

Design and Evaluation of Stochastic Circuits for FIR Filters and Vector
Quantizers

by

Ran Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Microsystems and Nanodevices

Department of Electrical and Computer Engineering
University of Alberta

© Ran Wang, 2015

Abstract

The compact arithmetic units in stochastic computing can potentially lower the implemen-

tation cost with respect to silicon area and power consumption. In addition, stochastic

computing provides inherent tolerance of transient errors at the cost of a less efficient

signal encoding. Much effort has been put into stochastic circuit designs for application-

specific and general-purpose computation. However, the accuracy issue of these stochas-

tic implementations still remains to be understood with respect to appropriate sequence

lengths. As the first part of this thesis, the performance of stochastic arithmetic elements

(such as stochastic adders, multipliers and absolute subtractors) and a stochastic sum-of-

products (SOP) circuit are investigated and compared. Due to the long sequences used

in the stochastic implementations, the stochastic circuits are not competitive in terms of

throughput per area (TPA) or energy per operation (EPO) compared with conventional

binary circuits. These stochastic arithmetic elements can be used as basic components in

two useful applications: finite impulse response (FIR) filters and vector quantization (VQ)

for image compression.

FIR filters are key elements in digital signal processor (DSP) due to their linear phase-

frequency response. Two novel stochastic FIR filter designs are proposed based on regular or

simplified multiplexers. The performance of stochastic and conventional binary FIR filters

are implemented using an industrial 28-nm cell library. Silicon area, power and maximum

clock frequency were obtained to allow an evaluation of TPA and EPO. Required stochastic

sequence lengths are determined by matching the performance of the proposed stochastic

FIR filters with that of the conventional binary FIR filter. Different signal resolutions were

investigated with the goal of finding the break-even point between the stochastic and binary

implementations by criteria such as the TPA and EPO. For equivalent filtering performance,

the stochastic FIR filters underperform the conventional binary design in terms of TPA and

EPO, although the stochastic design shows a better graceful degradation in performance

with a significant reduction in energy consumption. A detailed analysis is performed to

evaluate the accuracy of stochastic FIR filters and to determine the required stochastic

ii

sequence length. The fault-tolerance of the stochastic design is compared with that of the

binary circuit using triple modular redundancy (TMR). The stochastic designs are more

reliable than the conventional binary design and its TMR implementation with unreliable

voters, but they are less reliable than the binary TMR implementation when the voters are

fault-free.

Unlike the FIR filters for which accuracy is more critical, VQ is a general data compres-

sion technique that can tolerate some loss of information. The VQ technique has a simply

scalable implementation complexity and potentially high compression rate. A stochastic

implementation of VQ is proposed and evaluated against corresponding conventional bi-

nary designs. The effect of varying the stochastic sequence length is studied with respect

to TPA and EPO. The stochastic implementations are shown to have higher EPOs than

the conventional binary implementations due to their long latencies. For the stochastic im-

plementations using errors measured by the L1 norm, squared L2 norm or 3rd law. When a

shorter encoding sequence with 512 bits is used in exchange for lower quality performance,

the TPA is about 1.16 to 2.60 times that of the binary implementation with the same com-

pression quality. Thus, the stochastic implementation outperforms the conventional binary

design in terms of TPA for a reduced compression quality. By exploiting the progressive

precision feature of a stochastic circuit, a readily scalable processing quality can be simply

attained by halting the computation after different numbers of clock cycles.

iii

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisors Dr. Bruce

Cockburn and Dr. Jie Han for the continuous support of my study and research as a Master

student. Their patience, motivation and passion guided me all the time in the past two

years. Without their profound knowledge and insightful suggestions, this work would be

extremely difficult to be finished.

My sincere thanks also go to Dr. Duncan Elliott for his knowledgeable lectures and

remarkable research ideas. I would like to thank all the professors in my thesis committee

for their consistent encouragement and constructive comments. Besides, I want to thank

my fellow students in the VLSI lab, Jinghang Liang, Zhixi Yang, Peican Zhu, Cong Liu and

Honglan Jiang, for sharing their research experience.

Last but not the least, I would like to thank my parents who have always been backing

me up both spiritually and physically. Their unconditional love has been encouraging me

throughout my life.

iv

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Recent Work on Stochastic Computing . 2

1.3 Major Contributions of this Thesis . 4

1.4 An Overview of this Thesis . 5

2 Introduction and Evaluations of Stochastic Arithmetic Elements 6

2.1 Stochastic Computing . 6

2.1.1 A Stochastic Computing System . 6

2.1.2 Unipolar and Bipolar Encodings . 6

2.2 Stochastic Computing Elements . 7

2.2.1 Combinational Stochastic Elements 7

2.2.2 Sequential Stochastic Elements . 10

2.2.3 Unipolar and Bipolar Stochastic Number Generators 13

2.3 Error Analysis on Stochastic Arithmetic Elements 14

2.3.1 Error Analysis for Conventional Binary Implementations 16

2.3.2 Error Analysis for Stochastic Implementations 18

2.3.3 Required Sequence Length for Stochastic Computing Elements . . . 21

2.4 Performance Evaluation on Stochastic Arithmetic Elements 22

2.4.1 Required Sequence Length for Stochastic Computing Elements Using

the Simulation Method . 22

2.4.2 Circuit Performance Comparison . 23

2.5 Discussions and Summary . 28

3 Stochastic Circuit Design and Evaluation of FIR Filters 32

3.1 Architectures of FIR Filters . 33

3.2 Stochastic FIR Filter Designs . 35

3.2.1 Conventional Weighted Average (CWA) Design 35

3.2.2 Hard-wired Weighted Average (HWA) Design 37

3.2.3 Multiple-stage Weighted Average (MWA) Design 38

v

3.3 Performance Evaluation of the Conventional Binary and the Proposed Stochas-

tic FIR Filters . 40

3.4 Simulation Results . 43

3.5 Error Analysis . 48

3.5.1 Error Analysis for Conventional Binary FIR Filters 48

3.5.2 Error Analysis for Stochastic FIR Filters 51

3.6 Fault Tolerance Analysis and Simulation . 54

3.6.1 Fault-tolerance Analysis . 54

3.6.2 Fault-tolerance Simulation . 57

3.7 Summary . 58

4 Stochastic Circuit Design and Evaluation of Vector Quantization 59

4.1 Background . 59

4.2 Methodology . 60

4.2.1 Codebook Generation . 60

4.2.2 Error Calculation in the Encoding Process 61

4.3 Proposed Vector Quantization Circuit Design 62

4.3.1 Overall System Architecture . 62

4.3.2 Polynomial Arithmetic Synthesized Using Bernstein Polynomials . . 64

4.3.3 Detailed design for stochastic VQ . 66

4.3.4 Index Storage and Delivery . 71

4.3.5 Error Analysis . 72

4.4 Simulation and Discussion . 75

4.4.1 Required Sequence Length . 75

4.4.2 Functional Simulation Using Matlab 77

4.4.3 Circuit Performances . 77

4.5 Summary . 82

5 Conclusions and Future Work 84

5.1 Conclusions of This Thesis . 84

5.2 Recommendations for Future Work . 86

Bibliography 87

A Proof of Equations 3.58 and 3.59 90

B Proof of Equations 4.21 92

C Evaluations of Stochastic Adders and Absolute Subtractors 94

C.1 Performance Evaluation on Stochastic Adders and Absolute Subtractors . . 94

vi

C.1.1 Required Sequence Length for Stochastic Computing Elements Using

the Simulation Method . 94

C.1.2 Circuit Performance Comparison . 94

C.2 A Study on the Sum-of-Products Function Using Basic Stochastic Arithmetic

Elements . 98

C.2.1 Required Sequence Length for a Sum-of-Products Function 101

C.2.2 Circuit Performance Comparison . 101

C.2.3 A Discussion on Various Scales of SOP Circuit Performance 102

vii

List of Figures

2.1 A basic stochastic computing system. 6

2.2 Stochastic arithmetic units in unipolar (unsigned) encoding: (a) S2 = 1−S1;

(b) S3 = S1 ·S2, (S1 and S2 are uncorrelated sequences); (c) S4 = S3 ·S1 +

(1−S3) ·S2 (S3 is a unipolar sequence); (d) S3 = |S1−S2| (S1 and S2 are

correlated sequences). 7

2.3 Stochastic arithmetic units in bipolar (signed) encoding: (a) S2 = −S1; (b)

S3 = S1 · S2, (S1 and S2 are uncorrelated sequences); (c) S4 = S3 · S1 +

(1− S3) · S2 (S3 is a unipolar sequence); (d) S3 = −S1 · S2 (S1 and S2 are

uncorrelated sequences). 7

2.4 A state transition diagram of stochastic tanh(): Nst denotes the number of

states in the finite state machine (FSM) [5]. 10

2.5 Stochastic tanh function for three sequence lengths. 12

2.6 Stochastic comparator based on the stochastic tanh function. 13

2.7 Unipolar stochastic number generator. 14

2.8 Bipolar stochastic number generator. 14

2.9 Add the all-zero state to a 4-bit linear-feedback shift register (LFSR). . . . 15

2.10 A statistical model for the quantization error eq: Xa is the analog input

and Xd is the digital sample from Xa; Xq is the quantized sample with

quantization error eq. 17

2.11 Schematic of the stochastic unipolar multiplier: S3 = S1 ·S2 (S1 and S2 are

uncorrelated unipolar sequences). 24

2.12 Schematic of the stochastic bipolar multiplier: S3 = S1 · S2 (S1 and S2 are

uncorrelated bipolar sequences). 28

3.1 A 4-tap FIR filter design (i.e., Nf = 4 in 3.1) 34

3.2 Using one-time conversion and stochastic storages: R1,R2,R3 and R4 are

Ns-bit registers to store the stochastic sequence representing X[n] which is

a Nb-bit binary number . 35

3.3 Using multiple conversions: D1,D2 and D3 are Nb-bit flip flops to get the

delayed versions of X[n], which is a Nb-bit binary number. 36

3.4 The 16-tap stochastic FIR filter using the conventional stochastic design. . 36

3.5 The hard-wired weighted average design of a 16-tap FIR filter. 38

viii

3.6 A 4-term sum of products implemented using (a) a stochastic Weight Gen-

erator (WG) and (b) a stochastic Weighted Adder (WA). 39

3.7 The 16-tap FIR filter implemented with the multiple-stage weighted average

(MWA) design. 40

3.8 Magnitude responses of 13-bit Conventional binary FIR filter. 42

3.9 Magnitude responses of 13-bit stochastic hard-wired weighted average (HWA)-

based FIR filter without and with performance matching (PMM = 512). . 43

3.10 Magnitude responses of 13-bit stochastic MWA-based FIR filter without and

with performance matching (PMM = 512). 44

3.11 Magnitude responses of lower-quality 11-bit conventional binary FIR filters. 44

3.12 Magnitude responses of lower-quality 13-bit stochastic HWA-based FIR fil-

ters with PMM = 32. 45

3.13 Magnitude responses of lower-quality 13-bit stochastic MWA-based FIR fil-

ters with PMM = 32. 45

3.14 EPO comparison: Stochastic HWA design (with/without auxiliary circuits)

and the binary design. 48

3.15 TPA comparison: Stochastic HWA design (with/without auxiliary circuits)

and the binary design. 49

4.1 The block diagram for the (a) encoding and (b) decoding process in Vector

Quantization. 60

4.2 Data flow in vector quantization encoding process. 63

4.3 An input vector has 16 entries, from 1 to 16 in the left block, forming a

macro-pixel. In the right block, the array of 8× 8 pixels can be divided into

4 macro-pixels. 63

4.4 Architecture of the 4-term Bernstein polynomial defined in Equation 4.18

using stochastic logic. 65

4.5 Architecture of the L1-norm error calculator. 67

4.6 Stochastic elements for VQ. 68

4.7 Stochastic comparison tree: a square represents an error calculator, a circle

represents a comparison result and a triangle represents a stochastic com-

parator (see Figure 4.6). Note that the codevector with the smallest error

appears at the output as the comparison result. 69

4.8 Architecture of the squared L2-norm error calculator using traditional stochas-

tic arithmetic elements. 70

4.9 Architecture of the squared L2-norm error calculator using the Bernstein

polynomial method. 70

4.10 Architecture of the pth-law error calculator for p = 3 using the Bernstein

polynomial calculator in Figure 4.4. 72

4.11 Embedding a 6-bit binary index into the stochastic error bit stream. 73

ix

4.12 The embedded index in stochastic sequences and state transitions in tanh

function. 76

4.13 The classic grey-scale Lena image is used in the experiments. 78

4.14 The progressive improvement of image quality using L1-norm stochastic VQ

after 256, 512, 1024 and 2f048 clock cycles. 78

4.15 The progressive improvement of image quality using squared L2-norm stochas-

tic VQ after 256, 512, 1024 and 2048 clock cycles. 78

4.16 The progressive improvement of image quality using the 3rd-law stochastic

VQ after 256, 512, 1024 and 2048 clock cycles. 78

C.1 Schematic of the stochastic adder: S4 = 0.5 ·(S1+S2) (S1 and S2 are uncor-

related bipolar sequences and S3 is a unipolar stochastic sequence encoding

0.5). 95

C.2 Schematic of the stochastic absolute subtractor: S3 = |S1− S2| (S1 and S2

are correlated sequences). 98

C.3 Architectures of (a) conventional binary and (b) stochastic SOP implemen-

tations . 101

x

List of Tables

2.1 Stochastic and conventional 1-bit bipolar multiplication 8

2.2 The accepted input interval under different error rate requirements. 11

2.3 A mapping scheme of unsigned binary numbers and their corresponding

stochastic representations. 15

2.4 root mean squared error (RMSE) comparison of the conventional binary and

stochastic implementations represented by RMSEB and RMSES, respectively,

using various sequence lengths Ns and different bit resolutions Nb 23

2.5 Area report of binary unsigned multipliers (B), stochastic unipolar multipliers

including auxiliary circuits (S1) and stochastic unipolar multipliers excluding

auxiliary circuits (S2). Nb represents the bit resolution. 25

2.6 Power report of binary unsigned multipliers (B), stochastic unipolar mul-

tipliers including auxiliary circuits (S1) and stochastic unipolar multipliers

excluding auxiliary circuits (S2) at minimum clock period. Nb represents the

bit resolution. 26

2.7 Minimum clock period report of binary unsigned multipliers (B), stochastic

unipolar multipliers including auxiliary circuits (S1) and stochastic unipolar

multipliers excluding auxiliary circuits (S2). Nb represents the bit resolution. 26

2.8 EPO report of binary unsigned multipliers (B), stochastic unipolar multi-

pliers including auxiliary circuits (S1) and stochastic unipolar multipliers

excluding auxiliary circuits (S2). Nb represents the bit resolutions and Ns

represents sequence length. 27

2.9 TPA report of binary unsigned multipliers (B), stochastic unipolar multipliers

including auxiliary circuits (S1) and stochastic unipolar multipliers excluding

auxiliary circuits (S2). Nb represents the bit resolutions and Ns represents

sequence length. 27

2.10 Area report of binary signed multipliers (B), stochastic bipolar multipliers

including auxiliary circuits (S1) and stochastic bipolar multipliers excluding

auxiliary circuits (S2). Nb represents bit resolutions. 28

xi

2.11 Power report of binary signed multipliers (B), stochastic bipolar multipliers

including auxiliary circuits (S1) and stochastic bipolar multipliers exclud-

ing auxiliary circuits (S2) at minimum clock period. Nb represents the bit

resolution. 29

2.12 Minimum clock period report of binary signed multipliers (B), stochastic

bipolar multipliers including auxiliary circuits (S1) and stochastic bipolar

multipliers excluding auxiliary circuits (S2). Nb represents the bit resolution. 29

2.13 EPO report of binary signed multipliers (B), stochastic bipolar multipliers

including auxiliary circuits (S1) and stochastic bipolar multipliers excluding

auxiliary circuits (S2). Nb represents the bit resolution and Ns represents

the sequence length. 30

2.14 TPA report of binary signed multipliers (B), stochastic bipolar multipliers

including auxiliary circuits (S1) and stochastic bipolar multipliers excluding

auxiliary circuits (S2). Nb represents the bit resolution and Ns represents

the sequence length. 30

3.1 Low-pass FIR filter specifications . 41

3.2 Performance of the FIR filters using the conventional binary approach, the

stochastic MWA approach and the stochastic HWA approach. Nb: bit res-

olution, passband ripples (PR): passband ripple and stopband attenuations

(SA): stopband attenuation. 42

3.3 Comparison of hardware cost, power consumption and minimum clock pe-

riod for conventional binary (CB), CWA-based, MWA-based and HWA-based

stochastic FIR filters without any auxiliary circuits such as SNGs and counters. 46

3.4 Comparison of hardware cost, power consumption and minimum clock period

for conventional binary and HWA-based stochastic FIR filters. 47

3.5 Energy savings with lower-quality implementations for conventional binary

(CB), MWA-based and HWA-based FIR filters. 48

3.6 Average absolute error of the stochastic and binary circuits with and without

redundancy at various injected error rates. The results are obtained from 200

simulations using sequences of 100,000 bits. 58

4.1 Circuit performance of the squared error calculators defined in Equations

4.10 and 4.20 using (a) traditional stochastic arithmetic elements and (b)

the Bernstein polynomial method Ne = 16). 71

4.2 The average penalized error (APE) values at different sequence lengths for

the stochastic VQ. 76

4.3 The APE values at different bit resolutions for the conventional binary VQ. 76

xii

4.4 Circuit performance of L1-norm vector quantization with three compression

qualities: (a) 8-bit binary (B) vs. 2048-bit stochastic (S), (b) 7-bit binary

(B) vs. 1024-bit stochastic (S) and (c) 6-bit binary (B) vs. 512-bit stochastic

(S). 80

4.5 Circuit performance of squared L2-norm vector quantization with three com-

pression qualities: (a) 8-bit binary (B) vs. 2048-bit stochastic (S), (b) 7-bit

binary (B) vs. 1024-bit stochastic (S) and (c) 6-bit binary (B) vs. 512-bit

stochastic (S). 81

4.6 Circuit performance of 3rd-law vector quantization with three compression

qualities: (a) 8-bit binary (B) vs. 2048-bit stochastic (S), (b) 7-bit binary

(B) vs. 1024-bit stochastic (S) and (c) 6-bit binary (B) vs. 512-bit stochastic

(S). 81

C.1 RMSE comparison of the conventional binary and stochastic implementations

represented by RMSEB and RMSES, respectively, using various sequence

lengths Ns and different bit resolutions Nb 95

C.2 Area report of binary adders (B), stochastic adders including auxiliary cir-

cuits (S1) and stochastic adders excluding auxiliary circuits (S2). Nb repre-

sents the bit resolution. 96

C.3 Power report of binary adders (B), stochastic adders including auxiliary cir-

cuits (S1) and stochastic adders excluding auxiliary circuits (S2) at minimum

clock period. Nb represents the bit resolution. 96

C.4 Minimum clock period report of binary adders (B), stochastic adders includ-

ing auxiliary circuits (S1) and stochastic adders excluding auxiliary circuits

(S2). Nb represents the bit resolution. 97

C.5 EPO report of binary adders (B), stochastic adders including auxiliary cir-

cuits (S1) and stochastic adders excluding auxiliary circuits (S2). Nb repre-

sents the bit resolution and Ns represents sequence length. 97

C.6 TPA report of binary adders (B), stochastic adders including auxiliary cir-

cuits (S1) and stochastic adders excluding auxiliary circuits (S2). Nb repre-

sents the bit resolution and Ns represents sequence length. 98

C.7 Area report of binary absolute subtractors (B), stochastic absolute subtrac-

tors including auxiliary circuits (S1) and stochastic absolute subtractors ex-

cluding auxiliary circuits (S2). Nb represents the bit resolution. 99

C.8 Power report of binary absolute subtractors (B), stochastic absolute sub-

tractors including auxiliary circuits (S1) and stochastic absolute subtractors

excluding auxiliary circuits (S2) at minimum clock period. Nb represents the

bit resolution. 99

xiii

C.9 Minimum clock period report of binary absolute subtractors (B), stochastic

absolute subtractors including auxiliary circuits (S1) and stochastic absolute

subtractors excluding auxiliary circuits (S2). Nb represents the bit resolution. 100

C.10 EPO report of binary absolute subtractors (B), stochastic absolute subtrac-

tors including auxiliary circuits (S1) and stochastic absolute subtractors ex-

cluding auxiliary circuits (S2). Nb represents the bit resolution and Ns rep-

resents sequence length. 100

C.11 TPA report of binary absolute subtractors (B), stochastic absolute subtrac-

tors including auxiliary circuits (S1) and stochastic absolute subtractors ex-

cluding auxiliary circuits (S2). Nb represents the bit resolution and Ns rep-

resents sequence length. 101

C.12 RMSE comparison of binary and stochastic SOP implementations repre-

sented by RMSEB and RMSES, respectively, using various sequence lengths

Ns and different bit resolutions Nb. 102

C.13 Area reports for the binary SOP function (B), the stochastic SOP function

including auxiliary circuits (S1) and the stochastic SOP function excluding

auxiliary circuits (S2). Nb represents bit resolutions. 103

C.14 Power report of binary SOP function (B), stochastic SOP function includ-

ing auxiliary circuits (S1) and stochastic SOP function excluding auxiliary

circuits (S2) at minimum clock period. Nb represents bit resolutions. 103

C.15 Minimum clock period report of binary SOP function (B), stochastic SOP

function including auxiliary circuits (S1) and stochastic SOP function ex-

cluding auxiliary circuits (S2). Nb represents bit resolutions. 104

C.16 EPO report of binary SOP (B), stochastic SOP including auxiliary circuits

(S1) and stochastic SOP excluding auxiliary circuits (S2). Nb represents the

bit resolution and Ns represents sequence length. 104

C.17 TPA report of binary SOP (B), stochastic SOP including auxiliary circuits

(S1) and stochastic SOP excluding auxiliary circuits (S2). Nb represents the

bit resolution and Ns represents sequence length. 105

C.18 Hardware usage estimation of the stochastic SOP implementation. The num-

ber of circuit units provide simplified measures of cost. 105

xiv

List of Acronyms

AAE average absolute error

APE average penalized error

ASIC application-specific integrated circuit

CMOS complementary metal oxide semiconductor

CWA conventional weighted average

DCT discrete cosine transform

DSP digital signal processor

EPO energy per operation

FIR finite impulse response

FSM finite state machine

HWA hard-wired weighted average

IIR infinite impulse response

LBG Linde, Buzo and Gray

LFSR linear-feedback shift register

MSB most significant bit

MUX multiplexer

MWA multiple-stage weighted average

PDF probability density function

PMM performance matching multiplier

PR passband ripples

RMSE root mean squared error

xv

RTL resistor-transistor logic

SA stopband attenuations

SNG stochastic number generator

SNR signal-to-noise ratio

SOP sum-of-products

TMR triple modular redundancy

TPA throughput per area

VHDL very-high-speed-integrated-circuit hardware description language

VLSI very large scale integration

VQ vector quantization

xvi

List of Math Symbols

1. P (S): probability encoded by a stochastic sequence S

2. Nb: the bit resolution for the binary filter

3. Ns: the number of bits in stochastic sequence S

4. Nf : the number of taps in the FIR filter

5. X: a binary number, signed or unsigned

6. X[n]: the binary value of a time-series variable X at time n

7. S(X): a stochastic binary sequence encoding the probability X/L, where L is the

sequence length

8. eq, eqs: quantization error in conventional and stochastic computing, respectively

9. e
(i)
c , e

(i)
s : injected error in conventional and stochastic computing, respectively

10. efs: random fluctuation error in stochastic computing

11. ∆, ∆s: the minimum distance between two representable numbers in conventional

and stochastic computing, respectively

12. σq, σqs: the standard deviation of the quantization error in conventional and stochastic

computing, respectively

xvii

Chapter 1

Introduction

1.1 Background and Motivation

The continued scaling of complementary metal oxide semiconductor (CMOS) devices in

the nanoscale regime makes reliability a major issue that can not be overlooked. Design

variations, such as manufacturing process, voltage, temperature, can affect very large scale

integration (VLSI) circuits. Because of these variations and random noises, the function-

ality of a circuit shows a statistical or probabilistic behavior. Conventional digital design

methodologies, especially for arithmetic circuits, are usually based on deterministic device

operations in a system using a radix 2 representation (i.e. binary numbers). To consider

the statistical or probabilistic behavior of nanoscale devices, stochastic computing was pro-

posed as an unconventional probabilistic computing paradigm [1], where digital circuits

(logic gates) in stochastic computing can have alternative functions compared to their roles

in conventional binary circuits.

The major objective in the VLSI design are constantly related to minimizing the silicon

area, low power consumption and high speed. There have been much effort in industrial

and academic researches investigating design methodologies to achieve these goals. For in-

stance, one of the approaches to overcome the power minimization problem is to use supply

voltage scaling [2]. However, this may cause issues such as a loss in signal to noise ratio.

Approximate computing, which is useful for applications that can tolerate errors to some

degree, is able to trade off some accuracy for a potential improvement in silicon area, power

consumption and/or delay [3], [4] and [5]. All these approaches have delivered improvement

in one or two aspects of this multiple dimensional optimization problem. Similarly, stochas-

tic computing is of great interest as it shows direct advantage using compact arithmetic

elements. Moreover, it is inherently fault-tolerant due to a unique encoding of numerical

values, which can make computation more robust against soft errors.

Research on stochastic computing has focused on two aspects: application-specific

stochastic circuit designs and accuracy issues. Promising results showed that stochastic

computing can be applied to many fields such as image processing [6] and the evaluation

of conventional polynomials [7]. On the other hand, researchers have revealed potential

1

problems of stochastic computing in terms of the relatiionship between accuracy and effi-

ciency [8,9]. However, it is still unclear when and where the stochastic computing can be a

better choice than the conventional binary approach. To answer these questions, a detailed

study on the required sequence length in stochastic computing is performed. Preliminary

studies on basic stochastic arithmetic circuits are performed to facilitate the building of

stochastic-based systems for large-scale and practical applications. This thesis reports a

detailed comparative study that focuses on the implementations and evaluations of FIR

filters and VQ encoders.

1.2 Recent Work on Stochastic Computing

In the book chapter by Gaines [1], several useful arithmetic operations were discussed for

both bipolar and unipolar stochastic representations in the implementations of adders, mul-

tipliers, dividers and integrators. In [6], Li et al. built sequential stochastic computational

elements using finite state machines (FSM). Various arithmetic functions were built using

state transition diagrams such as a stochastic exponentiation function, a stochastic tanh

function, and a stochastic linear gain function [10]. These functions are more complex

compared to those implemented with combinational logic gates, and FSM-based stochas-

tic implementations were shown to be efficient for these complex functions. Using these

functions, Li et al. implemented five different image processing kernels. Among them, Ker-

nel Density Estimation-based image segmentation provided a smaller area-delay product

compared with the binary implementation. Stochastic implementations have the advantage

of being inherently fault tolerant and can provide progressive image quality without extra

hardware cost. Alaghi et al. investigated an edge-detection algorithm for real-time image

processing [11]. Correlated sequences were employed in their design while XOR gates were

used for subtraction and the absolute value function. It was shown that the area-delay

product of the stochastic edge detection circuit is only 8.7% of that of a conventional bi-

nary circuit. Qian and Riedel compared stochastic hardware implementations of arithmetic

polynomials [7]. In [12], a synthesis method using two-input two-dimensional FSM was

proposed and tested on a function for a low density parity check decoder. The area was

shown to be smaller than the traditional one-dimensional FSM method at the cost of using

more auxiliary circuits to generate two inputs. Chang and Parhi investigated novel de-

signs for both FIR and infinite impulse response (IIR) filters based on stochastic logic [13].

Several low-pass and high-pass filters with different cut-off frequencies were considered. In

those filters, the coefficients are encoded as stochastic selection signals of multiplexers and

XOR gates are used to invert the inputs when the corresponding coefficients are negative

numbers. Using the stochastic number generator (SNG) designs for both unipolar and

bipolar encodings in Figures 2.7 and 2.8, novel stochastic FIR filters proposed in Chap-

ter 3 directly works with both unsigned and signed stochastic inputs without additional

operations. Combinational stochastic circuits are shown to be linked to their stochastic

2

functions in [14], which provides the theoretical support of the idea that stochastic circuits

can be built by combining basic stochastic arithmetic elements. By introducing sequential

stochastic circuits, it was verified in [14] that rational functions in the form of f(x) = P (x)
Q(x)

can be implemented. To minimize the cost of auxiliary circuits such as SNGs, Ding et al.

took advantage of the fact that stochastic sequences for multiplexer-based systems can tol-

erate correlations [15]. Two algorithms were proposed to generate stochastic numbers using

low-cost circuits. The impact of correlations in stochastic computing was discussed in [14]

and the stochastic computing correlation or SCC was proposed as a suitable correlation

measure. The SCC played an important role in affecting the actual function that a digital

logic system implements.

Random bit streams representing probabilities used in stochastic computing will in-

evitably introduce variance when conventional binary numbers are encoded and decoded.

In addition to the design of stochastic arithmetic elements, another major issue in stochas-

tic computing is stochastic number generation and representation. How can stochastic

sequences be generated efficiently and accurately? How does stochastic computing perform

in comparison with the conventional binary approach in terms of accuracy? Researchers

have been investigating these questions from different points of view. Moons and Ver-

helst discussed how various noises in stochastic computing affect the accuracy and energy

consumption [9]. The performance of a stochastic multiplier was compared to a binary

multiplier using variation models and quantitative analysis. The RMSE was used as an

important metric in the comparison of the stochastic and binary multipliers. A formula

was derived to address the relation between the required energy and the RMSE. It was

shown that stochastic computing is not as efficient as the binary approach in terms of en-

ergy consumption. Only binary resolutions below 3 or 4 bits could be favorable for the

stochastic computing. In [8], a general methodology to evaluate the accuracy of stochastic

computing systems with multiple stages was proposed. Since stochastic computing is based

on probabilities with restrictions in sequence randomness and correlation, accuracy issues

can arise when a stochastic computing system has too many stages or even feedback loops.

It was demonstrated that the inherent noise in stochastic computing with multiple stages

becomes much higher than the binary approach. The signal-to-noise ratio (SNR) becomes

even lower for stochastic circuits as the number of stages increases. A multi-stage discrete

cosine transform (DCT) block in a JPEG encoder is implemented in [16]. The DCT block

was used to evaluate the accuracy of a multi-stage stochastic computing system. Although

the accuracy degradation can be compensated by using longer sequences, it will inevitably

affect the overall performance compared to the binary approach.

In some applications, stochastic computing has been shown to have advantages with

respect to important measures of circuit performance [10]. These advantages include po-

tentially simpler arithmetic hardware and inherent tolerance of transient signal errors. The

benefits of stochastic circuits must, however, outweigh the longer latencies caused by the

3

stochastic data encoding. Because the stochastic sequence length is closely related to ac-

curacy, researchers focus on those scenarios where some accuracy can be safely sacrificed,

such as multimedia information displayed to humans. For example, image processing al-

gorithms using stochastic methods have been shown to match their binary counterparts in

terms of cost and speed while providing a similar experience to humans [11]. Other appli-

cations such as the fault tree analysis were also investigated using the stochastic approach.

A stochastic model for priority AND gates was proposed to efficiently implement the dy-

namic fault tree in [17]. Unlike the popular Bernoulli sequences in stochastic computing,

non-Bernoulli sequences were realized by random permutations of fixed numbers of 1’s and

0’s. The stochastic approach using the non-Bernoulli sequences becomes more competitive

compared to Monte Carlo simulation [18].

1.3 Major Contributions of this Thesis

In this thesis, a comparative study of stochastic arithmetic elements, novel stochastic FIR

filter and VQ designs and implementations are presented. The accuracy and circuit per-

formance are evaluated experimentally and theoretically. The major contributions of this

thesis can be described as follows.

1. Although the functionality of the stochastic arithmetic elements has been justified,

there lacks direct comparison with their conventional binary counterparts. Circuit

performances of some primitive stochastic elements are reported. Both scenarios are

considered where auxiliary circuits such as counters and SNG are included and ex-

cluded.

2. A theoretical analysis is performed to discuss the accuracy issues of the binary and

stochastic approaches. The analytical results are then used to estimate the mini-

mum stochastic sequence length that is required to ensure that the performance of

the stochastic approach matches that of the conventional binary approach. This is

important because the sequence length used in stochastic computing can affect com-

putational efficiency significantly.

3. Novel architectures for stochastic FIR filters and stochastic VQ encoders are proposed.

Traditional stochastic arithmetic elements are modified for specific applications such

as FIR filters and VQ encoders. Various structures are considered for more efficient

and yet reliable stochastic designs.

4. An increasing number of bit resolutions are investigated to determine the competitive

range of the stochastic approach against the conventional binary approach. Different

measurements related to accuracy are reported in the experiments and sequence length

is therefore determined by comparing stochastic implementations with conventional

4

binary implementations. The experimental results can be explained by the theoretical

analysis.

1.4 An Overview of this Thesis

This thesis is composed of five chapters. Followed by this introduction chapter, Chapter 2

first provides background on stochastic computing in general. Auxiliary circuits such as the

SNG for both unipolar and bipolar encoding will then be introduced and the functionality

of some stochastic arithmetic elements will be investigated. The performances of stochas-

tic arithmetic elements (such as adders, multipliers and absolute subtractors) and SOP

functions is evaluated as a preliminary study to facilitate application-oriented stochastic

designs. In Chapters 3 and 4, stochastic and binary FIR filters and stochastic VQ encoders

will be designed, built and simulated. Detailed analysis on accuracy of the stochastic im-

plementations will be investigated and the required sequence lengths are determined. The

circuit performance will be compared for various bit resolutions and stochastic sequence

lengths. Features in stochastic computing such as the progressive quality improvement and

fault tolerance will also be discussed. Finally, Chapter 5 concludes the dissertation with a

discussion of possible directions for future work in this field.

5

Chapter 2

Introduction and Evaluations of
Stochastic Arithmetic Elements

2.1 Stochastic Computing

2.1.1 A Stochastic Computing System

In stochastic computing systems (See Figure 2.1), binary numbers must be scaled to lie

within a certain range and then converted to their corresponding stochastic representations

in the first place (See the first two blocks in Figure 2.1). A usually simpler digital network

then performs stochastic computing to implement the desired arithmetic operations. The

final outputs of the digital network are then typically converted back to binary numbers

as the final results (See the last two blocks in Figure 2.1). However, the conversion from

binary numbers to stochastic sequences is not necessary when the inputs are sampled and

digitized stochastically. Similarly, stochastic sequences could be used directly as the final

results and a backward conversion to binary would not be needed in this case. Stochastic

computing elements (Figures 2.2 and 2.3) can often be built using very small circuits with

low power consumption compared to the binary circuits implementing similar functions.

Figure 2.1: A basic stochastic computing system.

2.1.2 Unipolar and Bipolar Encodings

Stochastic computing involves processing numbers that are encoded as probabilities, which

are represented using stochastic bit streams. Let N1 denote the number of 1’s in a stochastic

bit stream with Ns bits. In a unipolar or unsigned representation, the bit stream represents

the number N1/Ns. The same bitstream represents (2N1 − Ns)/Ns in a bipolar (signed)

representation [19] and [1]. For example, ′′0001100101′′ denotes 2/5 in unipolar and -1/5

6

in bipolar because Ns = 10 and N1 = 4. To convert a unipolar stochastic number Pu to a

bipolar stochastic number Pb, Equation 2.1 can be used.

Pb = 2 · Pu − 1. (2.1)

Circuits for generating unipolar and bipolar stochastic sequence are described in Section

2.3.

2.2 Stochastic Computing Elements

In this section, the designs of common stochastic number generators are reviewed. Key

stochastic computing elements are then discussed including adders, multipliers, absolute

subtractors and a stochastic tanh function.

2.2.1 Combinational Stochastic Elements

Figure 2.2: Stochastic arithmetic units in unipolar (unsigned) encoding: (a) S2 = 1 − S1;
(b) S3 = S1 · S2, (S1 and S2 are uncorrelated sequences); (c) S4 = S3 · S1 + (1− S3) · S2
(S3 is a unipolar sequence); (d) S3 = |S1− S2| (S1 and S2 are correlated sequences).

Figure 2.3: Stochastic arithmetic units in bipolar (signed) encoding: (a) S2 = −S1; (b)
S3 = S1 · S2, (S1 and S2 are uncorrelated sequences); (c) S4 = S3 · S1 + (1− S3) · S2 (S3
is a unipolar sequence); (d) S3 = −S1 · S2 (S1 and S2 are uncorrelated sequences).

7

Inverters

An inverter can have different functions in stochastic computing for the unipolar and bipolar

encodings. As shown in Figures 2.2 and 2.3 [1], a sequence S1 using the unipolar encoding

can be converted to represent 1−S1 using a single inverter. For a bipolar-encoded sequence

S1, however, the output of the inverter would become −S1. Therefore, an inverter can be

used to obtain the additive inverse of a stochastic number using the bipolar encoding.

Signed and Unsigned Multiplier

For stochastic computing, multiplications are realized by AND gates or XNOR gates for the

unipolar and bipolar encoding, respectively, implied by basic probability theory [1]. Figures

2.2 and 2.3 show how the unsigned and signed multiplication operations are implemented

for uncorrelated stochastic bit streams. The XNOR-based multiplier realizes bipolar multi-

plications because 1 and 0 represent +1 and -1, respectively, in the bipolar representation.

The four cases in bipolar multiplication are listed in Table 2.1.

Table 2.1: Stochastic and conventional 1-bit bipolar multiplication

Conventional Representation Stochastic Representation

(+1) · (+1) = (+1) ′1′XNOR ′1′ = ′1′

(+1) · (−1) = (−1) ′1′XNOR ′0′ = ′0′

(−1) · (+1) = (−1) ′0′XNOR ′1′ = ′0′

(−1) · (−1) = (+1) ′0′XNOR ′0′ = ′1′

Weighted Adder

A stochastic adder can be implemented with a multiplexer in Figures 2.2 and 2.3 [1]. The

unweighted multiplexer-based adder has a selecting signal that encodes 0.5. Such a signal

is often a bit stream directly coming from the output of an LFSR. The selecting signal S3

produces the weight by encoding a probability. If the selecting signal is suitably chosen, a

weighted adder can be implemented in Figures 2.2 and 2.3.

If data inputs X1 and X2 are both encoded as unipolar (or bipolar) stochastic sequences

S1 and S2, then the output S4 of a two-input multiplexer will also be a unipolar (bipolar)

stochastic sequence encoding Y . However, the multiplexer selecting signal S3 must be

encoded as a unipolar sequence. Consider a stochastic implementation of the weighted sum

Y = A1 ·X1 +A2 ·X2, (2.2)

where A1 and A2 are positive weights whose sum is one (i.e., A1+A2 = 1 and A1, A2 ≥ 0).

Data inputs X1 and X2 are encoded as stochastic sequences S1 and S2. For the multiplexer,

the select input is controlled by unipolar sequence S3 that encodes A1, which means that

8

the select input is 1 (switching S1 to S4) with probability A1, i.e.,

P (S3) = A1 = 1−A2. (2.3)

The multiplexer output S4 will be 1 with probability P (S4), i.e.,

P (S4) = A1 · P (S1) +A2 · P (S2). (2.4)

First consider the case of unipolar data inputs. By definition the numbers encoded

by sequences S1, S2 and S4 are exactly P (S1) = X1, P (S2) = X2 and P (S4) = Y ,

respectively. Thus the computed output value Y will be the desired weighted sum A1 ·
X1 +A2 ·X2.

Now consider the case of bipolar data inputs. By definition, the numbers encoded by

S1, S2 and S4 are exactly (X1 + 1)/2, (X2 + 1)/2 and (Y + 1)/2, respectively. Thus the

output sequence S4 will be 1 with probability P (S4), i.e.,

P (S4) = (A1 ·X1 +A2 ·X2 +A1 +A2)/2 = (A1 ·X1 +A2 ·X2 + 1)/2. (2.5)

From the definition of the bipolar encoding, sequence S4 encodes the number

Y = 2 · P (S4)− 1 = A1 ·X1 +A2 ·X2, (2.6)

which is again the desired weighted sum. The same argument can be generalized to weighted

sums containing N ≥ 2 inputs implemented with N -input multiplexers, where the weights

A1, A2, ..., AN sum up to 1.

Absolute Value of Subtraction

Interestingly, an XOR gate can be used to realize the absolute value of a subtraction [11],

provided that there is an appropriate correlation between the two parallel input sequences.

This might happen when two sequences are generated using a shared LFSR and the same

initial seed. Figures 2.2 and 2.3 show how the absolute-valued subtraction S3 = |S1− S2|
is implemented for correlated stochastic bit streams. If S1 and S2 are two statistically

independent sequences containingNs bits, respectively, then S1 and S2 are related as follows:

Ns−1∑
i=0

S1 (i) · S2 (i) =
1

Ns

Ns−1∑
i=0

S1 (i) ·
Ns−1∑
i=0

S2 (i) . (2.7)

Usually, stochastic computing requires ideal independence of stochastic sequences. To use

an XOR gate to implement the absolute value of a subtraction, one should use correlated

sequences as inputs. Here correlation is guaranteed by maximizing overlaps of 1’s in the

sequence, which can be realized by sharing SNGs using identical initial seeds when the two

inputs are generated. Ideally, two correlated Ns-bit stochastic sequences S1 and S2 satisfy

Ns−1∑
i=0

|S1 (i)− S2 (i) | = |
Ns−1∑
i=0

S1 (i)−
Ns−1∑
i=0

S2 (i) |. (2.8)

9

S1(i) and S2(i) being either 0 or 1, are the ith bits in the stochastic sequences S1 and S2,

respectively.

2.2.2 Sequential Stochastic Elements

Combinational stochastic elements can implement polynomial arithmetic using Bernstein

polynomials [7]. Many other arithmetic functions can be implemented using stochastic

sequential elements. For example, a stochastic exponential function, sequential implemen-

tations of a stochastic tanh function, and a stochastic linear gain function are discussed

in [10]. For example, the state transition diagram of the stochastic tanh function is shown

in Figure 2.4. This is essentially a saturating up-down counter with the sign bit as the out-

put. The state machine starts at the central state and is always reset to that state before

every new tanh calculation.

Figure 2.4: A state transition diagram of stochastic tanh(): Nst denotes the number of
states in the FSM [5].

As comparators can be useful in many applications (e.g. the distance calculation and

sorting operations required in VQ [20]), we chose to investigate the architecture of a stochas-

tic comparator as a representative sequential stochastic elements.

Ideally the Heaviside step function [21] is required to implement a stochastic compara-

tor. In stochastic computing, the Heaviside step function can be approximated using the

stochastic tanh function and then realized using a FSM. Let X and Y be the stochastic

input and output sequences, respectively. If PX and PY represent the probability of seeing

a ′1′ in X and Y , then PY is defined for an approximation to the Heaviside step function

as

lim
Nst→∞

PY =


0, for 0 ≤ PX < 0.5;
0.5, for PX = 0.5;

1, for 0.5 < PX ≤ 1.
(2.9)

where Nst is number of states in the FSM and Nst is large enough. Essentially, the tanh

function behaves like a Heaviside function: if the input is below 0.5, the function output

goes to 0 and if the input is above 0.5, the output goes to 1. Here Nst = 32 is used as in [6].

To investigate the influence of sequence length Ns on the switching function, the output

of the stochastic tanh using a Matlab simulation is plotted in Figure 2.5. The simulations

10

used stochastic sequence lengths Ns = 256, 1024 and 4096. 10000 random numbers between

0 and 1 are encoded as Ns-bit stochastic sequences and then used as the inputs of the

stochastic tanh function. The corresponding outputs of the tanh function are then plotted in

Figure 2.5. As shown in Figure 2.5, the resulting functions are only rough approximations to

the ideal Heaviside function. However, the stochastic tanh function becomes an increasingly

accurate approximation to the ideal switching function when Ns increases.

If the input is far from the threshold value 0.5, the behavior of the stochastic tanh

function is accurately close to that of the Heaviside function. An experiment was set up to

investigate how accurately the stochastic tanh function approximates the ideal Heaviside

function. The goal of the experiment is to find the range of input values between 0 and 1

that map with high probability to the correct output as in the Heaviside function. In the

experiment, the stochastic tanh function was built based on the state transition diagram in

Figure 2.4. The input sequences have Ns = 1000 bits, which allows the stochastic encoding

to represent the values between 0 and 1 with a minimum step size of 0.001. Thus there are

1000 different input values in total. For each of the 1000 input values, the input is converted

to a 1000-bit stochastic sequence to obtain the output of the stochastic tanh function. The

correct/expected result would be the output of the Heaviside function for the same input.

The simulation was repeated 10000 times as the same input can be represented by different

stochastic sequences. Then the number of correct/expected results is counted in the 10000

tests. If 99.5% of the 10000 tests produce the expected results, the output is said to have

an error rate of 0.5%.

The results of the experiment are shown in Table 2.2. Note that the “Error Rate”

refers to the probability of having an unexpected output corresponding to a certain in-

put. The “Accurately Processed Inputs” define the input intervals which can generate

correct/expected outputs within the Error Rate requirement. The “Inaccurately Processed

Inputs” define the input intervals, which generate outputs with larger probability than the

Error Rate to be incorrect. It can be concluded that input values that are far from 0.5 are

more likely to produce expected/good results and the stochastic tanh function can be used

to replace the ideal Heaviside function. As the input approaches 0.5 the output gets more

variable and the error rate rises sharply.

Table 2.2: The accepted input interval under different error rate requirements.

Error Rate Accurately Processed Inputs Inaccurately Processed Inputs

0.50% [0, 0.489] [0.522, 1] (0.489, 0.522)

0.20% [0, 0.472] [0.535, 1] (0.472, 0.535)

0.10% [0, 0.463] [0.551, 1] (0.463, 0.551)

0.05% [0, 0.455] [0.560, 1] (0.455, 0.560)

A stochastic comparator can be implemented using the stochastic tanh function [10]. In

Figure 2.6, the architecture of a stochastic comparator is shown with two stochastic inputs

11

Figure 2.5: Stochastic tanh function for three sequence lengths.

12

Figure 2.6: Stochastic comparator based on the stochastic tanh function [5].

PX and PY , which may be encoded as both unipolar or bipolar sequences. The result of

subtracting PY from PX is computed by multiplexer (MUX) 1 and an inverter. The output

PS1 of MUX 1 goes to the input of the tanh block implemented by the FSM shown in Figure

2.4. According to the function of the tanh block, the output PS2 approaches 1 if PX ≥ PY
and approaches 0 otherwise. Therefore PS2 can be used by MUX 2 to select the smaller

of the two primary inputs, PX and PY . The output Ps of the stochastic comparator is a

stochastic approximation to min(PX , PY). PS can be passed on as a data input to the next

comparator if needed.

2.2.3 Unipolar and Bipolar Stochastic Number Generators

Stochastic number generators (SNGs) are typically based on pseudo-random bit generators

such as LFSRs. For example, to generate the stochastic sequence for a 4-bit unsigned

binary number, the SNG in Figure 2.7 is implemented with a 4-bit LFSR [19]. The SNG in

Figure 2.7 converts a 4-bit unsigned binary number X to a stochastic number (sequence) of

length 16. The all-zeros state must be inserted into the maximum-length (15-state) nonzero

state sequence using extra logic shown in Figure 2.9. The SNG takes advantage of weight

generation [22]. The bit streams named W3, W2, W1 and W0 represent the weights of 1/2,

1/4, 1/8 and 1/16, respectively. The binary number X is converted bit-by-bit with different

weights assigned to them. Therefore, we have

P (S) =1/2 ·X[3] + 1/4 ·X[2] + 1/8 ·X[1]

+ 1/16 ·X[0] = ((8 ·X[3] + 4 ·X[2] + 2 ·X[1] + 1 ·X[0]))/16 = X/16,
(2.10)

where S is the output sequence of the SNG and P (S) is the probability that S represents.

Thus S is the stochastic representation of the binary number X.

Signed numbers are represented by bipolar stochastic representations [1]. An Ns-bit

stochastic sequence with N1 1’s encodes the probability of (2 ·N1 −Ns)/Ns. To design an

SNG for signed numbers, consider the mappings of a signed binary number to its stochastic

representation. For example, for a 4-bit signed binary number in two’s complement, Table

2.3 shows its relationship with the probability that every single bit in the stochastic sequence

13

Figure 2.7: Unipolar stochastic number generator [17].

Figure 2.8: Bipolar stochastic number generator.

is ′1′ and the probability that the number is encoded in the bipolar representation, assuming

that the sequence length is 16 bits. This relationship reveals that the stochastic conversion

of a signed binary number can be implemented by the SNG for unsigned numbers by simply

inverting the sign bit and treating the remaining bits in the signed binary number as for an

unsigned number. This SNG design is shown in Figure 2.8. To invert the signal of the sign

bit in the 4-bit signed number, a NOR gate is used to replace the AND gate connected to

the sign bit and some inverters are combined into one at the output of L3.

2.3 Error Analysis on Stochastic Arithmetic Elements

For conventional binary implementations, quantization errors are the major source of in-

accuracy. A real number has to be rounded to the nearest binary number using a fixed

number of available bits. In stochastic circuits, however, errors are also caused by the ran-

dom fluctuation of the stochastic bits. This type of error or noise can propagate through

the computation process and degrade the accuracy of the output signal.

14

Figure 2.9: Add the all-zero state to a 4-bit LFSR.

Table 2.3: A mapping scheme of unsigned binary numbers and their corresponding stochas-
tic representations.

Decimal Signed Binary
Number in 2′s
complement

Probability of any
bit being ′1′ in the
16-bit sequence

Encoded signed proba-
bility assuming a bipo-
lar representation

7 0111 15/16 (2× 15− 16)/16 = 7/8

6 0110 14/16 (2× 14− 16)/16 = 6/8

5 0101 13/16 (2× 13− 16)/16 = 5/8

4 0100 12/16 (2× 12− 16)/16 = 4/8

3 0011 11/16 (2× 11− 16)/16 = 3/8

2 0010 10/16 (2× 10− 16)/16 = 2/8

1 0001 9/16 (2× 9− 16)/16 = 1/8

0 0000 8/16 (2× 8− 16)/16 = 0/8

−1 1111 7/16 (2× 7− 16)/16 = −1/8

−2 1110 6/16 (2× 6− 16)/16 = −2/8

−3 1101 5/16 (2× 5− 16)/16 = −3/8

−4 1100 4/16 (2× 4− 16)/16 = −4/8

−5 1011 3/16 (2× 3− 16)/16 = −5/8

−6 1010 2/16 (2× 2− 16)/16 = −6/8

−7 1001 1/16 (2× 1− 16)/16 = −7/8

−8 1000 0/16 (2× 0− 16)/16 = −8/8

15

In this section, basic error models are introduced. Arithmetic elements can then be

analyzed using these error models. Conventional and stochastic multipliers are chosen

as an example. The analysis on other arithmetic elements such as the adders, absolute

subtractors and SOP is shown in Appendix C.

2.3.1 Error Analysis for Conventional Binary Implementations

When a real number is quantized to become an input to an arithmetic operation, both the

rounding and floor functions can be applied. Because the floor function can introduce a

biased error distribution into the digital system, only rounding is considered in our experi-

ments. For any computational system with Nb-bit resolution, an Nb-bit normalized binary

number x in [0, 1] has to be rounded off to become a normalized binary number x with Nb

bits. By normalized we mean that the weights of bits (from the most significant bit to the

least significant bit) in an Nb-bit binary number form a geometric series. The weight ai of

the ith binary bit is either 0 or 1. The values of x and x′ therefore lie between 0 and 1:

x =

N ′b∑
i=1

ai · 2−i =

Nb∑
i=1

ai · 2−i +

N ′b∑
i=Nb+1

ai · 2−i (2.11)

x′ =


Nb∑
i=1

ai · 2−i, aNb+1 = 0,

2−Nb +
Nb∑
i=1

ai · 2−i, aNb+1 = 1.

(2.12)

The quantization error eq is calculated as

eq = x− x′ =


N ′b∑

i=Nb+2

ai · 2−i, aNb+1 = 0,

2−Nb +
Nb∑
i=1

ai · 2−i, aNb+1 = 1.

(2.13)

Let ∆ be the minimum distance between two numbers represented by Nb bits, i.e.,

∆ = 2−Nb (2.14)

Then the quantization error eq is bounded by

−∆
2
≤ eq <

∆

2
(2.15)

The quantization error eq is usually modeled as a white noise which is independent of

the input signal. Therefore,a statistical model is established for the quantization error as

illustrated in Figure 2.10. The quantization error eq is an additive variable to the linear

system. The value of eq is considered to be evenly distributed. The probability density

function (PDF) of the quantization error eq is described as in [23].

f(eq) =

{
1
∆ , −

a
2 ≤ eq <

∆
2 ;

0, otherwise.
(2.16)

16

Based on the PDF, the mean and the variance of eq are given by

E(eq) =

∫ ∆/2

−∆/2
eq · f(eq) deq = 0. (2.17)

σ2q =E[(eq − E(eq))
2] =

∫ ∆/2

−∆/2
(eq − E(eq)) · f(eq)deq

=

∫ ∆/2

−∆/2

1

a
· eq2deq =

∆2

12
=

1

12 · 22Nb
.

(2.18)

Figure 2.10: A statistical model for the quantization error eq: Xa is the analog input and
Xd is the digital sample from Xa; Xq is the quantized sample with quantization error eq
[19].

Inaccuracies in Conventional Binary Multiplications

A statistical model is developed to evaluate error accumulation and propagation in conven-

tional binary multiplications. Let the multiplier and the multiplicand be represented by H

and X as follows.

Y = H ·X, (2.19)

whereH andX are numbers with infinite precision. When quantized numbers are processed,

the actual result Y ′ could be biased from the expected result Y , i.e.,

Y ′ = (H + eH)(X + eX)

= (HX +XeH +HeX + eHeX)

= Y + (XeH +HeX + eHeX),

(2.20)

where eH and eX are the quantization errors of the coefficient H and the input X, respec-

tively. Both eH and eX can be modeled by eq in Equation 2.13. To calculate the mean of

the computational error, E(Y ′), we must find

E(Y ′) = E(Y) + E(XeH +HeX + eHeX), (2.21)

We first determine the mean of the cross product term eHeX . Due to [24], if eH and eX are

independent real-valued continuous random variables with finite expected values, then

E(eHeX) = E (eH)E(eX) = 0. (2.22)

17

Taking into consideration Equations 2.17, 2.21 and 2.22, we obtain

E(Y ′)− E(Y) = XE(eH) +HE(eX) + E(eHieXi) = 0. (2.23)

By definition and Equation 2.23, the variance of the output Y ′ is

V ar(Y ′) = E[(Y ′ − E(Y ′))2] = E[(Y ′ − Y)2]. (2.24)

On the other hand, the variance of Y ′ is also given by

V ar
(
Y ′
)

=
(
X2V ar(eH) +H2V ar(eX) + V ar(eHeX)

)
=
(
X2σ2q +H2σ2q + V ar(eHeX)

)
.

(2.25)

Because V ar(eHeX) is of a higher order than the other terms in Equation 2.25, we have

max {V ar(eHeX)} =
∆4

16
� σ2q

(
X2 +H2

)
=
∆2

12

(
X2 +H2

)
. (2.26)

Therefore, V ar(eHeX) in 2.25 can be ignored and by Equation 2.18 we obtain

V ar(Y ′) ≈ σ2q (X2 +H2) =
∆2

12
(X2 +H2). (2.27)

From Equation 2.27, it can be seen that the quantization error is amplified by a multi-

plicative factor. Thus, e
(mul)
oc is defined to be the overall error for the conventional binary

multiplier, i.e.,

e(mul)oc = |Y ′ − Y |. (2.28)

By combining Equations 2.25, 2.27 and 2.28, we obtain the mean of the squared error as

E
(
e(mul)oc

2
)

= E[
(
Y ′ − Y

)2
] = V ar

(
Y ′
)

=
∆2

12

(
X2 +H2

)
=

1

12 · 22Nb

(
X2 +H2

)
.

(2.29)

By Equation 2.29, ec can be estimated as

e(mul)oc = |Y ′ − Y | ≈
√
∆2

12
(X2 +H2) =

√
3

3 · 2Nb+1

√
(X2 +H2). (2.30)

2.3.2 Error Analysis for Stochastic Implementations

Quantization Errors in Stochastic Computing

When a signal is stochastically encoded, the precision is limited by the sequence length Ns.

For any Ns-bit sequence used in a stochastic system, the minimum distance between two

representable numbers is

∆s = 1/Ns. (2.31)

Then the quantization error is bounded by

−∆s

2
< eqs ≤

∆s

2
. (2.32)

18

Similar to the conventional binary quantization error given in Equation 2.13, the mean and

variance of the stochastic quantization error are respectively

E(eqs) = 0, (2.33)

σqs
2 =

∆s
2

12
=

1

12 ·Ns
2 (2.34)

Random Fluctuations in Stochastic Computing

In addition to the quantization error caused by the limited sequence length, stochastic com-

puting also suffers from a fluctuation error because the pseudo random number generator

introduces uncertainty into the stochastic representations. The fluctuation error will be

denoted by efs. P ′′Y is defined as the final result obtained by stochastic computing [18]

and [25] . Due to random fluctuations, P ′′Y is different from PY . If PY is encoded by the

stochastic bit stream y(i), where i = 1, 2, , Ns and Ns is the sequence length, then the final

output P ′′Y is obtained by

PY ′′ =
1

Ns

Ns∑
i=1

y (i) , (2.35)

If no stochastic fluctuations existed, there is no difference between PY and P ′′Y . The stochas-

tic bit stream y(i) is usually a Bernoulli sequence [18]. The mean of the output P ′′Y is

E(P ′′Y) = PY . (2.36)

The variance of PY ′′ is given by

V ar [PY ′′] = V ar

[
1

Ns

Ns∑
i=1

y (i)

]
= E

[
(PY ′′ − E (PY ′′))

2
]

= E
[
(PY ′′ − PY)2

]
(2.37)

As y(i) (i = 1, 2, , Ns) is a Bernoulli sequence, we have

V ar

[
1

Ns

Ns∑
i=1

y (i)

]
=
PY (1− PY)

Ns
. (2.38)

Let efs be the fluctuation error defined as

efs = |P ′′Y − PY |. (2.39)

The error is measured using the variance in Equations 2.37 and 2.38, i.e.,

E
[
efs

2
]

= E
[
(PY ′′ − PY)2

]
=
PY (1− PY)

Ns
. (2.40)

Therefore the fluctuation error can be approximated as

efs =

√
PY (1− PY)

Ns
. (2.41)

Equation 2.41 implies that the fluctuation can be controlled by simply using longer se-

quences.

19

Inaccuracies in Stochastic Multipliers

The propagation effect of quantization errors in stochastic computing is similar to that in

a conventional multiplier. The effect of quantization errors in stochastic computing can be

analyzed by evaluating the output P ′Y . If PY is the correct output without errors, we have

PY = PH · PX . (2.42)

We further include the quantization effect by adding errors PeH and PeX to input PX , the

coefficient PH and the output PY , respectively. Hence the output P ′Y can be calculated by

PY ′ =(PH + PeH)(PX + PeX)

= (PHPX + PXPeH + PHPeX + PeHPeX)

= PY + (PXPeH + PHPeX + PeHPeX).

(2.43)

PeH and PeX are independent quantization errors that can be modeled by eqs with the

properties in Equations 2.32, 2.33 and 2.34. The mean of the stochastic output P ′Y is thus

given by

E (PY ′) = E (PY) + E (PXPeH + PHPeX + PeHPeX) = E (PY) . (2.44)

The variance of the output PY ′ can be obtained from Equation 3.25 as

V ar (PY ′) =
(
P 2
XV ar(PeH) + P 2

HV ar(PeX) + V ar(PeHPeX)
)

=
(
P 2
X + P 2

H)σ2qs + V ar(PeHPeX)
)
.

(2.45)

V ar(PeHi
PeXi

) in Equation 2.45 can be ignored due to the fact that

max
{
V ar

(
PeHi

PeXi

)}
=
∆4
s

16
� ∆2

s

12

(
P 2
Xi + P 2

Hi

)
. (2.46)

Therefore, Equation 2.45 becomes

V ar (PY ′) ≈ σ2qs
(
P 2
X + P 2

H

)
=

∆2
s

12

(
P 2
X + P 2

H

)
(2.47)

By definition and Equation 2.44, we have

V ar (PY ′) = E
[
(PY ′ − E (PY ′))

2
]

= E
[
(PY ′ − PY)2

]
. (2.48)

By combining Equations 2.47 and 2.48, we get

E
(

(PY ′ − PY)2
)

=
∆2
s

12
(P 2

X + P 2
H). (2.49)

The overall quantization error e
(mul)
qs caused by the quantization effect can be defined as the

absolute difference between the calculated result P ′Y and the accurate result PY , i.e.,

e(mul)qs = |P ′Y − PY |. (2.50)

20

From Equations 2.49 and 2.50, the mean of the squared error e
(mul)
qs

2
can be evaluated as

E
[
e(mul)qs

2
]

= E
[
(PY ′ − PY)2

]
=

∆2
s

12

(
P 2
X + P 2

H

)
. (2.51)

Because of Equations 2.31 and 2.51, e
(mul)
qs can be approximated as

e(mul)qs ≈
√

∆2
s

12

(
P 2
Xi

+ P 2
Hi

)
=

√
3

6Ns

√
P 2
X + P 2

H . (2.52)

The stochastic computation can suffer from both quantization errors and fluctuation errors.

The overall error e
(mul)
os in a stochastic filter is defined as the sum of the quantization error

and the random fluctuation error, i.e.,

e(mul)os = e(mul)oq + e
(mul)
fs . (2.53)

e
(mul)
os defined in Equation 2.53 can be further written as the sum of the quantization error

e
(mul)
qs in Equation 2.52 and the fluctuation error e

(mul)
fs in Equation 2.41:

e(mul)os =

√
PY (1− PY)

Ns
+

√
3

6Ns

√
P 2
X + P 2

H . (2.54)

2.3.3 Required Sequence Length for Stochastic Computing Elements

The stochastic sequence length is an important parameter as it determines both the com-

putational accuracy and the circuit performance. To determine the minimum required

sequence length for stochastic computing elements, the overall error of the conventional

binary implementation and the error of the stochastic implementation are compared. In

this way, the stochastic sequence length Ns can be represented using functions of the bit

resolution Nb.

For the stochastic multiplier, the overall error e
(mul)
os in Equation 2.54 is used as a

consecutive approximation of the stochastic error. To understand the relationship between

bit resolution Nb and sequence length Ns, let e
(mul)
os = e

(mul)
oc , i.e.,√

PY (1− PY)

Ns
+

√
3

6Ns

√
P 2
X + P 2

H =

√
3

3 · 2Nb+1

√
(X2 +H2). (2.55)

Because the first term on the left side of the Equation 2.55 is dominant, the stochastic

sequence length Ns is approximately

Ns ≈
PY (1− PY)

12(X2 +H2)
· 22Nb . (2.56)

Considering PY (1−PY)
12(X2+H2)

as a constant coefficient in Equation 2.56, we can use the big

O notation to estimate the relationship between the necessary stochastic sequence length

21

for a stochastic multiplier to match the performance of the conventional binary multiplier.

Therefore, Equation 2.56 can be written as

Ns = O
(
22Nb

)
. (2.57)

Equation 2.57 shows that the sequence length Ns grows exponentially as the binary resolu-

tion Nb increases.

2.4 Performance Evaluation on Stochastic Arithmetic Ele-
ments

In this section, the area, power, delay, energy per operation and throughput per area are

explored with regard to the stochastic circuits that were discussed in the previous section.

These important metrics are then compared with conventional binary designs implemented

using regular approaches. Various sequence lengths for stochastic computing are investi-

gated to match the corresponding conventional binary designs.

2.4.1 Required Sequence Length for Stochastic Computing Elements Us-
ing the Simulation Method

Due to the binomial distribution and the potential correlation between implemented stochas-

tic sequences, stochastic computing is inherently inaccurate. Noise in stochastic sequences

can be higher compared to binary representations where the inherent inaccuracy is caused

by quantization errors. This noise can also be amplified after a stochastic computing el-

ement. To fairly compare the efficiency of the stochastic approach and the conventional

binary approach, they must perform identically in terms of accuracy. The sequence length

Ns is the most important metric in stochastic computing as it affects the trade-off between

accuracy and efficiency.

In this section, conventional binary implementations of the basic arithmetic elements are

discussed for resolutions ranging from 3 bits to 16 bits. The stochastic arithmetic elements

are then implemented using different sizes of SNGs and hence different sequence lengths.

Accuracy is measured by RMSE for the bit resolution Nb, which can be defined as

RMSE(Nb) =
1

2Nb

√√√√ 1

Nt

Nt∑
i=1

(Ŷi − Yi)2, (2.58)

where Nb is the bit resolution and Nt is the number of trials. Ŷi and Yi are the computed

result and the true result of the ith trial, respectively. Those conventional and stochastic

implementations with same or similar accuracy will be paired and their circuit performances

compared below. For each and every arithmetic element, 100 random sets of inputs (i.e.

Nt = 100) are observed and the RMSE for each bit resolution is calculated. For the

conventional binary approach, this process is repeated for increasing bit resolutions from 3

22

bits to 16 bits (Nb = 3, 4, ..., 16). For the stochastic approach, this process is repeated for

increasing sequence lengths Ns, where Ns = 2NLFSR and NLFSR = 3, 4, ..., until a matching

accuracy is found for the target conventional binary implementation.

Table 2.4 shows the resulting matching sequence lengths for increasing bit resolutions for

addition, multiplication and absolute subtraction. The sequence length reported in Table

2.4 will then be used in the evaluation of circuit performance.

Table 2.4: RMSE comparison of the conventional binary and stochastic implementations
represented by RMSEB and RMSES, respectively, using various sequence lengths Ns and
different bit resolutions Nb .

Unsigned Multiplier (Unipolar Stochastic Encoding) Signed Multiplier (Bipolar Stochastic Encoding)

Nb (Bits) RMSEB (%) RMSES (%) Ns (Bits) RMSEB (%) RMSES (%) Ns (Bits)

3 6.167 6.656 64 6.348 6.477 64
4 3.496 3.342 256 3.402 3.290 256
5 1.533 1.585 512 1.596 1.608 512
6 8.956×10−1 7.688×10−1 1,024 9.315 ×10−1 8.025×10−1 1,024
7 4.088×10−1 4.807×10−1 2,048 3.910×10−1 4.585×10−1 2,048
8 2.358×10−1 2.171×10−1 4,096 2.256×10−1 2.180×10−1 4,096
9 1.171×10−1 1.052×10−1 8,192 1.136×10−1 1.084×10−1 8,192
10 5.813×10−2 5.097×10−2 32,768 5.731×10−2 5.024×10−2 32,768
11 2.528×10−2 2.995×10−2 262,144 2.483×10−2 2.858×10−2 262,144
12 1.258×10−2 1.391×10−2 524,288 1.318×10−2 1.373×10−2 524,288
13 6.246×10−3 6.841×10−3 2,097,152 6.421×10−3 6.532×10−3 2,097,152
14 3.434×10−3 3.485×10−3 8,388,608 3.540×10−3 3.365×10−3 8,388,608
15 1.653×10−3 1.667×10−3 33,554,432 1.658×10−3 1.649×10−3 33,554,432
16 9.321×10−4 7.704×10−4 134,217,728 9.019×10−4 7.745×10−4 134,217,728

2.4.2 Circuit Performance Comparison

A standard application-specific integrated circuit (ASIC) design flow was used to build

both conventional binary circuits and stochastic circuits for adders, multipliers and abso-

lute subtractors. For bit resolutions Nb = 3, 4, ..., 16, resistor-transistor logic (RTL)-level

designs were established for conventional binary circuits. The generated netlists were syn-

thesized using Synopsys Design Compiler (syn vF-2011.09-SP4) with STMicroelectronics

28 nm technology to yield reports on area, power and delay. Those metrics are required to

calculate EPO and TPA, which are useful general metrics for comparing the conventional

binary implementations and the stochastic implementations. Note that there are limitations

using Synopsys to estimate power as the activity factor is likely lower than the average ac-

tivity factor produced by real input values in stochastic computing. Therefore, the power

consumption of stochastic circuits may be underestimated.

After the original data are collected from reports using the Synopsys Design Compiler,

measurements of throughput per area and energy per operation are calculated. Take the

stochastic multiplier using 64-bit sequences as an example. Assume that the minimum clock

period is 5 ns, that the area is 0.8 um2 and the power is 40 mW including both static and

dynamic power. The calculations proceed as follows.

23

1. Throughput: one symbol per 5ns = 0.2Gb/s

2. Throughput per area is 0.2Gb/s
0.945mm2 = 0.705Gb/(s ·mm2)

3. Time per operation is 16× 4× 6ns = 384ns

4. Energy per operation is 42.718× 384ns = 16.4× 10−9 J

Unsigned Multipliers (Unipolar Stochastic Encoding)

Stochastic multipliers are usually implemented using AND gates for the unipolar encod-

ing or XNOR gates for the bipolar encoding. Unsigned multiplication is considered first,

as shown in Figure 2.11. Auxiliary circuits such as SNGs and counters are first included

and then excluded to compare with the corresponding conventional binary multiplication

in terms of circuit performance. Tables 2.5, 2.6 and 2.7 report the area, power and min-

imum clock period comparisons for the conventional binary multiplier and the stochastic

multiplier, respectively. Then Tables 2.9 and 2.8 show the EPO and TPA comparisons for

the binary unsigned multiplier and the stochastic unipolar multiplier. The measurements

include stochastic multipliers with or without auxiliary circuits such as SNGs and counters.

Figure 2.11: Schematic of the stochastic unipolar multiplier: S3 = S1 · S2 (S1 and S2 are
uncorrelated unipolar sequences).

The area comparison is shown in Table 2.5. The area of the stochastic unipolar multiplier

with auxiliary circuits is much smaller than that of the conventional binary multipliers.

However, this advantage in terms of area cost for the stochastic multiplier becomes less

significant when the bit resolution increases. The stochastic multiplier without auxiliary

circuits is much more efficient than the conventional binary multipliers in terms of area

cost. Because the stochastic multiplier is implemented by an AND gate in the unipolar

encoding (or an XNOR gate in the bipolar encoding), the area does not change as the bit

resolution varies. Similar conclusions can be drawn for power comparisons in Table 2.5.

Another important metric is the minimum clock period which the circuit can run at. As

the circuits are fully pipelined, the longest stage delay in the pipeline corresponds to the

minimum clock period. In Table 2.7, the stochastic multipliers can run at a very small

clock period as expected. Although the advantage in terms of clock period for stochastic

multiplier is indeed significant, the long sequence required for stochastic computing makes

the stochastic multiplier less competitive.

Area, power and minimum clock period are three important measurements that reflect

the performance of a circuit. However, circuit performance is a multi-dimensional problem

where these three measurements must be integrated. To fairly compare the stochastic

24

approach and the conventional binary approach, the EPO and TPA should both be used.

Tables 2.9 and 2.8 list the EPOs and TPAs of the conventional binary multiplier and the

stochastic multiplier. The stochastic multiplier with auxiliary circuits does not have any

advantage over the conventional binary multiplier in terms of TPA and EPO. The EPO

ratios of the stochastic multiplier without auxiliary circuits over the conventional binary

multiplier are smaller than 1 for 4 bit resolutions and below. The stochastic multiplier

without auxiliary circuits is only competitive in terms of TPAs for 6-bit precision. For higher

resolutions, the stochastic multiplier underperforms the conventional binary multiplier as

it suffers from long delays caused by required stochastic sequences (see the last columns in

Tables 2.9 and 2.8). To sum up, the stochastic multiplier with auxiliary circuits is inefficient

in terms of TPA and EPO. However, stochastic multiplication may become efficient for low

bit resolutions in a large system where many multipliers are cascaded. In this way, the cost

of auxiliary circuits such as SNGs and counters would become a less significant proportional

overhead.

Table 2.5: Area report of binary unsigned multipliers (B), stochastic unipolar multipli-
ers including auxiliary circuits (S1) and stochastic unipolar multipliers excluding auxiliary
circuits (S2). Nb represents the bit resolution.

Nb (bits) B (um2) S1 (um2) Ratio: S1/ B S2 (um2) Ratio: S2/ B

3 5.946 0.741 0.125 0.047 7.904×10−3

4 8.524 1.212 0.142 0.047 5.514×10−3

5 11.480 1.821 0.159 0.047 4.094×10−3

6 16.650 2.887 0.173 0.047 2.823×10−3

7 25.375 4.852 0.191 0.047 1.852×10−3

8 34.824 7.161 0.206 0.047 1.350×10−3

9 44.028 9.733 0.221 0.047 1.068×10−3

10 56.030 12.901 0.230 0.047 8.388×10−4

11 69.113 17.245 0.250 0.047 6.800×10−4

12 82.956 22.700 0.274 0.047 5.666×10−4

13 95.914 26.921 0.281 0.047 4.900×10−4

14 109.074 32.185 0.295 0.047 4.309×10−4

15 121.530 39.316 0.324 0.047 3.867×10−4

16 136.224 46.587 0.342 0.047 3.450×10−4

Signed Multipliers (Bipolar Stochastic Encoding)

Similarly, signed multiplications can be analyzed by comparing the conventional binary

implementation and the stochastic implementation (see Figure 2.12) using XNOR gates and

the bipolar encoding. The unipolar encoding can be converted to bipolar encodings using

a linear function in Equation 2.1 and vice versa. Hence, similar results can be obtained as

the unsigned multiplication. Again, the area, power and minimum clock period are shown

in Tables 2.10, 2.11 and 2.12 for the binary signed multiplier and the stochastic bipolar

multiplier, respectively.

In Tables 2.14 and 2.13, it can be seen that the stochastic signed multipliers with aux-

25

Table 2.6: Power report of binary unsigned multipliers (B), stochastic unipolar multipli-
ers including auxiliary circuits (S1) and stochastic unipolar multipliers excluding auxiliary
circuits (S2) at minimum clock period. Nb represents the bit resolution.

Nb (bits) B (mW) S1 (mW) S2 (mW)

3 0.476 0.378 4.280×10−3

4 0.510 0.505 4.280×10−3

5 0.542 0.630 4.280×10−3

6 0.559 0.827 4.280×10−3

7 0.567 0.850 4.280×10−3

8 0.580 0.892 4.280×10−3

9 0.585 1.070 4.280×10−3

10 0.602 1.120 4.280×10−3

11 0.627 1.190 4.280×10−3

12 0.645 1.270 4.280×10−3

13 0.662 1.420 4.280×10−3

14 0.677 1.460 4.280×10−3

15 0.715 1.590 4.280×10−3

16 0.746 1.691 4.280×10−3

Table 2.7: Minimum clock period report of binary unsigned multipliers (B), stochastic
unipolar multipliers including auxiliary circuits (S1) and stochastic unipolar multipliers
excluding auxiliary circuits (S2). Nb represents the bit resolution.

Nb (bits) B (ps) S1 (ps) S2 (ps)

3 470 140 140
4 490 140 140
5 500 150 140
6 500 150 140
7 510 150 140
8 530 160 140
9 540 160 140
10 560 160 140
11 570 160 140
12 580 160 140
13 600 170 140
14 600 170 140
15 600 170 140
16 610 170 140

26

Table 2.8: EPO report of binary unsigned multipliers (B), stochastic unipolar multipli-
ers including auxiliary circuits (S1) and stochastic unipolar multipliers excluding auxiliary
circuits (S2). Nb represents the bit resolutions and Ns represents sequence length.

Nb (bits) B (nJ/Operation) S1 (nJ/Operation) Ratio: S1/ B S2 (nJ/Operation) Ratio: S2/ B Ns (bits)

3 223.9 3.387×10+3 15.1 3.835×10+1 0.2 64
4 249.9 1.810×10+4 72.4 1.534×10+2 0.6 256
5 270.9 4.838×10+4 178.6 3.068×10+2 1.1 512
6 279.3 1.270×10+5 454.8 6.136×10+2 2.2 1,024
7 289.2 2.611×10+5 903.0 1.227×10+3 4.2 2,048
8 307.2 5.846×10+5 1902.7 2.454×10+3 8.0 4,096
9 316.0 1.402×10+6 4438.1 4.909×10+3 15.5 8,192
10 336.9 5.872×10+6 17429.8 1.963×10+4 58.3 32,768
11 357.3 4.991×10+7 139702.1 1.571×10+5 439.7 262,144
12 374.1 1.065×10+8 284760.0 3.142×10+5 839.7 524,288
13 397.0 5.063×10+8 1275323.7 1.257×10+6 3165.6 2,097,152
14 406.1 2.082×10+9 5127197.9 5.026×10+6 12378.0 8,388,608
15 429.0 9.070×10+9 21140455.9 2.011×10+7 46864.1 33,554,432
16 454.9 3.858×10+10 84821985.4 8.042×10+7 176802.2 134,217,728

Table 2.9: TPA report of binary unsigned multipliers (B), stochastic unipolar multipli-
ers including auxiliary circuits (S1) and stochastic unipolar multipliers excluding auxiliary
circuits (S2). Nb represents the bit resolutions and Ns represents sequence length.

Nb (bits) B ((ns · um2)−1) S1 ((ns · um2)−1) Ratio: S1/ B S2 ((ns · um2)−1) Ratio: S2/ B Ns (bits)

3 0.358 1.506×10−1 4.209×10−1 2.375 6.636 64
4 0.239 2.302×10−2 9.615×10−2 5.937×10−1 2.480 256
5 0.174 7.150×10−3 4.104×10−2 2.968×10−1 1.704 512
6 0.120 2.255×10−3 1.877×10−2 1.484×10−1 1.236 1,024
7 0.077 6.709×10−4 8.682×10−3 7.421×10−2 9.603×10−1 2,048
8 0.054 2.131×10−4 3.933×10−3 3.710×10−2 6.848×10−1 4,096
9 0.042 7.839×10−5 1.864×10−3 1.855×10−2 4.411×10−1 8,192
10 0.032 1.478×10−5 4.639×10−4 4.638×10−3 1.455×10−1 32,768
11 0.025 1.383×10−6 5.446×10−5 5.797×10−4 2.284×10−2 262,144
12 0.021 5.252×10−7 2.527×10−5 2.899×10−4 1.395×10−2 524,288
13 0.017 1.042×10−7 5.996×10−6 7.247×10−5 4.170×10−3 2,097,152
14 0.015 2.179×10−8 1.426×10−6 1.812×10−5 1.186×10−3 8,388,608
15 0.014 4.459×10−9 3.251×10−7 4.529×10−6 3.303×10−4 33,554,432
16 0.012 9.408×10−10 7.817×10−8 1.132×10−6 9.409×10−5 134,217,728

27

Figure 2.12: Schematic of the stochastic bipolar multiplier: S3 = S1 · S2 (S1 and S2 are
uncorrelated bipolar sequences).

iliary circuits underperform the conventional binary multiplier in terms of TPA and EPO.

However, the stochastic signed multiplier without auxiliary circuits can be competitive in

terms of EPO for 4 bit resolutions and below. In addition, the TPAs of stochastic bipolar

multipliers without auxiliary circuits are larger than those of the binary signed multipliers

for 6 bit resolutions and below.

Table 2.10: Area report of binary signed multipliers (B), stochastic bipolar multipliers in-
cluding auxiliary circuits (S1) and stochastic bipolar multipliers excluding auxiliary circuits
(S2). Nb represents bit resolutions.

Nb (bits) B (um2) S1 (um2) Ratio: S1/ B S2 (um2) Ratio: S2/ B

3 6.051 0.747 0.123 0.059 9.750×10−3

4 8.577 1.217 0.142 0.059 6.879×10−3

5 11.515 1.833 0.159 0.059 5.124×10−3

6 16.939 2.933 0.173 0.059 3.483×10−3

7 25.389 4.891 0.193 0.059 2.324×10−3

8 34.835 7.162 0.206 0.059 1.694×10−3

9 44.631 9.822 0.220 0.059 1.322×10−3

10 56.813 13.128 0.231 0.059 1.038×10−3

11 70.449 17.413 0.247 0.059 8.375×10−4

12 83.395 22.757 0.273 0.059 7.075×10−4

13 96.314 26.972 0.280 0.059 6.126×10−4

14 109.230 32.488 0.297 0.059 5.401×10−4

15 123.705 40.096 0.324 0.059 4.769×10−4

16 138.529 47.411 0.342 0.059 4.259×10−4

2.5 Discussions and Summary

There are strategies that one might consider to overcome the limitations of the stochastic

method while preserving most of its strengths. For example, the low cost of stochastic

multipliers allows us to extend the stochastic approach by encoding one binary number as

two or more parallel stochastic bit streams. This would help speed up the throughput, but

not the throughput per area. The energy per operation would not change. We cannot gain

better performance in terms of TPA or EPO, but stochastic computing makes it easy for

us to get a desired balance between throughput and hardware cost.

Hybrid binary-stochastic schemes can be another idea to improve the stochastic ap-

proach. Analogous to floating point numbers, a real number can be represented with an

exponent in binary plus a mantissa in the stochastic representation. A hybrid multiplier

is consisted of two components. A stochastic multiplier is used to calculate the product

28

Table 2.11: Power report of binary signed multipliers (B), stochastic bipolar multipliers in-
cluding auxiliary circuits (S1) and stochastic bipolar multipliers excluding auxiliary circuits
(S2) at minimum clock period. Nb represents the bit resolution.

Nb (bits) B (mW) S1 (mW) S2 (mW)

3 0.477 0.382 4.410×10−3

4 0.511 0.515 4.410×10−3

5 0.543 0.634 4.410×10−3

6 0.565 0.829 4.410×10−3

7 0.570 0.862 4.410×10−3

8 0.589 0.909 4.410×10−3

9 0.586 1.079 4.410×10−3

10 0.608 1.139 4.410×10−3

11 0.629 1.204 4.410×10−3

12 0.656 1.289 4.410×10−3

13 0.670 1.432 4.410×10−3

14 0.678 1.465 4.410×10−3

15 0.725 1.612 4.410×10−3

16 0.753 1.711 4.410×10−3

Table 2.12: Minimum clock period report of binary signed multipliers (B), stochastic bipolar
multipliers including auxiliary circuits (S1) and stochastic bipolar multipliers excluding
auxiliary circuits (S2). Nb represents the bit resolution.

Nb (bits) B (ps) S1 (ps) S2 (ps)

3 0.47 0.14 0.14
4 0.49 0.14 0.14
5 0.50 0.15 0.14
6 0.50 0.15 0.14
7 0.51 0.15 0.14
8 0.53 0.16 0.14
9 0.54 0.16 0.14
10 0.56 0.16 0.14
11 0.57 0.16 0.14
12 0.58 0.16 0.14
13 0.60 0.17 0.14
14 0.60 0.17 0.14
15 0.60 0.17 0.14
16 0.61 0.17 0.14

29

Table 2.13: EPO report of binary signed multipliers (B), stochastic bipolar multipliers in-
cluding auxiliary circuits (S1) and stochastic bipolar multipliers excluding auxiliary circuits
(S2). Nb represents the bit resolution and Ns represents the sequence length.

Nb (bits) B (nJ/Operation) S1 (nJ/Operation) Ratio: S1/ B S2 (nJ/Operation) Ratio: S2/ B Ns (bits)

3 224.1 3.422×10+3 15.268 3.951×10+1 0.18 64
4 250.6 1.845×10+4 73.625 1.581×10+2 0.63 256
5 271.6 4.870×10+4 179.289 3.161×10+2 1.16 512
6 282.7 1.273×10+5 450.247 6.322×10+2 2.24 1,024
7 290.9 2.649×10+5 910.579 1.264×10+3 4.35 2,048
8 312.4 5.956×10+5 1906.420 2.529×10+3 8.09 4,096
9 316.6 1.414×10+6 4465.183 5.058×10+3 16.0 8,192
10 340.5 5.970×10+6 17535.7 2.023×10+4 59.4 32,768
11 358.6 5.050×10+7 140855.9 1.618×10+5 451.4 262,144
12 380.4 1.081×10+8 284154.2 3.237×10+5 850.8 524,288
13 402.1 5.106×10+8 1269936.4 1.295×10+6 3220.2 2,097,152
14 407.0 2.089×10+9 5132614.5 5.179×10+6 12725.6 8,388,608
15 435.0 9.194×10+9 21135653.1 2.072×10+7 47623.4 33,554,432
16 459.3 3.905×10+10 85013787.9 8.287×10+7 180399.8 134,217,728

Table 2.14: TPA report of binary signed multipliers (B), stochastic bipolar multipliers in-
cluding auxiliary circuits (S1) and stochastic bipolar multipliers excluding auxiliary circuits
(S2). Nb represents the bit resolution and Ns represents the sequence length.

Nb (bits) B ((ns · um2)−1) S1 ((ns · um2)−1) Ratio: S1/ B S2 ((ns · um2)−1) Ratio: S2/ B Ns (bits)

3 0.352 1.494×10−1 4.248×10−1 1.892 5.380 64
4 0.238 2.293×10−2 9.637×10−2 4.729×10−1 1.987 256
5 0.174 7.102×10−3 4.089×10−2 2.365×10−1 1.361 512
6 0.118 2.220×10−3 1.880×10−2 1.182×10−1 1.001 1,024
7 0.077 6.655×10−4 8.617×10−3 5.911×10−2 7.654×10−1 2,048
8 0.054 2.130×10−4 3.933×10−3 2.956×10−2 5.457×10−1 4,096
9 0.041 7.768×10−5 1.872×10−3 1.478×10−2 3.562×10−1 8,192
10 0.031 1.453×10−5 4.622×10−4 3.695×10−3 1.175×10−1 32,768
11 0.025 1.369×10−6 5.498×10−5 4.618×10−4 1.855×10−2 262,144
12 0.021 5.238×10−7 2.534×10−5 2.309×10−4 1.117×10−2 524,288
13 0.017 1.040×10−7 6.010×10−6 5.773×10−5 3.336×10−3 2,097,152
14 0.015 2.158×10−8 1.415×10−6 1.443×10−5 9.458×10−4 8,388,608
15 0.013 4.372×10−9 3.245×10−7 3.608×10−6 2.678×10−4 33,554,432
16 0.012 9.244×10−10 7.812×10−8 9.020×10−7 7.622×10−5 134,217,728

30

of the two mantissas. A binary adder is used to calculate the sum of the two exponents.

When one of the two operands is much larger or smaller than the other one, the hybrid

multiplier can be potentially more efficient compared to the stochastic multiplier because

it would require less stochastic bits to represent only the mantissas. However, the hybrid

binary-stochastic scheme is only applicable to multiplications where the computation of

exponents and mantissas can be completely separated. To perform addition, an adjustment

must be made to equalize the exponents of operands. However, this can not be done as

efficiently as in multiplication.

In this chapter, several combinational and sequential stochastic elements are introduced

and investigated. Simulation-based experiments show the required sequence lengths for

a corresponding series of bit resolutions. Stochastic multipliers are compared with their

conventional binary counterparts with respect to circuit performance. Note that in the

evaluation, auxiliary circuits are first included and then excluded. The results indicate that

a stochastic system may be cost-efficient if the proportion of the auxiliary circuits can be

reduced. This will be further investigated in Chapters 3 and 4 where real-world applications

like FIR filters and VQ encoders are implemented and evaluated. Other stochastic elements

such as adders and absolute subtractors are also investigated in Appendix C. A slightly more

complicated SOP function is also implemented and compared to its conventional binary

implementation using similar strategies in Appendix C.

31

Chapter 3

Stochastic Circuit Design and
Evaluation of FIR Filters

FIR filters are key elements in DSP due to their linear phase-frequency response. In

this chapter, the problem of implementing FIR filters are considered using the stochas-

tic approach. Novel stochastic FIR filter designs based on multiplexers are proposed and

compared to conventional binary designs implemented by synthesizing high-level very-high-

speed-integrated-circuit hardware description language (VHDL) designs using the Synopsys

Design Compiler with a 28-nm standared cell library. Silicon area, power and maximum

clock frequency are obtained using estimated results from the Synopsys Design Compiler

to evaluate the TPA and the EPO. For equivalent filtering performance, the stochastic

FIR filters underperform in terms of TPA and EPO compared to the conventional binary

design, although the stochastic design shows more graceful degradation in performance with

a significant reduction in energy consumption. A detailed analysis is performed to evaluate

the accuracy of stochastic FIR filters and to determine the required stochastic sequence

length. The fault-tolerance of the stochastic design is compared with that of the binary

circuit using TMR. The stochastic designs are more reliable than the conventional binary

design and its TMR implementation with unreliable voters, but they are less reliable than

the binary TMR implementation when the voters are fault-free.

In this chapter, three different stochastic FIR filter designs are investigated. The

conventional weighted average (CWA) design exploits basic stochastic arithmetic elements

such as the XNOR gate for multiplication and the multiplexer for addition. Stochastic

FIR filters based on the HWA and MWA designs are proposed by using multiplexers as

weighted adders. Different strategies are considered for generating the filter coefficients.

In the HWA design, the filter coefficients or weights are given by repeating inputs to the

multiplexer. Finally, the MWA design leverages the fact that every input signal is selected

with a certain weight determined by the selection inputs to a multiplexer. The MWA de-

sign explicitly uses additional multiplexers to generate filter coefficients as the weights to

a weighted adder. In all three designs, the weight of an input signal is the probability of

selecting that input signal. That probability is then encoded in the frequency at which the

32

corresponding combination of the selecting signals occurs in the bit streams. It is shown

that both HWA- and MWA-based FIR filters have improved performance in terms of area,

power and speed, compared to the CWA design.

Different resolutions are considered to determine the threshold (or break-even point)

with regards to TPA and EPO that defines the competitive resolution range for stochas-

tic circuits. A detailed analysis is performed to evaluate the accuracy of the binary and

stochastic filters. The analytical results are then used to determine the minimum stochas-

tic sequence length that is required to ensure that the performance of the stochastic filter

matches that of a conventional filter. 3-bit to 16-bit FIR filters using both the stochastic

and binary approaches are implemented initially. Then the minimum required stochastic

sequence length that enables the stochastic circuit to filter signals as accurately as the bi-

nary one is determined empirically. The general metrics of throughput per area (TPA) and

energy per operation (EPO) are used to characterize and compare the performance of the

stochastic and conventional circuits. A detailed comparison is provided with respect to the

fault tolerance of the HWA- and MWA-based stochastic filters. The conventional binary

filter and its fault-tolerant TMR implementation are considered in the comparison.

3.1 Architectures of FIR Filters

FIR filters are frequently used in signal processing applications. Specifically the FIR filter

implements a sum of products over a sliding window of theNt ≥ 1 most recent input samples,

as specified in Equation 3.1. The fixed filter coefficients H[i] give the finite impulse response

of the filter.

Y [n] =

Nf−1∑
i=0

H [i]X [n− i] (3.1)

The hardware implementation of an FIR filter consists of adders and multipliers as

well as delay units, which are typically implemented as D flip flops. In a typical pipelined

FIR filter, the output is summed up over multiple clock cycles along the delay pipeline to

produce the output Y [n] (see Figure 3.1). A major challenge with stochastic designs is that

they can be slow and expensive with many D flip-flops required to provide storage before

every arithmetic block [13]. The stochastic sequence must be at least as long as Nb, where

Nb is the binary bit resolution. Obtaining the delayed version of the input it takes at least

2Nb clock cycles to while only 1 clock cycle is necessary if the stochastic sequence can be

transmitted in parallel.

To avoid the latency, the stochastic filter structure shown in Figure 3.2 is proposed. R1

to R4 are four registers for storing the stochastic sequences representing X[n−3], X[n−2],

X[n − 1] and X[n]. The Ns-bit stochastic sequence S(X[n]) represents the Nb-bit binary

number X[n] where X[n] has been normalized to lie between 0 and 1. R1 to R4 are Ns-bit

registers. The blocks labeled SNG represents stochastic number generator, which convert

binary inputs to stochastic output sequences. SNGs are frequently implemented using

33

Figure 3.1: A 4-tap FIR filter design (i.e., Nf = 4 in 3.1)

LFSRs (Linear Feedback Shift Registers). The clock signal for the D flip-flops is called the

sample clock of frequency fD. The clock signal for the SNGs is called the stochastic clock

at frequency fS , where fS = Ns · fD. At every stochastic clock cycle, one new bit of the

stochastic sequence is generated according to the value of the input binary number X[n].

Each new bit from the SNG is saved in R1 as the next bit of the sequence S(X[n]). The

sample clock is updated once for every Ns stochastic clock cycles when S(X[n]) is generated

completely and stored in R1. Meanwhile, the other three registers R2, R3 and R4 are also

updated by copying the stochastic sequences from the neighboring registers to their left. In

this structure, the output sequence S(Y [n]) is obtained every Ns stochastic clock cycles.

Another solution to the relatively long latency and large storage cost is to move the

input signal through the D flip-flops before they are converted into stochastic bit streams

(see Figure 3.3). The X[n−1], X[n−2] and X[n−3] signals after the multi-bit D flip-flops

are the delayed versions of the binary input X[n]. At every stochastic clock cycle there will

be one stochastic bit generated by the each of the SNGs which represent the four binary

numbers X[n], X[n − 1], X[n − 2] and X[n − 3]. These stochastic bits and the stochastic

coefficients are then combined serially to present the final output. After Ns stochastic clock

cycles, or one sample clock cycle, an Ns-bit stochastic sequence S(Y [n]) is fully generated

representing the outcome of the calculation. In the meantime, X[n] is updated with a new

binary input while X[n − 1], X[n − 2] and X[n − 3] are updated by copying the binary

values from the neighboring D flip-flops to their left.

The two approaches described above both reduce the expense when generating the

delayed versions of the input. The approach in Figure 3.2 requires one SNG module (based

on an Nb-bit LFSR) and four Ns-bit registers while the one in Figure 3.3 requires four

expensive SNG modules (based on four Nb-bit LFSRs) but only three Nb-bit registers.

Roughly, there are (4Ns+Nb) one-bit registers in the first approach and 7Nb one-bit registers

in the second approach. Because usually the length of a stochastic bit stream Ns ≥ 2Nb , we

have (4Ns +Nb) ≥ 4 · 2Nb +Nb. When Nb > 2, we have (4Ns +Nb) > 7Nb. Based on this

rough analysis, the second approach costs less than the first one. For example, a typical

value for Nb is 16 and by using an oversampling factor of 4 we have Ns = 4 · 216 = 262144.

For the first approach the cost is approximately (4Ns +Nb) = 1048592 while for the second

34

Figure 3.2: Using one-time conversion and stochastic storages: R1,R2,R3 and R4 are Ns-bit
registers to store the stochastic sequence representing X[n] which is a Nb-bit binary number

approach it is roughly 7Nb = 112. Therefore, a significant lower cost can be achieved for

the second approach. The approach in Figure 3.3 is thus selected for further investigation.

3.2 Stochastic FIR Filter Designs

3.2.1 Conventional Weighted Average (CWA) Design

The CWA design is built using conventional stochastic arithmetic elements as a basis for

comparison with two novel stochastic designs introduced later. At the core of an Nf -

tap FIR filter is an Nf -input weighted average function. For a 16-tap FIR filter, this

function is implemented using stochastic logic, see Figure 3.4. The MUX is used as a

simple adder. The XNOR gates implement bipolar multiplications provided that the two

input sequences, i.e., the input sequence and the corresponding coefficient sequence, are

statistically independent [19]. Two Ns-bit bipolar stochastic sequences S1 and S2 are said

to be independent if

P (S1⊕ S2) = P (S1) • P (S2), (3.2)

where P(S1) and P(S2) denote the probabilities encoded by S1 and S2, respectively. (S1⊕ S2)

denotes the sequence produced by an XNOR gate with S1 and S2 as input sequences. Note

that the selecting signals are unipolar sequences encoding the probability of 0.5. In Fig-

ure 3.4, all the numbers to data inputs are converted by using bipolar SNGs (denoted by

SNGb) and all the numbers to selecting inputs are converted using unipolar SNGs (denoted

35

Figure 3.3: Using multiple conversions: D1,D2 and D3 are Nb-bit flip flops to get the delayed
versions of X[n], which is a Nb-bit binary number.

by SNGu).

Figure 3.4: The 16-tap stochastic FIR filter using the conventional stochastic design.

36

3.2.2 Hard-wired Weighted Average (HWA) Design

In the CWA design, the SNGs cannot be shared, due to the requirement of signal inde-

pendence. In the hard-wired weighted average (HWA) design, however, the absolute values

of the coefficients can be implemented by assigning unbiased stochastic sequences to the

selecting inputs of the multiplexer. In an unbiased stochastic sequence, the probabilities

of each bit being ‘1’ and ‘0’ are the same, i.e., 0.5. The probability is then the same for

selecting each of the inputs. However, a particular data input can be given more weight

in the multiplexer output by connecting the input to multiple multiplexer inputs. Note

that the signs of the coefficients can be implemented by XOR gates at the data inputs of

the multiplexer. XOR gates help invert the corresponding input when the coefficient is

negative. When the coefficients are positive, the XOR gates become buffers.

In Figure 3.5, for example, Wires 8 to 15 are associated with the same input S(X[4]),

where S(X[4]) is the stochastic bit stream encoding the value of X[4]. Thus the proba-

bility of selecting the input S(X[4]) is 8/16 or 1/2, which means the coefficient of X[4] is

either 1/2 or -1/2. Similarly, all the other coefficients can be weighted by repeating inputs

appropriately. The weighted average function in Equation 3.3 requires a multiplexer with

four selecting inputs. It can be implemented by a 16-input multiplexer with combined data

inputs as in Figure 3.5.

Y =sign(A[0]) · 1

16
·X[0] + sign(A[1]) · 1

16
·X[1]

+ sign(A[2]) · 1

8
·X[2] + sign(A[3]) · 1

4
·X[3] + sign(A[4]) · 1

2
·X[4]. (3.3)

The HWA design potentially improves the CWA design in that the SNGs for the weights

can be removed. In general, to implement the Nf -tap FIR filter in Equation 3.1 using an

Nb-bit resolution, the major steps are as follows:

1) Convert the floating point coefficients H[i] in Equation 3.1 to fixed point Nb-bit

binary numbers A[i], where i = 0, 1, ..., Nf − 1.

2) Calculate the sum of all the absolute values of the coefficients A =
Nf−1∑
i=0
|A [i]| where

A[i] is an Nb-bit binary number, for i = 0, 1, ..., Nf − 1.

3) The multiplexer has 2Nm data inputs and Nm selecting inputs, where Nm is deter-

mined by Nm = dlog2Ae and dxe is the ceiling function. Each selecting input is an unbiased

stochastic sequence encoding the probability of 0.5.

4) The number of inputs to be combined is given by |A[i]| for input X[i] (i = 0, 1, ..., Nf−
1). The sign of the coefficient A[i] (i = 0, 1, ..., Nf − 1) is one of the inputs of the corre-

sponding XOR gate.

5) Use a synthesis tool to optimize the design.

37

Figure 3.5: The hard-wired weighted average design of a 16-tap FIR filter.

3.2.3 Multiple-stage Weighted Average (MWA) Design

In general, the function of a weighted adder is given by Equation 3.4

Y = α

Nf−1∑
i=0

A [i] X [i] , (3.4)

where α = 1/
Nf−1∑
i=0

A [i] . To implement stochastic weighted average using multiplexers,

the weights are generated from the absolute values of the coefficients A[i] (i = 0, 1, , Nf).

Therefore, (9) can be changed to Equation 3.5

Y = α

Nf−1∑
i=0

|A [i] | · sign(A [i])X [i] , (3.5)

where α = 1/
Nf−1∑
i=0

A [i]. To implement the weighted adder for anNf -tap FIR filter, dlog2Nfe

selection signals are required. As an example, consider the design of a 4-tap FIR filter. In

this case, A[0], A[1], A[2] and A[3] are the conventional binary coefficients determined by

the filter specification. The sign of a coefficient is implemented using an XOR gate at the

data input of the weighted adder. If the coefficient is positive, the XOR gate becomes

transparent without changing the input value. If the coefficient is negative, the XOR gate

acts like an inverter to invert the corresponding input value. The two selection signals

38

are determined by the weights or filter coefficients, and they are used to select one of the

four multiplexer inputs (see Figure 3.6). The probability that each combination appears

(e.g. Sel[0] = 0, Sel[1] = 1) is the normalized coefficient for that input (e.g.|A[1]| · α). The

stochastic representation of a number must lie within the interval [0, 1], so the coefficients

are already normalized by the factor α in Equations 3.4 and 3.5. The relationship between

the specified coefficients and the probabilities of selecting the corresponding inputs (see

Figure 3.6) are given by

P{Sel[0] = 0} = (|A[0]|+ |A[1]|) · α, (3.6)

P{Sel[0] = 1} = 1− (|A[0]|+ |A[1]|) · α, (3.7)

P{Sel[1] = 0|Sel[0] = 0} = |A[0]|/(|A[0]|+ |A[1]|), (3.8)

P{Sel[1] = 1|Sel[0] = 0} = |A[1]|/(|A[0]|+ |A[1]|), (3.9)

P{Sel[1] = 0|Sel[0] = 1} = |A[2]|/(|A[2]|+ |A[3]|), (3.10)

P{Sel[1] = 1|Sel[0] = 1} = |A[3]|/(|A[2]|+ |A[3]|). (3.11)

Here, P{Sel[X] = Y } denotes the probability that the select signal Sel[X] (X = 0 or 1)

is Y (Y = 0 or 1). P{Sel[X1] = Y1|Sel[X2] = Y2} denotes the probability of the select signal

bit Sel[X1] (X1 = 0 or 1) being Y1 (Y1 = 0 or 1) under the condition that the select signal

bit Sel[X2] (X2 = 0 or 1) is Y2 (Y2 = 0 or 1). Stochastic sequences can then be generated

to represent the corresponding select signals. Equations 3.6 3.11 can be implemented using

the weight generator (WG) in Figure 3.6. Then the weighted addition can be realized using

the weighted adder (WA) in Figure 3.6 with the selecting signals provided by instances of

the WG in Figure 3.6.

Figure 3.6: A 4-term sum of products implemented using (a) a stochastic Weight Generator
(WG) and (b) a stochastic Weighted Adder (WA).

39

The overall schematic of a 16-tap FIR filter using the proposed weighted average struc-

ture is shown in Figure 3.7. Three multiplexers (WG1, WG2 and WG3) are needed as

weight generators for four selecting signals. For the selecting signals, Sel[0] comes directly

from a SNG that encodes its corresponding binary value. The value of Sel[0] is determined

by coefficients A[0] and A[1]. Sel[1] is the output of the 2-input MUX whose selecting signal

is Sel[0]. Signals Sel[2] and Sel[3] are generated similarly. Therefore there are four different

sizes of multiplexers in the core of the stochastic FIR filter design. The 16-input MUX (WA)

implements the sum of products as a weighted average while the other three multiplexers

implement weight generators. Note that the bipolar SNGs are used at the data inputs of

the weighted adder, and unipolar SNGs are used elsewhere.

Figure 3.7: The 16-tap FIR filter implemented with the MWA design.

3.3 Performance Evaluation of the Conventional Binary and
the Proposed Stochastic FIR Filters

A low-pass FIR filter is considered to help evaluate the proposed stochastic and binary

filter designs. Detailed specifications of the low-pass filter are given in Table 3.1. The

filter was designed using a Hamming window, with the embedded Matlab function fir1().

The number of taps is 267, i.e., Nf = 267. The coefficients of the filter are obtained to

40

Table 3.1: Low-pass FIR filter specifications

Specifications Values

Cut-off frequency fc 100 Hz

The width of the transition band BW 30 Hz

Minimum stop-band attenuation -50 dB

Maximum peak-to-peak pass-band ripple 0.1 dB

meet the specifications in Table 3.1. The binary filter operates by converting the floating

point numbers to fixed point numbers at different resolutions. The stochastic filters are

built using the HWA design and the MWA design. The sequence length Ns is given by

Ns = 2NLFSR , where NLFSR is the number of bits in an LFSR. Various sequence lengths

have been investigated for different resolutions to compare with the conventional binary

design. In this experiment, NLFSR is varied from 3 up to 30 (i.e, NLFSR = 3, 4, ..., 30)

to determine the sequence length. The resolution Nb ranges from 3 bits to 16 bits. The

magnitude responses of the filters are then investigated. PR and SA are used to evaluate

the performance of the binary design for various resolutions and the stochastic designs

for different sequence lengths. Here PR and SA are defined as the maximum magnitude

response of a frequency in the passband and stopband, respectively. In this experiment, the

passband, transition band and stopband are given as, respectively. The results are shown

in Table 3.

In Table 3.2, the PR and SA are shown for different bit resolutions and sequence lengths

for the MWA-based stochastic filter and the HWA-based stochastic filter. The stochastic

FIR filters suffer from both quantization errors and random fluctuations, but they show

gradually-improving performance as the sequence length increases. For each bit resolution,

the minimum sequence length Ns is found to match the performance of the stochastic FIR

filters to that of the conventional Nb-bit binary FIR filter. The performance matching

multiplier (PMM) is then calculated by PMM = Ns/2
Nb . For example, for the 8-bit

binary FIR filter, the HWA-based stochastic FIR filter using sequences with at least 8192

bits has smaller or similar passband ripples and stopband attenuations. The performance

matching multiplier is thus PMM = 8192/28 = 32. Therefore, the HWA-based stochastic

implementation using 8192-bit sequences is considered as the best case to compare with the

8-bit binary conventional implementation. The same strategy is applied to determine the

proper sequence lengths for various resolutions for the MWA-based stochastic filter.

The minimum resolution to achieve the filter specifications in Table 3.1 is 13 bits for

the binary design. The attenuation in the stopband is -51.4476 dB and the passband ripple

is 0.0392 dB. The magnitude responses of the stochastic and binary filters are plotted in

Figures 3.8, 3.9 and 3.10 for 13-bit resolution. The HWA-based stochastic design with the

minimum sequence length suffers from a maximum passband ripple of 0.2098 dB, as shown

41

Table 3.2: Performance of the FIR filters using the conventional binary approach, the
stochastic MWA approach and the stochastic HWA approach. Nb: bit resolution, PR:
passband ripple and SA: stopband attenuation.

R (Bits)

CB MWA HWA

PR (dB) SA (dB) Ns(bits) PR (dB) SA (dB) PMM Ns(bits) PR (dB) SA (dB) PMM

3 3.0776 -3.9121 64 2.5327 -7.0345 8 64 2.5826 -7.1452 8

4 4.7882 -9.9327 256 1.3941 -11.3365 16 256 1.4147 -11.4942 16

5 2.8602 -13.1133 512 1.3016 -14.5083 16 512 1.3247 -14.7042 16

6 1.4623 -17.7985 1,024 0.7843 -17.6721 16 1,024 0.8017 -17.9031 16

7 0.7215 -24.0151 2,048 0.5391 -20.3922 16 2,048 0.5522 -20.653 16

8 0.3913 -27.634 8,192 0.2017 -27.2137 32 8,192 0.2098 -27.5353 32

9 0.1795 -31.1319 16,384 0.2835 -31.6085 32 16,384 0.2826 -31.9565 32

10 0.1026 -36.3678 65,536 0.0733 -35.6365 64 65,536 0.0715 -36.0254 64

11 0.0517 -45.582 524,288 0.0488 -44.1428 256 524,288 0.0507 -44.603 256

12 0.0324 -49.9427 1,048,576 0.0419 -47.8491 256 1,048,576 0.0373 -48.3225 256

13 0.0392 -51.4476 4,194,304 0.0342 -51.0634 512 4,194,304 0.0348 -51.5738 512

14 0.035 -54.5942 16,777,216 0.037 -54.971 1,024 16,777,216 0.0369 -55.5106 1,024

15 0.036 -55.9094 134,217,728 0.0327 -54.3603 4,096 134,217,728 0.0351 -54.8941 4,096

16 0.0364 -54.9557 536,870,912 0.0404 -54.7923 8,192 536,870,912 0.0364 -55.3241 8,192

in Figure 3.9. The stopband attenuation for the HWA-based FIR filter is only -30.5392 dB

(Figure 3.9). To match the performance of the binary filter, the PMM has to be increased

to 512 (Figure 3.10). The PR and SA are 0.0348 dB and -51.5738 dB, respectively, for

the HWA-based stochastic filter in this case.Similarly conclusions can be drawn for the

MWA-based FIR filter in Table 3.2.

Figure 3.8: Magnitude responses of 13-bit Conventional binary FIR filter.

These results are consistent with the theory in [8] that a rather long stochastic bit stream

is required to achieve the same RMSE. The necessary stochastic bit stream length is found

to be L = 22Nb+1 (Nb is the binary bit resolution) due to the intrinsic fluctuation errors and

42

Figure 3.9: Magnitude responses of 13-bit stochastic HWA-based FIR filter without and
with performance matching (PMM = 512).

the SNR decrease caused by multiple stages [8] and [9]. Such a long stochastic sequence

means a relatively long computing time.

However, a shorter sequence length can be used for the HWA-based stochastic filter to

obtain a degraded but possibly still acceptable performance. For example, if the PMM is

32 instead of 512, the SA becomes -42.3512 dB and the PR is 0.0593 dB (see Figure 3.11).

However, the time and energy per computed output is reduced to only 1/16 of the previous

result. Similarly, the MWA-based stochastic FIR filter also benefits from the property of

graceful degradation in performance (see Figure 3.12). In contrast, an 11-bit conventional

binary implementation of the filter shows similarly degraded performances with an SA of

-45.5820 dB and a PR of 0.0517 dB (see Figure 3.13), however with very little saving in

energy consumption. This is discussed in more detail next.

3.4 Simulation Results

For hardware performance comparison, the Synopsys Design Compiler [26] was used to

synthesize a high-level design in VHDL into a standard cell ASIC design. Metrics such as

silicon area, power consumption and delay were obtained.

The FIR filters specified in Table 3.1 were simulated for various resolutions from 3 bits to

16 bits. In Table 3.4, the circuit performance is compared with respect to silicon area, power

consumption and delay. Although the core of the stochastic circuit is implemented using

XNOR gates and multiplexers as adders and multipliers, the interfacing circuits require a

relatively large number of SNGs and counters, especially for FIR filters with a large number

of taps. The hardware cost of binary circuits grows faster than that of the stochastic circuits,

43

Figure 3.10: Magnitude responses of 13-bit stochastic MWA-based FIR filter without and
with performance matching (PMM = 512).

Figure 3.11: Magnitude responses of lower-quality 11-bit conventional binary FIR filters.

so for a larger resolution, the stochastic circuits become increasingly advantageous over a

binary design. The auxiliary circuits such as the SNGs and counters, however, make this

advantage of stochastic circuits less significant. Although stochastic logic gates such as

multiplexers and XNOR gates are inexpensive, the auxiliary circuits used for conversions

can be costly in terms of silicon area and power. In fact, in a 12-bit HWA-based stochastic

FIR filter, it has been found that 80.3% of the silicon area comes from the stochastic number

generators and counters.

44

Figure 3.12: Magnitude responses of lower-quality 13-bit stochastic HWA-based FIR filters
with PMM = 32.

Figure 3.13: Magnitude responses of lower-quality 13-bit stochastic MWA-based FIR filters
with PMM = 32.

Note that both the binary and stochastic circuits have been optimized for maximum

throughput by adding pipeline registers as determined by the Synopsys synthesis tool. The

area could be over-estimated for this reason. Long latency has been a major challenge

for stochastic circuits. Adopting a faster clock is a potential way to reduce this latency.

With the help of timing analysis, the clock can be pushed to the limit according to the

45

slack time. The results are shown in Table 3.4. The required stochastic sequence length is

given by 2Nb · PMM , where Nb (Nb = 3, 4, ..., 16) is the binary resolution and PMM is the

performance matching multiplier. The reported power consumptions are estimated at the

fastest clocks for each of the resolutions.

There are techniques that discussed other possibilities of avoiding the auxiliary circuits

such as SNGs. For example, the authors in [27] proposed to generate random bits from

analog signals using sigma-delta modulation. We therefore decided to present the circuit

performance when auxiliary circuits are excluded. Only the core of the stochastic circuits

is considered without the auxiliary circuits such as SNGs and counters. Area, power and

minimum clock period results are reported in Table 3.3. The core of the CWA-based and

MWA-based circuits for the 267-tap FIR filter does not change for various bit resolutions.

The HWA-based implementation becomes more complex as the bit resolution increases.

This is because the HWA-based structure depends on the coefficients of the filter. In Table

3.3, it can be seen that the stochastic circuits use less hardware area and consume less

power compared to the conventional binary implementation as expected. The advantage of

stochastic circuits becomes more significant as the bit resolution increases.

Table 3.3: Comparison of hardware cost, power consumption and minimum clock period for
conventional binary (CB), CWA-based, MWA-based and HWA-based stochastic FIR filters
without any auxiliary circuits such as SNGs and counters.

Nb

(Bits)
Area (um2) Power (mW) Min Clock Period (ps)

CB CWA MWA HWA CB CWA MWA HWA CB CWA MWA HWA

3 12757 8719 8747 2565 24.24 15.7 15.5 4 390 220 210 170
4 21262 8719 8747 3096 35.5 15.7 15.5 5.8 410 220 210 180
5 31893 8719 8747 3749 47.86 15.7 15.5 6.6 420 220 210 180
6 44650 8719 8747 4399 61.22 15.7 15.5 7.5 440 220 210 180
7 59533 8719 8747 4931 75.49 15.7 15.5 9.8 470 220 210 200
8 76543 8719 8747 5461 90.59 15.7 15.5 11.3 490 220 210 200
9 95679 8719 8747 5980 106.49 15.7 15.5 12.9 490 220 210 210
10 116943 8719 8747 6620 123.12 15.7 15.5 14.4 500 220 210 210
11 140330 8719 8747 7287 140.45 15.7 15.5 15.7 510 220 210 210
12 165843 8719 8747 8669 138.45 15.7 15.5 17 540 220 210 220
13 193482 8719 8747 8947 158.45 15.7 15.5 18.1 550 220 210 220
14 223269 8719 8747 9602 177.1 15.7 15.5 19.8 570 220 210 230
15 255141 8719 8747 10155 196.36 15.7 15.5 20.8 590 220 210 230
16 289160 8719 8747 10964 226.64 15.7 15.5 21.3 640 220 210 230

It can be seen that the stochastic circuits are more compact and they consume less

energy per clock cycle than conventional implementations. However, they suffer from the

long latency caused by the required stochastic sequences, which makes the total EPO less

competitive. EPO is obtained as the product of power and the time required for performing

one operation. TPA is further considered as the number of operations per circuit area in

a unit time. When computing the TPA and the EPO, the stochastic FIR filter must work

as effectively as the binary conventional FIR filter. The effectiveness is measured using

46

the performance metrics PR and SA in Table 3.2, so the sequence lengths in Table 3.2

must be used, which makes the results even less competitive at high resolutions. In fact,

the stochastic approach is no longer competitive in terms of TPA and EPO when long

sequences have to be used in a stochastic implementation.

Table 3.4: Comparison of hardware cost, power consumption and minimum clock period
for conventional binary and HWA-based stochastic FIR filters.

R (Bits)

Area () Power (mW) Min Clock Period (ps)

CB CWA MWA HWA CB CWA MWA HWA CB CWA MWA HWA

3 12757 14944 12972 12855 24.24 20.35 19.89 19.82 390 370 310 340

4 21262 15415 15815 15525 35.5 29.79 29.35 29.05 410 370 310 350

5 31893 21023 18948 18752 47.86 40.17 38.21 38.02 420 400 320 360

6 44650 26841 22331 21998 61.22 51.39 47.56 47.96 440 400 320 360

7 59533 27989 24801 24710 75.49 63.36 59.31 59.06 470 410 340 390

8 76543 27690 27782 27410 90.59 76.04 71.68 71.55 490 410 360 400

9 95679 33545 30796 29986 106.49 89.38 84.82 84.66 490 420 380 410

10 116943 36248 33655 33122 123.12 103.3 98.05 97.23 500 430 380 410

11 140330 38343 36690 36510 140.45 117.9 109.2 109 510 470 390 420

12 165843 44999 43761 43536 138.45 133.1 127.5 125.2 540 470 400 440

13 193482 46574 45921 44910 158.45 148.7 141.5 140.7 550 470 400 440

14 223269 50162 48774 48067 177.1 164.8 159.8 159.2 570 490 410 450

15 255141 53746 51991 50829 196.36 181.5 176.1 174.8 590 490 420 460

16 289160 57322 55039 54898 226.64 198.6 192.8 189.6 640 500 440 460

When the auxiliary circuits, such as stochastic number generators and counters, are

shared in a large circuit, their cost may be acceptably small compared to the core stochastic

circuit. As the two proposed stochastic designs have similar performance, the stochastic

HWA-based circuit is used to compare with the conventional binary circuit. Figures 3.14

and 3.15 show plots of EPO and TPA, respectively, for the binary and stochastic HWA-

based circuits (with and without the auxiliary circuits). For stochastic implementations,

the sequence length is the factor that dominates the overall circuit performance in terms of

TPA and EPO. As the required sequence lengths are the same for both the HWA-based and

MWA-based implementations, the circuit performances of the two designs are also similar.

Therefore only the TPA and EPO for the stochastic HWA-based circuit are shown. The y-

axes in both plots are the base-10 logarithms of the original metrics. The x-axes are the bit

resolutions from 3 bits to 16 bits. The two figures show that the stochastic approach is not

competitive in terms of the EPO and TPA. The higher the resolution, the less competitive

the stochastic implementation becomes. This is caused by the required sequence length,

which grows exponentially with the bit resolution. When the auxiliary circuits are not

considered, the stochastic circuit shows a better performance. In particular, it performs

better in terms of the TPA than the binary design for resolutions below 5 bits.

Although the stochastic designs suffer from long latencies, their performance degrades

gracefully as the energy is reduced. Take the 13-bit designs as an example. As shown in

Table 3.5, a lower-quality HWA-based stochastic filter is implemented using 262,144 bits

(compared to 4,194,304 bits required by an HWA-based filter that matches the performance

47

Figure 3.14: EPO comparison: Stochastic HWA design (with/without auxiliary circuits)
and the binary design.

of a 13-bit conventional binary filter). An 11-bit conventional binary filter shows similarly

degraded performance. The SA of both the lower-quality filters is 6 dB higher than that

of the good-quality filters. As the HWA-based stochastic filter only requires 1/16 of the

original sequence length, the EPO is just 6.25% of that for the good-quality HWA-based

filter. Similarly, the EPO of the lower quality MWA-based stochastic filter is only 6.32%

of that for the good-quality MWA-based filter. However, the 11-bit binary filter consumes

82.19% of the energy per operation compared to the 13-bit binary filter. The EPOs of these

lower-quality filters are shown in Table 3.5.

Table 3.5: Energy savings with lower-quality implementations for conventional binary (CB),
MWA-based and HWA-based FIR filters.

Implementations CB MWA HWA

EPO of Higher Quality Filter (pJ) 87.15 22397583360 253700027
EPO of Lower Quality Filter (pJ) 71.63 1415848960 15856251

Energy Saving (%) 17.81 93.68 93.75

3.5 Error Analysis

3.5.1 Error Analysis for Conventional Binary FIR Filters

A statistical model is developed to evaluate error accumulation and propagation in the

computation. Because an FIR filter is a linear system, errors added to the FIR filters

are propagated to the next arithmetic operation with similar characteristics. To start the

48

Figure 3.15: TPA comparison: Stochastic HWA design (with/without auxiliary circuits)
and the binary design.

analysis, the original/theoretical FIR filter in 3.1 is simplified to

Y =

Nf−1∑
i=0

HiXi, (3.12)

where Hi and Xi are numbers with infinite precision. By quantization, the actual result Y ′

is biased from the expected result Y , i.e.,

Y ′ =

Nf−1∑
i=0

(Hi + eHi)(Xi + eXi) =

Nf−1∑
i=0

(HiXi +XieHi +HieXi + eHieXi)

= Y +

Nf−1∑
i=0

(XieHi +HieXi + eHieXi),

(3.13)

where eHi and eXi are quantization errors of the coefficient Hi and the input Xi. Both eHi

and eXi can be modeled by eq in 2.13. To calculate the mean of the computational error,

E(Y ′), i.e.,

E(Y ′) = E(Y) + E(

Nf−1∑
i=0

(XieHi +HieXi + eHieXi)). (3.14)

We first determine the mean of the cross product term eHieXi. Due to [24], if eHi and eXi

are independent real-valued continuous random variables with finite expected values, then

E(eHieXi) = E (eHi)E(eXi) = 0. (3.15)

49

Taking into consideration Equations 2.17, 3.14 and 3.15, we obtain

E(Y ′)− E(Y) =

Nf−1∑
i=0

(XiE(eHi) +HiE(eXi) + E(eHieXi)) = 0. (3.16)

By definition and Equation 3.16, the variance of the output Y is

V ar(Y ′) = E[(Y ′ − E(Y ′))2] = E[(Y ′ − Y)2]. (3.17)

On the other hand, the variance of Y ′ is also given by

V ar
(
Y ′
)

=

Nf−1∑
i=0

(
X2
i V ar(eHi) +H2

i V ar(eXi) + V ar(eHieXi)
)

=

Nf−1∑
i=0

(
X2
i σ

2
q +H2

i σ
2
q + V ar(eHieXi)

)
.

(3.18)

Because V ar(eHieXi) is of a higher order than the other terms in Equation 3.18, we have

max {V ar(eHieXi)} =
∆4

16
�

Nf−1∑
i=0

σ2q
(
X2
i +H2

i

)
=

Nf−1∑
i=0

∆2

12

(
X2
i +H2

i

)
. (3.19)

Therefore, V ar(eHieXi) in 3.18 can be ignored and by Equation 2.18 we obtain

V ar(Y ′) ≈
Nf−1∑
i=0

σ2q (X
2
i +H2

i) =
∆2

12

Nf−1∑
i=0

(X2
i +H2

i). (3.20)

From Equation 3.20, it can be seen that the quantization error is amplified by a multiplica-

tive factor. Then, ec is defined as the overall error for the conventional binary filter, i.e.,

ec = |Y ′ − Y |. (3.21)

By combining Equations 3.18, 3.20 and 3.21, we obtain the mean of the squared error as

E
(
e2c
)

= E
((
Y ′ − Y

)2)
= V ar

(
Y ′
)

=
∆2

12

Nf−1∑
i=0

(
X2
i +H2

i

)
=

1

12 · 22Nb

Nf−1∑
i=0

(
X2
i +H2

i

)
. (3.22)

By Equation 3.22, ec can be estimated as

ec = |Y ′ − Y | ≈

√√√√∆2

12

Nf−1∑
i=0

(
X2
i +H2

i

)

=
∆

2
√

3

√√√√Nf−1∑
i=0

(
X2
i +H2

i

)
=

√
3

3 · 2Nb+1

√√√√Nf−1∑
i=0

(
X2
i +H2

i

)
.

(3.23)

50

3.5.2 Error Analysis for Stochastic FIR Filters

Quantization effect in stochastic computing

The propagation effect of quantization errors in stochastic computing is similar to that in

conventional FIR filters. The effect of quantization errors in stochastic computing can be

analyzed by evaluating the output P ′Y . If PY is the correct output without errors, we have

PY =

Nf−1∑
i=0

PHiPXi. (3.24)

We further include the quantization effect by adding errors PeHi
and PeXi

to input PXi,

the coefficient PHi and the output PY , respectively, where i = 0, 1, ..., Nf − 1. Hence the

output P ′Y can be calculated by

PY ′ =

Nf−1∑
i=0

(PHi + PeHi
)(PXi + PeXi

)

=

Nf−1∑
i=0

(PHiPXi + PXiPeHi
+ PHiPeXi

+ PeHi
PeXi

)

= PY +

Nf−1∑
i=0

(PXiPeHi
+ PHiPeXi

+ PeHi
PeXi

).

(3.25)

PeHi
and PeXi

are independent quantization errors that can be modeled by eqs with the

properties in Equations 2.32, 2.33 and 2.34. The mean of the stochastic output P ′Y is thus

given by

E (PY ′) = E (PY) + E

Nf−1∑
i=0

(
PXiPeHi

+ PHiPeXi
+ PeHi

PeXi

) = E (PY) . (3.26)

The variance of the output PY ′ can be obtained from Equation 3.25 as

V ar (PY ′) =

Nf−1∑
i=0

(
P 2
XiV ar(PeHi

) + P 2
HiV ar(PeXi

) + V ar(PeHi
PeXi

)
)

=

Nf−1∑
i=0

(
P 2
Xi + P 2

Hi)σ
2
qs + V ar(PeHi

PeXi
)
)
.

(3.27)

V ar(PeHi
PeXi

) in Equation 3.27 can be ignored due to the fact that

max
{
V ar

(
PeHi

PeXi

)}
=
∆4
s

16
�

Nf−1∑
i=0

σ2qs
(
P 2
Xi + P 2

Hi

)
=

Nf−1∑
i=0

∆2
s

12

(
P 2
Xi + P 2

Hi

)
. (3.28)

51

Therefore, Equation 3.27 becomes

V ar (PY ′) ≈ σ2qs

Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

) =
∆2
s

12

Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

) (3.29)

By definition and 3.26, we have

V ar (PY ′) = E
[
(PY ′ − E (PY ′))

2
]

= E
[
(PY ′ − PY)2

]
. (3.30)

By combining Equations 3.29 and 3.30, we get

E
[
(PY ′ − PY)2

]
=

∆2
s

12
[

Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

)
]. (3.31)

The overall quantization error eoq caused by the quantization effect can be defined as the

absolute difference between the calculated result P ′Y and the accurate result PY , i.e.,

eoq = |P ′Y − PY |. (3.32)

From Equations 3.31 and 3.32, the mean of the squared error eoq
2 can be evaluated as

E
[
e2oq
]

= E
[
(PY ′ − PY)2

]
=

∆2
s

12

Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

) . (3.33)

Because of Equations 2.31 and 3.33, eoq can be approximated as

eoq ≈

√√√√√∆2
s

12

Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

) =

√
3

6Ns

√√√√Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

)
(3.34)

Inaccuracies in the computation of stochastic FIR filters

As discussed in Chapter 2, the stochastic computation can suffer from both quantization

errors and fluctuation errors. The overall error eos in a stochastic filter is defined as the

sum of the quantization error and the random fluctuation error, i.e.,

eos = eoq + efs. (3.35)

Therefore, eos can be further written as the sum of eoq in Equation 3.34 and efs in Equation

2.41, i.e.

eos =

√
PY (1− PY)

Ns
+

√
3

6Ns

√√√√Nf−1∑
i=0

(
P 2
Xi + P 2

Hi

)
. (3.36)

It can be seen that the result in Equation 3.36 is similar to the Equation 2.54 except the

coefficients of the two terms. This is because we applied the same error models to analyze

the stochastic implementations. The first term is dominant which estimates the random

fluctuation error.

52

Stochastic Sequence Length Estimate by Error Analysis

The stochastic sequence length is an important parameter as it determines both the com-

putational accuracy and the circuit performance. To determine the sequence length for

stochastic FIR filters, Equation 3.23 is considered to evaluate the overall error of the conven-

tional binary circuit. For the stochastic circuit, the overall stochastic error eos in Equation

3.36 is used as an approximation of the stochastic error. To understand the relationship

between bit resolution Nb and sequence length Ns, let eos = ec, i.e.,√
PY (1− PY)

Ns
+

√
3

6Ns

√√√√Nf−1∑
i=0

(
P 2
Xi

+ P 2
Hi

)
=

√
3

3 · 2Nb+1

√√√√Nf−1∑
i=0

(
X2
i +H2

i

)
. (3.37)

Hence the stochastic sequence length Ns is approximately

Ns ≈
12PY (1− PY)
Nf−1∑
i=0

(
X2
i +H2

i

) · 22Nb . (3.38)

Let α represent the coefficient 12PY (1−PY)
Nf−1∑
i=0

(X2
i +H

2
i)

in Equation 3.38. We then have

Ns ≈ α · 22Nb . (3.39)

Because α is a constant coefficient, we can use the big O notation to estimate the relationship

between the necessary stochastic sequence length for a stochastic FIR filter to match the

performance of the conventional binary FIR filter. Therefore, Equation 3.39 can be written

as

Ns = O
(
22Nb

)
. (3.40)

Equation 3.40 shows that the sequence length Ns grows exponentially as the binary

resolution Nb increases. This is consistent with the stochastic sequences required in our

experiments (see Table 3.2). Clearly, this fact has an adverse effect to any stochastic imple-

mentation. However, if a degraded performance in accuracy is acceptable, an exponential

reduction would result in the required sequence length. This reduction in sequence length

subsequently means a substantial reduction in energy consumption, thus achieving a signifi-

cant improvement in performance metrics such as the EPO. For example, if the performance

of a stochastic filter equivalent to that of an 8-bit binary filter is acceptable for an ideal

12-bit filter, the required sequence length, as per Equation 3.38, would be only 1/256 of

the length required for matching the performance of the 12-bit filter. This would reduce

the EPO of the stochastic circuit by a factor of 255/256. However, the conventional binary

implementation would only result in a much smaller energy reduction, as shown in Table

3.5 (albeit for a different example).

53

3.6 Fault Tolerance Analysis and Simulation

Although errors are inevitable in the quantization process or caused by the inherent random

fluctuation, stochastic computing has been known to be intrinsically fault-tolerant. In

this section,the fault tolerance of both the conventional binary and stochastic designs is

considered by taking into account soft errors.

3.6.1 Fault-tolerance Analysis

We first discuss the different behaviors of the conventional binary and stochastic circuits

using the bit-flip error model in [10] and [18]. Consider a normalized Nb-bit binary number

with value B:

B = x1 · 2−1 + x2 · 2−2 + ...+ xNb
· 2−Nb , (3.41)

where xi is the bit with weight 2−i (i = 0, 1, ..., Nb − 1). Let Ri be a random variable to

indicate if an error occurs or not, i.e., if Ri is 1, an error occurs, so bit i flips. Further let ε

be the error probability, i.e.,

P (Ri = 1) = ε. (3.42)

Affected by possible bit flips, the normalized binary number becomes

B′ =

Nb∑
i=1

x′i · 2−i =

Nb∑
i=1

[Ri (1− xi) + xi (1−Ri)] · 2−i. (3.43)

The error for the conventional binary approach is defined as

e(i)c = B′ −B, (3.44)

where a superscript (i) is used to indicate that e
(i)
c is to denote the error caused by error

injection. It has been shown in [10] that the error e
(i)
c has the following mean value and

variance:

E[e(i)c] ≈ (1− 2B)ε; (3.45)

V ar[e(i)c] ≈ 1

3
(1− ε)ε. (3.46)

Since the stochastic implementation does not necessarily use the minimum length for an Nb-

bit binary number, the mean value and variance for the stochastic method are re-computed

for comparison. The stochastic number S is the encoded value of the Nb-bit binary number

B. As a PMM is used, the actual sequence length is Ns = PMM ·2Nb . For implementation

convenience usually PMM is also a number in the form of 2N
′
b (N ′b = 0, 1, 2, ...). Hence the

Ns-bit stochastic sequence can be generated using a (Nb +N ′b)-bit LFSR. A stochastic bit

stream {y1, y2, ..., yNs} is produced to encode a normalized Nb-bit binary number in [0, 1].

Therefore the stochastic number S can be calculated by

S =
1

Ns

N∑
i=1

yi =
1

PMM · 2Nb

Ns∑
i=1

yi, (3.47)

54

where Ns is the stochastic sequence length.

For a stochastic circuit, Si (i = 1, 2, ..., Ns) is defined as a random variable to indicate

if an error occurs or not in a stochastic bit stream, i.e., if Si is 1, an error occurs, so bit i

flips. The error injection rate is also considered to be ε, i.e.,

P (Si = 1) = ε. (3.48)

S1, S2, ..., SNs are statistically independent, so

E[Si] = ε. (3.49)

V ar[Si] = (1− ε)ε. (3.50)

A bit affected by a possible error is denoted by y′i, thus

y′i = Si (1− xi) + xi (1− Si) . (3.51)

The stochastic number then becomes

S′ =
1

Ns

N∑
i=1

y
′
i =

1

Ns

Ns∑
i=1

[Si (1− yi) + yi (1− Si)]. (3.52)

Hence, the stochastic error e
(i)
s is determined by

e(i)s = S′ − S =
1

Ns

Ns∑
i=1

Si (1− 2yi) . (3.53)

By Equations 3.47, 3.49 and 3.53, the mean of error e
(i)
s is given by

E [Si] =
1

PMM · 2Nb

Ns∑
i=1

(1− 2yi) ε = (1− 2S) ε. (3.54)

With Equations 3.50 and 3.53, the variance of error e
(i)
s is obtained as

V ar [Si] =
1

N2
s

Ns∑
i=1

(1− 2yi)
2 (1− ε) ε =

1

PMM · 2Nb
(1− ε) ε. (3.55)

To investigate how injected errors affect the function to implement FIR filters, it is assumed

that the injected errors e
(i)
c and e

(i)
s follow additive Gaussian distributions.

For the conventional binary FIR filter defined in Equation 3.12 without injected errors,

the erroneous output Y (i) is given by

Y (i) =

Nf−1∑
i=0

(Hi + e
(i)
Hi)(Xi + e

(i)
Xi), (3.56)

55

where e
(i)
Hi and e

(i)
Xi are independent errors modeled by e

(i)
oc with the mean and variance given

in Equations 3.45 and 3.46, respectively. The overall error due to error injection for the

conventional binary FIR filters e
(i)
oc is then

e(i)oc = Y (i) − Y. (3.57)

When the error injection rate is small, the mean and variance of the overall error e
(i)
oc are

given by (approximately)

E
[
e(i)oc

]
≈

Nf−1∑
i=0

[(Hi +Xi − 4HiXi)ε+ (1− 2Hi)(1− 2Xi)ε
2]; (3.58)

V ar
[
e(i)oc

]
≈ ε

9

Nf−1∑
i=0

{
3
(
H2
i +X2

i

)
+ [1− 3

(
H2
i +X2

i

)
]ε
}
. (3.59)

How Equations 3.58 and 3.59 are derived is shown in detail in the appendix. Similarly, the

overall error due to error injection for the stochastic FIR filters e
(i)
oc is given by

e(i)os = PY (i) − PY . (3.60)

Its mean and variance are given by

E
[
e(i)os

]
=

Nf−1∑
i=0

[(PHi + PXi − 4PHiPXi)ε+ (1− 2PHi)(1− 2PXi)ε
2]; (3.61)

V ar
[
e(i)os

]
≈ ε

N2
s

Nf−1∑
i=0

{
Ns

(
H2
i +X2

i

)
+
[
1−Ns

(
P 2
Xi + P 2

Hi

)]
ε
}
. (3.62)

E[e
(i)
oc] and E[e

(i)
os] in Equations 3.58 and 3.61 show that the mean output error depends on

both the inputs and the coefficients. The mean of the stochastic error E[e
(i)
os] is identical to

the mean of the conventional binary error E[e
(i)
oc] for the same filter function (thus with the

same inputs and coefficients).

To compare the variances of the binary error and the stochastic error, all the inputs and

coefficients in Equations 3.59 and 3.62 are assumed to be 0.5. We then obtain

V ar
[
e(i)oc

]
≈

5Nf

18
ε−

Nf

6
ε2, (3.63)

V ar
[
e(i)os

]
≈
(
Nf

N2
s

+
Nf

2Ns

)
ε−

Nf

2Ns
ε2. (3.64)

For any Ns ≥ 3, the variances in Equations 3.63 and 3.64 satisfy

V ar
[
e(i)oc

]
> V ar

[
e(i)os

]
. (3.65)

56

Due to the factor of Ns, the stochastic method results in a smaller variance. The variation

of the error for the stochastic implementation e
(i)
os is inversely proportional to the sequence

length squared, Ns
2. When using Ns = PMM · 2Nb (PMM = 20, 21, 22, ...) bits in the

stochastic encoding of an Nb-bit binary number, the variance of the stochastic error can be

reduced by increasing the PMM. In the conventional binary approach, however, it is more

difficult to obtain a smaller variance as it lacks the tuning parameter PMM in the stochastic

approach.

3.6.2 Fault-tolerance Simulation

Simulations are further performed to evaluate the reliability of the binary and stochastic

circuits. To measure the reliability of a design, the average absolute error (AAE) is defined

as

AAE =
1

M
· 1

22Nb+4

M−1∑
i=0

|Xi −X ′i|, (3.66)

where Xi and X ′i are the expected correct output and the actual output, respectively, M

is the number of simulations, and the factor 1
22Nb+4 is taken as a constant coefficient so

that the AAEs are between 0 and 1 (Nb = 13 here). The AAE indicates how seriously the

injected error affects the correct output.

The AAE for the conventional binary 13-bit low-pass FIR filter with 267 taps is inves-

tigated, as well as the stochastic MWA design and HWA design using a sequence length of

4,194,304 bits (from Table 3.2) under various injected error rates. In addition, redundant

copies of the binary circuit can be used to achieve a better fault tolerance, for example,

in the form of TMR. The TMR implementations of the binary circuit with unreliable and

fault-free voters are further considered. The stochastic computational models in [18] are

used to facilitate our fault-tolerance analysis. XOR gates are used to inject errors into

the circuit. The majority voters in the TMR circuits are considered bitwise rather than

word-wise.

Table 3.6 shows the comparison of AAEs obtained from 200 simulations with a sequence

length of 100,000 bits. The results with error injection are compared with those without

error injection, thus the AAEs for the stochastic circuits are 0 when the injected error

rate is 0. It can be seen that the AAE increases as the injected error rate increases.

The conventional binary circuit is not as fault-tolerant as the stochastic circuits, which is

consistent with the analysis. When one bit in a binary circuit flips, it can cause a serious

error if the erroneous bit is among the most significant bit (MSB)s. However, all bits in a

stochastic sequence have the same weight, so the effect of a single bit flip is insignificant in

a relatively long stochastic sequence. The binary TMR circuit with unreliable voters has

an improved reliability, but it is still not as reliable as the stochastic approaches. However,

the binary TMR circuit with reliable voters becomes more fault-tolerant than the stochastic

circuits.

57

Table 3.6: Average absolute error of the stochastic and binary circuits with and without
redundancy at various injected error rates. The results are obtained from 200 simulations
using sequences of 100,000 bits.

Injected Error Rate (%)

Average Absolute Error (%)

MWA HWA Binary
Binary TMR

Error-free Voter Unreliable Voter

0 0 0 0 0 0
0.1 0.063 0.065 1.507 0.004 0.126
0.2 0.121 0.136 2.325 0.009 0.225
0.5 0.339 0.326 3.29 0.035 0.581
1 0.592 0.574 5.209 0.111 1.203
2 1.476 1.226 6.368 0.198 2.382
5 3.009 2.948 10.942 0.337 5.794
10 5.472 5.696 21.477 1.123 12.05

3.7 Summary

In this chapter, a stochastic HWA design and a stochastic MWA design are proposed for

implementing FIR filters. The HWA design takes advantage of simply repeating the input

wires of a multiplexer to implement the weights of different data inputs, while the MWA

design uses multiplexers to generate the required filter coefficients or weights. The pro-

posed stochastic designs show an improved performance, a smaller circuit area and lower

power consumption, compared with the conventional stochastic design. The MWA design

with multiple stages is not as competitive as the HWA design, but it can be more easily

reconfigured by re-programming the weight generators. This task is not easy for the HWA

design that uses repeated inputs to implement the filter coefficients.

Compared to binary FIR filter circuits, the proposed stochastic designs have a significant

advantage in circuit area, especially at higher resolutions. With respect to the performance

metrics of throughput per area and energy per operation, however, the stochastic design does

not show any advantages over its binary counterpart. This is primarily due to the significant

latency in stochastic computing because long stochastic sequences must be used to achieve

the same filtering performance as a binary circuit. With a shorter stochastic sequence,

however, the stochastic circuit shows a graceful degradation in performance compared to

the binary design. The features of a stochastic circuit are investigated in detail by both

analysis and simulation.

A binary TMR circuit using error-free voters is shown to be more reliable than the

stochastic design. Due to its intrinsic fault tolerance, however, the proposed stochastic

design shows significant advantages in reliability over the conventional binary design and

its TMR implementation when the voters are subject to errors. These results suggested

that other SOP based circuits could also benefit from the stochastic implementation.

58

Chapter 4

Stochastic Circuit Design and
Evaluation of Vector Quantization

4.1 Background

Vector quantization based compression algorithms are useful in that the amount of stored

and transmitted data can be reduced with a readily adjusted trade-off between compression

ratio and implementation size. These features are important in multimedia processing and

communications, such as for voice and image compression. VQ is a lossy data compression

method, and the loss in the original information must be kept as low as possible. In VQ

information loss can be reduced by simply using a larger suitably designed codebook. The

resulting extra codebook search time can be minimized by using more parallel computational

elements [28].

VQ is a useful method in speech recognition. In [29], VQ is employed to characterize a

speaker’s voice. The minimum-distance entry in a codebook of speakers is used to recognize

the identity of an arbitrary speaker. VQ also has applications in image compression coding.

Several major issues were discussed in [20] such as the edge degradation issue. One of the

potential solutions is to use a dynamic codebook whose contents can be updated so that

the codevectors can match the partial image to be encoded.

In this chapter, the possibility of using stochastic computing is explored to realize VQ.

To implement VQ based on the L1-norm and squared L2-norm errors, a few basic computa-

tional elements are required such as multiplication and addition. For other error measures

such as the Lp-norm or pth-law (p ≥ 3), the Bernstein polynomial method is introduced to

efficiently implement high-order polynomials. Stochastic computing has feature that it is

able to conveniently provide progressive quality. Typically, a longer sequence offers greater

representational accuracy. In the VQ compression algorithm, shorter sequences are used to

provide faster computation but with less accurate results. To measure important perfor-

mance characteristics, both stochastic and binary VQ designs are implemented. Starting

with the requirements of a vector quantization implementation, stochastic computing using

both combinational and sequential logic is introduced. Synthesis reports from the Synop-

59

sys design compiler (version:) are discussed as well as the simulation results in an image

processing case study. The competitive sequence lengths are determined and the circuit

performances are compared.

4.2 Methodology

VQ is a lossy digital compression technique. First the source data is partitioned into equal-

length vectors [30]. Each vector is then replaced with the index of the closest matching

codevector that is contained in a given codebook. This encoding process is shown in Figure

4.1(a). Note that each input vector can be represented more compactly using the index of

the closest codevector. The indexes are converted back to the corresponding codevectors

during decompression, which is the decoding process shown in Figure 4.1(b). The principle

in generating a codebook of a given size is to minimize the expected error distances to the

input vectors over the expected input data domain. The size of the codebook (i.e., number

of codevectors) determines the trade-off between the accuracy of the representation and the

transmission bit rate of codevector indexes.

Figure 4.1: The block diagram for the (a) encoding and (b) decoding process in Vector
Quantization.

4.2.1 Codebook Generation

In 1980’s, Linde, Buzo and Gray (LBG) proposed a VQ codebook generation algorithm [28].

Using the generated codebook, source or input vectors can be encoded based on a training

sequence. The use of a training sequence makes it possible to generate a codebook with

reduced computational cost. Although other efficient codebook generation approaches have

been developed, the LBG algorithm was selected to generate our codebooks because of its

efficiency. The VQ encoding process is as follows:

1) A set of Nx source vectors {X1,X2, ...,XNx} is to be compressed.

2) A codebook with Nc codevectors generated previously as

C = {C1,C2, ...,CNc}. (4.1)

3) The codevector Ci (i = 1, 2, ..., Nc) in the codebook that is the nearest to each of the

source vectors based on errors Ei (i = 1, 2, ..., Nc) must be found. If function f maps the

60

source vector X to its nearest codevector Ci, we have

f(X) = Ci, if Ei ≤ E′i, ∀i′ = 1, 2, ...,Nc. (4.2)

By L1 norm, squared L2 norm and pth-law (p ≥ 3), Ei is defined in Equations 4.3, 4.4 and

4.5, respectively:

L1 norm : Ei = |X−Ci|, (4.3)

SquaredL2 norm : Ei = |X−Ci|2, (4.4)

pth − law : Ei = |X−Ci|p, (4.5)

where i = 1, 2, ..., Nc are the indexes of the codevectors.

4) Compression is obtained by mapping the Nx source vectors to the Nx corresponding

indexes of the closest codevectors.

5) A compressed approximation to the Nx source vectors is constructed from the com-

pressed representation by replacing the indexes with the corresponding codevectors.

4.2.2 Error Calculation in the Encoding Process

As shown in Figure 4.1, the pre-defined codebook is used to encode every source vector X.

The distance between X and each of the codevectors in the codebook must be calculated.

The index of the codevector that is the closest to X is determined and then used to encode

X. A source vector X is consisted of Ne elements as follows.

X = {X0, X1, ..., XNe−1}. (4.6)

There are two common ways to define the required distance metric. The L1-norm and

squared error distance calculation formulas are shown below in Equations 4.7 and 4.8. Let

Nc be the number of codevectors in the codebook, or the number of possible error distances

that must be compared. Ne is the number of elements in a vector (any codevector or input

vector X). Index i identifies the different codebook entries and hence error distances and

index j identifies the elements in the vectors.

L1 norm : Ei =

Ne−1∑
j=0

|Xj − Cij |, i = 1, 2, . . . , Nc. (4.7)

SquaredL2 norm : Ei =

Ne−1∑
j=0

(Xj − Cij)2, i = 1, 2, . . . , Nc. (4.8)

By expanding the squared error in Equation 4.8, it turns out to be

Ei =

Ne−1∑
j=0

(Xj
2 − 2XjCij + Cij

2), i = 1, 2, . . . , Nc. (4.9)

61

As the input vector X is constant during the comparison (i.e.
Ne−1∑
j=0

X2
j does not change for

all the Nc codevectors), Xj
2 in Equation 4.9 can be ignored and only the other two terms

are needed in calculation. That is, we simply need to calculate and compare the result E′i
in Equation 4.10.

Ei =

Ne−1∑
j=0

(C2
ij − 2CijXj), i = 1, 2, . . . , Nc. (4.10)

The Lp-norm error and its pth power (or pth-law) error are also regular error measures and

they are defined as

Ei = (

Ne−1∑
j=0

|Xj − Cij |p)1/p, i = 1, 2, . . . , Nc, (4.11)

Ei =

Ne−1∑
j=0

|Xj − Cij |p, i = 1, 2, . . . , Nc, (4.12)

where p is an integer and p ≥ 3 [28]. The error measure in Equation 4.11 is more widely

used since it is a distance that satisfies the triangle inequality:

d (X,Y) + d(Y,Z) ≥ d(X,Z), for any Y. (4.13)

Here d(X,Y) is the distance between two vectors X and Y. This property makes it easy

to bound the overall error. However, f(x) = x1/p is a monotonic increasing function for

p ≥ 3. If two pth-law errors satisfy Ei ≥ Ej , then E
1/p
i ≥ E1/p

j , where E
1/p
i and E

1/p
j are the

Lp-norm errors in Equation 4.11. Errors measured by pth-law in Equation 4.12 are therefore

considered for computational convenience.

With the errors computed, the next step is to compare and find the minimum error

distance Emin using Equations 4.7, 4.10 and 4.12. If Ei = Emin, index i is then used as the

compressed encoding of the input vector X.

4.3 Proposed Vector Quantization Circuit Design

4.3.1 Overall System Architecture

The VQ system can be abstracted as in Figure 4.2. As an example for performance eval-

uation and comparison, consider an image of 300 pixels by 300 pixels. Each of the four-

by-four square blocks is considered a vector while the pixel values are the elements in the

vector. Figure 4.3 illustrates how the 16-element input vectors are formed. There are thus

300× 300/6 = 5625 four-by-four pixel blocks in this image. Suppose we have 256 codevec-

tors in the codebook. Both the binary and stochastic implementations of VQ use errors

calculated based on the L1 norm, squared L2 norm and pth-law in the system architecture

in Figure 4.7. In addition to the gates for error calculation and comparison, the total hard-

ware cost must also include memory cost because the iteratively updated errors are stored

in indexed arrays.

62

Figure 4.2: Data flow in vector quantization encoding process.

Figure 4.3: An input vector has 16 entries, from 1 to 16 in the left block, forming a macro-
pixel. In the right block, the array of 8× 8 pixels can be divided into 4 macro-pixels.

63

4.3.2 Polynomial Arithmetic Synthesized Using Bernstein Polynomials

Although various operations can be implemented by combinational and sequential digital

circuits, a general synthesis approach for stochastic logic is needed to implement an arbitrary

single-variable polynomial. In [7], this problem is solved by converting a polynomial to a

series of Bernstein basis polynomials. An encoder is needed to implement the Bernstein basis

polynomials. The coefficients are then associated with the corresponding basis polynomials

by a multiplexer.

To implement the absolute value of an arbitrary polynomial, we can follow a standard

design flow as below [7].

1) Convert the polynomial to a linear combination of Bernstein basis polynomials with

Bernstein coefficients. Suppose that there is an n-order polynomial

y =

∣∣∣∣∣
n∑
k=0

ak · xk
∣∣∣∣∣ . (4.14)

The n-order polynomial inside the absolute value operation in Equation 4.12 can be con-

verted into a Bernstein polynomial with (n+ 1) Bernstein basis functions, i.e.,

y =

∣∣∣∣∣
n∑
k=0

bk ·Bn,k

∣∣∣∣∣ , (4.15)

where bk (k = 0, 1, 2, ..., n) is a Bernstein coefficient, and Bn,k is a basis polynomials. They

can be calculated by

bk =
k∑
j=0

(
k
j

)
(
n
j

) · ak, (4.16)

Bn,k =

(
n
k

)
xk(1− x)n−k, (4.17)

where k = 0, 1, 2, ..., n.

2) Normalize the Bernstein coefficients so that they can be implemented using stochastic

logic. The input x and coefficients bk (k = 0, 1, 2, ..., n) are converted to stochastic sequences.

3) Properly assign input wires of a multiplexer for each basis polynomial and assign the

Bernstein coefficients with combined inputs. Here we take a 4-term Bernstein polynomial

as an example. We assume that the input x is a normalized positive number, which can

be converted using unipolar stochastic number generators (SNGu) as in Figure 2.7. The

Bernstein coefficient bk (k = 0, 1, 2, ..., n) is encoded as a bipolar stochastic sequences using

the bipolar stochastic number generator (SNGb). The polynomial can be written as

y =

∣∣∣∣b0(3
0

)
(1− x)3 + b1

(
3
1

)
x(1− x)2 + b2

(
3
2

)
x2 (1− x) + b3

(
3
3

)
x3
∣∣∣∣ . (4.18)

64

Figure 4.4: Architecture of the 4-term Bernstein polynomial defined in Equation 4.18 using
stochastic logic.

In Figure 4.4, the input x is encoded using three different unipolar SNGs as three

uncorrelated stochastic sequences which then become the three selecting signals of the 8-

input multiplexer. The data inputs of the multiplexer are indexed with binary numbers from

(000)2 to (111)2. The coefficient bk is then connected to the data inputs whose binary index

has k 1′s. For instance, data inputs indexed by (001)2, (010)2 and (100)2 are all connected

to coefficient b1 (see Figure 4.4). Therefore, the probability of selecting coefficient b1 as

the output of the multiplexer is

(
3
1

)
x(1− x)2. If this strategy is applied to the other

coefficients, the architecture in Figure 4.4 implements the Bernstein polynomial in Equation

4.18. The architecture in Figure 4.4 can be easily scaled for other problems by using larger

multiplexers. Generally, for the Bernstein polynomial with (n+ 1) terms in Equation 4.15,

a 2n-input multiplexer with combined data inputs is needed.

To implement the absolute value function at the output of the multiplexer, we take

advantage of the XOR gates shown in Figures 2.2 and 2.3. One of the inputs of the XOR

gate is the output of the multiplexer while the other one is a correlated bipolar stochastic

sequence encoding 0. Here, correlated sequences are referred to as two sequences that have

the maximum overlapped 1’s. Ideally, two correlated Ns-bit stochastic sequences S1 and S2

satisfy
Ns∑
i=1

|S1i − S2i| = |
Ns∑
i=1

S1i −
Ns∑
i=1

S2i|. (4.19)

S1i and S2i, being either 0 or 1, are the ith bits in the stochastic sequences S1 and S2,

respectively. To guarantee correlation, we use the same SNGs and the same initial seeds to

encode all of the Bernstein coefficients as well as 0, which is the second input of the XOR

65

gate. Output S(y) is thus the absolute value of the Bernstein polynomial and it can now

be treated as a unipolar stochastic sequence encoding numbers in the range between 0 and

1.

4.3.3 Detailed design for stochastic VQ

Stochastic VQ Implementation Using L1-norm Errors

In the L1-norm error calculation, Equation 4.7 needs to be implemented. In Figure 4.5, an

example is shown with 16 elements in a vector, i.e. Ne = 16. X[i] and H[i] represent the ith

element in the input vector and one of the Nc = 256 codevectors, respectively. Both X[i]

and H[i] are encoded as stochastic sequences from their previous 8-bit binary values for a

grey-scale image. This can be done using SNGs, as described in [19], and the computation

is based on stochastic unipolar representations. Therefore in Figure 4.5, the SNGu (see

Figure 2.7) is used to denote the unipolar (regular) stochastic number generators. S(Y)

is the stochastic output, which must be stored prior to being converted back to a binary

number at the final stage using a counter. In our stochastic VQ design, however, this

conversion is not needed as the final result of the encoding process is a binary index which

has been embedded in the stochastic sequences. The XOR gates are used to implement the

absolute subtractions in stochastic computing with correlated stochastic sequences, where

correlated sequences have the maximum overlap of 1’s [7]. This can be implemented by

sharing the same LFSR for SNGs at the inputs of the XOR gates. For the inputs of the

different XOR gates and selecting inputs of the multiplexer, however, we generate sequences

with different LFSRs and initial seeds for SNGs in order to reduce the correlation. Then

the results are added up by the 16-input multiplexer whose selecting signals Sel[0] to Sel[3]

are four independent stochastic sequences encoding 0.5.

256 copies of the circuit in Figure 4.5 are implemented, which is the L1-norm error

calculator, so that the 256 errors can be computed in parallel. The next step is to compare

the 256 errors with a tree-structured comparator to find the minimum one. Note that the

architecture in Figures 4.6 and 4.7 implements a 16-error comparison. The squares represent

the error calculators. The triangles represent the stochastic comparators implemented in

Figure 2.6. A stochastic comparator has two inputs and the smaller one of them is selected

as the output. To use this tree structure, it must be extended to a larger scale to compare

256 errors at one time. Meanwhile, all the indexes of the codevectors should be stored and

delivered so that the one with the minimum error can be identified.

Stochastic VQ Implementation Using L2-norm Errors

In the squared L2-norm error calculation, the function to be implemented is the square

function and multiplications shown in Equation 4.10. In Figure 4.8, an example is shown

where the number of elements in a vector is 16 (Ne = 16) using both traditional stochastic

arithmetic elements (i.e. XOR gates to implement the negative value of a bipolar multi-

66

Figure 4.5: Architecture of the L1-norm error calculator.

plication) and the Bernstein polynomial method. X[i] and H[i] represent the ith element

in the input vector and one of the 256 codevectors (Nc = 256), respectively. Both X[i]

and H[i] are stochastic sequences encoded from their previous 8-bit binary values. As the

simplified squared L2-norm error calculator in Equation 4.10 could be negative, bipolar

SNGs (see Figure 2.8) are used in Figures 4.8 and 4.9 (denoted by SNGb). S(Y) is the

stochastic output. Note that the selecting inputs are still sequences generated by unipolar

SNGs (denoted by SNGu in Figures 4.8 and 4.9). Additions are also implemented using

multiplexers of various sizes.

For the implementation using traditional stochastic arithmetic elements in Figure 4.8,

the upper 16 inputs are bipolar stochastic sequences H[0]2, H[1]2, ...,H[15]2, encoding the

squares of the coefficients. The bottom 16 XOR gates are used to calculate additive inverse

of the coefficients multiplied by primary inputs X[0], X[1], X[15]. A 32-input multiplexer is

then used to sum up all the squared coefficients H[0], H[1], ...,H[15] from its upper 16 inputs

and subtract the products of the 16 pairs of primary inputs and coefficients from its bottom

16 inputs. The selecting signals Sel[0] to Sel[3] are four independent stochastic sequences

encoding 0.5. The selecting signal Sel[4] is used to implement the constant coefficient ’2’

before the cross products. Therefore, a sequence encoding 2/3 is generated. In this way, the

probability of selecting the top 16 primary inputs from 0 to 15 is 1/3, and the probability

of selecting the bottom 16 primary inputs (from inputs 16 to 31) is 2/3.

For the implementation using the Bernstein polynomial method in Figure 4.9, Equation

67

Figure 4.6: Stochastic elements for VQ.

4.10 is converted to Equation 4.20 first into the form of Bernstein polynomials.

E′i =

Ne−1∑
j=0

[b0,ijXij + b1,ij(1−Xij)], i = 1, 2, . . . , Nc, (4.20)

where b0,ij = C2
ij − 2Cij and b1,ij = C2

ij are pre-computed Bernstein coefficients. For each

term indexed by j (j = 0, 1, 2, ..., Ne− 1) in Equation 4.20, a 2-input multiplexer is needed.

There are a total of 16 two-input multiplexers (Ne = 16). A 16-input multiplexer is then

used to sum up the outputs of all the two-input multiplexers. The new coefficients b0,ij

and b1,ij are encoded by independent bipolar stochastic number generators (denoted by

SNGb) while the primary inputs Xij is encoded by independent unipolar stochastic number

generators (denoted by SNGu). The selecting signals Sel[0] to Sel[3] are four independent

stochastic sequences encoding 0.5, which are also unipolar stochastic sequences. The outputs

of the squared L2-norm error calculators in Figures 4.8 and 4.9 are then passed on to the

parallel comparison tree in Figure 4.7.

To compare the two implementations shown respectively in Figures 4.8 and 4.9, the

circuits for the squared error calculators are designed and synthesized with the Synopsys

Design Compiler tool [26]. The resulting synthesis report provides the silicon area, the

power and the minimum clock period (see Table 4.1). It is clear that the Bernstein poly-

nomial method shows a slightly better performance, so the implementation in Figure 4.9

is selected as the squared L2-norm error calculator. Although the advantage over the tra-

ditional stochastic arithmetic elements is not so significant for the squared L2-norm error

calculation, the Bernstein polynomial method becomes more favorable for Lp-norm or pth-

law (p ≥ 3) error calculations. This is primarily because the higher-order terms can be

more efficiently implemented using the Bernstein polynomial method in that less stochastic

number generators are required.

68

Figure 4.7: Stochastic comparison tree: a square represents an error calculator, a circle
represents a comparison result and a triangle represents a stochastic comparator (see Fig-
ure 4.6). Note that the codevector with the smallest error appears at the output as the
comparison result.

69

Figure 4.8: Architecture of the squared L2-norm error calculator using traditional stochastic
arithmetic elements.

Figure 4.9: Architecture of the squared L2-norm error calculator using the Bernstein poly-
nomial method.

70

Table 4.1: Circuit performance of the squared error calculators defined in Equations 4.10 and
4.20 using (a) traditional stochastic arithmetic elements and (b) the Bernstein polynomial
method Ne = 16).

Area (um2) Power (uW) @ Min Clock Period Minimum Clock Period (ns)

(a) (b) Ratio: (a)/(b) (a) (b) Ratio: (a)/(b) (a) (b) Ratio: (a)/(b)

5.246 5.129 1.02 8.74 8.36 1.05 0.05 0.05 1

Stochastic VQ Implementation Using pth-law Errors

As discussed above, the Bernstein polynomial method is selected for error calculations of the

pth-law (p ≥ 3) in Equation 4.12 to achieve efficiency. Based on the Bernstein polynomial

calculator in Figure 4.4, the overall architecture of the pth-law error calculator is shown in

Figure 4.10, where p = 3 and Ne = 16 in our example. X[i] represents the ith element in

the input vector. The Bernstein coefficients b0[i], b1[i], b2[i] and b3[i] are calculated using

bk =
k∑
j=0

 k
j


 3
j

 ·ak, where ak is the kth-order coefficient of the error polynomial in Equation

4.12 without the absolute value function and k = 0, 1, 2, 3. For an input vector X with Ne

elements, the input X[i] (i = 0, 1, ..., Ne− 1) is always positive as it is an 8-bit binary value

encoding a grey scale pixel. It is then converted into unipolar stochastic sequences. The

Bernstein coefficients can be positive or negative, so in Figure 4.10 bipolar SNGs are used

in Bernstein polynomial calculators (in Figure 4.4). S(Y [i]) is the stochastic output of the

absolute value of the Bernstein polynomial for input X[i], where the Bernstein polynomial

has (p+ 1) terms for errors measured by the pth-law. In general, a pth-law error is a sum of

Ne Bernstein polynomials. Therefore,all the outputs of Ne Bernstein polynomials should be

added up using an Ne-input multiplexer. The output of the error calculator S(Y) in Figure

4.10 is a stochastic sequence to be compared with other errors in the stochastic comparison

tree shown in Figure 4.7.

4.3.4 Index Storage and Delivery

A source vector is encoded by the index of the codevector that produces the minimum

error among all the calculated ones. The comparison result comes naturally as stochastic

streams that represent probabilities instead of deterministic Boolean values. Therefore the

comparison streams have to be converted to binary numbers by counters, which would add

cost. To avoid this problem, the index is embedded in the last few bits of the stochastic

sequences as a binary-encoded value, as shown in Figure 4.11. Initially a error calculator

is used to obtain the stochastic sequence for the error of the kth codevector at the input

port, and then it is necessary to label this stochastic error with index k. Thus the last few

bits in the stochastic error sequence are replaced (the last six bits that are shaded in the

71

example in Figure 4.11) with the binary number that represents k (the grey bits in Figure

4.11). The rest of the bits (the bits represented by the white squares in Figure 4.11) in the

bit stream are left unchanged.

Figure 4.10: Architecture of the pth-law error calculator for p = 3 using the Bernstein
polynomial calculator in Figure 4.4.

If the sequences are long enough, giving up the last few bits will have little effect on the

stochastic value. For most of the codewords, the stochastic comparator will rapidly converge

to select one of the inputs as the output after an initial period of instability. So one can

rely the index being delivered correctly especially when the sequence is long enough. Only

one counter is prepared at the last stage to extract the index from the stochastic sequence.

Registers for index storage and counters used as the stochastic-to-binary converter for every

comparator are saved to reduce hardware cost. A shorter delay also results as no extra time

is needed to process the index, which is extracted easily from the output bit stream.

4.3.5 Error Analysis

A mathematical analysis is given to show the validity of the index storage and delivery

method. Assume that the last M bits are used to store the index in an Ns-bit stochastic

sequence (see Figure 4.12). The index of the smaller inputs between Px and Py must be safely

passed on through the stochastic comparator shown in Figure 2.6. This requires that the last

M bits in the stochastic sequence encoding PS2 correctly indicate the result of comparing

stochastic numbers Px and Py. As PS2 is the output of the stochastic tanh function,

we consider the state transition diagram of the stochastic tanh function where Nst is the

72

Figure 4.11: Embedding a 6-bit binary index into the stochastic error bit stream.

73

number of states in the FSM (see Figure 2.4) and Ns >> M (see Figure 4.12). The goal is

to ensure with high probability that the last M bits in the stochastic sequence encoding PS2

in Figure 2.6 are stable at 1 (or 0) for the comparison result Px ≥ Py (or Px ≤ Py). Now the

conditional probability P{Last M bits in PS2 are all 1′s | Px ≥ Py} should be calculated,

which would be similar to calculating P{Last M bits in PS2 are all 0′s | Px ≤ Py}.
To focus on the index embedded in the last M bits of a stochastic sequence, the state

transitions after (Ns −M) transitions are considered in the diagram (see Figure 2.4). The

remaining M states produce the last M bits of the stochastic sequence PS2, which selects

the M -bit index of the smaller one between Px and Py. Suppose that the current state is

denoted by CSi, where the subscript i (i = 0, 1, ...,M − 1) corresponds to the ith index

storage bit. We consider all possible values of PS1, which is the input of the tanh function,

to analyze the output PS2. The computation steps are as follows.

1) It can be seen that SNst
2

is the central state in the state transition diagram in Fig. 16.

SNst
2

+k
represents the kth state to the right of SNst

2

, where k (k = 0, 1, 2, ...) is an integer

index. SNst
2

+k
(k ≥M) are considered ”safe” initial states because the next M transitions

will remain in the right half of the state transition diagram no matter what the inputs

(M -bit embedded index shown in Fig. 16) are. Hence, if CS0 = SNst
2

+k
and (k ≥ M),

the last M bits in Ps2 will be held at ’1’. Assume that the two errors Px and Py encoded

by the stochastic sequences are evenly distributed between 0 and 1. The probability that

CS0 = SNst
2

+k
and (k ≥M) is

P1 = 1− 2M

Ns
+
M2

N2
s

>

(
1− 2M

Ns

)
, (4.21)

which is proved in detail in the appendix.

2) If CS0 = SNst
2

+k
and (0 ≤ k < M), the next state CSi (i = 0, 1, ...,M − 1) will

possibly cross the boundary from outputting 1’s to outputting 0’s, so that it fails to hold

the value ’1’. Let the probability of not crossing the boundary be

P2 =
M−1∑
k=0

P2,k, (4.22)

where P2,k denotes the probability that the output of CSi is held at ’1’ for any i ∈
0, 1, ,M − 1 provided that CS0 = SNst

2
+k

(0 ≤ k < M). According to its definition, P2,k

can be obtained by

P2,k = P{CS0 = SNst
2

+k
} · P{The output of CSi is held at 1| CS0 = SNst

2
+k
}, (4.23)

Where k = 0, 1, ...,M − 1. According to Equation B.8 in the appendix, the probability that

the initial state is SNst
2

+k
can be calculated as

P{CS0 = SNst
2

+k
} ≈ 2

Ns
, (4.24)

74

for any k (k = 0, 1, ...,M − 1).

It is rather complicated to calculate the probability P{The output of CSi is held at 1|
CS0 = SNst

2
+k
} for every value of k (k = 0, 1, ...,M − 1). Instead, we can derive a lower

bound of the probability by simplifying the problem. If the state always transitions to its

right neighbor until it reaches the nearest ”safe” state SNst
2

+M
, it is guaranteed that the

output of the state machine is held at ’1’. However, this assumption is too pessimistic as

there are many other cases where the state transitions back and forth, but still produces

outputs of 1’s. We assume that the last M bits of the stochastic sequence Ps1 (the input of

the state machine) have the same probability of being ’1’ or ’0’. Therefore, the probability

that the state transitions to its left or right is 1/2. As it takes (M − k) steps to reach the

nearest ”safe” state SNst
2

+M
from the initial state SNst

2
+k

, the probability that the output

of the state machine is held at ’1’ must be greater than (12)
M−k

, i.e.

P{The output of CSi is held at 1| CS0 = SNst
2

+k
} > (

1

2
)
M−k

. (4.25)

Therefore, the lower bound of the probability P2,k defined in Equation 4.23 is determined

as

P2,k >
2

Ns
· (1

2
)
M−k

. (4.26)

Then we can further obtain a lower bound of P2 in Equation 4.22 by

P2 >
2

Ns

M−1∑
k=0

(
1

2
)
M−k

≈ 1

Ns
. (4.27)

3) Considering 1) and 2), we obtain the probability that the last M bits are held at ’1’

as

P = P1 + P2 > 1− 2M

Ns
+

1

Ns
= 1− 2M − 1

Ns
. (4.28)

4) In this case, Ns = 2048 and M = 8 are selected as a typical setting. Therefore, the

probability in Equation 4.28 can be calculated as

P > 1− 2M − 1

Ns
≈ 99.27%. (4.29)

The result shows that the accuracy is above 99.27% despite the approximation used to

estimate the probability. This means that we can safely use the index storage method and

count on it for simpler, faster and reliable computation.

4.4 Simulation and Discussion

4.4.1 Required Sequence Length

The loss in image quality caused by the compression can be measured as the total power

in the error between the original image and the image reconstructed from the output of a

75

Figure 4.12: The embedded index in stochastic sequences and state transitions in tanh
function.

VQ encoder. Assume that the image contains Np pixels. Let the pixel values in the original

image be denoted by POi (i = 0, 1, ..., Np − 1), while the pixel values of the reconstructed

image after compression are denoted by PCi (i = 0, 1, , Np − 1). The APE of the loss of

quality is defined as

APE =

√√√√ 1

Np

Np−1∑
i=0

(POi − PCi)2, (4.30)

where Np = 90, 000.

Table 4.2: The APE values at different sequence lengths for the stochastic VQ.

Sequence Length (bits) 256 512 1024 2048 4096 9192

L1 norm 30.4 19.9 10.9 7.3 7.1 7.1

squared L2 norm 25.7 18.6 9.5 6.0 6.0 6.0

3rd-law 25.1 17.2 8.8 6.0 5.9 5.9

Table 4.3: The APE values at different bit resolutions for the conventional binary VQ.

Resolution (Bits) 4 6 7 8 9 10

L1 norm 33.1 18.3 11.0 7.8 7.8 7.8

squared L2 norm 26.7 16.9 7.2 6.0 6.1 6.0

3rd-law 24.6 14.7 6.2 5.8 5.7 5.7

For an image with 90,000 pixels (i.e. Np = 90, 000), stochastic VQ is implemented using

the L1 norm, squared L2 norm and 3rd-law error calculations, respectively, assuming the

overall architecture in Figure 4.7. Various sequence lengths are investigated and the corre-

sponding APEs are compared in Table 4.2. The APE decreases as the stochastic sequence

length grows, as expected. Conventional binary implementations of VQ with the same ex-

perimental parameters are also simulated for comparison. The APE values are reported in

Table 4.3 as a comparison with the stochastic results in Table 4.2. It can be seen that the

8-bit resolution results in low APE values and that higher bit resolutions do not improve

the APE significantly. Compared with the results in Table 4.2, the stochastic implementa-

76

tion using 2048 bits subjectively matches the 8-bit binary conventional implementation as

they show a similar APE performance. Similarly, roughly equivalent performance is found

between a 6-bit binary design and a stochastic design that uses 512-bit sequences. It is then

decided to compare the circuit performances of the implementations that show a similar

performance in terms of accuracy.

The sequence length implies an output latency that limits the performance of stochastic

implementations. Vector quantization, however, is already a lossy data compression method.

We can in some cases accept quality deterioration to reduce the latency. In fact, the quality

of the compression relies heavily on the comparison results of the errors. Hence, the accurate

ranking of the errors is more important than the values of the errors. Finally, in streaming

media applications, latency is often not an issue as it only affects the initial delay.

4.4.2 Functional Simulation Using Matlab

Stochastic vector quantization using different measures of errors were simulated using Mat-

lab. The classic Lena image in Figure 4.13 was used as the input source and the LBG

algorithm was used to generate a codebook. Figures 4.14, 4.15 and 4.16 show the stochastic

VQ simulation results using L1 norm, squared L2 norm and 3rd-law errors, respectively.

The input is a 300×300 pixel grey-scale image. Each pixel is represented by an 8-bit binary

number. After using stochastic vector quantization to compress the original image, the

image is re-constructed using codebook look-up and displayed for visual assessment. The

image has 5625 input vectors, and each vector comprises 16 unsigned 8-bit pixel values.

2048 bits are used in a stochastic representation, so it takes 2048 clock cycles to finish

one round of calculation. The stochastic representation of 2048 bits can be generated by

an 11-bit LFSR using similar circuits shown in Figures 2.7 and 2.8. To encode the 5625

input vectors in a fully-parallel architecture, a total of 5625 independent processor units are

required and one unit includes 256 error calculators and a 256-input comparison tree.

The output images in Figures 4.14,4.15 and 4.16 illustrate the progressive quality feature

of stochastic computing. The reconstructed image after stochastic compression for 256th,

512th, 1024th and 2048th clock cycles are shown for the three error measures. However

the reconstructed output images are vague and only show a rough outline of the original

image after compression using 256 clock cycles. The reconstructed image becomes a clearer

and more accurate reproduction as the stochastic encoding time increases. Because 11-

bit LFSRs are used to generate the stochastic sequences, the sequences repeat every 2048

cycles. Thus the image quality stops improving after 2048 clock cycles.

4.4.3 Circuit Performances

Following the results in Tables 4.2 and 4.3, three pairs of implementations are compared:

(a) an 8-bit binary implementation with the stochastic implementation using 2048-bit se-

quences, (b) a 7-bit binary implementation with the stochastic implementation using 1024-

77

Figure 4.13: The classic grey-scale Lena image is used in the experiments.

Figure 4.14: The progressive improvement of image quality using L1-norm stochastic VQ
after 256, 512, 1024 and 2f048 clock cycles.

Figure 4.15: The progressive improvement of image quality using squared L2-norm stochas-
tic VQ after 256, 512, 1024 and 2048 clock cycles.

Figure 4.16: The progressive improvement of image quality using the 3rd-law stochastic VQ
after 256, 512, 1024 and 2048 clock cycles.

78

bit sequences and (c) a lower quality processing implementation using the 6-bit binary and

the 512-bit stochastic designs. The hardware area, power consumption and delay com-

parisons are shown in Tables 4.4, 4.5 and 4.6 for L1-norm, squared L2-norm and 3rd-law

implementations, respectively. The stochastic circuits are built according to the architec-

ture in Figure 4.7. The designs of the error calculators are shown in Figures 4.5, 4.9 and

4.10. By using the Synopsys design compiler the fastest clock is obtained that still meets

the timing requirements. Then the power consumption and silicon area are obtained for

the fastest clock frequency. Note that the auxiliary circuits such as stochastic number

generators (implemented by LFSRs) and counters are all included.

As shown in Tables 4.4, 4.5 and 4.6, the stochastic circuits have significantly lower

hardware cost. Stochastic implementations only cost roughly 1% of the hardware of binary

implementations. This also leads to savings in power consumption. The time required for an

encoding operation is also an important measurement to calculate the total energy, and it is

determined by the product of the clock period and the stochastic sequence length. Because

the structure of stochastic circuits is simpler, a shorter critical path delay is expected. This

is reflected in the columns showing that the minimum stochastic clock periods are smaller

than the minimum binary clock periods.

The TPA and the EPO are two important metrics. In Table 4.4 for the L1-norm,

the stochastic approach shows significant advantages over the binary approach in terms

of the area cost, power consumption and delay. When long sequences such as 2048 bits

are considered, the ratio of stochastic over binary energy per operation is about 5.43, and

the ratio of the throughputs per area is approximately 0.38. Therefore, the stochastic

approach using 2048-bit sequences underperforms the conventional binary approach using

8-bit resolution. However, if some loss in quality is acceptable in the application, the

stochastic implementation using 512-bit sequences shows only 2.35 times the energy cost

per operation and 2.60 times throughput per area in only 1.5% the total area compared to a

6-bit binary implementation. It can be seen that the stochastic implementation using 1024-

bit sequences shows similar performance compared to the 7-bit binary implementation in

terms of TPA. The stochastic VQ is thus not competitive for 7-bit or higher bit resolutions

in terms of the TPA performance.

In Tables 4.5 and 4.6, the stochastic VQ implementations for the squared L2-norm and

the 3rd-law errors are compared with the conventional binary implementations. In general,

the squared L2-norm and the 3rd-law implementations use more hardware and consume

more energy as the computational complexity increases from the L1-norm implementation.

However, the implementation areas for the stochastic implementations are still less than

1.5% of the binary designs. The TPAs of the 3rdrd-law VQ implementations are much

smaller than those of L1-norm and squared L2-norm VQ implementations. However, the

squared L2-norm and the 3rd-law benefit from more accurate results compared with the L1

norm. For the same stochastic sequence length, the reconstructed images using the squared

79

L2-norm and the 3rd-law have higher fidelity as they show smaller average penalized error

(APE) than that using the L1 norm, which is shown in Table 4.2. The 3rd-law VQ takes

advantage of the Bernstein polynomial method to build the error calculator based on high

order polynomials. It shows the best compression quality compared with the other two

implementations.

When high-quality (8-bit binary and 2048-bit stochastic) VQ implementations are con-

sidered, the EPO ratios of the stochastic implementation over conventional binary imple-

mentation are 9.67 and 17.85 for the squared L2-norm and the 3rd-law errors, respectively.

For lower-quality (6-bit binary and 512-bit stochastic) VQ implementations, the EPO ratios

become 2.20 and 3.85 for the squared L2-norm and the 3rd-law errors, respectively. With

respective to the EPO, therefore, the stochastic implementations are not competitive due

to the required long sequences.

For high-quality VQ compressions (using 2048-bit stochastic and 8-bit conventional bi-

nary implementations), the stochastic implementations are not advantageous over the con-

ventional binary implementations in terms of TPA. When a lower-quality compression is

acceptable (using 512-bit stochastic and 6-bit conventional binary implementations), how-

ever, the TPA ratios of the stochastic implementation over the conventional binary imple-

mentation are 2.02 and 1.16 for the squared L2-norm and the 3rd-law errors, respectively.

The stochastic approach using shorter sequences loses some accuracy but saves more in

terms of hardware cost and power consumption. By comparing the 1024-bit stochastic and

7-bit conventional binary VQ implementations, it can be seen that the stochastic approach

could be competitive for resolutions below 7 bits in terms of TPA.

Stochastic VQ has the flexibility to easily adapt to poor communication channels where

lower compression quality is preferred. Using L1 norm, for example, two input images

can be compressed using the 2048-bit stochastic VQ implementation and achieve the same

compression quality as the 1024-bit stochastic VQ implementation. In this way, only the

2048-bit stochastic VQ implementation is needed instead of two copies of the 1024-bit

stochastic VQ circuit, further saving 32.3% of the hardware area.

Table 4.4: Circuit performance of L1-norm vector quantization with three compression
qualities: (a) 8-bit binary (B) vs. 2048-bit stochastic (S), (b) 7-bit binary (B) vs. 1024-bit
stochastic (S) and (c) 6-bit binary (B) vs. 512-bit stochastic (S).

Area (µm2) Power (mW) @ Min Clock Period Minimum Clock Period (ns)

B S Ratio: S/B B S Ratio: S/B B S Ratio: S/B

(a) 93294 1358 0.015 107.56 3.22 0.03 2.28 0.2 0.09
(b) 86231 1003 0.012 81.3 2.86 0.04 2.26 0.2 0.09
(c) 79177 641 0.008 50.09 2.47 0.05 2.23 0.21 0.09

Energy per Operation (pJ/Operation) Throughput per Area (1/(µm2 · s)) Required Sequence Length (bits)

B S Ratio: S/B B S Ratio: S/B B S Ratio: S/B

(a) 243 1320 5.43 4743 1797 0.38 N/A 2048 N/A
(b) 184 586 3.19 5131 4869 0.95 N/A 1024 N/A
(c) 113 266 2.35 5588 14519 2.6 N/A 512 N/A

80

Table 4.5: Circuit performance of squared L2-norm vector quantization with three com-
pression qualities: (a) 8-bit binary (B) vs. 2048-bit stochastic (S), (b) 7-bit binary (B) vs.
1024-bit stochastic (S) and (c) 6-bit binary (B) vs. 512-bit stochastic (S).

Area (µm2) Power (mW) @ Min Clock Period Minimum Clock Period (ns)

B S Ratio: S/B B S Ratio: S/B B S Ratio: S/B

(a) 113847 1588 0.014 61.48 3.17 0.052 2.29 0.21 0.09
(b) 99631 1264 0.013 56.3 2.79 0.05 2.26 0.2 0.09
(c) 89992 972 0.011 50.09 2.39 0.048 2.23 0.2 0.09

Energy per Operation (pJ/Operation) Throughput per Area (1/(µm2 · s)) Required Sequence Length (bits)

B S Ratio: S/B B S Ratio: S/B B S Ratio: S/B

(a) 141 136 9.67 3836 1464 0.38 N/A 2048 N/A
(b) 127 572 4.49 4441 3864 0.87 N/A 1024 N/A
(c) 111 244 2.2 4983 10047 2.02 N/A 512 N/A

Table 4.6: Circuit performance of 3rd-law vector quantization with three compression qual-
ities: (a) 8-bit binary (B) vs. 2048-bit stochastic (S), (b) 7-bit binary (B) vs. 1024-bit
stochastic (S) and (c) 6-bit binary (B) vs. 512-bit stochastic (S).

Area (µm2) Power (mW) @ Min Clock Period Minimum Clock Period (ns)

B S Ratio: S/B B S Ratio: S/B B S Ratio: S/B

(a) 256261 3772 0.014 183.2 12.86 0.07 4.43 0.55 0.12
(b) 247439 3481 0.014 179.6 11.71 0.07 2.26 0.2 0.09
(c) 238261 3251 0.013 175.7 10.72 0.06 4.38 0.54 0.12

Energy per Operation (pJ/Operation) Throughput per Area (1/(µm2 · s)) Required Sequence Length (bits)

B S Ratio: S/B B S Ratio: S/B B S Ratio: S/B

(a) 811 14485 17.85 881 235 0.27 N/A 2048 N/A
(b) 406 2398 5.91 1788 1403 0.78 N/A 1024 N/A
(c) 769 2963 3.85 958 1112 1.16 N/A 512 N/A

81

4.5 Summary

In this chapter, stochastic circuits are designed to implement the L1-norm, squared L2-

norm and pth-law (p = 3 is used as an example)-based vector quantization (VQ). Finite

state machine-based stochastic arithmetic elements and the Bernstein polynomials are used

to build error calculators and stochastic comparison trees. By embedding the codevector

indexes into the last few bits of the stochastic error sequences, costly counters are saved

to reduce hardware cost. Various sequence lengths are considered in the stochastic vector

quantization and the compression quality was assessed using average penalized error (APE)

for a grey-scale image.

Implementations using a codebook of 256 codevectors with similar compression qual-

ities are then compared with respect to APE: (a) an 8-bit binary implementation with

the stochastic implementation using 2048-bit sequences, (b) a 7-bit binary implementation

with the stochastic implementation using 1024-bit sequences and (c) a lower quality pro-

cessing implementation using the 6-bit binary and the 512-bit stochastic designs. Due to

the compact stochastic arithmetic elements and an efficient index storage approach, the

area advantage of the stochastic VQ implementations is significant. The implementation

areas for the stochastic circuits are no more than 1.5% of the fully parallel binary implemen-

tations. Our results show that the stochastic VQ underperforms the conventional binary

VQ in terms of energy per operation. However, the stochastic VQ can be efficient in terms

of TPA when the implementation (c) with an acceptable lower quality is considered. For

the three error measures, the TPA of the 512-bit stochastic implementation is shown to

be 1.16, 2.02 and 2.60 times as large as that of the 6-bit binary implementations with a

similar compression quality. It is found that the 7-bit binary implementation and 1024-bit

stochastic implementation shows higher performance in terms of TPA, especially for the

L1-norm error. Thus, stochastic VQ will not be competitive for bit resolutions higher than

7 bits.

Applications can benefit from stochastic VQ where the extra energy and the higher la-

tency are not significant factors. The constant transmission latency of stochastic computing

may not be a problem for many streaming media applications. The stochastic design can be

interesting because a small silicon area can encode many multimedia streams in the same

area as only one conventional binary encoder/decoder. Moreover, a stochastic VQ imple-

mentation for high compression quality can be easily applied to obtain lower compression

quality when encoding multiple input images. Compared to lower-quality stochastic VQ

implementations, the area cost can further be significantly reduced.

The inherent progressive quality of the stochastic VQ design is a potentially useful

feature. The stochastic VQ encoder is tested on the grey-scale image for different stochastic

sequence lengths and hence different run-times, which indicate different encoding qualities.

To have a better accuracy, one simply waits for more clock cycles during the computation.

The number of clock cycles can be readily reduced to save power at the cost of a lower

82

image quality.

83

Chapter 5

Conclusions and Future Work

5.1 Conclusions of This Thesis

In this thesis, we investigated the use of stochastic arithmetic elements. Stochastic circuits

are known for their smaller area compared to corresponding conventional binary circuits.

However, the cost due to auxiliary circuits must be considered such as SNGs and counters

that are used to convert binary numbers to stochastic bit streams and vice versa. Besides,

stochastic computing may suffer from random fluctuations and its inherent variation must

be taken into account. The experimental results have proved that stochastic arithmetic

elements without the auxiliary circuits can be advantageous in terms of area and power

consumption. However, stochastic computing is not competitive in terms of TPA or EPO

for bit resolutions above 4 bits if the auxiliary circuits are included. A SOP function is used

as an example to show how stochastic computing performs if various stochastic arithmetic

elements are combined to form a larger computing system. A computing system for real-

world applications, however, usually consists of many individual arithmetic operations. FIR

filters and VQ encoders are examples of such computing systems and they are selected as

two applications for a detailed comparative study.

A stochastic HWA design and a MWA design are proposed to implement stochastic

FIR filters. The proposed stochastic designs show an improved performance, a smaller cir-

cuit area and lower power consumption, compared to the conventional stochastic design.

Compared to binary FIR filter circuits, the proposed stochastic designs have a significant

advantage in circuit area, especially at higher resolutions. With respect to the performance

metrics of TPA and EPO, the stochastic design does not show any advantages over its

binary counterpart when the auxiliary circuits are included. This is because long stochas-

tic sequences must be used to achieve the same filtering performance as a binary circuit.

Therefore, stochastic computing can be very time-consuming. A shorter stochastic se-

quence, however, can be used to trade off some accuracy. The stochastic circuit shows a

graceful degradation in performance compared to the binary design as stochastic computing

can save a lot more energy than the conventional binary approach when their performance

reductions are identical.

84

FIR filters are used as an example for stochastic error analysis. Random fluctuations and

quantization errors are considered in FIR filter functions. The relation between the required

sequence length and the bit resolution can be obtained. This approach can be extended for

other stochastic applications to determine the sequence length that are required.

The stochastic computing is also used to implement VQ based on the L1-norm, squared

L2-norm and pth-law (p = 3 is taken as an example). Non-combinational stochastic methods

such as the FSM-based arithmetic elements and the Bernstein polynomial approach are used

to build error calculators and stochastic comparison trees. By embedding the correspond-

ing indexes into the last few bits of stochastic errors, costly registers are avoided to keep

and deliver the indexes. Various sequence lengths are considered in the stochastic vector

quantization and the compression quality was assessed using APE for a grey-scale image.

Although the stochastic VQ is not competitive against the conventional binary VQ in terms

of TPA or EPO, it can be efficient in terms of TPA with an acceptable lower quality. The

fixed transmission latency of stochastic is thus not a problem for many streaming media

applications. The stochastic design can be competitive because a small silicon area could

encode many multimedia streams in the same area required by only one conventional binary

encoder/decoder. Moreover, a stochastic VQ implementation for high compression can be

easily applied to obtain lower compression quality when encoding multiple input images.

Compared to lower-quality stochastic VQ implementations, the area cost can be signifi-

cantly reduced. The inherent progressive quality of the stochastic VQ design is another

potentially useful feature. It has been demonstrated that the stochastic VQ can encode

the grey-scale image for different stochastic sequence lengths and hence different run-times,

which correspond to different encoding qualities. Better accuracy can easily be achieved

by running more clock cycles, while power can be also saved simply by using part of the

stochastic sequence at the cost of a lower image quality.

According to the experimental and analytical results in this thesis, stochastic computing

may not be recommended for those applications where accuracy is the priority. Sequence

length in stochastic computing can be very long to match the performance of a corresponding

conventional binary implementation. However, stochastic computing can be efficient where

approximation is allowed or even necessary such as in a lossy data compression. Careful

observations and designs should be adopted so that auxiliary circuits can be avoided as much

as possible to save hardware cost. Features of stochastic computing such as the graceful

degradation can not be achieved using the conventional binary approach. Performance in

terms of accuracy can be improved gradually by simply waiting for more clock cycles, which

is another useful and unique feature of stochastic computing. Note that this thesis is based

on current CMOS technologies. There have been an increasing interests in novel techniques

such as the spintronic memristors [31], which could be in favor of the stochastic approach.

This thesis provides an example of investigating the issues in stochastic computing. Similar

study on next-generation devices such as spintronic memristors can be an interesting topic

85

for future work.

5.2 Recommendations for Future Work

Although some issues in terms of efficiency are discussed in this thesis for stochastic com-

puting, more aspects in this field should be explored and fully understood. Further research

is recommended as follows.

• In this thesis, power consumption is roughly evaluated using the Synopsys Design

Compiler. Power estimations using activities from simulations with real data are

needed to obtain results with better accuracy.

• The functions of FSM-based stochastic elements are usually affected by the number

of states Nst. To explore this relationship, The appropriate number of states Nst can

be written as a function of the sequence length Ns.

• Stochastic computing can be application-dependent. Real-world applications need

to be implemented and evaluated to determine the feasibility of designing stochastic

computing systems. The negative results for stochastic FIR filters and the more

promising results for stochastic VQ encoders indicate that stochastic computing can

be useful but should be carefully evaluated and tuned for specific systematic and

environmental variables. The success of stochastic computing in lower quality VQ

compression demonstrates that applications with tolerance of performance loss may

benefit from the stochastic approach.

• Stochastic computing is inherently based on probabilities and statistical theory. One

possible direction may be to apply stochastic computing to deal with mathematical

problems, e.g. machine learning algorithms, artificial intelligence, etc.

• There have been great efforts in the research of stochastic number representations and

generations. Remarkable ideas have been proposed to improve the accuracy in stochas-

tic representation. However, stochastic number generation is still the bottleneck that

restricts the efficiency of an overall stochastic computing system. The problem of

designing SNGs to compromise accuracy and hardware cost may be another good

viewpoint of research.

• The stochastic sequences of the inputs to a multiplexer can be correlated when the

selection signals are statistically independent. Hence the LFSR can be shared for

these SNGs. A poor pseudo-random number generator (e.g. a digital counter) can

replace some of the LFSRs to reduce hardware cost. When a circuit has multiple

layers of stochastic processing, however, the correlation in inputs will lead to biased

or inaccurate results.

86

Bibliography

[1] B. Gaines, “Stochastic computing systems,” in Advances in information systems sci-
ence. Springer, 1969, pp. 37–172.

[2] M. Pedram, “Design technologies for low power vlsi,” Encyclopedia of Computer Sci-
ence and Technology, vol. 36, pp. 73–96, 1997.

[3] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation of approxi-
mate adders,” in Proceedings of the 25th edition on Great Lakes Symposium on VLSI.
ACM, 2015, pp. 343–348.

[4] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate mul-
tiplier with configurable partial error recovery,” in Proceedings of the conference on
Design, Automation & Test in Europe. European Design and Automation Associa-
tion, 2014, pp. 95:1–95:4.

[5] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in Test Symposium (ETS), 2013 18th IEEE European. IEEE,
2013, pp. 1–6.

[6] P. Li and D. J. Lilja, “Using stochastic computing to implement digital image pro-
cessing algorithms,” in 29th International Conference on Computer Design (ICCD).
IEEE, 2011, pp. 154–161.

[7] W. Qian and M. D. Riedel, “The synthesis of robust polynomial arithmetic with
stochastic logic,” in 45th ACM/IEEE Design Automation Conference. IEEE, 2008,
pp. 648–653.

[8] B. Moons and M. Verhelst, “Energy and accuracy in multi-stage stochastic computing,”
in 12th International New Circuits and Systems Conference (NEWCAS). IEEE, 2014,
pp. 197–200.

[9] ——, “The influence of spatial and transient circuit variations on energy and accu-
racy in stochastic computing circuits,” in International workshop on designing with
uncertainty: opportunities and challenges, 2014.

[10] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation on stochastic
bit streams digital image processing case studies,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2014.

[11] A. Alaghi, C. Li, and J. Hayes, “Stochastic circuits for real-time image-processing
applications,” in 50th ACM/EDAC/IEEE Design Automation Conference (DAC), May
2013, pp. 1–6.

[12] P. Li, “Analysis, design, and logic synthesis of finite-state machine-based stochastic
computing,” Ph.D. dissertation, 2013.

[13] Y. N. Chang and K. K. Parhi, “Architectures for digital filters using stochastic comput-
ing,” in International Conference on Acoustic, Speech and Signal Processing (ICASSP).
IEEE, 2013, pp. 2697–2701.

87

[14] A. Alaghi and J. P. Hayes, “On the functions realized by stochastic computing circuits,”
Great Lakes Symposium on VLSI, 2015.

[15] Y. Ding, Y. Wu, and W. Qian, “Generating multiple correlated probabilities for mux-
based stochastic computing architecture,” in Proceedings of the 2014 IEEE/ACM In-
ternational Conference on Computer-Aided Design. IEEE Press, 2014, pp. 519–526.

[16] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of stochastic computing
circuits in emerging technologies,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 4, no. 4, pp. 475–486, Dec 2014.

[17] P. Zhu, J. Han, L. Liu, and M. Zuo, “A stochastic approach for the analysis of fault
trees with priority and gates,” IEEE Transactions on Reliability, vol. 63, no. 2, pp.
480–494, June 2014.

[18] J. Han, H. Chen, J. Liang, P. Zhu, and F. Lombardi, “A stochastic computational
approach for accurate and efficient reliability evaluation,” IEEE Transactions on Com-
puters, vol. 63, no. 6, pp. 1336–1350, June 2014.

[19] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions on
Embedded computing systems (TECS), vol. 12, no. 2s, pp. 92:1–92:19, 2013.

[20] N. M. Nasrabadi and R. A. King, “Image coding using vector quantization: A review,”
IEEE Transactions on Communications, vol. 36, no. 8, pp. 957–971, 1988.

[21] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas,
graphs, and mathematical tables. Courier Corporation, 1964, no. 55.

[22] J. A. Waicukauski, E. Lindbloom, E. B. Eichelberger, and O. P. Forlenza, “A method
for generating weighted random test pattern,” IBM Journal of Research and Develop-
ment, vol. 33, no. 2, pp. 149–161, 1989.

[23] B. Widrow and I. Kollár, “Quantization noise: Roundoff error in digital computation,”
Signal Processing, Control, and Communications, pp. 485–528, 2008.

[24] C. M. Grinstead and J. L. Snell, Introduction to probability. American Mathematical
Soc., 1997.

[25] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture for
fault-tolerant computation with stochastic logic,” IEEE Transactions on Computers,
vol. 60, no. 1, pp. 93–105, 2011.

[26] D. W. Knapp, Behavioral synthesis: digital system design using the synopsys behavioral
compiler. Prentice-Hall, Inc., 1996.

[27] N. Saraf, K. Bazargan, D. J. Lilja, and M. D. Riedel, “Iir filters using stochastic
arithmetic,” in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014. IEEE, 2014, pp. 1–6.

[28] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE
Transactions on Communications, vol. 28, no. 1, pp. 84–95, 1980.

[29] F. K. Soong, A. E. Rosenberg, B.-H. Juang, and L. R. Rabiner, “Report: A vector
quantization approach to speaker recognition,” AT&T technical journal, vol. 66, no. 2,
pp. 14–26, 1987.

[30] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding,” Proceed-
ings of the IEEE, vol. 73, no. 11, pp. 1551–1588, 1985.

[31] X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, “Spintronic memristor through
spin-torque-induced magnetization motion,” Electron Device Letters, IEEE, vol. 30,
no. 3, pp. 294–297, 2009.

88

[32] F. G. Ashby, “Multivariate probability distributions,” Multidimensional models of per-
ception and cognition, pp. 1–34, 1992.

89

Appendix A

Proof of Equations 3.58 and 3.59

In Appendix A, it is proved that Equations 3.58 and 3.59 give the mean and variance of
the overall error in the conventional binary filter circuit.

To investigate how the injected errors affect the output of the FIR filters, we assume
that the correct output of the conventional binary FIR filter Y is given by Equation 3.12,
where Hi and Xi are the inputs and filter coefficients without injected error. With error
injection, the output Y (i) given in Equation 3.56 is evaluated by

Y (i) =

Nf−1∑
i=0

(Hi + e
(i)
Hi)(Xi + e

(i)
Xi)

=

Nf−1∑
i=0

(HiXi +Xie
(i)
Hi +Hie

(i)
Xi + e

(i)
Hie

(i)
Xi)

= Y +

Nf−1∑
i=0

(Xie
(i)
Hi +Hie

(i)
Xi + e

(i)
Hie

(i)
Xi),

(A.1)

where e
(i)
Hi

and e
(i)
Xi

are statistically independent errors of Gaussian distribution for the
coefficient Hi and the input Xi with mean and variance given by Equations 3.45 and 3.46
respectively. Then we have

E
(
e
(i)
Hi

)
≈ (1− 2Hi)ε; (A.2)

E
(
e
(i)
Xi

)
≈ (1− 2Xi)ε; (A.3)

V ar
[
e
(i)
Xi

]
= V ar[e

(i)
Hi] ≈

1

3
(1− ε)ε. (A.4)

The overall error due to error injection for the conventional binary FIR filter e
(i)
oc is given

by Equation 3.57. The mean of the overall error e
(i)
oc is given by

E
(
e(i)oc

)
= E

(
Y ′ − Y

)
= E

Nf−1∑
i=0

(Xie
(i)
Hi +Hie

(i)
Xi + e

(i)
Hie

(i)
Xi)


=

Nf−1∑
i=0

[XiE
(
e
(i)
Hi

)
+HiE

(
e
(i)
Xi

)
+ E

(
e
(i)
Hie

(i)
Xi

)
].

(A.5)

90

Since e
(i)
Hi

and e
(i)
Xi

are statistically independent, the mean of their product is [24]

E
(
e
(i)
Hie

(i)
Xi

)
= E

(
e
(i)
Hi

)
E
(
e
(i)
Xi

)
≈ (1− 2Hi)(1− 2Xi)ε

2. (A.6)

By Equations A.2, A.3 and A.4, it is easy to show that the mean of the overall error of
the conventional binary circuit due to error injection is given by 3.58. The variance of the

overall error e
(i)
oc is given by

V ar
[
e(i)oc

]
= V ar

Nf−1∑
i=0

(Xie
(i)
Hi +Hie

(i)
Xi + e

(i)
Hie

(i)
Xi)


=

Nf−1∑
i=0

[X2
i V ar(e

(i)
Hi) +H2

i V ar(e
(i)
Xi) + V ar(e

(i)
Hie

(i)
Xi)].

(A.7)

The variance of the product of the two independent variables e
(i)
Hi and e

(i)
Xi can be calculated

by

V ar
(
e
(i)
Hie

(i)
Xi

)
= V ar

(
e
(i)
Hi

)
V ar

(
e
(i)
Xi

)
− V ar

(
e
(i)
Hi

)
E2
(
e
(i)
Xi

)
− V ar

(
e
(i)
Xi

)
E2
(
e
(i)
Hi

)
. (A.8)

By Equations A.2, A.3 and A.6, Equation A.8 can be further written as

V ar
(
e
(i)
Hie

(i)
Xi

)
=

1

9
ε2(1− ε)2 − 1

3
ε3 (1− ε)

[
(1− 2Hi)

2 + (1− 2Xi)
2
]
. (A.9)

Due to Equations A.4 and A.9, Equation A.7 becomes

V ar
[
e(i)oc

]
=

Nf−1∑
i=0

{
1

3
(H2

i +X2
i)ε(1− ε) +

1

9
ε2(1− ε)2 − 1

3
ε3 (1− ε)

[
(1− 2Hi)

2 + (1− 2Xi)
2
]}

.

(A.10)
When the injected error rate ε is small, εk for k ≥ 3 in Equation A.10 can be ignored. This
immediately leads to the variance given in Equation 3.59.

91

Appendix B

Proof of Equations 4.21

In Appendix B, Equation 4.21 is proved by calculating P1 as the probability that CS0 =
SNs

2
+k and k ≥M (see Figure 4.12). Equation 4.24 can be proved using the same method.

Assume that the stochastic errors Ei (i = 1, 2, ..., Nc) are evenly distributed between 0 and
1. The PDF of Ei is

f(e) =

{
1, 0 ≤ e ≤ 1;
0, otherwise.

(B.1)

Let Di,j denote the difference between two independent errors Ei ≥ Ej , where i, j ∈
1, 2, ..., Nc and i 6= j.

Di,j = Ei − Ej . (B.2)

Then the problem becomes how to find the probability that Di,j ≥M/Ns , where M is the
number of storage bits and Ns is the total length of a stochastic sequence. To solve this
problem, we consider the distribution of Di,j . The PDF of Di,j is given by the convolution
of the PDFs of Ei and −Ej [32], i.e.,

fDi,j (x) = fEi+(−Ej)(x) =
∞
∫
−∞

f (e, x− e) de =
∞
∫
−∞

fEi(e)f−Ej (x− e)de. (B.3)

According to Equation B.1, we know

fEi(e) =

{
1, 0 ≤ e ≤ 1;
0, otherwise.

(B.4)

f−Ej (e) =

{
1,−1 ≤ e ≤ 0;
0, otherwise.

(B.5)

Substituting Equations B.4 and B.5 into B.3, the PDF of Di,j is given by

fDi,j (x) =


x+ 1,−1 ≤ x ≤ 0;
1− x, 0 < x ≤ 1;

0, otherwise.
(B.6)

Therefore, P1 is given by

P1 =
P
{
Di,j ≥ M

Ns

}
P {Di,j ≥ 0}

=
∫1M/Ns

fDi,j (x) dx

∫10 fDi,j (x) dx
= 1− 2M

Ns
+
M2

N2
s

(B.7)

92

which is the same as Equation 4.21. Similarly, we can calculate P2,k as

P2,k = P{CS0 = SNst
2

+k
} =

P
{
Di,j ≥ k

Ns

}
P {Di,j ≥ 0}

−
P
{
Di,j ≥ k+1

Ns

}
P {Di,j ≥ 0}

= (1− 2k

Ns
+
k2

N2
s

)− (1− 2(k + 1)

Ns
+

(k + 1)2

N2
s

) ≈ 2

Ns
,

(B.8)

which is the same as Equation 4.24.

93

Appendix C

Evaluations of Stochastic Adders
and Absolute Subtractors

In Chapter 2, we investigated conventional binary and stochastic multipliers by comparing
their circuit performance. In this appendix chapter, we go on to evaluate adders, absolute
subtractors and the SOP operation using the similar approach.

C.1 Performance Evaluation on Stochastic Adders and Ab-
solute Subtractors

In this section, various sequence lengths for stochastic computing are investigated to match
the corresponding conventional binary designs. We then explore the circuit performance of
stochastic adders and absolute subtractors.

C.1.1 Required Sequence Length for Stochastic Computing Elements Us-
ing the Simulation Method

To investigate the required sequence length for stochastic adders or absolute subtractors,
conventional binary implementations of these basic arithmetic elements are discussed for
resolutions ranging from 3 bits to 16 bits. The stochastic arithmetic elements are then
implemented using different sizes of SNGs and hence different sequence lengths. Accuracy
is measured by RMSE for the bit resolution Nb.

Table C.1 shows the resulting matching sequence lengths for increasing bit resolutions
for addition and absolute subtraction. The sequence length reported in Table C.1 will then
be used in the evaluation of circuit performance.

C.1.2 Circuit Performance Comparison

Adder

Multiplexers (shown in Figure C.1) can be used as scaled adders for both unipolar and
bipolar encodings if the selecting input is encoding 0.5 in the unipolar encoding. In fact,
weighted addition can be implemented when the selecting input stochastically encodes the
desired weight. Stochastic circuit performances are investigated with or without auxiliary
circuits such as SNGs and counters.

In Table C.2, it can be seen that the stochastic adders with auxiliary circuits are larger
than the corresponding conventional binary adders for 4 bits and above. As expected, the
stochastic adder without auxiliary circuits is much smaller than the conventional binary
adders. This advantage becomes more significant for higher resolutions. Similarly, stochas-
tic adders consume more power than the corresponding conventional binary adders if the

94

Table C.1: RMSE comparison of the conventional binary and stochastic implementations
represented by RMSEB and RMSES, respectively, using various sequence lengths Ns and
different bit resolutions Nb .

Adder Absolute Subtractor

Nb (Bits) RMSEB (%) RMSES (%) Ns (Bits) RMSEB (%) RMSES (%) Ns (Bits)

3 3.757 3.371 16 3.220 3.332 16
4 1.999 1.719 32 1.596 1.939 32
5 1.060 9.738×10−1 64 9.471×10−1 8.634×10−1 64
6 5.405×10−1 4.646×10−1 128 5.124×10−1 4.928×10−1 128
7 2.381×10−1 2.228×10−1 256 2.683×10−1 2.492×10−1 256
8 1.031×10−1 1.301×10−1 512 1.027×10−1 1.269×10−1 512
9 5.174×10−2 6.026×10−2 1,024 5.994×10−2 5.763×10−2 1,024
10 2.693×10−2 2.978×10−2 2,048 2.900×10−2 2.523×10−2 2,048
11 1.631×10−2 1.669×10−2 4,096 1.227×10−2 1.333×10−2 4,096
12 6.724×10−3 6.801×10−3 8,192 6.927×10−3 8.333×10−3 8,192
13 4.046×10−3 3.976×10−3 16,384 3.250×10−3 3.238×10−3 16,384
14 1.675×10−3 1.986×10−3 32,768 2.011×10−3 2.030×10−3 32,768
15 1.047×10−3 8.790×10−4 65,536 8.579×10−4 9.272×10−4 65,536
16 4.349×10−4 4.681×10−4 131,072 4.621×10−4 5.335×10−4 131,072

Figure C.1: Schematic of the stochastic adder: S4 = 0.5 · (S1 + S2) (S1 and S2 are
uncorrelated bipolar sequences and S3 is a unipolar stochastic sequence encoding 0.5).

auxiliary circuits are included. The core of a stochastic adder, which is a multiplexer, out-
performs the conventional binary adder in terms of power consumption. Table C.4 shows
the minimum clock period of both the stochastic and binary circuits. The minimum clock
period of the stochastic adder is consistently smaller than the conventional binary adder.

In Tables C.6 and C.5, the EPOs and TPAs of the conventional binary multiplier and
the stochastic multiplier are compared. Again the stochastic adder including the auxiliary
circuits is not competitive. The recommended bit resolutions for stochastic adders without
auxiliary circuits are 4 bits and below as stochastic adders outperform the conventional
binary adders in terms of TPA. Note that the required sequence lengths are shown in the
last columns in Tables C.6 and C.5.

Absolute Subtractor

Absolute subtraction is a useful arithmetic operation in image processing, especially for
the edge-detection application [6]. XOR gates can be directly used as stochastic absolute
subtractors using correlated sequences. Both unipolar and bipolar sequences can be applied.
The schematic of the stochastic absolute subtractor is shown in Figure C.2.

Measurements such as area, power and minimum clock period are compared in Tables
C.7, C.8 and C.9. Similar conclusions can be drawn for the stochastic absolute subtractor
as the stochastic adder. However, the stochastic subtractor also shows more promising

95

Table C.2: Area report of binary adders (B), stochastic adders including auxiliary circuits
(S1) and stochastic adders excluding auxiliary circuits (S2). Nb represents the bit resolution.

Nb (bits) B (um2) S1 (um2) Ratio: S1/ B S2 (um2) Ratio: S2/ B

3 1.982 1.001 0.505 0.197 0.391
4 2.131 2.140 1.004 0.197 0.197
5 2.296 2.419 1.054 0.197 0.187
6 2.775 3.598 1.297 0.197 0.152
7 3.625 4.830 1.332 0.197 0.148
8 4.353 5.898 1.355 0.197 0.146
9 4.892 6.953 1.421 0.197 0.139
10 5.603 8.196 1.463 0.197 0.135
11 6.283 9.527 1.516 0.197 0.130
12 6.913 10.976 1.588 0.197 0.124
13 7.378 12.162 1.648 0.197 0.120
14 7.791 13.479 1.730 0.197 0.114
15 8.102 14.537 1.794 0.197 0.110
16 8.514 16.879 1.982 0.197 0.100

Table C.3: Power report of binary adders (B), stochastic adders including auxiliary circuits
(S1) and stochastic adders excluding auxiliary circuits (S2) at minimum clock period. Nb

represents the bit resolution.

Nb (bits) B (mW) S1 (mW) S2 (mW)

3 0.060 0.382 0.013
4 0.061 0.508 0.013
5 0.065 0.633 0.013
6 0.069 0.832 0.013
7 0.073 0.855 0.013
8 0.076 0.894 0.013
9 0.079 1.075 0.013
10 0.082 1.123 0.013
11 0.085 1.195 0.013
12 0.090 1.276 0.013
13 0.093 1.423 0.013
14 0.098 1.562 0.013
15 0.105 1.694 0.013
16 0.110 1.804 0.013

96

Table C.4: Minimum clock period report of binary adders (B), stochastic adders including
auxiliary circuits (S1) and stochastic adders excluding auxiliary circuits (S2). Nb represents
the bit resolution.

Nb (bits) B (ps) S1 (ps) S2 (ps)

3 630 210 190
4 630 210 190
5 630 210 190
6 650 210 190
7 660 220 190
8 670 220 190
9 680 220 190
10 690 220 190
11 700 220 190
12 720 220 190
13 730 230 190
14 750 230 190
15 750 230 190
16 760 240 190

Table C.5: EPO report of binary adders (B), stochastic adders including auxiliary circuits
(S1) and stochastic adders excluding auxiliary circuits (S2). Nb represents the bit resolution
and Ns represents sequence length.

Nb (bits) B (nJ/Operation) S1 (nJ/Operation) Ratio: S1/ B S2 (nJ/Operation) Ratio: S2/ B Ns (bits)

3 3.778×10−2 1.284 34.0 4.101×10−2 1.1 16
4 3.842×10−2 3.412 88.8 8.202×10−2 2.1 32
5 4.073×10−2 8.514 209.1 1.640×10−1 4.0 64
6 4.461×10−2 2.237×10+1 501.5 3.281×10−1 7.4 128
7 4.786×10−2 4.814×10+1 1006.0 6.562×10−1 13.7 256
8 5.096×10−2 1.007×10+2 1976.6 1.312 25.8 512
9 5.339×10−2 2.421×10+2 4535.0 2.625 49.2 1,024
10 5.630×10−2 5.058×10+2 8984.1 5.249 93.2 2,048
11 5.918×10−2 1.077×10+3 18192.7 1.050×10+1 177.4 4,096
12 6.477×10−2 2.299×10+3 35494.1 2.100×10+1 324.2 8,192
13 6.827×10−2 5.363×10+3 78558.7 4.199×10+1 615.2 16,384
14 7.374×10−2 1.102×10+4 149462.2 8.399×10+1 1139.0 32,768
15 7.864×10−2 2.403×10+4 305556.2 1.680×10+2 2136.1 65,536
16 8.365×10−2 5.330×10+4 637203.5 3.360×10+2 4016.1 131,072

97

Table C.6: TPA report of binary adders (B), stochastic adders including auxiliary circuits
(S1) and stochastic adders excluding auxiliary circuits (S2). Nb represents the bit resolution
and Ns represents sequence length.

Nb (bits) B ((ns · um2)−1) S1 ((ns · um2)−1) Ratio: S1/ B S2 ((ns · um2)−1) Ratio: S2/ B Ns (bits)

3 0.795 2.973×10−1 3.739×10−1 1.666 2.095 16
4 0.749 6.954×10−2 9.279×10−2 8.330×10−1 1.112 32
5 0.696 3.076×10−2 4.422×10−2 4.165×10−1 5.988×10−1 64
6 0.554 1.034×10−2 1.866×10−2 2.082×10−1 3.758×10−1 128
7 0.419 3.676×10−3 8.772×10−3 1.041×10−1 2.484×10−1 256
8 0.342 1.505×10−3 4.397×10−3 5.206×10−2 1.521×10−1 512
9 0.301 6.385×10−4 2.124×10−3 2.603×10−2 8.659×10−2 1,024
10 0.259 2.708×10−4 1.047×10−3 1.301×10−2 5.032×10−2 2,048
11 0.228 1.165×10−4 5.111×10−4 6.507×10−3 2.855×10−2 4,096
12 0.201 5.055×10−5 2.510×10−4 3.254×10−3 1.615×10−2 8,192
13 0.185 2.182×10−5 1.177×10−4 1.627×10−3 8.777×10−3 16,384
14 0.170 9.844×10−6 5.784×10−5 8.134×10−4 4.780×10−3 32,768
15 0.165 4.564×10−6 2.768×10−5 4.067×10−4 2.467×10−3 65,536
16 0.154 1.883×10−6 1.224×10−5 2.034×10−4 1.322×10−3 131,072

Figure C.2: Schematic of the stochastic absolute subtractor: S3 = |S1 − S2| (S1 and S2
are correlated sequences).

performance with respect to TPA (see Table C.11). For 4-bit resolution, the TPA of the
stochastic absolute subtractor is 1.37 times that of its conventional binary counterpart. In
contrast, the TPA of the stochastic adder is only 1.11 times of that of the binary adder.
The EPO reported in Table C.10 shows that the stochastic absolute subtractor consumes
more energy than the conventional binary implementation even if for 3-bit resolution.

C.2 A Study on the Sum-of-Products Function Using Basic
Stochastic Arithmetic Elements

In the previous sections and Chapter 2, basic stochastic arithmetic elements are investigated
with respect to accuracy and cost efficiency. To further explore the feasibility of stochastic
circuits using multiple basic arithmetic elements, a SOP function Y = H[0]·X[0]+H[1]·X[1]
is chosen to be discussed in this section. H[0], X[0], H[1] and X[1] are four signed numbers
as primary inputs and Y is the output. The binary SOP can be implemented by multipliers
and an adder as shown in Figure C.3(a). For the stochastic SOP, a straightforward imple-
mentation using XNOR gates (as bipolar multipliers) and a multiplexer (as an adder) is
shown in Figure C.3(b). Bipolar SNGs are used to encode the primary inputs as S(H[0]),
S(X[0]), S(H[1]) and S(X[1]). A counter is used to decode the stochastic sequence S(Y).
Note that similar results can be obtained if the primary inputs H[0], X[0], H[1] and X[1] are
unsigned numbers and the unipolar encoding is used in the stochastic SOP implementation.

Stochastic and conventional binary circuits for a SOP function are built to investigate
the area, power, delay and calculate the EPO and TPA. Again, the required minimum
sequence lengths for the stochastic SOP implementation are determined by matching the
RMSE of the corresponding conventional binary designs.

98

Table C.7: Area report of binary absolute subtractors (B), stochastic absolute subtractors
including auxiliary circuits (S1) and stochastic absolute subtractors excluding auxiliary
circuits (S2). Nb represents the bit resolution.

Nb (bits) B (um2) S1 (um2) Ratio: S1/ B S2 (um2) Ratio: S2/ B

3 2.235 1.002 0.449 0.201 0.448
4 2.548 2.148 0.843 0.201 0.238
5 3.148 2.420 0.769 0.201 0.261
6 3.245 3.603 1.110 0.201 0.181
7 4.496 4.835 1.075 0.201 0.187
8 4.393 5.903 1.344 0.201 0.150
9 4.980 6.962 1.398 0.201 0.144
10 5.640 8.196 1.453 0.201 0.138
11 6.295 9.532 1.514 0.201 0.133
12 7.029 10.979 1.562 0.201 0.129
13 8.223 12.163 1.479 0.201 0.136
14 8.021 13.484 1.681 0.201 0.120
15 8.728 14.538 1.666 0.201 0.121
16 9.415 16.883 1.793 0.201 0.112

Table C.8: Power report of binary absolute subtractors (B), stochastic absolute subtractors
including auxiliary circuits (S1) and stochastic absolute subtractors excluding auxiliary
circuits (S2) at minimum clock period. Nb represents the bit resolution.

Nb (bits) B (mW) S1 (mW) S2 (mW)

3 0.064 0.383 0.015
4 0.062 0.518 0.015
5 0.070 0.642 0.015
6 0.076 0.841 0.015
7 0.074 0.863 0.015
8 0.085 0.899 0.015
9 0.083 1.083 0.015
10 0.089 1.125 0.015
11 0.093 1.202 0.015
12 0.098 1.285 0.015
13 0.099 1.433 0.015
14 0.099 1.463 0.015
15 0.111 1.602 0.015
16 0.112 1.703 0.015

99

Table C.9: Minimum clock period report of binary absolute subtractors (B), stochastic
absolute subtractors including auxiliary circuits (S1) and stochastic absolute subtractors
excluding auxiliary circuits (S2). Nb represents the bit resolution.

Nb (bits) B (ps) S1 (ps) S2 (ps)

3 650 200 190
4 660 210 190
5 670 210 190
6 680 210 190
7 690 210 190
8 700 220 190
9 710 220 190
10 720 220 190
11 730 220 190
12 750 230 190
13 750 230 190
14 760 230 190
15 760 230 190
16 770 240 190

Table C.10: EPO report of binary absolute subtractors (B), stochastic absolute subtractors
including auxiliary circuits (S1) and stochastic absolute subtractors excluding auxiliary
circuits (S2). Nb represents the bit resolution and Ns represents sequence length.

Nb (bits) B (nJ/Operation) S1 (nJ/Operation) Ratio: S1/ B S2 (nJ/Operation) Ratio: S2/ B Ns (bits)

3 4.145×10−2 1.226 29.6 4.451×10−2 1.1 16
4 4.050×10−2 3.478 85.9 8.901×10−2 2.2 32
5 4.702×10−2 8.635 183.6 1.780×10−1 3.8 64
6 5.202×10−2 2.259×10+1 434.4 3.560×10−1 6.8 128
7 5.104×10−2 4.637×10+1 908.5 7.121×10−1 14.0 256
8 5.908×10−2 1.012×10+2 1713.6 1.424 24.1 512
9 5.860×10−2 2.440×10+2 4164.8 2.848 48.6 1,024
10 6.386×10−2 5.069×10+2 7937.3 5.697 89.2 2,048
11 6.795×10−2 1.083×10+3 15939.7 1.139×10+1 167.7 4,096
12 7.427×10−2 2.421×10+3 32596.5 2.279×10+1 306.8 8,192
13 7.437×10−2 5.399×10+3 72602.6 4.557×10+1 612.8 16,384
14 7.580×10−2 1.102×10+4 145433.9 9.115×10+1 1202.5 32,768
15 8.484×10−2 2.414×10+4 284573.7 1.823×10+2 2148.8 65,536
16 8.617×10−2 5.358×10+4 621856.9 3.646×10+2 4231.1 131,072

100

Table C.11: TPA report of binary absolute subtractors (B), stochastic absolute subtractors
including auxiliary circuits (S1) and stochastic absolute subtractors excluding auxiliary
circuits (S2). Nb represents the bit resolution and Ns represents sequence length.

Nb (bits) B ((ns · um2)−1) S1 ((ns · um2)−1) Ratio: S1/ B S2 ((ns · um2)−1) Ratio: S2/ B Ns (bits)

3 0.688 3.118×10−1 4.531×10−1 1.637 2.378 16
4 0.596 6.928×10−2 1.162×10−1 8.183×10−1 1.372 32
5 0.473 3.074×10−2 6.495×10−2 4.091×10−1 8.644×10−1 64
6 0.453 1.033×10−2 2.279×10−2 2.046×10−1 4.514×10−1 128
7 0.322 3.847×10−3 1.194×10−2 1.023×10−1 3.173×10−1 256
8 0.326 1.504×10−3 4.614×10−3 5.114×10−2 1.569×10−1 512
9 0.283 6.376×10−4 2.255×10−3 2.557×10−2 9.042×10−2 1,024
10 0.247 2.708×10−4 1.097×10−3 1.279×10−2 5.179×10−2 2,048
11 0.217 1.164×10−4 5.359×10−4 6.393×10−3 2.943×10−2 4,096
12 0.189 4.834×10−5 2.563×10−4 3.196×10−3 1.695×10−2 8,192
13 0.162 2.182×10−5 1.343×10−4 1.598×10−3 9.838×10−3 16,384
14 0.163 9.840×10−6 6.026×10−5 7.991×10−4 4.894×10−3 32,768
15 0.150 4.563×10−6 3.041×10−5 3.995×10−4 2.663×10−3 65,536
16 0.138 1.883×10−6 1.365×10−5 1.998×10−4 1.448×10−3 131,072

Figure C.3: Architectures of (a) conventional binary and (b) stochastic SOP implementa-
tions

C.2.1 Required Sequence Length for a Sum-of-Products Function

The RMSE method is again used as a strategy to determine the required sequence length.
Conventional binary implementations of the SOP function are considered for increasing
resolutions from 3 bits to 16 bits. Various sequence lengths are then used to compare the
stochastic SOP implementation with the conventional binary implementation. Accuracy is
measured by RMSE in Equation 2.58. Table C.12 shows the matching sequence lengths for
increasing bit resolutions. The sequence length reported in Table C.12 will then be used in
the evaluation of circuit performances.

C.2.2 Circuit Performance Comparison

For bit resolutions Nb = 3, 4, ..., 16, conventional binary circuits for SOP functions are built
and evaluated. The stochastic SOP function can be implemented using two AND gates for
unipolar multiplications and a multiplexer for summation. A standard ASIC design flow is
used and the generated netlists are synthesized using Synopsys Design Compiler to yield
reports on area, power and delay. EPO and TPA can then be calculated to compare the

101

Table C.12: RMSE comparison of binary and stochastic SOP implementations represented
by RMSEB and RMSES, respectively, using various sequence lengths Ns and different bit
resolutions Nb.

R (Bits) RMSEB (%) RMSES (%) Ns (Bits)

3 13.31 13.50 128
4 6.741 6.569 512
5 3.114 3.064 1,024
6 1.861 1.548 2,048
7 8.075×10−1 9.217×10−1 4,096
8 4.459×10−1 4.230×10−1 8,192
9 2.173×10−1 2.252×10−1 16,384
10 1.153×10−1 1.006×10−1 65,536
11 4.815×10−2 5.591×10−2 524,288
12 2.744×10−2 2.807×10−2 1,048,576
13 1.347×10−2 1.358×10−2 4,194,304
14 7.106×10−3 6.537×10−3 16,777,216
15 3.358×10−3 3.359×10−3 67,108,864
16 1.790×10−3 1.522×10−3 268,435,456

conventional binary implementations and the stochastic implementations. Note that the
stochastic implementations with or without auxiliary circuits such as SNGs and counters
are considered.

The area comparison is shown in Table C.13. The stochastic SOP uses a smaller area
as expected. The advantage becomes significant for increasing bit resolutions. In terms
of power consumptions shown in Table C.14, however, the stochastic implementation is
inefficient compared to the conventional binary implementation when the auxiliary circuits
are included. In Table C.15, the stochastic SOP can run at a smaller clock period compared
to the conventional binary implementation.

Fair comparisons should be based on metrics such as the TPA and the EPO. The
stochastic SOP consumes more energy than the conventional binary SOP at all bit resolu-
tions as shown in Table C.16. It is therefore not recommended to use stochastic computing
for the SOP function if there is a tight budget on energy supply. From Table C.17, it can be
seen that the stochastic SOP with auxiliary circuits underperforms the conventional binary
SOP in terms of TPA. The stochastic SOP can only be competitive for 3-bit precisions
when the auxiliary circuits are not included.

C.2.3 A Discussion on Various Scales of SOP Circuit Performance

The stochastic SOP implementation above is really a sum of two products. The results can
be extended to estimate the performance of general SOP implementations with more inputs.
From the previous results and discussions, circuits built using the stochastic approach suffer
from poor efficiency because of the required auxiliary circuits such as SNGs. Stochastic
circuits can only be competitive for some bit precisions when the auxiliary circuits are not
included. Therefore, the proportion of the auxiliary circuits in a computing system is the
key factor that determines if a stochastic implementation can achieve an advantage over
the corresponding conventional binary implementation. If the general SOP implementation
requires more auxiliary circuits such as SNGs, the performance of the stochastic circuits
will be degraded compared to the previous sum-of-two-products implementation.

102

Table C.13: Area reports for the binary SOP function (B), the stochastic SOP function
including auxiliary circuits (S1) and the stochastic SOP function excluding auxiliary circuits
(S2). Nb represents bit resolutions.

Nb (bits) B (um2) S1 (um2) Ratio: S1/ B S2 (um2) Ratio: S2/ B

3 14.135 1.873 0.133 0.291 2.062×10−2

4 19.824 2.313 0.117 0.291 1.470×10−2

5 26.238 2.629 0.100 0.291 1.111×10−2

6 36.265 3.272 0.090 0.291 8.037×10−3

7 54.867 4.522 0.082 0.291 5.312×10−3

8 74.770 5.468 0.073 0.291 3.898×10−3

9 93.079 6.605 0.071 0.291 3.131×10−3

10 118.434 7.937 0.067 0.291 2.461×10−3

11 145.304 8.620 0.059 0.291 2.006×10−3

12 172.830 9.524 0.055 0.291 1.686×10−3

13 199.443 10.618 0.053 0.291 1.461×10−3

14 226.170 11.413 0.050 0.291 1.289×10−3

15 251.927 12.142 0.048 0.291 1.157×10−3

16 281.855 13.274 0.047 0.291 1.034×10−3

Table C.14: Power report of binary SOP function (B), stochastic SOP function including
auxiliary circuits (S1) and stochastic SOP function excluding auxiliary circuits (S2) at
minimum clock period. Nb represents bit resolutions.

Nb (bits) B (mW) S1 (mW) S2 (mW)

3 0.476 1.138 0.022
4 0.510 1.518 0.022
5 0.542 1.893 0.022
6 0.559 2.486 0.022
7 0.567 2.555 0.022
8 0.580 2.678 0.022
9 0.585 3.215 0.022
10 0.602 3.363 0.022
11 0.627 3.575 0.022
12 0.645 3.816 0.022
13 0.662 4.263 0.022
14 0.677 4.382 0.022
15 0.715 4.774 0.022
16 0.746 5.076 0.022

103

Table C.15: Minimum clock period report of binary SOP function (B), stochastic SOP
function including auxiliary circuits (S1) and stochastic SOP function excluding auxiliary
circuits (S2). Nb represents bit resolutions.

Nb (bits) B (ps) S1 (ps) S2 (ps)

3 820 290 230
4 830 300 230
5 840 300 230
6 850 300 230
7 860 300 230
8 870 310 230
9 880 310 230
10 890 310 230
11 900 310 230
12 920 320 230
13 920 320 230
14 930 320 230
15 930 320 230
16 940 330 230

Table C.16: EPO report of binary SOP (B), stochastic SOP including auxiliary circuits
(S1) and stochastic SOP excluding auxiliary circuits (S2). Nb represents the bit resolution
and Ns represents sequence length.

Nb (bits) B (nJ/Operation) S1 (nJ/Operation) Ratio: S1/ B S2 (nJ/Operation) Ratio: S2/ B Ns (bits)

3 0.391 4.225×10+1 1.081×10+2 6.492×10−1 1.662 128
4 0.422 2.331×10+2 5.519×10+2 2.597 6.147 512
5 0.456 5.817×10+2 1.276×10+3 5.193 1.140×10+1 1,024
6 0.475 1.528×10+3 3.217×10+3 1.039×10+1 2.187×10+1 2,048
7 0.488 3.139×10+3 6.438×10+3 2.077×10+1 4.260×10+1 4,096
8 0.503 6.801×10+3 1.351×10+4 4.155×10+1 8.253×10+1 8,192
9 0.515 1.633×10+4 3.171×10+4 8.309×10+1 1.614×10+2 16,384
10 0.534 6.832×10+4 1.279×10+5 3.324×10+2 6.221×10+2 65,536
11 0.565 5.810×10+5 1.029×10+6 2.659×10+3 4.707×10+3 524,288
12 0.596 1.280×10+6 2.148×10+6 5.318×10+3 8.920×10+3 1,048,576
13 0.608 5.722×10+6 9.415×10+6 2.127×10+4 3.500×10+4 4,194,304
14 0.632 2.353×10+7 3.724×10+7 8.509×10+4 1.347×10+5 16,777,216
15 0.667 1.025×10+8 1.536×10+8 3.403×10+5 5.099×10+5 67,108,864
16 0.701 4.497×10+8 6.415×10+8 1.361×10+6 1.942×10+6 268,435,456

104

Table C.17: TPA report of binary SOP (B), stochastic SOP including auxiliary circuits
(S1) and stochastic SOP excluding auxiliary circuits (S2). Nb represents the bit resolution
and Ns represents sequence length.

Nb (bits) B ((ns · um2)−1) S1 ((ns · um2)−1) Ratio: S1/ B S2 ((ns · um2)−1) Ratio: S2/ B Ns (bits)

3 8.625×10−2 1.438×10−2 1.668×10−1 1.165×10−1 1.351 128
4 6.091×10−2 2.815×10−3 4.621×10−2 2.914×10−2 4.783×10−1 512
5 4.531×10−2 1.238×10−3 2.732×10−2 1.457×10−2 3.215×10−1 1,024
6 3.244×10−2 4.974×10−4 1.533×10−2 7.284×10−3 2.245×10−1 2,048
7 2.119×10−2 1.800×10−4 8.492×10−3 3.642×10−3 1.718×10−1 4,096
8 1.540×10−2 7.202×10−5 4.676×10−3 1.821×10−3 1.182×10−1 8,192
9 1.221×10−2 2.981×10−5 2.442×10−3 9.105×10−4 7.458×10−2 16,384
10 9.507×10−3 6.202×10−6 6.523×10−4 2.276×10−4 2.394×10−2 65,536
11 7.637×10−3 7.138×10−7 9.347×10−5 2.845×10−5 3.726×10−3 524,288
12 6.261×10−3 3.129×10−7 4.998×10−5 1.423×10−5 2.272×10−3 1,048,576
13 5.458×10−3 7.017×10−8 1.286×10−5 3.557×10−6 6.516×10−4 4,194,304
14 4.737×10−3 1.632×10−8 3.446×10−6 8.892×10−7 1.877×10−4 16,777,216
15 4.252×10−3 3.835×10−9 9.019×10−7 2.223×10−7 5.227×10−5 67,108,864
16 3.774×10−3 8.505×10−10 2.253×10−7 5.557×10−8 1.472×10−5 268,435,456

Assuming that a general SOP function can be written as

Y =

2Np∑
i=1

Ai ·Xi, (C.1)

where 2Np is the number of products in the SOP function for computational convenience.
The hardware used in the SOP implementations is estimated in Table C.18. In the sum-
of-two-products implementation, two XNOR gates and one 2-input multiplexer are used
to build the core circuit. Meanwhile five SNGs and one counter are required. For a more
general case where the sum-of-2Np-products is implemented, the required hardware can
be approximated by 2Np XNOR gates and (2Np − 1) 2-input multiplexers. As many as
(2Np+1+Np) SNGs are needed to convert the inputs of the XNOR gates and the multiplexers.
The number of units required in the core circuit is calculated by adding up the number of
XNOR gates and the number of multiplexers. Similarly, the number of units required in
the auxiliary circuit is considered as the sum of the number of XNOR gatesSNGs and
one representing the counter required to convert the stochastic sequence back to a binary
number. The ratio of the auxiliary circuits over the core circuits is thus 6/3 = 2 for the
sum-of-two-products scenario. This number is greater than 2 for the sum-of-2Np-products
implementation, indicating that the proportion of the auxiliary circuits increases as the
number of the products grows. This rough estimation shows that the stochastic approach is
still not competitive versus conventional binary for a general SOP function with 2Np pairs
of products.

Table C.18: Hardware usage estimation of the stochastic SOP implementation. The number
of circuit units provide simplified measures of cost.

Core Circuit (C) Auxiliary Circuit (A) Ratio: A/C

SOP implementations XNOR 2-input MUX SNG Counter

Sum of two Products 2 1 5 1 6/3 = 2

Sum of 2Np Products 2Np 2Np − 1 2Np+1 +Np 1 > 2

105

	title_July21
	Msc thesis Jul21
	Introduction
	Background and Motivation
	Recent Work on Stochastic Computing
	Major Contributions of this Thesis
	An Overview of this Thesis

	Introduction and Evaluations of Stochastic Arithmetic Elements
	Stochastic Computing
	A Stochastic Computing System
	Unipolar and Bipolar Encodings

	Stochastic Computing Elements
	Combinational Stochastic Elements
	Sequential Stochastic Elements
	Unipolar and Bipolar Stochastic Number Generators

	Error Analysis on Stochastic Arithmetic Elements
	Error Analysis for Conventional Binary Implementations
	Error Analysis for Stochastic Implementations
	Required Sequence Length for Stochastic Computing Elements

	Performance Evaluation on Stochastic Arithmetic Elements
	Required Sequence Length for Stochastic Computing Elements Using the Simulation Method
	Circuit Performance Comparison

	Discussions and Summary

	Stochastic Circuit Design and Evaluation of FIR Filters
	Architectures of FIR Filters
	Stochastic FIR Filter Designs
	Conventional Weighted Average (CWA) Design
	Hard-wired Weighted Average (HWA) Design
	Multiple-stage Weighted Average (MWA) Design

	Performance Evaluation of the Conventional Binary and the Proposed Stochastic FIR Filters
	Simulation Results
	Error Analysis
	Error Analysis for Conventional Binary FIR Filters
	Error Analysis for Stochastic FIR Filters

	Fault Tolerance Analysis and Simulation
	Fault-tolerance Analysis
	Fault-tolerance Simulation

	Summary

	Stochastic Circuit Design and Evaluation of Vector Quantization
	Background
	Methodology
	Codebook Generation
	Error Calculation in the Encoding Process

	Proposed Vector Quantization Circuit Design
	Overall System Architecture
	Polynomial Arithmetic Synthesized Using Bernstein Polynomials
	Detailed design for stochastic VQ
	Index Storage and Delivery
	Error Analysis

	Simulation and Discussion
	Required Sequence Length
	Functional Simulation Using Matlab
	Circuit Performances

	Summary

	Conclusions and Future Work
	Conclusions of This Thesis
	Recommendations for Future Work

	Bibliography
	Proof of Equations 3.58 and 3.59
	Proof of Equations 4.21
	Evaluations of Stochastic Adders and Absolute Subtractors
	Performance Evaluation on Stochastic Adders and Absolute Subtractors
	Required Sequence Length for Stochastic Computing Elements Using the Simulation Method
	Circuit Performance Comparison

	A Study on the Sum-of-Products Function Using Basic Stochastic Arithmetic Elements
	Required Sequence Length for a Sum-of-Products Function
	Circuit Performance Comparison
	A Discussion on Various Scales of SOP Circuit Performance

