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ABSTRACT

This thesis is mainly concerned with the oscillation theory of the neutral

differential equations of the form

% v +9(ty - r1®), - 9t - re®))]
+ £ (630,56 - @), ¥t - Tal®)) =0.

Some new criteria for oscillation and for existence of nonoscillatory solutions
are obtained. An asymptotic analysis for a class of nonlinear equations is also

obtained.
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CHAPTER 1

INTRODUCTION AND PRELIMJARIES

1.1. Introduction

A neutral delay differeatial equation (NDDE) is a differential equation
in which the highest order derivative of the unknown function appears in the
equation both with and without delays. This thesis is mainly concerned with

the oscillation theory of neutral deley differential equations of the form

% @) +9(t, (¢ ~ (@), (2 - rd(t))))

+ f(t, y(),(t = 11 (t)), ...yt - rm(t))) =0 (1.1.1)

where for some %, € R and some positive integer n

9 € C(ffo,00) x R" x - - x R", IR")

(1.1.2)
f € C([to,00) x R™ x --- x R*,IR"),
and for i=1,...,f/ and j=1,...,m
Tiy Tj € C([ﬁ),oo), (0,00)) and
(1.1.3)

Jim ¢ — (8] = o0 = Jim [t - (0.

When g = 0, (1.1.1) is usually called a delay differential equation
(DDE). Since Sturm (1836) introduced the concept of oscillation when he stud-
ied the problem of heat transmission, oscillation theory has been an impor-
tant area of research in the qualitative theory of ordinary differential equations

(ODEs). Oscillation theory for NDDESs is a natural extension of that for ODEs,
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while certain known results in the oscillation theory for ODEs carry over to ND-
DEs. Therefore, some background in the oscillation theory for ODEs is essential
for understanding the oscillation theory for NDDEs. Beside its theoretical in-
terest, the study of oscillatory and asymptotic behavior of solutions of NDDEs
is of some importance in applications. NDDEs appear in networks containing
lossless transmission lines, in the study of vibrating masses attached to an elas-
tic bar and also in the study of population dynamics, see [1-4,6,7] and the
references cited therein.

However, the oscillation theory of DDEs and NDDEs is much different
from that of ODEs. For instance, while all linear ODEs of first order exhibit
the nonoscillatory property, the linear NDDEs of first order may have compli-
cated oscillatory behavior. A simple example of this is that of the equation
y'(t)+y(t— F) =0 which has oscillatory solutions y=sint and y = cost.
In general, the delays appearing in the unknown function and its derivatives
have the tendency to cause oscillation. Since the oscillation theory of NDDEs
presents some new problems that are not relevant to the corresponding ODEs,
a study of the oscillation and nonoscillation caused by time delays is most in-
teresting.

For DDEs, i.e., the special case of NDDE (1.1.1) with ¢ =0, the oscil-
lation theory has extensively developed, see [5] and {8] and the references cited

therein. For general NDDEs, the research on oscillation is also active, and the
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oscillation theory has rapidly developed, but it is still not well-established, sce
[5] and the references cited therein.

In this thesis some recent work on the oscillation of NDDEs will be pre-
sented. Chapters £ and 3 deal with linear scalar NDDEs of first order; some
new necessary and sufficient conditions for oscillation are obtained for the au-
tonomous case, and a number of new conditions and comparison results are
obtained for the nonausenomous case. Chapter 4 deals with nonlinear scalar
NDDEs of second order. In Chnpters 5 and 6, we give some explicit conditions
for oscillation of linear systems of NDDEs of higher order, either autonomons, or
nonautonomous. Chapter 7 is mainly concerned with the uonoscillatory aspect
of a class of nonlinear NDDEs in which the asymptotic behavior of solations is

thoroughly investigated.

1.2. Definition and Some Basic Theorems
The content of this section is mainly extracted from [5] and [7].
Consider equation (1.1.1) under the assumptions (1.1.2) and (1.1.3). For

a given initial point o >75, we now define i_; to be
t_; =min {ltg'xgl {t>¢ {t- r.(t)}} mm {gxtf {t - T,-(t)}}}. (1.2.1)
With Eq. (1.1.1) we associate the initial conditions
z(t) = ¢(t) for t_; <t<t (1.2.2)

where ¢ : [t_y,%p] = IR® is a given initial function.



4
DEFINITION 1.2.1: A function y is said to be a solution of the initial value
problem (1.1.1) and (1.2.2) on the interval I, where I is of the form [to,T)
for T<oo, if y:[t-1,)UI — IR is continuous,
y(t)+ g(t,y(t —r1(t)),...,4(t —Tg(t))) is continuously differentiable for ¢t €I

and y satisfies Eq. (1.1.1) for all tel.

REMARK 1.2.1. In this thesis, since we deal with oscillation theory, a solution
of (1.1.1) will be understood as a solution existing on the interval [tp,00) for

some iy 2> %.

The following is the basic global existence and uniqueness theorem for

neutral delay differential systems.

THEOREM 1.2.1. Assume
i) (1.1.2) and (1.1.3) are satisfied, and to > 1, and ¢ € C([t-1,t],R")
are given;
if) for every compact set D C [fp,00) x IR{™)™  there exists a constant

K=K(D)>0 such that
"f(t)zo’zlaﬂwzm) _f(t:yo’yla s ’ym)“ S K||$o - yO"

for all (t,zo,z1,...,Zm),(¢,Y0,Y1y.-.,Ym) € D.
Then the initial value problem (1.1.1) and (1.2.2) has exactly one solution

in the interval [to,T) of existence.
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REMARK 1.2.2.

(i) ¥ the function f in Eq. (1.1.1) has the form

f(t,y(t PN0) N - r,,,(t))),

then condition (i) of Theorem 1.2.1 implies the existence and uniqueness
of the solution of (1.1.1) and (1.2.2).
(i) Any linear NDDE with continuous coefficients satisfies the condition of

Theorem 1.2.2.

There are many ways in which one can define the concept of oscillation of

solutions. For purposes of this thesis we shall use only the following definitions.

DEFINITION 1.2.2: Let Eq. (1.1.1) be a scalar equation. Then a solution y
of (1.1.1) is said to be oscillatory if y has arbitrarily large zeros. Otherewise,

y is called nonoscillatory.

DEFINITION 1.2.3: Let Eq. (1.1.1) be a system of NDDEs. Then a solution
Y= (¥1,..-,¥n)T is said to be oscillatory if every component y;, t=1,...,n,

of the solution y has arbitrarily large zeros. Otherwise, y is called nonoscil-

latory.

DEFINITION 1.2.4: Let Eq. (1.1.1) be a system of NDDEs. Then a solution
¥ =(Y1,...,yn)T is said to be oscillatory if it is eventually trivial or at least
one component does not have eventually constant signum (positive, negative, or

zero). Otherwise, y is called nonoscillatory.
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DEFINITION 1.2.5: Eq. (1.1.1) is said to be oscillatory in the sense of Defini-
tion 1.2.2, 1.2.3, or 1.24, if all solutions of (1.1.1) are oscillatory in the sense

of Definition 1.2.2, 1.2.3, or 1.2.4, respectively.

From the above definitions, the following remarks are obvious.

REMARK 1.2.3.
(i) Eq. (1.1.1) is nonoscillatory, according to Definition 1.2.2, iff there exist
a solution y(t) anda to>% suchthat y(t)>0 (resp. <0) for
some i€ {l,...,n} and t>ty; Eq.(1.1.1) is nonoscillatory, according
to Definition 1.2.3, iff there exist a solution y(t) and a 5 > to such
that ;(t) >0 (resp. < 0) for some i€ {1,...,n} and t 2 to;
Eq. (1.1.1) is nonoscillatory, according to Definition 1.2.4, iff there exist
an eventually nontrivial solution y(t) and a ty>7y such that y;(t)
has eventually constant signum for all ¢=1,...,n and ¢ 2 ¢,.
(i) Although Definitions 1.2.3 and 1.2.4 are different, they coincide with Def-
inition 1.2.2 when Eq. (1.1.1) is a scalar equation.
In the sequel, oscillation for linear, homogeneous and autonomous systems
will be understood in the sense of Definition 1.2.3, and oscillation for other
cases will be understood in the sense of Definition 1.2.4. This is because with

Definition 1.2.4 it is “easier” to obtain results for oscillation.
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For a later application we mention a result on exponential boundedness

of solutions of the following linear system of NDDEs
d L m
% O+ D Pyt )] + Qolt(t) + Y Qi —m) =0 (1.23)
i=1 =1
The following theorem is a simple extension of Theorem 1.2.1 im [5] and

Theorem 7.3 in [7, Chapter 1] for the autonomous case. The proof is similar

so we omit it here.

THEOREM 1.2.2. Assume
i) Pfi=1,...,8) eR™", Q;(j =0,...,m) € C({fp, 0), R"*") and
|Q;i(®)ll £k for some constant k and t> iy;
ii) r¢t=1,...,) and 7j(j =1,...,m) are positive constants.
Let y(t) be a solution of Eq. (1.2.3) on [,00). Then there exist positive

constants M and a such that

ly@)l < Me** for t 21,

Although the above discussion is for the first order NDDE (1.1.1), for
higher order NDDEs, there are parallel concepts to Definitions 1.2.1 - 1.2.5,
and there are similar results to Theorems 1.2.1 and 1.2.2. We do not mention

the details here.
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CHAPTER 2
OSCILLATION OF LINEAR EQUATIONS OF FIRST ORDER

— Autonomous Case

2.1. Introduction

In this chapter we consider the scalar linear first order NDDE with con-

stant coefficients of the form

d n m

O - ;pey(t -+ ; giy(t —7;) =0 (2.1.1)
where p; (i =1,...,n), gj, 7 (j=1,....m) € Ry, r; >0 (i = 1,...,n).
As mentioned in Section 1.2, a function y(t) is said to be oscillatory on
fto,00) if it has arbitrarily large zeros. Eq. (2.1.1) is said to be oscillatory if

all solutions of (2.1.1) are oscillatory.

A pumber of authors have made contributions to the following result, see,

for example, O.Arino and LGyéri [1], [5], and the references cited in [5).

RESULT 2.1.1.. Eq. (2.1.1) is oscillatory if and only if its characteristic equa-

tion

n m
FQ)=X1-) pie™)+ ) gje™ =0 (2.1.2)
i=1 =1
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has no real roots, or equivalently, F(A)>0 forall A€lR.

But to determine whether Eq. (2.1.2) has a real root is quite a problem
itself. To the best of the authors’ knowledge, until now there are very few
explicit conditions to guarantee the oscillation of Eq. (2.1.1) for the general
case. Motivated by W. Huang [5] which gives an alternative necessary and suf-
ficient condition for oscillation of delay differential equations, we derive some
new necessary and sufficient conditions for the oscillation of Eq. (2.1.1) for the
case that n = 2 which can be easily applied to get some explicit sufficient
conditions. The reasons that we discuss the case that n =2 are: i) the cri-
teria for n=2 are much different from those for n =1 ; ii) the discussion
for the general case is tedius and is of a similar idea. Here we should mention
that even for the special case where p; or p; vanishes, the sufficient con-
ditions obtained here are still the best so far in the literature, see section 2.4
and [2-4,7-9). For the case p; =p; =0, our results coincide with the result

given by W. Huang [6].

In the folowing we consider the equation

d m
W@ = pry(t = 1) = pay(t = r2)] + gt ~75) = 0 (21.3)
i=1
with its characteristic equation

m
FQ) = N1-pe™ - pze™) 4 )" gje™> =0, (2.14)
=1
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2.2. Necessary and sufficiént conditions

From (2.1.4) we see that if p;+p, =1 then every solution of Eq. (2.1.3)

oscillates.

For the case that p;+p; <1, we define a subset D of the space !

and a function f on D as follows:

D = {€= (L) : (ijk) € h, Lijx 20, Ty Lijx =1}

and

bisk
H=%,; - 'J. .
() =2, iry+{k=iry+71;

x In (eCipip ~"gjlirs + (k — )ra + 73]/ ijn) (22.1)

where Iy ={(ijk): j=1,....m; k=0,1,...; i=0,...,k}, 5, = ¥ ,
(isk)en
and in (2.2.1) 4;x =0 implies the corresponding terms vanish. Here Ci =

k!

Ak

It is easy to see that the series in (2.2.1) is convergent in D and then

J(¢) is well-defined on D. In fact, for £€ D

D &iji

igi k=i .
g e In (eCipip; ~gjlirs + (k= i)rs + 73]) < 00
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by the comparison test and the definition of D. Also

Ciji -
Izl irl + (k - i)rz + 7; o eukl

1 1/2 2 2 1/2
< (8‘ (ir1+(k—i)rz+'rj)2) (E’e‘f"(lne"")) ’

the right hand side is convergent for £€ D .

THEOREM 2.2.1. Assume p;+p2<1. Then
i) f(€) achieves its maximum at a point & =(€;,) on D whichis
completely determined by the condition that

1
ir +(k-t‘)1'2 +7;

In (Cipipt~g;lirs + (k — )ra + 5)/f0)  (2:2.2)
has the same value for all (ijk) € I, € # 0.

ii) Eq. (2.1.3) is oscillatory if and only if f(£°)> 0.

For the case that p; +p; > 1, we define the following three subsets
Dy, b =1,2,3, of the space [', and three functions hy(S) defined on

Dy, b=1,2,3, respectively: (We have in the expansions below Cf_(,,,n) =

Q—k-‘l)(-kiz)---(-"“) yhk=1,2,....)

Dy = {8 = (Siji) : (ijk) € I, sijkci(k“)[(k +i4+1)ry —irg—17j] 20,

aSiji =1},
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Dy =18 = (Sije) : (i7k) € I, SijeClpyyl(k+i+ 1) —iry — 5] > 0,
L2Siji =1},
D3 ={S =(Sjx): (i, k) € I, Sitl(k+1)ry — 73] 20, T35 = 1),

Sijk
(k+i4+1)ry —ir,— 1

h(S) = Z,

x I (eCZ 4007 *H 0 plgj((k +i + 1)y — iry — 7i)18i5x),

(2.2.3)
ha(S) = T, St
(k+i41)ry —ir, -7
X In (CC—(k+1)P1P2( Mk +i + Drz —iry - 1;)/Sie),
(2.2.4)
Sik
ba(S) = B3 Gt (el g+ D, = /5,0
r (2.2.5)

where I, = {(ijk) : j = Leom k, i=12..), I, = {Gk) : 5 =

L.,m k=0,1...}, 3 = 2 s 23= Y, where Sijk =0 or
(ijk)El (5k)els

Sjx =0 implies that the corresponding terms vanish. Different from the series

in (2.2.1), we can not guarantee that every series hy(5) in (2.2.3) - (2.2.5) is

convergent in D;. Instead, as shown in the Remsek 2.3.1, we see there exists

at least one series hy(S) which is convergent en  D,.

THEOREM 2.2.2. Assume p,; + p2> 1. then

i) for some b=1,2, or 3§ #3{ 5! has 8 maximum at a point S®) =
(Sgl)’ b=1,2, or M= (ngf,;) on Dy, which is completely deter-

mined by one of the conditions that
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1
(k+it)r—irz—1;

xIn (CLguynypr Vg {(k +i 4 1y — irz — 73]/S(3)), 226)

1
(k+i+lra—~ir, —7j

x1n (C anypips “Hgjlk + i + 1)ra — iry — 7]/, 227)

(k+ 1)"1 In ((2p1)~**g;{(k + s ~ 71/ S73) (2.2.8)

has the same value for all (ijk)€ I, or (jk)€ I3, such that S(

l]k

b=1,2, or S;:) #0

ii) Eq. (2.1.3) is oscillatory if and only if 0 < hy(S®) < 00 for some

b=1,2, or 3.

Theorems 2.2.1 and 2.2.2 can be applied to get a series of sufficient con-
ditions for oscillation of Eq. (2.1.3). To use Theorem 2.2.1 we need to find a
£ € D such that f(€*) >0, whereas, to use Theorem 2.2.2, we need to first
choose a suitable function h; which is convergent on Dj, and then find a
S* € Dy such that hy(S*) > 0. The following corollaries are derived from

Theorems 2.2.1 and 2.2.2, where

q=(IIq,-)l/m, and ‘r=%f:r,-.

j=1 i=1
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COROLLARY 2.2.3. Assume p;+p; < 1. Then each one of the following

conditions is sufficient for Eq. (2.1.3) to be oscillatory:

i) EiCipip~gilin + (k—i)ra+75) 2 2 (22.9)

i) mgq 2 2 Ckp}pg"[zrl +(k~i)rp+7]21

ci ..
iii) let a=3,Cipipt~ 'y @ik = Wﬁjﬁ,—’#, (ijk)e I,, and

I, & In(ealir; + (k—i)r: + 75]) 2 0.

COROLLARY 2.2.4. Assume p; +p; > 1.

i) Let ry#ry, and
Bs(201)~¢0g;{(k + Dy — ilelimts B)E+0n-nl _ 3 (9910)
Then Eq. (2.1.3) is oscillatory if and only if

ga(gpl)—(u-l)qje(—‘—r,-,,ln L) {(k+1)rry) _ -r_lTln % >0. (2211)
1=T2

Otherwise, each one of the following conditions is sufficient for Eq. (2.1.3)
to be oscillatory:

if) Y Clanypi gk + i )y —irg =) 21, or (2.2.12)
(ijk)el;
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o) =

mg Y Cliyyp; HHpiglk +i 4 ry —iry - 7] 2
(ij)eJ;

(2.2.13)
where

o= {(ijk) : Ci(,:_”) >0, (k+i+1)ri—irp—7; >0, (k+i+1)ra—iry—17; >0,

| p kP2 (ki 4 1)y ~iry — 7;
and (pg) (k+i+1)r ~ir, —1; > 1}

B = {(ik):Ci(,,_H) >0, (k+i+1)r,—irg—7>0, (k+i+1)ra—ér;—7>0

P\ 24 (k+i4rp—in -7
and (p,) (F+i+)m—irs—7 >1}

iii) (2.2.12) and (2.2.13) hold if p, and p;, r; and r, exchange their

positions respectively.

It is easy to see that I3 # ¢ and has infinitely many terms provided

pr>ps, or pp=p; and 1 >ry.

2.3. Proofs

To prove Theorem 2.2.1 we need the following lemmas.
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LEMMA 2.3.1. Assume p; +p; <1. Define

Gi(A) =2+ Z gje~ (1 — pye™2" — pye~Aryl (2.3.1)
j=1

and let A* <0 be such that pje=>""t 4 pye=>""2 = 1. Then there exists a

Ao € (A*,00) such that

0 <pre~dom 4 pye~Rom2 < 1, (2.3.2)
and Gy(X\o) is the minimal value of Gy(A) in (A*,o00).

PROOF: Noting that Gj(o0) =00 and G;(A\*+0) =00, the conclusion is

obvious by the continuity of G(A).

LEMMA 2.3.2. Assume p;+p; <1, Ay is defined by Lemma 2.3.1, and let
& = Cipips gjlirs + (k= i)rg + 7jledolintk=drabm) iy e 1. (2.3.3)
Then
i) O=(8,)eD,
ii) (2.2.2) has the same value for all (ijk) € I, &, # 0,

iii) (€)= Gi(),
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(iv) f(€°) is the maximum value of f(¢) on D.

PROOF: By (2.3.2) there exists a neighborhood A on Ap such that
0<pre " dpe <1
forall A€ A. Expanding (1-pe " —pe~?)! wegetfor A€A

m [« ]
Gi(A) = A+ Z%‘e-'\fj Z(Pl e~ 4 pze'A"2 )"

i=1 k=0
= X+ T1Cipipy~igje intE=iratil,

Thus
() = 1= ExClpipk=gjliry + (k - iJry + ryleMinHk=Dratn),
Since G'(Ag) =0 we have
o C,'; Pi Pg—i giliry + (k = )ra + 7] e tolin+(k=i)ratny) 1,

ie, L =1, or £¢€D. From (23.3)

1
irn+(k—tr2+7;

In (Cl';pipg —i‘Ij [ir1 + (k= i)re + Tj]'/f?jk) =X (234)
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for £, #0. Furthermore by (2.3.3) and (2.3.4)

£)=1,{- 2 . 2
f(€) 1{zr1+(lc-—z)r2+'rj+tr1+(k-t)r2-{-'r,-
x In(Cipips gjlirs + (k —i)ra + 73]/ 8)} 235)
= T {Cipip;~igjelint=dratnil 4 6 0}
= G1(Mo)-
For ¢=({iji) € D,£+# €, from (2.3.5) and Lemma 1 in [5] we have
F(£) = £1{Cipips ~gje~tolirtH(k=iratr] 4y pp,.0 )
iji i§ k=i ro : RY7 A
> i+ (k—i)rz + 75 In (eCkp,lpz gjlirs + (k — )ra + 75}/ 4ijx)
= f(0).
a

PROOF OF THEOREM 2.2.1: The first part is shown by Lemma 2.3.2. Assume
Eq. (2.1.3) is oscillatory. Thus F(A\)>0 for F defined by (2.1.4) and all

A€eR. In particular,

m
F(AO) = Ap (1 - ple‘lon - pze—o\orz) + Zq,-e"'\"i >0
j=1

where )¢ satisfies 0 < pye=2" 4 pe~%" < 1 by Lemma 2.3.1. Hence

m
GI(AO) = Ao + que-lof; (1 - ple’hfg - pze—*orz)—l > 0.
Jj=1
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From Lemma 2.3.2 we have f(£°) = G1()) > 0.

On the other hand, if f(¢°) >0, by Lemma 2.3.2, Gj(Xo)>0. Hence
Gi(A) >0 for all )€ (A*,00), where A* is given by Lemma 2.3.1. If Eq.

(2.1.3) is not oscillatory, then there exists a A; € R such that

F(A) =M(1-pre™" — ppe™™17) + Zq,'e"""’ =0. (2.3.6)
J=1

Obviously A; <0 and thus 0 < pie™ " 4pe~™1m <1, ie, A € (A% 00)
(2.3.6) gives us that
m
0=+ ) gje i (1—pe~in - p2e72) 7 = Gy(N)
j=1

which contradicts Gj(A)>0 on (\*,00).

To prove Theorem 2.2.2 we need the following lemmas.

LEMMA 2.3.3. Assume p;+p2 > 1. Define

m
Go(w) = —p + 3 g€ ™" (pre™" + ppe ™ —1) 7,
i=1

and let g >0 be such that pye=#'"1 4 pye=#"™ =1. Then there exists a

fio € (=00, p*) such that

pre” o 4 preTHom > 1, (23.7)
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and Gz(po) is the minimum value of Ga(u) in (—oo,pu*).

PROOF: Similar to Lemma 2.3.1.

LEMMA 2.3.4.1. Assume p;+p; > 1, po is defined by Lemma 2.3.3. Let

i) ﬁ.e-#o(fz-fx) <1, and

ﬁ) S.(,lt): = Ci(k+1)P1_(k+i+l)P§q;'[(k +i+ 1)1‘1 —irg — Tj]e"°[(k+i+l)'l "'"3":']’

(ijk) € L.
Then
i) SW=(s4) e,
ii) (2.2.6) has the same value for all (ijk) € I, S} #0,

m) hl(S(l)) = Ga(po),

iv)  hy(SM) is the maximal value of hy(s) on D;.

PROOF: By (2.3.7) and condition i), there exists a neighbourhood & of

po such that 0 < (pe~#n +pz¢:"""")"l <1, and ﬁe"“("‘") <1 for
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BEU.

m
Ga(p) = —p+ que"l‘fi (pe*™ + pze-ll"z)—l [1- (me™*" + pze_"")_ll“l

j=1
m oo .
= -—j + Z Z qje'l‘ri (ple"‘ll"l +pze—[lr3)-( +1)
=1 k=0
m oo
=-p+ Z Zp;'(k-i-l)qjell[(k-i-l)rx -1;] (1 + &e-u(r,—rl))-(k-ﬂ)
j=1 k=0 n (2.3.8)
= =+ 530 )01 TV plgjerlEHIn—in—n), (2.3.9)

The rest of the proof is similar to that of Lemma 2.3.2 and hence is omitted.

0

LEMMA 2.3.4.2. Let the conditions of Lemma 2.3.4.1 hold if p; and p,,
ri and r; exchange their positions respectively, and 382 are replaced
by Sf,zz Then the conclusion of Lemma 2.3.4.1 holds if S®), Dy, hy, and

(2.2.6) are replaced by S®, D,, hy, and (2.2.7) respectively.

LEMMA 2.3.4.3. Assume p,+p2 > 1, po is defined by Lemma 2.3.3. Let
i) ﬁ.e-l‘o(f:-ﬂ) =1, and

i) S5 = (2p)"$HVg;{(k + 1)ry = rylerol+n=nl, (k)€ . (2.3.10)

Then

) 59 =(s9) €Dy,
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ii) (2.2.8) has the same value for all (jk) € Iy, Sf-i) #0,
ﬁi) hs(S(")) = Gz([lo),

iv)  h3(S®) is the maximum value of h3(S) on Dj.

PROOF: From (2.3.8) and condition i)
Ga(p) = —p + Ta(2py)~ k1) gjerl k1], (2:3.11)

The rest of the proof is simple and will be omitted.

REMARK 2.3.1: There exists at least one of hy; which is well-defined on
D, (b=1,2,3). In fact, there is at least one expansion of (2.3.9), its dual form,
and (2.3.11), of Ga(p), which converges at g = po. Therefore, at least one

of hy(S®), (5=1,2,3) has a finite value and satisfies hs(S™®) = Ga(po)-

PROOF OF THEOREM 2.2.2: The first part is shown by Lemmas 2.3.4.1 -

2.34.3.

Assume Eq. (2.1.3) is oscillatory. Then F(g)>0 forall ue€R. In
particular,

m
j=1
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where o satisfies (2.3.7). Hence
Ga(po) = —po + que'“'" (pre™#om 4 pye™#o™ — 1)_l > 0.
i=1
By Remark 2.3.1 there exists b=1,2, or 3, such that hb(S(")) = Ga(po)-
Therefore

0<hy(S®)< oo for some b=1,2, or 3.

On the other hand, if 0 < hy(S®) < c0 for some b=1,2, or 3,
by Remark 2.3.1, Ga(uo) > 0. Hence Ga(p) >0 for all p € (—oo,p*).

Assume Eq. (2.1.3) is not oscillatory. Then there exists a p; € IR such that

m
F(u) = p (1~ pre™1m — ppe™17) + que-mri =0.

=1

Obviously, u; >0, and thus pre™ T 4pe™ ™ > 1, ie., p € (~o00, p*),

and

m
j=1

contradicting that Ga(u) >0 on (—oo,u*).

PROOF OF COROLLARY 2.2.3:

i) Choose

£, = eClpipt~qiliry + (k — i)ra + 75le, Gjk) € Iy,
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such that il =1. By (2.2.9) we have 0<c<1. Hence
f(€*) = 1eCipip; ~*gjcn L >0.

Noting that £* does not make (2.2.2) have the same value for (ijk) € I ,

wesee £*#&. So f(€)>0. By Theorem 2.2.1, Eq. (2.1.3) is oscillatory.

The proofs for ii) and iii) are similar. For ii) we choose

ik = eCipips *qlirs + (k — i)rz + 7j]c,

for iii) we choose £f;, = Cipipi—i¢i/a.

O
PROOF OF COROLLARY 2.2.4:
i) The conditions of Lemma 2.3.4.3 are satisfied, where g = ﬂ_" In %.

Hence from (2.2.5) and (2.3.10)

(3)

OIS W LL I 1
= 23(2P1) (k+l)QjC('l-rz la )[(k-l-l) 1=7) _ a— ~—In 5—:—-.

h3(5(3)) =3 (1 In e~ #ol(k+1)r, -r;])

Thus hs(S®) >0 if and only if (2.2.11) holds.

ii) Without loss of generality we may assume the left hand side of (2.2.12)

is finite, for otherwise we can replace I by its suitable subset in (2.2.12) such
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that the above assumption holds. Choose

. - eCt —(&+1)P2 (k+'+l)P§?J[(k +i+ 1)y —twp — it {3k} 2 I3
ijk = 0, <s;m E &\I;

such that ;S5 =1, ie, S*={5];)€D;. By (22.i2) we have
0<c<l From (2.2.3)
h(S*) = Z eC-(k-H glﬁﬁru—ﬂ) tq cln;’:- > 0.
(ijk)el;

From (2.2.4) and the definition of I}

. - k+it41)ry—irg—1;
ho(S*) = Z eC_(H-l ) 21 (H'H.l)l’;% gk Fit 1;,.: — ,,.: te
(isk)el;

p\ 2 (k+i+ 1)rg —iry — 15
Xh[( ) (k+i+1)r1—irz—'r,-]

>0.

By Remark 2.3.1 we get that there exists a b=1 or 2 such that
hs(S®) < co. Noting that S* does not make (2.2.6) have the same value
for (ijk) € I, hence hy(S®)> hy(S*)>0. By Theorem 2.2.2, Eq. (2.1.3)

is oscillatory.

iii) Similar.
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2.4. Remarks on a Special Case

Kwelet py=p, pp=0, r,=r, then Eq. (2.1.3) becomes

%ly(t) - py(t - r)] + ?:_;q,-y(t - T’-) =0, (2.4.1)

and the results in Section 2.2 can be reformulated as follows.

Define two sets

m oo
Dy={e=(t;): 420, j=1,...,m E=0,1,..5) Y =1},

y=1 k=0
Dy = {S = (Sji) : Sje[(k + 1)r - 1’,‘] 20,
m o0
i=lheam k=01..5) 3 Su= 1}.
j=1 k=0
On D; we define a function
m o0 e.k
10=2, X, gz a eralbr+m)itn)
§=1 k=0

on D; we define a function

H9=Y 3. e C Y (RS VRS

where £j3 =0 or Sy =0 implies that the corresponding terms vanish.

THEOREM 2.4.1. Assume 0<p<1. Then
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i) f(€) has a maximum at a point € =(€),) on D, which is deter-

mined Ly the condition that

1
kr+‘r,~

In (p*q;lkr + 73]/£5:)
has the same value for all j=1,...,m, k=0,1,...,6, #0.

ii) Eq. (2.4.1) is oscillatory if and only if f(£) > 0.

THEOREM 2.4.2. Assume p>1. Then

i) h(s) has a maximum value at a point S° =(S}) on D;, which

is determined by the condition that
1
—_— —(k+1) . - 1:)/890
(k+Dr—1; In (P gjl(k +1)r TJ)/S;’k)
has the same value for all j=1,...,m, k=0,1,...,5% #0.
ii) Eq. (2.4.1) is oscillatory if and only if h(S°) > 0.

COROLLARY 2.4.3. Assume 0 <p< 1. Then each of the following is suffi-

cient for Eq. (2.4.1) to be oscillatory:
PR T 1
i) X Xrglkr+1)24,
J=1 k=0

o0
i) mgY) pr(kr+7)21,
k=0



iii) let

f [VJS

p q]’ a]k r—lg J=1 O,m, k=0’1’00', md

}3 %t Infea(kr + 75)] 2 O.

u[VJS

COROLLARY 2.4.4. Assume p> 1. Then each one of the following is suffi-

cient for Eq. (2.4.1) to be oscillatory:

i) thereisa k; foreach j=1,...,m, such that (k;j<+ 1)r—7; >0,

and

m o0
Y Y gk +1)r -7 2 L,
J=1 k=k;
ii) there is a ko such that (ko+1)r—71>0, and

mg 3 Ik + -7 2 L.

k=tk, e

The above results include the main results in [7). It is obvious that Corol-
laries 2.4.3 «nd 2.4.4 substantially improve the results for oscillation of Eq.
(2.4.1) and its special cases given in [2-4,7-9]. We can also see that if p = 0

in (2.4.1) then Theorc:n 2.4.1 is the same as Theorem 1 in [6}.
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CHAPTER 3
OSCILLATION OF LINEAR EQUATIONS OF FIRST ORDER

—Nonautonomous Case

3.1. Introduction

This chapter is concerned with the: scalar linear NDDEs with some variable

coeflicients of the form

%[y(t) —-py(t—r) + Z gyt -n)=0 (3.1.1)

i=]

where p€[0,1), ¢ (i=1,...,n) €C([to,0),R4) and r, 7 (i=1,...,n)€
(0,00).

Our aim here is to establish some new sufficient conditions for oscillation
and existence of nonoscillatory solutions of equation (3.1.1). As corollaries, some
results are derived which yield suff:ient and necessary conditions for oscillation.
We also obtain some comparison criteria and give some explicit conditions for
oscillation. Similar results are obtained for delay equations with variable delays.
Those results can also be extended to the more general case where the derivative

of y appears with several delays.

There is a lot of work done on the oscillation of Eq.(3.1.1). For some
recent results in oscillation theory, see [1-17] and the references cited therein.

For completeness, we cite the following results:

31
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RESULT 3.1 [1,16). Let 0<p<1 and ¢ >0 (i=1,...,n) be constants.
Then (3.1.1) is oscillatory if and only if
n
M1-pe™*)+ ) g™ =0 (3.1.2)

=1

has no real root.

REsuLT 3.2 [12]. Let 0<p<1 bea constant, 7 =t¢r, i=1,...,n, and
¢i(t), i=1,...,n be r-periodic functions. Then (3.1.1) is oscillatory if and

only if

A1 —pe™") + z": -'1:( /; ' gi(s) ds) e = (3.1.3)

i=1

has no real root.

REsuLT 3.3 [6]. Consider the case n=1 in (3.1.1) where ¢;(¢):= ¢(2),

m:=7, and p is replaced by p(t) € C([ty,0),IR¢).

i) Assume z{(¢) is bounded, p(t*+nr)<1 fora i*>¢ and

n=0,1,2,..., and ¢(t)2¢>0, t>t. K

1 - q(t) u¥ l ur
oo [PE=7) oy @7 790 > 1,

then (3.1.1) is oscillatory.
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ii) Assume there exists a u* >0 such that

v at) e, 1 .
su t—7)—"——"—e* "4+ —q(t)e* 7| <1.
>7 P D) #‘q( )

Then (3.1.1) has a positive solution.

In Section 3.2 we will obtain sufficient conditions for oscillation of (3.1.1)
and for the existence of a nonoscillatory solution for the neutral equation (3.1.1).
These conditions cover Result 3.1 for the constant coefficient case and improve
Result 3.2 for the periodic coefficient case. They also yield some sufficient and
necessary conditions for oscillation even for a class of equations with aperiodic
coefficients. In Section 3.3, the above criteria for oscillation are developed for
delay equations with variable delays, which substantially improve the established
conjecture by Hunt and Yorke [13]. Based on these results, in Section 3.4, we
derive some comparison criteria for oscillation and existence of nonoscillatory

solutions, and in Section 3.5, we obtain some explicit conditions for oscillation.

Before stating the main results we introduce the following lemmas which

will be used in the proofs.

LEMMA 3.1.1. Let a > 0,5 > 0, and f(t) > 0 be a locally integrable

function on IRy . Assume both the limits

1 t+4-a 1 t+b
I = lim - f(s)ds and I = ‘htgo-,;/ f(s)ds
= t

t—o00 @ ¢



exist. Then I, =1,.

PROOF: We prove it by contradiction. Without loss of generality we only
consider the case that I; > I,. Choose a positive integer n such that
anly —b(m+1)I; > 1, where m=[an/b] is the integer part of an/b. This

is possible since I} > I, and blan/b] <an. Choose T >0 so large that

for t2T
t+a 1
‘ f(s)ds > aly - i~
and
t4+b 1
‘ f(s)ds < bl + peryerr s

This implies that

T4an
n+m 1
8)ds > anly — bml; -~ ———— > bl + ————.
/T“mf()s anl, e 2+n+m+1

But this is impossible since
(T4 an) = (T + bm) = an — [an/b]b < b,

and hence

T+4an T4+ (m+1)b 1
s)ds < / ds < blp + ———.
/T+bm fte) T+bm fls)ds 2t n+m+1l
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This gives a contradition.

O

With a similar proof we get the following generalization of Lemma 3.1.1.

LEMMA 3.1.2. Let 0<a; <a(t)<a;<oo, 0<b <b(t)<by<oo, and let

f(t) 20 be a locally integrable function on [0,00). Assume both the limits

. 1 t+a(t) N 1 t+5(¢)
11=‘1,_19.3°m/‘ f(s)ds and I,=t1_1%m-5/‘ £(s)ds

exist. Then Il =I2.

3.2. Criteria for oscillation and nonoscillation

In this section we are concerned with the equation

2100 - syt - )]+ Y st - ) =0 (321

=1

where

gi(t) € C([ty,0),Ry), i=1,...,n,
(3.2.2)
pE [0’1]’ rTi € (0,00), 1= 1,...,12.

Denote o = max{r,7,...,7,}.

The following lemma is needed in the proof.
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LEMMA 3.2.1. In addition to (3.2.2) assume
a1(t)2¢>0 (3.2.3)

and
gi(t-7)<qlt), t2to+r, i=1,...,n (3.2.4)

Let y(t) be an eventually positive solution of (3.2.1), and let
z(t) = y(t) — py(t —r). (3.2.5)

Then eventually 2(t) >0, 2'(t)<0, and

2(t) - p(t—r)+ ) qi(t)=(t — 7:) <O0. (3.2.6)

i=1

PROOF: From (3.2.1) it is easy to see that 2(t) > 0, 2'(tf) < 0 eventually.

From (3.2.4) and (3.2.5)

() -pt-r)==) [a(®)(t - 1) - pai(t — )yt —r — 7)]

i=1

< =) a®)[y(t - 7) - py(t - r — 7))

i=1

=- i ai(t)z(t — ;).

i=1
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Thus (3.2.6) is true eventually.

THEOREM 3.2.1. Assume (3.2.2)-(3.2.4) hold, and far all ;>0 , and
£=rTi,..0,Tn
1 n t+¢
llmmf pet’ 4 — P Ze“" / qi(s) ds] >1 (3.2.7)
i=1 ¢

Then (3.2.1) is oscillatory.

PROOF: Assume (3.2.1) has an eventually positive solution y(f). Define 2(t)
as given by (3.2.5). Then by Lemma 3.2.1 there exists a T > ¢, such that
2(t)>0, #(t) <0, and (3.26) holds for ¢>T Let w(t)=-%& ¢>T
Then w(t)>0, t>T, and (3.2.6) becomes

w(t)2 put - r)esp /

-r

o)) + 3 aerp [ uie)s)

=1

for t>T+0, where o=max{r,n,...,7}.

We now define a sequence of functions {wy(t)} for k=1,2,..., and

t 27T, and a sequence of numbers {u;} for k=1,2,..., as follows:

wl(t)EO, t>2T
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and for k=1,2,..., t2T+ko

wrnt) = pontt-ryesp | " we)as)

+ i gi(t) exp ( /‘ ; w(s) ds); (3.2.8)

i=l1

and pu;=0,and for k=1,2,...

n t+¢
pk+1 = inf  min {pm,e“"" + %Ze“""‘ /‘ q.-(s)ds}. (3.2.9)

2T =071, sTn =1

We claim that the following inequalities hold:
1) O=pm<pp <
i) we(t)<w(t) for t2T+(k~1)0c and k=1,2,...;

iii) -}-:“wk(s)dsng for t>2T+(k+1)s, k=1,2,..., and

e= ?‘,Tl,...,‘rn.

In fact, since p; > 3 =0, and wy(t) < w(t) for ¢t 2 T, by
induction we see i) and ii) are true. We now show that iii) also holds. Clearly
iii) is true for k = 1. Assume iii) is true for some k. Then (3.2.8) and
(3.2.9) imply that for t> T+ ko, £=1,T1,...,Ta

%/“ng.,.l(s)ds:%/“ﬂwk(s—r)exp(/.. wk(0)d0)da

-r

+3% [ aorem ([ o)

i=1 |
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1 n t+¢
2 puee™” + 5 Y et / gi(s)ds
t

=1

1 n e+t
> i i mer 4 BaTi .
2 jof min {puke +32 e )( q.(S)dS}

i=1

= P41
Hence iii) holds.

Let u*= klim pr. From (3.2.7) and (3.2.9) there existsan a > 1 such
-0

that pp41 > app, k=1,2,..., and this means that u* = oco.

By ii) and iii) we have that Jim $+" w(s)ds = 00, and so

t+3
lim sup / w(s)ds = oo.
t

t~s00

Integrating both sides of the equation w(t) = —-'z%-‘)z from t to t+% for

t sufficiently large we get

Thus

z(t)
= 00. 3.2.10

Since

2(t) == qilt)y(t - ) < —~qy(t — 1) < —gz(t — 7),

i=1
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integrating both sides from t+ 7/2 to t+4 7 and using the decreasing

nature of 2(t) we find for ¢ sufficiently large

0<z(t+mn)< z(t+ %) - 11-;1-:;(t).

Thus

2(t) < 2

2(t+ %) " qn

contradicting (3.2.10). This completes the proof.

THEOREM 3.2.2. Assume (3.2.2) holds and there exist 8 p* >0 anda T 2

to such that for £=r,71,...,7,

o 1 o= ., [t
hr — B Ti A d3 < 1’ .2.11
e i [Conln

Then (3.2.1) has a positive solution on [T + o,00).

PROOF: First we claim that the integral equation

v(s) ds) + 3 q.'(t)exp( /‘ ‘ v(s)ds) (3.2.12)

=1 -7

olt) = po(t - r)exp ( |

~-r

possesses a positive solution on [T+ 0,00). To this end set

v;(t) =0, t2> T,
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and for k=1,2,...

pui(t — r)exp (/::r vi(s) ds)

mlf) = +qu,.(t)exp( /_ (i), 127+s @219

=1

¢

L ﬂk.'.l(t), TSt(T-}-O’

where {Bi} is given function sequence satisfying

i) BeC(T,T+0),Ry) with £, >0 and B(t)>0,
te[T,T+o), k=1,2,...,

i) At)=0, te[\T+o-r], BT +0)=v(T+0), and the Fi(t)

are increasing in k for t€[T+o0-r,T+0) and k=1,2,...,

iii) forevery £=rv'rl""a7m fOl‘ tE[T‘l"a"'e,T"'U), k=1,2,...,

T+o T+o+¢

mmas/ oa(s) ds.

t+¢

Obviously, v;(¢) ve(t) <---. By induction we will show that for

k=12,... and f=r,7,...,Tn

1 -4+
: / wi(s)ds <u*, t2T. (32.14)
t
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In fact, (3.2.14) is true for k=1. Assume (3.2.14) is true for some k.

Then from (3.2.11) and (3.2.13) we have for t 2T +o0, £=r,T1,...,7n

: /‘m (s —r)esp ( /‘ :r ve(6) do) ds

+ % i ‘/‘ i gi(s)exp ( /‘ :r‘ v(6) d0) ds

=1

L hd (] t+¢
Sputet T+ %Ze“ T / gi(s)ds < p°.
=1 ¢ (3.2.15)

For every £ =r1,...,7, for t€[T+0-4T+0), from (3.2.15) and

condition iii) for {B},

% /‘t+t oea(®) = % [ [T+c Brs1(s)ds + /: :: Vk+1(8) ds]

<= vi(s)ds < p*.
£ T+o

From the monotonic property of Bi41(t) with respect to ¢ we see that

(3.2.14) also holds for t€[T,T+0o—2), L=r,Tyy...,Tp.

Let o(t) = kl-x_.ngo vi(t). Then v(t) =0, t € [I\T+o—r], v(t) is

increasingon [T'+o0—-r,T+0) andfor t>T and €=rm7,...,Tn,

1 t+¢
7 /‘ v(s)ds < p*.

Teking limits a8 k — oo on both sides of (3.2.13), and by using the Lebesgue

monotone convergence theorem we see that u(t) satisfies (3.2.12) for ¢ >
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T+o. It is also easy to see that uv(t) is well-defined on [T,00). In fact,
by condition ii) of {8},

[T+c

v(T+o)= Zq.-(T+a)exp (J

i=1 T4o-7;

v(s)ds)
<Y G(T+0)e¥ ™ = M < oo,
i=1

and hence v(t)<M for t€[T,T+0]. K v(t*)=o0 forsome ¢*>T+o,
then choose an integer m such that ¢*—mr € [T+0-r,T+0). By (3.2.12)
we get an immediate contradiction if p=0 and we have u(t*—mr)=o0 if
p#0. This is impossible. Furthermore, from condition i) of {Br] we get
that o(t) is continuous on [T,T +0], and in view of (3.2.12) we see that
v(t) is continuous on the whole interval [T,00). Thus v(t) is a positive
solution of (3.2.12) on [T +o0,00). Set

y(t)=exp(-/t v(s)ds), t>T+o.

T+o

Then y(t) is a positive solution of (3.2.1).

REMARK 3.2.1 Theorems 3.2.1 and 3.2.2 partially improve the criteria given
by Result 3 since in (3.2.7) and (3.2.11) the “integral averages” of functions
are used instead of the functions themselves. Both theorems are sharp since

together they give the following result which extends Results 3.1 and 3.2.
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THEOREM 3.2.3. Assume (3.2.2)-(3.2.4) hold, and Y%, e#% [t gi(s)ds isa
nondecreasing function in t for £=r,1,...,7a . Then (3.2.1) is oscillatory

if and only if for all p >0, and for €=r,n,...,0r,7,

1 n t+¢
lim [pe“'-i-EZe“" / q,-(s)ds] >1.
t

t—+00

PROOF: Denote

1 r t+¢
St )= et + 7 3 e / a(s) d.

i=1
From the condition we see that lim¢_.oo f(,1,£) existsfor L=r,7,...,7 .

By Lemma 3.1.1 we have
‘l_iglof(tﬂ"r) = ‘l;l%f(i)ﬂs'rl) S = ‘litgof(tal‘yfn)'
In this case for £=r,1,...,Tn

Jlim_ f(t, u,€) = iminf (¢, u, €) = sup f(t, s, £).
00 27T

The conclusion is then immediate from Theorems 3.2.1 and 3.2.2.

As a special case, we have the following corollary.
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COROLLARY 2.4. Assume (3.2.2) and (3.2.3) hold, and there exists an £ > 0

such that r =mgl,7; = m;{ for some integers m;, i =0,...,n. Further-

more,

gi(t)=gi(t) + hi(t), i=1,...,n

where gi(t) are (-periodic functions with % f:“ gi(s)ds = g7, hi(t) are
nondecreasing functions with tl_x.xgo hi(t) = A}, i =1,...,n. Then (3.2.1) is

oscillatery if and only if for all u > 0,

1S urife t pe
pet’ + ;Ze'"'(‘h +hi)> 1

i=1

¥ q¢i(t) =0 and bki(t) are constants, i = 1,...,n, then Corol-
lary 3.2.4 becomes Result 3.1; if ki(t)=0, i=1,...,n, then Corollary 3.2.4
gives an extension to Result 3.2 since the requirement 7; =ir,i=1,...,n is

im;z.roved here.

Theorems 3.2.1 and 3.2.2 will also yield necessary and sufficient conditions
for oscillation of some equations other than those satisfying the hypotheses of

Theorem 3.2.3. To see this, we give the following example.

EXAMPLE 3.2.1. Consider the equation

%[y(t) -py(t-r))+[1- -:-(1 —sint)]y(t~7)=0, ¢t>2  (3.2.16)
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1 .
where 0<p<1, r,7>0. Let ¢(t)=1- ?(l—sint). It is easy to see that

forall £>0
1 t+¢ 1 t4+¢ 1
2;/ q(s)ds=2/ [l—g(l—sins)]ds—vl, as t —+ 00,
t t

and

1 t+¢
sup -—/ g(s)ds =1.
2T £ t

According to Theorems 3.2.1 and 3.2.2, (3.2.16) is oscillatory if and only if for

al u>0

1 .
pet’ + ;e”’ > 1.

3.3. Criteria for Delay Equations

Now we are going to extend the criteria in Section 3.2 to the delay equa-

tion with variable delays

29+ Y eyl - i(8) = 0 (33.1)

i=1

under the assumptions
(Hl) qi(t)’ Ti(t) € C([to, °°)’ [0’ °°))a - Ti(t) — 00, as t — 0o, t= 1,...,m5

(H2) 0<qi(t)<¢*, 0L (t) <, i=1,...,n, where ¢*,7* > 0.
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The following is a conjecture of Hunt and Yorke in [13] which was recently

established by Chen and Huang in [2].

RESULT 3.4. Under the assumptions (H1) and (H2), if for all x>0
imi nuri(t)
h{f’.},‘.}f{ ;q i(te } > 1,

then (3.3.1) is oscillatory.

Employing the method of Section 3.2 we may obtain this as a consequence
of the result below. Again, since the “integral average” technique is involved,
they greaily improve Result 3.4. Under certain circumstances, they also yield

necessary and sufficient conditions. for oscillation.

Denote

t+L(t)

fltan ) = 2> / ai(s)e™ ) do.

i=1
THEOREM 3.3.1. Let (H1) and (H2) hold, and for all u>0

litn_l.igff(t,y,r.-(t)) >1, i=1,...,n

Then (3.3.1) is oscillatory.
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THEOREM 3.3.2. Let (H1) and (H2) hold, and there exist >0 and T >t

such that
sup f(t,p*, 7i(t)) <1, i=1,...,n.
©>T

Then (3.3.1) has a positive solution on [Tj,00) for some Ty >T .

THEOREM 3.3.3. Let (H1) and (H2) hold with 0< 7, < 7i(t) < 7*. Assume
f(t,p,7i(t)) is a nondecreasing functionin t for >0 and t=1,...,n.
Then (3.3.1) is oscillatory if and only if Wm¢_.oo f(t,p,7i(t)) >1 forall pu>0

and some t=1,...,n.

The proofs are basically the same as those of Theorems 3.2.1-3.2.3. Here
we only give an outline of the proof of Theorem 3.3.1. Note also that Lemma

3.1.2 is needed in the proof of Theorem 3.3.3.

PROOF OF THEOREM3.3.1: Assume (3.3.1) has an eventually positive solution
y(t) . From (3.3.1) there exists %o >0 such that y(t)>0,y'(t) <0, ¢ >t,.

Denote a sequence {tk}:;o by

ty =sup{t: min {t—7(t)} <tr-1}.

=1,..,n

Then i 2ti1, k21 Let w(t)=-4%. From (33.1)

w(t) = 2": gi(t)exp ( /‘ ‘ w(s) ds), t2>t. (3.3.2)

i=1 -7i(?)
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We now define a sequence of functions {wi(t)} and a sequence of rumbers

{px} as follows:
wt)=0, t>1¢

and for k=1,2,...

Wiy = Zq,(t) exp( / it wk(s)ds), t >t

i=1

and p; =0, and for £=1,2,..

1 3L
Me+1 = inf  min {e(t)Z/ q,-(s)e“kri(a)ds}_

28 8=71,0.,,Tn
i=1

Similar to the proof of Theorem 3.2.1 we can show that for £(t) = 7,(t),...,7a(t)
t+4(2)

— 2

e(t)/, wi(s)ds 2 pp = 00, as k— o0
and w(t) > wi(t) for ¢, k=1,2,.... Hencefor £(t)=m(t),...,Tn(t)

t+4(1)
70) ‘/‘ w(s)ds — oo, ast— oo. (3.3.3)

From Theorem 1 in [2] we get that

liminf meax {q,(t)'r.(t)} > 0,

t—00 1<

and that if we let g(t) = g;(t),7(t) = 7;(t) be such that for each ¢

gj(t)rj(t) = max{g;(t):(t), ¢ =1,...,n},
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then 0<¢q. <g¢g(t)<¢* and 0< 7 <7(t)<7*. From (3.3.3),

—(li-)-f:"(‘) w(s)ds -+ o0 as t— oo, hence f:"". w(s)ds - 0o as t— co.
T

Therefore,
t4r./2
lim sup / w(s)ds = oo.
t

t~00

Since

y'(t) ==Y qilt)y(t — (1)) < —g(t)y(t ~ 7(t)) < —gey(t - ),

=1

the rest part of the proof is similar to that of Theorem 3.2.1.

REMARK 3.3.1 It can be shown that Theorems 3.3.1-3.3.3 still hold if we replace

(H2) by:

(H3) there exists a nonempty subset I of the set {1,...,n} such that

7(t) = min{7i(t),i € I} satisfying t—7(f) 200 as t— oo,
litxggfr(t) =1>0

and

t
Liminf / E qgi(s)ds > 0.
T= Ji—n el

The corresponding results are improvements of Theorem 2 in [2].
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3.4. Comparison Results

Using the above theorems we can derive some comparison results for oscil-
Iation and for the existence of nonoscillatory solutions for a pair of equations.
Here we wil! only mention the results based on the theorems in Section 3.2.

Parallel results based on the theorems in Section 3.3 are obtained in a similar

fashion.

Consider two equations

L —pu(t =) + Yl - 1) =0 (34.1)

i=1
and
d n
5 V) =Bt =P + D Gt - 7) =0. (3.4.2)
i=1
Assume (3.2.2)-(3.24) hold for both the sets {gi(t)}%, and {Gi(t)}%,.
Furtheimore, assume the conditions for ¢;(t), i =1,...,n, in Corollary 3.2.4

hold.

THEOREM 3.4.1.

i) Suppose (3.4.1) is oscillatory, and p>p, F2r, and forall u>0,

~

E=7,T1,...,7a

. .ol uF; ‘+l~ - Brif * *
h‘x.x_ng 72" '/; q.-(s)dsZZe (¢ +h3). (3.4.3)

i=1 i=1
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Then (3.4.2) is oscillatory.

ii) Suppose (3.4.2) is oscillatory, and p<p, ¥ <r, and there exists a

T>ty suchthat forall p>0, L=77,...,Ts

n e n
sup Y e / G(s)ds < Y eF(gt +BY).  (3.44)
= ' t

=1 i=1

Then (3.4.1) is oscillatory.

iii) Suppose (3.4.2) is nonescillatory, and p > p, ¥ > r, and for all
>0, £=r7,...,7,, (3.4.3) holds. Then (3.4.1) has a nonoscilla-

tory solution.

iv) Suppose (3.4.1) has a nonoscillatory solution, and $<p, F<r, and
there existsa T 21t such that forall >0, £=F,7,...,70, (3.44)

holds. Then (3.4.2) has a nonoscillatory solution.

PROOF: i) Since (3.4.1) is oscillatory, by Corollary 3.2.4 we have for all
B >0,

n
pe*” 4 %Ze“"(q“ +R)> 1.

i=1

Then (3.4.3) gives that for all >0, £=F,7,...,7,

uf 1 n . et
. . ~ r r.l ~.
lim inf | pek” + @ ) e /‘ gi(s) d’] >1

i=1

By Theorem 3.2.1, (3.4.2) is oscillatory.
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i) If not, (3.4.1) has a nonoscillatory =olution. By Corollary 3.2.4 there exists

a u*>0 such that
1 n
P T+ — Y et (gl +h]) <1
K i=1
Then (3.4.4) gives that for all x>0, £=77,...,m

e: 1 .r, [
sup |pe* " + — e“"/ “-sds]_<_l.
‘Zg[pe e,vé} )

By Theorem 3.2.2, (3.4.2) has a nonoscillatory solution, contradicting the as-

sumption.

iii) and iv) are the converses of i) avi ii).

Theorem 3.4.1 provides criteria for oscillation and for existence of nonoscil-
latory solutions for a certain class of equations by means of a comparison with
equations having constant, periodic or even aperiodic coefficients. The criteria
are given by investigating the “integral averages” of the coefficients ¢; over
an interval of length ¢, and can be easily verified. It is clear that Theo-
rem 3.4.1 substantially improves Theorems 2 and 3 in {11] under the conditions
(3.2.2)-(3.2.4) since the latter are only very special cases of parts i) and iv)
in Theorem 3.4.1. Similar discussion for delay differcntial equations can also

improve the results in [14] by using the “integral average” technijue.



3.5. Explicit Conditions for Oscillation

We can al”' obtain some explicit conditions for oscillation from Theo-
rems 3.2.1 and 3.3.1. As an exam:':. e mentivu the result derived from The-

orem 3.2.1.

THEOREM 3.5.1. Assume (3.2.2)-(3.2.4) hold, and for £=r,1y,...,Tn

n oo

4
liminf 33 (-} / ™ o) ds) P(kr +7) > % (3.5.1)
i=1 k=0 ¢

Then (3.2.1) is oscillatory.

PROOF: We show that (3.2.7) is true for all g > 0, and then (3.2.1) is

oscillatory by Theorem 3.2.1.

Forany u>0, if petr 21, then (3.2.7) is obviously true. So we only
consider the values of p such that pe*” <1. From a well-known inequality

we see that for u >0,

ePkrET) > eu(kr + 7). (3.5.2)



So we have

1. 1 t4¢
=2 XY (G woas)pterteri
B ¢J,

> i (% [ * o) ds)p*e(kr+ ).

Then (3.5.1) implies that for £=r,7,...,7,

iminf L5~ (1 [ B pry-1
h‘x_r_l.tng;i-l z/‘ gi(s)ds |e*T (1 — pe*")"! > 1

or

n

1 t4¢
iminf — i : — peh’
h‘ql’g}f P e ./t gi(s)ds > 1 — pe*".

Hence (3.2.7) holds for all x4 >0, and € = r,7,...,7,, and the

theorem is proved.

Theorem 3.5.1 gives a sharp condition for oscillation in the sense that for the
constant coefficient case it almost coincides with our result in Corollary 2.4.3

and it is better than the corresponding results in [5,7,8,9,15].
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CHAPTER 4

OSCILLATION OF NONLINEAR EQUATIONS
OF SECOND ORDER

4.1. Introduction

In this chapter we deal with the oscillatory behaviour of the neutral dif-

ferential equation

L 190~ putt = Pl + O (u(t = 7(2)) =0 (1)

under the following assumption

(H) p and r are positive numbers;
¢ and 7€ C(R4,IRy), q(t) # 0, t —7(t) is increasing and tends
to oo as t—+oo, 7(t)>r; f€C(R,R) is increasing, f(-z)=
~f(z), f(zy) 2 f(z)f(y), for zy >0,

f{o0) =00, and L‘P--—»oo or 1 as y-+0.

The oscillation problem of equation (4.1.1) has received wide attention [1,2,4-
9,11,12]. Much work has been done for the case where p < 0. In [7,9,11],
the case p >0 was studied for linear equations with constant coefficients and
constant delay, some conclusion® and conjectures were given, but the oscillation
result specialized to the case where p>1 is only a sufficient condition which

guarantees that equaiion (4.1.1) has no bounded nonoscillatory solutions. In

58
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[4] the oscillatory problem of (4.1.1) was considered for the general form of

equations, but the results still do not apply to the case p> 1.

The aim of this paper is to obtain some oscillation criteria for equation
(4.1.1) for the case where p>1 under the assumptions (H) and, along the
way, we establish the conjectures in [11]. The results obtained in this paper

can be easily extended to equations of the more general form

Z1a(t) 5 (o) pu(t — )] + gyt — 2))) =.

4.2. Comparison Results for QOscillation

For comparison purposes we mention the results for the case 0 <p<1

obtained in [4]:

LEMMA 4.2.0. Under the assumptions (H), if the equation
At - 1(t)
2" +qt)f (—(-—t—r(-’l 2(t)) =0 (4.2.1)

is oscillatory for some 0< A <1, then the nonoscillatory solutions of Eq. (4.1.1)

tend to zero as t — oo.

THEOREM 4.2.0. In addition to the conditions of Lemma 4.2.0, assume further
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that
t p if f-gﬂ ~+1,y—0
limsup / (u—(t—7(t)+r))g(u)du > 1) (4.2.2)
two0  Ji—r(t)+r 0 if -y—” — 00, y — 0.

Then Eq. (4.1.1) is oscillatory.

Now we state our results below.

DEFINITION 4.2.1: Let E be a subset of IR4. Define
En|o,t .
p(my = HECLAL o 8 = hmeup ()
—00

where pu is the Lebesgue measure.

LEMMA 4.2.1. Assume (H) holds and p = 1. Then the nonoscillatory solu-

tions y(t) of Eq. (4.1.1) are bounded provided the equation

2'(t) + ¢(1)F(Q(2)=(2)) = 0 (4.23)

is oscillatory, where Q(t) = 34 (¢ - r(t))z.

LEMMA 4.2.2. Assume (H) holds and p > 1. Then the nonoscillatory solu-
tions y(t) of Eq. (4.1.1) satisfy y(t) < py(t —r) eventually provided the

following conditions hold:

i) 2"(t) + q(t)f (R(t, N)2(t)) = 0 (4.2.4)
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is oscillatory for all 0< A <1, where R(t,\)=3% p‘-—:m-

3

ii) limsup tt_éooE p,—‘/' f(:(t = u)g(u)f(u — 7(u) + r)du > 0 (4.2.5)

holds for some p; >p and any set E with p(E)=10.

COROLLARY 4.2.1. In addition to the assumptions of Lemma 4.2.1, assume

further that T is a positive constant, and

®  pTHirta
Z /; y (v — T)g(u)du = 00 (4.2.6)
i=0 r

holds for any T €IRy, and 0<a<r, then all nonoscillatory solutions of

Eq. (4.1.1) tend to zero as t — oo.

COROLLARY 4.2.2. In addition to the assumptions of Lemma 4.2.2, assume

further that T is a positive constant,

/‘w(u — t)g(u)du = o0
and

bt . TH+ir+a
D60 [ - Thwdu=eo 427

holds for any T€ IRy and 0<a<r, then all nonoscillatory solutions of

Eq. (4.1.1) tend to zero as t — oo.
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REMARK 4.2.1. Corollaries 4.2.1 and 4.2.2 establish the conjectures in [11]
for n =2 since (4.2.6) and (4.2.7) are true for the case that ¢(t) is a
positive constant. In general (i.e. for even order equations) the conjectures can

be established by similar arguments as in this section.

THEOREM 4.2.1. Assume (H) holds and p > 1. In addition to the conditions
of Lemmas 4.2.1 and 4.2.2 for the cases p=1 and p>1, respectively, we

assume (4.2.2) holds. Then Eq. (4.1.1) is oscillatory.

4.3. Proofs

PROOF OF LEMMA 4.2.1: Assume the contrary, and without loss of generality
let y(t) be an eventually positive solution of Eq. (4.1.1). Let z(t)=y(t)—

y(t —r). Then (4.1.1) becomes

2(6) + g(OF (vf2 = (£))) =0 (43.)

and 2"(t)<0,t>t>0. We claim 2'(t)>0,¢2>1t,. Otherwise,
2'(t) <0, t >t 2t. Then 2'(t) < —€ <0, t > ;. This gives that

2(t) = y(t) —y(t —r) = —oo, contradicting that y(t) is eventually positive.

a) Assume z(t) >0, t >, >2t;. From Erbe’s lemma [3] we see that for
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any 0<k<l and ¢=0,1,2,..., there exists T,>1t; such that

z(t—7(t)—ir) >

k(t - ‘rgt) - iT) o(t), t—r1(t)>T. (4.3.2)

Without loss of generality we may assume ¢, =7,. Then we can choose

T;=To+ir for a common k. In fact, from the proof of the lemma,

it suffices to show that for i=0,1,2,...,
A=k)(t-rt)-ir) 2 To2 Q-k)Tp, t—r(t)>T. (4.3.3)

(4.3.3) is obviously true for i =0. And if (4.3.3) is true for some i,

then for t—7(¢) > Ti41 =T;+r, we have
(1=Kt = 7(t) = (i + 1)r) 2 (1= kK)(Ti = ir) = (1 - K)To = .

Denote Ry, = {t:t+7(t) > To}. Then for any ¢ € Rr,, thereis a

positive integer n satisfying
To St-—r(t)-nr <Ty+r.

Since

n—1

y(t=r(t) = Y 2(t - r(t) - ir) + y(t — 7(t) ~ nr)

=0

> Zz(t —7(t) —ir)

.
=0
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(here Y =0), from Eq. (4.1.1) we have

=0

2"(t) + ) (D 2(t - 7(t) - ir)) < 0.

=0

Using (4.3.2) we get

2"(t) + q(t) f(g Z (t —7(t) —ir)z(t)) < 0,

i=0

ie.,
k
2"(8) + a()F (5 (n +1)(¢ - 7{t) - 5 r)a(#)) <O.
Since n+1> t_—m,):—%'a nr <t—7(t)—-To, we get

(1) + 4 (5 (¢ = () = To)=(t)) < 0.

Choose T >Ty large enough, then the above inequality becomes

() + d)f (313 (- 7(OFo(0) SO, ¢2T.

Noting that 2(t),z(T) are upper and lower solutions of Eq. (4.1.1),
respectively, and using Theorem 7.4 in [10}], we see there is a solution y(t)
satisfying 2(T) < y(t) < z(t), contradicting the fact that Eq. (4.2.3) is

oscillatory.
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b) Assume 2(f) <0, t>1%; >t;. Then y(t)—y(t—r)<0,t>¢t. It
is obvious that y(t) is a bounded solution since y(t) is eventually

positive.

For the proof of Lemma 4.2.2 we shall need the following lemma.

LEMMA 4.3.1. Assume set E C Ry and p(E) = p > 0. Then for any
to € IR, andinteger n, thereexistsa T € [to,tg+r) such that {T+ir}2

=1

intersects E at least n times.

PROOF: Assume that contrary holds, i.e., there exist a ¢, € IR; and an
integer N, such that {T+ir}®2; intersects E at most N times for
any T € [to,to +r). This implies that p{E} < o0o. But p(E) =p >0

means there exist ¢, — oo such that p, (E)> £>0. Thus
p{EN[0,t,]} 2 . tp =00, n— 00,

and this is impossible.

PROOF OF LEMMA 4.2.2: Assume the contrary, and without loss of generality

let y(t) be an eventually positive solution of Eq. (4.1.1). Let =z(t) = y(t)—
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py(t—r). Then (4.1.1) becomes (4.3.1) and 2z"(¢) <0 eventually. There are

three possibilities:

a) Z'(t)>0,z(t)>0, b) 2'(t)<0, 2(t)<0, ¢) 2'(t)>0,2(t)<0
eventually.

a) Assume z'(t) >0, 2(t) >0, t 2 tg 2 0. Then (4.3.2) holds and for any
t € Rr, defined as in the proof of Lemma 4.2.1, there is also a positive

integer n satisfying
To St—r(t)-—nr<To+r.
Since

y(t—r(t)) = Ep z(t - 7(t) —ir) + p"y(t - 7(t) - nr)

i=0

> Zpiz(t - 7(t) - ir),

from Eq. (4.1.1) we have

2"(t) + g(t) £ ( Z p'z(t - 7(t) —ir)) 0.
i=0
(4.3.2) gives that

2(t) + q(t)f ( ZP (t - 7(t) —ir)(t)) <

=0
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ie.,

0 +a0(G -re) 1 - & > )] 0. (434
Since
~. i nptti—(n+1)p"H 4p
,‘Z—;t - (p-1) ’
we have
P -1 kN
?(t‘ (t) -7 2 ip
= (_p:%i [(t - T(t))(p"+2 - pn+l — p+ 1)
- r(npn+2 - (n + l)pn-l-l + P)]
= zp?kl)’—t [(t = 7(t) — nr)p™*?
=(t-7@)~(n+1)r)p"H — (t~7(t) + r)p+ (t - 7(t))]
ol —kl)zt [Top™*2 ~ Top™" — (t = 7(t) +r)p + (t - 7(1)))]

2 %pn_‘_z 2 %pc-r‘t!:?ni-r = %pl-:‘t!

(4.3.5)
forsome 0<A<1 if T, and t are sufficiently large. Substituting

(4.3.5) into (4.3.4), we have

() +90f (35 5(0) <0.
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Noting that z(t),2(T,) are upper and lower solutions of (4.2.4), respec-
tively, and using Theorem 7.4 in [10] we see there is a solution y(%)
satisfying 2(Tp) < y(t) < z(t), contradicting the fact that Eq. (4.24) is

oscillatory for all 0< A< 1.

b) Assume z'(t) <0, 2(t) <0, t>15>0. Then 2(t)< €, t2>1, for

some ¢>0.

We claim 2(t) 2 —pi/ " essentially, where p; > p is arbitrary, i.e., if
E={t:z(t) < —p/"). Then p(E)=0. Otherwise, p(E)=p>0. By
Lemma 4.3.1, for any n, there exists a T) € [to,to +r) such that
{Ty+ir}2, intersects E atleast n times. Assume M= max {y()}.

t€(to,to+r]
Then if n is sufficiently large,

TI +nr
1

y(Ty +nr) <p"y(Th) + 2(Ty +nr) <p"M —p, *

n
=p"M—p;1+ T <0,

contradicting that y(t) >0 eventually.
It is easy to see that condition ii) implies that
o0
/ q(t)f(u — 7(u) +r) du = co. (4.3.6)
0

Condition ii) also implies that 2'(f) < —u for all x> 0 eventually. For

otherwise, there exists a p > 0 such that 2’ > —pu, ¢t 2 T,. From (4.3.1)
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and y(t—-r)> -~ % 2(t), we get

2(8) + ()~ 119 2t —7(t) +7)) <0 4.3.7)

Z'(t) +./: g(u)f(- % z(u —7(u) +r))du < 0.

Noting that z(t—r(t)+r) < —€(t—7(t)+r) we have

2'(t) +./T q(u)f(g (u=r(u)+r))du<0

) /T a(w)f(u = () + r)du < ~2'(t) < g,

which is in contradiction with (4.3.6). Hence from (4.3.7) we see that for any

p>0, thereisa T, such that for ¢> T,

«(t) + /T (t - W@ (& (u = r(u) +r)du <o

On E°N|(T,,x)

"+ [ - uawf (& @) +r) dugo,
Eywrt [ (= g0 +r)du < 1.

Hence

1
f8)°

i [ (- wae)f (= (w) +r)du < (438)
T,

contradicting (4.2.5) since u >0 is arbitrary and f(o0) = oo.



70
c) Assume 2'(t) >0, 2(t) <0, t 2t >20. Then y(t) < py(t—r) is

obvious.

PROOF OF COROLLARY 4.2.1: If not, there exists an eveuntually positive so-
lution y(t) satisfying liiris::p y(t) > 0, and this can only occur when
2" <0, 2'(t)>0, and 2(t)<0,t>% 20, hence z'(t)—0, 2(t) >0 as
t— 00 If h&g}f y(t) >0, then y(t)2a>0,t>1¢ >t. Integrating

(4.3.1) twice we get
2(t) + / (u —t)q(u)f(a)du < 0.
t
Taking limit superoirs on both sides as ¢ — 0o we have
o0
lim sup / (u — t)g(u)du <0,
t—00 t
which is in contradiction with (4.2.6). So

limsupy(t) >0 and liminf y(t) =0. (4.3.9)
1~00 t—00

Then we can choose ¢, >t >t such that y(t;—7)>y(t; —71). We

claim

h,zr_z.long y(t2 =7+ nr) > 0. (4.3.10)
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In fact

y(ta—7+nr)= Zz(tz —7+ir)+y(ty — 1)
i=1
and

n

yti—71+nr)= Zz(t; —T1+ir) +y(t - 7).

i=1

Since z(t;—T+ir)>2(t)~7+ir) for i=1,2,...,n, and
h’fr_ng yt1 =7 4+nr) 20,

we have

liminf y(t; = 7+ nr) 2 y(ta = 1) - y(t, = 7) > 0.

n—+00

Now, choose ?) <t <t; <t3 such that for any T € [t;,13),
ytr—7)<ylta—7)<y(T-1).

From the above discussion, we see that (4.3.10) holds, i.e., there exists a u >0

such that y(tz—7+nr) 2 pu forall n. It is easy to see that for T € [t;, 3]

y(T—r+nr)=Zz(T—'r+ir)+y(T—r)

i=1
n

> Zz(tg —74ir)+y(ta—1)
=1

=y(ta—1+nr) 2 p.



From (4.3.1) we have
~2'(s)+ [} qu)f(w(u — 7))du< 0, oS s<t,

2(to) + [y, (u — to)a(w)f (y(u — 7))du< 0,  to <t.

Hence
n tytir
() + W) | (u—to)g(uw)du <,
i=0 tatsr
and then
n tg+ir
2(t) + f(1) ) ., @ ta(du <0,
i=q Y later

contradicting (4.2.6).

2

PROOF OF COROLLARY 4.2.2: If not, similar to the proof of Corollary 4.2.1 we

see there exists an eventually positive solution y(t) satisfying (4.3.9). From

the proof of lemma 4.2.2 we see this can only occur when 2"(t) <0, 2'() >0

and 2(t) <0, t>1 >0. Choose t2 >t >ty such that y(t; —7)>

y(t1 — 7). Since

Ytz —7+nr)= Z":p""'z(tz —7+ir)+py(t; —7)

i=1

n
yits —r4nr) =) p" ety — 7 +ir) +p"y(t — 1)

i=1

tg~14ir) 2zt —T+ir), i=12,...,n
and y(t; —7+nr)>0,n=0,1,..., we see

Y(tz — 7 +nr) 2 p"ly(ts — 1) — y(ts — 7)] £ Ap".

(4.3.11)
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Similar to the proof of Corollary 4.2.1, we can show that there is an interval

[tz, t3] such that

YT —o+nt)> Ap"

for Te€lts,t3] and all n. From (4.3.1) we get
n t3+ir
A0)+ S [ (=t forau <,
i=0 Yla+ir

contradicting (4.2.7).

PROOF OF THEOREM 4.%.i: r . ding to the proofs of Lemmas 4.2.1 and 4.2.2
we have 2'(t) >0, 2(** - cventually. The remainder of the proof is similar

to that of Lemma 2.2 in [4]. We omit it here.
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CHAPTER 5
OSCILLATION OF LINEAR SYSTEMS OF HIGHER ORDER
—Autonomous Case

5.1. Introduction and Preliminaries

Consider the neutral delay differential system in the form

dN =
v W) = Py(t—r)] + Y Qiut-1)=0 (5.1.1)
i=1
where P, Q; (j=1,...,m) aregiven nxn constant matrices, r, 7

(j =1,...,m) are nonnegative numbers, o = max{r,7y,... y7m} and N is

a positive integer.

Here we use Definition 1.2.3 for oscillation of Eq. (5.1.1), i.e., a solution
y(t) of (5.1.1) is oscillatory if and only if every component of y(t) has

arbitrarily large zeros.

Our results are based on the following lemma which is an extension of

Theorem 2.1 in [1].

LEMMA 5.1.1. Eq. (5.1.1) is oscillatory if and only if its characteristic equation

det [,\" (I-Pe™") + i Q; e“""] =0 (5.1.2)

i=1

7%
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has no real root.

Since this condition is not easy to verify, some explicit conditions are
needed. For systems of DDEs J.M.Ferreire and 1.Gyéri [3] give some criteria
for oscillation by using logarithmic norms of matrices. But to the best of the
authors’ knowledge there are very few results so far for systems of NDDEs;
here we mention only the results by I. Gyori and G. Ladas [8] for a special
system. In this chapter we will give some explicit conditions for oscillation of
neutral systems using Lozenskii measures, or logarithmic norms, of matrices
from a different point of view. Our results cover the results in [3] for systems
of DDEs, and improve the results in [8]. Furthermore, even for the scalar case

our results for explicit conditions are still the best up to now.

For the criteria of oscillation we need the following notations and defini-

tions.

For any nxn real matrix A we denote by X\(4) (¢ =1,...,n)

the eigenvalues of A satisfying
Re Mi(4) > ReJg(A) 2 -+~ > Re Aa(4).

Az|; .
We define ||A]li= sup M, t=1,2,...,00, where z=(z1,...,2,),
zeRes#0 flzl;



[

n A 1/6 . )
llzlli = (E Izjl') , t<oo and |z]lee = lrélJagcn{Ix,]} For each 1 =

J=1
1,2,...,00, the Lozenskii measures p;(A) of A is defined as follows:

v M+ RA] =1
#l(A) - hlinol-" h )

and v;(4) = —pi(-A), i=1,2,...,00. In general, without specification, we
denote by p(A) and y(A) any pairof pi(A4) and y(4), i=1,2,...,00.

It has been shown that pi(A) and v;(4), i=1,2,...,00, exist for any

nxn matrix A and can be explicitly calculated for i=1,2, and i=o00:

p1(A) = sup {aii + Z Iaijl}» vi(A) = inf {a,-.- - Z |a.-,-|};
i - j=1
% i

@ =x (5a+40),  nay=r (S an);

N

Hoo(4) = sup {aii + zn: Ia-'jl}, Voo(4) = inf {aﬁ - i Iaul}-

=1 =1

i#) i#)
For any nxn matrices A and B and any Lozenskii measures we have
i) wA+B)<u(A)+uB), v(A+B)2v(A)+v(B);
i)  v(-A)=-u(4), p(~4)=-v(A);
i) plad)=ap(4), v(ed)=av(4), a>0;

iv)  w(A)2ReM(4),  v(4) SRedn(4). (5.1.3)
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For more details concerning Lozenskii measures, see [12]. In the sequel,

we will obtain some criteria for oscillation by using Lozenskii measures. Since
the criteria are given by the general form of Lozenskii measures p and v,
we will actually have infinitely many different results corresponding to each
criterion in the theorems. Moreover, three of them,‘ which are given by p;
and v, ¢ = 1200, can be expressed explicitly. But for the scalar case,

where p(A)=v(A)= A, all of them coincide to give the same results.

5.2. Explicit Conditions for Oscillation

To simplify the discussion and proofs we first consider a simpler equation

aN
5w &) = Py(t =)+ Qu(t-7) =0 (5.2.1)

where P, Q are nXxn matrices, r,7>0. The following conditions will

be used to determine the oscillation of Eq. (5.2.1):

oo N
) LA+t 2 ()

k=0
€

- N
A) ¥ DA(P)]"*”"V(Q)[(Hl)r—fl"2(N ) ,
k

N
) X WP Q-+ e 2 ()
k
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where >°* and Y, denote the sums over all the terms for k € Z, such
3 k

that

(k+1)r—7>0 and —(k+1)r+7>0, respectively.

REMARK 5.2.1. The inequality in (A3) will become strict if the sum has

only one term.

THEOREM 5.2.1. Assume N is odd and v(Q) >0. Then each of the fol-

lowing is sufficient for (5.2.1) te be oscillatory:

i) WP)=w(P)=1,

i) 0<u(P)<p(P)<1, and (A,) holds,
iii) 1<v(P)<u(P), and (A;) holds,

iv) ¥(P)<l<u(P), and (A;), (A2) hold.

THEOREM 5.2.2. Assume N is even and (@) > 0. Then each of the

following is sufficient for (5.2.1) to be oscillatory:

i) 0<u(P)<1, and (As) holds,

i) p(P)>1, and (A;), (As) hold.
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REMARK 5.2.2 The condition (A3) in Theorem 5.2.2 is required in the sense
that if the set {k€Z,:—(k+1)r+7 >0} isempty and v(P)>0, then
Eq. (5.2.1) must have a nonoscillatory solution. In fact, the above assumption

implies that r > 7. If (5.2.1) is oscillatory, then (5.3.1) has no real root. Let
F(A) =M1 ~Pe™*") + Qe .

Then

W(F(0)) = 1(Q) > 0

implies that u(F(X))>0 forall Ae€IR. But
#(F()) S AV (1= »(P)e™) + p(Q)e™" = —o0
as A — —oo. This contradiction shows that all solutions cannot be oscillatory.

The above oscillation criteria for Eq. (5.2.1) can be easily extended to the

Eq. (5.1.1) by using the following conditions where ¢ = (ﬁ »(Q;)) Y ",
i=1

, 3
T=;El'rj.

J=

m oo | P W N\N
B) LYW M@+ 2 (), o (522
J=1 k=0 ¢
00 N
mg W) )V 2 (T (523)
k=0

. N
@) WP U@ 2 (1), o

Jik
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- N
mg 3 (P4 [(k 4+ 1)r — 7V > (ﬁ) ,
k

€

N
(Bs) Y [P~V y(Q))=(k + r + 5]V > (_I:’_) or
3k
N
™ E.[“(P)]_(kﬂ)[—(k +)r+nN > (%)
k

where Y%, 3, are defined the same as before; Y*, ¥, denote the
k k ik 5k
sums over all the terms for 1<j<m, k>0 such that (k+ Dr—7>0

and —(k+1)r+7; >0, respectively. The inequality of (B;) will become

strict if the sum has only one term.

THEOREM 5.2.3. Assume N is odd and v(Q;) > 0 but not all zero,

j =1,...,m. Then eack one of the following is sufficient for (5.1.1) to be

oscillatory:

i) uwP)=v(P)=1,
ii) 0<SW(P)<u(P)<1, and (B;) holds,
iii) 1<v(P)<pu(P), and (B;) holds,

iv) W(P)<1<u(P), and (B;), (B:) hold.

THEOREM 5.2.4. Assume N is even and v(Q;) > 0 but not all zero,
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j =1,...,m. Then each one of the following is sufficient for (5.1.1) to be

oscillatory:

i) 0<u(P)<1, and (Bs) holds,

u) #(P))l, and (Bz) ’ (Ba) hold.

The idea in the proofs of the above theorems may also be applied to the
case that »(Q;) are not all nonnegative. As an example we give a result for

the equations of the form
dv =
v W(t) — Py(t — )]+ Y16yt — o)~ H; it~ 1)) =0 (5.24)
i=1
where P, Gj, H; are nxn matrices, v(P)>0, »(G;)—p(H;)>0 and

not all zero for j=1,...,m, r,0j7 (j=1,...,m)20.

THEOREM 5.2.5. Assume N is odd. Then each one of the following is suf-

ficient for (5.2.4) to be oscillatory.

i) (P)21, oj<tj<r, and (B;) holds for the case where v(Q;)

are replaced by v(G;)— u(Hj), j=1,...,m. Furthermore,

N m
- (g) +a" u(P)+ ) [1(G;) e~ =) — u(H;) e~V > 0 (5.25)

j=1
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where

. 1 v(G;)
°" lgni?m{fj ;" u(Hj)}’
1 v(G;)(r-oj) .
b; = In ] 1o i=1,....m.
'Uti-oi T w(Hj)r - 1)

i) v(P)>0, W(P)<1, 1;>0;>0, and (B,) holds for the case where

¥(Q;) are replaced by ¥(G;)—-pu(H;), j=1,...,m. Furthermore,

N m
_ (g) +a*" [W(P)]7 + Y [W(P~1G;) e % — (P~ H,)e % %] > 0,
Jj=1
where

5.3. Proofs

The following lemma will be needed in the proofs of the results.

LEMMA 5.3.1. Let A bea nxn real matrix. If either v(A) >0 or

#(A) <0, then det(A4)#0.
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PROOF: From (5.1.3), if »(A) >0, then Rel,(A)>0. Hence

ReXi(A) >0 for t=1,2,...,n. Thus

det(A) = M(A) -+ Aa(A) #0.

The case that p(A) <0 is similar.

0O
PROOF OF THEOREM 5.2.1: The characteristic equation of (5.2.1) is
det(AN(I - Pe™*")+Q e™*") = 0. (5.3.1)
i) Assume p(P)=y(P)=1. Lzt
F(\) = AN(I - Pe™*") + Qe™>.

Then v(F(0)) =v(Q)>0, and

WF() 2 v(AN(I = Pem)) + (@) e~
For A>0

WF(N) 2 V(1 - w(Pe™) +3(Q)e™ (532)

=AN1-e ) +v(Q)e™* > 0.
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For A <0

V(F(A) 2 NNu(=I + Pe™) 4 4(Q) e
> MM(=1+5(P)e™) + »(Q) ™ > 0.

Thus »(F(A))>0 forall A€R. By Lemma 5.3.1 det F(\)#0 for

A€, ie., (5.3.1) has no real root.

ii) Assume 0<v(P)< u(P)<1. Clearly A=0 is not a root of (5.3.1).

For A>0, by (53.2)
Y(F(2) 2 A¥(1 - p(P)e™) + v(Q)e™" > 0.

Hence det(F(A))#0 for A>0 by Lemma 5.3.1. Let A=-—s and

denote
G(s) = —sN(I - Pe*) + Qe*r. (5.3.3)

Then A <0 is a root of (5.3.1) if and only if s > 0 is a root of
det(G(s)) =0. By Lemma 5.3.1, if det(G(s)) =0 has a root s> 0,

then »(G(s))<0. Since N is odd,

02 ¥(G(s)) 2 8" (-1 + ¥(P)e™) +1(Q) e’
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which implies that 0 < v(P)e®" < 1. As a result

s¥N > v(Q)e*™ (1 - y(P)e*)™?

=) (P Q) ettt (53.4)

k=0

> St ua) L]
k=0

The equality can not hold since e*(*"+7) attains its minimal value at

different point s for different k. Thus

N
Y IPIE o @)(kr + 7)Y < (N ) ,

k=0

contradicting (A;) . Therefore (5.3.1) has no real root.

iii) Assume 1< ¥(P)< p(P). Similar to i) we see that A <0 is not a

root of (5.3.1). Assume A >0 is a root of (3.1). By Lemma 5.3.1 we

have

02> ¥(F(A)) 2 AN(1 - u(P)e™ ") + v(Q) e~ (5.3.5)

which implies that u(P)e~*" >1. So

AN 2 (u(P)|1(Q) X1 — [u(P)] ey

= i[y(P)]'(k-H) V(Q) eA[(k.'.l),._f]

k=0

. r—T)e N
> 3y wiq ML =Tl
k
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that is,

N
S W @+ - < (27,
k

contradicting (A;) .

iv) Clearly, A =0 is not a rcot of (5.3.1). From the proofs of i1) and iii)
we see that (A;) aud (A;) implythatany A>0 and A<0 can

not be a root of (5.3.1).

PROOF OF THEOREM 5.2.2:

i) Assume p(P) < 1. Similar to the proof of Theorem 5.2.1 ii), we see
any A20 isnot aroot of (5.3.1). Assume A=-s<0 is a root of

(5.3.1). Then by Lemma 5.3.1 and from (5.3.1)
V(F(~s)) = v(s¥(1 - Pe’™) + Qe*T) < 0.
Since N is even,

02 u(F(-s)) 2 s"(1 - u(P)e’") + 1(Q) "
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which implies that p(P)e’™ > 1. As a result
N 2 (WP (@) eI - (WP e

= Z[”(P)]-(k+l) V(Q) e‘["(k'l'l)r-{-r]

k=0

> XM 4(Q) [3‘ "‘*”"’“’1"] ,

that is,

N
> WP Q-+l < ()
k

Note that the inequality may become an equality if the sum has only one

term, and this contradicts (A3) .

ii) Assume p(P)>1. K X is a real root of (5.3.1), then A#0 and
AN > 0. By the proof of i), (As) implies that A < 0 cannot be a
root of (5.3.1). By the proof of Theorem 5.2.1 iii), (Ag) implies that

A>0 cannot be a root of (5.3.1).

PROOF OF THEOREM 5.2.3 AND 5.2.4: Similar to those of Theorem 5.2.1 and
5.2.2. To show the difference we only give an outline of the proof of Theo-

rem 5.2.3 ii) as an example.



Corresponding to (5.3.4) we now have

2 30 Y WP (@) ettt (53

J=1k=0

>3 Y P Q) [3(’"”’)6] ,

j=1 k=0

that is,

m oo | N
> Sl e 5t < (T,
J=1 k=0

contradicting (5.2.2). Frora (5.3.6) we also have

N> (zm:u(Qj)ear;) ( i[y( P)¥ eakr)

J=1 k=0

m 1/m
Zm(Jl;IIV(Qj)e”') (Twenrer)

k=0

0
= mg Y (P exbrt)
k=0

> mg Y (P [‘Lﬂ] ,

k=0

that is,

;anlv(P)]"(krw)" (N)N,

k=0

contradicting (5.2.3).
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PROOF OF THEOREM 5.2.5: The characteristic equation of Eq. (5.2.4) is

det (,\N (I =Pe™*") + f:(c,-e-“a‘ — Hje™ )) =0. (5.3.7)

i=1
Let
FQ) = AT - Pe™") + }E(Gje*":‘ — Hje™2"),
j=1
Then A=0 is not a root of (5.3.7) since the assumption before Theorem 5.2.5
implies that
W(F(0)) = u(il(a,- ~H)) 2 f;w(c:,-) — W(H) >0.
j= j=

Hence det F(0) # 0.

i) Assume »(P)>1 and oj<7i<r. If A>0 is a root of (5.3.7),

then by Lemma 5.3.1

02 ¥(F(N) 2 A1 = u(P)e™>) + Y (v(G;)e™> — p(Hj)e™*")

j=1

> W(1 = W(Pe) + Y () - W(H)) e,

i=1
This is a similar inequality to (5.3.5) for Eq. (5.2.1). By a similar discus-
sion we can get a contradiction to (Bz) where »(Q;) are replaced by

v(G;) - u(Hj), ji=1,...,m.
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If A<0 isaroot of (5.3.7), let A= —s, and denote

¢(s) = —sN(Ie™*" - P) + Z(Gje-‘("‘"’i) — Hje*(r=m)),
i=1 (5.3.8)
a(s) = —sN(Ie™*" — P)

Bi(s) = Gje*"") — Hie™*=), j=1,...,m.
Then det(¢(s)) =0, and since N is odd,

v(a(s)) 2 sV (~e~*" +¥(P)) > 0,

Y(B;(s)) 2 ¥(G;)e ™"~ — u(Hy)e™* ") & y(s), j=1,...,m.

v(B;(s)) 2 0 if and only if

s< 1 an(GJ) a

— ”(Hj)—a,, j=1,...,m.

Set a= lg}igm{a,-}. We have v(¢(s))>0 for 0<s<a. Consider

the case that s >a. Then

er

Wa(s)) = - (E)N +a¥u(P),

and since

#(s) = —(G;)(r — 05)e™* "D + p(H;)(r — 75)e~* (),
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we see the minimum of £; is attained at

1 WGj)r—oa;) .
=0 CHEN =) b

8j=
and thus

Y(Bi(s)) = £i(s) 2 4i(s;) = (Gy)e M= —p(Hj)e~ ), j=1,...,m.
Therefore by (5.3.8) and (5.2.5)

w($(s)) = v(e(s)) +)_ v(Bi(s)

i=1

N N N = =b;j(r—a;) No=—bi(r—1;)
2= (T) +aMu(p)+ (G e — )] >0

i=1

contradicting that det(¢(s)) =0.

ii) By (5.1.3) »(P)>0 implies that P~! exists. (5.3.7) is equivalent to
m p
det (_ AN(I - P-lexr) + Z [P-lGje.\(r-q) - P—lHjeA(r-rj)]) = 0.
j=1
With A =-s, we have
m
det (sN (I-Ple*)+ ) [P1Gje~*tr=) — P~1H ;e )]) =0.

i=1

(6.3.9)
Then we have a duality between (5.3.7) and (5.3.9) as follows:

(P, Gj,Hj,dj,Tj) — (P",P-IG,',P—IH,',T - Oj, T —Tj).
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Using this duality and part i) we obtain the desired result.

5.4. Remarks on Special Cases

Here we mention the work by Gyori and Ladas in [8] where Eq. (5.1.1) is
considered for the case that N =1, P is a diagonal matrix with diagonal
entries pi,...,pn such that 0<p; <1, i=1,...,n. 1n(Q;}) =20 where
11(Q;) denotes the particular Lozenskii measure defined in Section 5.1. Some
comparison results with delay equations are obtained. An explicit condition for

oscillation is given there:

f P=pl for pe[0,1] (hence 1 (P)=p), and
3 Y b n@)r+7)> 5,

J=1 k=0

then Eq. (5.1.1) is oscillatory according to Definition 1.2.3.

Obviously this result is included in Theorem 5.2.1 ii), and the equality in

(B;) is not valid there.

A special case for Eq. (5.1.1) is that P and @, j=1,...,m, are

symmetric matrices. Since for any symmetric matrix A, p2(4) = A1(4),
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val A) = Aa(A) and p(A4) 2 Ai(4), v(4) < Au(4) for any Lozenskii mea-
sures, then if we use p; and v, in the previous theorems, they will give

the best results among those using all the Lozenskii measures.

Another special case for Eq. (5.1.1) is the scalar case, i.e, P and

Qj, j=1,...,m are constants, hence

wP)=v(P)=P,  wQj)=v(Q;)=Qj, j=1,...,m.

Therefore, if we substitute P and Q; into u(P) or »(P), u(Q;) or
»(@;), j=1,...,m, respectively, the previcus theorems will give criteria for
oscillations of scalar equations. It is easy to see that they coincide with some
results obtained in Section 2.4 for the case that n =1 , and they include and
improve the following known sufficient conditions for oscillation, see [2,4-7, 10,

11}:

m
1~
A N=1, 0<p<], z:q,-r,->7" or
i=1

m i/m s m 1-p
(Hq:‘) (ZT;‘)> . o p21, r>7 (j=1,...,m) and

J=1 j=1
m p-1
Y gir-7)> —

=1

2
B. N=2 m==1 0<p<l, p"q(r—r)2>(§).

C. N isodd, m=1, 0<p<1, and either one of the following:
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N
i) gtV > (g) ,

ii) -1-—3—;(1' -r)N > (

2

N
€

i) qrV+p(r+r)V]>

()"
) qpn-l-l 17N>( )N

0 mstee> (Y)

N
D. N iseven, m=1, 0<p<1 and p“q(rr-—r)”>(%) .

5.5. Criteria for Systems of Delay Equations

In this section, we obtain a criterion for oscillation of the following delay
defferential system of first order
m
§(t) + Qoy(t) + ) _ Qsu(t — 1) =0 (5.5.1)
j=1
where Qj,j = 0,...,m, are nXxn matrices, and 7; 20,5 =1,...,m.

The main result of this section is given in the following.

m
THEOREM 5.5.1. Assume v(Q;) 20, j =0,1,...,m, and Y ¥(Q;) > 0.
j=1

Then either one of the following guarantees that (5.5.1) is oscillatory:



i) f:lv(Q,-)e"‘%”fr,-e 21, (5.5.2)
’=

ii) (ﬁ,"(a,-»*/'"exp( Udyreyrre > 1, where 1= 3o (5.5.3)
= J=1

The above inequalities become strict if m =1.

PROOF: The characteristic equation of (5.5.1) is

det (AI + Qo + i Q,-e"‘"") ={. (5.5.4)

i=1

Let F(A)=A+Qo+ 5.Qje™>7. Then det (F(\)) #0 for A>0. I
=

(5.5.4) has a real root A9 <0, then let Xg= -3¢ and let

G(s)=—sI+Qo + ZQje"i.

j=1

Then det (G(so)) =0 implies that v(G(so)) <0. Hence

0 2> ¥(G(s0)) = —s0 +¥(Qo) + iV(Qj)e'"’ (5.5.5)

j=1

m
s0 — v(Qo) 2 Z Y(Q;5)e”(Q0)7i gloo=v(QoN)rs
j=1

Obviously, sp—1(Qo) >0 and then

1> 2"’: U(Q;)e"90 l8s=¥Q0 /(33 — 1(Qo))

=1

m
> Z ¥(Q;)e” (97 7je,
i=1
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contradicting (5.5.2). Note that this last inequality may become an equality if

m =1. Therefore, (5.5.4) has no rez! root, and (5.5.1) is oscillatory.

The case corresponding to (5.5.3) can be similarly proved.

REMARK 5.5.1. Theorem 5.5.1 improves the results in[3], and for the scalar

case, it coincides with the result obtained by W. Huang [9).
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CHAPTER 6
OSCILLATION OF LINEAR SYSTEMS OF HIGHER ORDER

-—Nonautonomous Case

8.1. Criteria for Oscillation

Now we turn to the oscillation of the linear nonautonomous system

N m
L) - Pue =)+ Y @yttt = 7) =0 611)

i=1
where P € R"*",Q; € C(IR4,R"*"),j = 1,...,m; r,7;,j = 1,...,m, are
nonnegative constants. Furthermore assume Q;(t) = ((gj)ex(t)), where
(gj)x(t), &k=1,...,n,j=1,...,m, are continuous, bounded and do not

change signs on IRy.
The definition for oscillation used in this chapter is the Definition 1.2.4.

As indicated by Theorem 1.2.2, all solutions of Eq. (6.1.1) have the expo-

nential order and hence the Laplace transforms of the solutions exist. Denote

(@) = zei%ﬂ (95)ex(t), (d5)ex = 2up (g)e(t), &k =1,...,m, j=1,...,m.
For any (q))ex € ((7))ers (d5)er), Lk =1,...,m, j=1,...,m, define

Q; = ((4})a)-

99
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We will determine oscillation properties of (6.1.1) by comparing (6.1.1)

with the following equation

N m
L) - Pyl =)+ ) @jutt - 7)) = 0. (612)
=1

This is done in the following theorem.

THEOREM 6.1.1. If for every {(q})eux € ((qj)u,(fj)u), Lk=1,...,n,
j=1,...,m, Eq. (6.1.2) is oscillatory according to Definition 1.2.3, then

Eq. (6.1.1) is oscillatory according to Definition 1.2.4.

The proof is mainly by Laplace transform which has been used in (1] for

the systems with constant coefficients.

PROOF: We only prove it for the case that N =1, since the general proof is
similar. Assume the contrary. Then there exist an eventually nontrivial solution
y(t) of (6.1.1) and 2, >0 such that 1;(t) has eventually constant signum
for t>t—0,i=1,...,n, where o=max{r,7,...,Tn} . Without loss of

generality we may assume y(t)>0 for t2ty~o.
The Laplace transforms of y(t) exists for s2>so, where
89 € (—00,+00). Let

)
to

u(s) = Lly(t)] & / ety(t)dt, s> so,
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and u(s) = (ul(s),...,u,.(s))T. Then multiplying (6.1.1) with e™*, inte-
grating it from #, to oo, and using the Mean Value Theorem we find that
there exist (g})e € ((@)exs(G5)x)  Lk=1,...,n, j=1,...,m such that

Q; = ((g))e) =nd
F(s)u(s) = ¢(s), 82 se.

where

m

F(s)=sI —sPe™"" + Z Qe
i=1

to

¢ =yo — Py(—r) + sPe™*" / e~ *y(t)dt

to—r

m to
- EQ}‘e""" /; e~ *y(t)dt.

j=1 0—Tj

Obviously, F(s) and ¢(s) are continuous on IR . Since (6.1.2) is os-
cillatory according to Definition 1.2.3 for the above @Qj, j = 1,...,m, we

have

det (F(s)) #0 for s€RR.

Hence F~1(s) exists and
u(s) = F~1(s)p(s), 20 (6.1.3)

where F~!(s)p(s) is continuous on IR. We claim that so = —oo. Other-

wise, from the definition of u(s) we have lim+ lu(s)] = +00, contradicting

448,

(6.1.3). sp=—oo implies that (6.1.3) holds for all s € IR.
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It is easy to see that there exist a; >0 and a2 >0 such that

le(s)] € aze®l*l, se IR, (6.1.4)

and since det (F(s)) >0,

IF7(s)l < [F(s)i*! (6.1.5)

b
det F(s)

where b is a constant depending only on n. It is also seen that there exist

Cy>0 and C; >0 such that
|F(s)] < C1e®l, s €.

Moreover, since det (F(s)) is a polynomial of s and €™ (j=1,.. .ym)
and det (F(s)) >0 for s €R, we know that Lim det (F(s)) = +oo,
and hence there exists an s; < 0 such that det (F(s)) 21 for s < s

Thus from (6.1.5) we have
|F~1(s)| S bCP2er Ol 5 <. (6.1.6)

Noting that u;(s) = L{g1)(s) > 0, from (6.1.3), (6.1.4) and (6.1.6) we get

that there exist d; >0 and d; >0 such that

0<u(s) L u(s)l £ defl, 5 <.
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Therefore

0 < limsup e~%"lu;(s) < d;. (6.1.7)

8—+—00

But for t; > max {{y,d2} we obtain that

o0
e~%lely, (s) = e~ 42l e~y (t)dt

to

o0
>e %l [ ety (t)dt
H

o0
2 e_(dz-‘l)lal yl (t)dt
131

— 400

as s — —oo since y;(t) >0, contradicting (6.1.7). The proof is complete.

(

REMARK 6.1.1 Theorem 6.1.1 is a correction and an extension of Theorem 3.1

in {3].

By combining Theorems 6.1.1 and 5.5.1, we can consider the following
equation
‘ m
y'(8) + Qo(thu(t) + )_ Qi(t)y(t — 75) =0. (6.1.8)
i=1
Assume Q.i(t) = ((%')lk(t))’ j=0,...,m, where (qi)tk(t)’ Lk =1,...,n,

are continuous, bounded, and do not change signs on IRy, 7 >0,
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j=1,...,m. Denote
@) =, éﬁ{; ((g7)ex®),  (G)ex = t?é\;a ((g5)ex(®))-

For any (g})ek € ((3)ers (G)es), define QF = ((gf)ex)-

COROLLARY 6.1.1. Assume for any (g})u € ((@)exs (G5)ex)s &k =1,...,m,

j=0,...,m, we have

m
) v(@N20(= 0,...,m) and EIV(Q;) >0,
J=
and one of the following conditions holds:
m \J
i) Zv(Q})e"(Qo)"f rje21, or
i=1
20 s \1/m ¥(Q0) . #). .+ i . L
i) (Hlu(Qj)) exp ( B2lr*)rte > 1, where 7%= z:l‘r,-,
J= =

the above inequalities become strict if m =1.

Then Eq. (6.1.8) is oscillatory.

For the scalar case we have the following result.

Consider the scalar equation

y'(t) + qo()u(t) + ) gilthy(t - 35) =0 (6.1.9)

j=1
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where gj(t), j =0,...,m are continuous, bounded and do not change signs,
0<§; <¢j(t)<§ji=0,...,m, and 7;>0,j=1,...,m. Then our results

reduce to the following

COROLLARY 6.1.2. Assume that the equation
m
y'(1) +ayt) + ) Gyt —7) =0 (6.1.10)
=1
is oscillatory. Thus Eq. (6.1.9) is also oscillatory. In particular, assume

m
Zéj;e"“" rje21 or
=

(H g)/mew " re 21, where * —Zr,,
=1 J=1

the inequalities become strict if m =1. Then Eq. (6.1.9) is oscillatory.

PROOF: The characteristic equation of (6.1.10) is
m
FO)=EA+do+ ) 3¢ =0
J=1
Eq. (6.1.10) is oscillatory implies that F(A)>0 for all A€IR. Then for

any

q} € [@j»§j), 1 =0,...,m, we see that

m m
Mg+ e 2 A+ B+ Y e >0
J=1 j=1
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This means that equation
y'(t)+ gu(t) + Y qfu(t —75) =0
i=1
is oscillatory. By Theorem 6.1.1, Eq. (6.1.9) is oscillatory. The rest of the proof

is immediate from the first part and Corollary 6.1.1.
(]

Finally we show how our results may be extended to certain nonlinear

systems of the form
v't)+ ) Qi(ty®))y(t —7) =0 (6.1.11)
j=1

where 7;>0, j=1,...,m. Let Qj(t,v) = ((g))x(t,¥)); j =0,...,m, be
nxn matrices, where the (g;)a (t, y(t)) are continuous, uniformly bounded

and do not change signs on IRy for all solutions y(t).

Denote

@) = g,}‘a ((qj)tk (¢, y(t))), (G)a = tzg& ((Qj)a:(t, !l(t)))

for L,k=1,...,n, j=1,...,m, where the infima and superia are taken over
all solutions of th- system (6.1.11) and for any (g})ex € ((Fj)ers (§)es) define

Q; = ((g})ex) 5 =0,...,m.
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THEOREM 6.1.2. i) If the conditions of Theorem 6.1.1 or Corollary 6.1.1 are

satisfied, then system (6.1.11) is oscillatory.

The proofs are essentially the same as Theorem 6.1.1, Corollary 6.1.1, and

so we omit them here,

We remark that if we can give a priori upper and lower bounds for all
solutions, then with some general assumptions we can easily show the uniform
boundedness of the functions (gj)e(t,y(t)) in (6.1.11) which are required by

Theorem 6.1.2.

6.2. Application to Lotka-Vol¢erra Models

As an application of our results, we derive oscillation properties for Lotka-

Volterra models in the system (predator-prey and competition) cases.

We consider the system of delay logistic equations

Ni(t) = Ni(t)[a; - ib.‘,'N,-(t -7), i=1...,m (6.2.1)
j=l

with Ni(t) = p;i(t), t € [-7,0], where

r€(0,00), a;bj€R for i,j=1,...,m, ¢;€C([-7,0],R;) and

¢i(0)>0, i=1,...,m.
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We assume that (6.2.1) has an equilibrium N* = (N7,...,N3)T with positive
components. Set Nj(t)= Nfe*® for t>0 and i=1,...,m, then the

zi(t) satisfy

m
2(t)+ Y pii(e¢ D -1) =0, i=1,...,m, (6.2.2)
i=1

where p;j = b;;N}, {,j=1,...,m. As shown in [5] we see that every solution

of (6.2.2) satisfies
tl_ig,xo zi(t)=0, i=1,...,m, (6.2.3)

if the matrix P =(p;;) satisfies

m

Voo(P) = . g}lgm (N7 (b5 — ;=§;¢j [bi51)] > O.
In [5] it is shown that if further
Voo P)re > 1, (6.2.4)

then all solutions of (6.2.1) are oscillatory about N*. Now we are ready to

extend this result to more general criteria.

THEOREM 6.2.1. Assume v, (P)>0, and for some i=1,2,..., or oo,

vi(P)re > 1. (6.2.5)
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Then (6.2.2) is oscillatory, and hence every solution of (6.2.1) is oscillatory

about N°*.

PROOF: Rewrite (6.2.2) in the form

#(t)+ Y pt)zi(t—7)=0, i=1,...,m (6.2.6)
=1
where
5O =p oo =L for =1
is =pij ———— 1lOor t,)=1,...,m,
PRI - ’
and by (6.2.3)

lim p:j(t) = Pijs 5,j=1,...,m.

t—+00

Define the matrix P*(t) = (p};(t)). Then

lim P*(t)=P.

{—+00

By (6.2.4) and the continuity of the Lozinskii measures we get that there is a

To 2 0 such that
vi(P'(t)Te>1, t2>T.

Then by Theorem 6.1.1, we obtain the desired result.
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REMARK 6.2.1. Obviously, Theorem 6.2.1 includes Theorem 1 in [5], and it
gives more general criteria. For example, if we choose & = 1 or 2, then

(6.2.5) becomes

m
min {p;; - Y. Ipijlire>1

J=1,j#i
1 T
/\n(é(P + P"))re> 1,
which are independent of (6.2.5).
O
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CHAPTER 7

ASYMPTOTIC BEHAVIOR OF NONLINEAR EQUATIONS
OF HIGHER ORDER

7.1. Introduction and Preliminaries

The asymptotic behavior of the nth order ordinary differential equation
y(n) + (5.9, y("-l)) =0 (7.1.0)

has been considered in [12] and a result about it has been established. For the
case that n =2, [1] obtains some further results. For n=1 and 2, the

above work generalizes and revises the results in [2,15].

In this chapter, we consider the neutral differential equation
[w(t) = py(t — )™ + F(t, y(t = 7).y’ = 7). gVt = 7am1)) =0 (7.1.1)

where f € C(Ry xIR® = IR), p,r70,...,Ta~1 &re nonnegative constants,

0<p<1, and we denote 7*=max {r,7g,...,Tn-1}

Some qualitative properties of nonlinear neutral differential equations such
as oscillation, nonoscillation and asymptotic behavior of nonoscillatory solutions
have drawn much attention in the literature, see [3-6,8-11,13,14]. But there has
not been much work done on the asymptotic behavior of all solutions of neutral

equations, for that of first order equations, see [7,16]. Usually, the asymptotic
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behavior of NDDEs is much different from that of the corresponding ODEs.
However, as we will see later, under some assumptions, there is a surprising
similarity between the behavior of the two equations (7.1.0) and (7.1.1). Thus,
this chapter gives an example i1 which time delays do not affect the asymptotic
behavior, and hence, the nonoscillatory behavior of solutions of NDDEs, no

matter how large the delays are.

In the following we will obtain some sufficient and/or necessary conditions

for the following conclusion:

(C) Every solution y(t) of Eq. (7.1.1) satisfies that
)/ wa;€eR, i=1,...,n, a8 t— 00 (7.1.2)

where y©(t) =y(t), and a;, i =1,...,n, satisfy the relations

(i-1)a=a.

Furthermore, Eq. (7.1.1) has some solutions such that a; >0

(resp. <0),i=1,...,n.

Before stating the main results we give some hypotheses and lemmas.

DEFINITION 7.1.1: A function g(u) is said to belong to a function class F
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if g(u) >0 is nondecreasing and continuous on {(0,00), and

g(u)/v < g(ufv) for u>0,v>1.

We need the following hypotheses:
(H1) £ yos-->¥n-2)l £ 'gsoe(t)y.-(lyil/(t - )" 1)

(H2) 1530+ ¥met)] 2% Bilt)hi(luel/(t - 7))

where ¢i(f) > 0, ¢¥i(t) > 0 € Cltg,0), and g; € F, h; € C[0,00) are

increasing, ¢=0,...,n—1,

The following lemmas will be used laer.

LEMMA 7.1.1. Let i) 0<p<1l,r 720, v=max{rr)

(i) f(t) >0 is continuous and nondecreasing on [ty,00),

h(t) 2 0 € C[ty, ), y(t) 20 € Clto — v,0);
(ii) weF;

(W) n(0)20€L-wtl aad 7'= mex {n0).

Assume

WO -pt-n < JO+ [ Hololate-rds, 120 (113)
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and
y(t) = f](t) for te€ [to -V, to].

Then

o L J@) A1 g f) h(s)
y(t) <1 +f(t)G {G( )+/o d} t>t (7.1.4)

where

G(v):/ —— for v.>0, v>0.
Yo w() ¢

PROOF: (7.1.4) is obviously true for the subset E of [to,00) where

y(t) <n*. So we only need to consider the inequality on [to,00)\E. Choose

t € [to,00)\E, andlet z(t)= , max {y(s)}. Then =z(t)=y(t*) for some
0—VSas

£ € (to,]. From (7.1.3) we have
o) -t =) S SO+ [ bepolee =)
<50+ [ Hoyw(ele)ds.
Noting that
y(t* = ) < 2(t* — 1) < 2(2),
we have

o(t) < F(t)+ /‘ ‘ H(s)w(x(s))ds
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where F(t) = IO

1-p 1H(t)""'£(t—)

Since F is nondecreasing and w € F we get that

F(to) F(tO)
aka(t) < Fito) + / H(s) LU0 F( ) w(z(s))ds

< _
F(tg) + ‘/‘o H(s)w( F( ) $(8))d3.
By Biha.ri’s inequa.lity we obtain that

F;;;)) 2(t) < GTH{G(F(to)) + f‘ H(s)ds},

ioeo,

;’,((tt))G“{G(F(t ) + / H(s)ds)

_f®) qm1gqq S (to) h(-’)
B (to)G l {G( /

z(t) <

In view of the definition of z(t) we see (7.1.4) holds for ¢ € [to,00)\E, and

hence holds on [tg,0).

LEMMA 7.12. Let 0<p<1 and rk > 0. Assume a function y(t)
satisfies that
Jim [y(t) - py(t — )]/t = a (7.1.5)

for some a€IR. Then

Jim y(t)/t* = a/(1- p).
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PROOF: We only need to prove the lemma for the case that 0 <p<1. From

(7.1.5) we see that
y(t) =py(t —r) + (a +o(1))* (7.1.6)

where o(1) +0 as t-—o0o. Forany €>0, choose >0 such that
lo{1)] <€ for the of1) in (7.1.6) and t>to. Then for any ¢2>?o there
exists a t* € [to,to+r] and a nonnegative integer n such that ¢=1"+nr.
In (7.1.6) setting t=t*+nr for n=1,2,..., and applying induction we
get

W(t* +nr) =p"y(t*) + (a +o(1)) )"~ (t* +ir)*

=1

where |o(1)| <&. Then by Stotz’s Theorem we obtain that

. y(t* +nr) L= P i)t
B Grran = Sy
n=n(4* k
=(a+e¢) lim Pt 4 ) )
n=-+00 p-”(t‘ + nr)k — p—ntl (t" + (n - 1)1')
_a+te
=1=p"
Similarly,
limiaf y(t* + nr) 5 8=¢

n—oo (t*+nr)f “1-p°

Since ¢ >0 is arbitrary, this means that
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i ko 2
lm v/ =7 -

7.2. Asymptotic Analysis

THEOREM 7.2.1. Under the hypothesis (H1), a sufficient condition for Conclu-

sion (C) is that

Q0
/ ot < oo, i=0,....n—L. (7.2.1)

PROOF: Denote

G;(v):/”: g‘—zasda, i=0,....,n-1

Without loss of generality, we may assume that y(t) is a solution of Eq. (7.1.1)
having initial values on [1-7*,1]: u®(¢) = 9;(t), t € [1-7°,1}, i =0,...,n-1,

where ¢* is defined in Section 7.1.

(i) At first we conclude that y{t) satisfies that

n=j-1
O < camjtdn-; /1 ‘ Y @i(8)9: (lyD(s=mi)l/(s—7:)" """ )ds
i=0

(1.22)



119

-1
for t>1 and j=1,...,n, where cp—j>0,dp—j>0, and 3 =0;
=0

and then y(t) satisfies that
W@/ <bi, i=0,...,n-1 (7.2.3)

for t>1, where b;,1=0,...,n—1, are constants.

The proofs of (7.2.2) and (7.2.3) are by induction twice in the forward
and backward ways, respectively, and using Lemma 7.1.1 2n times. To see

this, from Eq. (7.1.1) we have

y () -py I (t-r) = ﬂn-l"/,‘ F(,9(s~0),¥'(s=71)y- -,y (s=Tn-1)) ds.

Choose ¢ >0 such that ¢>|fs-1]. Then by (H1) we get

™= D()| - ply™ It - )| < D) - (- 1)

tn=2
<[e+ /1 Y- wil8)gi (1 (s = m)l/(s = 7)) de]
=0

+ /1 ‘ Pn-1(8)gn-1 (Iy("-l)(s - T,._1)|)d8-

Using Lemma 7.1.1 we obtain for ¢t2>1

tn—2

WO S oy + 14+ / Y- wi(8)gi(lyD(s — 7|/ (s = )" ") ds]

i=0

G—I{G(l p)+/ S’n-l(t) dt}

= tamt + dney / zso.(s)g.(lu<”(s — 7)l/(s = 7)")ds
=0 2.4)
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where #3_; = _<‘<1 {lnn-1(t)1}, cn-1,dn—1 are positive constants. This

means that (7.2.2) is true for j =1. Starting from (7.2.4), by induction and
using Lemma 7.1.1 for the case where p=0 we can show that (7.2.2) holds

in general. Particularly, when j=n, (7.2.2) imples that

l(@OI/t*? < ¢ := bo.

This means that (7.2.3) is true for ¢ = 0. Furthermore, by a backward in-
duction and using Lemma 7.1.1 for the case where p=0 again we can show
that (7.2.3) also holds. Since the process is similar to the parts i) and ii) of

the proof of the Theorem in [12], we omit it here.

i) From Eq. (7.1.1) we get that for i=1,...,n

(n~i) P dji yiej_ 1 _
v - = JZ}(._’,); T

X / (t — sy £(s,4(s = 7o), ... W (s = 7py))ds
1

(7.2.5)

where dy; = Ba—y =y V(1) — py"~1)(1 - r). From (7.2.3) we know that

when t2>1

[ = 315505 = o = o)
n—1

<Z/ ‘P-(s)g.(ly(')(s 1.)'/(3_. )"""')da

n-1

<Y ath) [ eieMs <o
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This implies that
i [ (0= 371 rbo = oy = )l
exists, and then
Jm, / (1= 3) 7 Flo,y(a = 7)o oy (6 = 7)) ds 1=y
exists, and it is easy to show that
hy =hy=---=hy:=h.

Dividing both sides of (7.2.5) by ¢! and letting ¢ — o0 we get

y(""")(t) - py(“'i)(t - r) di; = h; - ﬂn-l -h

= - =D - G-1) = ai(1-p). (7.2.6)

By Lemma 7.1.2, we see that (7.1.2) holds for i=1,...,n.

iii) For any a >0, because of (7.2.1) we can choose T >1 so large

that

n=-1

2a g a
Y ol =) Jy e <

i=0

Let y(t) be the solution of Eq. (7.1.1) satisfying y(?(t)=0 for
te[T-rT},i=0,...n-1 (M) =¢T) =+ =y=NT) =0, and
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y®NT)=a. Thenfor t>T and i=0,...,n-1

1
1) G-

x ] (£ 8™ F5,5(5 = 7o) - ¥ (s = Tay))ds.
T

=) - py(t — r) = -5 '(t —Ty - (7.2.7)

So we conclude that there exists a maximal interval (T,T) in which

0<y*) /-1 < i=1,...,n

- (- P)(' e’
or

2a

0 <y S T

j=0,...,n—1 (7.2.8)
and
(=1 > &
y"() > 5
However it follows that T =oo. For otherwise from (7.2.7)

T YT -r)a
F P g T G-I)

T n-1 '
1)1 / Z wi(s)g; (Iy(”(s —7)|/(s~ .-'.)n-:-1) ds

j=0

0<

1
S(:'-1)! (1-p+1+2)

_ 543 «a 2a
“¥-p G0 S -pE-1)
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and

yIE) 2 I EF-r) 4= [ Z ¢i(8)g; (1W*(s = =jife = A" )ds

e~ Y olgyn o=y

which would contradict the definition of 7. (H1), (7.2.7) and (7.2.8) imply

that for t sufficiently large
- - a
y" (@) - py I -1) > 3

This and (7.2.6) imply that @ > 35%=y . From (7.2.6) we know that

a;>0,i=1,...,n. This completes the proof of the theorem.

From Theorem 7.2.1 we obtain the following corollaries immediately.

COROLLARY 7.2.1. Under assumption (H1), assume
[+ -]
/ pi(t)dt < o0, i=0,...,n—1.

Then Eq. (7.1.1) has unbounded or bounded nonoscillatory solutions if n>1

or n=1, respectively.
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COROLLARY 7.2.2. Under assumption (H1), assume
o0
/ oi)dt < 0o, i=0,...,n—1.
Then all oscillatory solutions y(t) of Eq. (7.1.1) satisfy that
W)/ =0, i=1,..,n, as t— oo.

In particular, if n =1, then all oscillatory solutions y(t) of Eq. (7.1.1)

satisfy that y(t) =0 as t— oo.
THEOREM 7.2.2. Under hypothesis (H2), a necessary condition for Conclu-
sion(C) is that

o0
/ bit)dt < 00, §i=0,...,n~1,

PROOF: Choose a solution y(t) of Eq. (7.1.1) such that (7.1.2) holds for some

a;>0,i=1,...,n. Let T be so large that

n—i i-15 %
y )(t)/ 1 > 3
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for t>2T—-7 and ¢=1,...,n. Using hypothesis (H2) we see that for

t2T

n—-1

£yt — 7o), ., ¥V = a0 2 D iR — )/t~ 7))
=0

> ) hi(ai/2)i(t) > 0.
im0

Without loss of generality we may assume that for t2> T

F(ty(t = 70),..., 4"Vt — 7ay)) > 0.

Integrating both sides of Eq. (7.1.1) from T to oo we have

v"(T) - py*V - (1 - p)ay = /: F(s,9(s = 70), s 4" V(8 = Tay))ds
n-1

2 hiaf2) /T bilt)it.
This implies that
/°°¢.-(t)at< 0, i=0,...n—1
T

and completes the proof.

Combining Theorems 7.2.1 and 7.2.2 we obtain



126
COROLLARY 7.2.2. Under hypothesis (H1) and (H2) with i(t) = ¥;(t),

£=0,...,n—1, a necessary and sufficient condition for Problem (P) is that

00
/ pi(t)dt < o0, i=0,...,n-1.
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CHAPTER 8

CONCLUDING REMARKS

In this thesis we have discussed the oscillatory behavior of some kinds of
NDDEs. The oscillation considered is mainly due to the time delays. That is,

as the time delays grow larger, the equation may change from nonoscillatory to
oscillatory.

In Chapter 2 we have investigated the first order linear NDDE with con-
stant coefficients (2.1.3). New necessary and sufficient conditions for oscillation
have been found based on the extrema of some functions defined on [!-spaces.
The results are easier to apply than those velated to characteristic equstions,

and the explicit conditions derived there are sharp in the sense that they cover

most known results for special cases.

In Chapter 3 we have investigated the first order linear NDDE with vari-
able coefficients (3.1.1). Some necessary and/or sufficient conditions for oscil-
lation have been found, and the results are analogues of the criteria related to
the characteristic equations for equations with constant coefficients. Some com-
parison criteria for oscillation and nonoscillation are also obtained. The above
work improves a number of recent regults and for delay differential equations, it
also improves the established conjecture by Hunt and York in {12, Chapter 3],

by applying the “integral average” technique.
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Chapter 4 is an extension of the work by Erbe and Zhang in [4, Chap-

ter 4], where the second order superlinear NDDE (4.1.1) is considered. Some
oscillation criteria have been obtained by investigating the oscillatory behavior
of corresponding delay differential equations. In the mean time, some conjec-
tures on the asymptotic behavior of the nonoscillatory solutions by Ladas and

Sficas in [11, Chapter 4] have been established.

In Chapter 5 we have discussed the linear autonomous system of NDDEs
(5.1.1). The first set of systematic explicit conditions for oscillation have been
obtained by utilizing the Lozenskii measures. It solves the open problem 6.12.2
in [5, Chapter 1. The conditions can be easily verified, and are sufficiently so
that when the system is a scalar equation, they coincide with the results in

Chapter 2.

Chapter 6 partially extends the results in Chapter 5 to the nonautonomous
system of NDDEs (6.1.1). The oscillatory properties of (6.1.1) are determined
" by the oscillatory properties of the autenomous system (6.1.2). As a result,

some criteria for uscillation of Lotka-Volterra population models are derived.

From Chapters 2-6 we observe that time delays usually have the ten-
dency to cause oscillation. However, there are some exceptions. For example,
if the corresponding ODE has a strong nonoscilistory behavior, the NDDE may

preserve the nonoscillatory bebavior even if the delays are sufficiently large.
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Chapter 7 presefits an example where the NDDE (7.1.1) and its correspond-
ing ODE (7.1.0) exhibit the same polynomial-asymptotic behavior and hence

exhibit the same nonoscillatory property.

Related to what has been done in this thesis, the following problems still

remain unsolved:

1. Extend the results in Chapter 2 to higher order linear NDDEs with con-

stant coeflicients.

2. Extend the results in Chapter 3 to the first order NDDE (3.1.1) with

arbitrary real p, or with variable p, or to higher order NDDEs with

variable coefficients.

3. Find oscillation criteria for Eq. (4.1.1) where f(y) is a sublinear function

a y—0.

4. Obtain explicit conditions for oscillation of the following system

d e )
5 Wit) = piyi(t —ri)] + Y qiyilt—7i) =0, i=1,...,n,
j=1

where p;,r;,¢ij, and 7;; ere constants, i=1,...,n;5j=1,...,m.

5. Obtain some oscillation criteria for the system (6.1.1) according to Defi-

nition (1.2.3).
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There are also some other open problems on oscillation of NDDEs, see

§6.12 in [5, Chapter 1] for detail.

Finally, we would like to summarize some topics on oscillation theory
which have been extensively discussed for ODEs, but rarely considered for ND-

DEs, or even for DDEs:

i) Oscillation caused by oscillatory coefficients.

ii) Nonoscillation of all solutions.

iii) Existence of an oscillatory solution.

iv) Distribution of zeros and the variability of amplitude of oscillatory solu-

tions.

v) Monotonicity of the separation of the zeros of solutions.



