Vector used to represent the polarization state of light. The Stokes Vector is

a 1x4 vector with components So, S1, S2, and S3 [2]. So represents the radius of the

sphere or the intensity of the light. So is always a positive quality and defined as

So = ExE
∗
x + EyE

∗
y (3.1)
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where Ex is the component of the field polarized on the −→x axis and Ey the field

polarized along the −→y axis. It is most commonly normalized to a value of 1 for

convenience [2].

S1 represents the state of lineally polarized light and is defined as

S1 = ExE
∗
x − EyE∗y (3.2)

If S1 < 0 the light is linearly polarized more towards the −→y direction and S1 > 0

if the light beam is polarized toward the −→x direction. The limits of ±1 represent

completely −→y polarized light for -1 and completely −→x polarized light for +1 [2].

S2 represents the relative light intensity that is polarized at either −45o or +45o.

It is defined as

S2 = E45E
∗
45 − E−45E∗−45 (3.3)

where E45 and E−45 are found by a simple transformation of coordinate systems

from the −→x -−→y plane to the −→x ′ −−→y ′ plane rotated by 45o as measured from the −→x
axis [2]. If S2 = +1, the light is completely polarized at +45o and -1 for −45o [2].

Lastly, S3 represents the relative intensity of circularly polarized light [2]. It can

be defined as

S3 = ERCPE
∗
RCP − ELCPE∗LCP (3.4)

where ERCP and ELCP represent the electric field for right and left circularly polar-

ized light respectively [2]. They can be found by using the coordinate transformation[
ELCP

ERCP

]
=

1√
2

[
1 i

1 −i

][
Ex

Ey

]
(3.5)

This coordinate transformation comes from combining the Jones Vectors for LCP

(Ex + iEy) and RCP ((Ex + iEy). When S3 = 1, the light is completely RCP and

if it is -1, completely LCP.

The Mueller matrix is a 4x4 matrix that represents the effect an optical element

or material has on the polarization state of light [2]. There are standard matrices in

optics books for basic optical elements such as polarizers or wave plates [2]. More

complicated metamaterials can have their Mueller matrix measured directly at each

wavelength using ellipsometry.

On the Poincaré Sphere (figure 3.1(a)), S1 is the −→y axis, S2 is the −→x axis, and

S3 is the −→z axis [2]. A small point anywhere on the Poincaré Sphere represents

completely polarized light while the whole sphere being highlighted means the light

is completely unpolarized [2]. If the light beam has more than one of the Stokes

Parameters non-zero, it can be either linearly polarized at some arbitrary angle (S1
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Figure 3.1: The Poincaré Sphere used to represent the polarization state of light.
The North and South Poles represent right and left circularly polarized light respec-
tively while the x - y plane represents linear polarization. (b) If light travels along
a closed path along the Poincaré Sphere starting at one polarization and returning
to the original polarization state through two intermediate states (B and C), it will
acquire a phase difference equal to half the solid angle formed by the path traveled
on the Poincaré Sphere.

and S2 are non-zero) or elliptically polarized (S1, S2, and S3 are non-zero) as shown

in figure 3.1(a) [2].

Shivaramakrishnan Pancharatnam, in a paper published in 1956 [35] considered

the phase of a beam of light as it changed state of polarization. His most important

result can be explained in two parts. The first part found that the interference

between two beams in non-orthogonal states can be defined as

(〈A|+ 〈B|)(|A〉+ |B〉) = 2 + 2|〈A|B〉|cos(ph〈A|B〉) (3.6)

where |A〉 and |B〉 are two non-orthogonal beams in different states of polarization

[35]. When the two beams are in phase, the term ph〈A|B〉 is considered to be real

and positive [35].

The second contribution made was showing that the connection has the property

of non-transitivity [35]. That is to say if a beam of light in |A〉 is in phase with

another beam of light |B〉 and another beam |C〉 is in phase with |B〉 then |A〉 does

not necessarily have to be in phase with |C〉 [35]. From this two part connection,

it was proposed by Pancharatnam that if |C〉 was in the same state of polarization

as another state |A′〉, there will exist a phase difference when a beam changes state

through the path ABC as shown in figure 3.1(b) such that
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〈A|A′〉 = exp

[
−iΩABC

2

]
(3.7)

where ΩABC is the solid angle formed by the triangle ABC on the Poincaré Sphere

as shown in figure 3.1(b) [35].

This can be related to Berry’s Phase from Quantum Mechanics if we consider a

spin-1/2 particle in a two state quantum system that is parallel transported along a

closed path formed by the same geo disc shown in figure 3.1(b) [3]. This process is

considered to be Adiabatic as its state changes slowly as it travels along the closed

path which gives us the condition for Berry’s Phase

< ψ|U |ψ > /dt = 0 (3.8)

where U is the operator acting on the system due to the parallel transport of the

polarization state along the Poincaré sphere and is given by

U = Texp

[
−i
∫ T

0
dt′ω(t′) ∗ σ

]
(3.9)

where T is the time it takes to travel around the closed path, σ is the quantum

number for an electron (σ = ±1/2) and ω(t′) is the instantaneous angular velocity

of the tangential vector being parallel transported along the closed path [3]. If the

integral is just the angle forming a closed path on the sphere between states |A〉 to

|B〉, the phase difference between |A′〉 and |A〉 is given by

< A|A′ >= exp

[
−iΩ(C)

2

]
(3.10)

where C is the closed path formed by points ABC on the Poincaré sphere. This

implies that the Pancharatnam connection is an Adiabatic process described by

Berry’s phase as both methods generate the same result [3]. It is important to

note that because the formulae derived for the phase difference only depend on the

connection in 3.8, the change in polarization does not need to be slowly varying

as predicted in Adiabatic theory [3]. This is convenient as polarization changes

in experiments are sudden as they occur from projections onto a certain axis of

polarization. The phase shift can be detected by measuring interference.

This result confirms with an effect later proposed by Aharanov and Bohm stating

that the phase shift accumulated by two beams of electrons is directly proportional

to the magnetic flux they enclose [3]. When speaking of polarized light, the magnetic

flux is the solid angle of the closed path on the Poincaré sphere.

Pancharatnam’s predicted phase is not due to birefringent materials or of dy-

namic origin. It is purely determined by the change in polarization states forming

a closed path on the Poincaré sphere [3]. This theory can be used in the design of
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new thin film optical elements to manipulate beams of light.

3.2 K-Space

Another way of describing Geometric phase of a photon is in momentum space from

a quantum mechanical perspective [42]. A geometric phase can be acquired by a

photon as it propagates along a single mode fiber wound in the shape of a helix.

The phase acquired does not come from optical activity induced on the fiber due to

the elasto-optic effect or torsional stress when the fiber is twisted into a helix [42].

The phase difference acquired is only dependent on the geometry of the helix and

hence the path traveled by the photon [42]. As long as the path subtended by the

photon is closed in momentum space, the angle of rotation of the polarization of

light in Cartesian space does not depend on the path of the fiber [42]. This only

applies for optical fibers that have a path that varies in three dimensions. Planar

paths show no significant rotation of the direction of polarization as the photon

propagates [42]. This is another aspect that shows the phase change is geometric

and not dynamic. Chiao proposed and performed an experiment using a He-Ne laser

and linear polarizer at the input and output of an optical fiber [42]. The fiber was

inserted in a Teflon sleeve and wound into case 1: a uniform helix with a constant

pitch angle and case 2: a non-uniform helix with varying pitch angle [42]. To ensure

no torsional stress, the fiber was left free to move at the output [42]. For the photon

to travel around a closed loop in momentum space, the fiber direction had to be

oriented the same way at the input and output [42]. For case 1: The arc length

of the fiber was constant but the radius and pitch angle of the fiber was varied by

attaching the fiber to a spring [42]. Berry’s phase for uniform one turn helix is given

by

γ(C) = −2πσ(1− p

s
) (3.11)

where p is the pitch length, and s is the arch length of the fiber [42]. σ is the helical

quantum number, either +1 or -1. σ will be +1 here to measure the rotation of

linearlly polarized light, predicted from quantum theory [42]. When this theory is

plotted with the experimental results, good agreement is found by Chiao [42]. This

shows that the phase acquired is purely geometric and there are no other contributing

factors [42].

In case 2, for a non uniform helix, the pitch angle of the helix was varied according

to the equation

θ(φ) = tan−1(r
dφ

dz
) (3.12)
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where r is the radius of the cylinder the fiber was placed in and φ is the coordinate

of the helix corresponding to the cylindrical coordinate system (r,φ,z) [42]. For a

non-uniform sphere, the solid angle will be

Ω(C) =

∫ 2π

0
[1− cos(θ(φ))]dφ (3.13)

which leads to Berry’s phase predicting [42]

γ(C) = −σΩ(C) (3.14)

Plotting the above equation vs solid angle traveled by the photon in momentum

space gives good agreement as shown in [42]. Error arises from small optical rotations

due to torsional stress or the fact one end of the fiber was able to hang freely during

measurements in the experiment [42]. This shows that the phase seen is purely

Geometric and not due to any material birefringence or torsional stress placed on

the fiber which was minimized during the experiment [42]. Figure 3.2 shows the

path of the tangent vector of the optical fiber as it travels around a closed loop in

K-space or momentum space.

Φ
s=0

s=1

t(s)

Figure 3.2: As an optical fiber is wound in a helix, the local tangent vector of
any point on the helix can change and form a closed path. The total geometric
phase difference from a beam at point s=0 and point s=1 will be equal to the area
subtended by the closed path formed by the change in local tangent vector on the
momentum sphere.

3.3 Samuel Experiment

The main requirement to see a geometric phase between two beams of light is the

light must travel over a closed path. In the paper by Samuel et al [33], an interferom-

etry experiment is proposed to show Geometric Phase. A diagram of the experiment

is shown in figure 3.4(a). Unpolarized light from a He-Ne laser at a wavelength of

633nm is converted into left circularly polarized light (LCP) by a +45 linear polar-

izer and quarter wave plate [33]. The LCP then is split equally into two beams that
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travel in opposite directions around the interferometer as shown in figure 3.4(a). In

the bottom segment of the closed loop, a rotatable linear polarizer is placed with

an axis of polarization oriented at an angle, θ with respect to the −→y axis. We will

define the two beams as beam 1 and beam 2 [33]. Beam 1 travels clockwise around

the loop and beam 2 travels counter clockwise [33]. The two beams are then recom-

bined at the beam splitter and sent through a circular polarizer that converts the

linearly polarized light to right circularly polarized light (RCP) [33]. A photo diode

then measures the output intensity of the beam normalized to an input intensity of

1 for different angles of the rotatable linear polarizer [33]. The output intensity is

an interference pattern for varying angles of the rotable linear polarizer [33]. For

an interference pattern to occur, there must be a phase difference between the two

recombined beams [33].

Traditionally, the biggest criticism to the existence of geometric phase and va-

lidity of experiments is the presence of optical elements that create phase differences

in light by using birefringent crystals. In this experiment, there are no dynamic

phase elements such as wave plates. All optical elements are purely projectional.

All polarization states are achieved by projecting the previous state onto the optical

axis of the optical element the light goes through so only electric field components

with their direction parallel to the optical axis of the element are transmitted. The

solid angle subtended on the Poincaré Sphere for each beam in this experiment is

shown in figure 3.4(b). It is found that that the total solid angle is (8θ) and the

total phase difference will be (4θ). The intensity pattern measured experimentally

by the photo diode is exactly predicted by Pancharatnam theorem in Samuel et al

[33].

3.3.1 Jones Matrix Treatment

A common way to represent the polarization state of light is through the Jones

Matrix. From the Samuel experiment, both beam 1 and beam 2 can each be analyzed

this way by starting with the original state of polarization of LCP light for both

beams. This polarization state is represented as a 2x1 Jones Vector. The effect

of each optical element the light beam encounters can be found by multiplying the

Jones vector by a 2x2 Jones Matrix. Beam 1 is analyzed first. The Jones vector for

LCP light is given by

JLCP =
1√
2

[
1

i

]
(3.15)

The first optical element the beam 1 encounters is the linear analyzer at some angle

(θ). The Jones matrix for this is found by using the 2x2 rotational matrix to project

the linear polarizer at angle (θ) onto the vertical −→y axis, multiplying by the Jones
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Figure 3.3: (a) Experimental Setup of an interferometry experiment where left circu-
larly polarized light is sent through a beam splitter and two beams travel in opposite
directions around a closed path and are brought back together through the same
beam splitter. The output intensity is measured as a function of polarization angle
to see a phase difference between the two beams resulting from optical elements us-
ing pure projections. (b) The phase change of the two light beams as shown on the
Poincar Sphere. The total phase change is equal two half the solid angle subtended
on the Poincaré Sphere. (c) The measured output intensity at the photo diode from
the Samuel experimental setup when the linear analyzer in the interferometry loop
is continuously rotated through an angle θ.

Matrix of the polarizer, and then projecting back onto the axis of the polarizer

oriented at angle (θ). The total Jones matrix for the linear polarizer at angle(θ) is

given by

JLP1 =

[
sin2(θ) −sin(θ)cos(θ)

−cos(θ)sin(θ) cos2(θ)

]
(3.16)

When multiplied by the Jones vector for LCP light, the resulting Jones vector is

J1 =
1

2 ∗
√

2

[
−isin(θ)eiθ

icos(θ)eiθ

]
(3.17)

Finally, multiplying (J1) by the Jones matrix for a RCP polarizer, we get a final

result for the polarization state for beam 1 at the detector

J1final =
−ei2θ

2
√

2

[
1

−i

]
(3.18)

For beam 2 traveling in the opposite direction, the only changes in the Jones

analysis is in the linear polarizer at an angle (θ). The polarizer is rotated at an

angle of (−θ) instead of θ). The Jones matrix for for the rotatable linear polarizer

for beam 2 becomes
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JLP2 =

[
sin2(−θ) −sin(−θ)cos(−θ)

−cos(−θ)sin(−θ) cos2 − (θ)

]
(3.19)

This leads us to the final result given by

J2final =
−e−i2θ

2
√

2

[
1

−i

]
(3.20)

A phase term is found outside the Jones Vector of each beam after travelling the

closed path. For the beam 1, it is (+2θ) and for beam 2, (−2θ) due to beam 2

travelling in the opposite direction of beam 1. The total phase difference between

beam 1 and beam 2 is given by

∆Φ = 4θ (3.21)

This result agrees with Pancharatnam’s theorem [33]. The resulting intensity seen

for RCP light with a (4θ) phase difference calculated above is plotted in figure

3.4(c). The resulting Jones Matrix parameters plotted in figure 3.4(c) match the

experimental results measured by Samuel [33]. It has been proven here that the

geometric phase is seen using a simple Jones matrix treatment of an interferometry

experiment using purely projectional elements over a closed loop subtended along

the Poincaré sphere.

3.3.2 Stokes Parameter Treatment

Stokes Parameters are another set of values that describe the state of polarization of

light. Unlike Jones matrices, they are able to handle states of partial polarization.

The Stokes Vector is a 4x1 vector with the first term represented by the size of

the Poincaré sphere (usually 1) and the last three terms representing the −→x , −→y ,

and −→z axes of the Poincaré sphere, respectively. Optical systems are represented

by Mueller matrices. Mueller matrices apply a linear transformation on the Stokes

vectors. A Mueller matrix can be derived numerically from the Jones matrix in the

case of total polarization. In the case of the Samuel experiment, a phase shift of

(4θ) can be derived through a Stokes treatment of the system as shown below. The

rotational Mueller matrix can be derived from the Jones matrix and is defined as

R(θ) =


1 0 0 0

0 cos(2θ) sin(2θ) 0

0 −sin(2θ) cos(2θ) 0

0 0 0 1


The Stokes vector for a linear polarizer
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SLP =


1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0


The Stokes vector for a right circular polarizer RCP is

SRCP =


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


The stokes vector of the incident left circularly polarized beam 1

SLCP =


1

0

0

−1


Consequently the resultant path of the beam traveling in the positive direction can

be calculated in a similar way as the Jones Vector.

S1final =
1

4
∗RCP ∗R(−θ) ∗ LP ∗R(θ) ∗ I

The Stokes vector for beam 1 prior to going through the right circular polarizer has

the Stokes vector

S1final =


1

cos(−2θ)

sin(−2θ)

0


The same procedure is identical for the beam passing in the opposite direction except

that the linear polarizer is rotated by (−θ). In this manner we obtain a Stokes vector

of

S2final =


1

cos(2θ)

sin(2θ)

0


After multiplication with the RCP the same result is obtained for both vectors
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Sfinal =


1
4

0
1
4

0


From this we can see that the beams do not differ in degree of polarization however,

there is a phase difference obtained from a phase of (−2θ) from the beam traveling

in the positive direction, and a phase change of (2θ), from the beam traveling in the

negative direction, creating a total phase change of (4θ).

3.4 Geometric Phase Optical Elements

Linear polarizers are readily available to use in experiments in the form of sheets

or prisms [18]. Circular polarizers are not as common and more difficult to create.

Circular polarizers work by reflecting/absorbing one type of circular polarization

and transmitting the other. In Samuel et al [33], a liquid crystal film is proposed as

a material for a circular polarizer. However, a different approach is proposed here

using a film of helical gold nanowires as shown below in figure 3.5(a). Gold is chosen

as the choice of material as it is a very good conductor in the mid infrared region

and does not suffer from the high loss it does in the visible and near infrared region.

With the development of GLAD by Brett et al [26], gold helical nanowires are a

structure that can be fabricated by a rather straight forward process. A plot of the

simulated transmission for right circularly and left circularly polarized light incident

on the film is shown in figure 3.5(b). RCP is strongly transmitted over the entire

region of 3-10 µm while LCP is reflected/absorbed for the region between 3µm and

5µm. The resonance is not plasmonic as it is too far away from the plasma frequency

for gold but is rather due to the standing wave condition being met for a helical

structure with 2 full turns as seen in figure 3.5(a) along with the handedness of the

helix [18]. When the Bragg condition is met for the combination for all the helical

wires, the complete transmission of RCP happens at a wavelength of approximately

4.8µm. A wider bandwidth of operation is seen when compared to the analyzer used

by Samuel [33]. The helical nanowires have been designed to have a wire thickness

of 5nm, helix radius of 5nm and length of 2µm. The helix radius and pitch of the

helix can be adjusted to change the wavelength region to which the analyzer can

operate in.

This is one example a design of a metamaterial which can help understand ge-

ometric phase. Other designs have been proposed in [10, 18, 46]. With the ad-

vancement of fabrication procedures and introduction of GLAD [26] to fabricate

helical nanowires, it should be possible to measure Geometric Phase with ultra thin
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(a) (b)

Figure 3.4: (a) Structure of a unit cell of gold helix with wire radius 5nm, helix radius
50nm, and length of 1µm for a circular polarizer. (b) The transmission of LCP and
RCP is shown for the helical nanowire structure. LCP is transmitted and RCP is
completely reflected or absorbed at a wavelength of 4µm. This wavelength can be
tuned by changing the wire radius, and helix radius to act as a circular polarizer at
any wavelength. This optical element can help design optical experiments that are
related to the geometric phase of light.

projective optical elements.
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Chapter 4

All Dielectric Anisotropic

Metamaterials

The discovery and development of nanophotonics and new nanofabrication tech-

niques for light guiding in the last decade have led to strong efforts to miniaturize

and integrate electrical and photonic components for many on-chip applications

[24, 22, 23]. The integration of photonic components into electronic circuitry has

also increased the speed of modern communication and computation systems. Two

main problems exist in conventional photonic components. One is the propaga-

tion of information below the diffraction limit and the other is cross talk between

components on densely packed silicon photonic circuits [24, 22, 23]. One approach

proposed to beat the diffraction limit was the plasmonic waveguide. This design tries

to take advantage of the surface plasmon modes that exist and that can be excited

in metals [24, 22, 23]. Surface plasmons can carry sub diffraction limit information

as propagating waves. However, with the introduction of metals into the waveguide,

additional losses (absorption) occur and light can not propagate more than a few

microns [24, 22, 23]. Another issue with the plasmonic waveguide is the absorbed

light is dissipated as heat which can overheat and destory electronic components on

the silicon chip. A better approach is needed without the use of metals to confine

more power inside waveguides.

A new class of waveguides have recently been introduced [24, 22, 23] called

extreme skin depth waveguides. Sub diffraction information can be confined inside

the core of a 1D dielectric waveguide. If the slab size of the waveguide is small

enough, both TE and TM modes can propagate without any cutoff [24, 22, 23]. In a

conventional waveguide, these modes leak extensively into the cladding [24, 22, 23].

With an anisotropic all dielectric metamaterial as a cladding, the skin depth of

evanescent waves leaking into the cladding can be decreased, confining more power

inside the core [24, 22, 23].
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Total internal reflection (TIR) is the main mechanism for guiding light. It was

first discovered in 1611 by Johannes Kepler but it was not until almost 200 years

later before it was proposed it could be used for guiding or confining light [24,

22, 23]. Guiding and confining light is important in many applications, including,

nanowaveguiding, laser cavities, and TIR fluorescence microscopes [24, 22, 23]. The

law of total internal reflection states that if the index of refraction for light in an

incident medium is greater than the transmitted medium (n1 > n2), there is a

critical angle of incidence for which 100% of the power carried in a propagating

wave will be reflected back into the incident medium. The critical angle is defined

as

θc = arcsin

(
n2
n1

)
(4.1)

where θc is the critical angle for total internal reflection and n1 and n2 are the re-

fractive indexes in the incident and transmitted medium, respectively. Any evanes-

cent waves will decay away exponentially in the transmitted medium. This can be

explained easily by examining the momentum or wave vector of the wave at the

interface between the incident and transmitted medium (section 4.1).

A conventional design for confining light works by guiding light inside a core

material that acts as the incident medium by multiple reflections, all of which satisfy

the TIR condition. The core has a higher refractive index than the transmitted

medium which is called the cladding material, designed to be of lower index for the

TIR condition to be valid. The confinement is based entirely on the refractive index

contrast between the core and the cladding. To date, the best design achieved for

a waveguide has been with a core made of silicon (n = 3.5 @ 1.55 µm) surrounded

by vacuum (n =1) as the cladding material. If the core size is sub wavelength, less

than 2% of the total power is confined inside the core [24, 22, 23]. Another possible

waveguide design confines light via Bragg reflection in the band gap of photonic

crystals [24, 22, 23]. The main problem with both of these designs, is it focuses on

the confinement of only propagating waves. The issue of power loss to evanescent

waves decaying into the transmitted medium still exists.

With the emergence of metamaterials in the last decade, the laws of refraction

and reflection have been revisited in order to study their properties when the in-

cident or transmitted medium is a metamaterial with high anisotropy. With high

anisotropy, we can control both the confinement of propagating and evanescent

waves inside the core of the waveguide with a phenomenon first proposed by Jahani

et al [24, 22, 23] known as relaxed total internal reflection.
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4.1 Relaxed Total Internal Reflection

To derive the condition for relaxed TIR, imagine a situation as described in fig-

ure 4.1(a) [24, 22, 23]. Light is incident from an incident medium (medium 1)

and reflected at the interface between medium 1 and an all dielectric anisotropic

transmitted medium (medium 2). The interface is defined along the −→z axis and

perpendicular to the interface is the −→x axis. It has been shown recently by Jahani

et al [24, 22, 23]that a sufficient condition to have total internal reflection is

n1 >
√
εx (4.2)

for (p) polarized light [24, 22, 23] and

n1 >
√
εy (4.3)

for (s) polarized light [24, 22, 23] where n1 is the refractive index of medium 1 and

εx and εy are the permittivity of the anisotropic dielectric medium perpendicular

to the interface and parallel to the interface, respectively. It is important to note

that for uniaxial multilayer metamaterials, εy = εz. Relaxed TIR has been proven by

examining the conservation of momentum at the interface between the two mediums

[24, 22, 23]. For (p) polarized light, the conservation of momentum condition is

k2z‖

εx
+
k2x⊥
εz

= k2o (4.4)

where ko is the wave vector in the incident medium and kx⊥ and kz‖ are the wave

vectors parallel and perpendicular to the interface, respectively [24, 22, 23]. The

perpendicular component of the wave vector can clearly be zero or imaginary such

that it is evanescent and decays away in medium 2. The opposite case for the parallel

component being zero or imaginary is true for (s) polarized light. Therefore, the

critical angle for relaxed TIR is different for (p) and (s) polarized light which has

never been previously shown before.

With only needing one part of the permittivity of the anisotropic metamaterial to

meet the condition for TIR, we have an open degree of freedom for the permittivity

in the opposing direction. This can be used to confine evanescent waves if εz >> 1

for the (p) polarized light case as shown in figure 4.1(b). It has been proven that

with this condition along with the condition for relaxed TIR being met using a

silicon/silica multilayer anisotropic metamaterial, 36% of the total power can be

confined in the silicon core compared to just 2% for a silicon core/vacuum cladding

waveguide structure [24, 22, 23]. The refractive index of the core was 3.5 and

the cladding is 1 for a core size of 150nm at an operating wavelength of 1550nm

[24, 22, 23]. The anisotropic metamaterial cladding had permitivitties of εz = 15
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and εx = 1.2 [24, 22, 23]. Proving these conditions experimentally is best done by

fabricating dielectric multilayer metamaterials directly onto a prism made of silicon

which will act as the core material.

(a) (b)

Figure 4.1: [24, 22, 23] (a) Relaxed Total Internal Reflection requires that the refrac-
tive index of medium 1 is greater than medium 2 in the x direction and the incident
angle is greater than the critical angle for TIR. If the TIR condition is met, light
will be totally reflected back into medium 1 with only evanescent waves decaying
into medium 2. (b) If the refractive index in medium 2 in the z direction is made
very large, higher confinement of power in medium 1 results.

4.2 Fabrication of Si/SiO2 Multilayer Anisotropic Meta-

materials

To create our all dielectric metamaterial, we will use the simple multilayer design.

Silicon and silica were used as the alternating layers for our multilayer stack as they

have low loss at our operating wavelength of 1.55 µm (telecommunication wave-

length) and can easily be fabricated and integrated as the cladding material onto

silicon waveguide photonic circuits. However, using the silicon and silica design,

we emphasize that it is difficult to acheive the ideal situation where the refractive

index is as low as possible perpendicular to the core/cladding interface and as high

as possible parallel to the interface. Silicon and silica were fabricated using mag-

netron sputtering and magnetron reactive sputtering. BK7 microscope slides, BK7

right angle prisms, and hemicylindrical silicon prisms were used as substrates for

our samples. The reasoning for depositing on the prisms is it would be easier to

perform total internal reflection measurements when depositing directly onto prism
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as there was no index matching fluid readily available at a refractive index of n=3.5

for the silicon prism. A special apparatus was built to hold the prisms during de-

position inside the vacuum chamber and that could be easily be attached to the

existing substrate holder. A photo of the apparatus is shown in figure 4.3(a). With

the new substrate holder and the thickness of the prisms, the film properties would

change and the sputtering conditions had to be altered as the surface the silicon

and silica thin films were to be deposited on was much closer to the target than

with the original substrate holder. With moving the substrate closer to the target,

this produced lossier films with a higher refractive index. With loss being a key

contributing factor to power loss in waveguides, the loss had to be reduced. Re-

ducing the deposition power produced low loss films on the new substrate holder

as confirmed by ellipsometry measurements and fitting for the refractive index and

extinction coefficient.

Silicon and silica were both deposited at a power of 150W using a pulsed power

supply at a frequency of 150kHz and off time of 0.5µs for silicon and 0.8µs for silica.

The targets were ramped up to deposition power very slowly in order to prevent

thermal shock and ensure they would last for many depositions as silicon is a fragile

material to sputter.

A total of 5 periods of silicon/silica were fabricated at fill fractions of 0% (pure

silica), 30%, 50%, 70%, and 100% (pure silicon) on BK7 prisms. The 100% pure

silicon sample was not fabricated on the hemicylindrical silicon prisms. The total

thickness of each period was kept constant at 100nm and only the ratios of silicon

to silica within each period were altered to change the fill fraction. This gave the

total thickness of the structure to be 500nm for all fill fractions. For the 0% filling

fraction, 500nm film of silica was deposited and for a 100% filling fraction, 500nm

of silicon was deposited. These were used as control samples to prove the principle

of relaxed total internal reflection.

A 200nm thick layer of tungsten was deposited on top of the multilayer struc-

ture at each fill fraction to prevent any additional evanescent waves from tunneling

outside the silicon prism that passed through the multilayer structure. Tungsten

was deposited at a power of 300W via magnetron sputtering using a pulsed power

supply with 150kHz and 0.5 µs off time.

4.3 Characterization of Si/SiO2 Multilayer Anisotropic

Metamaterials

Initial characterizations of our structure were performed using ellipsometry on the

samples deposited on BK7 microscope slides. ψ is the basic parameter used in

ellipsometry and can be defined as
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rp
rs

= tan(ψ)eiδ (4.5)

where rp and rs are the complex reflection coefficients from the sample. ψ is the

magnitude of the ratio between rp and rs and δ represents the phase difference

between (p) polarized and (s) polarized reflectance. For all samples, there is a min-

imum point in the value of ψ over the wavelength range from 1 to 1.7µm. For a fill

fraction of 30%, figure 4.2(a) shows the minimum in ψ at an angle of 30o. Figure

4.2(b) shows the location of the minimum in ψ vs changing fill fraction. Simulations

were performed using both EMT and Transfer Matrix Method (TMM). Good agree-

ment is shown between both simulation methods as well as experimental methods

indicating that the values for the thickness and refractive index for silicon and silica

used in future simulations are very close to what we measure experimentally. Initial

fitting of the refractive index, extinction coefficient, and thicknesses were accurately

fitted for a single film of silicon, silica, and tungsten in order to have accurate pa-

rameters for each layer for future simulations. We chose the method of comparing

the minimum point of ψ to characterize our structure as anisotropic modeling of

many layered structures is complicated and produces a very large error in the fitting

algorithm.
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Figure 4.2: (a) ψ vs wavelength at an incident angle of 30o for a sample of filling
fraction of 30% for experimental measurements, TMM, and EMT. (b)The minimum
in ψ is plotted with change in fill fraction and compared for EMT, TMM, and ex-
perimental measurements. Both analytical methods agree with experimental results
for trend and magnitude of ψ.
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4.4 Total Internal Reflection Measurements of Si/SiO2

Multilayers on BK7 Prisms

BK7 right angle prisms were the first prisms that multilayer structures were de-

posited on as they were relatively cheap and there was no lensing effect on the laser

beam as there was with hemicylindrical silicon prisms. The prism with the multi-

layer structure was placed on a rotation stage and was illuminated with a TR labs

prototype 1530nm narrow line width laser. The laser output was coupled into a col-

limated single mode fiber. The beam then went through a linear polarizer that was

rotated to switch between (p) and (s) polarization, depending if we were measuring

Rp or Rs, before it was incident on the prism. The output spectrum vs angle was

then measured after the beam went through the prism, was reflected off the longest

side of the prism with the multilayer structure on it and then back out of the prism

as shown in figure 4.3(b). The incident angle was increased in increments of 2o from

10o to 80o. A Newport Optics Optical Power Meter calibrated to a wavelength of

1530nm was then used to measure the reflected power. The incident power before

going into the prism was measured and then the reflectance was plotted by dividing

the reflected power by the incident power for each angle measured for both (p) and

(s) polarized light.

(a) (b)

Si Prism BK7 Prism 1530nm Laser

Ge Detector

Linear

Polarizer

Rotation

Stage

Silicon Prism

Figure 4.3: (a) The deposition appartus used to mount BK7 glass and silicon prisms
for sputtering of multilayer metamaterials. (b) Experimental Setup for Total Inter-
nal Reflection measurements.

In a waveguide light, is guided along the core and is not transmitted from

one medium into another. In our TIR prism setup, light is transmitted from the

air/prism interface into the prism and from the prism back into air at the prism/air
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interface. These two reflections in the optical path need to be accounted for. The

total transmitted power through the prism can be derived by multiplying the fresnel

transmission coefficeients together from each interface to give

T =
(4n1n2)

2

(n1 + n2)4
(4.6)

where n1 is the index of air and n2 is the index of BK7 glass(n=1.48). This leads

us to find the reflectance in a waveguide situation via the relation

R =
Rmeasured
TImeasured

(4.7)

where R is the reflectance in a waveguide, Imeasured is the incident measured power,

and Rmeasured is the measured reflected power. The results for fill fractions of

0%, 30%, 50%, 70%, and 100% are shown in figures 4.4(a)-(e). The experimental

results are plotted against TMM simulations for our multilayer structure. There is

a discrepancy for (s) polarized reflection in the 30% sample and for (p) polarized

light in the 100% fill fraction sample. This can be attributed to our silicon thin film

being slightly less lossy then the films simulated.

Most results showed agreement with minimum discrepancies which meant that

our experimental method and multilayer structures were working as expected. The

next step was to deposit on hemicylindrical silicon prisms where silicon would act

as the core material to show two different critical angles for (p) and (s) polarized

light to prove relaxed TIR.
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Figure 4.4: (a)-(e) show TIR measurements (experiment and theory) for 5 periods
of Si/SiO2 deposited directly on a BK7 glass right angle prism for fill fractions of
p=0%, 30%, 50%, 70%, and 100% respectively.
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4.5 Si/SiO2 Multilayer Anisotropic Metamaterials on

Hemicylindrical Silicon Prisms

5 period (100nm periodicity) silica/silicon multilayer structures were deposited to

give a total metamaterial thickness of 500m on the hemicylindrical prisms with the

200nm absorbing tungsten layer on top to absorb any additional evanescent waves

that propagated through the multilayer structure. The resulting reflection spectrum

was measured and plotted vs angle with the same method as described in equations

4.6 and 4.7 before, except n2 was changed to be the refractive index of silicon (n=3.5)

when accounting for the two reflections. The TIR prism set up is shown in figure

4.5(a) with the multilayer structure and absorber being deposited on the long flat

face of the prism. Samples with filling fraction of 0%, 30%, 50%, and 70% were

fabricated, each having the absorbing tungsten layer. A 100% filling fraction sample

was not fabricated as depositing silicon onto silicon would just lead to a critical

angle of 90o for both (p) and (s) polarized light.

Figure 4.5(b) shows the reflection spectrum for a 30% filling fraction sample.

As we can see (p) polarized light has a critical angle for total internal reflection of

36o and (s) polarized light of 46o as predicted by using an anisotropic all dielectric

cladding material. Above the critical angle, the reflectance is showed to slightly

increase as we approach higher angles and not stay constant at 100% reflection as

predicted by simulations. This can be attributed to higher loss in the structure and

the absorbing layer than used in simulations. Error bars show a small discrepancy

for the measurable errors in this experiment. Uncertainty in the detector and power

meter were used to calculate the uncertainty. Additional uncertainty comes from

alignment of the prism with the prism surface normal vector at each angle. The

beam size is 0.5mm and hence the edges of the beam do not transmit at exactly the

surface normal of the prism and will have different a different reflectance than the

center of the beam.

In figure 4.5(c), the locations of the critical angle for (p) and (s) polarized light

are shown for different fill fractions fabricated. The critical angle is similar for 0%

filling fraction sample for (p) and (s) polarized as predicted by simulation as this

structure shows no anisotropy. Error for the 0% filling fraction comes from the finite

thickness of our multilayer structure. (p) and (s) polarized light will only have the

same critical angle for the situation in figure 4.1(a) where each medium is infinite in

thickness. This discrepancy does not occur for other fill fractions, hence the smaller

error bars at higher fill fractions. The location of the critical angle for (p) and (s)

polarized light changes with fill fraction as predicted by the TMM simulations as

the refractive index of the multilayer structure will change for both the −→z and −→x
directions with change in the effective medium parameters. This experimental work
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is the first evidence of relaxed total internal reflection.
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Figure 4.5: (a) Experimental Setup for measuring total internal reflection of Si/SiO2
multilayers on a silicon hemicylindrical prism. (b) Reflectance Experiment vs Theory
for (p) and (s) polarized light measured for 5 periods of 30nm silicon, 70nm silica (
ρ = 30%). (c) Fill fraction vs critical angle for (p) and (s) polarization for 5 periods
of varying fill fractions on hemicylindrical silicon prism for experiment and theory.
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Chapter 5

Thermal Applications and

Future Work

One of the biggest issues with using plasmonic resonances in nanostructures for

metamaterials is the unavoidable loss associated with the metallic component. In

the infrared and visible region, this loss is quite high and applications requiring high

reflection or transmission are not practical. With high loss comes high absorption

which naturally would lead one to focus on applications that benefit instead of

suffer from high absorption. Thermal camouflage or cooling prevents a hot object

from being detected by infrared detectors [11]. This can be observed when thermal

radiation from a hot object is absorbed by another material and redirected into

the regions of the spectrum other than infrared [11]. This is useful for military

applications where thermal camouflage is often required [11].

The design of a device for thermal camouflage needs to act as a broadband

mirror for the solar part of the atmospheric absorption spectrum and behave as a

great absorber in the atmospheric transparency window for wavelengths of 8-13 µm

[11]. We will start our design of the structure by focusing only on the atomspheric

transparency window and defining the net cooling power of a photonic structure at

temperature T, when placed in sunlight to be

Pnet(T ) = Pradstruc(T )− Patm(T )− Pabsstruc (5.1)

where Pradstruc(T ) is the power radiated into the atmosphere by our photonic struc-

ture, Patm(T ) is the absorbed power due to atmospheric radiation, and Pabsstruc(T )

is the power absorbed by the structure [11]. The power absorbed by the structure

is defined as

Pabsstruc(T ) = A

∞∫
0

dλε(λ, 0)IAM (λ) (5.2)
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[11] and the power radiated by the structure is

Pradstruc(T ) = A

∫
dΩcosθ

∞∫
0

dλIBB(T, λ)ε(λ, θ) (5.3)

Kirchhoff’s law states that the radiative emission and absorption of electromag-

netic radiation remain in equilibrium. We therefore may consider the absorption

spectrum to equal the emission spectrum for the design of our structure. Most bulk

materials do not have an absorption efficiency of greater than 85% in this range,

so we must design a metamaterial that will have an absorption efficiency of greater

than 90%. Since the bandwidth of the transparency window is so wide, it will be

convenient to design our nanostructure with two different materials, each having

a unique properties. Since the area of the spectrum is in the mid infrared region,

phonon polariton resonances will be the mechanism for absorbance. The design here

will use two different materials with overlapping phonon polariton resonances. The

materials chosen are silicon carbide (SiC) with a sharp phonon resonance at 12.5

µm and quartz with a resonance at 9.3 µm. The overlapping resonances will allow

for absorption across the entire transparency window from 8-13 µm. Both SiC and

quartz are also very weak absorbers in the visible and near infrared region of the

electromagnetic spectrum. Simulations were done using CST Microwave Studios for

three different structures.

To show the possibility of camouflage, we study the absorption spectrum of three

different designs. The design is adaped from publication [11] and modified for our

application. The first design considered is a planar 1µm by 1µm unit cell of a SiC

layer of 8 µm followed by a 2.5 µm thick layer of quartz. The inset in figure 5.1(a)

shows an exact schematic of the structure. The resulting absorption spectrum is

shown for (p) polarized light in figure 5.1(a) and (s) polarized light in figure 5.1(b).

The structure is only absorbing from 8 to 10µm and 12.5µm to 13µm. This does not

include the entire region of the spectrum in our design requirement. The absorption

efficiency reaches 90% at some wavelengths in the atmospheric transparency window.

However it also decreases to approximately 30% at other wavelengths in the trans-

parency windeo because of thin film interference. A flatter absorption band with

absorption efficiency of 90% or greater needs to be seen across the whole absorption

window. We must consider other designs.

The second structure considered had a 1µm by 1µm unit cell with a two dimen-

sional air gap of 0.7µm by 0.7µm centered in the middle of the unit cell. This is

introduced so that the unit cells form a two dimensional array of photonic crystal

structures. The schematic in the inset in figure 5.1(c) shows the exact design. The

resulting absorbance spectrum is shown for (p) polarized light in figure 5.1(c) and

(s) polarized light in 5.1(d). The absorbance in the 8-11µm band is higher which
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is an improvement over the first design. However, this design still doesn’t meet the

goal because it doesn’t absorb over the entire 8-13µm band requirement with greater

than 90% efficiency. Another note about the design is the absoprtion efficency of the

structure does not exceed that of bulk materials. Earlier it was stated that highly

absorbing bulk materials for thermal applications have an absorption efficiency of

85%. The results shown shown have maximum efficiency of 85% but not for all

wavelengths in the region from 8 to 13 µm.

The third design considered has the quartz layer shaped into a pyramid as shown

in figure 5.1(e) inset. The purpose of this was to increase the surface area for

absorption as area is a key in the equations for power absorbed and radiated as

shown in equations 5.2 and 5.3. The resulting absorption spectra are shown in figures

5.1(e) and 5.1(f) for (p) and (s) polarization respectively. The results in fact show a

lower absorption efficiency than the previous two designs as the maximum efficiency

seen is approximately 80% and only occurs for a small range of wavelengths. The

overall absorption spectrum goes from 8 to 10.5 µm which is narrower than our goal

of 8-13µm.

(a)

(b)

(c)

(d)

(e)

(f )

Figure 5.1: A 1µm by 1µm unit cell with 8µm of silicon carbide layer followed by
a 2.5µm thick quartz layer on a glass substrate. (a) and (b) shows absorbance for
(p) and (s) polarized light respectively at three different angles. (c) and (d) show
absorption of (p) and (s) polarized light for the same structure as in (a) and (b) but
with a 0.7µm air gap inside the unit cell so the cell behaves as a photonic crystal.
(e) and (f) show absorption of (p) and (s) polarized light for a 1µm by 1µm unit
cell of 8µm silicon carbide followed by a 2.5µm quartz layer shaped in the form of a
pyramid to increase surface area.

An overall comparison of the three designs is shown in figure 5.2. The best design

of the three was the photonic crystal structure with the air gap. It has the widest
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absorption band from 8 to 11µm but does still not meet the requirements for the

application. The absorption efficiency also needs to be improved so that it is higher

than 90% over the entire atmospheric transparency window. However, we note that

initial results show the absorption spectrum is independent of angle of incidence and

polarization of incident radiation. This is a key requirement for daytime cooling of

objects placed in sunlight where light is coming from all angle and is in general

unpolarized.

Figure 5.2: The absorption spectrum for three different designs of a thermal cooling
unit cell using a pyramid structure, a planar structure, and a photonic crystal struc-
ture with an air gap. The air gap design [11] shows the widest absorption spectrum
and hence is the best design.

More work must be completed in the design and simulation stage to increase

the absorption bandwidth and the overall absorption efficiency. The next step will

be to consider different materials with different phonon resonances. Furthermore,

different structures can be studied to reach the design goals in the 8-13µm range of

the electromagnetic spectrum.
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Chapter 6

Summary

With the advancements of nanofabrication techniques over the last decade, it has be-

come possible to fabricate increasingly complex nanostructure designs. This has led

to metamaterials having unique electromagnetic responses for applications in quan-

tum [19, 29, 45], thermal [39], wave guiding [13], biosensing [20, 43], and polarization

manipulation [32]. We have characterized structures composed of vertically aligned

gold nanowire structures exhibiting highly tunable absorption characteristics in the

visible range of the electromagnetic spectrum for use in biosensing and polariza-

tion manipulation. Tilted and helical nanowires were fabricated via Glancing Angle

Deposition technique as demonstrated by [26] where we characterized their optical

properties using ellipsometry and spectrophotometry. These structures have a very

high degree of anisotropy and can be used to manipulate the polarization of light

upon reflection from or transmission through the nanostructure. This was demon-

strated through simulations we performed for inclined in-plane gold nanowires. The

location of the ENZ determines where the polarization manipulation occurs and can

be tuned by changing the fill fraction.

When light travels along a closed path as shown in an interferometry or helically

wound fiber, it can acquire a non dynamic Geometric Phase which can alter the

polarization state of light. We have examined the Jones Matrices and Stokes Pa-

rameters of a closed path optical experiment such as the interferometry experiment

shown in Samuel et al [33]. The Jones Matrix and Stokes Parameter treatment of

light is a simple way to conclude if a geometric phase is acquired in a closed path

optical experiment. A gold helical nanowire structure has been designed for use

as a circular polarizer by absorbing left circularly polarized light and transmitting

right circularly polarized light. The helix pitch, helix radius, and wire radius can

be changed to tune the location in the mid infrared region for any application of

choice. This circular polarizer can help design experiments where Geometric Phase

is important.

We have shown relaxed total internal reflection has been experimentally demon-
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strated using all dielectric anisotropic metamaterials as the cladding material in a

silicon waveguide structure. Samples were fabricated on hemicylindrical prisms and

two different critical angles were seen in the total internal reflection measurements

for (p) and (s) polarized light. This has been predicted to confine 36% of power in

the silicon core of a waveguide compared to 2% when vacuum is used as the cladding

material in photonic circuits [24, 22, 23].

Future work will involve the fabrication and characterization of more nanos-

tructures and metamaterials so that we can reach the point of having all photonic

circuits on chip circuits for faster computation and communication networks.
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Appendix A

Appendix 1.0: Effective

Medium Theory for a Nanowire

System

Here we derive the effective medium parameters for a nanowire system [34]. This

method will use the Maxwell-Garnett approach to obtain analytical expressions for

the effective permittivity in the parallel ( ε‖) and perpendicular (ε⊥ ) directions of

the nanowire metamaterial. Figure 1.3(b) shows the nature of the embedded metallic

nanowires in the surrounding dielectric matrix which have defined permittivities εm

and εd respectively. Figure 1.4(d) shows an SEM image of a nanowire structure.

Furthermore, we will define the fill fraction of nanowires ( ρ ) in the host material

as:

ρ =
nanowirearea

unitcellarea
=

3a

A
(A.1)

The hexagonal unit cell geometry used here consists of 3 nanowires per unit cell (1

centre wire plus additional partial nanowires at each vertex of the hexagon). A is

the unit cell area of the hexagon and a is the cross sectional area of a single metallic

nanowire.

A.0.1 Effective Parallel Permittivity

In this section we will derive an analytical expression for the parallel component of

the permittivity tensor for our nanowire system. We can start from the Schrdinger

Wave Equation, which has a solution as a function of the radial distance from the

centre of the nanowire (r). We note that at a distance R (the radius of the nanowire)

we approach the interface between the metallic wire and dielectric host. We define

our potential inside the nanowire as ψ1 and the potential of the dielectric host as
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ψ2 , we can make the following assertions about the limits of our potential as well

as their behaviour at the boundary from known boundary conditions:

ψ1|r=R = ψ2|r=R (A.2)

|ψ1(r = 0)| < +∞ (A.3)

|ψ2(r →∞)| = −E0rcosθ (A.4)

ε1
dψ1

dr
|r=R = ε2

dψ2

dr
|r=R (A.5)

In equation A.5, ε1 and ε2 are the permittivities inside the metallic nanowire and

the dielectric host. We can suggest an arbitrary solution for ψ using a trigonometric

series expansion:

ψ = A ln(r)+K+

∞∑
n=1

rn(Ansin(nθ)+Bncos(nθ))+

∞∑
n=1

1

rn
(Cnsin(nθ)+Dncos(nθ))

(A.6)

Now, using our conditions outlined in equations 2-5, we can make approxima-

tions to define the potential functions ψ1 (inside the nanowire) and ψ2 (outside the

nanowire) as the following:

ψ1 = K1 +
∞∑
n=1

rn(Ansin(nθ) +Bncos(nθ)) (A.7)

ψ2 = K2 − E0rcos(θ) +
∞∑
n=1

1

rn
(Cnsin(nθ) +Dncos(nθ)) (A.8)

We can drop the 1
rn term in ψ1 (A.7) and replace the rn term in ψ2 (A.8) with

the limit of the potential at

ψ2 →∞ = −E0rcos(θ) (A.9)

This ensures we will get non-infinite solutions for the potentials for all values of

r. We can also set the values of the constants K1 and K2 in A.7 and equation A.8

to 0. This is due to the fact that when we take the derivative of the potential (ψ )

to eventually find our electric fields, these constants will subsequently disappear.

We can now imply our boundary condition given in A.2 for the interface be-

tween the nanowire and the dielectric host at R with our defined potentials inside

the nanowire (ψ1 ) and outside the nanowire (ψ2). Due to the uniqueness of this
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trigonometric series expansion we can say the coefficients of the trigonometric func-

tions for our expression at the boundary are equal.

AnR
n =

Cn
Rn

(A.10)

BnR
n =

Dn

Rn
(A.11)

RB1 =
D1

R
− E0R (A.12)

A.11 is the relation between the coefficients when n =1 in our expansion. We

can also write an expression for our second boundary condition given by plugging

in A.7 and A.8 into A.5:

ε1

∞∑
n=1

AnnR
n−1(Ansin(nθ) +Bncos(nθ)) = −ε2E0cos(θ)− ε2

∞∑
n=1

fracnRn+1(Cnsin(nθ) +Dncos(nθ))(A.13)

We can once again equate the coefficients of the trigonometric functions given

by A.12 to obtain 3 new relations:

ε1nAnR
n−1 = ε2

−n
Rn+1

Cn (A.14)

ε1nBnR
n−1 = ε2

−n
Rn+1

Dn (A.15)

ε1B1 = −ε2E0 − ε2
D1

R2
(A.16)

We can set An = Bn = Cn = Dn = 0 because they are impossible boundary

conditions. However, we can still use equation A.11 and A.15 to solve for the

coefficients D1 and B1 through substitution:

D1 =
ε1 − ε2
ε1 + ε2

R2E0 (A.17)

B1 =
−ε2
ε1 + ε2

E0 (A.18)

A.17 now gives us our expression for B1 which we substitute into our expression

for ψ1 (A.7) at n = 1:

ψ1 =
−2ε2
ε1 + ε2

E0Rcos(θ) (A.19)

A.18 now gives us our expression for the potential inside the well in terms of the
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electric field outside of the wire (E0 = Eout). We can differentiate A.18 with respect

to R to get our expression for the electric field inside the nanowire (Ein).

− dψ1

dR
= Ein =

2ε2
ε1 + ε2

Eout (A.20)

The isotropic relation for the parallel permittivity (ε‖) with two different material

mediums is given by:

ε‖ =
ρε1Ein + (1− ρ)ε2Eout
ρEin + (1− ρ)Eout

(A.21)

We will now substitute our expression for Ein (A.19) into A.20 and make the

substitution that ε1 = εm and ε2 = εd corresponding to the permittivity of the

metallic nanorod and dielectric host. Upon making this substitution we arrive at

our expression for the parallel component of the permittivity tensor (ε‖) in terms of

the metallic nanorod fill fraction (ρ) and the permittivities of the nanorod (εm) and

dielectric host (εd)

ε‖ =
(1 + ρ)εmεd + (1− ρ)ε2d
(1 + ρ)εd + (1− ρ)εm

(A.22)

A.1 Effective Perpendicular Permittivity

We can derive our expression for the perpendicular permittivity from Maxwell’s

Equations and make use of the electromagnetic boundary conditions. Specifically,

we know that the tangential component of the electric field (E⊥) along the long

axis of the nanowire is continuous at the interface between the nanowire and the

dielectric host.

E⊥1 = E⊥2 = E⊥ (A.23)

where E⊥1 is the perpendicular electric field in the metallic nanowire, E⊥2 is the

perpendicular electric field in the dielectric host and E⊥ is the effective perpendicular

field for the sub wavelength nanowire metamaterial. Note from Maxwell’s Equations

that the displacement field in the perpendicular direction can be defined as D⊥ =

ε⊥E
⊥ . We can define our effective perpendicular displacement field by averaging the

displacement fields of the metallic nanowires and dielectric host using the metallic

fill fraction (ρ).

D⊥ = ρD⊥1 + (1− ρ)D⊥2 (A.24)

Here D⊥1 = εmE
⊥
1 and D⊥2 = εdE

⊥
2 correspond to the displacement field of

the metallic nanowire and dielectric host respectively. Using these definitions for
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the displacement field and subbing in our boundary condition (A.22) into A.23, we

arrive at our final expression for the perpendicular permittivity component for our

nanowire metamaterial:

ε⊥ = ρεm + (1− ρ)εd (A.25)
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Appendix B

Appendix 2.0: Effective

Medium Theory for a

Multilayer System

Here, we will look at deriving the effective medium permittivities for an anisotropic

multilayer structure with uniaxial symmetry [34]. The method again follows a gen-

eralized Maxwell-Garnett approach to obtain analytical expressions for the effective

permittivity in the parallel (ε‖) and perpendicular (ε⊥) directions defined below for

the multilayer metamaterial. Figure 1.3(a) shows a schematic of the alternating

metallic and dielectric layers to form the multilayer metamaterial. Figure 1.4(c)

shows an SEM image of a multilayer structure. The metallic and dielectric lay-

ers have permittivities εm and εd respectively. Furthermore, we can define the fill

fraction of the total thickness of metal in the system to the total thickness of the

metamaterial as follows:

ρ =
dm

dm + dd
(B.1)

where dm is the sum of all the thicknesses of metallic layers in the system and

dd is the sum of all the thicknesses of the dielectric layers.

B.0.1 Effective Parallel Permittivity

In this section, we will derive our analytical expression for the parallel component

of the permittivity tensor of our multilayer system. We start by noting that the

electric field displacement (D) is proportional to the electric field (E) through the

following equation:

−→
D = ¯εeff

−→
E (B.2)
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where ¯εeff is the overall effective permittivity of the medium. We know from

electrostatics that the tangential component of the electric field must be continuous

across an interface as we go from one medium to another. Therefore, we have the

boundary condition

E‖m = E
‖
d = E‖ (B.3)

where we can take E
‖
m to be the electric field in the metallic layers, E

‖
d to be the

electric field in the dielectric layers, and E‖, the electric field of the sub wavelength

metamaterial. From the continuity condition of the dielectric displacement in the

parallel direction explained above, we can find the overall displacement by averaging

the displacement field contributions from the metallic and dielectric components:

D‖ = ρD‖m + (1− ρ)D
‖
d (B.4)

Substituting B.2 and B.3 to the above, we get:

¯
ε
‖
effE

‖ = ρεmE
‖ + (1− ρ)εdE

‖ (B.5)

If we cancel out the common parallel electric field components, we arrive at the

final equation:

ε‖ = ρεm + (1− ρ)εd (B.6)

B.0.2 Effective Perpendicular Permittivity

To derive our expression for the perpendicular permittivity, we can again start from

Maxwell’s Equations and use electromagnetic field boundary conditions. We know

that the normal component of the electric displacement vector at an interface must

be continuous which gives the expression

D⊥m = D⊥d = D⊥ (B.7)

We also know that the total magnitude of the electric field will be a superposition

of the electric field components from the dielectric layers and the metallic layers.

Thus, we can define

E⊥ = ρE⊥m + (1− ρ)E⊥d (B.8)

where E⊥m is the perpendicular component of the electric field in the metallic

region, E⊥d is the perpendicular component of the electric field in the dielectric

region, and E⊥ is the total electric field in the multilayer metamaterial. We can

now use our boundary condition from B.7 and B.2 and substitute them into B.8.
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If we cancel out the common electric field terms and solve for ε⊥ , we get the

final expression for the electric permittivity of the multilayer metamaterial in the

perpendicular direction:

ε⊥ =
εmεd

ρεd + (1− ρ)εm
(B.9)
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