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ABSTRACT

To examine germplasm potential for forage production, different
ploidy levels of Elymus canadensis were induced and their genomic
constitutions were modified. The chromosome numbers of hybrids
derived from crosses between Elymus canadensis (SSHH) and
Psathyrostachys juncea (NN) and Secale cereale (RR) were doubled to
produce allopolyploids. Somatic tissue culture and subsequent
interploidy hybridization were applied to produce autoallopolyploids of
E. canadensis. As a result, triploids (SHN and SHR), tetraploids
(SHRR), pentaploids (SSHHH or SSSHH), hexapioids (SSHHNN,
SSHHRR, and SSSHHH), octoploids (SSSSHHHH), and anewploids,
including tetrasomics and trisomics were produced and examined
morphologically and cytologically. Somaclones of E. canadensis in
which chromosome numbers were not changed were also evaluated
morphologically and cytologically in relation to forage improvement.
The results are summarized as follows:

1. Sterile allotriploid hybrids with genomes from E. canadensis, P.
Jjuncea, and S. cereale were more productive than the parents,
accounting for forage yield increases of 8% in SHN hybrids and 64% in
SHR hybrids, respectively, compared to the higher-ylelding parent, E.
canadensis, grown under greenhouse conditions.

2. Allohexaploids with the genome constitutions SSHHNN and
SSHHRR showed increased intragenomic bivalent formation and
partial fertility. Allohexaploids indicated remote phylogenetic

relationships among S, H, and N and among S, H, and R genomes.



3. Induced auto=llooctoploids (SSSSHHHH) behaved cytologically like
diploids and were fertile. An octoploid regenerant yielded 92%
octoploid progeny in the first selfed generation.

4. Vigorous hexaploids with the genome constitutions SSSHHH were
derived from intercrosses and backcrosses of octoploids with
tetraploids. These hexaploids were found to be useful agronomically
and yielded primary aneuploid stocks such as tetrasomics and
trisomics for studies of genetics and genome relationships and an
understanding of the nature of the: genome.

5. Tissue culture was effective in elevating the ploidy level of E.
canadensis and also contributed to small changes in chromosome
structure. Callus cultures of l}ybrld embryos and subsequent plant
regeneration was used as an alternative to embryo rescue and seemed
to overcome hybrid necrosis in the SHR hybrid regenerant.

6. None of the intergeneric hybrids and somaclones of E. canadensis
were suitable for direct use as forage germplasm because of poor plant
vigor, low seed set, and cytological instability in advanced generations.
Some of them would be usefut for the production of alien chromosome
addition or substitution lines and as aneuploid stocks for genetic

studies.
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1. INTRODUCTION

1.1. Forage grass breeding

Native grasses may be used to seed abandoned farmland, severely
eroded sites, droughty soils, rangelands, and other areas where
cultivated grasses often fail (Schwendiman and Hawk 1973). The
Canadian native grass species are also vast sources of potentially
valuable genetic variability which confer resistance to local disease and
insect pests and enable the plants to withstand stresses caused by
drought as well as high summer and low winter temperatures. On the
ct:her hand, cultivated forage species, almost all of which have been
introduced into Canada from Europe and Asia, give high yields of good
quality forage and can withstand repeated defoliation.

Since 1930, efforts have been made to develop new cultivars
from existing native and introduced cultivated forage grasses and to
combine the favorable characteristics of the native and introduced
species. A number of improved cultivars of native and introduced
grasses have been released from public breeding programs and have
added significantly to the germplasm resources available
(Schwendiman and Hawk 1973; Asay and Knowles 1985a).

Mass and recurrent selection are widely used forage-breeding
methods. They are applied to genetically diverse materials which are
frequently obtained from existing cultivars, from material collected in
the field, or from crosses (Poehlman 1978; Walton 1983).
Intraspecific and interspecific hybridization, common practices for
self-pollinated crops, has also been utilized. Interspecific crosses

offer opportunities to obtain genotypes not possible with intraspecific



hybridizaticn, and to extend the range of genetic variability beyond
that of a single species (Hadley and Openshaw 1980; Asay and
Krniowles 1985b). Briggs and Knowles (1967) have listed four reasons
for making interspecific and intergeneric hybrids: (1) to transfer one
or a few genes from one species to another, (2) to achieve new
character expression not found in either parent, (3) to produce new
allopolyploid species, and (4) to determine the relationship of one
species to another.

It is generally believed that polyploidy is a useful method for
breeding forages (Dewey 1979a). Because many species of forage
grasses are already polyploids and do not tolerate further increases in
chromosome number, attention in breeding autopolyploids is
generally given to diploid species with low chromosome numbers
(Dewey 1979a). The production of allopolyploids {amphiploids) offers
opportunities for combining the desirable characteristics of two
related species. Most success is attained by combining two species at
allotetraploid and allohexsploid levels (Dewey 1984a).

Significant progress has been made toward improvement of
annual Triticeae cereal crops by using new techniques such as in vitro
culture (Larkin and Scowcroft 1981; Larkin et al. 1984) and
recombinant DNA technology, thus opening up possibilities to
combine new characteﬁsﬂcs with precision (Lorz et al. 1988). Given
improved callus formation and plant regeneration in Graminaceous
species, a number of forage grasses have been cultured in vitro (Vasil
1982). Some show genetic stability leading to micropropagation but
many are genetically and cytologically unstable with potential of
somaclonal variation to forage breeding. (Vasil 1987; Larkin 1987).



Objectives in breeding forage crops vary with the species, the
region of production, and utilization of the crop for ‘hay, pasture, turf,
or other purposes. Ultimately, it is necessary to study each species
individually, to identify the conditions that are limiting production
and quality in the area where the breeder is working, and to
determine whether heritable improvement may be made that will
reduce the losses from those causes (Poehlman 1978).

Canada wildrye (Elymus canadensis L.) is a large, coarse, short-
lived perennial, self-fertilizing bunchgrass, widely distributed in the
U.S. and Canada (Bowden 1964). It is a cool-season grass but begins
growth later in the spring, and its growth lasts longer into the
summer than that of crested wheatgrass and smooth bromegrass. Its
palatability is fairly good and it produces the best hay when cut at the
buoot. stage (Walton 1983). Seedlings are vigorous, establish quickly and
are not highly competitive with other grasses in mixtures
(Schwendiman and Hawk 1973). The species is known to tolerate
many diseases and drought. Therefore, this species is important in
forage production, range value, soil conservation, and as a genetic
reservoir for the improvement of cereals. For these reasons, many
researchers have studied Canada wildrye (Mujeeb-kazi and Rodriguez
1982; Mujeeb-kazi and Bernard 1982, 1985; Dewey 1984b (review);
Hang and Franckowiak 1984; Yen and Liu 1987).



1.2. Genomic systems for classifying the perennial Triticeae

This study follows the genomic system of classification of the
Triticeae in which Dewey (1984b) recognized Agropyron,
Pseudoroegneria, Psathyrostachys, Critesion, Thinopyrum, Elytrigia,
Elymus, Leymus, and Pascopyrum as the major perennial genera of
the Triticeae tribe on the basis of their gross morphology and
cytogenetic features. The type species, genomic formulae,
approximate number of species, and chromosome number of the
perennial Triticeae grasses are listed in Table 1.1 (Dewey, 1984b).
Traditional nomenclature of the Triticeae species refered in this study
is listed in the Appendix.

Table 1.1. The perennial genera of the members of the tribe Triticeae
as determined by their genome content.

No. of No. of

Genus Type species Genomes species chromosomes(2n)
Agropyron A. cristatum P 5 14, 28, 42
Pseudoroegneria P. spicata S 15 14, 28
Psathyrostachys P. lanuginosa N 5 14

Critesion C. jubatum H 30 14, 28, 42
Thinopyrum T. junceum J 20 14, 28, 42, 56, 70
Elytrigia E. repens SX 5 42, 56

Elymus E. sibiricus SHY 150 28, 42, 56
Leymus L. arenarius JN 30 28, 42, 56, 70, 84

Pascopyrum P. smithii SHJN 1 56




1.3. Genome constitution of native Elymus

Elymus is the most widely distributed polyploid genus in the
Triticeae. These species occur naturally in Europe, Asia, North
America, South America, New Zealand, and Australia (Dewey, 1984b).
About 75% of the species are allotetraploids. Most allotetraploid
Elymus species have the genome constitution SSHH, with the S
genome derived from Pseudoroegneria (SS) and the H genome
derived from Critesion (=Hordeum HH) (Stebbins and Snyder 1956;
Dewey 1971; Dewey, 1974b; Wang and Hsiao 1986). Many Elymus
species are from Europe (E. caninus, E. alaskanus), Central Asia (E.
fibrosus, E. mutabilis), North America (E. canadensis, E. trachycaulus,
E. lanceolatus, E. glaucus), and South America (E. tilcarensis, E.
agropyroides) but each has its own variation of the S and H genomes
(Dewey, 1984b). E. dentatus ssp. ugamicus (Dewey 1980a), E. ciliaris
(Dewey 1984b), E. panormitanus (Jensen and Hatch 1988), E.
strictus, E. gemelinii (Jensen and Hatch 1989), and E. alboinii
(Jensen 1989) have SSYY genomes. The source of the Y genome is
unknown. Elymus drobovii (Dewey 1980b) and E. tsukushiense
(Sakamoto and Muramatsu 1966b) are allohexaploids with a genome
formula of SSHHYY. E. alatavicus and E. batalinii contain an S and
probably a Y genome plus an unknown genome, X (Jensen et al. 3986).
In the genus Elymus, segmental autoallohexaploids (SSS'S'HH aor
SSHHH'H') are relatively common accounting for 21% of thi total
Elymus species(Dewey, 1984b) and an allohexaploid (S%S:HH) has
been found in natural tetraploid populations of Elyrnuss {eweolatus by
Sadasivaiah and Weijer (1981). Octoploids {SSS'S'HHZ ) are rare,
accounting for less than 3% of the population (Bowden 1964; Dewey,



1984b). That natural octoploids occur uncommonly indicates that
octoploidy is beyond the optimum chromosome level for Elymus

species (Dewy 1984b).
1.4. Genome manipulation in Elymus

1.4.1. Induced polyploidy

The discovery of colchicine enabled the creation of polyploid
forms for many species (Eigsti and Dustin 1955). In the tribe
Triticeae, induction of autotetraploids from diploid species has great
plant breeding potential in Agropyron, Pseudoroegneria, and
Psathyrostachys. Segmental allopolyploids and genomic allopolyploids
are advantageous for the polyploid si)ecies of most genera (Dewey
1979a, 1984a). In contrast te other diploid species, the doubling of
chromosome numbers of Elymus has not received much attention
from plant breeders because doubling of chromosome numbers at the
octoploid level causes a reduction in fertility and vigor (Asay and
Dewey 1976; Dewey 1979a). However, polyploidy in Elymus has been
promising for forage improvement at the hexaploid level since
fertility, dry matter yield, and cytological stability may all be improved
(Dewey 1984a). There are several types of induced polyploids in
Elymus. These include:
(1) segmental autoallohexaploids of the type SSS'S'HH or SSHHH'H'
produced by doubling the chromosome number of F] hybrids from
crosses between tetraploid Elymus and diploid Pseudoroegneria or
Critesion (Dewey 1967a,1974a; Asay et al. 1988),



(2) induced hexaploids (SSSHHH) from a cross between the
colchicine-induced octoploid (SSSSHHHH) and tetraploid (SSHH) of
Elymus trachycaulus (Aung and Walton 1987a),

(3) interspecific and interploidy hexaploid hybrids [SSS'HHH' from a
cross, 8X (Elymus trachycaulus, SSSSHHHH) x 4X (Elymus
canadensis, S'S'HH')] (Aung and Walton 1989),

(4) interspecific hybrids (SS'HH'YY') from crosses between natural
allohexaploids with genome constitutions SSHHYY and S'SHHY'Y
genomes (Sakamoto and Muramatsu 1966b),

(5) autoallooctoploids (SSSSHHHH) obtained by doubling the
chromosome numbers of SSHH allotetraploids (Napier and Walton
1983; Aung and Walton 1987a), and

(6) autoallooctoploids (SSS'S'THHH'H') obtained by doubling the
chromosome numbers of F1 hybrids derived from crosses between
different tetraploid Elymus species (Dewey 1968d; Dewey 1977b;
Kumar and Walton 1989).

1.4.2, Interspecific hybridization

Approximately 40 interspecific hybrids have been derived from
crosses between allotetraploid Elymus species. They have the genome
formula SSHH or SSYY (Stebbins et al. 1946; Stebbins and Snyder
1956; Brown and Pratt 1960; Boyle 1963; Dewey 1965, 1966b,
1967a,b,c, 1968a,b,c.d, 1969a,b, 1974a, 1977a,b, 1979b, 1981;
Sakamoto and Muramatsu 1966a; Gupta et al. 1988; Jensen and Hatch
1988, 1989). A few of these are found in nature (Dewey 1963; Collins
1966). Cross compatibility between Elymus species with the same
genomes varies from cross to cross (0 to 71% of the total pollinated



florets). Most of the tetraploid hybrids are morphologically
intermediate between their parents and show low rates of pollen
stainability, and complete sterility. The cause of sterility might be
chromesomal, due to heterozygosity of smali structural differences
between closely related species with the same genomes (Dewey
1966b; Sakamnoto and Muramatsu 1966z; Asay and Dewey 1976).
Cryptic structural hybridity or genic causes have also contributed to
sterility (Dewey 1966b; Dewey 1968d; Kumar and Walton 1989). The
interspecific hybrids predominately form bivalents in the majority of
meiocytes at metaphase I (9.26 to 13.97 bivalents per cell) indicating
relatedness and allosyndesis between the parental genomes. Gross
structural differences give rise to multivalent asseciations and
chromosome bridges, leading to partial sterility (Dewey 1966b,
1977b; Sakamoto and Muramatsu 1966a).

Elymus canadensis hybridizes naturally with its relatives such as
E. virginicus, E. weigandii, and E. villosus (Bowden 1964). Elymus
canadensis hybridizes artificially and shows genomic relatedness with
E. glaucus (Dewey 1965), E. elymoides (Dewey 1967a), E. lanceolatus
(Dewey 1967c), E. trachycaulus (Dewey 1968d; Aung and Walton
1989), E. trachycaulus ssp. subsecundus (Dewey 1966b, 1977b), E.
semicostatus (Dewey 1968d), E. albicans (Dewey 1969a), E. sibiricus
(Dewey 1974a), E. strictus (Jensen and Hatch 1989), and E.
arizonicus (Jensen et al. 1989). However, a few interspecific hybrids,
E. canadensis x E. semicostatus (Dewey 1968d) E. strictus x E.
canadensits, E. strictus x E. lanceolatus (Jensen and Hatch 1989), and
E. ciliaris x E. trachycaulus (Sakamoto and Muramatsu 1966a) exhibit

genamic differentiation as evidenced by a low frequences of bivalents



(5.31 to 5.81 bivalents per cell). Chromosome pairing in these hybrids
demonstrates that E. semicostatus, E. strictus , and E. ciliaris contain
the S and Y genomes.

Most of the hybrids do not show potential as forage grasses
because they are sterile and lack vigor and so do not merit further
consideration from plant breeders. Four interspecific hybrids (E.
canadensis x E. albicans, E. canadensis x E. caninus, E. mutabilis x E.
caninus, and E. caninus x E. sibiricus), having a genome constitution
of SS'HH', are more productive in forage yield but all of them have low
fertility or complete sterility (Dewey 1968d, 1969a, 1974a, 1979b).
Sterility provides an effective barrier to introgression between the
parental species. Inierspecific hybrids between E. dentatus ssp.
ugamicus (genomes £5YY) and E. seirrus, E. caninus, E. trachycaulus,
and E. mutabilis (genomes SSHH) are morphologically vigorous but
show a low frequency of bivalent formation, indicating distinctness
between the Y and H genomes and thus precluding introgression
between E. dentatus ssp. ugamicus and other species with the SSHH
genomes (Dewey 1980a).

Sakamoto and Muramatsu (1966b) investigated pentaploid
hybrids derived from crosses between the Japanese tetraploids E.
ciliaris, E. gmelini, and E. yezoensts, the Nepalese tetraploids E.
gmelinii and E. semicostatus and the Japanese hexaploids E.
humidorus and E. tsukushiensis. They found that the general
characteristics of F1 hybrids were either intermediate between the
parents or superior to those of the parents and that the hybrids were
completely sterile. Chromosome pairing of the hybrids indicates that

geographical isolation results in some chromosomal differentiation
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between the Japanese and Nepalese genomes. The other sterile
pentaploid hybrids are produced from interspecific hybridization
between tetraploid E. lanceolatus, E. trachycaulus, and E. mutabilis
and hexaploid E. alatavicus and E. batalinii (Jensen et al. 1986). From
studies of chromosome pairing of the hybrids, the genome
constitutions of E. alatavicus and E. batalinii have been determined to
be SSYYXX, respectively. Chromosome pairing in the pentaploid
hybrids between E. scabriglumis and E. tréchycauhzs indicate that E.
scabriglumis consists of the six genomes with the formula SSHHYY
(Gupta et al. 1988).

Sakamoto and Muramatsu (1966a) and Sakamoto (1982) observed
a high frequency of bivalent formation in the hexaploid hybrids
derived from crosses between E. humidum and E. tsukushiense and
‘between E. dahuricus and E. tsukushiense. They proposed that the
genome constitution of the parental species possesses three different
genomes and that the genomes of these species are closely related.
The allohexaploid hybrids are morphologically vigorous but completely
sterile. Hexaploid E. alatavicus (SSYYXX) hybridizes with hexaploid E.
drobovii (SSHHYY) (Jensen et al. 1986). The high level of pairing in
this hybrid is due to the presence of the Y genome rather than the H
genome. The hybrids produced anthers with less than 2% stainable
pollen and only 2 seeds in 150 spikes. Sterile interspecific hexaploid
hybrids are rproduced from reciprocal crosses between the colchicine-
induced octoploid E. trachycaulus and tetraploid E. canadensis (Aung
and Walton 1989).

Complete sterility brings the interspecific hybrids to an
immediate "dead end" unless fertility can be restored {Dewey 1967a).



Doubling of chromosome numbers of such hybrids offers the best
prospect for restoring fertility. The induced amphiploids from E.
canadensis x E. caninus are highly self-fertile (Dewey 1968d).
Octoploid amphiploids (SSS'S'THHH'H') are derived by doubling the
chromosome numbers of hybrids from crosses between E. canadensis
and E. trachycaulﬁs ssp. subsecundus (Dewey 1977b). Doubling of
chromosome numbers initially restored fertility but drastically
reduced vegetative vigor.’ Meiotic irregularities tended to increase in
each succeeding generation. Sterility in the amphiploids is attributed
to heterogenetic pairing between the closely related E. canadensis
and E. trachycaulus ssp. subsecundus. Octoploid amphiploids derived
from the completely sterile E. trachycaulus x E. canadensis hybrids
show some restoration in fertility (Kumar and Walton. unpublished).

1.4.3. Intergeneric hybridization

The S and H genome of Elymus are found alone or together in
Peudoroegneria (S), Critesion (H), Elytrigia (SX), and Pascopyrum
(SHJN), thus providing a genomic basis for intergeneric hybridization
with those four genera (Dewey 1984b; Gupta and Fedak 1985a,b; Wang
and Hsiao 1986; Aung and Walton 1987b; Gupta et al. 1988). All of the
amphiploids from hybrids between Elymus and Pseudoroegneria
(Dewey 1974a; Asay and Dewey 1976; Asay et al. 1988) and F1 hybrids
from crosses between Pseudoroegneria and Elytrigia (Dewey 1976;
Asay and Hansen 1984, Asay and Dewey 1985) which share the S
genome show good fértility and are meiotically very stable that the
hybrids have been successfully used to develop new types of
germplasm for forage improvement. Elymus can also hybridize with

11
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Agropyron(P) (Napier and Walton 1982), Psathyrostachys (N) (Dewey
1967d}, Thinopyrum (JE) (Napier and Walton 1983), Leymus (JN)
(Bowden 1967; Dewey 1970; Sakamoto 1985), Pascopyrum (SHJN)
(Dewey 1970), Triticum (ABD) (Mujeeb-kazi and Bernard 1982, 1985:
Sharma and Gill 1983a,b; Mujeeb-kazi et al. 1984; Sharma and
Baenziger 1986; Yen and Liu 1987), Hordeum (I) (Mujeeb-kazi and
Rodriguez 1982; Fedak 1985; Mujeeb-kazi 1985), and Secale (R)
(Hang and Francowiak 1984) that do not carry the S, H, or Y genomes.

These triploid, tetraploid, or pentaploid intergeneric hybrids
often fail to show pairing between the parental genomes, with
univalents at metaphase I, laggards during anaphase I, and
micronuclei at the later stages of meiosis. As a resuit of the meiotic
irregularities, most of meiocytes produced are unbalanced and
therefore most pollen grains do not stain and there is little or no seed
set where intergeneric hybrikds do not share a common genome,
Generally, the sterile intergeneric hybrids of Elymus are
morphologically intermediate between the parents but are not
promising for further breeding. Sterile intergeneric hybrids have been
produced from crosses between Elymus canadensis as the female
parent and Leymus triticoldes and L. secalinus (Dewey 1970),
Critesion bogdanii (Dewey 1971), C. californicum and C. bulbosum
(Wang and Hsiao 1986), Pseudoroegneria spicata (Stebbins and Snyder
1956; Asay and Dewey 1976), P. libanotica (Dewey 1974b), Triticum
aestivum (Mujeeb-kazi and Rodriguez 1982; Mujeeb-kazi and Bernard
1982, 1985; Yen and Liu 1987), Hordeum vulgare (Mujeeb-kazi and
Rodriguez 1982), and Secale cereale (Hang and Franckowiak 1984) as
the male parents. Among these hybrids, P. libanotica x E. cgninus and
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E. canadensis x P. libanotica amphiploids have potential as forage
grasses, showing fertility and cytogenetic stability (Dewey 1974b; Asay
and Dewey :1976).

Hexaploid hybrids from crosses between tetraploid E. canadensis
(SSHH) and octoploid L. cinereus (JJJJNNNN) were mainly
chlorophyll deficient and died (Dewey 1966a). A few survived and
showed autosyndetic chromosome pairing [15.8 univalents (I) + 13.0
bivalents (II) + 0.04 trivalents (III)] of L. cinereus chromosomes,
indicating that E. canadensis and octoploid L. cinereus had no
chromosomes in common. This hexaploid hybrid strongly resembles
L. cinereus and is completely sterile. No crossing barriers are
encountered in this cross even though the parental species are not
closely related, precluding the possibility of predicting species
relationships on the basis of cross-compatibility or F1 hybrid fertility
(Dewey 1966a).

1.5. Methodology of genome manipulation

1.5.1. Hybridization

The first step in the production of new allopolyploids involves the
interspecific or intergeneric hybridization at the same or different
ploidy levels of the parental species. A series of autopolyploids can be
produced by interploidy hybridization following doubling of
chromosome numbers. There are barriers which prevent the
successful hybridization between two incompaﬂblé species or between
different ploidy levels of the same species. Several techniques have

been devised to overcome the barriers to successful production of
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viable hybrids (Brar and Khush 1986). These techniques include use of
exogenous growth substances (GA or IAA) and immunosuppressants
(EACA), embryo rescue, and bridging species. The traditional
application of embryo culture to crop improvement has been |
docuniented for many crop species by Williams et al. (1987). Use of
hormones (generally 50-75 ppm gibberellic acid) and in vitro culture
of 10-15 days-old hybrid embryos on a nutrient medium (MS, B5, or
LS) has been effectively employed to recover immature and
undifferentiated embryos in wide crosses among Triticeae species
(Napier and Walton 1983; Sharma and Gill 1983a; Mujeeb-kazi and
Bernard 1985; Gupta et al. 1988). Callus formation of undifferentiated
hybrid embryos and subsequent plant regeneration is an alternative to
conventional embryo rescue (Larkin 1985; Merkle et al. 1988).

1.5.2. Colchicine treatment

Colchicine is not only a mitotic poison that inhibits spindle
formation but is an ideal tool for the study of growth, and is the best
polyploidiziing agent for use in plants (Eigsti and Dustin 1955),
Different col¢hicine techniques have been described for the
production of amphiploids from interspecific and intergeneric hybrids
involving Triticum, Aegilops, Secale, and Agropyron (Bell 1950;
Kaltsikes 1974). Colchicine solutions of 0.1 to 0.4% applied for 12 to
48 hours appear to be suitable for inducing polyploidy in Agropyron
cristatum (Tal and Dewey 1966). Ahloowalia's investigation (1967) on
induction of tetraploid Lolium perenne reveals different responses to
colchicine treatment of different vaneﬂeé. and mutagenic effects in
addition to doubling chromosome numbers. Satisfactory techniques
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have been developed whereby vegetative grass tillers can be
successfully ireated with 0.2% colchicine plus 2% dimethy-sulphoxide
(DMSO) to produce polyploid sectors (Morgan 1976). Adding a
wetting agent (Tween 20) and GA3 to colchicine, plus DMSO solution,
has been used to double chromoserie numbers of haploid barley
(Thiebaut and Kasha 1978). Use of earlier developmen! stages (three
leaf stage), higher temperature (32 0C), and addition of N-6-benzyl
adenine (BA) has been used to increase the extent of doubling within
plants (Thiebaut et al. 1979). In one method, hybrid callus which was
subcultured three times on solid subculture medium was transferred
to the same medium supplemented with filter sterilized colchicine at
20mg/L and incubated at 10 OC for ten days in darkness prior to
induction of platit regeneration (Nakamura et al. 1981).

1.5.3. Somitic tissue culture

Several grasses and cereals regenerated from the cultured callus
of immature embryos, immature inflorescences, or young leaves
showid variation in chromosome number or structure(Vasil 1987). A
few polyploid lines have been obtained from tissue culture of durum
wheat (Bennici and D'Amato 1978), barley (Gaponenko et al. 1988),
rice (Sun et al 1983), maize (Lee and Phillips 1987), barnyardgrass
(Takahashi et al. 1984), pearl millet (Swedlund and Vasil 1985), tall
fescue (Einzenga 1989), Italian ryegrass x tall fescue hybrids
(Kasperbauer et al. 1979), and Triticum x Secale or Hordeum hybrids
(Fedak 1984; Fedak and Grainger 1986).

Chromosomal rearrangements have also been observed in some

regenerants from somatic cells and tissues of interspecific hybrids of
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barley (Orton 1980; Jorgensen and Andersen 1989) and Lolium
(Ahloowalia 1983), and intergeneric hybrids including Triticum,
Secale, Aegilops, and Hordeum (Armstrong et al. 1983; Fedak and
Sampson 1983; Chu et al. 1984; Lapitan et al. 1984; Fedak and
Grainger 1986; Gupta and Fedak 1988; Jahier and Tanguy 1988).

Chromosome instability during in vitro culture of plant tissue
occurs both in cultured callus ce’s and regenerated plants. Several
mechanisms that may produce chromosome variability were found to
exist in studies of the nuclear cytology of cultured tissues (D'Amato
1985). Chromosome aberrations have been presumed to occur
randomly by chromosomal breaking and rejoining, and by DNA
amplification in heterochromatic regions (McCoy et al. 1982; Larkin
1987; Lee and Phillips 1987). Media components, explant, culture
age, and genotype all affect the occurrence of cytological aberrations
(Vaéil 1987; Larkin 1987). Chromosomal variaticn in culture is known
to include changes in chromosome number (polyploidy and
aneuploidy) and structure (deletion, duplication, inversion and
translocation). Pre-exla'ting chromosome variation, nuclear
fragmentation, endoreduplication or endomitosis, and abnormality of
mitosis are assumed to influence the variation in chromosome number
during tissue culture (Evans et al. 1984). When detailed analysis has
been possible, structural alterations are detected more frequently
than changes in chromosome number (Lee and Phillips 1987). Small
changes in chromosome structure could alter expression and genetic
transmission of specific genes perhaps by deletion or duplication of

one copy of a gene (Evans 1989).
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Generally, tissue culture has been considered as a tool for
genome manipulation (Fedak 1984; Fedak and Grainger 1986),
enhancement of alien gene introgression in wide crosses (Orton
1980; Lapitan et al. 1984; Brar and Khuvsh 1986; Larkin 1987),
generation of aneuploid stocks for mutant selection (McCoy et al.

1982) and for cytogenetic studies (McCoy et al. 1982; Chen et al.
1987).

1.6. Objectives

The objective of this study was to combine genomes of Elymus
canadensis with those of Psathyrostachys juncea and Secale cerealé
and to manipulate the genome constitution of Elymus canadensis in
relation to forage improvement. An outline of the crossing program for

the study is presented in Fig. 1.1 (chapter 2), Fig 1.2 (chapter 3), and
Fig. 1.3 {chapters 4,.5, and 6).
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Canada wildrye ~ Russian wildrye '
Elymus canadensis CX\ Psathyrostachys juncea
2n=4x=28, SSHH ~ 2n=2x=14, NN 1

—Embryo culture

\4

F1 hybrids
2n=3x=21, SHN

| Colchicine
treatment

\/

C1 amphiploids
2n=6x=42, SSHHNN

Fig. 1.1. Diagram of hybridization between Canada wildrye and Russian wildrye
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y 3
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Fig. 1.2. Diagram of hybridization between Canarda wildrye and Spring rye
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Canada wildrye
Elymus canadensis

2n=4x=28,

SSHH

Somatic tissue culture

Tetraploid Octoplloid
somaclones Somaclone
=Ax= 2n=8x=56,
(2n=4x=28, SSHH) SSSSHHHH
Chromosome
structural Selfing Backcrosses to tetraploid
changes { ;
Octoploids Hexaploids
2n=8x=56 2n=6x=42
SSSSHHHH SSSHHH
v v
Aneuploids Aneuploids
2n=8x-2=54 Backcrosses 2n=43, 40,
‘ to tetraploid 39
Hexaploid -
2n=6x=42
SSSHHH
Pentaploid
2n=5x=35
A 4
Aneuploids
2n=34, 32, 30
- (Tetrasomics),
29(Trisomics)

Fig. 1.3. Diagram of genome manlpulaﬂon of Canada wildrye using tissue culture
and interploidy hybridization
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2. INTERGENERIC HYBRIDS FROM CROSSES BETWEEN Elymus

canadensis AND Psathyrostachys juncea AND AMPHIPLOIDS DERIVED
FROM THESE HYBRIDS1

2.1. Introduction

Canada wildrye (Elymus canadensis L., 2n=4x=28, SSHH) is a
North American native forage grass which is sometimes cultivated for
its high forage yield under cool and moist conditions. Russian wildrye
[Psathyrostachys juncea (Fisch.) Nevski, 2n=2x=14, NN] is an Asian
native species which was introduced into North America and
subsequently found to be an excellent pasture grass for the dry
southern parts of Canadian prairies and for the semiarid rangelands of
the Western mountains and the Northern Great Plains of the United
States (Walton, 1983; Asay & Knowles, 1985).

The two species are different from each other in forage yield,
quality, and their tolerance to environmental stresses such as drought,
coldness, and soil salinity. Canada wildrye is more productive and
establishes more quickly, but has lower quality and is less tolerant of
environmental stresses than Russian wildrye. Hence, the synthesis of
these species, or gene transfer from one species into another by
hybridization, may produce desirable new genotypes for forage
improvement.

With this prospect in view, an attempt was made to produce
1. A version of this chapter has been published. Park & Walton 1989.
Euphytica (in press).



intergeneric hybrids by crossing E. canadensis with P. juncea and
produce amphiploids from them. This study describes morphological
and cytological characteristics of these hybrids and polyploids.

2.2. Materials and methods

2.2.1. Plant materials

Three accessions of Canada wildrye, '‘Beaverlodge' (Beaverlodge
211), 'Canada’ (PI-372539), and 'Montana' (PI-232249), were
obtained from Dr. Taing Aung in the Department of Plant Science,
University of Alberta. These accessions were used in 1986 as the
female parents in crosses with Russian wildrye cv. 'Mayak' as the male

parent.

2.2.2. Hybridizetion

The plants were grown in 12.5 cm pots in the greenhouse. The
florets of Canada wildrye were emasculated 2 days before anthesis and
hand-pollinated with Russian wildrye pollen. In order to stimulate
embryo development, 0.2% GAS was sprayed on the florets of Canada
wildrye two days before and after anthesis.

2.2.3. Embryo rescue

Immature embryos (18 days) were excised, sterilized in a 4%-6%
sodium hypochlorite solution for 10 minutes, and cultured on MS
medium (Murashige and Skoog 1962). At the three-leaf stage,
seedlings were transplanted from test tubes to sofl in the greenhouse.

35



36
2.2.4. Amphiploid production

Some of the hybrid plants were split into individual tillers and
their roots were removed. Each tiller was immersed in 0.2% aqueous
colchicine for 24 hours and rinsed in tap water for four hours.
Amphiploid sections were isolated from the mixoploid clone at anther

dehiscence.

2.2.5. Morphological investigation

At maturity, the morphological characteristics of the parents, F1
hybrids, and amphiploids were studied. Plant height, leaf size, leaf
area, tiller number, dry weight, and leaf/stem ratio were recorded.
Pollen fertility was determined from pollen grains stained with 1.5%
acetocarmine solution. Seed fertility was determined as the proportion
of florets per spike that contained seed.

2.2.6. Cytological observation

For cytological observations, root-tips were kept in cold water at
2 OC for 24 hours and then fixed in three parts ethanol to one part
acetic acid. Young spikes were fixed in Carnoy’'s solution (6:3:1
ethanol-chloroform-acetic acid). Squash preparations of mitosis and

meiosis were made in 1.5% acetocarmine solution.
2.3. Results
2.3.1. Production of F1 hybrids and amphiploid

Three hundred and twenty embryos were obtained from the 1027
florets pollinated (31.2%). Cross compaﬂbillty. germination rate, and



number of plants that survived in each cross are shown in Table 2.1.
Two accessions of Canada wildrye had a high cross compatibility of
47.8% (Montana’) and 51.9% (Beaverlodge'), whereas 'Canada’
exnibited low compatibility (14.4%). The embryos obtained from the
cross of ‘Montana' with Russian wildrye showed the highest rate of
germination (48.3%) and survival (71.0%). One amphiploid plant was
obtained from the 17 tillers of two plants of Canada wildrye 'Montana'
x Russian wildrye hybrids (designated as MR) which were treated with

colchicine.

2.3.2. Morphological characteristics

Table 2.2 shows the morphological characteristics and pollen
stainability of the parents, F] hybrids, and amphiploid. Canada wildrye
‘Beaverlodge' x Russian wildrye hybrids (designated as BR) were not
vigorous and necrotized before heading. However, '‘Canada’ x Russian
wildrye hybrics (designated as CR) and 'Montana' x Russian wildrye
hybrids (MR} exhibited hybrid vigor but generally resembled Russian
wildrye in morphology. Unlike the parent Russian wildrye, the hybrids
have both basal leaves and stem leaves. Canada wildrye 'Canada’ x
Russian wiidrye hybri¢s (CR) and MR showed superiority in plant
height, leaf area, and iy weight over the parents (Fig. 2.1a-d). Dry
weights of CR and MK “were respectively 8.6% and 6.4% higher than
that of Canada wildrye. Leaf size, length of spike (Fig. 2.1f) and spikelet
(Fig. 2.2a-c), tiller number, and leaf/stem ratio of the hybrids were
intermediate between the parenis. Pollen stainability of all hybrids was
extremely low, ranging from 0.3% to 3i#9% (Fig. 2.2d). All hybrids were
completely sterile. The ;mphiploid plant was morphologically similar
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to the F1 hybrid (Fig. 2.1e) but showed 48.9% pollen stainability (Fig.
2.2¢) and produced 26 seeds (16 shriveled and 10 plump) from 225
florets of three spikes examined (11.6%).

2.3.3. Cytological behavior

With the exception of one MR plant (designated as MR1) having
22 chromosomes, all hybrids were triploids with 21 chromosomes
(Fig. 2.3a). One amphiploid plant was an allohexaploid (2n=6x=42)
(Fig. 2.3b). Chromosome pairing in the pollen mother cells (PMCs) of
the F1 hybrids and amphiploid at the first metaphase is set out in
Table 2.3. Mean number of chromosome association in the hybrids at
metaphase I was 16.91 univalents (I) + 2.03 bivalents (II) + 0.06
trivalents (IIl) + 0.02 quadrivalents (IV) (Fig. 2.3¢c & d). MR
(2n=3x=21) showed a higher frequency of bivalents than BR, CR, and
MR1 (2n=3x+1=22). In the hybrids, the range of bivalents per cell was
from O to 8 and 77% of them were loosely-paired homologous. The
amphiploid PMCs showed an increase in chromosonie pairing at
diakinesis and metaphase I (Fig. 2.3e & f). Two percent of the
meiocytes examined contained 21 bivalents at metaphase I (Fig. 2.3¢).
The mean frequencies of I, II, and IIl were 5.85, 18.00, and 0.07,
respectively. Ring-type bivalents increased 54% in the amphiploid.
Chiasma frequency of the hybrids averaged 2.6 per cell but that of the
amphiploid was 27.7 per cell. Unequal chromosome disjunctions (Flg.
2.3¢), lagging chromosé‘mes (Fig. 2.3h), and chromosome bridges (Fig.
2.3h) were comrmon at anaphase I and 11 in the F1 hybrids and
amphiploid. *Micronuclei {Fig. 2.31) of variable size and number, and
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abnormal cytokinesis, were occasionally observed at telopazse and at

the tetrad stage of the hybrids and amphiploid.
2.4. Discussion

Canada wildrye hybridizes readily with several other Elymus and
some Leymus species (Dewey 1967a). Russian wildrye also crosses
with several tetraploid Elymus species giving a low frequency of seed
set and hybrid development (Dewey 1970, 1972a & b). The cross
between Canada wildrye and Russian wildrye has not been reported
previously. Compared to other Elymus and Leymus species that Dewey
used to cross with Russian wildrye, Canada wildrye used in this cross
showed a high cross compatibility. This is assumed to be due to the
action of gibberellic acid (GA3) on embryo development.

The increase in dry weight of CR and MR plants, in spite of the
intermediate phenotypes between the parents for some morphological
characters, could be ati;.;'lbuted to the increased leaf area of the
hybrids. Although F} hy;)nds produced only defective pollen and no
seed, the anthers of the amphiploid plant burst well and showed a
significantly high rate of pollen stainability. The fertile pollen restored
significant seed fertility to the amphiploid. Pollen stainability and seed
set (seeds/spike) of hexaploid amphiploids (2n=6x=42, SSSSHH)
between Elymus canadensis and Pseudoroegneria libanotica averaged
63.3% and 40.5% respectively frem the C] through C3 generation
while those of the hexaploid amphiploid between E. canadensis and P.
spicata averaged 19.6% and 6.6%, respectively (Asay and Dewey 1976).
On the other hand, the 'ﬁybrlds from crosses between E. canadensis
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with some other Elymus or Leymus species were completely sterile in

spite of their genomic affinity (Dewey 1970, 1972a & b). Such sterility
was assumed to be due to structural chromosome differences between
the closely related genomes. The sterility and lack of plant vigor made
the intergeneric hybrids unsuitable for forage improvement. However,
amp_hiplaidé derived from E. canadensis x P. libanotica hybrids are
promising fur further breeding in terms of fertility and cytological
stability (As:iy and Dewey 1976).

Canada wildrye is a self-fertilizing allotetraplcid with a genome
constitution of SSHH. Mainly ring-type bivalents of the fourteen are
found at metaphase I of Canada wildrye. Russian wildrye is an
outcrossing diploid '('ge'r‘nome NN) which forms seven bivalents at
metaphase I. The allotriploid hybrids with the S, H, and N genomes
showed very low chromosome pairing, averaging 2 bivalénts per cell.
The low frequency and loose- rod type of bivalents indicate that
neither the S nor H genomes of Canada wildrye pair with the N
genome of Russian wildrye. The hybrids from crosses between Elymus
scribneri (SSHH) and Psathyrostachys juncea (NN) exhibited very little
chromosome pairing, also indicating the distinctness of the S, H, and
N genomes (Dewey 1967b). The hybrids from crosses between diploid
P juncea with the other seven tetﬁ‘aplold'Leymus species (L. cinereus,
L. triticoides; L. karataviensis L. secalinus, L. multicaulis, L. racemosus,
and L. tnnovatus) showed a relatively high frequency of bivalents
ranging from 3.94 to 6.81 per cell (Dewey 1970, 1972a & b). These
differences in chromosome pairing of the SHN triploid hybrids may be
attributed to the different extent and randomness of intragenomic or
intergenomic pairing. The SH h‘ybrid from the vcross between



Pseudoroegnerla spicata (SS) and Critesion violaceum (HH) and the
dihaploid (SH) of Elymus canadensis, of which H genome donor is
unknown, indicate the intragenomic or intergenomic pairing by a very
low frequency of bivalents (Wang & Hsiao 1986; Asay et al. 1987).
Chromosome coniigurations of the hybrid (SND) from crosses between
Pseudoroegneria spicata ssp. inermis (SS) and Psathyrostachys
huashanica (NBigh) and the hytirid (HN) between Critesion violaceum
(HH) and Psathyrostachys juncea (NN) show that little homology exists
between the S and Nh genomes or between the H and N genomes
(Wang 1986, 1987). In this study, the appearance of several bivalents
or mzultivalents in a few triploid PMCs indicates some possibility of
intergenomic pairing between partially homologous chromosomes or a
random intragenomic pairing. Although the amphiploid consisted of
six genomes, SSHHNN, bivalents predominated reflecting
intragenomic pairing between homologous chromosomes. This
supports the hypothesis that the genomes S, H, and N are distinct.
However, the occasional trivalent formation indicates a small capability
of intergenomic pairing in the amphiploid.

In summary, hybridization of E. canadensis with P. juncea offers
limited prospects of gene transfer due primarily to lack of homology
between the parental genomes. However, a low frequency of
homoeologous pairing does offer the possibility of gene transfer by
producing alien chromosome addition lines and combining with use of
irradiation and tissue culture techniques. Since this amphiploid does
not exist in nature, it is a promising source of germplasm for forage
improvement provided it is genetically and cytologically stable in
future generations.
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Fig. 2.1. Plant and spike morphology of E. canadensis x P. juncea
hybrids. a. E. canadensis accession ‘Montana', b. P. juncea cv. 'Mayak',
¢. Montana' x 'Mayak' hybrid (MR), d. 'Canada’ x '‘Mayak' hybrid (CR),
e. MR amphiploid, f. spikes of E. canadensis, F1 hybrid (MR), and P.
Juncea (from left).






Fig. 2.2, Spikelets and pollen of E. canadensis x P, Juncea hybrids. a. E.
canadensis, b. F1 hybrid (MR), ¢. P. juncea, d. nonstainable pollen of F)
hybrid (MR), e. stainable pollen of amphiploid.






Fig. 2.3. Somatic chromosome complements and meiotic chromosome
behavior of E. canadensis x P. juncea hybrids. a. somatic chromosomes
of F1 hybrid (MR) (2n=3x=21), b. somatic chromosomes of amphiploid
(2n=6x=42), ¢. 151+3 M inaF] PMC at ML, d. 16 I+ 1 Il + 1 III
(arrow) in a F] PMC at MI, e. 21 II in an amphiploid PMC at M1, £, 8 1
+ 17 I in an amphiploid PMC at MI, g. unequal chromosome
ségregatlon in an amphiploid PMC at Al, h. lagging chromosomes and
chromatid bridge in a Fy hybrid at Al, i. abnormal cytokinesis and
micronuclei in a F} hybrid at the tetrad stage.
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3. EMBRYO DERIVED-CALLUS-REGENERATED \HYBRIDS AND THEIR
COLCHICINE-INDUCED AMPHIPLOIDS FROM CROSSES BETWEEN
Elymus canadensis AND Secale cereale 1

3.1. Introduction

Canada wildrye (Elymus canadensis L.) is a North American native
perennial grass with agronomic characteristics of high forage yield and
moderate quality (Walton 1983). Spring rye (Secale cereale L.) is an
annual species used as a reliable cereal crop, forage crop, or a cover
crop over a wide geographic range (Stoskopf 1985).

From the standpoint of forage production, the poor tillering and
foliage of spring rye makes it unsuitable for hay or pasture production.
Canada wildrye has coarse leaves and poor forage quality when it
matures but it is winterhardy and drought resistant (Walton 1983).
Accordingly, hybrids and amphiploids from crosses between these two
species may combine the advantage of both.

Allopolyploids have played a vital role in genome reconstruction
and evolution of many crop species. Hybridization between related
species of Triticeae followed by doubling of the chromosome number
of the hybrids has produced new grain and forage species (Dewey
1979, 1984; Lukaszewski and Gustafson 1987; Asay et al. 1988). One
of the main objectives in development of the amphiploids has been to
1. A version of this chapter has be¢n partly published, Park & Walton
1989. Theor. Appl. Genet. (in press}, and partly accepted for
publication, Park & Walton 1989. Plant Breeding (in press).
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search for strains with improved meiotic stability and increased

fertility (Shigenaga et al. 1971). However, poor fertility, limited
agronomic value, and cytological instability among the amphiploid
progeny have limited their use in breeding new species (Asay and
Dewey 1976, Muntzing 1979).

Previously, Canada wildrye was hybridized with wheat #ujeeb-
Kazi and Bernard 1985; Yen and Liu 1987), barley (Mujeeb-izu2} and
Rodriguez 1982), and rye (Hang and Franckowiak 1984) to breed
disease resistant cereal species. Intergeneric hybrids were produced
by embryo rescue. Callus formation and plant regeneration from
immature hybrid embryos has been regarded as an alternative way to
develop hybrid plants (Larkin 1985; Merkle et al., 1988). In this study,
the undifferentiated hybrid embryos in conventional embryo culture
were subjected to callus formation and plant. regeneration. This study
describes the morphological and cytological characterization of the F1
hybrids and amphiploids from crosses between Canada wildrye and

spring rye.
3.2. Materials and methods

3.2.1. Plant materials

Canada wildrye (Elymus canadensis L., 2n=4x=28, SSHH)
accession, 'Montana (PI-232249)', was provided by Dr. Taing Aung,
University of Alberta, Edmonton. Spring rye (Secale cereale L.,
2n=2x=14, RR) cv 'Gazelle' was provided by Hanns Jahn, University of
Alerta Edmonton Research Station.
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3.2.2, Hybridization

Canada wildrye was used as the female parent and spring rye as
the male parent. Canada wildrye was emasculated and then hand-
pollinated with pollen of spring rye. At 24 h and 48 h before and after
pollination, the pollinated florets were sprayed with GA3 (50 ppm).

3.2.3. Embryo culture

Fifteen days after pollination, the immature embryos were
excised, sterilized in 4%-6% sodium hypochlorite solution for 5 min,
rinsed 3 times with sterilized water, and then cultured on MS
medium in 15 mm x 180 mm test tubes. The seedlings differentiated
from the cultured embryos were transplanted at the three-leaf stage
into soil in the greenhouse.

3.2.4. Embryo derived-callus culture and plant regeneration
Undifferentiated embryos were transferred from the conventional
embryo culture (3.2.3) to the MS callus culture medium containing 2
mg 2,4-D per litre. Calli were initiated in the dark for the first month
and then subcultured monthly on fresh MS callus culture medium in a
growth chamber at 24+1 9C and 110 uE sec-lem2 fiuorescent light.
Three month-old calli were transferred to hormone-free MS medium
for plant regeneration. The regenerated plantlets under the same
culture conditions as for callus culture were moved to soil in the

greenhouse at the three-leaf stage.



3.2.5. Amphiploid production

The regenerated hybrid plants were split into individual tillers to
double their somatic chromosome complements using colchicine. Four
hundred and eighty tillers were trimm<d and immersed in the
mixture of 0.2% colchicine and 4% DMSO for 24 h. After a 6-hour
rinse in tap water, the tillers were potted in the greenhouse and the
surviving plants were examined for somatic chromosome numbers,
dehiscent anthers, dusty pollen, and seeds in florets, Doubled sectors
(C1) were separated from the mixoploid clones. Open-pollinated seeds
(C2) were collected from the C] clones and the C2 seedlings were
grown in the greenhouse. Four #pikes of one Cg (2n=6x=42) plant
were selfed by bagging, and four spikes were backcrossed to both

parents.

3.2.6. Morphological investigation

At maturity, the parents, F} hybrids produced by both
procedures, and their amphiploids (C] to C2) were studied for plant
height, tiller number, leaf size (length and width), leaf area, spike
length, dry weight, leaf/stem ratio, and fertility on a simgle plant basis.
Pollen fertility was determined from polien grains stained with 1.5%
acetocarmine. Seed fertility was the mroportion of seeds to the total

number of florets.

3.2.7. Cytological observation

Somatic chromosome numbers were determined from metaphase
spreads in root-tip cells which were treated in cold water at 2 ©C for
24 h and then fixed in acetic acid {1) : ethylalcohol (3). Pollen mother
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cells (PMCs) were fixed in Carnoy's (ethylalcohol 6 : chloroform 3 :

acetic acid 1) solution to observe chromosome behavior at metaphase I
{MI), anaphase I (Al), and at the tetrad stages. Squash preparations for

mitosis and meiosis were made in 1.5% acetocarmine solution.

3.3. Results

3.3.1. Production of F1 hybrids and amphiploids

The 70 pollinated florets of E. canadensis yielded 28 embryos
(40%) of which 5 germinated on MS culture medium. Two mature
plants were derived from the 28 embryos. They were identified as
triploid hybrids. These two plants necrotized at the seedling and
heading stages respectively. Twenty three embryos which did not
germinate in embryo culture were transferred to MS callus culture
medium. From them, one embryo produced white and compact calli
(Fig. 3.1a). Four hybrid plants were regenerated via organogenesis
from the calli that had been subcultured for three months (Fig. 3.1b).
They grew vigorously to maturity.

Seven of the 480 clones which were treated with colchicine and
DMSO had doubled sectors from which four amphiploids (C1) were
obtained. Nineteen C2 plants were obtained from the 28 plump seeds
of the C1 plants which were open-pollinated without bagging. Two C3
plants survived from twelve open-pollinated embryos from the C2
amphiploids. One BC} plant was obtained from backcrossing of the C2
hexaploid plant to S. cereale. No seed was obtained from backcrosses
to E. canadensis.
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3.3.2. Plant morphology and fertility

The morphological characteristics and dry weight of the parents,
F1 hybrids (both embryo-rescued and embryo-callus-regenerated), and
C1 and C2 amphiploids are shown in Table 3.1. The data on the
embryo-rescued hybrid that died at the heading stage were obtained
prior to necrosis. Most of the characters of the callus-regenerated
hybrids were intermediate between the parents but the hybrids
produced more profuse tillers than the parents. As a result, dry weight
of the hybrids was 64% and 335% higher than that of E. canadensis
and S. cereale, respectively. However, the superiority of the hybrids
over the parents in dry matter yield tended to decline during
regrowth after clipping (data not shown). The leaf/stem ratio of the
hybrids was significantly higher than that of the parents. There was no
significant difference in morphology among the four callus-
regenerated hybrids. Mast of the hybrid pollen was empty and non-
stainable. All of the hybrids were completely sterile.

Amphiploids (C}1 and C2) showed a substantial loss in vigor
compared to the F] hybrids and E. canadensis (Fig. 3.2a-e). C]
amphiploid plants had smaller leaves than their parents and F}
hybrids. Leaf area and dry weight of the C} plants were respectively
 18% and 40% higher than those of S. cereale but 30% and 47% lower
than those of E. canadensis. Spikes of the amphiploids were
intermediate phenotype between the parents as shown in F) hybrids
(Fig. 3.2f). The C) plants had an average of 56% pollen stainablility
(Fig. 3.2g) and seed set averaged 4.6 seeds per spike. However, more
than 90% of the seeds were shriveled and did not germinate. Twenty
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eight plump seeds, accounting for 9.3% of the total seeds, were

intermediate in size between the parents (Fig. 3.2h). All germinated
and 19 C2 seedlings developed from them. Three early-maturing

plants from these C2 seedlings were examined for ‘morphological
characters and fertility. In comparison with Cj plants, the C2 plant
(2n=6x=42) had increased leaf length and leaf width but reduced
number of tillers (Fig. 3.2e). Among aneuploid progenies, vigor
decreased with a decrease in chromosome number. One BC] plant
generally resembled S. cereale, with low numbers of tillers and poor
foliage.

Pollen stainability of the C2 plants averaged 38% at the euploid
level (2n=42) and 12% at the aneuploid level (2n=40). Only four of the
other C2 plants showed a low rate of pollen stainabillty: 1.7% (2n=27),
3.4% (2n=27), 8.3% (2n=40), and 12.7% (2n=36). Pollen from other
plants was empty and nonstaining in acetocarmine. On the average,
one seed per spike developed in the C2 plant (2n=42) while the Co
aneuploid was completely infertile. Most of these aneuploids lacked
vigor and were inferior morphologically to the parents and Fj hybrids
(Fig. 3.2b-d). One BC] plant was completely sterile with 1.5% of pollen
stainability.

3.3.3. Cytologicel behavior

The majority of the F1 hybrid somatic cells were triploid
(2n=21) and those of the C) amphiploids were hexaploid (2n=42) (Fig.
3.3a,b). However, among the nineteen C2 plants, fourteen were

examined cytologically and varied in somatic chromosome numbers
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from 26 to 42 (Table 3.3.). Secale cereale chromosomes weze readily

distinguished from E. canadensis chromosomes by their larger size
(Fig. 3.3a-f). Chromosome constitution in the somatic cells of the
amphiploid progeny could be identified on the basis of differences in
the sizes of the chromosomes of E. canadensis and S. cereale.
Hexaploid plants had 28 c¢hromosomes of E. canadensis and 14
chromosomes of S. cereale. One of two monosomic plants (2n=41) lost
one of the E. canadensis chromosomes and the other had lost one of
the S. cereale chromosomes. A C2 double monosomic plant (2n=40)
lacked one chromosome of each parent, while a C3 double monosomic
plant (2n=40) lost two E. canadensis chromosomes. One C2 plant
(2n=39) lost three S. cereale chromosomes. The plants with 2n=36
and 37 chromosomes had 25 to 27 chromosomes from E. canadensis
and 10 to 11 from S. cereale . Plants with 2n=26, 27, and 28
chromosomes had 13 to 17 from E. canadensis and 11 to 14 from S.
cereale . One of the C3 plants (2n=28) had 14 E. canadensis
chromosomes and 14 S. cereale chromosmes. One BC] plant had 27

chromosomes (14 from E. canadensis and 13 from S. cereale).

Table 3.2 shows the frequencies of the different kinds of
chromosome associations at metaphase I in the parents, F] hybrids

(embryo-rescued and callus regenerated) from crosses between E.
canadensis and S. cereale, and the amphiploids (C] to C3) derived
from these hybrids. E. canadensis and S. cereale genotypes used in
this study showed respectively 13.9 and 6.9 bivalents per cell at MI.
Ninety five percent of bivalents were ring-types in E. canadensis and
87% were ring-type bivalents in S. cereale. All hybrids showed low



chromosome pairing ranging from 1.47 to 2.52 bivalents per meiocyte.
The chromosomes of the callus-regenerated hybrids exhibited a
higher frequency of the bivalents than those of the embryo-rescued
hybrids. More than 85% of bivalents in all hybrids were loosely-or
well-connected rod-types (Fig. 3.4a). Multivalents such as trivalents,
quadrivalents, «nd pentavalents were rarely observed in the hybrids
(Fig. 3.4a,b). The callus-regenerated hybrids showed quadrivalents in
1.2% of PMCs and pentavalents in 0.5% of PMCs. The most frequent
chromosome associations at metaphase I in all hybrids at metaphase I
were two bivalents and seventeen univalents. Most of the hybrid PMCs
showed unequal chromosome disjunction at anaphase I (Fig. 3.4c) and
some of them contained occasional laggards and bridges. Abnormal
cytokinesis and micronuclei of variable numbers and sizes were
occasionally observed at the tetrad stage (Fig. 3.4d).

Meiotic chromosome behavior of the amphiploids was
characterized by the predominance of bivalents (Fig. 3.4e,f). Sixty

seven percent of bivalents in the C] amphiploids was well-connected
rod-types ranging from 1 to 15 per cell. In PMCs of the C] amphiploid
plants, the most frequent chromosome configurations at metaphase I
were 21 bivalents (34%) and 20 bivalents with 2 univalents (36%).
Univalents averaged 2.20 per cell ranging from O to 14 and
quadrivalents were observed in only two cells. Mean chiasma
frequency per cell was 32.9. The chromosome distributions at
anaphase I were predominately unequal (19:23 or 20:22) (Fig. 3.4h)
and only 15% of the anaphase I cells showed equal chromosome
disjunctions (21:21). Laggards and bridges wcre occasionally observed

61
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at anapbase I and micronuclei frequencies ranged from one to six in

the tetrad stage (Fig. 3.4i).

The chromosome pairing of the C2 amphiploids (2n=42) was
almost the same as in the C] plants (Fig. 3.4g). However, the aneuploid
plants with fewer chromosomes than the hexaploids had higher
frequencies of univalents and trivalents than the hexaploid plants of C
and C2 {Fig. 3.5a-e)- The aneuploid pls:ts with higher numbers of
chromosomes (from 2n=36 to 2n=41) showed a lower frequency of
univalents ranging from 3.73 to 6.12 per PMC. On the other hand, the
aneuploid plants having lower number of chromosomes (2n=26,
2n=27, and 2n=28) showed an increased frequency of univalents
(12.97 to 17.31). Multivalents were occasionally observed, more
frequently in plants with higher chromosome numbers than in plants
with lower chromosome numbers. Quadrivalents were found in only
five plants among the twelve C2 plants; two plants were 2n=28, one
was 2:1:=36, one was 2n=37, and one was 2n=40. Table 3.3 shows
meijotic chromosome associations at MI of the aneuploid progeny. Two
monosor:: plants(2n=41) frequently showed 1911 + 31 and 181l + §
I, respectively and 18 II + 4 I was most frequent in the Cg (37.8%)
and C3 (26%) double monosomic plants (2n=40). The highest
frequencies of chromosome configurations at Ml in the Cg plants of
2n=36 and 2n=37 were respectively 16 Il + 4 Iand 16 Il + 5 I
accounting for 31.3% and 28.8% of the total cells examined. showed
The highest frequencies of chromosome configurations at metaphase I
in the C2 plants with 2n=26, 2n=27, and 2n=28 chromosomes were 8
II+101(35.3%), 6 II + 151 (24.6%) and 9 Il + 9 I (22.0%), and 6 II
+ 16 I (26.7%) and 9 II + 10 I (25.2%), respectively. Four to seven



bivalents and 14 to 18 univalents per PMC were commonly observed in
the C3 plants of 2n=28, of which 7 II + 14 I (20% of the total cells)
indicates the genome formula of SHRR. Seven bivalents were observed
in one backcross progeny (2n=4x-1=27, SHRR-1) of the amphiploid
(SSHHRR) to S. cereale (RR]. Chiasma frequency per cell ranged from
25.35 to 31.80 in the plants with higher numbers of chromosomes
and from 6.63 to 9.58 in the plants of lower chromosome numbers in
the C2 and C3 plants. The irregular chromosome behavior of the Co
and C3 plants at Al and in the quartet stage were of the same general
nature as in the Cj plants (Fig. 3.5f).

3.4. Discussion

3.4.1. Plant morphology

F1 hybrids of E. canadensis with S. cereale (cv. ' Prolific') were
first obtained through the conventional embry¢ rescue by Hang and
Franckowiak (1984), bqt this study is the first report of regenerants
derived from callus culture of E. canadensis x S. cereale (cv. 'Gazelle')
hybrid embryo, and their colchicine-induced amphiploids. It is
interesting that hybrid necrosis was not expressed in the regenerants
while the embryo-rescued hybrids died of hybrid necrosis. This might
be a result of geneti¢ modification during the process of tissue cuiture.
Hybrid necrosis which was found in some hybrids of wheat (Hermsen
1963) and Agropyron (Wang 1987a) was assumed to be controlled by
complementary genes. In spite of hybrid vigor of the F], the reduction
in tillering capacity and leaf size resulted in a decrease of dry matter
yield in the amphiploids (C] and Cg2). Although fertility was restored to
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some extent in the C] amphiploid plants, it declined in the C2 plants.

A substantial loss in vegetative vigor and a decline in fertility have been
reported previously in high-ploidy-level (8x or 6x) amphiploids of
Elymus x Pseudoroegneria hybrids (Asay and Dewey 1976; Dewey
1977) and E. canadensis x Psathyrostachys juncea hybrids (Park and
Walton 1989). However, E. canadensis x Pseudoroegneria libanotica
amphiploids (SSS'S'HH) showed some very desirable characteristics
and cytological stability (Dewey 1974). The vigorous regrowth of the
F1 hybrids and amphiploids reported here indicates a perennial
growth habit. However, the potential for increasing forage yield from
enhanced regrowth and for improving forage quality was not studied.

3.4.2. Somatic chromosome complements

Hybrids from crosses between E. canadensis (SSHH) and S.
cereale (RR) were allotriploids with genomes SHR and the
allohexaploids possessed genomes SSHHRR. In aneuploid plants with
2n=36 to 2n=41 chromosomes, more S. cereale chromosomes tended
to be eliminated than E. canadensis chromosomes. This might be due
to the large sizes of S. cereale chromosomes as described by Shigenaga
et al. (1971). These aneuploids with 36 to 41 chromosomes were
probably the progeny of self-fertilizing or intercrossing among the C}
or C2 plants.

Plants with 26 to 28 chromosomes may be expected to result
from outcrossing between the C] or Cg plants and S. cereale. These
results indicate that E. canadensis x S. cereale amphiploids can be
cross-pollinated unlike largely self-fertilizing E. canadensis. Hill and
Carnahan (1962) found a variety of plants with chromosome numbers
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of 14, 21, 28, 35, 42, 49, and 56 among the open pollinated progeny

of Lolium perenne x Festuca elatior amphiploids (2n=6x=42). Dewey
(1974) reported that about 10% of the Cg plants open-pollinated from
E. canadensis x Pseudoroegneria libanotica amphiploids (C}1) were
outcrosses of Ci plants with other species.

Meiotic irregularity followed by irregular formation of both female
and male gametes of the parental amphiploids could be considered a
plausible explanation for the aneuploid chromosome number of the
progeny (Dewey 1980; Jan et al. 1986). Elimination of a portion of the
genome constituents in advanced generations of interspecific or
intergeneric amphiploids was observed in Lolium multiflorum x
Festuca elatior amphiploids (Buckner et al. 1961), Avena sativa x A.
babarta amphiplui-ls i «jyama 1962), and Elytrygla repens x
Thinopyrum curvifoltum: s«:phiploids (Dewey 1980).

3.4.3. Chromosome behavior during meiosis

The low chromosome pairing of the F1 hybrids and the
predominance of bivalents of the amphiploids indicate the
distinctness among the genomes (S, H, and R). However, the
occasional appearance of multivalents reflects a randoiii intergenomic
or intragenomic pairing, even though it is at a low frequency. A few
reports have recently been published on the genomic relationships
between the genomes SH (Asay et al., 1987), SR (Wang 1987b), HR
(Gupta and Fedak 1985, 1987a, 1987b), and SHR (Hang and
Franckowiak 1984). These studies indicate a remote phylogenetic
relationship between these genomes. Limiied intragenomic pairing
was found in H and R genomes (Gupta and Fedak 1987a) and in S and
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H genomes (Asay et al., 1987). If this is true, regardless of the

genotypes used in hybridization, multivalents in this study may have
resulted from the intragenomic pairing in H and R genomes or in S
and H genomes.

The occurrence of trivalents and quadrivalents indicates a low
potential for both intergenomic and intragenomic pairing and
excludes the possible existence of a diploidizing gene similar to that
described in hexaploid wheat (Riley and Chapman 1958) and tall
fescue (Jauhar 1975). On the other hand, multivalent associations may
be due to intergenomic pairing between chromosomes structurally
rearranged by tissue cul\fure and their intact homologous counterparts.
This hypothesis would explain the higher frequency of chromosome
pairing in the callus-regenerated hybrids than in the embryo-rescued
kybrids. Induction of structural chromosome rearrangements
accompanied by increasing chromosome associations such as bivalents
and quadrivalents was reporteqd in the regenerants from the cultured
inflorescences or embryos of Triticum x Hordeum hybrids (Fedak and
Grainger 1986) and Hordeum vulgare x H. jubatum hybrids (Orton
1980). Sterility in the E canadensis x S. cereale amphiploids appears
to be due to genetically unbalanced game®s resulting from
heterogenetic pairing and meiotic irregularity.

In the present study, aneuploid plants which originated from the
open-pollinated C1 or Cg plants showed variable chromosome
configurations at metaphase I and abnormalities of chromosome
behavior at anaphase I and later stages. Significant differenices were
noted in frequency of univalents between plants with 36 to 41
chromosomes (3.73-6.12/cell) and plants with 26 to 28 chromosomes



(12.97-17.31/cell). These trends reflect differences in the degree of
genomic elimination among the progenies. There was 1.1 to 2.5
univalents per ce¢ll in the PMCs of the allohexaploids. The E.
canadensis x Psathyrostachys juncea amphiploid (2n=6x=42,
SSHHNN) averaged 5.9 univalents per PMC (Park and Walton 1989).

The majority of bivalents in the PMCs of aneuploid progenies
could have resulted from preferential intragenomic pairing (S-S, H-H,
or R-R). The similarity of pairing of 6 II + 15-16 I in plants with 28
chromosomes to the theoretical 7 II + 14 I of the allotetraploid
(2n=4x=28, SHRR) supports the preposition that they originate from
outcrosses of the amphiploid (SSHHRR) to S. cereale (RR). However,
chromosome numbers gf E. canadensis and S. cereale in each plant
were more or less than expected from such outcrosses. Such
deviations from that expected might be attributed to the different
degrees and sites of chiasma formation. This also seemed to be
associated with formation of unbalanced female gametes produced by
the C; amphiploid plants and their random fertilization with balanced
male gametes produced by E. canadensis or S. cereale.

The aneuploid plants showed frequent abnormalities of
chromosome behavior such as unequal distribution of chromosomes,
lagging chromosomes, chromatid bridges, and micronuciei at the
anaphase, telophase, and tetrad stages. These melotic irregularities
resulted in ex&emely low pollen statnability and complete sterility.
This study does not allow a determination of the associations between
plant morpholegly and the modiﬁcatioﬁ of the genomes.

It is concluded that E. canadensis x . cereale amphiploids
{2n=6x=42, SSHHRR) are cytologically unstable and form an unequal
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number of female and male gametes, thereby giving rise to aneuploid

progeny with variable numbers of chromosomes. Chromosome pairing
in the aneuploid plants with low chromosome numbers (2n=26, 27,
and 28), which frequently show univalents, could be improved if
somatic chromosome numbers were doubled. However, the secondary
amphiploids which are expected to have 2n=52, 54, and 56
chromosomes may be meiotically instable and sterile in the future
generations, as shown in this study. Accordingly, this kind of
allopolyploids combining E. canadensis with S. cereale may not be a
suitable strategy for forage or cereal crop improvement. Such material
may be used for forage or cereal breeding by introducing chromosome
segments, but not whole chromosomes, of one species into another.

Although the performance of E. canadensis x S. cereale
amphiploids in the greenhouse has fallen short of expectations, the
opportunity for introgression between the two species by backcrossing
to the parents and repeated somatic cell and tissue culture of the
amphiploids still exists.
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Fig. 3.1. Callus culture and plant regeneration of an E. canadensis x S.

cereale hybrid embryo. a. hybrid embryo-derived callus (three month-
old), b. plantlet regenerated from the callus.






Fig. 3.2. Plant morphology, spike, poll«:n, and seeds of E. canadensis x
S. cereale hybrids. a. E. canadensis, b. . cereale, c. F1 hybrid, d. C3
amphiploid, e. C2 amphiploid (2n=6x=42), f. spike morphology of E.
canadensts, F] hybrid, and S. cereale (from left), g. stainable pollen of
C1 amphiploid, h. two lows of seed of E. canadensis, amphiploid fron:

C1, and S. cereale (from left)
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Fig. 3.3. Somatic chromosome complements of E. canadensis x S.
cereale hybrids. a. F1 hybrid (2n=3x=21), b. C} amphiploid
(2n=6x=42), c-f. C2 aneuploid progenies from C] amphiploid,

€. 2n=41], d. 2n=39, e. 2n=36, f. 2n=27.






Fig. 3.4. Meiotic chromosome behavior of E. canadensis x S, cereale
hybrids. a. 141 + 211+ 1 III (arrow) in a F; PMC anI. b.91+21I +
11II + 1V (arrow) in a F] PMC at MI, e. Unequal chromosome
disjunction in a F] PMC at Al, d. Micronuclei in a F1 PMC at the tetrad
stage, e. 19 II + 1 IV (arrow) in a C] amphiploid PMC at MI, £. 81 + 17
Il ir a C1 amphiploid PMC at MI, €3I1+1810 +1MinaCg
amphiploid (2n=6x=42) PMC at MI, h. Unequal chromosome
disjunction in a Cj amphiploid PMC at Al, 1. micronuclei in a Ca

- amphiploid (2n=6x=42) at the tetrad Stage.
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Fig. 3.5. Meiotic chromosome behavior of C2 aneuploid progeny of

E. canadensisv;&\; S. cereale amphiploid (C1). a. multivalent formation
(arrow) at diakinesis, b, 31+ 17 Il + 1 IIl in a PMC at MI .(2n=40),

€. 111 + 111+ 11V in a PMC at MI (2n=37), d. 16 I + 6 II in a PMC

at MI (2n=28), e. 10 I + 8 II in a PMC at MI (2n=26), f. micronuclei in
the BC] PMCs at the tetrad stage.
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4. EMBRYOGENESIS AND PLANT REGENERATION FROM TISSUE

CULTURE OF CANADA WILDRYE, Elymus canadensis L.1

4.1. Introduction

Embryogenic or organogenic callus culture of the Gramineae has
been readily obtained from immature embryos, immature
inflorescences, and young leaves (Vasil, 1987). Plant regeneration
from callus cultures of somatic tissues has been reported in many
cereals and grasses (Lo et al., 1980; Vasil, 1982; Scowcroft, 1985).
Depending on the somaclones, chromosome stability may or may not
occur.

Canada wildrye (Elymus canadensis L.} is a North American native
grass yielding a good quality forage in cool and moist regions (Walton,
1983). The species is a naturally self-fertilizing allotetraploid
(Zn=4x=28, SSHH) and has been crossed with cereal crops and other
forage grasses for breeding disease resistant cereals and high yielding
and good quality forages (Dewey, 1984; Mujeeb-kazi and Bernard,
1985).

Tissue culture techniques might be used either to improve
Canada wildrye for use as a forage or to incorporate genetic material
such as disease resistance into wheat. However, tissue culture-derived
genetic variability or genome manipulation has not been previously
1. A version of this chapter has been published. Park & Walton 1989.
Plant Cell Reports 8: 289-291.
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reported in the genus Elymus. The present study was conducted to

develop a procedure for embryogenesis and plant regeneration from

immature embryos and inflorescences of Canada wildrye.
4.2, Materials and methods

4.2.1. Explants

Flants of Canada wildrye (Elymus canadensis L.) accession ‘Canada
(PI-372539)' were grown in the greenhouse. From the self pollinated
plants, 575 immature embryos ranging from less than 1 mm to 3 mm
in length were excised 14 to 21 dys after anthesis. Twenty one
immature inflorescences were removed from their leaf sheath several
days before heading. The young inflorescences which were 0.5 to 12

cm long were cut into 4 to 5 mm segments.

4.2.2. Callus culture

All immature embryos and inflorescence segments were sterilized
in 70% ethyl alcohol for 1 min and subsequently in 4%-6% sodium
hypochlorite for 10 min, and then rinsed three times In sterilized
water. The explants were placed aseptically on MS (Murashige and
Skoog 1962) agar medium containing 2 mg 2,4-D per litre. The test
tubes (1.5 cm x 18 cm) with explants were kept under dark
conditions for the first four weeks and then transferred to a culture
chamber at 24+1 °C and 110 uE sec-lem? fluorescent light. Four
weeks after callus initiation, calli were subcultured monthly to fresh
medium of the same type, to maintain embryogenic calli.



4.2.3. Plant regeneration

MS medium supplemented with 0.5 mg/1 2,4-D and 0.3 mg/1 GA3
or hormone-free MS medium was used for plant regeneration. Plant
regeneration was attempted monthly from two to six months after
callus initiation at 24+1 °C and 110 uE sec"lcm? fluorescent light. The
regenerated plantlets were transplanted to soil at the two to three leaf
stage.

4.2.4. Histological and cytological observation

Histological preparations of somatic embryos were made by
cryostats (IEC MINOT CUSTOM microtome) at -20 OC. Tissue -TekIl
was used for embedding tissue specimens. Frozen tissue specimens
were prepared in thicknesses of 16 um. The number of chromosomes
of a chlorophyll deficient regenerant was determined in root-tip cells
pretreated with cold water at 2 °C for 24 h and fixed in acetic acid (1)
: ethylalcohol (3). Tissue specimens of somatic embryos and root-tip

cells for chromosome counting were statned with 1.5% acetocarmine.
4.3. Results and discussion

4.3.1. Callus production

Callus formation from immature embryos originated in the
scutellar tissue within 5 to 10 days of inoculation. The percentage of
embryos forming calli varied significantly with embryo size (Table 4.1).
The frequency of germination (indicated by elongation of the
plumules) and non-embryogenic callus formation were 4% and 12%,

respectively. The optimum embryo size for maximum embryogenic
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callus formation was found to be 1.0 to 1.5 mm. This is similar to
previous reports on embryo cultures of cereals (Shimada and Yamada,
1979; Nakamura and Keller, 1982; Rybczynski and Zdunczyk, 1986).
Immature infloresgences produced calli at the floral primordia of the
young florets within a week. Inflorescences which were 4 to 6 cm long
exhibited a high frequency of embryogenesis (Table 4.1). Twenty three
percent of infic: - -once segments produced predominately watery
and non-emi-: - , ¢ calli, that were rapidly senescent even in
subcultures.

Callus production in wheat and some temperate forage grasses has
been shown to be successful with 0.5 to 1 cm long inflorescences
(Ozias-Akins and Vasil, 1982; Maddock et al., 1983; Lo et al., 1980;
Ahn et al., 1985). Inflorescence cultures of some intergeneric hybrids
of the Triticeae formed calli rapidly with inflorescences that were 2.5
to 3.0 cm or 0.5 to 8 cm long (Chu et al., 1984; Fedak, 1985). In the
present study, explants of the youngest inflorescences (less than 2
cm) did not produce callus, but explants of inflorescences larger than
8 cm formed calli. Callus formation was limited primarily to the
premeiotic stage of the, inflorescence, thereby indicating the effects of
inflorescence developmental stages on callus production. The
developmental stage of explants has been found to be a critical factor
in the establishment of totipotent cultures (Vasil, 1987). The average
frequency of embryogenesis in‘this study was 42% in cultures derived
from immature embryos and 35% in cultures derivgi#f from immature
inflorescences. The nature of embryogenic callus in the cultures of
both explants was nodular and compact in appearance (Fig. 4.1a).

89



Embrvoids of variable number, shape, and size appeared on the surface
of calli (Fig. 4.1b, c).

Histological examination of the somatic embryoids revealed that
the morphology and structure of the scutellum, coleoptile, and
coleorhiza was similar to zygotic embryos (Fig. 4.1d, e). The shoot
meristem was enclosed by the coleoptile and the root meristem by the
coleorhiza as described for somatic embryos of Triticum aestivum
(Ozias-Akins and Vasil, 1982), Pennisetum americanum (Vasil and
Vasil, 1981), Cynodon dactylon (Ahn et al., 1985), and Panicum
maximum (Lu and Vasil, 1981). Stereomicroscopic observations (Fig.
4.1f) and histological sections (Fig. 4.1g) showed shoots and roots

developing from the somatic embryos.

4.3.2. Plant regeneration

Plant regeneration from immature embryo and inflorescence-
derived cultures of E. canadensis was characterized by the
development of single or multiple shoots with a variable number of
roots and the development of roots without shoot regeneration. Table
4.2 shows thw number and percentage of calll exhibiting morphogenic
responses on MS medium for plant regeneration during culture
periods. Immature embryo-derived calli retained the ability to
regenerate shoots and roots up to 120 days in culture. In spite of
subculturing, the majoﬁty of four month-old embryogenic cali were so
senescent that they were unable to differentiate shoots and roots. In
inflorescence culture, however, calli maintained morphogenic
capability for over 180 days. The rate of shoot and root regeneration
was variable nver culture periods but decreased markedly in the 6th
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month of culture. The trend might be due to the inconsistency in
nature and extent of secondary and tertiary embryogenic callus which
originated from primary embryogenic callus. No significant differsnce
was found in the effects of 2,4-D and GA3 supplement on plant
regeneration at the levels used here. In this study, a total of 357
plantlets were regenerated for 6-month culture.

Ten (2.8%) of the 357 plantlets regenerated were albino (Table
4.3. & Fig. 4.1h). The afbino plantlets did not survive but one partially
chlorophyll deficient plaxit grew to maturity and set seeds accounting
for 16.2% of the total spikelets. This plant had white striped leaves on
every stem and its somatic chromosome number was doubled
(2n=8x=56) (Park and Walton, 1989). It is presumed that the
chlorophyll deficiency was due to chromosome doubling which led to a
doubled dosage of gene controlling chlorophyll deficiency. This
hypothesis is supported by the occurrence of plants with slightly
white-striped leaves in E canadensis (2n=4x=28) (Park, unpublished).
Accordingly, this kind of chlorophyll deficiency might be a result of
external expression of pre-existing genetic factors after chromosome
doubling. Appearance of albino plants regenerated from iimmature
inflorescence-derived calli has been described in Pennisetum
americanum (Swedlund and vasil, 1985), Echinochloa oryzicola
(Takahashi et al., 1984), Bromus inermis, Alopecurus arundinaceus,
Agrapyson cristatum, and Stipa virldula (Lo et al., 1980). Among them,
doubling of chromosome numbers was found only in Eckinochloa
oryzicola and Pennisetum americanum. Finally, only 192 regenerants
grew to maturity because many young plantlets had poor root systems
at the time of transplanting.
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In conclusion, this study establishes the optimum size of explants

f»r embryogenesis and plant regeneration from culture of immature
embryoé and inflorescences of E. canadensis. This study was
conducted by supplementing only one or two hormones (2,4-D and
GA3) to a single (MS) culture medium. Accordingly, the culture
protocol should be modified to enhance yields of calli and regenerants
from the explants with variable developmental stages.



Table 4.1. Frequency of embryogenesis from immature embryo
and inflorescence culture of E. canadensis

Explant Explant N? of N¢ (%) of explants
sources sizes explants producing
(mm) inoculated embryogenic calli

Immature less than 1.0 140 52 (36.6)b*
embryos 1.0-1.5 82 " 50 (61.0)a

1.5-2.0 244 97 (39.8)b

2.0-3.0 109 42 (38.5)b
Immature 5-20 25 0 (O)b
inflorescence 20 - 40 50 19 (38.0)b

40 - 60 46 26 (56.5)a

60 - 80 39 18 (46.2)a

80 - 120 40 7 (17.5)b

* Values followed by the same letter are not significantly
different at the 5% level according to Duncan's multiple range

test, within explant source.
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Table 4.2. Numbers and percent (in parentheses) of calli showing mor-
phogenic response from immature embryo and inflorescence culture of
E. canadensis

Explant Culture N2 of N¢ (%) of calli forming
sources periods calli shoots + roots roots
(days) inoculated :
Immature 60 75 18 {5 «.0)a* 23 (30.7)a
embryos 90 87 23 (26.4)a 20 (23.0)a
120 79 25 (31.6)a 32 (40.5)a
Immature 60 52 29 (55.8)a 11 (21.2)a
inflorescenz#s 90 49 23 (46.9)ab 12 (24.5)a
120 161 83 (51.6)a 44 (27.3)a
150 215 116 (54.0)a 70 (32.6)a
180 110 40 (36.4)b 39 (35.5)a

* Values followed by the same latter are not significantly different at the
5% level according to Duncan's multiple range test. within explant source.
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Table 4.3. Frequency of chlorophyll deficient (albino) among
E. canadensis regenerants

Explant Culture N2 of N® (%) of chlorophyll
sources periods regenerants deficients (albinos)

- (days) white  light violet
Immature 60 18 2 (11.1)
embryos 120 25 2 (8.0)
Immature 150 116 2 (1.7) 3 (2.6)
inflorescences 180 40 1 (2.5)#

# One chlorophyll-deficient plant with white-striped leaves
survived.



Fig. 4.1. Callus culture and plant regeneration of E. canadensis.

a. embryogenic callus (E) and nonembryogenic callus (N), b-¢. somatic
embryos, d. longisection of a somatic embryo (b) (CL: coleoptile, CR:
coleorrhiza, R: radicle, S: scutellum), e. longisection of a torpedo-
typed embryo (c), f. shoot and root developing from somatic embryo,
g. longisection of shoot and root (f), h. green (right) and albino (left)

plantlets regenerated.
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5. MORPHOLOGY AND CYTOLOGY OF A TISSUE-CULTURE-DERIVED

OCTOPLOID OF Elymus canadensis AND ITS SELFED AND
BACKCROSSED PROGENY!

5.1. Introduction

The Elymus species, which occur in nature as polyploids, form
the largest genus in the Triticeae. About 75% of the species are
allotetraploids (SSHH) and have a genome derived from
Pseudoroegneria (SS) and a genome from Critesion (=Hordeum HH)
(Dewey, 1984a). These spécies have been used as cool season forage
grasses (Walton, 1983) and are regarded as being of value in breeding
disease resistant wheat (Sharma et al., 1984; Mujeeb-kazi and
Bernard, 1985).

Genomic manipulation, involving the addition or replacement of
entire genomes, has been used to studies of evolutionary patterns in
Triticeae and to aid alien gene transiers for agronomic gains.
Hexaploids produced by adding two genomes to the tetraploid Elymus
chromosome complement (SSHH) are of the following type:

(1) segmental autoalichexaploids of the type SSS'S'HH or SSHHH'H!
(Dewey, 1984a)

(2) natural hexaploids of the types SSSHHH (Sadasivaiah and Weijer,
1981), SSHHYY (Dewey, 1980), and SSYYXX (Jensen et al., 1986)

1. A version of this chapter has been partlv published, Park & Walton
1989. Plant Breeding 108: 208-214, and partly submitted for
publication, Park & Walion 1989; Genome. |



(3) interspecific hexaploid hybrids (SS'HHYY') from crosses between
two natural hexaploids (Sakamoto and Muramatsu 1966).

(4) induced hexaploids (SSSHHH) from a cross between induced
octoploids and tetraploids (Aung and Walton 1987).

(5) interspecific and interploidy hexaploid hybrids [(SSS'HHH' from a
cross, 8X (‘A' species, SSSSHHHH) x 4X (B' species, S'S'H'HY] (Aung
and Walton 1989). _

Canada wildrye (Elymus canadensis L.) exists naturally as a
tetraploid in North America. This species has been used for forage and
has been hybridized with other Triticeac grasses and cereals to
develop new germplasm more adaptable to unfavorable environments
and diseases, and also to analyze genome relationships with other
species (Dewey 1984a). However, the nature of the S and H genomes
and tihe denetic variability of the species has not been extensively
studied. |

Apart from the potential of induced hexaploid and octoploid
Elymus for improved agronomic gains, hexaploids would be a good
source of pentaploids which may produce trisomics and tetrasomics
through backcrossing to a tetraploid as a step in the process of -
transferring single valuable characteristics. In addition, various kinds
of trisomics can be employed to study the effect of duplication of a
whole chromosome, a chromosome arm or part of a chromosome arm:
on the morphology, anatomy, and physiology of the organisr. Thdz san
throw light on the basic nature of the genome of the species Fhuisty
1973).

In our laboratory, we are investigating the nature of genomes of
Elymus using E. trachycaulus and E. canadensis (Aung and Walton
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1987, 1989; Park and Walton 1989a; Kumar and Walton, unpublished).
This study was undertaken to morphologically and cytologically
characterize an octoploid obtained from tissue culture of Canada
wildrye and its selfed and backcrossed progeny, including hexaploids,
pentaploids, tetrasomics, and trisomics.

5.2. Materials and methods

5.2.1. Plant materials and embryo rescue

A partially chlorophyll-deficient octoploid plant of Elymus
canadensis, accession 'Canada (PI-372539)' was previously obtained
from immature inflorescence culture (Park and Walton 1989c). Some
spikes of the octoploid plant were self-fertilized and others were
emasculated and pollinated by the two accessions ‘Canada (PI-
372539)' and 'Montana (PI-232249)' of tetraploid E. canadensis.
Among the progeny, a hexaploid plant from a cross between two
different ploidy levels (8X x 4X) of the same accession 'Canada’ was
emasculated and backcrossed to the tetraploid plant. Embryos were
rescued as described in 3.2.3.

5.2.2. Morphological and cytological investigation
Morphological and cytological studies are those described in 3.2.6
and 3.2.7, respectively.
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5.3. Results

5.3.1. Production of selfed progeny

One tissue culture-derived octoploid was fertile and set 60 seeds
on three spikes. From the 6C seeds, 43 germinated and 38 plants
grew to maturity. The 38 selfed progeny consisted of 35 octoploids
(2n=8x=56), 2 aneuploids (2n=8x-2=54), and 1 hexaploid
(2n=6x=42).

5.3.2. Production of backcross progeny

The results of crossing two different tetraploid accessions
(Canada’ and 'Montana’) with octoploid and hexaploid ‘Canada’ are
shown in Table 5.1. None of the plants from the cross between
hexaploid 'Canada’ and tetraploid 'Montana' obtained. The crossability
(no. of plants survived/no. of florets pollinated) was 11 to 12% in the
crosses of the octoploid with both accessions of the tetraploid and 8%
in the hexaploid x tetraploid cross.

5.3.3. Morphological characteristics

The octoploid regenerated from callus culture of the immature
inflorescence showed substantial increase over the tetraploids in leaf
size and stem thickness. Leaves on every stem were white striped (Fig.
5.1a) and 50% larger than those of the tetraploids (Fig. 5.1b). Plant
height and tiller number of the octoploid regenerant averaged 74.3 cm
and 22.3, respectively, and dry matter yleld was 26% higher than the
tetragioids (Table 5.2). The plant was relatively fertile and produced
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20 seeds per spike.

The genotypes of the selfed octoploid progeny were extremely
variable in morphology, fertility, and dry matter yield. With the
exception of plamt height, all characters of the 35 genotypes had
average values lower than the parental octoploid (octoploid
regenerant). Only one plant was superior to the parental octoploid in
all of the characters investigated. Fertility of the selfed octoploids
varied from O to 36.1% and averaged 15.9%. Two aneuploid plants
having two chromosomes less than the octoploid had extremely poor
vigor. Seed fertility of the plants averaged 7.0%.

Or:2 hexaploid plant was more vigorous than the octoploids and
the tetraploids (Fig. 5.1d). The plant showed moderate plant height
and tillering capacity but larger leaves than the octoploids and
tetraploids. Leaf dry weight was twice the stem dry weight (leaf/setm
ratio 2.0) and total dry weight was 68% to 52% higher than that of the
octoploids and the tetraploids, respectively. Fertility of the hexaploid
was only 7.4%.

Progenies from the octoploid x tetraploid cross were vigorous and
slightly different in morphology from plant to plant. Their somatic
chromosome numbers ranged from 39 to 43. Five morphological
characteristics such as plant height, tiller number, leaf width, leaf
iength, and spike length differed slightly within the progenies of 8X x
+¥. crosses, regardless of which tetraploid accession was involved

‘nle 5.3). A plant with 42 chromosomes from the 8X (‘Canada’) x 4X
1 Canada’) cross had f.he';tallest stems and longest leaves (Fig. 5.1g).
Pollen stainalility varied from plant to plant. Pollen of the hexaploid

plants stained better than aneuploid progenies from crosses of 8X x



4X. Hexaploid plants had limited seed set (1 to 3%).

One hexaploid plant obtained from a cross involving accession
‘Canada’ in both parents was backcrossed to the same tetraploid
accession. Six progenies survived and were variable in chromosome
number: one was pentaploid (Fig. 5.1h) and others were aneuploids,
including cne tetrasomic plant and two trisomic plants. The aneuploid
plants with 2n=29, 30, 32, 34, and 35 grew slowly and were less
vigorous than those with 2n=39, 40, and 43 (Table 5.3). Compared to
other progenies of the 6X x 4X cross, tetrasomics and trisomics had
reduced leaf and spike sizes (Fig. 5.11,j) but they had stainable pollen
and set some seeds (17 to 19% seed fertility). Two trisomic plants
were morphologically indistinguishable.

5.3.4. Cytological behavior

The somatic chromosome numbers of individual plants was
identified in 30-50 cells at the metaphase or anaphase stage (Fig. 5.2).
Meiotic chromosome behavior of the individual plants representing
each ploidy level was observed in 30 or more microsporocytes (Table
5.4). The tetraploid formed 14 ring bivalents at metaphage I and
chromosome disjunction at anaphase I and II was normal. The
octoploids, both regenerated and selfed, showed severai multivalents,
bivalents, and univalents at diakinesis, metaphase I, and metaphase I
(Fig. 5.3a, b, c). Ring-type quadrivalents were the most common
multivalent association ‘observed. The mean chromosome
configurations of the octoploid regenerant and one selfed octoploid at
metaphase I v;rere 0971+212311+0831III +257IVand 1.251+
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19.66 II + 1.06 III + 3.06 IV, respectively. Unequal disjunction of

chromosomes, laggards, and chromatid bridges were commonly
observed at anaphase I and II in the octoploids. Equal segregation
(28:28) occurred in 38% of the meiocytes at anaphase I in the
octoploid regenerant. The most frequent chromosome segregation at
anaphase I was 27:29 (35-47%) in the selféd octoploid plants. The
aneuploid FMCs showed a higher degree of meiotic irregularity than
other ploidy levels. An average of 4.69 1 + 16.54 II + 0.85 III + 2.23 IV
per cell was observed, with a range of O to 13 univalents. Meiotic
irregularity of the aneuploids had the same general features as in the
octoploids. Chromosome pairing in the hexaploid PMCs was
characterized by the predominance of trivalents and bivalents (Fig.
5.3d). The mean frequencies of chromosome associations in the
hexaploid at metaphase I were 3.14 1 + 8.25 11 + 8.34 III + 0.41 IV.
Trivalent frequency varied from O to 9 per cell. More than 90% of
anaphase I cells exhibited unequal chromosome segregation
(predominantly 19:23) and occasionally contained from 1 to 7
laggards(Fig. 5.3e). Chromatid bridges were observed at both anaphase
I and anaphase II (Fig. 5.31).

Somatic chromosome numbers of all backcross progenies were
consistent in 30 cells examined (Fig. 5.2). Meiotic pairing at the
metaphase I varied slightly within progenies of 8X x 4X crosses (Table
5:5). Slight differences in frequencies of univalents, bivalents, and
trivalents were found between progenies from the 8x (‘Canada’) x 4X
(‘Canada’) cross and progenies from 8X ('Canada’) x 4X ('Monfana').
Wide variation in pairing mode was observed in the hexaploid plants.

The mean frequencies of the different chromosome associations in the



hexaploid PMCs at MI were 2-3 I + 14-17 Il + 2-4 III + 0.1 IV (Fig.
5.4a). In both crosses, aneuploid plants having 43 or 40 chromosomes
averaged 3 to 4 I, 14 to 17 II, and 2 to 3 III per cell. A pentaploid
plant from the 6X x 4X cross showed mean chromosome associations
of 21, 15 11, and 1 III per cell (Fig. 5.4b). In one tetrasomic plant, 11
+ 13 II + 1 Il was observed in 33% of the meilocytes (Fig. 5.4c). About
17% the meiocytes showed complete chromosome pairing (15 II).
Chromosome associations of 13 II + 1 III were observed in 38% of the
meiocytes of one trisomic plant and 20% of the meiocytes of another
one (Table 5.6 & Fig. 5.4d}. Most of the PMCs in two trisomic plants
(2n=4x+1=29) formed 1 I and 14 I per cell (Fig. 5.4€). Regardless of
the accessions involved in crosses and the chromosome numbers of
the progenies, bivalents formed predominantly ring-type
configurations. Quadrivalents were occasionally observed in all of the
progenies except in a pentaploid plant.

In the backcross-derived hexaploid plants, unequal segregations
(20:22 to 16:26) occurred in the majority of the meiocytes at anaphase
I. The most frequent chromosome segregation was 19:23, accounting
for 41% of the total distributions at anaphase I. Eighty five percent of
the meiocytes had 1 to 8 lagging chromosomes at anaphase I (Fig.
5.4f). From 1 to 6 micronuclei of variable sizes were observed in 41%
of the quartets. Frequencies of lagging chromosomes and micronuclei
in aneuploid progenies from 8X x 4X crosses were 90-92% and 57-
88%, respectively. I a pentaploid plant, 53% of the meiocytes had
lagging chromosomes at anaphase I and 86% had micronuclei at the
quartet stage. Frequencies (and range) of lagging chromosomes at
anaphase I were 51% (1 to 4) of the meiocytes in tetrasomics and
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21% (1 to 3) in trisomics (Fig. 5.4g). Frequencies (and range) of

micronuclei in quartet were 55% (1 to 8) in a tetrasomic plant and
25% (1 to 8) in trisomic plants (Fig. 5.4h).

5.4. Discussion

5.4.1. Plant morphology

Previous reports have made of polyploids induced in tissue culture
(D'Amato 1977; Kasperbauer et al. 1979; Swedlund and Vasil 1985;
Gaponenko et al. 1988). Pre-existing chromosome variation, nuclear
fragmentation, endoreduplication or endomitosis, and abnormality of
mitosis were assumed to influence the variation in chromosome
number during tissue culture (Evans et al. 1984). However,
morphological and cytological information has rarely been presented
for the tissue culture-induced polyploids and their progeny.

The octoploid regenerant of Canada wildrye which was found in
this study showed general features of polyploids such as a reduction in
tiller numbers, gigas leaves and stems, meiotic irregularity, and low
fertility. Of 38 plants obtained from the self-fertilized octoploid
regenerant, 35 (92%) were octoploid. The progeny derived from self-
fertilization of the octoploid varied in all of the characters examined,
probably resulting from gene recombination. Despite reduction in
tillering capacity, an increase in leaf size resulted in a higher dry
matter yield in some octoploids and a hexaploid. In this study,
increased morphological vigor in hexaploid plants which were
obtained both from selfing (probably intercrossing) and from 8X x 4X

crosses seemed to originate from genic causes. This is similar to that
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described for the inducesd hexaploid Slender wheatgrass (Elymus

trachycaulus) which was obtained by backcrossing a colchicine-
induced octoploid to a tetraploid (Aung and Walton 1987). In both
cases, morphological superiority was assumed to be due to a triple
dosage of genes in the genomic constituents of the double triploid
(SSSHHH). The similar phenotypes of progenies from 8X (‘Canada’) x
4X ('Canada’) and those from 8X ('Canada’) x 4X (‘Montana') indicate
that the two accessions of E. canadensis are very similar genotypes.
Among the progenies from 8X x 4X crosses, aneuploid plants (2n=6x-
2=40) were morphologically similar to the hexaploid plant. This might
result from the performance of duplicated genes on other
chromosomes on behalf of functions carried out by the missing genes
(Kuspira 1986). This study reports on trisomics and tetrasomics of E
canadensis for the first time. The different trisomics of E. canadensis
are morphologically indistinguishable. The same has been found to be
the case in other polypl;)id species, i.e. Triticum aestivum and Avena
sativa (Khush 1973).

5.4.2. Cytological behavior

Most of the chromosomes in octoploid paired autosyndetically in
the form of bivalents or quadrivalents. Predominance of bivalents in
the metaphase I in the parentai octoploid and tetraploid E. canadensis
was previously found and indicated intragenomic pairing (S-S and H-
H). Kumar and Walton (unpublished) suggested that the predominance
of bivalents in the amphiploids (8X) of E. trachycauilus and E.
canadensis hybrids as well as in the octoploid plants of parental
Elymus species might be controlled by a polygenic diploidizing
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mechanism. The diploidizing system affects homologous and

homoeologous chromosomes by reducing the multivalent frequency
during meiosis in the autopolyploid plants (Wang 1989). Pentavalents
and hexavalents were not observed in these octoploid PMCs. A natural
octoploid Great Basin wildrye (Leymus cinereus JJJJNNNN) contained
a few pentavalents and hexavalents in PMCs (Dewey 1966).

On the basis of the frequent occurrence of trivalents, hexaploid
plants obtained in this study are regarded to be genomically double
triploids (SSSHHH). Doubled triploidy (SSSHHH) in the Elymus genus
was reported in a natural hexaploid Northern wheatgrass (Elymus
lanceolatus) (Sadasivaiah and Weijer 198 1)‘ and for the induced
hexaploid Slender wheatgrass (Aung and Walton 1987). However,
bivalents and univalents were commonly observed in the PMCs of the
hexaploid E. canadensis plants. This might be due to the fatiure of
chiasma formation at pachytene and chiasma terminalization at the
later stages of meiqsis. Tetrasomics and trisomics obtained from a 6X
x 4X cross also indicdte that the hexaploid female parent is
genomically a double triploid (SSSHHH), because triploids are the best
and most dependable sources nf trisomics in diploid species (Khush
1973). Moreover, the cytologically diploid-like nature of the octoploid
genomes may lead to relatively regular meiotic division and
subsequently form, to some extent, balanced and functional gametes.
The predominant bivalent formation at metaphase I, relatively equal
chromosome disjunction at anaphase I, and fairly stainable pollen and
seed set in the parental octoploid plants also support this notion. For
this reason, the doubled triploid genomes (SSSHHH) could be result of
backcrossing an octoploid to a tetraploid. However, it is unknown how



the hexaploid originated from selfing an octoploid regenerant. It may
have resulted from fertilization of a reduced SSHH octoploid gamete
(female) with a reduced SH tetraploid gamete @male). If this is indeed
the mechanism involved in the origin of the hexaploid, one would
expect the hexaploid to show the same pairing tendencies as other
hexaploids obtained by backcrossing the octoploid regenerant to the
tetraploid. However, there is a substantial difference in the frequency
of trivalents between the hexaploid obtained from octoploid
regenerant and the hexapltid produced from backcrosses, leaving the
question unanswered. A péntaploid consists of five genomes (SSSHH
or SSHHH), but, it is not known which genome is in triplicate.
Fifteeen bivalents in 17% cf the meiocytes in a tetrasomic plant
indicates that two exira chromosomes are basically homologous and
this leads to fairly stainable pollen and 19% seed set. The most
frequent chromosome as;soclation was 1 1+ 14 Il rather than 1311 + 1
III in the trisonzics at metaphase 1. This might also indicate a high
potential for failure of chiasma formation. The failure of chiasma
formatioh may increase the fequency of univalents in these genomes,
leading to limited recombination and sterility. Genetic variability of E.
canadensis and gene introgression from this species into other
species may therefore be limited. Wang (1984) discovered a
desynaptic variant in the diploid Critesion violaceum in which low
chiasma frequency at metaphase I might be controlled by the dosage
effect of the desynaptic gene, which was probably recessive. However,
it is not clear if the low "frequency of trivalents in these trisomics is
controlled by a recessive desynaptic gene. Chiasma frequency is closely

related to chromosome size, i.e. the longer chromosomes have a
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higher chiasma frequency than shorter ones (Khush 1973). The
differences in chromosome sizes and chiasma frequency between the
S genome and H genome of Elymus species have not been determined
with certainty because the donor species of the H genome is not
known.

The extra chromosome in the two trisomic plants was not
identified by karyotype analyses. However, the differences in
chromosome pairing configurations between the trisomic plants may
indicate that they are different trisomics. Variable frequencies of the
chromosome associations have previously been found in different
trisomics of tomato (Rick and Barton 1954), barley (Tsuchiya 1963),
and rice (Watanabe and Koga 1975). It may thus be possible to produce
a complete series of trisomics of this species provided the same cross
(6X x 4X) is repeated extensively.

Generally, chromosomal irregularity, resultant reduction in
fertility, and lack of vigor are known to make the induced polyploids at
high ploidy levels unfavorable for agroncmic use. For these reasons,
Asay and Dewey (1976) believed that producing autoallocctoploids in
Elymus was a negative strategy for forage breeding. However, Aung and
Walton (1987) demonstrated that the gigas and partially fertile
hexaploid Slender wheatgrass, which might be due to genomic
triploidy, could be vegetatively propagated for practical use and would
be useful in producing primary trisomic and tetrasomic lines as
genetic stocks for gene mapping. In fact, this study indicates that the
production of a complete trisomic series of E. canadensis by crossing
hexaploids with tetraploids and by selfing of trisomics and tetrasomics

would provide substantial information on the nature of the genomes of
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this species as well as on the location of important genes on the

chromosomes. The octoploids and hexaplo’ds of E. canadensis may
also be used in crosses with diploid Triticeae grasses to produce alien
chromosome addition or substitution lines for forage or cereal crop
improvement.

Consequently, this study confirmed genome modification in tissue
culture and the potential of octoploids and hexaploids as raw
polyploids for forage or cereal breeding and genetic studies of Canada
wildrye.



Table 5.1. Frequencies of embryos and plants obtained from the crosses,
8X x 4X and 6X x 4X, and chromoseme numbers of progenies

Crossi# N2 of N2 of N¢ of e of
florets embryos plants chrom - jomes
- pollinated cultured survived (2n)&#
8XECC x4X ECC 25 8 3 42, 40, 39
8X ECC x4X ECM 45 15 5 43, 42(2), 40(2)
6X ECC x4X ECC 72 12 6 35, 34, 32, 30, 29(2)
6X ECC x 4X ECM 28

# ECC = Elymus canadensis accession 'Canada (PI-372539)'
ECM=]Elymus canadensis accession ‘Montana (PI-232249)'
## N*? of plants in parentheses
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Table 5.6. Chromosome configurations of trisomic plants (2n=4x+1=29)
of E. canadensis at metaphase 1

Chromosome conﬁgurauon Plant 1 Plant 2

N® of cells %  N° of cells %

1Iv + 1111 + 31 3 3.1 - -
1IV + 1HII + 1111 1 1.0 - -
3III + 1011 1 1.0 - -
211 + 111 + 1I 1 1.0 - -
1III + 1311 36 37.5 17 19.5
1III + 1211 + 21 2 2.1 - -
1411 + 11 52 54. 62 71.3
13II + 3I - - 7 8
1211 + 51 - 1 1.1

Total 96 100.0 87 100.0




Fig. 5.1. Plant morphology of E. canadensis at different ploidy levels.
a. white striped leaves of octoplcid regenerant, b. octoploid
regenerant, c-e. 3 month-grown plants, ec. tetraploid (control),

ﬁ. hexaploid, e. octoploid (selfed), f-j. 12 month-grown plants,

f. tetraploid (control), g. hexaploid (backcrossed), h. pentaploid,

i. tetrasomics, j. trisomics.






Fig. 5.2. Somatic chromosome complements of different ploidy levels
of E. canadensis. a. octbploid (2n=8x=56), b. hexaploid (2n=6x=42),

¢. pentaploid (2n=5x=35), d. tetrasomics (2n=4x+2=30), e. trisomics
(2n=4x+1=29).






Fig. 5.3. Meiotic chromosome behavior of octoploid and hexaploid of
E. canadensis. a. diakinesis of the octoploid (six quadrivalents),

b. metaphase I of the octoploid (four quadrivalents), e. metaphase I of
the octoploid (one quadrivalent), d. metaphase I of the hexaploid (nine
trivalents), e. anaphase I of the hexaploid (seven laggards). f. anaphase
Il of the aneuploid (one laggard and chromatic bridge). Arrows
indicate quadrivalents,






Fig. 5.4. Meiotic chromosome behavior of hexaploid (backcrossed),
pentaploid, tetrasomics, and trisomics of E, canadensis. a. 11+ 13 I +
5 Il in a hexaploid PMC at MI, b. 31 + 101I + 4 III in a pentaploid
PMCatMl,c. 11+ 1310+ 11Illina tetrasomic PMC at MI, d. 13 1T + 1
Il in a trisomic PMC at MI, e. 11 + 14 I in a trisomic PMC at M,

f. five laggards in a hexaploid PMC at Al, g. one laggard in a trisomic
PMC at Al, h. three micronuclei in a trisomic PMC at the tetrad stage.
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6. MORPHOLOGY, CYTOLOGY, AND FERTILITY OF TETRAPLOID

PLANTS REGENERATED FROM AN IMMATURE INFLORESCENCE
CULTURE OF Elymus canadensis 1

6.1. Introduction

Many perennial forage grass cultivars have been developed by
mass and recurrent selection of genetic variants in existing species
(Walton 1983). Wide hybridization and polyploidy are also occasionally
used as breeding strategies (Dewey 1984). In recent years, genetic
variation and genomic rearrangement in tissue culture have been well
documented for many crop species including the Gramineae (Lorz and
Brown 1986; Larkin 1987).

Canada wildrye (Elymus canadensis L.) is a self-fertilized perennial
grass native to U.S. and Canada which is sometimes grown as a
cultivated species (Walton 1983). The species has been crossed with
cereals (Mujeeb-kazi and Rodriguez 1982; Hang and Franckowiak,
1984; Mujeeb-kazi and Bernard 1985; Park and Walton 1989a) and
forage grasses (Dewey 1984) to breed potentially disease resistant
cereals or high yielding énd good quality forages.

To examine the potential of tissue culture for the genetic
variability of E. canadensis, the somatic tissues of immature embryos
and immature inflorescences of E. canadensis were cultured and one
1. A version of this chapter has been submitted for publication. Park &
Walton 1989. J. Genetics & Breeding.
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octoploid somaclone (2n=8x=56) and its selfed progeny were studied

morphologically and cytologically (Park and Walton 1989b,c). The
present study describes the variability in morphology, dry matter
yield, chromosome behavior, and fertility among the somaclones with

a normazl tetraploid number of chromosomes (2n=4x=28).
6.2. Materials and Methods

6.2.1. Plant materials

A random sample of fifty six plants (2n=4x=28) from one hundred
and seventy two somaclones which were obtained from immature
inflorescence culture of Elymus canadensis (Park and Walton 1989b)
was studied for morphological characters, dry matter yield, and
fertility.

6.2.2. Morphological investigation

The characters investigated were plant height, stem height,
number of tillers, leaf length, leaf width, spike length, dry weight, and
leaf/stem ratio. The selected plants were grown in 5-inch pots' in the
greenhouse. Each plant =<vas sgl2 into five clones of equal size to
establish a randomized compi¢ts block trial with five replications. All
characters were measured at maturity. Stem height was recorded as
length from ground level to the top of stem, excluding the spike. Leaf
sizes were measured at the longest and widest parts of the 2nd, 3rd,
and 4th leaves from the top. The plants werc cut at ground level and
the vegetation was dried in an oven at 70 9C for tWo days and weighed.
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The vegetatively propagated clones of a seed-sown Canada wildrye

plant from which the explants for tissue culture were obtained were
used as control. An analysis of variance for each character was
computed by SASS.

6.2.3. Cytological observation

Eight somaclones, which differed substantially in their
morphology from the parent plant, were used for meiotic study. All
meiotic observations were made on pollen mother cells (PMCs) fixed
in Carnoy's (6:3:1) solution and stained with 1.5% acetocarmine.

6.2.4. Fertility investigation

For all of the somaclones, seed fertility was recorded as the
proportion of seeds set on open-pollinated spikes to the total number
of florets. Pollen stainability was the percentage of pollen stainable
with 2.0% acetocarmlne.solution. To study the nature of sterility, four
completely sterile somaclones were emasculated and outcrossed with

functional pollen of a control plant. The F] progeny were investigated
for meiosis, seed fertility, and pollen stainability.

6.3. Results

6.3.1. Morpholsgicai characteristics and dry matter yield

Signidicant differences (P<0.05) were found between control and
somaclones and within somaclones for dry matter yield and all the
morphological characters except leaf length (Table 6.1). While all of

these changes for quantitative traits are of interest, some are not of
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agronomic value because some traits such as leaf length, stem height,

plant height, and spike length decreased (Fig. 6.1). In contrast, dry
matter yield, tiller number, leaf width, and leaf/stem ratios of the
somaclones showed values both higher and lower than the .parent
plant. Of the somaclones studied, 12 plants (21%) gave a higher dry
matter yield than the parent plant from which they were derived and
15 plants (28%) gave a greater numbers of tillers than the parent.
Leaves from fifteen somaclones were wider than those of the parent
and 35 somaclones had a higher leaf/stem ratio. In Table 6.2, 10 high-
yielding somaclones are listed together with their tiller numbers,
mean leaf width, and leaf/stem ratio. 1136-1 gave the highest yleld
(59% more than the coﬁ&ol) followed by D100-3 and 1135-1. Two
genotypes had high tiller numbers, G112-1 and 1136-1 being 112%
and 67% higher, respectively, than the control. The leaf width for
D100-3 was 35% wider than the control which was greater than for all

other somaclones.

6.3.2. Chromosome behavior during meiosis

Eight somaclones used for cytological studies were selected based
on their distinguishing gross morphological differences from the
control (Fig. 6.2). Table 6.4 shows mean chromosome configurations at
diakinesis and metaphase I, abnormalities of chremosome behavior at
anaphase I and the tetrad stage, and the fertility of the control and
eight somaclones. Changes in chromosome association at metaphase I
were observed in the PMCs of all eight somaclores. Control plants
showed predominantly well-connected bivalents (13.94 per cell) and
infrequently unpaired univalents (0.12 per cell) at metaphase I (Fig.
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6.3a). All somaclones occasionally formed multivalents at diakinesis

(Fig. 6.3b) and showed chromosome associations including an
increased number of univalents and a variable range of multivalents
ranging from trivalent t6 hexavalent at metaphase I (Fig. 6.3c-e). The
average number of bivalents among the somaclones was 12.01 to 13.57
per cell. Bivalents ranged from 2 to 14 per cell. E11-8 and H140-3
had an average of 1 univalent per cell and J200-3 had 2 univalents per
cell. Isochromosomes were rarely observed at metaphase 1. The
frequencies of trivalents and quadﬁvalenfs were less than one per cell
in all somaclones examined. Trivalents were mostly V-shape and
quadrivalents tended to be chain-type. Pentavalents or hexavalents
were rarely observed in D100-3, E11-8, and 1144-1. Abnormalities of
chromosome behavior at anaphase 1 and tetrad stage examined in this
study included unegual distribution of chromosomes, lagging
chromosomes, chromatid bridges, fragments, and micronuclei (Fig.
6.3f-h). In the control plant, the frequencies of the chromosome
abnormalities were low: 2.2% in unequal distribution, 4.4% in
laggards, 0% in bridges, and 2.6% in micronuclei. All somaclones
increased significantly the frequencies of the different meiotic
abnormalities, with on average 5.3% in unequal distribution, 9.0% in
laggards, 3.9% in bridges. and 8.5% in micronuclei. In the
somaclones, 2.6% (F8-2) to 7.4% (J200-3) of the total meiocytes at
anaphase I, showed unequal distribution of chromosomes. The range of
chromosome distribution in each pole was 11-17 (F8-2), 12-16
(D100-3, E11-8, 1144-1, and J200-3), and 13-15 (D73-13, G112-1,
and H140-3). From 5.7% {D73-13) to 13.5% ({144-1) of the meiocytes
at anaphase I had from 1 to 7 laggards. From 0 (D73-13) to 5.9%
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(D100-3) of the meiocytes had chromatid bridges at anaphase I.

Chromosome fragments were uncommonly observed at anaphase I and
I1. In the tetrad stage, 3.3% (D73-13) to 12.8% (J200-3) of the
meiocytes had from 1 to 4 micronuclei.

6.3.3. Seed fertility and pollen stainability

Seed ferility and pollen stainability averaged 53.8% and 58.5%,
respectively, in the control plant. Seed fertility among the somaclones
was variable, ranging from Q to 45% (Fig. 6.1). Among 56 somaclones,
31 plants were completely sterile. Only three plants {C19-3, C19-4,
and E11-10) had more than 20% seed fertility. Six plants had low rate
of seed set, ranging from 16.4% to 10.2%. Seed fertility of 15 plants
was less than 10%.

Pollen stainability of the somaclones differed among the clones
(Fig. 6.4). The range of pollen stainability was from 56.1% in B26-2 to
1.5% in B28-1. Pollen stainability of 5 plants was as high as for the
control plant. Twénty nine plants, comprising 52% of the total
somaclones, exhibited pollen stainability between 24% and 49%. Five
plants (B28-1, D100-1, E11-8, F82-3, and F82-5) had very low pollen
stainability (1.5% to 6.2%).
To study the nature of éteriilty, four sterile somaclones (E11-8, G112-
1, H140-3, and Ii44- 1), for which meiosis was analyzed, were
emasculated and pollinated with normal pollen of the control plant.
Twenty two F} plants were obtained from this cross: 3 from E11-8, 6
- from G112-1, 5 from H140-3, and 8 from 1144-1. All of the F1
progeny behaved normally during meiosis. H140-3 had good seed
fertility and pollen stainability in F1. The F] progeny of the other
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three sterile somaclones pollinated with normal pollen were sterile

and had variabie pollen stainability, ranging from 1% to 32%.

6.4. Discussion

6.4.1. Morphological variation

For all morphological characters studied, ire average values for
the somaclones were lower than those for the parental seed-sown
Canada wildrye plants. While average dry matter yield from the
somaclones decreased; however, 10 genotypes gave higher yields and
some had more tillers, a greater leaf width, and a higher leaf/stem
ratio than the control plant. Some of the high yielding somaclones
were dwarf and leafy with many tillers. These characteristics may
make them satisfactory for grazing. Such materials are of potential
breeding value provided the changes are heritable. However, sterility
prohibited a study of inheritance.

Previously, somaclones obtained from embryogenic callus cultures
of Panicum maximum (Hanna et al. 1984), Pennisetum americanum
(Swedlund and Vasil 1985), Zea mays (Armstrong and Green 1985),
and X Triticosecale Wittmack (Stolarz and Lorz 1986) were found to
be relatively uniform in morphology. However, heritable genetic
variation in morphology was found in fertile somaclones of cereal
crops such as Oryza sativa (Sun et al. 1983), Triticum aestivum (Larkin
et al. 1984; Maddock and Semple 1986; Chen et al. 1987), X
Triticosecale Wittmack (Jordan and Larter 1985), Zea mays (Lee et al.
1988), and Sorghum bicolor (Bhaskaran et al. 1988). This study



detected an obvious trend within the somaclone population for plants
with reduced height and a more prolific tillering capacity relative to
the parental plants.

6.4.2. Chromosomal variaticn

Chromosome structural changes were observed in all somaclones
examined. At diakinesis and MI, multivalen:s were observed,
indicating interchanges between nonhomologous chromosomes. An
increased frequency of univalents probably resulted in the higher
frequency of micronuclei in the tetrad stage. Observations of
chromatid bridges and fragments indicate the occurrence of
paracentric inversions. Unequal distribution of chromosomes at
anaphase I was observed more frequently in somaclones than in the
control plants and probably led to unbalanced gametes.

Chromosome rearrangements in tissue culture of the Gramineae
have been observed in oats (McCoy et al. 1982), maize (Lee and
Phillips 1987), tall fescue (Eizenga 1989), interspecific hybrids from
crosses between Hordeum vulgare and H. jubatum (Orton 1980) and
from crosses between Lolium muiltiflorum and L. perenne (Ahloowalia
1983), and intergeneric hybrids from %zosses betweenTriticum
aestivum and Secale sereale (Lapitan et al. 1984), and from between
Triticum crassum and Hordeum vulgare (Fedak and Grainger 1986).
The most frequent observations of chromosome structural changes in
previous studies were heteromorphic pairs, univalents, multivalents,
fragments, bridges, multiconstrictional chromosomes, and
isochromosomes. These were indicative of deletions, duplications, and

interchanges in which chromosome breakage and fusion were
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ipvolved. The chromosome rearrangements observed in this study
were apparently followed by genic alteration leading to phenotypic
changes. Small changes in chromosome structure could alter
expression and genetic transmission of specific genes, perhaps by
deletion or duplication of one copy of a gene {(Evans 1989).

6.4.3. Variation in fertility

Of all the characteristics studied, the greatest variability occurred
in fertility. Meiotic instability is likely associated with low fertility or
sterility of the somaclones. Reduction in fertility also occurred among
the somaclones studied »1n wheat and triticale. The percentage of
complete sterility ranged from 1.5% to 12.3% in wheat somaclones
(SC1 and SC2) (Larkin et al. 1984) whereas the mean fertility of
triticale somaclones was approximately 10% (SC1) to 35% (SC2)
below that of parental plants (Jordan and Larter 1985).

In this study, seed set in the sterile somaclones pollinated with
normal pollen indicates that sterility could be due to non-functional
male gametes of the somaclones. Fertile progenies of one somaclone
(H140-3) indicate that the sterility of H140-3 was due to meiotic
irregularity, as shown in Table 6.4. However, three other sterile
somaclones (E11-8, G112-1, and 1144-1) still showed complete
sterility in their outcrossed progeny in spite of normal meiosis.
Therefore, the origin of sterility in the F] progeny of the three
somaclones is not clear. With further studies of meiosis among the
semaclone progeny may indicate the cause of sterility. Studies are also
needed concerning the restoration of fertility over a few advanced

generations by repeated pollination of sterile progeny with normal
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pollen. Male sterile variants showing heterosis in the progeny from a

normal pollination were found in rice tissue culture but the nature of
the male sterility has not been elucidated (Ling et al. 1987). Catius
culture of cytoplasmic male sterile maize restored fertility (Earle et al.
1987). These studies indicate that tissue culture may induce sterility
or ré¢store fertility. The present study confirms red:'ction in fertility
and complete sterility in tissue culture which is likely due to meiotic
instability.

In conclusion, it was found in this study that E. canadensi: in
tissue culture is prone to changes in morpholoy, cytology, and fertility.
However, results do not indicate conclusively whether the changes are
genetic or epigenetic, because many oi the somaclones did not give
rise to selfed progeny at all, or else te insufficient numbers to
determine the nature of the variability.
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Fig. 6.1. Frequency distributions of Canada wildrye somaclones and
range of control (bold bar) for morphological characters, dry matter
yield, and fertility.
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Fig. 6.2. Plant morphology of Canada wildrye somaclones selected for
meiotic analysis. a. semidwarf, long leaves, sterility, b. semidwaif,
short and broad leaves, low fertility, c. semidwarf, low number of
tillers, sterility, d. semidwarf, thick stems, short and broad leaves, low
fertility, e. dwarf, compact, short and broad :eaves, sterility, f. dwarf,
narrow leaves, low fertility, g. dwarf, compact, short and broad leaves,
sterility, h. dwarf, narrow leaves, high number of tillers, leafy. low
fertility.






Fig. 6.3. Meiotic chromosome biehavior of eight somaclones of E.
canadensis. a. fourteen bivalents in a control plant PMC at M1,

b-h. meiotic irregularity in somaclone PMCs,.b. hexavalent (arrow) and
quadrivalent association at diakinesis, ¢. one quadrivalent at MI, d. two
quadrivalents (long arrows), one fan type trivalent (short arrow), and
one isochromosome (dark triangle) at MI, e. one V-shape trivalent
(arrow), four bivalents, and seventeen univalents at MI, f. two lagging
chromosomes at Al, g. chromatid bridge (long arrow) and fragment
(short arrows) at Al, h. micronuclei at the tetrad stage.
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Fig. 6.4. Pollen stainability in the somaclones of E. canadensis.
a. Control, b. J200-3, c. E11-8, d. G112-1
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7. DISCUSSION AND CONCLUSIONS

In this study, creation of autopolyploids and allopolyploids of
Elymus canadensis has been attempted by intergeneric hybridization,
somatic tissue culture, and interploidy hybridization. The plants
developed in this study include triploids (SHN .::d SHR), tetraploids
(SHRR), pentaploids (SSHHH or SSSHH), hexaploids (SSHHNN,
SSHHRR, and SSSHHH), octoploids (SSSSHHHH), and some other
aneuploids including tetrasomics and trisomics of E. canadensis.

Allotriploids of the same genome constitution were previously
produced between Elymus scribneri (SSHH) and Psathyrostachys
Juncea (NN) by Dewey (1967a) and between Elymus canadensis
(SSHH) and Sec::le cereale (RR) by Hang and Franckowiak (1984).
However, the al‘ohexaploids (SSHHNN and SSHHRR) are reported for
the first time i1: this study. Genomic disharmony and meiotic
instability in theiz allohexaploids led to undesirable phenotypes and
sterility. In terms (" potential breeding value, the serious instability of
the allohexaploids even in early generations is in contrast to what
occurs in the man-made allohexaploid triticale, which showed genetic
and cytogenetic instability in relatively late generations (Muntzing
1979).

Chromosome behavior of these allohexaploids was comparable to
that of the segmental autoallohexaploids (SSS'S'HH) between the
species with a common genome (Dewey 1974, Asay and Dewey 1976).
Chromosome pairing of these allohexaploids (SSHHNN and SSHHRR)
was also comparable to that in wheat x rye hexaploid hybrids
(AABBRR). The ph system on wheat chromosome 5B suppressing



homoeclogous pairing has been shown to affect the pairing of rye
chromozomes in both octoploid and hexaploid triticale (Riley and
Miller 1970; Thomas and Kaltsikes 1971). The genetic regulation of
diploid-like meiotic behaviour has been known in many segmental
allopolyploids including Triticum aestivum (Riley and Chapman 1958),
Avena sativa (Rajhathy and Thomas 1972), and Festuca arundinacea
(Jauhar 1975). Predominately intragenomic pairing in these
allohexaploids resulting from nonhomoloéy among the parental
genomes indicates that they are genomic allohexaploids without
genetic control of meiotic pairing. In fact, the female parent of the
allohexaploids, E. canadensis is a strict allotetraploid (Dewey 1966,
1967b). Autosyndetic pairing in SSHH genomes of E. canadensis might
be attributed to natural hybridization and spontaneous doubling of the
chromosome numbers of the Fi hybrids between diploid progenitors
(SS and HH species). On the basis of multivalent patterns, this study
indicates that there is some capability of randomly homoeologous
pairing (S-H, H-N, or S-N in E. canadensis x P. juncea hybrids and S-
H, H-R, or S-R in E. canadensis x S. cereale hybrids). Where extensive
intergenomic pairing has taken place, alien addition or substitution
lines carrying desirable genes from the alien species could be obtained
from backcrosses of these aliohexaploids to the parents. However, as
discussed earlier, cross incompatibility makes it difficult to produce
backcross progeny in both allohexaploids with the exception of the
backcross of SSHHRR to RR. Accordipgly. overcoming the cross
incompatibility barrier would be a prerequisite to the enhancement of

introgression for developing new germplasm associations.
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This study also morphologically and cytologically characterized a
tissue culture-derived octoploid of E. canodensis and its selfed and
backcrossed progenies. The octoploid of E. canadensis, [genome
formula (SSSSHHHH]], is not found in nature (Bowden 1964).
Predominance of bivalents even in the octoploids indicates a possible
diploidizing system in these autoallopolyploids, as suggested by Kumar
and Walton (unpublished). This autoalloploid exhibited phenotypically
general features of autopolyploidy, i. e. reduction in tiller number and
fertility, and gigas icaf and stem sizes. However, in terms of forage
production, reduced biomass yield made these octoploids unsuitable
for practical agronomic gains. Although the breeding behavior of the
octoploid E. canadensis was not studied systematically, a high
proportion of octoploid progeny in the S1 population suggests that the
maintenance of the octoploid in advanced generations may be possible.

A natural hexaploid E. lanceolatus with the genome formula of
SSSHHH resulted from the fertilization between unreduced gametes
and normally reduced gametes (Sadasivaiah and Weijer 1981). This
hexaploid E. lanceolatus, which exists in nature, indicates that the
double triploid type of Elymus species (SSSHHH) is not beyond the
optimum ploidy level. However, the induced SSSHHH hexaploids in
the present study were cytologically unstable, leading to a reduction in
fertility. In the following selfed generation, most of the offspring were
aneuploids with variable numbers of chromosomes (Park,
unpublished). In the sul;sequent generations of the hexaploid E.
trachycaulus, increase of chromosome instablility is assumed to be
responsible for drastic decreases in morphological vigor and forage
yield (Walton, unpublished). Consequently, the polyploids induced in
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this study are not competitive with the natural tetraploid E.

canadensis in relation to forage yield and genetic or cytogenetic
stability. These results are consistent with Dewey's skepticism of the
induction of polyploidy at higber ploidy levels than hexaploid (Dewey
1979).

Induced polyploids from this study czn be used as a bridging
species for wide crossses, and the aneuploid stocks can be used for
genetic studies. The octpploid E. canadensis may be hybridized with
annual or perennial diploid Triticeae species with higher cross
compatibility compared to the tetraploid E. canadensis. In fact, one S)
octoploid plant has been hybridized with the diploid Agropyron
cristatum cv, Parkway and prod:.~d a pentaploid F hybrid (Park,
unpublished). A fertile pentapiout ir:i-1 was obtained between the
octoploid Elymus trachycauli:< =4t i diploid Pseudoroegneria spicata
(Aung and Walton 1987), and has been backcrossed to P. spicata to
introduce drought tolerance (Walton, unpublished).

Primary aneuploid stocks are useful for genetic studies and for an
understanding of genoine nature (Khush 1973). Tetrasomics and
trisomics of E. canadensis are reported for the first time in this study.
Further extensive 6X x 4X crosses, and selfing of the fertile
tetrasomics and trisomics, would increase the number of trisomics
with potential for producing a complete trisomic series of E.
canadensis . In this trisomic series, the nature of the S and H genome
in E. canadensis could be precisely determined if each extra
chromosome and a marker gene were identified.

In addition, this study indicates a possible application of somatic

tissue culture to genetic or epigenetic modification in this species.
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Embryo-derived callus formation and plant regeneration has not

previously been employed for the production of the SHN and SHR
hybrids. The health and maturity of the SHR hybrid plants obtained
through such methods may be indicative of tissue culture-induced
chromosome rearrangements followed by genic or epigenetic
modification, to suppress gene expression that might otherwise result
in hybrid necrosis. Besides multivalent formation, other indications of
chromosome rearrangements in the SSHHRR amphiploids were the
ability to backcross the amphiploid to the male parent, S. cereale.
SSHHNN amphiploids obtained through the conventional embryo
culture failed to backcross to either of the parents. Fedak and Grainger
(1986) indicated a potential applicaticn of callus culture to cause
epigenetic modifications that would lead to a change in incompatibility
barriers. The potential to backcross regenerants was greater than for
the original intergeneric sterile hybrids.

Changes in chromosome structure were detected among the
regenerants of E. canadensis. Although some of the somaclones were
more productiVe. their chromosomal instabilits: {ed to complete
sterility or low fertility. Accordingl_y. it is not known whether the
somaclonal variation in‘-morphologr. cytology, and fertility is heritable
or epigenetic. Further studies are needed with large populations of
fertile somaclones to letermine the inheritance of somaclonal
variation of this species. For genome manipulation, immatuve
inflorescence culture was effective for this native grass species.

From the information discussed above, some general conclusions
can be made about the genome manipulation of E. canadensis through
| intergeneric hybridization, somatic tissue culture, and interploidy
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hybridization for the purpose of developing more adaptive germplasms

as forage grasses.

1. Genomic allohexaploids of E. canadensis with two alien species, P.
Jjuncea and S. cereale, that do not cartry a common genome is not a
promising procedure to develop improved forage grass germplasm.

2. Genomic disharmony and chromosomal instability in these
intergeneric hybrids limit gene transfer of desirable character from
either of the parents.

3. Plant regeneration from hybrid embryo-derived callus culture is
apparently an alternative to rescue of undifferentiated hybrid embryos
and apparently overcomes hybrid necrosis.

4. Genome manipulation and cytological variability of E. canadensis can
occur by changing chromosome number and structure using somatic
tissue culture. However, somaclonal variants have limited direct value
for forage production, but may contribute to further genetic studies of
the species.

5. It is not recommended to autoallopolyploidize E. canadensis for use
as a forage grass. However, hexaploids of the double triploid type are
worthy of further study,. to gain agronomic potential and to understand

the nature of the genomes.
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Genomically based nomenclature and traditional nomenclature of
pérennial Triticeae species referred to in this study

Genus
Agropyron

Pseudoroegneria

Psathyrostachys

Critesion

Thinopyrum

Elytrigia
Elymus

Species
Agropyron cristatum

Agropyron desertorum

Pseudoroegneria
libanotica

Taditional nomenclature

Agropyron cristatum
Agropyron desertorum

Agropyron libanoticum

Pseudorogneria spicata .Agropyron spicatum

Psathyrostachys juncea

Critesion bogdanii
Critesion californicum

Thinopyrum
curvifolium

Elytrigia repens

Elymus canadensis
Elymus caninus
Elymus ciliaris
Elymus drobovii
Elymus elymoides
Elyrwss glaucus
Elymus lanceolatus
Elymus mutabilis
Elymus patagonicus
Elymus scribneri
Elymus sibiricus

Elymus tilcarensis
Elymus trachycaulus

Elymus trachycaius
spp. subsecundus
Elymus tsukushiensis
Elymus yezoensis

Leymus cinereus
Leymius innovatus
Leymus triticoides
Leymus secalinus

Elymus junceus

Hordeum bogdanii
Hordeum californicum

Agropyron curvifolium

Agropyron repens

Elymus canadensis
Agropyron caninum
Agropyron ciliare
Agropyron drobevii
Elymus sitanion
Elymus glaucus
Agropyron

dasy

Agropyron mutabilis
Elymus patagonicus
Agropyron scribneri
Elymus sibiricus
Agropyron tilcarense
Agropyron
trachycaulum
Agropyiron
subsecunidum
Agropuron tsukushiense
Agropyron yezoense

Elymus cinereus
Elymus tnnovatus
Elymus triticoides
Elymus secalinus



