This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.
by

W.A. BOND
Department of Fisheries and Oceans Winnipeg, Manitoba and D.K. BERRY Department of Environment Edmonton, Alberta for

> ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM

$$
\text { AF } 4.3 .2
$$

$$
\text { February } 1980
$$

TABLE OF CONTENTS

Page
DECLARATION ii
LETTER OF TRANSMITTAL iii
DESCRIPTIVE SUMMARY iv
LIST OF TABLES $x i i$
LIST OF FIGURES xxv
ABSTRACT xxvii
ACKNOWLEDGEMENTS $x x v i i i$

1. INTRODUCTION 1
2. DESCRIPTION OF STUDY AREA 3
3. MATERIALS AND METHODS 10
3.1 General 10
3.2 Field Techniques 10
3.2 .1 Gill Nets 10
3.2.2 Large Mesh Beach Seines 11
3.2 .3 Small Mesh Beach Seines 12
3.2.4 Tagging 12
3.2 .5 Sexual Dimorphism 13
3.2 .6 Habitat Preference Analysis 13
3.3 Laboratory Techniques 13
3.3 .1 Fish Identification 13
3.3 .2 Age Determination 14
3.3.3 Food Habits 14
3.3 .4 Length and Weight of Small Fish 15
3.3.5 Fecundity 15
3.3 .6 Data Analysis 15
3.4 Limitations of Methods 16
3.4 .1 Fish Collection 16
3.4.1.1 Standard Gill Net Gangs 16
3.4.1.2 Large Mesh Beach Seines 17
3.4.1.3 Small Mesh Beach Seines 18
3.4.2 Age Determination and Growth Analysis 18
3.4.3 Tagging 19
3.4.4 Winter Conditions 19
4. RESULTS AND DISCUSSIONS 20
4.1 General 20
4.2 Life Histories of Species 58

TABLE OF CONTENTS (CONTINUED)

Page
4.2.1 Goldeye 58
4.2.1.1 Distribution and Relative Abundance 58
4.2.1.2 Age and Growth 59
4.2.1.3 Sex and Maturity 69
4.2.1.4 Spawning 69
4.2.1.5 Migrations and Movements 69
4.2.2 Walleye 72
4.2.2.1 Distribution and Relative Abundance 72
4.2.2.2 Age and Growth 74
4.2.2.3 Sex and Maturity 84
4.2.2.4 Spawning 87
4.2.2.5 Fecundity 88
4.2.2.6 Migrations and Movements 88
4.2 .3 Lake Whitefish 90
4.2.3.1 Distribution and Relative Abundance 90
4.2.3.2 Age and Growth 92
4.2.3.3 Sex and Maturity 99
4.2.3.4 Spawning 99
4.2.3.5 Fecundity 99
4.2.3.6 Migrations and Movements 103
4.2 .4 Northern Pike 104
4.2.4.i Distribution and Relative Abundance 104
4.2.4.2 Age and Growth 105
4.2.4.3 Sex and Maturity 115
4.2.4.4 Spawning 115
4.2.4.5 Fecundity 115
4.2.4.6 Migrations and Movements 119
4.2 .5 Longnose Sucker 119
4.2.5.1 Distribution and Relative Abundance 119
4.2.5.2 Age and Growth 120
4.2.5.3 Sex and Maturity 124
4.2.5.4 Spawning 131
4.2.5.5 Fecundity 131
4.2.5.6 Migrations and Movements 132
4.2 .6 White Sucker 134
4.2.6.1 Distribution and Relative Abundance 134
4.2.6.2 Age and Growth 134
4.2.6.3 Sex and Maturity 137
4.2.6.4 Spawning and Migrations 137
4.2.6.5 Fecundity 139
4.2.7 Trout-perch 139
4.2.7.1 Distribution and Relative Abundance 139
4.2.7.2 Age and Growth 139
4.2.7.3 Sex and Maturity 142
4.2.7.4 Spawning 142
4.2.7.5 Fecundity 150
4.2.7.6 Food Habits 150

TABLE OF CONTENTS (CONTINUED)

Page
4.2.8 Flathead Chub 150
4.2.8.1 Distribution and Relative Abundance 150
4.2.8.2 Age and Growth 154
4.2.8.3 Sex and Maturity 154
4.2.8.4 Spawning 163
4.2.8.5 Movements 163
4.2.8.6 Fecundity 163
4.2.8.7 Food Habits 165
4.2.9 Lake Chub 165
4.2.9.1 Distribution and Relative Abundance 165
4.2.9.2 Age and Growth 165
4.2.9.3 Sex and Maturity 170
4.2.9.4 Spawning 170
4.2.9.5 Food Habits 170
4.2.10 Emerald Shiner 173
4.2.10.1 Distribution and Relative Abundance 173
4.2.10.2 Age and Growth 173
4.2.10.3 Sex and Maturity 181
4.2.10.4 Spawning 184
4.2.10.5 Movements 184
4.2.10.6 Fecundity 185
4.2.10.7 Food Habits 185
4.2.11 Spottail Shiner 185
4.2.11.1 Distribution and Relative Abundance 185
4.2.11.2 Age and Growth 188
4.2.11.3 Sex and Maturity 188
4.2.11.4 Spawning 195
4.2.11.5 Fecundity 195
4.2.11.6 Food Habits 195
4.2.12 Other Species 195
4.2.12.1 Mountain Whitefish 198
4.2.12.2 Arctic Grayling 205
4.2.12.3 Dolly Varden 206
4.2.12.4 Finescale Dace 206
4.2.12.5 Northern Redbelly Dace 206
4.2.12.6 Fathead Minnow 207
4.2.12.7 Longnose Dace 207
4.2.12.8 Burbot 207
4.2.12.9 Brook Stickleback 208
4.2.12.10 Ninespine Stickleback 209
4.2.12.11 Yellow Perch 209
4.2.12.12 Slimy Sculpin 209
4.2.12.13 Spoonhead Sculpin 210
5. REFERENCES CITED 211

TABLE OF CONTENTS (CONCLUDED)

		Page
6.	APPENDIX	214
6.1	Desc:-iptions for Sampling Sites Used in the 1977 Study of the Athabasca River	214
6.1 .1	Mildred Lake Study Area	214
6.1.1.1	Standard Gang Sites	214
6.1.1.2	Large Mesh Seine Sites	215
6.1.1.3	Small Mesh Seine Sites	216
6.1 .2	Delta Study Area	217
6.1 .2 .1	Standard Gang Sites	217
6.1.2.2	Large Mesh Seine Sites	218
6.1.2.3	Small Mesh Seine Sites	219
6.2	Numbers (N) and Percentages (\%) for Fish Captured in Each Mesh Size of Standard Gangs, Athabasca	
6.3	River, 1977 Number (N), Percentage (\%), and Catch-per-uniteffort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site during Each Sampling Period, Athabasca River, 1977	221 224
6.4	Dates of Tagging and Recapture, Locations of Release and Recapture, Distance Travelled, and Elapsed Time between Release and Recapture for Fish Tagged in the Athabasca River in 1976 and 1977 and Recaptured in and since 1977. (Tables 138 and 139)	251
7.	LIST OF AOSERP RESEARCH REPORTS	262

LIST OF TABLES

Page

1. Scientific and Common Names of Fish Species Captured in the Mildred Lake and Delta Study Areas, Athabasca River, 1977 21
2. Number of Fish Taken by Each Capture Method from the Athabasca River, Combined Study Areas, 1977 23
3. Number of Fish Taken by Each Capture Method from the Mildred Lake Study Area, Athabasca River, 1977 25
4. Number of Fish Taken by Each Capiure Method from the Delta Study Area, Athabasca River, 1977 27
5. Numbers (N), Percentage Composition (\%), Catch-per- unit-effort (C / E), and Percentage Frequency of Occurrence (FO) for Fish Captured in Standard Gangs from the Mildred Lake Study Area, Athabasca River, 1977 29
6. Numbers (N), Percentage Composition (\%), Catch-per- unit-effort (C / E), and Percentage Frequency of Occurrence (FO) for Fish Captured in Standard Gangs from the Delta Study Area, Athabasca River, 1977 33
7. Numbers (N), Percentage Composition (\%), Average Catchper Seine Haul (C / E), and Percentage Frequency ofOccurrence (FO) for Fish Captured in Large Mesh BeachSeines in the Mildred Lake Study Area, Athabasca River,197736
8. Numbers (N), Percentage Composition (\%), Average Catchper Seine Haul (C / E), and Percentage Frequency ofOccurrence (FO) for Fish Captured in Large Mesh BeachSeines in the Delta Study Area, Athabasca River, 197742
9. Numbers (N), Percentage Composition (\%), Average Catchper Seine Haul (C / E), and Percentage Frequency ofOccurrence (FO) for Fish Captured in Small Mesh BeachSeines in the Mildred Lake Study Area, Athabasca River,197746
10. Numbers (N), Percentage Composition (\%), Average Catch per Seine Haul (C / E), and Percentage Frequency of Occurrence (FO) for Fish Captured in Small Mesh Beach Seines in the Delta Study Area, Athabasca River, 1977 51

LIST OF TARIES (CONTINUED)

Page
11. Numbers (N), Percentage Composition (\%), and Number of Fish per Hour of Effort (C/E) for Fish Captured by Angling in the Athabasca River, 1977 55
12. Summary of Tagged Fish Released in the Athabasca River in 1977 and Recaptured as of 31 October 1979 56
13. Summary of Fish Tagged during 1976 and 1977 and Recaptured as of 31 October 1979 57
14. Length-frequency Distribution by Gear Type for Goldeye from the Mildred Lake Study Area, Athabasca River, 1977 .. 60
15. Length-Frequency Distribution by Gear Type for Goldeye from the Delta Study Area, Athabasca River, 1977 61
16. Age-length (mm) Relationship for Goldeye from the Mildred Lake Study Area, Athabasca River, 1977 62
17. Age-weight (g) Relationship for Goldeye from the Mildred Lake Study Area, Athabasca River, 1977 63
18. Age-length (mm) Relationship for Goldeye from the Delta Study Area, Athabasca River, 1977 64
19. Age-weight (g) Relationship for Goldeye from the Delta Study Area, Athabasca River, 1977 65
20. Length-weight Relationship by Month for Goldeye from the Mildred Lake Study Area, Athabasca River, 1977 67
21. Length-weight Relationship by Month for Goldeye from the Delta Study Area, Athabasca River, 1977 68
22. Age-specific Sex Ratios and Maturity for Goldeye from the Mildred Lake Study Area, Athabasca River, 1977 70
23. Age-specific Sex Ratios and Maturity for Goldeye from the Delta Study Area, Athabasca River, 1977 71
24. Length-frequency Distribution by Gear Type for Walleye from the Mildred Lake Stady Area, Athabasca River, 1977 75
25. Length-frequency Distribution by Gear Type for Walleye from the Delta Study Area, Athabasca River, 1977 77

LIST OF TABLES (CONTINUED)

Page
26. Age-length (mm) Relationship for Walleye from the Mildred Lake Study Area, Athabasca River, 1977 79
27. Age-weight (g) Relationship for Walleye from the Mildred Lake Study Area, Athabasca River, 1977 80
28. Age-length (mm) Relationship for Walleye from the Delta Study Area, Athabasca River, 1977 81
29. Age-weight (g) Relationship for Walleye from the Delta Study Area, Athabasca River, 1977 82
30. Length-weight Relationships for Walleye, Lake Whitefish, Northern Pike, and Longnose Suckers from the Mildred Lake and Delta Study Areas, Athabasca River, 1977 83
31. Age-specific Sex Ratios and Maturity for Walleye from the Mildred Lake Study Area, Athabasca River, 1977 85
32. Age-specific Sex Ratios and Maturity for Walleye from the Delta Study Area, Athabasca River, 1977 86
33. Fecundity Estimates for Walleye from the Athabasca River, 24 April to 4 May 1977 89
34. Length-frequency Distribution by Gear Type for Lake Whitefish from the Mildred Lake Study Area, Athabasca River, 1977 93
35. Length-frequency Distribution by Gear Type for Lake Whitefish from the Delta Study Area, Athabasca River, 1977 94
36. Age-length (mm) Relationship for Lake Whitefish from the Mildred Lake Study Area, Athabasca River, 1977 95
37. Age-weight (g) Relationship for Lake Whitefish from the Mildred Lake Study Area, Athabasca River, 1977 96
38. Age-length (mm) Relationship for Lake Whitefish from the Delta Study Area, Athabasca River, 1977 97
39. Age-weight (g) Relationship for Lake Whitefish from the Delta Study Area, Athabasca River, 1977 98
40. Age-specific Sex Ratios and Maturity for Lake Whitefish from the Mildred Lake Study Area, Athabasca River, 1977 100

LIST OF TABLES (CONTINUED)

Page
41. Age-specific Sex Ratios and Maturity for Lake Whitefish from the Delta Study Area, Athabasca River, 1977 101
42. Fecundity Estimates for Lake Whitefish from the Athabasca River, 4 to 5 October 1977 102
43. Length-frequency Distribution for Northern Pike from the Mildred Lake Study Area, Athabasca River, 1977 106
44. Length-frequency Distribution by Gear Type for Northern Pike from the Delta Study Area, Athabasca River, 1977 108
45. Age-length (mm) Relationship for Northern Pike from the Mildred Lake Study Area, Athabasca River, 1977 111
46. Age-weight (g) Relationship for Northern Pike from the Mildred Lake Study Area, Athabasca River, 1977 112
47. Age-length (mm) Relationship for Northern Pike from the Delta Study Area, Athabasca River, 1977 113
48. Age-weight (g) Relationship for Northern Pike from the Delta Study Area, Athabasca River, 1977 114
49. Age-specific Sex Ratios and Maturity for Northern Pike from the Mildred Lake Study Area, Athabasca River, 1977. 116
50. Age-specific Sex Ratios and Maturity for Northern Pike from the Delta Study Area, Athabasca River, 1977 117
51. Fecundity Estimates for Northern Pike from the Athabasca River, 1 to 8 May 1977 118
52. Length-frequency Distribution by Gear Type for Longnose Suckers from the Mildred Lake Study Area, Athabasca River, 1977 121
53. Length-frequency Distribution by Gear Type for Longnose Suckers from the Delta Study Area, Athabasca River, 1977 123
54. Age-length (mm) Relationship for Longnose Sucker from the Mildred Lake Study Area, Athabasca River, 1977 125
55. Age-weight (g) Relationship for Longnose Sucker from the Mildred Lake Study Area, Athabasca River, 1977 126

LIST OF TABLES (CONTINUED)

Page
56. Age-length (mm) Relationship for Longnose Sucker from the Delta Study Area, Athabasca River, 1977 127
57. Age-weight (g) Relationship for Longnose Sucker from the Delta Study Area, Athabasca River, 1977 128
58. Age-specific Sex Ratios and Maturity for Longnose Sucker from the Mildred Lake Study Area, Athabasca River, 1977 129
59. Age-specific Sex Ratios and Maturity for Longnose Sucker from the Delta Study Area, Athabasca River, 1977 130
60. Fecundity Estimates for Longnose Sucker from the Athabasca River, 1977 133
61. Length-frequency Distribution by Gear Type for White Sucker from the Mildred Lake and Delta Study Areas, Athabasca River, 1977 135
62. Fecundity Estimates for White Sucker from the Athabasca River, 1 to 4 May 1977 140
63. Length-frequency Distribution for Trout-perch from the Mildred Lake Study Area, Athabasca River, 1977 141
64. Length-frequency Distribution for Trout-perch from the Delta Study Area, Athabasca River, 1977 143
65. Age-length (mm) Relationship for Trout-perch from the Mildred Lake Study Area, Athabasca River, 1977 144
66. Age-weight (g) Relationship for Trout-perch from the Mildred Lake Study Area, Athabasca River, 1977 145
67. Age-length (mm) Relationship for Trout-perch from the Delta Study Area, Athabasca River, 1977 146
68. Age-weight (g) Relationship for Trout-perch from the Delta Study Area, Athabasca River, 1977 147
69. Age-specific Sex Ratios and Maturity for Trout-perch from the Mildred Lake, Delta, and Combined Study Areas, Athabasca River, 1977 148

LIST OF TABLES (CONTINUED)

Page
70. Length-weight Relationships for Trout-perch, Flathead Chub, Lake Chub, Emerald Shiner, and Spottail Shiner from the Mildred Lake and Delta Study Areas, Athabasca River, 1977 149
71. Fecundity of Trout-perch from the Athabasca River, 3 to 7 May 1977 151
72. Food Habits of Trout-perch from the Athabasca River, 1977 152
73. Length-frequency Distribution by Gear Type for Flathead Chub from the Mildred Lake Study Area, Athabasca River, 1977 155
74. Length-frequency Distribution by Gear Type for Flathead Chub from the Delta Study Area, Athabasca River, 1977 156
75. Age-length (mm) Relationship for Flathead Chub from the Mildred Lake Study Area, Athabasca River, 1977 157
76. Age-weight (g) Relationship for Flathead Chub from the Mildred Lake Study Area, Athabasca River, 1977 158
77. Age-length (mm) Relationship for Flathead Chub from the Delta Study Area, Athabasca River, 1977 159
78. Age-weight (g) Relationship for Flathead Chub from the Delta Study Area, Athabasca River, 1977 160
79. Age-specific Sex Ratios and Maturity for Flathead Chub from the Mildred Lake Study Area, Athabasca River, 1977 161
80. Age-specific Sex Rations and Maturity for Flathead Chub from the Delta Study Area, Athabasca River, 1977 162
81. Fecundity Estimates for Flathead Chub from the Athabasca River, 2 June 1977 164
82. Food Habits of Flathead Chub from the Athabasca River, 1977 166
83. Length-frequency Distribution for Lake Chub from the Mildred Lake Study Area, Athabasca River, 1977 167
84. Age-length (mm) Relationship for Lake Chub from the Mildred Lake Study Area, Athabasca River, 1977 168

LIST OF TABLES (CONTINUED)

85. Age-weight (g) Relationship for Lake Chub from the
Mildred Lake Study Area, Athabasca River, 1977 169
86. Age-specific Sex Ratios and Maturity for Lake Chub from the Mildred Lake Study Area, Athabasca River, 1977 171
87. Food Habits of Lake Chub from the Athabasca River, 1977 172
88. Length-frequency Distribution for Emerald Shiner from the Mildred Lake Study Area, Athabasca River, 1977 174
89. Length-frequency Distribution for Emerald Shiner from the Delta Study Area, Athabasca River, 1977 175
90. Age-length (mm) Relationship for Emerald Shiner from the Mildred Lake Study Area, Athabasca River, 1977 177
91. Age-weight (g) Relationship for Emerald Shiner from the Mildred Lake Study Area, Athabasca River, 1977 178
92. Age-length (mm) Relationship for Emerald Shiner from the Delta Study Area, Athabasca River, 1977 179
93. Age-weight (g) Relationship for Emerald Shiner from the Delta Study Area, Athabasca River, 1977 180
94. Age-specific Sex Ratios for Emerald Shiner from the Mildred Lake, Delta, and Combined Study Area, Athabasca River, 1977 182
95. Seasonal Changes in Sexual Maturity for Age 2 Emerald Shiner Captured in the Mildred Lake and Delta Study Areas, Athabasca River, 1977 183
96. Fecundity of Emerald Shiner from the Mildred Lake Study Area, Athabasca River, 1977 186
97. Food Habits of Emerald Shiner from the Athabasca River, 1977 187
98. Length-frequency Distribution for Spottail Shiner from the Mildred Lake and Delta Study Areas, Athabasca River, 1977 189
99. Age-length (mm) Relationship for Spottail Shiner from the Mildred Lake Study Area, Athabasca River, 1977 190

LIST OF TABLES (CONTINUED)

Page
100. Age-weight (g) Relationship for Spottail Shiner from the Mildred Lake Study Area, Athabasca River, 1977 191
101. Age-length (mm) Relationship for Spottail Shiner from the Delta Study Area, Athabasca River, 1977 192
102. Ageweight (g) Relationship for Spottail Shiner from the Delta Study Area, Athabasca River, 1977 193
103. Age-specific Sex Ratios and Maturity for Spottail Shiner from the Mildred Lake, Delta, and Combined Study Areas, Athabasca River, 1977 194
104. Fecundity of Spottail Shiner from the Mildred Lake Study Area, Athabasca River, 16 to 19 June 1977 196
105. Food Habits of Spottail Shiner from the Athabasca River, 1977 197
106. Age-length and Age-weight Relationships (Derived from Length and Weight Frequencies and Otoliths), Age- specific Sex Ratios, and Maturity of Less Frequently Captured Species from the Mildred Lake Study Area of the Athabasca River, 1977 199
107. Age-length and Age weight Relationships (Derived from Length and Weight Frequencies and Otoliths), Age- specific Sex Ratios and Maturity of Less Frequently Captured Fish Species from the Delta Study Area of the Athabasca River, 1977 202
108. Percentage Frequency of Occurrence for Food Items Found in the Stomach Contents of the Less Frequently Captured Fish Species of the Mildred Lake Study Area of the Athabasca River, 1977 203
109. Percentage Frequency of Occurrence for Food Items Found in the Stomach Contents of the Less Frequently Captured Fish Species of the Delta Study Area of the Athabasca River, 1977 204
110. Numbers (N) and Percentages (\%) for Fish Captured in Each Mesh Size of Standard Gangs, Mildred Lake Study Area, Athabasca River, 1977 222

LIST OF TABLES (CONTINUED)

Page
111. Numbers (N) and Percentages (\%) for Fish Captured in Each Mesh Size of Standard Gangs, Delta Study Area, Athabasca River, 1977 223
112. Numbers (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 26 to 27 April 1977 225
113. Number (N), Percentage (\%), and Catch-per-unit-
effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 4 to 5 May 1977 226
114. Number (N), Percentage (\%), and Catch-per-unit- effort (C / E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 1 to 6 June 1977 227
115. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 15 to 16 June 1977 228
116. Number (N), Percentage (\%), and Catch-per-unit-
effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 27 to 29 June 1977 229
117. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 12 to 13 July 1977 230
118. Number (N), Percentage (\%), and Catch-per-unit-
effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 26 to 27 July 1977 231
119. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 8 to 10 August 1977 232
120. Number (N), Percentage (\%), and Catch-per-unit effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 23 to 24 August 1977 233

LIST OF TABLES (CONTINUED)

121. Number (N), Percentage, and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 5 to 7 September 1977 234
122. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 20 to 22 September 1977 235
123. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 4 to 5 October 1977 236
124. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 17 to 18 October 1977 237
125. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area, 1 to 2 November 1977 238
126. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Mildred Lake Study Area All Dates Combined 239
127. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Delta Study Area, Athabasca River, 1 to 6 June 1977 240
128. Number (N), Percentage (\%), and Catch-per-unit- effort (C / E) for Fish Captured in Standard Gangs at Each Sampling Site in the Delta Study Area, Athabasca River, 15 to 16 June 1977 241
129. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Delta Study Area, Athabasca River, 27 to 29 June 1977 242

LIST OF TABLES (CONTINUED)

Page
130. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Delta Study Area, Athabasca River, 11 to 13 July 1977 243
131. Number (N), Percentage (\%), and Catch-per-unit- effort (C/E) for Fish Captured in Standard Gangs at Each Sampling Site in the Delta Study Area, Athabasca River, 25 to 27 July 1977 244
132. Number (N), Percentage (\%), and Catch-per-unit effort (C/E) for Fish Captured in Stanciard Gangs at Each Sampling Site in the Delta Study Area, Athabasca River, 8 to 9 August 1977 245
133. Number (N), Percentage (\%), and Catch-per-unit- effort (C / E) for Fish Captured in Standard Gangs at Each Sampling Site in the Delta Study Area, Achabasca River, 22 to 24 August 1977 246
134. Number (N), Percentage (\%), and Catch-per-unit-effort (C / E) for Fish Captured in Standard Gangs atEach Sampling Site in the Delta Study Area, AthabascaRiver, 6 to 7 September 1977247
135. Number (N), Percentage (\%), and Catch-per-unit-effort (C/E) for Fish Captured in Standard Gangs atEach Sampling Site in the Delta Study Area, AthabascaRiver, 19 to 21 September 1977248136. Number (N), Percentage (\%), and Catch-per-uniteffort (C/E) for Fish Captured in Standard Gangs atEach Sampling Site in the Delta Study Area, AthabascaRiver, 3 to 7 October 1977249
137. Number (N), Percentage (\%), and Catch-per-uniteffort (C/E) for Fish Captured in Standard Gangs atEach Sampling Site in the Delta Study Area, AthabascaRiver, All Dates Combined, 1977250
138. Dates of Tagging and Recapture, Locations of Releaseand Recapture, Distances Travelled, and Elapsed Timebetween Release and Recapture for Fish Tagged in theMildred Lake Study Area in 1976 and 1977 and Recapturedin and since 1977252
139. Dates of Tagging and Recapture, Locations of Release and Recapture, Distances Travelled, and Elapsed Time between Release and Recapture for Fish Tagged in the Delta Study Area in 1977 and Recaptured in and since 1977257

LIST OF FIGURES

Page

1. The AOSERP Study Area 4
2. Discharge and Miscellaneous Water Temperatures fromthe Athabasca River at Fort McMurray, 1 April to30 November 19775
3. Discharge and Miscellaneous Water Temperatures fromthe Athabasca River at Embarras, 1 April to30 November 19776
4. Athabasca River Showing the Mildred Lake and Delta Study Areas and Locations of the Major Sampling SitesUsed during the 1977 Study9

ABSTRACT

During 1977, the second year of a two-year study, the fish populations of the Athabasca River were investigated in two general areas downstream of Fort McMurray. Field work was carried out from mid-April to early November in the Mildred Lake study area and from mid-May to mid-October in the Delta study area. Fish were collected with gillnets, seines, and angling gear in order to identify the species present and their distribution and relative abundance during the open-water period, and to obtain samples for life history analysis. A conventional tagging program was undertaken to delineate migration patterns for the major fish species.

The 1977 study identified 24 fish species from the lower Athabasca River, 11 of which were common. All 24 species were present in samples from the Mildred Lake study area, while only 18 were captured in the Delta study area. A total of 27 species were identified from the Athabasca River during the two years of the study. Major upstream movements of walleye, goldeye, longnose sucker, and white sucker occurred in the Athabasca River during early spring. These runs were apparently initiated under ice-cover and reached the Mildred Lake study area before the ice had left the Athabasca River. The walleye and sucker runs were spawning migrations and the early spring upstream movements of these species were followed by a more gradual downstream dispersal that continued throughout the summer. The entire lower Athabasca River is important as a summer feeding area for immature goldeye which enter the study area prior to breakup and departed in late autumn. These goldeye are thought to belong to the population that spawns in the Peace-Athabasca Delta. Thus, the lower Athabasca River may play a major role in the maintenance of that population. A large upstream spawning migration of lake whitefish occurred during September and October. Some whitefish returned to Lake Athabasca shortly after spawning but others may have overwintered in the Athabasca River. Trout-perch, flathead chub, emerald shiner, and lake chub were the major forage fishes observed.

ACKNOWLEDGEMENTS

The authors would like to express their thanks to the members of the Aquatic Fauna Technical Research Committee and to the many individuals in the Department of Fisheries and Oceans and the Alberta Department of Recreation, Parks, and Wildife who provided direction and advice in the early planning stages and throughout the duration of this project.

Technical assistance in the field and in the laboratory was provided in 1977 by Mr. R. Konynenbelt, Mr. R. Von Bieker, Mr. C. Ladd, and Mr. D. Bownes. Field assistance was also provided by Mr. R. McDonald, Mr. P. Mildner, Mr. M. Orr, and Mr. B. Anholt.

Figures for this manuscript were prepared by the staff of the Graphics Department at the Freshwater Institute. Manuscript assistance was also provided by Mrs. J. Allan, Mrs. W. Thomson, and Ms. B. Cohen.

Special thanks are extended to Mr. D. Hadler and Mrs. C. Boyle of the AOSERP Fort McMurray field office for their assistance in many aspects of the study.

To the residents of northeastern Alberta who returned fish tags, and to many other individuals who assisted us in various ways, we offer our sincere appreciation.

This research project AF 4.3.2 was funded by the Alberta Oil Sands Environmental Research Program, a joint Alberta-Canada research program established to fund, direct, and co-ordinate environmental research in the Athabasca 0 il Sands area of northeastern Alberta.

Floy tags were applied to 6783 fish in 1977 , bringing to 9311 the total number of fish tagged during the two years of the study. The overall recapture rate to date is 4.2%. Tag return evidence suggests that the walleye, goldeye, lake whitefish, longnose sucker, and white sucker observed in the lower Athabasca River came from Lake Athabasca and the Peace-Athabasca Delta.

The fry of many fish species appeared in the Athabasca River during June and July. Most of these fry did not remain in the study area but were carried downstream to nursery areas in the lower Athabasca River or Lake Athabasca.

1
INTRODUCTION
The present and proposed development of the Athabasca 0 il Sands may introduce disturbance to some lake and river systems of the lower Athabasca River drainage. Local disruption in the form of land clearing, muskeg drainage and removal, stream diversions, and the construction of access routes may affect the water quality and quantity of streams in addition to the physical alterations produced. Other activities that could affect water quality include tailings pond seepages and saline minewater discharges. The diversion or blockage of streams may affect fish spawning runs. Critical fish rearing, feeding, and overwintering areas may be disturbed or lost altogether. In the case of migrant fish populations, e.g., from Lake Athabasca, such local disruptions could have far-reaching effects.

To provide information that could be used to minimize the adverse effects of development on the fish populations of the Athabasca River and its tributaries, the Alberta Oil Sands Environmental Research Program (AOSERP), through its Aquatic Fauna Technical Research Committee, initiated an integrated series of projects to assess the baseline state of the fish resources of the area. The work, which began in 1976, involved a broadly-based fisheries investigation of the Athabasca River as well as a site-intensive study of selected tributaries. Tributaries chosen for intensive study were those considered to be most immediately imperilled by future surface mining operations or by increased pressure from a growing human population. The study of the Athabasca River was to concentrate on the section of stream between Fort McMurray and Lake Athabasca.

This report presents the results of work done in 1977, the second year of a two-year study intended to evaluate and describe the baseline state of the fish resources of the Athabasca River downstream of Fort McMurray. Results of the 1976 study have been presented by Bond and Berry (in prep.).

Specific objectives of the study were as follows:

1. To ascertain the seasonal distribution and relative abundance of the major fish species of the Athabasca River downstream from Fort McMurray;
2. To identify the migration patterns throughout the openwater period for these major fish species through a conventional tagging program;
3. To document the timing of the downstream movements of fry in the Athabasca River;
4. To identify possible spawning areas in the Athabasca River and in tributary streams through the presence of ripe and/or spawned-out fish, as well as the presence of eggs and fry; and
5. To establish a data base with respect to the general biology of the major fish species that frequent the Athabasca River (i.e., age, growth, sex ratio, maturity, fecundity, food habits, etc.).
6. DESCRIPTION OF THE STUDY AREA

The Athabasca River arises in the Rocky Mountains and flows approximately 1440 km before entering the western end of Lake. Athabasca where it contributes to one of North America's major wetlands, the Peace-Athabasca Delta. Approximately 450 km of the river's course lie within the AOSERP study area (Figure 1), 300 km being downstream of Fort McMurray. The total drainage area of the Athabasca River is 156928 km , about 25% of the surface area of Alberta. Approximately 17% of this area (26880 km) is within the AOSERP study area. The long-term mean discharge of the Athabasca River at Fort McMurray is $645.7 \mathrm{~m}^{3} / \mathrm{s}$ with the respective minimum and maximum recorded flows being $96.6 \mathrm{~m}^{3} / \mathrm{s}$ and $4265 \mathrm{~m}^{3} / \mathrm{s}$ (Kellerhals et al. 1972). Records obtained from Water Survey of Canada (1978) show a mean daily discharge at Fort McMurray of $773.1 \mathrm{~m}^{3} / \mathrm{s}$ during 1977. Daily fluctuations occurring during the present study are shown in Figures 2 and 3.

Upstream of Fort McMurray, the Athabasca River descends sharply across resistant bedrock formations producing several series of rapids and a gradient of $1.0 \mathrm{~m} / \mathrm{km}$ (Northwest Hydraulic Consultants Ltd. 1975). At Fort McMurray, the river loses its narrower, gorgelike character and is deflected northward by high bluffs of clay and oil sands overlying Devonian limestone. The stream gradient below Fort McMurray is reduced to about $0.1 \mathrm{~m} / \mathrm{km}$, the velocity is approximately $1.0 \mathrm{~m} / \mathrm{s}$, and the channel pattern is straight to sinuous. Near the delta, an irregular meander pattern exists, the gradient decreases further, and the banks diminish to the level of the delta.

The width and depth of the Athabasca River vary throughout the year with fluctuations in discharge. The approximate range in width is from 300 to 600 m with a narrower main channel in the lower part of the delta. Upstream of the delta, the river has an estimated depth of 3 m with areas over 9 m deep being common. In the delta, the main channel appears to be much deeper in both average and maximum depth. The Athabasca River remains highly turbid throughout the summer and achieves maximum temperatures of about $23^{\circ} \mathrm{C}$. The

Figure 1. The AOSERP study area.

Figure 2. Discharge and miscellaneous water temperatures from the Athabasca River at Fort McMurray, 1 April to 30 November 1977.

Figure 3. Discharge and miscellaneous water temperatures from the Athabasca River at Embarras, 1 April to 30 November 1977.
respective mean dates of freeze-up and break-up at Fort McMurray are 5 November and 7 May (Kellerhals et al. 1972).

The portion of the Athabasca River studied in 1977 consisted of two reaches, each approximately 80 km in length. The upper reach extended from the confluence of Poplar Creek to the lower end of Sled Island (km 27.2 to 110.1) (Figure 4). This area, referred to as the Mildred Lake study area, included most of the 1976 study area (Bond and Berry in prep.). The lower reach extended from Embarras to the confluence of Jackfish Creek (km 190.4 to 272.0) (Figure 4) and was referred to as the Delta study area. The two study areas were separated by approximately 80 km of river that were not sampled during 1977.

The Mildred Lake study area has a gravel to cobble substrate along most of its length with sloping shorelines of sand, silt, and occasional areas of gravel. The river is occasionally deflected by cliffs of clay, limestone, and oil sands which create eddies that are ideal sampling sites. Side and flood channels are limited but a few side sloughs are associated with the main river. Several major tributaries, all low-gradient, brown-water streams, enter the Athabasca River in this area (Figure 4). Below Fort Mckay (Figure 4), islands become larger and more numerous with vertical banks of moderately stable sand and silt. These islands are heavily vegetated with willow (Sazix sp.), poplar (Populus balsomifera and P. tremuzoides), and some spruce (Picea mariana). The dominant river bank vegetation consists of poplar, spruce, willow, birch (BetuZa papyrifera), and dogwood (Cormus stoZonifera). There is a downstream increase in the number of side bars, point bars, and dunes with frequent mid-channel sand bars being exposed at low water. Once in the delta, the number of islands and bars decreases as distributaries exit from the main channel.

The Delta study area was located at the head of the delta and may be considered an area of transition between the river above and the delta below. At two sites, Embarras and Embarras Portage (Figure 4), the river contacts high and easily eroded sand banks. In other areas, the river banks are low, composed of fluvial silts and
sands, and vegetated with willow and poplar. Below Embarras Portage, the river turns sharply eastward and flows in that direction until its gradual shift northward below Jackfich Creek (Figure 4). The Delta study area contains several tortuous meander bends with large, turbulent eddies. Many flood and back channels exist along this stretch of river, often with connections to side slough areas. The Richardson River (Figure 4) is the only tributary to enter the Athabasca River in the Delta study area. Channels from Dagmar, Limon, and Blanche Lake complexes enter the lower end of the Richardson River. Jackfish Creek, at the lower end of the Delta study area, drains Richardson Lake and the Maybelle River. Most of these shallow lakes experience frequent reversing water flows that are dependent on the prevailing water levels in the delta and on the levels of discharge in the Athabasca River. Exiting from the main channel of this study area are the first two distributaries of the delta, the Embarras River and the Fletcher channel (Figure 4).

3. MATERIALS AND METHODS

3.1 GENERAL

The fish populations of the Athabasca River were sampled in two general areas in 1977 (Figure 4). The Mildred Lake study area was sampled from mid-April to early November, while the Delta study area was sampled from mid-May to mid-October. Fish collection methods included gill netting, seining with large and small mesh seines, and angling. A series of sampling stations was established within each study area and each site was precisely described according to its distance ($\pm 0.1 \mathrm{~km}$) below Waterways (km 0.0) and whether it was on the left or right bank (looking downstream) by reference to Canadian Hydrographic Service chart \#6301, Athabasca and Slave Rivers, 1973. Some sites had to be abandoned during the summer as water conditions varied, but other sites persisted. The major sampling sites utilized during 1977 are indicated in Figure 4 and described in Appendix 6.1.

3.2 FIELD TECHNIQUES

3.2.1 Gill Nets

Six gill netting stations were established in each study area (Figure 4, Appendix 6.1). One to six of these sites were sampled in each study area in each two-week period (cycle) during the study using a standard gill net gang. The duration of each set varied from 13.5 to 20.0 h but always included the night time period. The standard gang utilized in 1977 differed from that used in 1976 (Bond and Berry in prep.). The 1977 gang was 18.0 m long by 2.4 m deep and consisted of equal lengths of $3.8,5.1,6.4,7.6,8.9$, and 10.2 cm braided nylon mesh (stretch mesh). Gangs were set on the bottom with the 3.8 cm mesh closest to shore and as perpendicular to the shoreline as possible.

Fish captured in standard gangs were separated according to mesh size and all were subjected to complete biological analysis. Fork length ($\pm 1.0 \mathrm{~mm}$) and body weight ($\pm 10 \mathrm{~g}$) were recorded and either scales or pectoral fins (suckers) were retained for age
determination. In the case of burbot, total length was recorded and otoliths were retained for ageing. Sex and maturity state were determined by gonadal examination. A fish was considered to be mature if it appeared that it would spawn or had already spawned in the year of capture. A ripe fish was a mature fish whose gonads were close to spawning condition and from which sexual products could be expressed by application of light pressure to the abdomen. A spent or spawned-out fish was a mature fish that had obviously spawned shortly prior to its capture. Stomachs were removed from a number of fish of each species and preserved in 10% formalin for evaluation of food habits. Ovaries were removed from several mature females of each species and preserved in Gilson's fluid for fecundity estimation.

Gill nets (tagging nets) were also used on occasion to capture fish for tagging. This practice was employed mainly in the Delta study area where the bag of the large mesh seine tended to fill with silt, making seining difficult. Tagging nets included nets of various mesh sizes and lengths which were usually set for periods of from one to three hours.

3.2.2 Large Mesh Beach Seines

Fourteen sites in the Mildred Lake study area and 16 sites in the Delta study area were sampled regularly in 1977 using large mesh beach seines (Figure 4, Appendix 6.1). The number of seine hauls made within a sampling period ranged from five to 139 although five to 18 hauls were made in most cycles. More hauls were made during migration peaks (spring and fall) in order to acquire fish for tagging. Seine hauls made within a sampling period were always scattered along the entire study area. The seines used were constructed of knotted \#9 nylon twine of 3.8 cm stretch mesh, and were 33 m long by 1.8 m deep with a $1.8 \times 1.8 \times 1.8 \mathrm{~m}$ bag. These seines were identical to those used during the 1976 study (Bond and Berry in prep.). Most fish captured in large mesh beach seines were tagged and released. Those too small to $\operatorname{tag}(<15 \mathrm{~cm})$ were either subjected to complete biological analysis or identified to species, counted, and released unharmed.

3.2.3 Small Mesh Beach Seines

Small mesh beach seines were utilized to sample forage fish populations and to capture small (young) specimens of larger fish species. Twenty-four sites in the Mildred Lake study area and 25 sites in the Delta study area were sampled regularly with this gear (Figure 4, Appendix 6.1). The seines employed were 1.2 m deep and constructed of 6.3 mm delta nylon mesh. In most cases, the seines used were 9.1 m long; however, in some restricted areas, such as the mouths of small tributaries, 3.0 m lengths were used. When the number of fish taken in a small mesh seine haul was small, the entire catch was usually retained for identification and analysis. When the catch was large, however, a representative subsample was retained and the remainder of the fish were returned to the water after their numbers were estimated. Large fish ($>15 \mathrm{~cm}$) captured in small mesh seines were tagged and released. Small fish were preserved initially in 10% formalin and later transferred to 40% isopropyl alcohol.

3.2.4 Tagging

Fish to be tagged were removed from the gear and held in tubs for a short time (5 to 10 min) to allow them to quiet down. Each fish was measured ($\pm 1.0 \mathrm{~mm}$) and weighed ($\pm 10 \mathrm{~g}$) and scales were taken for ageing. The tags used were numbered Floy anchor tags (Type FD-68B) which were inserted near the base of the dorsal fin. Tags and guns were held in a 10% Dettol solution and rinsed in fresh water prior to insertion to minimize infection. No anaesthetic was used.

The tagging program was well publicized by posters and press releases and a two dollar reward was offered for returned tags. Tag returns were made by sport fishermen along the Athabasca River, by domestic fishermen on the Athabasca River and Lake Athabasca, and by commercial fishermen on Lake Athabasca. Personnel of LGL Ltd., Environmental Research Associates, Edmonton, and Aquatic Environments Ltd., Calgary, also returned tags.

3.2.5 Sexual Dimorphism

In most cases, sex was not recorded for fish whose gonads were not examined by dissection. However, in some cases, sexual dimorphism provided an opportunity to determine the sex of a fish without dissection. During the spring spawning runs, it was possible to identify male longnose and white suckers by the presence of nuptial tubercles, epidermal structures that form prior to spawning and are lost shortly after. Most suckers without tubercles are believed to have been females but this was not assumed and many suckers were recorded as unsexable on the basis of external characteristics.

In the case of goldeye, the sexes were distinguishable throughout the summer by virtue of a distinct lobe on the male anal fin that is formed by an elongation of the anterior fin rays. Battle and Sprules (1960) noted that this feature occurred only in mature males or in males approaching their first spawning period. To test the method, goldeye taken from standard gangs in 1977 were sexed by means of the anal fin prior to gonadal examination and a high level of agreement (90%) was found between the two methods.

Sex determinations based upon external features were not utilized in analyzing the age and growth features of these species.

3.2.6 Habitat Preference Analysis

The habitat preference analysis performed in 1976 (Bond and Berry in prep.) was not done in 1977.

3.3 LABORATORY TECHNIQUES

3.3.1 Fish Identification

Seine catches were identified using taxonomic keys and descriptions given by Paetz and Nelson (1970) and Scott and Crossman (1973). While most fish could be identified to species, some larval forms (suckers) could be identified only to genus.
3.3.2 Age Determination

Ages for longnose and white suckers were determined from cross-sections of pectoral fin rays using the metrod described by Beamish and Harvey (1969) and Beamish (1973). After embedding in epoxy, thin sections (0.5 to 1.0 mm) were cut using a jeweller's saw with \#6 or \#7 blades. The sections were then mounted in Permount on glass slides and read under a dissecting microscope.

Scales, removed from the appropriate location on the fish, as described by Hatfield et al. (1972), were used in determining ages for goldeye, walleye, lake whitefish, flathead chub, Arctic grayling, mountain whitefish, and northern pike. Several scales from each fish were cleaned and mounted between acetate slides and the age deter* mined by counting annuli (growth rings) on the image produced by an Eberback \#2700 microprojector.

Age determinations for all other fish species included in this report were done by observing growth patterns on otoliths (ear bones). When necessary, the otolith was ground on a glass surface using carborundum powder. The otolith was then cleared in a 3:1 mixture of benzyl benzoate and methyl salicylate and read under a dissecting microscope using reflected light against a black background.

Age determinations presented are the consensus of two readers. Where discrepancies existed between the results obtained by them a third opinion was obtained. The age assigned was equal to the number of completed annuli with the exception that fish taken in the spring were considered to have completed their year's growth and were credited with an additional annulus whether it had formed yet or not.

3.3.3 Food Habits

Food habits of only the smaller fish species were assessed in 1977. Food items found in the stomach contents were identified to order whenever possible and the results of the analysis were expressed in terms of percentage frequency of occurrence.

3.3.4 Length and Weight of Small Fish

Small fish that had been captured in seine hauls and preserved in formalin were measured to the nearest 1.0 mm and weighed either to the nearest 0.1 g on an analytical balance or to the nearest 0.01 g on a torsion balance. Some larval and fry samples (e.g., suckers) that contained many fish of similar size were bulk weighed after removing excess fluid. The fish in the sample were then counted and a mean individual weight was assigned to the sample.

3.3.5 Fecundity

Fecundity for walleye, lake whitefish, northern pike, flathead chub, white sucker, and longnose sucker was estimated gravimetrically using the method described by Healey and Nichol (1975). For small fish species, fecundity was assessed by direct egg counts.
3.3.6 Data Analysis

In most cases, data collected from the two sampling areas have been analyzed and presented separately. The relative abundance of the various fish species was expressed in terms of absolute numbers, percentage composition, percentage frequency of occurrence, and catch-per-unit-effort. Catch-per-unit-effort was expressed as the number of fish per gang per hour for standard gangs and as the number of fish per haul for large and small mesh beach seines. Catch data for large and small mesh seines were summarized for each twoweek sampling cycle. Standard gang data were also assessed for each mesh size (Appendix 6.2) and each sampling site (Appendix 6.3).

Biological data for each fish species were analyzed on an IBM computer terminal with statistical programs in VS Basic TSO. Length-weight least squares regression analyses with log base 10 transformation and length as the independent variable were described by the equation:

$$
\log _{10} W=a+b\left(\log _{10} L\right): s b=
$$

where: $\quad W=$ weight (g)
$\mathrm{L}=$ fork length (mm)
$a=y$-intercept
$b=$ slope of the regression line
$s b=$ standard deviation of b
Data summaries, computer printouts, and raw data are on file at the AOSERP office, 9820-106 Street, Edmonton, Alberta, T5K 2 J 6.

3.4 LIMITATIONS OF METHODS

3.4.1 Fish Collection

The problems associated with sampling the fish populations of large rivers are well known and relate to conditions of current, fluctuating water levels, and water-borne debris. These conditions severely limit the choice of sampling sites as well as the efficiency of the gear employed.

Essentially, sampling sites used in this study were confined to areas in which the current was reduced to such a level as to permit the use of the gear. These, inevitably, were limited to inshore areas and catches made in such areas may not be truly representative of the overall situation.

In order to sample as great a variety of habitats as possible and to collect the greatest variety of fish, both in terms of size of individuals and number of species, it was necessary to employ a variety of collection methods, each of which has certain limitations. We believe, however, that the combination of gillnets, large mesh seines, and small mesh seines has produced reasonably good coverage of all species and all life history stages.
3.4.1.1 Standard gill net gangs. Gill nets are known to be highly selective for size of fish. Essentially, each mesh size tends to capture fish of a particular size range. This range varies with species and depends not only on the size of fish but on whether it is of a species that tends to be captured by wedging itself in a mesh (e.g., lake whitefish, flathead chub) or by entangling itself by teeth or spines (e.g., pike, walleye, goldeye). Fish captured
by entangling usually demonstrate a wider size range in a particular mesh size.

Because of the limited size range over which a gill net of a given mesh size is effective, fish populations are best sampled by employing gangs of gill nets of varying mesh sizes whose selectivity curves overlap broadly. The standard gangs used in 1977 consisted of six mesh sizes and the catches produced are thought to be representative of the larger fish species. Similar gangs were considered effective for collecting most northern fish species by Rawson (1951) and Hatfield et al. (1972). This gang is believed to have eliminated much of the bias inherent in the standard gang of only three mesh sizes that was employed in 1976 (Bond and Berry in prep.).

A feature of the 1976 standard gang that contributed to its inefficiency was its length (27.3 m). Since many of the sampling sites were not large enough to accommodate this entire gang, the offshore end often protruded into the main current where it became fouled with debris more quickly than the portion in the eddy. The shorter 1977 gang is thought to have performed better in this regard. Gill net efficiency is thought to have varied considerably with changes in river conditions. Generally, efficiency decreased during floods when debris tended to clog or damage the nets. Because such effects were not constant from site to site or throughout the summer, comparisons between sites are often meaningless. Because standard gangs were fished on the bottom, they may have tended to select for bottom dwellers (e.g., walleye) and to underestimate those that swim in mid-water or near the surface (e.g., goldeye).
3.4.1.2 Large mesh beach seines. These seines were found to be an extremely useful method of capturing fish for tagging. Using this gear, large numbers of fish could often be taken in a short period of time with minimal physical damage. They were effective for the same species and size of fish as were captured in standard gangs and retained all fish greater than about 200 mm fork length. Large mesh seines were effective under most river conditions; however, in the Delta study area, silt often clogged the bag, making seining difficult
and reducing the efficiency of the operation. Large mesh seines complemented the standard gangs to a certain extent. Whereas the gill nets were fished only on the bottom, large mesh seines fished only the upper metre of the deeper eddies. No standard length or time of haul was employed for large mesh seines and the area seined by each haul did tend to vary somewhat as a result of differences in current or the presence of snags. Overall, however, hauls made with this gear possessed a high degree of uniformity.
3.4.1.3 Small mesh beach seines. These seines were effective for capturing small fish under a wide variety of conditions. They were difficult to use, however, in strong current, in deep water, or where rocks or logs interfered with the haul. Because of mesh limitations, these seines could not sample adequately the early iife stages of most species. Few fish less than 20 mm in length were captured. Small mesh seine hauls were not standardized but, in fact, varied considerably in duration depending on the site. Thus, catch-per-unit-effort comparisons between sites may be meaningless. The average catch-per-unit-effort values produced in each sampling cycle, however, are believed to be fairly comparable and to provide a reasonable estimate of the relative abundance of the small fishes.

3.4.2 Age Determination and Growth Analysis

Scales are often used in determining the age of fish because these structures are easily acquired. The method assumes that the fish lays down one annulus on its scales per year and that such annuli can be identified. Such assumptions may not always be justified, however, especially in northern populations where the fish grow slowly and live for long periods of time. Beamish and Harvey (1969) demonstrated that age determinations by the scale method for white suckers in George Lake, Ontario, were unreliable beyond the age of five years and recommended the use of pectoral fin rays. Craig and Poulin (1975) found that scales tended to underestimate the ages of older Arctic grayling in Alaska and recommended the use of otoliths for this species.

With the exception of suckers (fin rays) and burbot (otoliths), the larger fish in the present study were aged by the scale method. While this method may have underestimated the age of some of the older fish, scale ages appeared to be satisfactory for plotting reliable growth curves.

Growth curves were plotted using fish captured throughout the summer, a practice that tends to raise the mean length and weight of fish in a given age group and produce broad overlaps in the ranges for lengths and weights between age groups. Ideally, such comparisons should be made only between fish captured over a short period of time.

3.4.3 Tagging

The recapture of tagged fish can provide useful information concerning the extent and timing of fish movements. A degree of caution must usually be exercised, however, in the interpretation of the results. In the first place, one can never be absolutely certain that the movement exhibited by an individual fish is representative of all fish in the population. Secondly, since no tags will be recovered from areas where no fishing effort occurs, it can be argued that recaptures serve merely to identify fishing areas. As well, low recovery rates sometimes make it impossible to form firm conclusions as to general movement trends.

3.4.4 Winter Conditions

No winter sampling was conducted during the present study. As a result, no direct evidence has been acquired as to the existence or location of overwintering areas in the AOSERP study area.
4.1 GENERAL

Sampling of the Athabasca River from mid-April to early November 1977 produced 24 fish species representing 10 families (Table 1). Two species, Dolly Varden and northern redbelly dace, represent additions to the 1976 species list bringing the total number of species taken during the two years to 27 . Three species taken in 1976, brassy minnow, pearl dace, and lowa darter, were not found in 1977 (Table 1). The Mildred Lake study area (24 species) exhibited a greater species diversity than did the Delta study area (18 species). Eleven species were common in the samples ($>1.0 \%$ of the total catch), while 13 species were uncommon or found rarely (Table 2).

The total 1977 catch for the two study areas combined was 35308 fish (Table 2). Suckers (longnose and white suckers were combined because of the difficulty in distinguishing between fry of the two species) accounted for 43.8% of the total catch in the Mildred Lake study area (Table 3). Trout-perch (17.1\%) was the second most abundant species in this area, followed by lake whitefish (9.3%), goldeye (9.1%), walleye (4.5%), emerald shiner (3.9%), lake chub (3.3%), flathead chub (3.2\%), and northern pike (2.6%). In the Delta study area (Table 4), emerald shiner was the most abundant species accounting for 63.2% of the total catch. Trout-perch (8.1\%) was second in abundance, followed by goldeye (6.0%), suckers (5.1%), flathead chub (4.9%), lake whitefish (4.4%), spottail shiner (3.2\%), northern pike (2.6%), and walleye (1.9%).

The relative abundance of the various species varied according to the capture method and time of year. For a given gear type, most changes in relative abundance are related to migrations of adults, juveniles, and fry into and out of the study area. Fluctuating water levels and gear efficiency are also responsible for some of the variation in the results but such effects could not be quantified.

Table 1. Scientific and common names of fish species captured in the Mildred Lake and Delta study areas, Athabasca River, 1977.

Family and Generic Names	Common Names	Where Captured		
		Mildred	Lake Area	Delta Area
Family Salmonidae				
Coregonus clupeafoxmis (Mitchill)	Lake whitefish		$+$	+
Prosopium williamsoni (Girard)	Mountain whitefish		+	+
Thymallus arcticus (Pallas)	Arctic grayling		$+$	
Salvelinus malma (Walbaum)	Dolly Varden		$+$	
Family Hiodontidae				
Hiodon Alosoides (Rafinesque)	Goldeye		+	+
Family Esocidae				
Esox lucius Linnaeus	Northern pike		+	+
Family Cyprinidae				
Chrosomis eos Cope	Northern redbelly dace		+	
Chrosomus neogaeus (Cope)	Finescale dace		+	
Couesius plumbeus (Agassiz)	Lake chub		$+$	+
Hybognathus hankinsoni Hubbs	Brassy minnow		+a	
Notropis atherinoides Rafinesque	Emerald shiner		$+$	+
Notropis hudsomius (Clinton)	Spottail shiner		$+$	+
Pimephales promelas Rafinesque	Fathead minnow		+	
Platygobio gracilis (Richardson)	Flathead chub		+	+
Rhinichthys cataractae (Valenciennes)	Longnose dace		$+$	+
Semotilus margarita (Cope)	Pearl dace		+a	
		continued		

Table 1. Concluded.

Family and Generic Names	Common Names	Where Captured		
		Mildred	Lake Area	Delta Area
Family Catostomidae				
Catostomus catostomus (Forster)	Longnose sucker		+	+
Catostomus commersoni (Lacépède)	White sucker		$+$	+
Family Gadidae				
Lota Iota (Linnaeus)	Burbot		$+$	$+$
Family Gasterosteidae				
Culaea inconstans (Kirtland)	Brook stickleback		+	+
Pungitius pungitius (Linnaeus)	Ninespine stickleback		$+$	+
Family Percopsidae				
Percopsis omiscomaycus (Walbaum)	Trout-perch		+	$+$
Family Percidae				
Perca flavescens (Mitchill)	Yellow perch		$+$	+
Stizostedion vitreum (Mitchill)	Walleye		+	$+$
Etheostoma exile (Girard)	lowa darter		+a	
Family Cottidae				
Cottus cognatus Richardson	Slimy sculpin		+	
Cottus ricei (Nelson)	Spoonhead sculpin		$+$	+
+ Indicates species present. a Species captured in 1976 but not in 1977.				

Table 2. Number of fish ${ }^{\text {a }}$ taken by each capture method from the Athabasca River, combined study areas, 1977.

Species	Number of fish						$\begin{gathered} \% \\ \text { of } \\ \text { Total } \end{gathered}$
	Tagging Nets	Standard Gangs	Angling Gear	Large Mesh Seines	Small Mesh Seines	Total	
Goldeye	419	658	61	1428	54	2620	7.4
Walleye	176	249	31	361	262	1079	3.1
Yellow perch	0	0	0	1	237	238	0.7
Northern pike	179	123	210	315	86	913	2.6
Dolly Varden	0	1	0	0	0	1	0.1
Lake whicefish	903	208	0	1133	100	2344	6.6
Mountain whitefish	2	1	0	0	4	7	0.1
Arctic grayling	1	1	0	17	7	26	<0.1
Longnose sucker	429	102	1	791	ND	1323	3.7
White sucker	63	6	1	489	ND	559	1.6
Sucker spp.	0	0	0	0	6100	6100	17.3
Trout-perch	0	0	0	0	4308	4308	12.2
Burbot	10	4	9	17	90	130	0.4
Flathead chub	12	107	2	199	1125	1445	4.1
Lake chub	0	0	0	0	541	541	1.5
Emerald shiner	0	0	0	0	12811	12811	36.3
Spottail shiner	0	0	0	0	735	735	2.1
Longnose dace	0	0	0	0	27	27	0.1
Finescale dace	0	0	0	0	19	19	<0.1
Northern redbelly dace	0	0	0	0	4	4	<0.1
Fathead minnow	0	0	0	0	13	13	<0.1
Ninespine stickleback	0	0	0	0	4	4	<0.1

Table 2. Concluded.

Species	Number of Fish							$\begin{gathered} \% \\ \text { of } \\ \text { Total } \end{gathered}$
	Tagging Nets	Standard Gangs	Angling Gear	Large Mesh Seines		Small Mesh Seines	Total	
Brook stickleback	0	0	0	0		9	9	<0.1
Slimy sculpin	0	0	0	0		13	13	<0.1
Spoonhead sculpin	0	0	0	0		39	39	0.1
Total	2194	1460	315	4751	26	588	35308	

a Numbers are actual except for those shown for small mesh seines. In some cases, fish captured in a small mesh seine haul were only partially counted and then the total number was estimated.

Table 3. Number of fish ${ }^{\text {a }}$ taken by each capture method from the Mildred Lake study area, Athabasca River, 1977.

Species	Number of Fish						$\begin{gathered} \% \\ \text { of } \\ \text { Total } \end{gathered}$
	Tagging Nets	Standard Gangs	Angling Gear	Large Mesh Seines	Small Mesh Seines	Total	
Goldeye	103	475	0	252	28	1458	9.1
Walleye	98	135	23	281	182	719	4.5
Yellow perch	0	0	0	1	212	213	1.3
Northern pike	68	56	32	201	59	416	1.6
Dolly Varden	0	1	0	0	0	,	0.1
Lake whitefish	210	134	0	1058	90	1492	9.3
Mountain whitefish	2	1	0	0	3	6	<0.1
Arctic grayling	1	1	0	17	7	26	0.2
Longnose sucker	299	75	1	780	ND	1155	7.2
White sucker	55	6	1	481	ND	543	3.4
Sucker spp.	0	0	0	0	5312	5312	33.2
Trout-perch	0	0	0	0	2737	2737	17.1
Burbot	8	4	9	16	16	53	0.3
Flathead chub	8	94	1	142	263	508	3.2
Lake chub	0	0	0	0	536	536	3.3
Emerald shiner	0	0	0	0	620	620	3.9
Spottail shiner	0	0	0	0	116	116	0.7
Longnose dace	0	0	0	0	26	26	0.2
Finescale dace	0	0	0	0	19	19	0.1
Northern redbelly dace	0	0	0	0	4	4	<0.1
Fathead minnow	0	0	0	0	13	13	0.1
Ninespine stickleback	0	0	0	0	2	2	<0.1

Table 3. Concluded.

Species	Number of Fish						
	Tagging Nets	Standard Gangs	Angling Gear	Large Mesh Seines	Small Mesh Seines	Total	
Brook stickleback	0	0	0	0	8	8	<0.1
Slimy Sculpin	0	0	0	0	13	13	0.1
Spoonhead Sculpin	0	0	0	0	26	26	0.2
Total	852	982	67	3829	10292	16022	

[^0]Table 4. Number of fish ${ }^{\text {a }}$ taken by each capture method from the Delta study area, Athabasca River, 1977.

Species	Number of fish						
	Tagging Nets	Standard Gangs	Angling Gear	Large Mesh Seines	Small Mesh Seines	Total	
Goldeye	316	183	61	576	26	1162	6.0
Walleye	78	114	8	80	80	360	1.9
Yellow perch	0	0	0	0	25	25	0.1
Northern pike	111	67	178	114	27	497	2.6
Lake whitefish	693	74	0	75	10	852	4.4
Mountain whitefish	0	0	0	0	1	1	<0.1
Longnose sucker	135	27	0	11	ND	173	0.9
White sucker	8	0	0	8	ND	16	0.1
Sucker spp.	0	0	0	0	788	788	4.1
Trout-perch	0	0	0	0	1571	1571	8.1
Burbot	2	0	0	1	74	77	0.4
Flathead chub	4	13	1	57	862	937	4.9
Lake chub	0	0	0	0	5	- 5	<0.1
Emerald shiner	0	0	0	0	12191	12191	63.2
Spottail shiner	0	0	0	0	619	619	3.2
Longnose dace	0	0	0	0	1	1	<0.1
Ninespine stickleback	0	0	0	0	2	2	<0.1
Brook stickleback	0	0	0	0	1	1	<0.1
Spoonhead sculpin	0	0	0	0	13	13	0.1
Total	1347	478	248	922	16296	19291	

[^1]Regular use of standard gangs began on 26 April in the Mildred Lake study area where they were fished for a total of 818.0 hours and captured 982 fish of 11 species. Table 5 summarizes standard gang results for each sampling cycle in the Mildred Lake study area.

Sampling with standard gangs began on 1 June in the Delta study area. In this area the gangs were fished for 793.5 hours and captured 478 fish of six species. The catch data for each sampling cycle in the Delta study area are summarized in Table 6. Standard gang results from each sampling site in both study area are presented in Appendix 6.3.

Large mesh seines captured 4751 fish of 10 species. In the Mildred Lake study area, 410 hauls with large mesh seines produced 3829 fish. The results of these hauls in terms of percentage composition, percentage frequency of occurrence, and catch-per-uniteffort for each species are summarized by sampling period in Table 7. A total of 278 large mesh seine hauls were made in the Delta study area producing 922 fish (Table 8).

An estimated 26588 fish of 23 species were captured in 340 small mesh seine hauls. In the Mildred Lake study area, 234 seine hauls took 10292 fish, while 106 hauls captured 16296 fish in the Delta study area. The percentage composition, percentage frequency of occurrence, and average catch per seine haul for the various species by sampling period in each of the two study areas are presented in Tables 9 and 10.

Angling gear was not employed as a regular capture method during the study and only 315 fish were taken by this method in 1977 (Table 11).

Floy tags were applied to 6783 fish of nine species during 1977 (Table 12). This brought to 9311 the number of tags applied during the two years of the study. Goldeye accounted for 32.6% of this total and lake whitefish made up 25.7%. Other species to which tags were applied included longnose sucker (13.6\%), walleye (10.3\%), northern pike (10.1\%), white sucker (6.3%), flathead chub (0.8%), burbot (0.5%), and Arctic grayling (0.1%) (Table 13). As of

Table 5. Numbers (N), percentage composition (\%), catch-per-unit-effort (C/E) a , and percentage frequency of occurrence (FO) for fish captured in standard gangs from the Mildred Lake study area, Athabasca River, 1977.

Table 5. Continued.

Species	Date of Sample															
	27 to 29 June				12 to 13 July				26 to 27 July				8 to 10 August			
	N	\%	C / E	F0	N	\%	C / E	F0	N	\%	C / E	F0	N	\%	C / E	F0
Goldeye	88	75.2	1.478	100	8	36.4	0.228	100	40	78.4	1.212	100	39	60.0	0.600	75
Walleye	15	12.8	0.252	100	5	22.7	0.142	100	2	3.9	0.060	50	12	18.5	0.184	75
Northern pike	9	7.7	0.151	75	1	4.5	0.028	50	2	3.9	0.060	50	0	0.0	0.000	0
Lake whitefish	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	2	3.1	0.030	50
Mountain whitefish	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Arctic grayling	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Dolly Varden	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Longnose sucker	3	2.6	0.050	75	2	9.0	0.057	50	2	3.9	0.060	50	1	1.5	0.015	25
White sucker	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	1	1.5	0.015	25
Burbot	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	1	1.5	0.015	25
Flathead chub	2	1.7	0.033	50	6	27.3	0.171	100	5	9.8	0.151	100	7	10.8	0.107	75
Total	117				22				51				63			
Total Hours Fished	59.5				35.0				33.0				65.0			
							tinued									

Table 5. Continued.

Species	Date of Sample															
	23 to 24 August				5 to 7 September				20 to 22 September				4 to 5 October			
	N	\%	C / E	F0	N	\%	C / E	F0	N	\%	C/E	FO	N	\%	C / E	F0
Goldeye	11	52.4	0.328	50	42	55.3	0.656	75	25	34.7	0.364	100	15	17.8	0.146	83
Walleye	1	4.7	0.029	50	10	13.1	0.156	100	19	26.4	0.277	75	12	14.3	0.117	67
Northern pike	2	9.5	0.059	50	3	3.9	0.046	50	5	6.9	0.072	50	8	9.5	0.078	67
Lake whitefish	4	19.0	0.119	100	14	18.4	0.218	100	18	25.0	0.262	75	36	42.8	0.351	83
Mountain whitefish	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Arctic grayling	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Dolly Varden	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Longnose sucker	0	0.0	0.000	0	4	5.3	0.062	75	3	4.2	0.043	50	9	10.7	0.087	67
White sucker	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0
Burbot	0	0.0	0.000	0	0	0.0	0.000	0	0	0.0	0.000	0	2	2.4	0.020	33
Flathead chub	3	9.5	0.089	100	3	39.9	0.046	50	2	2.8	0.029	50	2	2.4	0.020	33
Total	21				76				72				84			
Total Hours Fished	33.5				64.0				68.5				102.5			
							tinued									

Table 5. Concluded.

Species	Date of Sample								Total			
	17 to 18 0ctober				1 to 2 November							
	N	\%	C/E	F0	N	\%	C / E	F0	N	\%	C / E	F0
Goldeye	16	19.5	0.150	67	8	23.5	0.148	67	475	48.4	0.580	83
Walleye	11	13.4	0.103	67	6	17.6	0.111	67	135	13.7	0.165	75
Northern pike	10	12.2	0.093	50	4	11.8	0.074	67	56	5.7	0.068	52
Lake whitefish	35	42.7	0.328	83	13	38.2	0.240	100	134	13.6	0.163	54
Mountain whitefish	0	0.0	0.000	0	0	0.0	0.000	0	1	0.1	0.001	2
Arctic grayling	0	0.0	0.000	0	0	0.0	0.000	0	1	0.1	0.001	2
Dolly Varden	0	0.0	0.000	0	0	0.0	0.000	0	1	0.1	0.001	2
Longnose sucker	8	9.7	0.075	83	3	8.8	0.055	33	75	7.6	0.091	65
White sucker	2	2.4	0.018	33	0	0.0	0.000	0	6	0.6	0.007	13
Burbot	0	0.0	0.000	0	0	0.0	0.000	0	4	0.4	0.004	8
Flathead chub	0	0.0	0.000	0	0	0.0	0.000	0	94	9.6	0.114	58
Total	82				34				982			
Total Hours Fished	106.5				54				818			

[^2]Table 6. Numbers (N), percentage composition (\%), catch-per-unit-effort (C/E) and percentage frequency of occurrence (F0) for fish captured in standard gangs from the Delta study grea, Athabasca River, 1977.

Species	Date of Sample															
	1 to 6 June				15 to 16 June				27 to 29 June				11 to 13 July			
	N	\%	C/E	FO	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	6	16.6	0.056	67	48	59.2	0.448	83	31	55.3	0.287	83	16	42.1	0.231	100
Walleye	17	47.2	0.159	100	14	17.3	0.130	100	5	8.9	0.046	67	5	13.1	0.072	75
Nor thern pike	1	2.8	0.009	17	13	16.0	0.121	50	15	26.8	0.138	50	9	23.7	0.130	50
Lake whitefish	0	0.0	0.000	0	1	1.2	0.009	17	2	3.6	0.018	33	6	15.8	0.086	25
Longnose sucker	9	25.0	0.084	67	1		0.009	17	1		0.009	17	1	2.6	0.014	25
Flathead chub	3	8.3	0.028	50	4		0.037	33	2		0.018	33	1	2.6	0.014	25
Total	36				81				56				38			
Total Hours Fished	106.5				107.0				108.0				69.0			

Table 6. Continued.

Table 6. Concluded.

Species	Date of Sample								Total			
	19 to 21 September				3 to 70 ctober							
	N	\%	C / E	F0	N	\%	C/E	F0	N	\%	C / E	F0
Goldeye	7	10.8	0.109	100	2	11.8	0.028	50	183	38.3	0.230	80
Walleye	37	56.9	0.578	100	1	5.9	0.014	25	114	23.8	0.143	78
Northern pike	1	1.5	0.015	25	0	0.0	0.000	0	67	14.0	0.084	41
Lake whitefish	16	24.6	0.250	75	7	41.2	0.101	50	74	15.5	0.093	33
Longnose sucker	4	6.1	0.062	50	7	41.2	0.101	75	27	5.6	0.034	33
Flathead chub	0	0.0	0.000	0	0	0.0	0.000	0	13	2.7	0.016	24
Total	65				17				478			
Total Hours Fished	64.0				69.0				793.5			

[^3]Table 7. Numbers (N), percentage composition (\%), average catch per seine haul (C/E), and percentage frequency of occurrence (FO) for fish captured in large mesh beach seines in the Mildred Lake study area, Athabasca River, 1977.

Species	Date of Sample											
	22 to 29 April				2 to 6 May				11 to 15 May			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	120	9.2	2.9	67	74	37.6	6.2	92	66	35.3	3.7	62
Walleye	166	12.7	4.0	57	15	7.6	1.2	25	24	12.8	1.3	56
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Northern pike	22	1.7	0.5	21	2	1.0	0.2	17	12	6.4	0.7	23
Lake whitefish	25	1.9	0.6	38	7	3.6	0.6	42	13	7.0	0.7	28
Arctic grayling	9	0.7	0.2	12	0	0.0	0.0	0	1	0.5	0.1	6
Longnose sucker	649	49.8	15.5	72	8	4.0	0.7	42	15	8.0	0.8	34
White sucker	285	21.9	6.8	69	87	44.2	7.2	34	33	17.6	1.8	23
Burbot	9	0.7	0.2	19	0	0.0	0.0	0	5	2.7	0.3	23
Flathead chub	18	1.4	0.4	26	4	2.0	0.3	25	18	9.6	0.1	45
Total	1303				197				187			
Number of Seine Hauls				42				12				18
										continued		

Table 7. Continued.

Species	Date of Sample											
	18 May				6 to 8 June				16 to 19 June			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	22	59.5	4.4	80	6	28.6	0.5	42	41	65.1	3.2	77
Walleye	2	5.4	0.4	40	1	4.7	0.1	9	3	4.8	0.2	23
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Northern pike	1	2.7	0.2	20	1	4.7	0.1	9	7	11.1	0.5	39
Lake whitefish	0	0.0	0.0	0	0	0.0	0.0	0	2	3.2	0.2	16
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Longnose sucker	5	13.5	1.0	60	1	4.7	0.1	9	0	0.0	0.0	0
White sucker	1	2.7	0.2	20	1	4.7	0.1	9	1	1.6	0.1	8
Burbot	0	0.0	0.0	0	2	9.5	0.2	17	0	0.0	0.0	0
Flathead chub	6	16.2	1.2	60	9	42.9	0.7	17	9	14.3	0.7	54
Total	37				21				63			
Number of Seine Hauls				5				12				13

Table 7. Continued.

Species	Date of Sample											
	28 to 29 June				11 to 13 July				25 to 27 July			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	21	84.0	2.3	56	15	83.3	2.1	100	25	83.3	2.5	60
Walleye	1	4.0	0.1	12	1	5.6	0.1	15	4	13.3	0.4	30
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Northern pike	0	0.0	0.0	0	1	5.6	0.1	15	1	3.3	0.1	10
Lake whitefish	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Longnose sucker	1	4.0	0.1	12	0	0.0	0.0	0	0	0.0	0.0	0
White sucker	0	0.0	0.0	0	1	5.6	0.1	15	0	0.0	0.0	0
Burbot	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Flathead chub	2	8.0	0.2	23	0	0.0	0.0	0	0	0.0	0.0	0
Total	25				18				30			
Number of Seine Hauls				9				7				10
										cont	d	

Table 7. Continued.

Species	Date of Sample											
	9 to 10 August				22 to 24 August				6 to 7 September			
	${ }^{N}$	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	13	48.1	1.1	34	73	91.2	5.6	62	35	50.7	3.2	64
Walleye	1	3.7	0.1	9	1	1.2	0.1	8	0	0.0	0.0	0
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Northern pike	0	0.0	0.0	0	2	2.5	0.2	16	2	2.9	0.2	9
Lake whitefish	12	44.4	1.0	17	1	1.2	0.1	8	12	17.4	1.1	46
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Longnose sucker	0	0.0	0.0	0	1	1.2	0.1	8	0	0.0	0.0	0
White sucker	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Burbot	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Flathead chub	1	3.7	0.1	9	2	2.5	0.2	16	20	29.0	1.8	55
Total	27				80				69			
Number of Seine Hauls				12				13				11

Table 7. Continued.

Species	Date of Sample											
	20 to 22 September				25 September to 10 ctober				6 to 80 ctober			
	N	\%	C/E	FO	N	\%	C / E	F0	N	\%	C / E	F0
Goldeye	39	26.0	3.0	70	265	22.1	1.9	45	21	8.5	0.4	14
Walleye	2	1.3	0.2	16	47	3.9	0.3	16	8	3.2	0.1	9
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Northern pike	7	4.7	0.5	39	74	6.2	0.5	26	33	13.3	0.6	39
Lake whitefish	91	60.7	7.0	93	761	63.5	5.5	68	122	49.2	2.1	51
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	3	1.2	<0.1	5
Longnose sucker	2	1.3	0.2	16	5	0.4	<0.1.	4	38	15.3	0.7	18
White sucker	0	0.0	0.0	0	37	3.1	0.3	16	20	8.1	0.3	26
Burbot	0	. 0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Flathead chub	9	6.0	0.7	39	9	0.7	0.1	5	3	1.2	<0.1	5
Total	150				1198				248			
Number of Seine Hauls				13				139				57
										cont	ued .	

Table 7. Concluded.

Species	Date of Sample				Total			
	18 to 20 October							
	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	16	9.1	0.4	17	852	22.2	2.1	47
Walleye	5	2.9	0.1	9	281	7.3	0.7	20
Yellow perch	1	0.9	<0.1	3	1	<0.1	<0.1	< 1
Northern pike	36	20.6	0.9	36	201	5.2	0.5	25
Lake whitefish	12	6.9	0.3	17	1058	27.6	2.6	41
Arctic grayling	4	2.3	0.1	11	17	0.4	<0.1	3
Longnose sucker	55	31.4	1.5	22	780	20.4	1.9	18
White sucker	15	8.6	0.4	27	481	12.6	1.2	22
Burbot	0	0.0	0.0	0	16	0.4	<0.1	4
Flathead chub	32	18.3	0.9	3	142	3.7	0.3	15
Total	176				3829			
Number of Seine Hauls				37				410

Table 8. Numbers (N), percentage composition (\%), average catch per seine haul (C/E), and percentage frequency of occurrence (FO) for fish captured in large mesh beach seines in the Delta study area, Athabasca River, 1977.

Species	Date of Sample											
	15 to 17 May				6 to 12 June				16 to 26 June			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	25	58.1	5.0	100	51	67.1	4.6	82	85	57.8	2.8	67
Walleye	6	14.0	1.2	80	17	22.4	1.5	82	29	19.7	1.0	60
Northern pike	5	12.0	1.0	40	4	5.3	0.4	36	14	9.5	0.5	37
Lake whitefish	2	5.0	0.4	40	0	0.0	0.0	0	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Longnose sucker	5	12.0	1.0	60	2	2.6	0.2	9	0	0.0	0.0	0
White sucker	0	0.0	0.0	0	1	1.3	0.1	9	0	0.0	0.0	0
Burbot	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Flathead chub	0	0.0	0.0	0	1	1.3	0.1	9	19	12.9	0.6	43
Total	43				76				147			
Number of Seine Hauls				5				11				30
										cont	d	

Table 8. Continued.

Species	Date of Sample											
	24 June to 10 July				14 to 21 July				25 July to 7 August			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C/E	F0
Goldeye	177	74.0	2.8	65	59	58.4	1.4	36	40	63.5	1.3	35
Walleye	9	3.8	0.1	14	16	15.8	0.4	26	2	3.2	0.1	6
Northern pike	31	13.0	0.5	49	16	15.8	0.4	26	16	25.4	0.5	26
Lake whitefish	1	0.4	0.1	2	3	3.0	0.1	7	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Longnose sucker	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
White sucker	1	0.4	<0.1	2	0	0.0	0.0	0	0	0.0	0.0	0
Burbot	0	0.0	0.0	0	1	1.0	<0.1	2	0	0.0	0.0	0
Flathead chub	20	8.4	0.3	32	6	5.9	0.1	10	5	7.9	0.2	10
Total	239				101				63			
Number of Seine Hauls				63				42				31

Table 8. Continued.

Table 8. Concluded.

Species	Date of Sample								Total			
	20 to 21 September				6 to 70 ctober				N	\%	C/E	FO
	N	\%	C/E	F0	N	\%	C/E	F0				
Goldeye	3	9.4	0.3	10	3	25.0	0.4	13	576	62.5	2.1	52
Walleye	0	0.0	0.0	0	0	0.0	0.0	0	80	8.7	0.3	19
Northern pike	5	15.6	0.5	40	2	16.7	0.2	25	114	12.4	0.4	29
Lake whitefish	24	75.0	2.4	50	7	58.3	0.9	50	75	8.1	0.3	11
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Longnose sucker	0	0.0	0.0	0	0	0.0	0.0	0	11	1.2	<0.1	3
White sucker	0	0.0	0.0	0	0	0.0	0.0	0	8	0.9	<0.1	2
Burbot	0	0.0	0.0	0	0	0.0	0.0	0	1	0.1	<0.1	<1
Flathead chub	0	0.0	0.0	0	0	0.0	0.0	0	57	6.2	0.2	12
Total	32				12				922			
Number of Seine Hauls				10				8				278

Table 9. Numbers (N), percentage composition (\%), average catch per seine haul (C / E), and percentage frequency of occurrence (FO) for fish captured in small mesh beach seines in the Mildred Lake study area, Athabasca River, 1977.

Species	Date of Sample											
	17 to 19 April				3 to 7 May				15 to 18 May			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C / E	F0
Goldeye	0	0.0	0.0	ND	6	2.9	0.4	29	4	3.1	0.3	12
Walleye	0	0.0	0.0	ND	0	0.0	0.0	0	6	4.7	0.4	25
Yellow perch	0	0.0	0.0	ND	0	0.0	0.0	0	0	0.0	0.0	0
Northern pike	22	10.6	1.8	ND	0	0.0	0.0	0	1	0.8	0.1	6
Lake whitefish	0	0.0	0.0	ND	2	1.0	0.1	14	1	0.8	0.1	6
Mountain whitefish	0	0.0	0.0	ND	0	0.0	0.0	0	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	ND	2	1.0	0.1	14	4	3.1	0.3	19
Sucker spp.a	7	3.4	0.6	ND	7	3.4	0.5	43	1	0.8	0.1	6
Trout-perch	150	12.1	12.5	ND	73	35.3	5.2	64	83	65.4	5.2	75
Burbot	2	1.0	0.2	ND	1	0.5	0.1	7	0	0.0	0.0	0
Flathead chub	1	0.5	0.1	ND	6	2.9	0.4	29	3	2.4	0.2	12
Lake chub	19	9.1	1.6	ND	81	39.1	5.8	50	3	2.4	0.2	19
Emerald shiner	0	0.0	0.0	ND	3	1.4	0.2	21	6	4.7	0.4	19
Spottail shiner	6	2.9	0.5	ND	5	2.4	0.4	14	3	2.4	0.2	6
Longnose dace	0	0.0	0.0	ND	1	0.5	0.1	7	0	0.0	0.0	0
Northern redbelly dace	0	0.0	0.0	ND	0	0.0	0.0	0	1	0.8	0.1	6
Finescale dace	0	0.0	0.0	ND	0	0.0	0.0	0	0	0.0	0.0	0
Fathead minnow	0	0.0	0.0	ND	3	1.4	0.2	14	4	3.1	0.3	25
Ninespine stickleback	0	0.0	0.0	ND	0	0.0	0.0	0	2	1.6	0.1	12
Brook stickleback	1	0.5	0.1	ND	2	1.0	0.1	7	2	1.6	0.1	12
Slimy sculpin	0	0.0	0.0	ND	12	5.8	0.9	36	1	0.8	0.1	6
Spoonhead sculpin	0	0.0	0.0	ND	3	1.4	0.2	14	2	1.6	0.1	12
Total	208				207				127			
Number of Seine Hauls				12				14				16
									continued			

Table 9. Continued.

Species	Date of Sample											
	6 to 8 June				16 to 19 June				28 to 29 June			
	N	\%	C / E	F0	N	\%	C / E	F0	N	\%	C / E	F0
Goldeye	5	8.2	0.3	33	8	0.2	0.3	14	0	0.0	0.0	0
Walleye	1	1.6	0.1	7	21	0.4	0.7	17	79	7.2	5.6	64
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0	2	0.2	0.1	14
Northern pike	0	0.0	0.0	0	17	0.3	0.6	24	12	1.1	0.9	29
Lake whitefish	8	13.1	0.5	7	63	1.3	2.2	17	7	0.6	0.5	29
Mountain whitefish	0	0.0	0.0	0	3	0.1	0.1	7	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Sucker spp.a	2	3.3	0.1	13	4634	92.0	159.8	72	361	33.0	25.8	93
Trout-perch	7	11.5	0.5	33	119	2.4	4.1	45	480	43.9	34.3	100
Burbot	4	6.6	0.3	27	4	0.1	0.1	14	4	0.4	0.3	21
Flathead chub	1	1.6	0.1	7	0	0.0	0.0	0	10	0.9	0.7	29
Lake chub	7	11.5	0.5	20	60	1.2	2.1	28	78	7.1	5.6	57
Emerald shiner	13	21.3	0.9	27	48	1.0	1.7	34	27	2.5	1.9	43
Spottail shiner	10	16.4	0.7	20	41	0.8	1.4	28	11	1.0	0.8	29
Longnose dace	0	0.0	0.0	0	3	0.1	0.1	3	5	0.5	0.4	7
Northern redbelly dace	0	0.0	0.0	0	2	<0.1	0.1	7	0	0.0	0.0	0
Finescale dace	2	3.3	0.1	7	10	0.2	0.3	14	0	0.0	0.0	0
Fathead minnow	0	0.0	0.0	0	5	0.1	0.2	10	1	0.1	0.1	7
Ninespine stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Brook stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Slimy sculpin	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Spoonhead sculpin	1	1.6	0.1	7	1	<0.1	<0.1	3	16	1.5	1.1	50
Total	61				5039				1093			
Number of Seine Hauls				15				29				14
									continued . . .			

Table 9. Continued.

Species	Date of Sample											
	11 to 13 July				25 to 27 July				9 to 10 August			
	N	\%	C/E	F0	N	\%	C/E	F0	N	\%	C / E	F0
Goideye	5	2.0	0.4	25	0	0.0	0.0	0	0	0.0	0.0	0
Walleye	24	9.4	2.0	33	10	1.3	0.8	38	35	5.8	2.1	35
Yellow perch	6	2.3	0.5	17	32	4.3	2.5	61	105	17.4	6.2	53
Northern pike	0	0.0	0.0	0	0	0.0	0.0	0	2	0.3	0.1	6
Lake whitefish	4	1.6	0.3	17	2	0.3	0.2	8	0	0.0	0.0	0
Mountain whitefish	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Sucker spp. ${ }^{\text {a }}$	50	19.5	4.2	75	132	17.6	10.2	69	16	2.6	0.9	35
Trout-perch	79	30.9	6.6	58	320	42.6	24.6	46	416	68.8	24.5	82
Burbot	0	0.0	0.0	0	0	0.0	0.0	0	1	0.2	0.1	6
Flathead chub	2	0.8	0.2	8	8	1.1	0.6	23	4	0.7	0.2	18
Lake chub	27	10.6	2.3	42	186	24.8	14.3	38	7	1.2	0.4	35
Emerald shiner	44	17.2	3.7	42	44	5.9	3.4	54	13	2.2	0.8	6
Spottail shiner	3	1.2	0.3	17	14	1.9	1.1	8	4	0.7	0.2	12
Longnose dace	10	3.9	0.8	25	1	0.1	0.1	8	1	0.2	0.1	6
Northern redbelly dace	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Finescale dace	0	0.0	0.0	0	1	0.1	0.1	8	0	0.0	0.0	0
Fathead minnow	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Ninespine stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Brook stickleback	2	0.8	0.2	17	0	0.0	0.0	0	1	0.2	0.1	6
Slimy sculpin	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Spoonhead sculpin	0	0.0	0.0	0	1	0.1	0.1	8	0	0.0	0.0	0
Total	256				751				605			
Number of Seine Hauls				12				13				17
									continued			

Table 9. Continued.

Species	Date of Sample											
	22 to 24 August				6 to 7 September				20 to 22 September			
	N	\%	C / E	FO	N	\%	C / E	F0	N	\%	C/E	F0
Goideye	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Walleye	2	0.6	0.1	6	1	0.3	0.1	7	3	0.6	0.2	11
Yellow perch	24	7.4	1.4	41	16	4.4	1.1	40	12	2.3	0.7	28
Northern pike	2	0.6	0.1	12	1	0.3	0.1	7	0	0.0	0.0	0
Lake whitefish	0	0.0	0.0	0	0	0.0	0.0	0	3	0.6	0.2	11
Mountain whitefish	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Arctic grayling	0	0.0	0.0	0	1	0.3	0.1	7	0	0.0	0.0	0
Sucker spp. ${ }^{\text {a }}$	42	12.9	2.5	53	19	5.2	1.3	40	29	5.5	1.6	33
Trout-perch	201	61.8	11.8	71	275	74.9	18.3	87	294	56.1	16.3	61
Burbot	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Flathead chub	1	0.3	0.1	6	22	6.0	1.5	60	8	1.5	0.4	11
Lake chub	41	12.6	2.4	23	10	2.7	0.7	46	11	2.1	0.6	33
Emerald shiner	5	1.5	0.3	12	18	4.9	1.2	13	157	30.0	8.7	44
Spottail shiner	3	0.9	0.2	12	1	0.3	0.1	7	6	1.1	0.3	22
Longnose dace	3	0.9	0.2	18	2	0.5	0.1	7	0	0.0	0.0	0
Northern redbelly dace	0	0.0	0.0	0	1	0.3	0.1	7	0	0.0	0.0	0
Finescale dace	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Fathead minnow	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Ninespine stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Brook stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Slimy sculpin	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Spoonhead sculpin	1	0.3	0.1	6	0	0.0	0.0	0	1	0.2	0.1	6
Total	325				367				52.4			
Number of Seine Hauls				17				15				18
										ntinu	...	

Table 9. Concluded.

[^4]Table 10. Numbers (N), percentage composition (\%), average catch per seine haul (C / E), and percentage frequency of occurrence (F0) for fish captured in small mesh beach seines in the Delta study area, Athabasca River, 1977.

Table 10. Continued.

Species	Date of Sample											
	29 June to 2 July				14 to 15 July				27 to 28 July			
	N	\%	C/E	F0	N	\%	C / E	F0	N	\%	C / E	F0
Goldeye	0	0.0	0.0	0	15	1.2	1.3	25	7	1.2	0.6	25
Walleye	7	1.3	0.6	17	19	1.6	1.6	42	5	0.9	0.4	17
Yellow perch	6	1.1	0.5	8	5	0.4	0.4	25	5	0.9	0.4	33
Northern pike	3	0.6	0.3	8	7	0.6	0.6	42	3	0.5	0.3	17
Lake whitefish	4	0.8	0.3	25	1	0.1	0.1	8	2	0.3	0.2	8
Mountain whitefish	0	0.0	0.0	0	0	0.0	0.0	0	1	0.2	0.1	8
Sucker spp.a	160	30.3	13.3	67	171	14.0	14.3	83	64	11.0	5.3	50
Trout-perch	141	26.7	11.8	67	82	6.7	6.8	67	343	59.2	28.6	83
Burbot	2	0.4	0.2	17	0	0.0	0.0	0	0	0.0	0.0	0
Flathead chub	69	13.1	5.8	42	176	14.5	14.7	83	72	12.4	6.0	75
Lake chub	3	0.6	0.3	17	0	0.0	0.0	0	1	0.2	0.1	8
Emerald shiner	70	13.2	5.8	75	550	45.2	45.8	58	36	6.2	3.0	58
Spottail shiner	63	11.9	5.3	67	189	15.5	15.8	42	40	6.9	3.3	67
Longnose dace	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Ninespine stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Brook stickleback	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0
Spoonhead sculpin	0	0.0	0,0	0	2	0.2	0.2	8	0	0.0	0.0	0
Total	528				1217				579			
Number of Seine Hauls				12				12				12
									continued			

Table 10. Continued.

Species	Date of Sample												
	9 to 10 August				23 to 27 August				6 to 7 September				
	N	\%	C / E	F0	N	\%	C/E	F0		N	\%	C / E	FO
Goldeye	1	0.2	0.1	10	0	0.0	0.0	0		0	0.0	0.0	0
Walleye	3	0.6	0.3	20	6	1.6	0.6	10		0	0.0	0.0	0
Yellow perch	4	0.8	0.4	20	2	0.5	0.2	10		3	<0.1	0.3	18
Northern pike	2	0.4	0.2	10	0	0.0	0.0	0		1	<0.1	0.1	9
Lake whitefish	0	0.0	0.0	0	1	0.3	0.1	10		0	0.0	0.0	0
Mountain whitefish	0	0.0	0.0	0	0	0.0	0.0	0		0	0.0	0.0	0
Sucker spp. ${ }^{\text {a }}$	278	52.9	27.8	20	21	5.6	2.1	40		4	<0.1	0.4	18
Trout-perch	104	19.8	10.4	80	153	40.6	15.3	90		77	0.7	7.0	54
Burbot	0	0.0	0.0	0	0	0.0	0.0	0		0	0.0	0.0	0
Flathead chub	57	10.8	5.7	70	61	16.2	6.1	50		27	0.2	2.5	36
Lake chub	0	0.0	0.0	0	0	0.0	0.0	0		0	0.0	0.0	0
Emerald shiner	36	6.8	3.6	70	79	21.0	7.9	50	10	866	98.3	987.8	64
Spottail shiner	40	7.6	4.0	70	53	14.0	5.3	90		71	0.6	6.5	64
Longnose dace	0	0.0	0.0	0	0	0.0	0.0	0		0	0.0	0.0	0
Ninespine stickleback	1	0.2	0.1	10	0	0.0	0.0	0		0	0.0	0.0	0
Brook stickleback	0	0.0	0.0	0	1	0.3	0.1	10		0	0.0	0.0	0
Spoonhead sculpin	0	0.0	0.0	0	0	0.0	0.0	0		0	0.0	0.0	0
Total	526				377				11049				
Number of Seine Hauls				10				10					11
									continued				

Table 10. Concluded.

Species	Date of Sample								Total				
	20 to 22 September				6 to 7 October								
	N	\%	C/E	F0	N	\%	C/E	F0		N	\%	C / E	F0
Goldeye	0	0.0	0.0	0	0	0.0	0.0	0		26	0.1	0.2	9
Walleye	0	0.0	0.0	0	0	0.0	0.0	0		80	0.5	0.8	21
Yellow perch	0	0.0	0.0	0	0	0.0	0.0	0		25	0.1	0.2	13
Northern pike	1	0.1	0.1	10	0	0.0	0.0	0		27	0.2	0.3	17
Lake whitefish	0	0.0	0.0	0	0	0.0	0.0	0		10	<0.1	0.1	7
Mountain whitefish	0	0.0	0.0	0	0	0.0	0.0	0		1	<0.1	<0.1	1
Sucker spp. ${ }^{\text {a }}$	10	1.5	1.0	10	0	0.0	0.0	0		788	4.8	7.4	40
Trout-perch	79	12.2	7.9	60	90	55.2	12.9	86	1	571	9.6	14.8	76
Burbot	0	0.0	0.0	0	0	0.0	0.0	0		74	0.4	0.7	8
Flathead chub	224	34.6	22.4	40	36	22.1	5.1	57		862	5.3	8.1	63
Lake chub	1	0.1	0.1	10	0	0.0	0.0	0		5	<0.1	<0.1	4
Emerald shiner	274	42.3	27.4	70	15	9.2	2.1	43	12	$191{ }^{\text {b }}$	74.8	115.0	61
Spottail shiner	58	9.0	5.8	80	21	12.9	3.0	43		619	3.8	5.8	58
Longnose dace	0	0.0	0.0	0	0	0.0	0.0	0		1	<0.1	<0.1	1
Ninespine stickleback	0	0.0	0.0	0	1	0.6	0.1	14		2	<0.1	<0.1	2
Brook stickleback	0	0.0	0.0	0	0	0.0	0.0	0		1	<0.1	<0.1	1
Spoonhead sculpin	0	0.0	0.0	0	0	0.0	0.0	0		13	<0.1	0.1	2
Total	647				163				16296				
Number of Seine Hauls				10				7					106

[^5]b An estimated 10000 emerald shiners were taken in one seine haul.

Table 11. Numbers (N), percentage composition (\%), and number of fish per hour of effort (C/E) for fish captured by angling in the Athabasca River, 1977.

Species	Mildred Lake Study Area			Delta Study Area		
	N	\%	C / E^{a}	N	\%	$c / E^{\text {b }}$
Goldeye	0	0.0	0.0	61	24.6	1.5
Walleye	23	34.3	1.5	8	3.2	0.2
Northern pike	32	48.0	2.1	178	71.8	4.3
Burbot	9	13.4	0.6	0	0.0	0.0
Flathead chub	1	1.5	0.1	1	0.4	<0.1
White sucker	1	1.5	0.1	0	0.0	0.0
Longnose sucker	1	1.5	0.1	0	0.0	0.0
Total	67			248		

a Based on a total effort of 15 angler-hours.
b Based on a total effort of 41.5 angler-hours.

Table 12. Summary of tagged fish released in the Athabasca River in 1977 and recaptured as of 31 0ctober 1979.

Species	Mildred Lake Study Area					Delta Study Area					Combined Study Areas				
	Released			Recaptured		Released			Recaptured		Released			Recaptured	
		N	\%	N	\%		N	\%	N	\%		N	\%	N	\%
Walleye		378	8.4	38	10.1		147	6.4	10	6.8		525	7.7	48	9.1
Goldeye	1	006	22.4	24	2.4		906	39.4	24	2.6	1	912	28.2	48	2.5
Northern pike		287	6.4	30	10.5		370	16.1	31	8.4		657	9.7	61	9.3
Lake whitefish	1	206	26.9	34	2.8		719	31.3	12	1.7	1	925	28.4	46	2.4
Longnose sucker	1	041	23.2	31	3.0		123	5.4	0	0.0	1	164	17.2	31	2.7
White sucker		494	11.0	37	7.5		12	0.5	1	8.3		506	7.5	38	7.5
Flathead chub		28	0.6	1	3.6		18	0.8	0	0.0		46	0.7	1	2.2
Burbot		32	0.7	1	3.1		3	0.1	0	0.0		35	0.5	1	2.9
Arctic grayling		13	0.3	0	0.0		0	0.0	0	0.0		13	0.2	0	0.0
Total	4	485		196	4.4	2	298		78	3.4	6	783		274	4.0

w

Table 13. Summary of fish tagged during 1976 and 1977 and recaptured as of 31 0ctober 1979.

Species	Tag Releases									Tag Pecaptures	
	1976			1977			Total				
		N	\%		N	\%		N	\%	N	\%
Walleye		434	17.2		525	7.7		959	10.3	82	8.6
Goldeye	1	123	44.4	1	912	28.2	3	035	32.6	66	2.2
Northern pike		282	11.2		657	9.7		939	10.1	96	10.2
Lake whitefish		464	18.3	1	925	28.4	2	389	25.7	65	2.7
Longnose sucker		103	4.1	1	164	17.2	1	267	13.6	34	2.7
White sucker		77	3.1		506	7.5		583	6.3	48	8.2
Flathead chub		32	1.3		46	0.7		78	0.8	2	2.6
Burbot		13	0.5		35	0.5		48	0.5	1	2.1
Arctic grayling		0	0.0		13	0.2		13	0.1	0	0.0
Total	2	528			783		9	311		394	4.2

31 October 1979, 394 tagged fish had been recaptured for a recapture rate of 4.2% (Table 13). Fish recaptured at the original tagging site on the same day or on the following day were not included in the analysis. Complete details of all tag recaptures are presented in Appendix 6.4.

4.2 LIFE HISTORIES OF FISH SPECIES

4.2.1 Goldeye

4.2.1.1 Distribution and relative abundance. Among the larger fish species (those susceptible to capture by standard gangs and large mesh seines), goldeye was the most abundant species taken duririg 1977. In the Mildred Lake study area, goldeye were taken in 83% of all standard gangs, accounting for 48.4% of the total catch (Table 5). This species also dominated standard gang catches in the Delta study area where it occurred in 80% of all lifts and made up 38.3% of all fish taken (Table 6). Goldeye were taken in 47% of all large mesh seine hauls in the Mildred Lake study area and accounted for 22.2% of the total catch, second in overall abundance to lake whitefish (Table 7). These figures, however, are misleading because a disproportionate number of large mesh seine hauls in the Mildred Lake study area were made during the autumn as a result of a concerted effort to tag as many lake whitefish as possible during their spawning migration. As indicated in Table 7, 34\% of all large mesh seine hauls made in the Mildred Lake study area were made between 25 September and 1 October when lake whitefish were at their greatest abundance and the numbers of goldeye were decreasing. Furthermore, 23% of all large mesh seine hauls were made during October when the numbers of goldeye in this area were at their lowest level. In the Delta study area, goldeye were taken in 52% of all large mesh seine hauls and comprised 62.5% of the total catch in that gear (Table 8). Catch-per-unit-effort values produced by standard gangs
(Table 5) and large mesh seines (Table 7) indicated that goldeye were present in abundance in the Mildred Lake study area by late April.

While generally remaining high throughout the summer, the catch-per-unit-effort tended to fluctuate, due in part to the effects of floods. This was especially true for standard gangs whose efficiency was greatly reduced during the high water levels of early June and midJuly (Figure 2). In the Delta study area, catch-per-unit-effort values for goldeye also remained fairly high throughout June, July, and August (Tables 6 and 8). Catch-per-unit-effort values in both study areas decreased during September and goideye were seldom captured during October. This decrease in abundance in the autumn suggests that goldeye had left the Athabasca River.

During 1977, most goldeye were captured at Sites 1 to 6,7 to 20,21 to $24,26,28,33$ to $35,37,42$, and 44 in the Mildred Lake study area. Most goldeye taken in the Delta study area were caught at Sites 51 to 56,57 to 67,59 to 72,74 to $76,83,85$, and 87 (Figure 4, Appendix 6.1). Goldeye were also taken by angling at Sites 68 and 78 (Figure 4).
4.2.1.2 Age and growth. Goldeye captured in 1977 ranged in fork length from 28 to 409 mm , with the vast majority (93%) falling within the 230 to 319 mm range (Tables 14 and 15). Length-frequency distributions in the two study areas were similar, with fish in the Delta study area tending to be slightly larger than those in the Mildred Lake study area.

During 1977, age determinations were performed on 692 goldeye, most of which were captured in standard gangs. While goldeye ranged from age 1 to age 9 , the population inhabiting the Athabasca River was composed principally of age 4 (13%), 5 (34%), and 6 (43\%) fish (Tables 16, 17, 18, and 19), which correspond to the 1973, 1972, and 1971 year classes respectively. The 1971 and 1972 year classes were also well represented in 1976 when they were captured as 4- and 5-year olds (Bond and Berry in prep.). The abundance of the 1971 year class was predictable as 1971 is known to have been an excellent year for goldeye production in the Claire-Mamawi system of the Peace-Athabasca Delta (Kooyman 1973; Donald and Kooyman 1974). The 1972 and 1973 year classes, however, are reputed to have been

Table 14. Length-frequency distribution by gear type for goldeye from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish				Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	N	\%
160 to 169	0	0	2	0	2	0.1
170 to 179	0	0	0	0	0	0.0
180 to 189	1	0	0	0	1	0.1
190 to 199	1	0	0	0	1	0.1
200 to 209	1	0	2	0	3	0.2
210 to 219	4	0	2	0	6	0.4
220 to 229	5	0	5	1	11	0.8
230 to 239	15	3	13	0	31	2.1
240 to 249	35	14	50	0	99	6.9
250 to 259	73	23	137	8	241	16.7
260 to 269	86	13	170	9	278	19.3
270 to 279	94	15	164	4	277	19.2
280 to 289	60	11	104	0	175	12.1
290 to 299	41	5	98	0	144	10.0
300 to 309	33	7	47	1	88	6.1
310 to 319	14	4	34	0	52	3.6
320 to 329	7	2	12	0	21	1.5
330 to 339	2	0	2	0	4	0.3
340 to 349	1	1	1	0	3	0.2
350 to 359	0	1	2	0	3	0.2
360 to 369	0	0	0	0	0	0.0
370 to 379	0	0	1	0	1	0.1
380 to 389	0	0	0	0	0	0.0
390 to 399	0	0	0	0	0	0.0
400 to 409	0	0	1	0	1	0.1
Totals	473	99	847	23	1442	100.1

Table 15. Length-frequency distribution by gear type for goldeye from the Delta study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
130 to 139	0	0	1	0	0	1	0.1
140 to 149	0	0	3	0	0	3	0.3
150 to 159	0	0	7	0	0	7	0.6
160 to 169	0	0	2	0	0	2	0.2
170 to 179	0	0	4	0	0	4	0.4
180 to 189	0	0	0	0	0	0	0.0
190 to 199	0	0	0	0	0	0	0.0
200 to 209	1	0	4	0	0	5	0.4
210 to 219	3	0	15	0	0	18	1.6
220 to 229	6	4	26	0	0	36	3.2
230 to 239	3	3	43	0	1	49	4.3
240 to 249	16	6	37	0	6	65	5.8
250 to 259	17	11	69	1	10	108	9.6
260 to 269	31	31	113	0	13	188	16.7
270 to 279	28	60	89	4	12	193	17.1
280 to 289	29	84	75	1	9	198	17.5
290 to 299	21	49	40	0	8	118	10.5
300 to 309	13	26	24	0	0	63	5.6
310 to 319	7	19	16	0	0	42	3.7
320 to 329	6	10	4	0	1	21	1.9
330 to 339	2	0	1	0	0	3	0.3
340 to 349	0	1	0	0	0	1	0.1
350 to 359	0	2	0	0	0	2	0.2
360 to 369	0	0	0	0	0	0	0.0
370 to 379	0	0	0	0	0	0	0.0
380 to 389	0	0	0	0	0	0	0.0
390 to 399	0	0	1	0	0	1	0.1
Totals	183	306	574	6	60	1129	100.2

Table 16 . Age-length (mm) relationship for goldeye from the Mildred Lake study area, Athabasca River, 1977 . Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
0+	0				0				0				
1	0				0				0				
2	0				0			.	0				
3	ND				ND				1	193.0			
4	27	247.7	17.80	209 to 282	31	249.6	21.22	211 to 300	63	247.7	19.31	209 to 300	0.373
5	85	264.2	14.31	141 to 318	86	271.3	17.22	232 to 306	174	267.7	16.13	232 to 318	$2.929^{\text {a }}$
6	67	273.3	16.48	240 to 315	142	286.7	19.96	245 to 332	216	281.7	19.99	240 to 332	$5.136^{\text {a }}$
7	1	252.0			3	287.0	21.12	274 to 307	4	278.2	24.57	252 to 307	
8	0				0				0				
9	0				0				0				
Total	180				262				458				

[^6]Table 17. Age-weight (g) relationship for goldeye from the Mildred Lake study area, Athabasca River, 1977 . Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.b.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	0				0				0				
2	0				0				0				
3	no				ND				1	60.0			
4	27	151.8	35.09	90 to 220	31	153.9	69.17	100 to 300	63	150.8	69.80	90 to 300	0.143
5	85	189.8	42.93	100 to 350	86	206.4	53.07	120 to 330	174	198.0	48.71	100 to 350	$2.255^{\text {a }}$
6	67	219.1	59.31	120 to 340	142	256.5	70.94	140 to 440	216	242.1	69.68	120 to 440	$3.986^{\text {a }}$
7	1	180.0			3	253.3	61.10	200 to 320	4	235.0	61.91	180 to 320	
8	0				0				0				
9	0				0				0				
Total	180				262				458				

[^7]Table 18. Age-length (mm) relationship for goldeye from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	s.o.	Range	N	Mean	S.D.	Ragne	
$0+$	0				0				0				
1	ND				a_{10}	156.7	12.72	133 to 177	${ }^{1} 13$	157.5	11.76	133 to 177	
2	0				0				0				
3	0				0				0				
4	6	261.8	22.97	242 to 297	16	239.4	19.52	208 to 270	30	242.7	21.06	204 to 297	$2.123^{\text {b }}$
5	27	274.1	20.41	245 to 314	33	268.8	11.71	249 to 290	63	270.2	16.63	241 to 314	1.186
6	17	277.2	14.50	245 to 300	64	290.7	18.67	249 to 330	83	287.2	19.00	245 to 330	$3.291{ }^{\text {b }}$
7	1	276.0			3	306.3	20.43	294 to 325	4	298.7	22.54	276 to 325	
8	0				0				0				
9	0				1	339.0			1	339.0			
Total	51				127				234				

${ }^{a}$ Fish from large mesh beach seines.
${ }^{b}$ Significant difference between means for males and females ($P<0.05$).

Table 19. Age-weight (g) relationship for goldeye from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Hean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	ND				a_{10}	40.3	12.01	20 to 64	${ }^{1} 13$	41.4	11.59	20 to 64	
2	0				0				0				
3	0				0				0				
4	6	195.0	50.89	140 to 280	16	146.9	43.32	80 to 210	30	149.7	47.60	80 to 280	2.054
5	27	219.3	62.26	130 to 350	33	200.0	29.58	150 to 250	63	206.5	47.63	130 to 350	1.476
6	17	233.5	47.03	160 to 320	64	278.6	62.56	150 to 420	83	267.0	62.95	150 to 420	$3.258^{\text {b }}$
7	1	240.0			3	333.3	49.33	300 to 390	4	310.0	61.64	240 to 390	
8	0				0				0				
9	0				1	390.0			1	390.0			
Total	51				117				234				

[^8]relatively less successful and their numbers in the Athabasca River in 1976 and 1977 were larger than expected. Intensive gill netting in the Claire-Mamawi system and the western end of Lake Athabasca in 1976 (Kristensen and Pidge 1977) showed the 1971, 1972, and 1973 year classes to make up the majority of the goldeye catch (95\%). These authors pointed out that the 1972 and 1973 year classes were better represented in their Lake Athabasca samples than in samples taken at other locations. They disputed the suggestion, however, that the observed differences in age structure were related to the existence of two discrete populations. The 1972 and 1973 year classes from the Claire-Mamawi system may have been more successful than previously thought. On the other hand, spawning may occur in areas outside that complex, perhaps in Lake Athabasca itself.

Tables 16 and 17 summarize age-length and age-weight data, respectively, for goideye captured in the Mildred Lake study area in 1977 while the corresponding information from the Delta area is shown in Tables 18 and 19. Bond and Berry (in prep.) reported that male and female goldeye captured from the Athabasca River in 1976 grew at the same rate. A different picture, however, emerged in 1977. Female goldeye from the Mildred Lake study area were significantly larger than males ($P<0.05$), both in fork length and weight, at ages 5 and 6 . In the Delta sample, males were significantly larger than females at age 4 (small sample), no difference existed at age 5, and at age 6, females were significantly larger than males. More efficient sampling of the goldeye population in 1977, as a result of the different standard gang utilized, is likely responsible for the identification of these divergent growth rates. Kennedy and Sprules (1967) reported that among older goldeye, females tend to be larger than males of equal age.

Length-weight relationships for goldeye captured from the Mildred Lake and Delta study areas are presented in Tables 20 and 21 , respectively. Apart from the July sample in the Mildred Lake study area (Table 20), no statistically significant differences were found between the slopes of the regressions for males and females, either on a month-to-month basis or in the overall sample.

Table 20. Length-weight relationship by month for goldeye from the Mildred Lake study area, Athabasca River, 1977.

Date	Sex	Number of Fish	Range in Fork Length (mm)	Slope (b)	Intercept (a)	sb	Correlation Coefficient (r)	Difference Test
April to	Male	22	242 to 290	2.831	-4.623	0.622	0.628	1.221
May	Female	29	231 to 306	3.721	-6.772	0.072	0.937	1.221
June	Male	80	209 to 284	3.312	-5.750	0.144	0.932	0.469
	Female	115	211 to 318	3.229	-5.558	0.009	0.955	
July	Male	32	225 to 310	3.500	-6.212	0.087	0.910	$3.275^{\text {a }}$
	Female	14	264 to 290	5.336	-10.714	0.047	0.806	
August	Male	20	248 to 306	2.966	-4.889	0.107	0.883	1.312
	Female	30	242 to 329	3.482	-6.169	0.030	0.967	
September	Male	18	265 to 318	2.807	-4.480	0.062	0.904	1.517
	Female	44	250 to 330	3.385	-5.908	0.050	0.957	
October to November	Male	9	180 to 315	3.283	-5.630	0.020	0.994	1.222
	Female	30	258 to 315	2.943	-4.737	0.048	0.917	
Totals	Male	181	180 to 318	3.406	-5.976	0.013	0.917	1.364
	Female	262	209 to 330	3.581	-6.406	0.005	0.351	

[^9]Table 21. Length-weight relationships by month for goldeye from the Delta study area, Athabasca River, 1977.

Date	Sex	Number of Fish	Range in Fork Length (mm)	Slope (b)	Intercept (a)	sb	Correlation Coefficient (r)	Difference Test
June	Male	20	243 to 314	3.754	-6.823	0.075	0.953	0.936
	Female	51	208 to 330	3.453	-6.081	0.019	0.965	
July	Male	12	243 to 303	2.960	-4.873	0.020	0.974	1.004
	Female	22	224 to 322	3.305	-5.706	0.027	0.975	
August	Male	14	242 to 314	3.236	-5.553	0.151	0.917	0.256
	Female	25	223 to 339	3.123	-5.266	0.048	0.947	
September	Male	5	268 to 296	2.535	-3.810	0.018	0.993	0.775
	Female	17	255 to 328	3.258	-5.591	0.058	0.963	
Totals	Male	51	242 to 314	3.423	-6.009	0.031	0.941	0.349
	Female	115	208 to 339	3.354	-5.835	0.008	0.964	

$\underset{\infty}{\infty}$
4.2.1.3 Sex and maturity. Females tended to outnumber males in each age class, the deviation from a sex ratio of $1: 1$ being significant in age group 4 from the Delta sample and at age 6 in both study areas (Tables 22 and 23). The greatest deviation from a sex ratio of unity occurred among age 6 fish. Within this age class, females made up 68% in the Mildred Lake study area and 79% in the Delta study area. Of 2464 goldeye for which sex was determined (by inspection of gonads or anal fin differences), 64\% were females. Male goldeye in Lake Claire first reach sexual maturity at age 6 while females do not begin to mature until age 7 (Scott and Crossman 1973). Since the Athabasca River below Fort McMurray is utilized solely by immature goldeye (Tables 22 and 23), the difference in age of maturity may explain why females dominated the 6 -year-old age class in the samples. In 1976, when few age 6 fish were taken, males and females (age 4 and 5) were captured in approximately equal numbers (Bond and Berry in prep.).
4.2.1.4 Spawning. Approximately 99% of all goldeye examined in 1977 were sexually immature. A similar situation was observed in 1976 (Bond and Berry in prep.). It is evident, therefore, that goldeye do not utilize either the Mildred Lake or Delta study area for spawning purposes. Rather, it seems likely that upon reaching sexual maturity, the goldeye utilizing these sections of the Athabasca River as juveniles will contribute to the spawning population in the Lake Claire-Lake Mamawi area of the Peace-Athabasca Delta or in Lake Athabasca proper: During 1977, only one young-of-the-year goldeye (29 mm FL) was captured in the Mildred Lake study area while 20 (mean FL 38.3 mm ; range 28 to 55 mm) were taken in the Delta study area.
4.2.1.5 Migrations and movements. Evidence from catch data and tag returns in 1976 (Bond and Berry in prep.) and 1977 (Tables 5, 6, 7, and 8; Appendix 6.4) indicates that, in both years, a large upstream run of immature goldeye occurred in the lower Athabasca River. The high catch-per-unit-effort values obtained for goldeye in the Mildred Lake study area in late April 1977 (Tables 5 and 7), shortly after

Table 22. Age-specific sex ratios and maturity for goldeye from the Mildred Lake study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

a significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

Table 23. Age-specific sex ratios and maturity for goldeye from the Delta study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
$0+$	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
1	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
2	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
3	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
4	16	72.7		0.0	6	27.3		0.0	8	30	16.6	$4.545^{\text {a }}$
5	33	55.0		0.0	27	45.0		0.0	3	63	34.8	0.600
6	64	79.0		3.1	17	21.0		0.0	2	83	45.9	$27.272^{\text {a }}$
7	3	75.0		0.0	1	25.0		0.0	0	4	2.2	
8	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
9	1	100.0		0.0	0	0.0		0.0	0	1	0.5	
Totals	117	69.6		1.7	51	30.4		0.0	13	181	100.0	$25.928^{\text {a }}$

[^10]ice break-up, indicate that this migration was initiated under icecover. A decrease in catch-per-unit-effort in September and October suggests a downstream movement out of the Athabasca River at that time to overwintering areas in Lake Athabasca and/or the Lower Peace River.

Tag returns suggest that goldeye move long distances within the lower Athabasca system during the course of their spring and fall migrations but that movement is restricted during the summer months. Goldeye tagged in the Mildred Lake and Delta study areas in 1976 and 1977 have been recaptured in Lake Athabasca ($N=7$), at Chenal des Quatre Fourches $(N=5)$, at Révillon Coupe $(N=1)$, and near Peace Point, 257 km upstream on the Peace River ($N=1$). The maximum downstream movement observed for goldeye during the present study was 294 km . This fish was tagged at km 42.1 of the Athabasca River on 15 September 1976 and recaptured on 30 August 1977 at Quatre Fourches. During 1977, a maximum upstream movement of 131 km was recorded in the Athabasca River. This goldeye was tagged on 15 May at km 242.4 and was recaptured at km 110.1 on 28 June. In total, 1006 goldeye were tagged in the Mildred Lake study area during 1977 of which 24 have been recaptured (Appendix 6.4). Nineteen goldeye were recaptured in the Mildred Lake study area during 1977 after from 3 to 155 days, exhibiting movements of from 0 to 38 km . Nine of these fish were recaptured upstream from the point of tagging, six had moved downstream, and four were recaptured at the original tagging site. Of 906 goldeye tagged in the Delta study area in 1977, 24 were recaptured (Appendix 6.4). Fourteen were recaptured in the Delta study area, having moved from 0 to 32 km in from 2 to 36 days. Seven of these fish had moved upstream, two downstream, and five were recaptured at the original tagging site.

4.2.2 Walleye

4.2.2.1 Distribution and relative abundance. In the Mildred Lake study area, walleye made up 13.7% of the catch in standard gangs (Table 5) and 7.3% of the catch in large mesh seines (Table 7). High
catch-per-unit-effort values in late April and early May indicated that walleye were abundant in the Mildred Lake study area at that time (Tabies 5 and 7). After mid-May, catch-per-unit-effort values produced by both standard gangs and large mesh seines decreased although walleye continued to be cormmon, occurring in 75% of all standard gangs and 20% of all large mesh seine hauls in the Mildred Lake study area.

In the Delta study area, walleye were taken in 78% of all standard gangs and accounted for 23.8% of the catch in that gear (Table 6). They were taken in 19% of all hauls and made up 8.7% of the fish captured in large mesh seines (Table 8). For most of the summer, catch-per-unit-effort in standard gangs was approximately the same in the Delta study area as in the Mildred Lake study area. It rose sharply, however, on 19 to 21 September as a result of the capture of 32 walleye in a single overnight set at Site 56 (Figure 4). This increase in abundance in mid-September suggests that some walleye may have returned recently to the lower Athabasca River after having spent the summer upstream in the Athabasca River or in tributaries such as the Firebag and Richardson rivers. A similar, although less pronounced, increase in catch-per-unit-effort occurred in standard gangs in the Mildred Lake study area in mid-September (Table 5).

Young-of-the-year walleye occurred in greatest abundance in the Mildred Lake study area on 28 to 29 June. At that time they were caught in 64% of all small mesh seine hauls and accounted for 7.2% of the total catch in this gear (Table 9). By late August, few young-of-the-year walleye were to be found in the Mildred Lake study area of the Athabasca River. Although young-of-the-year walleye were not captured in large numbers in the Delta study area, they appeared to be most numerous in mid-June when they made up 3.8% of the catch in small mesh beach seines and occurred in 60% of all seine hauls (Table 10).

Most walleye in the Mildred Lake study area were captured at Sites 1 to 5,7 to 17,19 to 22,25 to $28,31,33,34,36,37$, and 41 to 44 (Figure 4, Appendix 6.1). In the Delta study area, the largest walleye catches occurred at Sites 51 to $56,57,58,61,63$ to 67,69 ,
$71,72,74$ to $76,78,79$, and 82 to 85 . A few walleye were angled at Site 68 (Figure 4, Appendix 6.1).
4.2.2.2 Age and growth. Length-frequency distributions for walleye (excluding young-of-the-year) are shown by gear type for each study area in Tables 24 and 25. The length-frequency distributions for the two study areas are similar, with greater than 75% of all fish lying in the 300 to 479 mm range. Fork lengths ranged from 160 to 729 mm in the Mildred Lake study area and from 140 to 629 mm in the Delta study area.

Walleye captured in the Mildred Lake and Delta study areas of the Athabasca River in 1977 ranged in scale age from 1 to 13 years with 85% of all fish being age 4 to 8 inclusive (Tables $26,27,28$, and 29) . Jones et al. (1978) and Kristensen and Pidge (1977) reported walleye up to age 15 in the Athabasca River and Lake Athabasca, respectively. Age determinations by the former authors were based on otoliths.

The mean fork lengths for each age group (Tables 26 and 28) were considerably smaller than those found for the same age groups in 1976 (Bond and Berry in prep.) but larger than those shown by Jones et al. (1978). Kristensen and Pidge (1977) reported wide variations in mean fork length at each age for walleye captured at different locations in the west end of Lake Athabasca. The observed differences in mean size of walleye in 1977 as compared to 1976 (Bond and Berry in prep.) probably result from the use of a different standard gang in 1977. During 1976, the 10.2 cm mesh accounted for 43% of all walleye taken in standard gangs while the 5.1 cm mesh took 38%. In 1977, the $8.9,6.3$, and 3.8 cm mesh sizes that were not used in 1976 accounted for $14 \%, 19 \%$, and 6%, respectively, of walleye captured in standard gangs while the 10.2 cm mesh captured only 21% of the total (Appendix 6.2). It is felt that the 1977 standard gang provided better coverage of each age group than did the 1976 gang which may have been more selective of the larger fish in some age classes.

Length-weight relationships for walleye captured from the Mildred Lake and Delta study area in 1977 are shown in Table 30. No

Table 24. Length-frequency distribution by gear type for walleye from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
160 to 169	0	0	2	0	0	2	0.4
170 to 179	0	0	1	0	0	1	0.2
180 to 189	1	0	1	0	0	2	0.4
190 to 199	0	0	0	0	0	0	0.0
200 to 209	1	0	0	0	0	1	0.2
210 to 219	0	0	1	0	0	1	0.2
220 to 229	2	0	1	0	0	3	0.6
230 to 239	3	1	2	1	0	7	1.3
240 to 249	1	0	1	0	0	2	0.4
250 to 259	0	0	0	0	0	0	0.0
260 to 269	3	0	2	0	0	5	0.9
270 to 279	2	1	0	0	0	3	0.6
280 to 289	2	0	0	0	2	4	0.7
290 to 299	4	0	6	1	0	11	2.1
300 to 309	3	0	5	0	0	8	1.5
310 to 319	3	0	3	1	1	8	1.5
320 to 329	6	0	7	0	1	14	2.6
330 to 339	3	0	13	0	1	17	3.2
340 to 349	8	0	7	1	0	16	3.0
350 to 359	4	1	8	0	2	15	2.8
360 to 369	8	1	10	1	3	23	4.3
370 to 379	12	3	15	0	1	31	5.8
380 to 389	10	1	18	0	0	29	5.4
390 to 399	3	1	12	0	1	17	3.2
400 to 409	7	4	12	1	1	25	4.7
410 to 419	13	3	23	0	2	41	7.6

Table 24. Concluded.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
420 to 429	5	10	20	0	0	35	6.5
430 to 439	6	8	14	1	0	29	5.4
440 to 449	1	12	12	0	0	25	4.7
450 to 459	6	14	10	0	4	34	6.3
460 to 469	5	3	7	0	0	15	2.8
470 to 479	1	9	13	0	1	24	4.5
480 to 489	2	4	10	0	0	16	3.0
490 to 499	4	2	5	0	1	12	2.2
500 to 509	0	2	9	0	0	11	2.1
510 to 519	0	3	4	0	2	9	1.7
520 to 529	1	2	1	0	0	4	0.7
530 to 539	1	2	4	0	0	7	1.3
540 to 549	0	0	3	0	0	3	0.6
550 to 559	1	0	3	0	0	4	0.7
560 to 569	0	0	2	0	0	2	0.4
570 to 579	0	1	2	0	0	3	0.6
580 to 589	1	1	2	0	0	4	0.7
$590 \text { to } 599$	0	2	3	0	0	5	0.9
600 to 609	0	1	2	0	0	3	0.6
610 to 619	1	0	1	0	0	2	0.4
620 to 629	0	0	0	0	0	0	0.0
$630 \text { to } 639$	1	0	0	0	0	1	0.2
640 to 649	0	0	1	0	0	1	0.2
720 to 729	0	1	0	0	0	1	0.2
Totals	135	93	278	7	23	536	100.3

Table 25. Length-frequency distribution by gear type for walleye from the Delta study area, Achabasca River, 1977.

Table 25. Concluded.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
400 to 409	11	3	1	0	0	15	5.5
410 to 419	12	4	1	0	0	17	6.2
420 to 429	10	7	3	0	0	20	7.3
430 to 439	8	5	2	0	1	16	5.8
440 to 449	5	6	2	0	0	13	4.7
450 to 459	1	7	1	0	0	9	3.3
460 to 469	1	7	0	0	0	8	2.9
470 to 479	3	4	2	0	0	9	3.3
480 to 489	0	3	1	0	0	4	1.5
490 to 499	0	1	0	0	0	1	0.4
500 to 509	1	5	0	0	0	6	2.2
510 to 519	0	0	0	0	0	0	0.0
520 to 529	1	0	1	0	0	2	0.7
530 to 539	0	0	0	0	0	0	0.0
620 to 629	0	0	1	0	0	1	0.4
Totals	110	78	76	2	8	274	99.9

Table 26. Age-length (mm) relationship for walleye from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.0.	Range	N	Mean	S.O.	Range	N	Mean	S.0.	Range	
$0+$	0				0		!		0				
1	ND				ND		:		3	222.0	13.11	208 to 234	
2	ND				1	278.0			5	235.0	32.79	186 to 278	
3	ND				1	263.0			4	266.0	7.53	260 to 277	
4	1	328.0			2	331.0	50.91	295 to 367	6	319.8	26.01	295 to 367	
5	10	386.7	34.24	334 to 454	6	373.7	18,43	350 to 407	27	361.8	42.75	286 to 454	0.988
6	22	387.3	27.36	327 to 432	12	387.9	41.38	326 to 444	42	379.2	37.37	287 to 444	0.048
7	6	404.2	26.50	365 to 434	4	455.0	31.80	411 to 487	11	418.4	40.95	358 to 487	$2.640^{\text {a }}$
8	11	435.0	32.95	367 to 491	3	466.0	17.43	454 to 486	14	441.6	32.50	367 to 491	$2.192^{\text {a }}$
9	3	457.7	3.79	445 to 462	1	585.0			4	489.5	63.76	445 to 585	
10	3	488.3	8.62	479 to 496	0				3	488.3	8.62	479 to 496	
11	0				1	635.0			1	635.0			
12	2	509.0	26.87	490 to 528	2	570.5	55.86	531 to 610	4	539.7	50.41	490 to 610	1.403
13	0				1	550.0			1	550.0			
Total	58				34				125				

[^11]Table 27. Age-weight (g) relationship for walleye from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish					t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	Ners	S.D.	Range	
$0+$	0				0				0					
1	ND				ND				3	113.3		30.55	80 to 140	
2	ND				1	220.0			5	120.0		61.24	50 to 220	
3	ND				1	180.0			4	180.0		16.33	160 to 200	
4	1	380.0			2	310.0	141.42	210 to 410	6	301.7		86.12	210 to 410	
5	10	622.0	217.70	350 to 1060	6	545.0	63.79	460 to 620	27	511.8		215.07	210 to 1000	1.046
6	22	650.9	140.57	390 to 880	12	655.0	230.20	300 to 1030	42	603.8		191.96	200 to 1030	0.056
7	6	713.3	213.51	480 to 1030	4	1070.0	274.71	810 to 1450	11	820.9		299.18	470 to 1450	2.192
8	11	903.6	179.12	590 to 1230	3	1120.0	208.09	990 to 1360	14	950.0		199.58	590 to 1360	1.643
9	2	1105.0	21.21	1090 to 1120	1	2170.0	!		3	1460.0		615.06	1090 to 2170	
10	3	1333.3	130.51	1230 to 1480	0				3	1333.3		130.51	1230 to 1480	
11	0				0				0					
12	2	1495.0	148.49	1390 to 1600	1	1630.0			3	1540.0		130.77	1390 to 1630	
13	0				1	2130.0			1	2130.0				
Total	58				34				125					

Table 28. Age-length (mm) relationship for walleye from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.0.	Range	N	Mean	S.O.	Range	N	Hean	S.D.	Range	
$0+$	0	-			0				0				
1	0				0				0				
2	ND				ND				3	83.3	5.78	80 to 90	
3	ND				ND				2	160.0		160 to 160	
4	1	500.0			8	292.5	82.42	170 to 420	10	309.0	99.83	170 to 500	
5	1	600.0			4	350.0	100.99	250 to 460	12	${ }_{4} 03.3$	134.66	250 to 660	
6	12	657.5	189.12	430 to 950	10	644.0	187.21	400 to 920	24	628.3	192.37	350 to 950	0.167
7	86	755.0	203.80	400 to 1080	10	745.0	149.31	540 to 960	27	731.1	206.27	210 to 1080	0.144
8	87	857.6	102.01	680 to 1010	7	907.1	245.88	580 to 1220	24	872.1	153.42	580 to 1220	0.515
9	2	890.0	127.28	800 to 980	0				2	890.0	127.28	800 to 980	
10	1	1070.0			0		-		1	1070.0			
11	8	1620.0			0				1	1620.0			
12	0				0				0				
13	1	1740.0			0				1	1740.0			
Total	52				39				107				

Table 29. Age-weight (g) relationship for walleye from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	0				0				0				
2	ND				ND				3	203.3	12.10	194 to 217	
3	ND				ND				2	261.0	1.41	260 to 262	
4	1	356.0			8	307.7	24.91	265 to 344	10	311.7	27.06	265 to 356	
5	1	400.0			4	324.0	29.06	298 to 353	12	344.7	36.23	298 to 400	
6	12	388.4	30.26	344 to 430	10	383.6	37.10	322 to 428	24	381.9	34.69	325 to 430	0.329
7	16	396.6	44.71	282 to 449	10	407.1	25.67	375 to 444	27	396.6	42.95	282 to 449	$26.229^{\text {a }}$
8	17	419.0	24.85	376 to 473	7	437.4	34.23	381 to 474	24	424.4	28.44	376 to 474	1.290
9	2	485.0	18.38	402 to 428	0				2	415.0	18.38	402 to 428	
10	1	405.0			0				1	405.0			
11	1	502.0			0				1	502.0			
12	0				0				0				
13	1	520.0			0				1	520.0			
Total	52				39				107				

[^12]Table 30. Length-weight relationships for walleye, lake whitefish, northern pike, and longnose suckers from the Mildred Lake and Delta study areas, Athabasca River, 1977.

Species	Sex	Number of Fish	Range in Fork Length (mm)	Slope (b)	Intercept (a)	sb	Correlation Coefficient (r)	Difference Test
Mildred Lake Area								
Walleye	Male	57	327 to 528	3.292	-5.716	0.072	0.855	0.046
	Female	32	263 to 585	3.278	-5.700	0.010	0.986	
Lake whitefish	Male	63	323 to 466	2.977	-4.769	0.019	0.940	0.092
	Female	62	327 to 478	2.956	-4.696	0.032	0.904	
Northern pike	Male	19	230 to 684	3.036	-5.230	0.006	0.995	0.928
	Female	32	377 to 790	3.181	-5.630	0.018	0.974	
Longnose suckers	Male	28	329 to 447	2.638	-3.950	0.017	0.970	0.794
	Female	31	315 to 514	2.816	-4.419	0.024	0.958	
Delta Area								
Walleye	Male	52	282 to 520	2.630	-3.970	0.045	0.869	$2.729^{\text {a }}$
	Female	39	265 to 474	3.242	-5.598	0.008	0.986	
Lake whitefish	Male	36	309 to 450	3.066	-4.968	0.021	0.964	1.880
	Female	26	238 to 451	3.391	-5.795	0.008	0.991	
Northern pike	Male	25	328 to 580	2.819	-4.666	0.015	0.979	0.920
	Female	30	378 to 632	2.603	-4.085	0.039	0.927	
Longnose suckers	Male	9	371 to 440	1.988	-2.232	0.182	0.870	0.942
	Female	13	377 to 522	2.545	-3.690	0.082	0.937	

[^13]significant difference was found between the slopes of the regression lines for males and females in the Mildred Lake study area but in the Delta sample the difference between slopes was significant ($\mathrm{P}<\mathrm{O} .05$).
4.2.2.3 Sex and maturity. Age-specific sex ratios and maturity data for walleye collected in 1977 from the Mildred Lake and Delta study areas are presented in Tables 31 and 32 , respectively. In the Mildred Lake sample, males outnumbered females significantly in the overall sample and at age 8 accounted for 83% of all walleye examined. Males and females occurred in approximately equal numbers overall in the Delta sample ($X^{2}=2.167$) although meles outnumbered females significantly at age 8.

Sex ratios obtained for walleye can vary greatly according to the time of year at which the sample is taken and the proximity to the spawning area as a result of behavioural differences between the sexes. Priegel (1970) states that male walleye precede the females onto the spawning grounds and remain there throughout the spawning season whereas females arrive on the spawning grounds later and leave immediately after spawning. Thus, male walleye usually outnumber females during the spawning run (Machniak 1975a). The greater abundance of males in the Mildred Lake samples as compared with the Delta samples in 1977 is probably related to the fact that sampling began earlier in the season in the former study area (i.e., closer to the spawning period).

The youngest mature male walleye examined in 1977 in both study areas were four years old. In the Mildred Lake study area, the youngest mature female was age 5 while in the Delta study area two females were found to be mature at age 4. Virtually all males examined were sexually mature from age 4 on while females did not achieve 100% maturity until age 8.

When the maturity data for both years of the study are examined (see also Bond and Berry in prep.), it is apparent that male walleye from the Athabasca River tend to be mature at a younger age than females. At age $3,20.0 \%$ of the males but none of the femaies examined were sexually mature. Mature females were first observed

Table 31. Age-specific sex ratios and maturity for walleye from the Mildred Lake study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex were determined.

Scale Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
$0+$	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
1	0	0.0		0.0	0	0.0		0.0	3	3	2.4	
2	1	100.0		0.0	0	0.0		0.0	4	5	4.0	
3	1	100.0		0.0	0	0.0		0.0	3	4	3.2	
4	2	66.7		0.0	1	33.3		100.0	3	6	4.8	
5	6	37.5		66.7	10	62.5		80.0	11	27	21.6	1.000
6	12	35.3		75.0	22	64.7		100.0	8	42	33.6	2.940
7	4	40.0		75.0	6	60.0		83.3	1	81	8.8	0.400
8	3	21.4		100.0	11	78.6		100.0	0	14	11.7	$4.570^{\text {a }}$
9	1	25.0		100.0	3	75.0		100.0	0	4	3.2	
10	0	0.0		0.0	3	100.0		100.0	0	3	2.4	
11	1	100.0		100.0	0	0.0		0.0	0	1	0.8	
12	2	50.0		100.0	2	50.0		100.0	0	4	3.2	
13	1	100.0		100.0	0	0.0		0.0	0	1	0.8	
Totals	34	37.0		82.4	58	63.0		94.8	33	125	100.5	$6.260^{\text {a }}$

[^14]Table 32. Age-specific sex ratios and maturity for walleye from the Delta study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
0+	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
1	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
2	0	0.0		0.0	0	0.0		0.0	3	3	2.8	
3	0	0.0		0.0	0	0.0		0.0	2	2	1.9	
4	8	88.9		25.0	1	11.1		100.0	1	10	9.3	
5	4	80.0		50.0	1	20.0		0.0	7	12	11.2	
6	10	45.5		60.0	12	54.5		75.0	2	24	22.4	0.182
7	10	38.5		90.0	16	62.5		100.0	1	27	25.2	1.385
8	7	29.2		100.0	17	70.8		100.0	0	24	22.4	$4.167^{\text {a }}$
9	0	0.0		0.0	2	100.0		100.0	0	2	1.9	
10	0	0.0		0.0	1	100.0		100.0	0	1	0.9	
11	0	0.0		0.0	1	100.0		100.0	0	1	0.9	
12	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
13	0	0.0		0.0	1	100.0		100.0	0	1	0.9	
Totals	39	42.9		66.7	52	57.1		92.3	16	107	99.8	2.167

[^15]at age 4 when 11.1% of the specimens were mature while 68.4% of the males examined were mature at this age. At ages 5, 6, and 7, 89.1, 93.4 , and 98.0%, respectively, of males were sexually mature. The corresponding values for females at the same ages were 52.9, 79.4, and 92.9%. All walleye of both sexes were mature at age 8. Bidgood (1971) reported that male walleye spawned for the first time at age 4 in Richardson Lake (Figure 1) while females first matured at four to six years of age.
4.2.2.4 Spawning. Walleye spawning was not observed in 1977
although a spawning migration was clearly underway when sampling began in the Mildred Lake study area in midmApril. Ripe males were captured as early as 22 April while the first ripe female was taken 1 May. The first spent female was captured 1 May and spent females were taken as late as 12 July. No spent male was reported until 13 July. Spent males were undoubtedly in the area much earlier than this but may have been mistaken for ripe if not dissected since spent males may continue to exude milt for some time after spawning. Machniak and Bond (1979) reported 222 walleye moving upstream in the Steepbank River between 2 and 28 May 1977 (most between 9 and 12 May). Virtually all of these fish were males and were observed to be running milt. However, upon gonadal inspection, they were found to be spawned out. Sixty-two percent (62%) of these fish remained in the Steepbank River beyond 28 May.

Young-of-the-year walleye ($N=79$) captured in the Mildred Lake study area on 28 to 29 June had a mean fork length of 34.7 mm (range 24 to 56 mm). By 10 August, young-of-the-year walleye $(N=35$) averaged 76.5 mm with a range of 49 to 98 mm .

Sampling in the Delta study area began on 14 May, by which time it is suspected most walleye spawning had been completed. No ripe females were taken in this area but spent females were captured between 3 and 28 June. Ripe and spent males were reported on 16 May and 6 June, respectively. Spawning in the Delta is known to occur in Richardson Lake (Figure 1) but it is doubtful that any spawning occurs in the main river in this area because of the unsuitable substrate.

It is suspected that walleye spawn in the Athabasca and/or Clearwater rivers upstream from Fort McMurray although some tributary spawning may occur. Walleye did not spawn, however, in the Muskeg River in 1976 or 1977 (Bond and Machniak 1977, 1979), the Steepbank River in 1977 (Machniak and Bond 1979), or the Mackay River in 1978 (Machniak et al. in prep.).
4.2.2.5 Fecundity. Fecundity was estimated gravimetrically for six mature female walleye captured between 29 April and 4 May 1977 in the Mildred Lake study area. For these fish, which ranged from 473 to 613 mm in fork length, fecundity estimates ranged from 39466 to 117588 eggs, with a mean of 79970 eggs per female (Table 33). Lengthrelative fecundity ranged from 834.4 to 1918.2 ova per cm of fork length while weight-relative fecundity varied from 41.3 to 46.4 ova per gram of body weight.
4.2.2.6 Migrations and movements. High catch-per-unit-effort values and the presence of ripe fish indicated that a walleye spawning migram tion was in progress in the Mildred Lake study area when sampling began on 17 April 1977. Most walleye, however, had completed spawning and left the area by mid-May (Tables 5 and 7). It is likely that most female walleye returned downstream shortly after spawning as few were captured in the Athabasca River. Males, however, apparently tended to remain in the Mildred Lake study area for a longer period of time following the spawning period. Post-spawning migrations of spent walleye have been observed in the Steepbank River in May 1977 (Machniak and Bond 1979) and in the Mackay River in May 1978 (Machniak et al. in prep.). The length of time spent in the tributaries by male walleye is uncertain but the available evidence suggests that they leave during the summer (McCart et al. 1979; Machniak and Bond 1979; Machniak et al. in prep.). Machniak and Bond (1979) reported that of 222 walleye counted upstream in the Steepbank River during May, 85 had returned downstream by 29 May while only three were captured at a downstream trap operated from 12 September to 15 October.

Table 33. Fecundity estimates for walleye from the Athabasca River, 24 April to 4 May 1977.

Fork Length (mm)	Weight (g)	Estimated Number of Eggs	Relative Fecundity ${ }^{\text {E }}$	
	ND	39466	834.4	Egs/cm
475	1300	60348	1270.5	46.4
500	1480	61142	1222.8	41.3
557	1890	86602	1554.8	45.8
608	2640	114671	1886.0	43.4
613	2590	117588	1918.2	45.4

a Number of eggs per cm of fork length and per g of body weight.

During the two years of the present study, a total of 959 walleye were tagged and 82 were recovered for a return rate of 8.6% (Table 13, Appendix 6.4). Twenty-four tagged walleye were recaptured in Lake Athabasca or the Peace-Athabasca Delta suggesting that some walleye that spawn in or upstream of the Mildred Lake study area belong to the Lake Athabasca population and return to the lake to overwinter. The post-spawning downstream movement back to the lake may be very rapid (females?) as shown by Bond and Berry (in prep.). Further evidence of rapid downstream movement to the lake was gathered in 1977 as three fish were recaptured there after having travelled 246 to 272 km in 34 to 55 days. Five walleye, tagged in the Delta study area in June, were recaptured in Lake Athabasca after 22 to 30 days. On the other hand some walleye (males?) apparently wander extensively, often entering tributaries. Tagged walleye have been recaptured 1 km upstream in the Muskeg River ($N=2$), at the Poplar Creek bridge 1 km upstream of the tributary mouth ($N=3$), and from 2 to 60 km upstream in the MacKay River $(N=6)$. One walleye, tagged at km 27.5 on 29 April 1977, was recaptured at the town of Jarvie on the Pembina River in March 1978 after having travelled approximately 600 km upstream.

4.2.3 Lake Whitefish

4.2.3.1 Distribution and relative abundance. In the Mildred Lake study area, lake whitefish accounted for 13.6% of all fish captured in standard gangs (Table 5) and 27.6% of the total catch in large mesh seines (Table 7). As indicated earlier, however, the latter figure was inflated by efforts to capture as many whitefish as possible for tagging during their spawning migration. Of 410 large mesh seine hauls made in this area during the year, 34% were made between 25 September and 1 October and these hauls produced 72% of all whitefish caught in this gear. In the Delta study area, lake whitefish made up 15.5% of the total catch from standard gangs (Table 6) and 8.1% in large mesh seines (Table 8).

Fluctuations in lake whitefish ahundance in the two study areas in 1977 are indicated by variations in the catch-per-unit-effort values presented in Tables 5, 6, 7, and 8. Considerable numbers of lake whitefish were present in the Mildred Lake study area in late April and early May. This event was not detected in 1976 (Bond and Berry in prep.) because of a late start in the sampling program that year but suggests strongly that some whitefish overwinter in the Athabasca River, or they may simply have accompanied other spring migrants during their spawning runs (walleye, longnose suckers, and white suckers). The catch-per-unit-effort decreased sharply in May indicating that whitefish had left the study area. Small numbers are reported to have entered the Muskeg River (Bond and Machniak 1979) as well as the Steepbank River (Machniak and Bond 1979) during May 1977. Thirty-nine lake whitefish (age 4 to 7) were counted moving upstream in the Steepbank River, of which only four had returned downstream by 29 May. None was taken during a fall fence operation suggesting that they had left the tributary during the summer. Lake whitefish were seldom captured in the Mildred Lake study area from the end of May to mid-August. Beginning in mid-August, however, catch-per-unit-effort values for lake whitefish increased rapidly and reached a peak between 20 September and 5 October. Catch-per-unit-effort then decreased steadily until the end of October as the migration passed upstream through the study area. Standard gangs indicated that lake whitefish were still numerous but decreasing in abundance in early November (Table 5).

Lake whitefish were seldom taken in the Delta study area prior to the commencement of the spawning run in late August (Tables 6 and 8). The peak of the spawning run passed the Delta on 6 September, approximately two to three weeks prior to its arrival in the Mildred Lake study area.

Only 94 young-of-the-year lake whitefish were captured in the Athabasca River in 1977. Of this number, 84 were caught in the Mildred Lake study areã, 75% of them being taken on 16 to 19 June (Table 9).

During 1977, the majority of lake whitefish were captured at Sites 1 to 5,7 to 23,25 to $28,36,37$, and 42 in the Mildred Lake area and at sites $51,53,54,56,57,59,62,63,66$ to 69, 71, 78 , 79, and 83 to 85 in the Delta study area (Figure 4, Appendix 6.1).
4.2.3.2 Age and growth. Lake whitefish captured during 1977 ranged in fork length from 22 to 539 mm . Young-of-the-year had fork lengths of 22 to 130 mm . The length-frequency distributions for larger lake whitefish taken by each gear type in the Mildred Lake and Delta study areas are shown in Tables 34 and 35 , respectively. In the Mildred Lake sample, 92% of the whitefish were within the 340 to 449 mm range in fork length, while in the Delta, the corresponding figure was 87%.

Lake whitefish captured in 1977 ranged in age from 1 to 13 years although the majority (95\%) belonged to age groups 4 to 8 inclusive. Tables 36 and 37 present age-length and age-weight summaries for lake whitefish captured from the Mildred Lake study area while the corresponding. information for the Delta study area is summarized in Tables 38 and 39. Age-length relationships compare quite closely with 1976 results (Bond and Berry in prep.). Mean weights at age showed more variation from 1976 results than did mean lengths but considering the wide ranges in weight reported within age groups, this variation does not seem excessive.

Male and female lake whitefish appear to increase in fork length at approximately equal rates, although age 7 females were significantly larger than males of the same age in the Mildred Lake study area ($t=2.598 ; P<0.05$). Females tended to be heavier than males of equal age but a significant difference occurred only among age 7 fish in the Mildred sample ($t=2.983 ; \mathrm{P}<0.05$).

Length-weight relationships for male and female lake whitefish captured from the Mildred Lake and Delta study areas in 1977 are presented in Table 30. No significant differences occurred between the slopes of the regression lines for males and females in either study area $(P>0.05)$.

Table 34. Length-frequency distribution by gear type for lake whitefish from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish				Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	N	\%
150 to 159	0	0	0	1	1	0.1
180 to 189	0	0	0	1	1	0.1
290 to 299	0	0	2	0	2	0.1
300 to 309	0	0	2	0	2	0.1
310 to 319	0	4	2	0	6	0.4
320 to 329	4	8	9	0	21	1.5
330 to 339	0	10	10	1	21	1.5
340 to 349	8	29	24	1	62	4.5
350 to 359	5	31	63	0	99	7.2
360 to 369	15	22	85	0	122	8.8
370 to 379	11	34	100	1	146	10.6
380 to 389	23	17	134	0	174	12.6
390 to 399	18	20	132	0	170	12.3
400 to 409	16	9	130	0	155	11.2
410 to 419	6	6	105	0	117	8.5
420 to 429	5	5	93	0	103	7.4
430 to 439	7	2	73	0	82	5.9
440 to 449	6	2	41	0	49	3.5
450 to 459	1	1	22	0	24	1.7
460 to 469	2	0	6	0	8	0.6
470 to 479	3	0	7	0	10	0.7
480 to 489	0	0	2	0	2	0.1
490 to 499	0	0	2	0	2	0.1
500 to 599	0	0	2	0	2	0.1
510 to 519	0	0	0	0	0	0.0
520 to 529	0	0	0	0	0	0.0
530 to 539	0	0	1	0	1	0.1
Totals	131	200	1047	5	1383	99.7

Table 35. Length-frequency distribution by gear type for lake whitefish from the Delta study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish			Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	N	\%
120 to 129	0	0	6	6	0.7
130 to 139	1	0	6	7	0.9
140 to 149	0	0	5	5	0.6
210 to 219	0	0	2	2	0.2
230 to 239	1	0	0	1	0.1
240 to 249	3	2	1	6	0.7
250 to 259	0	1	0	1	0.1
260 to 269	0	2	2	4	0.5
270 to 279	0	2	0	2	0.2
280 to 289	1	1	0	2	0.2
290 to 299	2	2	0	4	0.5
300 to 309	2	5	0	7	0.9
310 to 319	3	4	0	7	0.9
320 to 329	0	7	1	8	1.0
330 to 339	1	14	0	15	1.8
340 to 349	4	14	3	21	2.6
350 to 359	2	39	3	44	5.3
360 to 369	2	60	0	62	7.5
370 to 379	5	78	5	88	10.7
380 to 389	5	87	6	98	11.9
390 to 399	11	87	5	103	12.5
400 to 409	6	72	6	84	10.2
410 to 419	8	78	9	95	11.5
420 to 429	7	44	2	53	6.4
430 to 439	4	35	3	42	5.1
440 to 449	2	18	4	24	2.9
450 to 459	2	10	3	15	1.8
460 to 469	0	7	1	8	1.0
470 to 479	0	3	2	5	0.6
480 to 489	0	4	0	4	0.5
490 to 499	0	0	0	0	0.0
Totals	72	676	75	823	99.8

Table 36. Age-length (mm) relationship for lake whitefish from the Mildred Lake study area, Athabasca River 1977. Sexes separate and combined (include unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	0				0				0				
2	0				0				0				
3	1	380.0			1	384.0			2	382.0	2.80	380 to 384	
4	6	368.5	21.65	340 to 403	2	359.0	16.97	347 to 371	8	366.1	19.88	340 to 403	0.637
5	16	359.1	19.67	323 to 390	9	368.0	24.89	327 to 407	25	362.3	21.62	323 to 407	0.921
6	12	400.0	16.46	382 to 436	18	391.7	17.22	363 to 436	30	395.1	17.13	363 to 436	1.325
7	13	374.7	26.33	329 to 408	15	400.8	26.73	342 to 445	28	388.7	29.23	329 to 445	$2.598^{\text {a }}$
8	10	397.9	27.95	366 to 463	9	413.7	28.29	361 to 44/4	19	405.4	28.49	361 to 463	1.220
9	3	433.0	7.21	427 to 441	5	429.2	43.85	362 to 478	8	430.6	33.43	362 to 478	0.190
10	1	385.0			1	387.0			2	386.0	1.41	385 to 387	
11	0				2	451.5	30.40	430 to 473	2	451.5	30.40	430 to 473	
12	0				0				0				
13	1	466.0			0				1	466.0			
Total	63				62				12.5				

[^16]Table 37. Age-weight (g) relationship for lake whitefish from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.0.	Range	N	Mean	S.0.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	0				0				0				
2	0				0				0				
3	1	800.0			1	800.0			2	800.0	0		
4	6	753.3	150.69	610 to 1030	2	815.0	91.92	750 to 880	8	768.7	135.06	610 to 1030	0.689
5	16	706.9	132.50	510 to 920	9	804.4	189.94	480 to 1060	25	742.4	157.05	480 to 1060	1.396
6	12	960.8	162.73	670 to 1260	18	983.3	189.40	690 to 1400	30	947.3	175.15	670 to 1400	0.347
7	13	779.2	176.28	500 to 1040	15	1000.0	215.21	590 to 1310	28	897.5	224.49	500 to 1310	$2.983^{\text {a }}$
8	10	944.0	228.77	680 to 1490	9	1107.8	269.39	660 to 1580	19	1021.6	255.89	660 to 1580	1.420
9	3	1190.0	60.83	1120 to 1230	5	1178.0	333.05	750 to 1600	8	1182.5	253.93	750 to 1600	0.078
10	1	810.0			1	$900.0^{\text {- }}$			2	855.0	63.64	810 to 900	
11	0				2	1545.0	530.33	1170 to 1920	2	1545.0	530.33	1170 to 1920	
12	0				0				0			,	
13	1	1480.0			0				1	1480.0			
Total	53				62				125				

[^17]Table 38. Age-length (mm) relationship for lake whitefish from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
0+	0				0				1	138.0			
1	0				0				2	242.0	1.41	241 to 243	
2	1	314.0			1	246.0			2	280.0	48.08	246 to 314	
3	1	377.0			4	296.5	47.87	238 to 350	5	312.6	54.91	238 to 377	
4	3	374.3	42.48	309 to 393	1	425.0			4	366.7	52.07	309 to 425	
5	12	378.2	22.73	318 to 402	4	390.7	17.93	373 to 413	16	381.4	21.78	318 to 413	1.125
6	10	408.9	15.11	389 to 437	9	396.4	52.44	296 to 451	19	403.0	37.11	296 to 451	0.688
7	3	407.7	8.96	402 to 418	3	402.7	21.94	390 to 428	8	384.0	42.68	300 to 428	0.365
8	1	435.0			3	377.7	68.24	299 to 421	4	392.0	62.66	299 to 435	
9	3	424.0	26.91	394 to 446	0				3	424.0	26.91	394 to 446	
10	1	450.0			1	428.0			2	439.0	15.56	428 to 450	
11	0				0				0				
12	1	394.0			0				1	394.0			
13	0				0				0				
Total	36				26				67				

$\stackrel{10}{9}$

Table 39. Age-weight (g) relationship for lake whitefish from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	mean	S.D.	Range	
$0+$	ND				ND				1	30.0			
1	ND				ND				2	210.0	14.14	200 to 220	
2	1	470.0			1	240.0			2	355.0	162.63	240 to 470	
3	1	890.0			4	407.5	197.88	180 to 630	5	504.0	275.55	180 to 890	
4	3	666.7	229.55	420 to 1000	1	1190.0			4	797.5	358.18	420 to 1190	
5	12	879.2	140.22	550 to 1080	4	1070.0	237.63	860 to 1370	16	926.9	181.65	550 to 1370	1.520
6	10	1106.0	165.41	880 to 1410	9	1105.5	467.63	350 to 1670	19	1105.8	332.97	350 to 1670	0.003
7	3	1100.0	175.78	970 to 1300	3	1136.7	246.64	970 to 1420	8	956.3	343.47	400 to 1420	0.210
8	1	1130.0			3	930.0	493.25	370 to 1300	4	980.0	414.97	370 to 1300	
9	3	1296.7	222.34	1040 to 1430	0				3	1296.7	222.34	1040 to 1430	
10	1	1370.0			1	1190.0			2	1280.0	127.28	1190 to 1370	
11	0				0				0				
12	1	1000.0			0				1	1000.0			
13	0				0				0				
Total	36				26				67				

4.2.3.3 Sex and maturity. Age-specific sex ratios and maturity data for lake whitefish captured from the Mildred Lake and Delta study areas in 1977 are given in Tables 40 and 41, respectively. In both areas, males and females tended to occur in approximately equal numbers within each age class and in the overall sample the sex ratio did not differ significantly from unity.

While some lake whitefish of both sexes appear to mature at age 3, most do not spawn until age 4. Similar results were obtained in 1976 (Bond and Berry in prep.).
4.2.3.4 Spawning. No ripe lake whitefish were reported in the Delta study area during 1977. In the Mildred Lake area, no ripe males were taken. Ripe females were captured on 18 October but not thereafter. At that time water temperatures were near $4^{\circ} \mathrm{C}$ (Figure 2) and it was apparent that lake whitefish had not spawned in the Mildred Lake study area but had proceeded further upstream. Spent whitefish first appeared in the Mildred Lake study area on 24 October and were present in decreasing numbers until 2 November.

Although no lake whitefish spawning areas were discovered downstream of Fort MCMurray in 1977, the area upstream of Fort McMurray was identified as a spawning area for this species . Jones et al. (1978) documented the presence of a large concentration of lake whitefish below Mountain Rapids, 15 km upstream of Fort McMurray, and a smaller concentration below Cascade Rapids, 25 km upstream of Fort McMurray (Figure 4). Spawning is reported to have occurred between 13 October and 26 October at water temperatures ranging from 6° to $3^{\circ} \mathrm{C}$. The above authors found large concentrations of eggs below Mountain Rapids and smaller numbers below Cascade Rapids on 27 and 28 October.
4.2.3.5 Fecundity. Gravimetric estimations were performed on 13 lake whitefish ranging in fork length from 382 to 473 mm . These fish were fully mature when captured in the Mildred Lake study area on 4 to 5 October. Fecundity estimates varied from 13906 to 44058 ova with a mean of 22815 ova per female (Table 42). Length-relative fecundity

Table 40. Age-specific sex ratios and maturity for lake whitefish from the Mildred Lake study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females			Males			Total		x^{2}
	N	\%	\% Mature	N	\%	\% Mature	N	\%	
0+	0	0.0	0.0	0	0.0	0.0	0	0.0	
1	0	0.0	0.0	0	0.0	0.0	0	0.0	
2	0	0.0	0.0	0	0.0	0.0	0	0.0	
3	1	50.0	100.0	1	50.0	100.0	2	1.6	
4	2	25.0	100.0	6	75.0	66.8	8	6.4	2.000
5	9	36.0	77.8	16	64.0	93.8	25	20.0	1.960
6	18	60.0	100.0	12	40.0	100.0	30	24.0	1.200
7	15	53.6	100.0	13	46.4	100.0	28	22.4	0.140
8	9	47.4	100.0	10	52.6	100.0	19	15.2	0.060
9	5	62.5	100.0	3	37.5	100.0	8	6.4	0.500
10	1	50.0	100.0	1	50.0	100.0	2	1.6	
11	2	100.0	100.0	0	0.0	0.0	2	1.6	
12	0	0.0	0.0	0	0.0	0.0	0	0.0	
13	0	0.0	0.0	1	100.0	100.0	1	0.8	
Totals	62	49.6	96.8	63	50.4	95.2	125	100.0	0.400

Table 41. Age-specific sex ratios and maturity for lake whitefish from the Delta study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
0+	0	0.0		0.0	0	0.0		0.0	1	1	1.5	
1	0	0.0		0.0	0	0.0		0.0	2	2	3.0	
2	1	50.0		0.0	1	50.0		0.0	0	2	3.0	
3	4	80.0		0.0	1	20.0		100.0	0	5	7.5	
4	1	25.0		100.0	3	75.0		100.0	0	4	6.0	
5	4	25.0		100.0	12	75.0		100.0	0	16	23.9	$4.000^{\text {a }}$
6	9	47.4		77.8	10	52.6		100.0	0	19	28.3	0.060
7	3	50.0		100.0	3	50.0		100.0	2	8	11.9	
8	3	75.0		66.7	1	25.0		100.0	0	4	6.0	
9	0	0.0		0.0	3	100.0		100.0	0	3	4.5	
10	1	50.0		100.0	1	50.0		100.0	0	2	3.0	
11	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
12	0	0.0		0.0	1	100.0		100.0	0	1	1.5	
13	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
Totals	26	41.9		69.2	36	58.1		97.2	5	67	100.1	1.620

[^18]Table 42. Fecundity estimates for lake whitefish from the Athabasca River, 4 to 5 October 1977.

Fork Length (mm)	Weight (g)	Number of Eggs			Relative Fecundity ${ }^{\text {a }}$	
		Left Ovary	Right Ovary	Total	Eggs/cm	Eggs/g
382	840	7900	6933	14833	388.3	17.1
383	880	7965	5941	13906	363.1	15.8
385	1020	6049	11798	17847	463.6	17.5
386	920	8532	9731	18263	473.1	19.9
394	1130	11841	9559	21400	543.1	18.9
397	1040	10640	9897	20537	517.3	19.7
411	1310	12264	10638	22902	557.2	17.5
415	1160	9887	8678	18565	447.3	16.0
423	1270	14568	13234	27802	657.3	21.9
434	1210	8677	12063	20740	477.9	17.1
436	1400	13201	15159	28360	650.5	20.3
451	1400	13646	13734	27380	607.1	19.6
473	1920	18327	25731	44058	931.5	22.9

a Number of eggs per cm of fork length and per g of body weight.
ranged from 363.1 to 931.5 eggs per cm of fork length while weightrelative fecundity varied from 15.8 to 22.9 eggs per g of body weight.
4.2.3.6 Migrations and movements. A large lake whitefish spawning migration occurred in the Athabasca River during 1977. The peak of this migration passed through the Delta study area on 6 September (Tables 6 and 8) at which time water temperatures in the Athabasca River were near $14^{\circ} \mathrm{C}$ (Figure 3). This migration reached the Mildred Lake study area between 20 September and 5 October (Tables 5 and 7) by which time water temperatures were between 11° and $6^{\circ} \mathrm{C}$ (Figure 2). Jones et al. (1978) reported that concentrations of whitefish entered their study area upstream of Fort McMurray during the first two weeks of October and that spawning occurred below Mountain Rapids (predominantly) and below Cascade Rapids (to a lesser extent) between 13 and 25 October. These authors captured no lake whitefish upstream of Cascade Rapids and reported finding no ripe whitefish in the Clearwater River. By 20 October, whitefish had begun to leave the spawning grounds and none was captured after 26 october. Spent lake whitefish of both sexes were captured in the Mildred Lake study area between 24 October and 2 November as whitefish began their postspawning, downstream movement. Recaptures of tagged whitefish in the lower Athabasca River, Lake Athabasca, and Mamawi Lake within weeks of tagging in the Mildred Lake study area (Bond and Berry in prep.; Appendix 6.4) indicate a rapid downstream movement by some lake whitefish shortly after spawning.

While some lake whitefish return to Lake Athabasca and the Peace-Athabasca Delta after spawning, others may remain in the Mildred Lake area of the Athabasca River to overwinter. This is suggested by the presence there of considerable numbers of lake whitefish in late April and early May 1977, as reflected in standard gang and large mesh seine catch results (Tables 5 and 7). Additional evidence that overwintering occurs in the Mildred Lake area derives from Machniak and Bond (1979) who reported upstream movement of 39 lake whitefish in the Steepbank River in May 1977. Small numbers of lake whitefish also moved up the Muskeg River in May 1976 and May 1977 (Bond and

Machniak 1977, 1979). Large mesh beach seines and standard gill net gangs captured few lake whitefish in the Mildred Lake area or the Delta study area between the end of May and the beginning of the fall spawning run.

During the two years of the present study, 2389 lake whitefish were tagged and 65 were recaptured for a return rate of 2.7% (Table 13). Twenty-seven tagged lake whitefish have been recaptured from Lake Athabasca or the Peace-Athabasca Delta (Bond and Berry in prep.; Appendix 6.4), suggesting that some lake whitefish that spawn in or upstream of the Mildred Lake study area are part of the Lake Athabasca population and return to the lake or delta to overwinter. In some cases, the post-spawning movement back to the lake may be very rapid as three whitefish, tagged between 28 September and 7 October 1977, were recaptured at Quatre Fourches (Figure 4) on 23 October 1977, having travelled approximately 295 km in from 16 to 25 days. Maximum. movement observed for a lake whitefish during the study was 338 km . This fish was recaptured on the north shore of Lake Athabasca near the Alberta-Saskatchewan border, having been at large for 122 days (Bond and Berry in prep.).

4.2.4 Northern Pike

4.2.4.1 Distribution and relative abundance. Northern pike occurred throughout both the Mildred Lake and Delta study areas but were not captured in large numbers either in standard gangs (Tables 5 and 6) or large mesh seines (Tables 7 and 8).

In the Mildred Lake study area, northern pike accounted for 5.7% of all fish taken in standard gangs and 5.2% of those taken in large mesh seines. They were captured in 52% of all standard gangs and in 25% of all large mesh seine hauls. Catch-per-unit-effort values were high in the Mildred Lake area in late April and early May (Table 5) at which time pike were abundant around tributary mouths. Spring movements of northern pike into tributaries of the Athabasca River have been documented by Bond and Machniak (1977, 1979); Machniak and Bond (1979); and Machniak.et al. (in prep.). These movements may
be of a spawning or post-spawning nature. Throughout the summer, catch-per-unit-effort values for pike remained at a low level in the Mildred Lake study area. They tended to increase, however, in September and October (Tables 5 and 7), perhaps indicating that pike had left the tributaries for overwintering areas in the Athabasca River.

In the Delta study area, northern pike occurred in 41% of all standard gangs and made up 14.0% of the total catch (Table 6). They comprised 12.4% of the catch in large mesh seines and were taken in 29% of all hauls (Table 8). As in the Mildred Lake study area, catch-per-unit-effort values for pike remained relatively constant in the Deita study area throughout the summer. They appeared to decrease in abundance, however, during September (Tables 6 and 8) probabiy as a result of movement to overwintering areas either upstream in the Athabasca River or in the lower delta and Lake Athabasca.

The majority of northern pike in the Mildred study area were captured at Sites 1 to 6,7 to 17,19 to $22,24,31,33,34,37$, 39, 41, and 43 and large numbers were angled 1 km up the Horseshoe Lake outlet (km 46.4) on 17 June 1977. In the Delta study area, most pike were captured at Sites 51 to $57,59,61$ to 66,68 to $72,74,76$, $78,82,83,85$, and 86 and large numbers were captured by angling at Sites 68 and 78 (Figure 4, Appendix 6.1).
4.2.4.2 Age and growth. Northern pike captured from the Athabasca River in 1977 ranged in fork length from 19 to 1099 mm with young-of-the-year varying from 19 to 185 mm in fork length. Length-frequency distributions for larger pike taken in each gear type in the Mildred Lake and Delta study areas are shown in Tables 43 and 44 , respectively. In both areas, the length-frequencies show the same multi-modal character as appeared in the 1976 sample (Bond and Berry in prep.). This results from the use of a small length interval (20 mm) and the fact that the various gear types tend to select pike of distinctly different modal lengths. The majority of pike captured (75\%) were between 320 and 619 mm long (Tables 43 and 44).

Age determinations were performed on 144 northern pike captured from the Athabasca River in 1977. Scale ages ranged from $0+$ to

Table 43. Length-frequency distribution for northern pike from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
100 to 119	0	0	0	0	0	0	0.0
120 to 139	0	0	0	0	0	0	0.0
140 to 159	0	0	0	0	0	0	0.0
160 to 179	0	0	0	0	0	0	0.0
180 to 199	0	0	1	0	0	1	0.3
200 to 219	0	0	0	0	0	0	0.0
220 to 239	2	0	6	3	0	11	3.0
240 to 259	0	0	5	1	0	6	1.7
260 to 279	1	0	6	1	0	7	1.9
280 to 299	0	0	5	0	1	6	1.7
300 to 319	0	0	5	0	0	5	1.4
320 to 339	0	0	8	5	1	14	3.9
340 to 359	1	0	9	1	0	11	3.0
360 to 379	1	1	9	3	4	18	5.0
380 to 399	0	0	10	1	1	12	3.3
400 to 419	1	3	6	2	0	12	3.3
420 to 439	2	0	15	0	0	17	4.7
440 to 459	2	3	18	2	0	25	6.9
460 to 479	4	4	15	1	3	27	7.4
480 to 499	1	2	10	1	4	18	5.0
500 to 519	3	3	10	0	3	19	5.2
520 to 539	4	3	15	2	4	28	7.7
540 to 559	6	5	3	1	2	17	4.7
560 to 579	3	6	8	1	2	20	5.5
580 to 599	7	8	7	1	3	26	7.2
					conti		

Table 43. Concluded.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
600 to 619	3	5	2	1	2	13	3.6
620 to 639	3	4	2	0	0	9	2.5
640 to 659	1	4	1	1	0	7	1.9
660 to 679	1	3	2	0	0	6	1.7
680 to 699	1	3	3	0	0	7	1.9
700 to 719	1	2	0	0	0	3	0.8
720 to 739	2	0	1	1	0	4	1.1
740 to 759	2	0	0	0	0	2	0.6
760 to 779	0	1	0	0	0	1	0.3
780 to 799	1	1	0	0	0	2	0.6
800 to 819	0	2	0	0	0	2	0.6
820 to 839	0	2	2	0	0	4	1.1
840 to 859	0	0	1	0	0	1	0.3
860 to 879	0	0	0	0	0	0	0.0
880 to 899	0	0	0	0	0	0	0.0
900 to 919	0	0	0	0	0	0	0.0
920 to 939	0	0	0	0	0	0	0.0
940 to 959	0	0	0	0	0	0	0.0
960 to 979	0	0	1	0	0	1	0.3
980 to 990	0	0	0	0	0	0	0.0
Totals	53	65	186	29	30	363	100.1

Table 44. Length-frequency distribution by gear type for northern pike from the Delta study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
180 to 199	0	0	2	0	0	2	0.4
200 to 219	0	0	2	2	0	4	0.9
220 to 239	1	0	5	0	0	6	1.3
240 to 259	0	0	4	0	0	4	0.9
260 to 279	0	0	5	1	1	7	1.5
280 to 299	2	0	6	0	0	8	1.7
300 to 319	0	0	3	1	0	4	0.9
320 to 339	1	0	4	0	1	6	1.3
340 to 359	2	0	10	1	3	16	3.5
360 to 379	2	0	2	0	3	7	1.5
380 to 399	4	1	4	0	2	11	2.4
400 to 419	4	1	4	0	4	13	2.8
420 to 439	5	4	6	0	12	27	5.8
440 to 459	6	5	8	1	14	34	7.4
460 to 479	9	10	6	0	17	42	9.1
480 to 499	7	7	5	4	19	42	9.1
500 to 519	3	14	7	0	18	42	9.1
520 to 539	6	6	5	3	7	27	5.8
540 to 559	5	5	6	0	11	27	5.8
560 to 579	3	6	2	0	5	16	3.5
580 to 599	4	3	1	0	11	19	4.1
600 to 619	0	4	5	0	7	16	3.5
620 to 639	1	1	2	0	4	8	1.7
640 to 659	0	1	0	0	4	5	1.1
660 to 679	0	5	0	0	4	9	1.9
					cont		

Table 44. Concluded.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
680 to 699	0	6	1	0	8	15	3.2
700 to 719	0	1	1	0	1	3	0.6
720 to 739	0	3	0	0	4	7	1.5
740 to 759	0	1	0	0	3	4	0.9
760 to 779	0	6	3	0	2	11	2.4
780 to 799	0	2	0	0	0	2	0.4
800 to 819	0	3	0	0	2	5	1.1
820 to 839	0	1	0	0	0	1	0.2
840 to 859	0	2	0	0	0	2	0.4
860 to 879	0	0	1	0	0	1	0.2
880 to 899	0	0	0	0	0	0	0.0
900 to 919	0	1	0	0	0	1	0.2
920 to 939	0	2	0	0	0	2	0.4
940 to 959	0	0	0	0	1	1	0.2
960 to 979	0	0	1	0	0	1	0.2
980 to 999	0	1	0	0	0	1	0.2
1000 to 1019	0	0	0	0	0	0	0.0
1020 to 1039	0	1	0	0	0	1	0.2
1040 to 1059	0	1	0	0	0	1	0.2
1060 to 1079	0	0	0	0	0	0	0.0
1080 to 1099	0	0	0	0	1	1	0.2
Totals	65	104	111	13	169	462	99.7

7 years and, excluding young-of-the-year, the majority of pike (66\%) belonged to age groups 3 and 4 . Age-length and age-weight data are summarized in Tables 45 and 46 , respectively, for pike taken in the Mildred Lake study area while the corresponding information for the Delta study area is presented in Tables 47 and 48. Age and growth data from 1977 compare favourably with those collected in 1976 (Bond and Berry in prep.) although the length and weight values for age $0+$ fish given in the latter report appear to be questionable (108 to 307 mm ; 10 to 200 g). Young-of-the-year pike collected at Site 22 (Figure 4) on 16 to 18 June $1977(N=11)$ had a mean fork length of 27.9 mm (range 19 to 36 mm) while six fish captured 28 June at Site 37 had a mean fork length of 40.8 mm (range 39 to 44 mm). In the Delta study area, nine young-of-the-year pike taken between 14 and 28 july ranged in fork length from 93 to 119 mm with a mean length of 105.8 mm and a mean weight of 9.0 g . The largest young-of-the-year pike observed in 1977 was 185 mm in fork length and weighed 41.6 g . It was captured in the Mildred Lake study area on 18 October.

Growth data for northern pike taken from the Athabasca River over two years appear to indicate a more rapid growth rate than has been reported for pike captured in the Muskeg River (Bond and Machniak 1979), the Steepbank River (Machniak and Bond 1979), and the MacKay River (Machniak et al. in prep). This apparent difference in mean length and weight for fish of a given scale age is probably due in part to the fact that most pike in the tributaries were captured in the early spring before they had added much new growth whereas the fish from the Athabasca River were taken over the course of the summer. An age 4 fish captured in August would be expected to have increased considerably in length and weight since May, thus increasing the means for its age group.

Table 30 presents the results of the length-weight analysis for male and female northern pike captured in the Mildred Lake and Delta study areas in 1977. No significant difference was found between the slopes of the regression for males and females within either area.

Table 45. Age-length (mm) relationship for northern pike from the Mildred Lake study area, Athabasca
River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
0+	ND				ND				19	40.9	ND	19 to 185	
1	2	249.0	26.87	230 to 268	0				2	249.0	26.87	230 to 268	
2	2	312.5	53.03	275 to 350	1	423.0			4	317.0	88.50	220 to 423	
3	2	539.5	28.99	519 to 560	2	464.5	123.74	377 to 552	4	502.0	85.20	377 to 560	0.835
4	4	515.2	43.21	455 to 549	8	601.2	83.80	489 to 730	12	572.5	83.25	455 to 730	$2.342^{\text {a }}$
5	7	537.7	44.70	470 to 593	14	569.9	99.11	400 to 728	21	559.1	85.00	400 to 728	1.023
6	1	501.0			6	669.8	103.33	559 to 790	7	645.7	113.88	501 to 790	
7	1	684.0			1	652.0			2	668.0	22.63	652 to 684	
Total	19				32				71				

[^19]Table 46. Age-weight (g) relationship for northern pike from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.o.	Range	
				¢ -									
${ }^{0+}$	ND				ND				19	ND			
1	2	110.0	28.28	90 to 130	0				2	110.0	28.28	90 to 130	
2	2	215.0	77.78	160 to 270	1	490.0			4	252.5	174.81	90 to 490	
3	2	1180.0	28.28	1160 to 1200	2	835.0	657.61	370 to 1300	4	1007.5	429.06	370 to 1300	0.741
4	4	1035.0	271.60	690 to 1310	8	1726.2	832.71	700 to 2870	12	1495.8	759.74	690 to 2870	2.132
5	7	1132.9	237.75	760 to 1340	14	1471.4	727.18	550 to 3110	21	1358.6	622.43	550 to 3110	1.581
6	1	1050.0			6	2548.3	1377.70	1260 to 4260	7	2334.3	1379.28	1050 to 4260	
7	1	2500.0			1	2480.0			2	2490.0	14.14	2480 to 2500	
Total	19				32				71				

Table 47. Age-length (mm) relationship for northern pike from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.0.	Range	N	Mean	S.D.	Range	
0+	ND				ND				9	105.8	no	93 to 119	
1	0				0				2	259.5	53.00	222 to 297	
2	6	371.5	33.34	328 to 410	2	416.0	53.74	378 to 454	10	369.4	46.57	293 to 454	1.102
3	7	461.0	64.72	380 to 573	13	480.8	44.46	416 to 566	23	474.5	49.09	380 to 573	0.724
4	8	490.6	51.47	431 to 580	11	506.3	59.55	416 to 596	21	499.4	44.07	416 to 596	0.612
5	4	504.0	40.72	463 to 540	4	549.0	105.31	395 to 632	8	526.5	77.73	395 to 632	0.797
6	0				0				0				
Total	25				30				73				

Table 48. Age-weight (g) relationship for northern pike from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				9	9.0	ND	ND	
1	0				0				2	130.0	70.71	80 to 180	
2	6	375.0	83.13	280 to 460	2	600.0	169.70	480 to 720	10	394.0	149.38	190 to 720	1.804
3	7	682.9	265.50	380 to 1060	13	783.1	230.92	420 to 1210	23	748.7	229.07	380 to 1210	0.842
4	8	905.0	345.9	570 to 1320	11	925.4	265.68	560 to 1500	21	911.4	238.67	560 to 1500	0.177
5	4	902.5	178.39	730 to 1110	4	1270.0	603.66	460 to 1920	8	1086.2	456.51	460 to 1920	1.168
6	0				0				0				
Total	25				30				73				

4.2.4.3 Sex and maturity. Age-specific sex ratios and maturity data for northern pike are shown in Tables 49 and 50 for the Mildred Lake and Deita study areas, respectively. The male to female ratio did not differ significantly from unity either within age groups or in the overall sample.

Maturity results for this study were similar to those found in 1976 (Bond and Berry in prep.) and agree with those reported by other studies in the AOSERP study area (Bond and Machniak 1979; Machniak and Bond 1979; Machniak et al. in prep.). A few pike may spawn as early as age 2 ; however, most do not mature sexually until age 3 or 4 .
4.2.4.4 Spawning. Northern pike generally spawn in April and early May, immediately after the ice melts, at water temperatures of 4.4° to $11.1^{\circ} \mathrm{C}$ (Scott and Crossman 1973). Although pike may spawn in a variety of habitats, the presence of vegetation appears to be a require ment of the spawning site (Machniak 1975b). Marshes or marsh-1ike conditions along small streams seem to be preferred areas. Such sites are available at several locations in the AOSERP study area (Bond and Berry in prep.).

Spawning of northern pike was not observed in 1977 in either the Mildred Lake or Delta study area. Ripe pike, however, were captured in the former area between 27 April and 9 May 1977 and young-of-the-year (19 to 36 mm) were taken on 16 to 18 June. Spent fish were captured in the Mildred Lake study area between 7 May and 29 June. No ripe pike were found in the Delta study area since sampling did not begin there until 14 May, but spent fish were taken between 2 and 28 June and a young-of-the-year (25 mm) was captured on 19 June.
4.2.4.5 Fecundity. For five mature female northern pike (554 to 657 mm FL) captured in the Mildred Lake area between 1 and 8 May, estimated fecundity varied from 17764 to 42962 eggs with a mean of 28896 ova per female (Table 51). Length-relative fecundity varied from 321.0 to 658.9 eggs per cm of fork length and weight-relative fecundity ranged from 10.2 to 19.4 eggs per g of body weight.

Table 49. Age-specific sex ratios and maturity for northern pike from the Mildred Lake study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
0+	0	0.0		0.0	2	100.0		0.0	0	2	3.8	
1	1	33.3		100.0	2	66.7		50.0	1	4	7.7	
2	2	50.0		50.0	2	50.0		100.0	0	4	7.7	
3	8	66.7		100.0	4	33.3		75.0	0	12	23.1	1.333
4	14	66.7		92.9	7	33.3		85.7	0	21	40.4	2.333
5	6	85.7		100.0	1	14.3		100.0	0	7	13.5	
6	1	50.0		100.0	1	50.0		100.0	0	2	3.8	
7	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
Totals	32	62.7		93.8	19	37.3		73.7	1	52	100.0	3.314

Table 50. Age-specific sex ratios and maturity for northern pike from the Delta study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females			Males			Unsexed Fish	Total		x^{2}
	N	\%	\% Mature	N	\%	\% Mature		N	\%	
$0+$	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
1	0	0.0	0.0	0	0.0	0.0	2	2	3.1	
2	2	25.0	50.0	6	75.0	50.0	2	10	15.6	2.000
3	13	65.0	92.3	7	35.0	85.7	3	23	35.9	1.800
4	11	57.9	90.9	8	42.1	75.0	2	21	32.8	0.474
5	4	50.0	100.0	4	50.0	75.0	0	8	12.5	
6	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
Totals	30	54.5	90.0	25	45.5	72.0	9	64	99.9	0.455

Table 51. Fecundity estimates for northern pike from the Athabasca River, 1 to 8 May 1977.

Fork Length (mm)	Weight (g)	1210	Estimated Number of Eggs	Relative Fecundity ${ }^{\text {E }}$ 554		17764	321.0	14.7
608	1570	25400	417.8	16.2				
609	2010	20764	341.0	10.3				
652	2480	42962	658.9	17.3				
657	1940	37592	572.2	19.4				

${ }^{\text {a }}$ Number of eggs per cm of fork length and per g of body weight.
4.2.4.6 Migrations and movements. Northern pike of the AOSERP study area enter some tributaries in early spring. These movements may be related to spawning or feeding and substantial runs were monitored in the Muskeg River (Bond and Machniak 1979) and the Steepbank River (Machniak and Bond 1979) during late April and early May 1977. High cetch-per-unit-effort values in standard gangs had indicated the presence of pike concentrations near the mouths of tributary streams in the Mildred Lake study area between late April and early May. After spawning, some pike remain in the tributaries throughout the summer while others move back down to the Athabasca River where they tend to frequent tributary mouths. A slight increase in catch-per-unit-effort for pike in September and October in the Mildred Lake study area (Table 7) may indicate a movement out of the tributaries and back into the Athabasca River at that time. Apart from these spring and fall movements, pike generally tend to move around very little. Of 96 tagged pike that were recaptured during the study, 72 (77.4\%) were taken within 10 km of the original tagging site (Bond and Berry in prep.; Appendix 6.4). A few individuals, however, move considerable distances. One pike, for example, tagged at km 247.0 of the Athabasca River on 2 September 1977, was recaptured on 15 May 1978 in the Poplar River, having travelled 220 km . Another pike, tagged at km 215.4 on 22 June 1977 had travelled approximately 113 km when recaptured near Fort Chipewyan on 17 June 1979. Within the tributaries, pike often move up- and downstream throughout the summer and a given fish may be recaptured a number of times during that period.

4.2.5 Longnose Sucker

4.2.5.1 Distribution and relative abundance. Suckers (2 species) accounted for 22.6% of all fish captured from the Athabasca River in 1977 (Table 2). The vast majority, however, were young-of-theyear that could not be identified to species. Longnose suckers made up 7.6% of all fish taken by standard gangs in the Mildred Lake study area (Table 5) while comprising 20.4% of the catch produced by large mesh seines (Table 7). In the Delta study area, longnose suckers
accounted for 5.6% of the catch from standard gangs (Table 6) and 1.2% of that from large mesh beach seines (Table 8).

Longnose suckers were abundant in the Mildred Lake study area area by late April 1977 (Tables 5 and 7). This abundance is known to be associated with movements onto spawning grounds in tributary streams such as the Muskeg River (Bond and Machniak 1977, 1979) and the Steepbank River (Machniak and Bond 1979) and in the Athabasca River upstream of Fort McMurray (Tripp and McCart in prep.). After leaving the spawning grounds, longnose suckers quickly left the Mildred Lake study area and few were captured during the summer (Tables 5 and 7). In the Delta study area, as well, few longnose suckers were captured during the summer (Tables 6 and 8).

Bond and Machniak (1977, 1979) and Machniak and Bond (1979) suggested that, while most longnose suckers leave the spawning streams shortly after spawning, a gradual return to the Athabasca River occurs during the summer and some fish remain in the tributaries until just prior to freeze-up. An increase in catch-per-unit-effort in the Mildred Lake study area during September and October (Tables 5 and 7) seems to confirm that suggestion. Tagging nets also indicated an increased abundance of longnose suckers in the Delta study area in the autumn. Of 111 longnose suckers captured in tagging nets in the Delta study area during 1977, 101 were taken in September and October.

In the Mildred Lake study area, tha majority of longnose suckers were caught at Sites 1 to 6,7 to 17,19 to 25,27 to 34,36 , 37 , and 41 to 44 , while most longnose suckers captured in the Delta study area were taken at Sites 51 to $54,56,62,67,71,74$ to 80 , and 82 to 85 (Figure 4, Appendix 6.1).

4.2.5.2 Age and growth. Longnose suckers captured from the

 Athabasca River in 1977 ranged in fork length from 180 to 549 mm (excluding young-of-the-year) with the largest percentage (89\%) lying in the 350 to 469 mm range. Length-frequency distributions by gear type for longnose suckers taken in the Mildred Lake and Delta study areas are presented in Tables 52 and 53, respectively. Overall lengthfrequencies were similar between the two study areas.Table 52. Length-frequency distribution by gear type for longnose suckers from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
190 to 199	0	0	1	0	0	1	0.1
200 to 209	0	0	2	0	0	2	0.2
210 to 219	1	0	0	0	0	1	0.1
220 to 229	0	0	0	1	0	1	0.1
230 to 239	0	1	0	0	0	1	0.1
240 to 249	0	0	2	0	0	2	0.2
250 to 259	0	0	2	0	0	2	0.2
280 to 289	1	0	1	0	0	2	0.2
290 to 299	0	0	2	1	0	3	0.3
300 to 309	1	0	1	0	0	2	0.2
310 to 319	1	0	0	0	0	1	0.1
320 to 329	1	0	4	0	0	5	0.4
330 to 339	2	0	4	0	0	6	0.5
340 to 349	1	0	11	0	0	12	1.1
350 to 359	7	3	21	0	0	31	2.8
360 to 369	5	3	43	0	0	51	4.5
370 to 379	5	5	64	0	0	74	6.6
380 to 389	9	13	87	0	0	109	9.7
390 to 399	7	26	99	0	0	132	11.7
400 to 409	11	32	72	0	0	115	10.2
410 to 419	4	36	73	0	1	114	10.1
420 to 429	8	38	64	0	0	110	9.8
430 to 439	4	38	69	0	0	111	9.9
440 to 449	3	28	48	0	0	79	7.0
450 to 459	3	15	32	0	0	50	4.4
					conti		

Table 52. Concluded.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
460 to 469	0	19	15	0	0	34	3.0
470 to 479	0	8	18	0	0	26	2.3
480 to 489	0	9	9	0	0	18	1.6
490 to 499	0	5	11	0	0	16	1.4
500 to 510	0	0	5	0	0	5	0.4
510 to 519	1	0	2	0	0	3	0.3
520 to 529	0	0	2	0	0	2	0.2
530 to 539	0	1	1	0	0	2	0.2
540 to 549	0	0	1	0	0	1	0.1
Totals	75	280	766	2	1	1124	100.0

Table 53. Length-frequency distribution by gear type for longnose suckers from the Delta study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish			Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	N	\%
180 to 189^{\prime}	0	0	1	1	0.7
220 to 229	0	1	0	1	0.7
230 to 239	1	0	0	1	0.7
240 to 249	0	0	1	1	0.7
250 to 259	0	1	0	1	0.7
270 to 279	0	0	1	1	0.7
280 to 289	0	0	1	1	0.7
350 to 359	0	1	0	1	0.7
360 to 369	0	0	0	0	0.0
370 to 379	4	4	0	8	5.5
380 to 389	1	4	1	6	4.1
390 to 399	1	6	0	7	4.8
400 to 409	4	10	1	15	10.3
410 to 419	1	13	1	15	10.3
420 to 429	3	13	1	17	11.7
430 to 439	2	16	0	18	12.4
440 to 449	2	13	0	15	10.3
450 to 459	1	4	1	6	4.1
460 to 469	2	11	0	13	9.0
470 to 479	0	7	1	8	5.5
480 to 489	0	3	1	4	2.8
490 to 499	0	4	0	4	2.8
500 to 529	1	0	0	1	0.7
Totals	23	111	11	145	99.9

The majority of longnose suckers aged in 1977 (78\%) were 6 to 11 years old inclusive. The maximum age recorded was 19 years, but few fish exceeded 13 years of age. Age and growth summaries for longnose suckers from the two study areas are presented in Tables 54, 55, 56 , and 57.

Longnose suckers are approximately 8 mm long at hatching. By 17 to 20 June, young-of-the-year suckers (2 species) captured in the Athabasca River had a mean length of 21.3 mm (range 18 to 26 mm). Young-of-the-year longnose suckers had a mean fork length of 43.7 mm (range 25 to 72 mm) on 26 to 28 July and averaged 62.0 mm (range 25 to 88 mm) in mid-September. Twelve age 1 longnose suckers captured during April and May showed a mean length of 60.6 mm (range 31 to 97 mm) and a mean weight of 3.2 g .

Length-weight relationships for longnose suckers are presented in Table 30. No significant differences were found between the slopes of the regressions for males and females although the slope values from the Delta study area appear to be out of line. The small sample size in this case is likely to blame for this discrepancy.
4.2.5.3 Sex and maturity. Age and sex were determined for 59 longnose suckers from the Mildred Lake area and 22 from the Delta study area (Tables 58 and 59). All males were mature from age 5 on while all females were mature at age 6. Bond and Machniak (1977) reported both male and female longnose suckers mature at age 7 in the Muskeg River. In the Steepbank River, Machniak and Bond (1979) report the youngest mature male and female longnose suckers to be age 6 and 7 , respectively.

The sex ratio for longnose suckers did not differ significantly from unity either within individual age classes or in the overall sample (Tables 58 and 59) in those fish for which sex was determined by gonadal examination. Of 1043 suckers in the Mildred Lake area whose sex was determined only by the presence or absence of tubercles, 45% were males, 16% females, and 39% unsexed. It is likely that most of the fish listed as unsexed were females while a small number were immature males.

Table 54. Age-length (mm) relationship for longnose sucker from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (include unsexed fish.)

Fin Ray Age	Males				Females				All Fish				t-test
	N	Mean	S.0.	Range	N	Mean	S.D.	Range	N	Mean	5.0.	Range	
$0+$	0				0				0				
1	0				0				0				
2	0				0				0				
3	0				1	331.0			1	331.0			
4	0				1	315.0			3	271.3	49.22	218 to 315	
5	1	342.0			1	357.0			2	349.5	285.56	342 to 357	
6	3	365.7	37.00	329 to 403	2	370.5	3.53	368 to 373	6	357.7	164.52	308 to 403	0.255
7	7	388.7	28.32	350 to 441	6	392.7	21.89	356 to 421	13	390.5	25.88	350 to 441	0.266
8	4	377.7	32.44	352 to 422	7	408.0	27.25	381 to 458	11	397.0	31.53	352 to 458	1.574
9	4	406.5	15.80	390 to 428	3	377.3	21.01	356 to 398	7	394.0	22.69	356 to 428	2.015
10	0				4	403.5	32.36	375 to 450	4	403.5	32.36	375 to 450	
11	3	416.3	9.29	410 to 427	4	418.5	24.96	398 to 452	7	417.6	18.48	398 to 452	0.160
12	1	437.0			1	420.0			2	428.5	12.02	420 to 437	
13	3	428.7	21.50	405 to 477	1	514.0			4	450.0	46.14	405 to 514	1.003
14	0				0				0				
15	2	428.5	7.78	423 to 434	0				2	428.5	7.78	423 to 439	
Total	28				31				62				

Table 55. Age-weight (g) relationship for longnose sucker from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Fin Ray Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	0				0				0				
2	0				0				0				
3	0				1	470.0			1	470.0			
4	0				1	350.0			3	236.7	115.04	120 to 350	
5	1	580.0			1	570.0			2	575.0	7.07	570 to 580	
6	3	673.3	170.09	500 to 340	2	720.0	28.28	700 to 740	6	636.7	175.00	500 to 840	0.466
7	7	745.0	123.25	550 to 950	6	805.0	148.02	580 to 1020	13	772.7	133.02	550 to 1020	0.786
8	4	702.5	223.51	550 to 1030	7	851.4	169.94	670 to 1060	11	797.3	194.84	550 to 1060	1.155
9	4	870.0	94.87	750 to 980	3	730.0	115.32	600 to 820	7	810.0	120.55	600 to 980	1.713
10	0				4	817.5	182.28	660 to 1080	4	817.5	182.28	660 to 1080	
11	3	866.7	68.07	810 to 940	4	902.5	183.91	730 to 1160	7	895.7	136.12	730 to 1160	0.158
12	1	1070.0			1	920.0			2	995.0	106.07	920 to 1070	
13	3	1006.7	161.66	860 to 1180	1	1640.0			4	1165.0		860 to 1640	
14	0				0				0				
15	2	1000.0	84.85	940 to 1060	0				2	1000.0		940 to 1060	
Total	28				31				62				

Table 56. Age-length (mm) relationship for longnose sucker from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Fin Ray Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	0				0				0				
1	0				0				0				
2	0				0				0				
3	0				0				0				
4	0				0				1	239.0			
5	0				0				0				
6	0				0				0				
7	0				1	377.0			1	377.0			
8	4	383.7	13.89	371 to 503	2	401.5	33.23	378 to 425	6	389.7	20.50	371 to 425	0.724
9	3	406.7	12.58	395 to 420	2	442.5	12.02	434 to 451	6	420.3	20.08	395 to 451	3.204
10	1	440.0			2	400.0		400 to 440	4	410.0	20.00	400 to 440	
11	1	425.0			2	454.0	11.31	446 to 462	3	444.3	18.56	425 to 462	
12	0				0				0				
13	0				2	459.0	36.77	433 to 485	2	459.0	36.77	433 to 485	
14	0				0				0				
15	0				1	464.0			1	464.0			
16	0								0				
17	0				0				0				
18	0				0				0				
19	0				1	522.0			1	522.0			
Total	9				13				25				

Table 57. Age-weight (g) relationship for longnose sucker from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Fin Ray Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.0.	Range	N	Mean	S. ${ }^{\text {d }}$	Range	
0+	0				0				0				
1	0				0				0				
2	0				0				0				
3	0				0			.	0				
4	0				0				1	160.0			
5	0				0				0				
6	0				0				0				
7	0				1	780.0			1	780.0			
8	4	812.5	60.76	740 to 880	2	875.0	247.49	700 to 1050	6	833.3	124.52	700 to 1050	0.352
9	3	866.7	70.24	800 to 940	2	1150.0	311.13	930 to 1370	6	965.0	204.82	800 to 1370	1.267
- 10	1	1150.0			2	855.0	21.21	840 to 870	4	882.5	198.89	670 to 1150	
11	1	960.0			2	1125.0	120.21	1040 to 1210	3	1070.0	127.67	960 to 1210	
12	0				0				0				
13	0				2	1195.0	233.34	1030 to 1360	2	1195.0	233.34	1030 to 1360	
14	0				0				0				
15	0				1	1180.0			1	1180.0			
16	0				0				0				
17	0				0				0				
18	0				0				0				
19	0				1	1810.0			1	1810.0			
Total	9				13				2.5				

Table 58. Age-specific sex ratios and maturity for longnose sucker from the Mildred Lake Study Area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Fin Ray Age	Females			Males			Unsexed Fish	Total		x^{2}
	N	\%	\% Mature	N	\%	\% Mature		N	\%	
0+	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
1	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
2	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
3	1	100.0	0.0	0	0.0	0.0	0	1	1.6	
4	1	100.0	0.0	0	0.0	0.0	2	3	4.8	
5	1	50.0	0.0	1	50.0	100.0	0	2	3.2	
6	2	40.0	100.0	3	60.0	100.0	1	6	9.7	
7	6	46.2	100.0	7	53.8	100.0	0	13	20.9	0.080
8	7	63.6	100.0	4	36.4	100.0	0	11	17.7	0.818
9	3	42.9	100.0	4	57.1	100.0	0	7	11.3	0.142
10	4	100.0	100.0	0	0.0	0.0	0	4	6.5	
11	4	57.1	100.0	3	42.9	100.0	0	7	11.3	0.142
12	1	50.0	100.0	1	50.0	100.0	0	2	3.2	
13	1	25.0	100.0	3	75.0	100.0	0	4	6.5	
14	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
15	0	0.0	0.0	2	100.0	100.0	0	2	3.2	
16	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
17	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
18	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
19	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
20	0	0.0	0.0	0	0.0	0.0	0	0	0.0	
Totals	31	52.5	90.3	28	47.5	100.0	3	62	99.9	0.152

Table 59. Age-specific sex ratios and maturity for longnose sucker from the Delta Study Area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Fin Ray Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
0+	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
1	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
2	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
3	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
4	0	0.0		0.0	0	0.0		0.0	1	1	4.0	
5	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
6	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
7	1	100.0		100.0	0	0.0		0.0	0	1	4.0	
8	2	33.3		100.0	4	66.7		100.0	0	6	24.0	0.660
9	2	40.0		100.0	3	60.0		100.0	1	6	24.0	0.200
10	2	66.7		100.0	1	33.3		100.0	1	4	16.0	
11	2	66.7		100.0	1	33.3		100.0	0	3	12.0	
12	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
13	2	100.0		100.0	0	0.0		0.0	0	2	8.0	
14	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
15	1	100.0		100.0	0	0.0		0.0	0	1	4.0	
16	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
17	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
18	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
19	1	100.0		100.0	0	0.0		0.0	0	1	4.0	
20	0	0.0		0.0	0	0.0		0.0	0	0	0.0	
Totals	13	59.1		100.0	9	40.9		100.0	3	25	100.0	1.540

4.2.5.4 Spawning. Longnose suckers were abundant in tributary mouths within the Mildred Lake study area in late April and early May 1977. A reduction in catch-per-unit-effort in standard gillnet gangs and large mesh seines (Tables 5 and 7) in early May marked the movement of longnose suckers onto spawning grounds in tributary streams or in the Athabasca River upstream of the Mildred Lake study area. Both the Muskeg River (Bond and Machniak 1979) and the Steepbank River (Machniak and Bond 1979) are known to have had longnose sucker runs in 1977. Spawning was not observed in the Mildred Lake study area portion of the Athabasca River and is not believed to have occurred there. Tripp and McCart (in prep.), however, indicated that longnose suckers did spawn in the Athabasca River upstream from Fort McMurray in May 1978. Spawning occurred below Cascade and Mountain rapids (Figure 4) in areas used for spawning by lake whitefish in the autumn (Jones et al. 1978). Spent longnose suckers appeared in the Athabasca River by 2 June 1977 in both the Mildred Lake and Delta study areas.

Young-of-the-year suckers (2 species) first appeared in the Mildred Lake portion of the Athabasca River in mid-June (Table 9) and, although their abundance in the main river diminished after the end of June, they remained common. Large numbers of young-of-the-year suckers are known to remain in the tributaries throughout their first summer to rear (Bond and Machniak 1977, 1979; Machniak and Bond 1979). Young-of-the-year suckers first showed up in the Delta study area on 17 to 20 June and appeared to be abundant through 9 to 10 August (Table 10). Few young-of-the-year suckers were captured in the Delta study area after 10 August perhaps indicating that the fry had drifted past the Delta and down to Lake Athabasca.
4.2.5.5 Fecundity. Fecundity estimates were performed on 12 mature female longnose suckers captured from the Mildred Lake study area on 1 to 5 May 1977. These fish ranged in fork length from 387 to 491 mm and the estimated fecundity varied from 19408 to 44402 ova with a mean of 29203 eggs per female. Length-relative fecundity ranged from 464.7 to 940.7 eggs per cm of fork length while weight-relative
fecundity ranged from 17.8 to 29.6 eggs per g of body weight (Table 60).
4.2.5.6 Migrations and movements. As mentioned previously, a large longnose sucker migration was in progress in the Mildred Lake study area when sampling began in late April 1977. During late April and early May, many longnose suckers left the Athabasca River and entered tributaries such as the Muskeg River (Bond and Machniak 1979) and the Steepbank River (Machniak and Bond 1979). Others may have continued upstream through the Mildred Lake study area to spawning grounds in the Athabasca or Clearwater rivers, upstream from Fort McMurray (Tripp and McCart in prep.). After spawning, most longnose suckers left the spawning streams and returned downstream, although some fish remained in the tributaries throughout the summer, leaving just prior to fraezeup (Bond and Machniak 1977; Machniak and Bond 1979).

Tag return evidence from this and other studies (Bond and Machniak 1979; Machniak and Bond 1979; Machniak et al. in prep.) suggests that longnose suckers that spawn in the tributaries of the Mildred Lake study area belong to the Lake Athabasca population and return to the lake to overwinter. During the two years of the present study, Floy tags were applied to 1267 longnose suckers of which 34 have been recaptured for a return rate of 2.7% (Table 13, Appendix 6.4). Twelve longnose suckers were recaptured at the Muskeg River counting fence between 2 May and 5 June 1977, while six fish, tagged in 1977, were recaptured at the MacKay River counting fence between 30 April and 5 May 1978. Ten tagged longnose suckers were recovered in Lake Athabasca or the Peace-Athabasca Delta. Three of these fish were recaptured in Lake Athabasca after 38,52 , and 53 days, indicating that some longnose suckers return to the lake quite rapidly after spawning.

Large numbers of young-of-the-year suckers (2 species) drifted out of the Mildred Lake study area in mid-June (Table 9) and had passed the Delta study area by mid-August (Table 10) on their way to rearing areas in the lower delta or Lake Athabasca.

Table 60. Fecundity estimates for longnose sucker from the Athabasca River, 1 to 5 May 1977.

Fork Length (mm)	Weight (g)	740	19408	Estimated Number of Eggs			Eggs/cm	Eggs/g
387	990	22339	501.5	26.2				
416	850	22000	521.3	25.9				
422	1150	29477	688.7	25.6				
428	1130	25103	585.2	22.2				
429	1150	26623	612.0	23.2				
435	1140	20399	464.7	17.8				
439	1370	30547	35914	675.8				
452	1460	36145	769.0	26.4				
467	1500	44402	767.4	24.8				
471	1680	38079	940.7	29.6				
472			775.5	22.7				
491								

[^20]
4.2.6 White Sucker

4.2.6.1 Distribution and relative abundance. Suckers (2 species) accounted for 22.6% of all fish captured from the Athabasca River in 1977 (Table 2). The vast majority, however, were young-of-the-year that could not be identified to species. Only six white suckers were captured in standard gangs in the Mildred Lake study area (Table 5) and none was taken by this gear in the Delta study area. Many of the white suckers migrating in the Athabasca River were large, mature fish and it is felt that they were not susceptible to the standard gangs because of their large heads and the fact that much of the gang consisted of small mesh net. Large mesh seines also produced few white suckers in the Delta study area (Table 8), but in the Mildred Lake study area, white suckers occurred in 22% of all large mesh seine hauls and accounted for 12.6% of the total catch (Table 7).

Catch-per-unit-effort values of from 6.8 to 7.2 fish per
large mesh seine haul (Table 7) indicated the presence of large numbers of white suckers in the Mildred Lake study area in late April and early May. This abundance is known to be associated with movements onto spawning grounds in tributary streams such as the Muskeg River (Bond and Machniak 1977, 1979) and the Steepbank River (Machniak and Bond 1979). Between 15 May and 22 September only four white suckers were captured in large mesh seines in the Mildred Lake study area. An increase in catch-per-unit-effort was observed in late September and early October (Table 7), however, which is thought to indicate the return to the Athabasca River of white suckers that spent the summer in tributary streams. Machniak and Bond (1979) recorded a downstream movement of white suckers in the Steepbank River just prior to freeze-up.

In the Mildred Lake study area, most white suckers were captured at Sites 1 to $3,5,8$ to 16,19 to 25,27 to 34,36 , and 37 , while in the Delta study area, white suckers were taken at Sites 59 , 61, 62, 64, 74 to 80 , and 82 to 85 (Figure 4, Appendix 6.1).
4.2.6.2 Age and growth. Excluding young-of-the-year, white suckers ranged in fork length from 150 to 579 mm with 82.9% of the sample being in the 350 to 559 mm range (Table 61).

Table 61. Length-frequency distribution by gear type for white sucker from the Mildred Lake and Delta ${ }^{\text {a }}$ study areas, Athabasca River, 1977.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
150 to 159	0	0	1	0	0	1	0.2
160 to 169	0	0	1	0	0	1	0.2
170 to 179	0	0	1	0	0	1	0.2
180 to 189	0	0	0	0	0	0	0.0
190 to 199	0	0	3	0	0	3	0.6
200 to 209	0	0	0	0	0	0	0.0
210 to 219	0	0	3	0	0	3	0.6
220 to 229	0	0	2	0	0	2	0.4
230 to 239	0	0	0	0	0	0	0.0
240 to 249	0	0	4	0	0	4	0.8
250 to 259	0	0	1	0	0	1	0.2
260 to 269	0	0	0	0	0	0	0.0
270 to 279	0	0	0	0	0	0	0.0
280 to 289	0	0	2	0	0	2	0.4
290 to 299	1	0	0	0	0	1	0.2
300 to 309	2	0	5	0	0	7	1.3
310 to 319	0	0	4	0	0	4	0.8
320 to 329	0	0	6	1	0	7	1.3
330 to 339	0	0	5	0	0	5	0.9
340 to 349	0	0	8	0	0	8	1.5
350 to 359	1	1	11	0	0	13	2.4
360 to 369	0	0	24	0	0	24	4.5
370 to 379	1	2	20	0	0	23	4.3
380 to 389	0	5	19	0	0	24	4.5
390 to 399	0	9	18	0	0	27	5.1

Table 61. Concluded.

Fork Length (mm)	Number of Fish					Total	
	Standard Gangs	Tagging Gill Nets	Large Mesh Seines	Small Mesh Seines	Angling	N	\%
400 to 409	0	8	19	0	0	27	5.1
410 to 419	0	6	17	0	0	23	4.3
420 to 429	0	8	13	0	0	21	4.0
430 to 439	0	2	17	0	0	19	3.6
440 to 449	0	2	16	0	0	18	3.4
450 to 459	0	4	19	0	0	23	4.3
460 to 469	0	7	25	0	0	32	6.0
470 to 479	0	0	42	0	0	42	7.9
480 to 489	0	1	30	0	0	31	5.8
490 to 499	0	0	22	0	0	22	4.1
500 to 509	0	2	25	0	0	27	5.1
510 to 519	0	0	20	0	0	20	3.8
520 to 529	0	0	19	0	0	19	3.6
530 to 539	0	0	16	0	0	16	3.0
540 to 549	0	0	11	0	0	12	2.3
550 to 559	0	0	12	0	0	12	2.3
560 to 569	0	0	5	0	0	5	0.9
570 to 579	0	0	1	0	0	1	0.2
Totals	5	57	467	1	1	531	99.9

a Includes only 13 white suckers from the Delta study area.

Because of the small number of white suckers captured in standard gangs, no age-length or age-weight analysis was performed on this species. Information relative to this aspect of the life history of white suckers in the AOSERP area has been presented by Bond and Machniak (1977, 1979) and Machniak and Bond (1979).

White suckers are approximately 10 cm long at hatching. On 17 to 20 June, young-of-the-year suckers (2 species) captured in the Athabasca River had a mean length of 21.3 mm (range 18 to 26 mm). Young-of-the-year white suckers had a fork length of 39.7 mm (range 25 to 55 mm) and 47.2 mm (range 30 to 77 mm) on 26 to 28 July and 6 to 22 August, respectively. Most of the first year's growth appears to have been completed by late August as young-of-the year captured in September and October had mean fork lengths of 43.3 mm (range 33 to 67 mm) and 46.8 mm (range 35 to 68), respectively. These fish had a mean weight of 1.0 g .
4.2.6.3 Sex and maturity. Most white suckers captured in 1977 were taken in late April and early May while on their way to the spawning grounds. However, since few suckers were captured in standard gangs, few were sacrificed, so the state of maturity of these fish is not known officially. White suckers in the AOSERP study area mature as early as age 3 or 4 but most do not spawn until they are 6 to 8 years old (Bond and Machniak 1977, 1979; Machniak and Bond 1979; Machniak et al. in prep.).

The presence of nuptial tubercles was used to identify male white suckers during the early part of the year. Of 518 suckers examined, 40.3% were males, 11.2% females, and 51.5% were left unsexed. As with longnose suckers, mature male white suckers were readily identified by the presence of tubercles. Most of the fish left unsexed were probably females with a small proportion being immature males.
4.2.6.4 Spawning and migrations. White suckers were abundant in the Mildred Lake study area in late April and early May. Ripe males were captured in the Athabasca River as early as 24 April and as late
as 13 May while ripe females were taken from 2 to 11 May. Spawning is known to take place in tributary streams such as the Muskeg River (Bond and Machniak 1977, 1979) and the Steepbank River (Machniak and Bond 1979) but Tripp and McCart (in prep.) report that there is no appreciable spawning in the Athabasca or Clearwater rivers just upstream of Fort McMurray. After spawning, most white suckers left the spawning streams and returned downstream although some fish remained in the tributaries throughout the summer, leaving just prior to freeze-up (Bond and Machniak 1977, 1979; Machniak and Bond 1979).

Tag return evidence from this and other studies (Shell
Canada Ltd. 1975; Bond and Machniak 1977, 1979; Machniak and Bond 1979; Machniak et al in prep.) suggests that white suckers that spawn in the tributaries of the Mildred Lake study area belong to the Lake Athabasca population and return to the lake to overwinter. During the two years of the present study, Floy tags were applied to 583 white suckers of which 48 have been recaptured for a return rate of 8.2% (Table 13, Appendix 6.4). Six white suckers, tagged in the Athabasca River in 1976, were recaptured at the Muskeg River counting fence in 1977. Also recaptured at the Muskeg River fence were nine white suckers that had been tagged in the Athabasca River between 23 April and 4 May 1977. Nineteen white suckers, tagged in the Athabasca River in 1977, were taken at the counting fence on the Mackay Rlver between 1 and 14 May 1978. A total of nine white suckers were recapturea in Lake Athabasca or the Peace-Athabasca Delta with one fish having travelled approximately 300 km when recaptured at Quatre Fourches (Figure 4). Four fish, tagged in the Mildred Lake study area between 24 April and 13 May, were recaptured in the lake and delta after from 23 to 67 days, indicating that some white suckers return to the lake quite rapidly after spawning.

Young-of-the-year suckers (2 species) had begun to appear in the tributaries by 29 May and large numbers were taken in the Mildred Lake study area in mid-June (Table 9). The downstream fry migration had passed the Delta study area by mid-August (Table 10) as the fry moved to nursery areas in the lower delta or Lake Athabasca.
4.2.6.5 Fecundity. Fecundity data for 11 white suckers, fork length 370 to 565 mm , are presented in Table 62. Estimated fecundity ranged from 31566 to 85461 eggs with a mean of 54766.1 ova per female. Length-relative fecundity ranged from 853.1 to 1512.6 eggs per cm of fork length while weight-relative fecundity varied from 21.8 to 36.7 ova per g of body weight.

4.2.7 Trout-perch

4.2.7.1 Distribution and relative abundance. Trout-perch were abundant and widely distributed throughout both the Mildred Lake and Delta study areas in 1977. In the Mildred Lake study area, troutperch made up 26.6% of the total catch from small mesh seines, occurred in 62% of all seine hauls, and had an average catch-per-uniteffort of 11.7 fish per haul (Table 9). In the Delta, trout-perch were taken in 76% of all small mesh seine hauls, comprising 9.6% of the total catch from this gear with an average catch-per-unit-effort of 14.8 fish per haul (Table 10). This species was captured at Sites 21 to $33,25,27$ to $28,30,31,33$ to 37,39 , and 41 to 44 in the Mildred Lake area and at Sites 73 to 79 and 81 to 87 in the Delta (Figure 4, Appendix 6.1).

An examination of Tables 9 and 10 reveals that trout-perch displayed similar trends in abundance through the summer in both study areas. In general, the catch-per-unit-effort was low in April and May but peaked in mid- to late June as a result of the appearance of young-of-the-year. Through the remainder of the sampling period the catch-per-unit-effort experienced fluctuations; however, the trend was toward a gradual reduction in abundance as the summer progressed, indicating a dispersal of young-of-the-year and the probable mortality of older fish.
4.2.7.2 Age and growth. Trout-perch captured in the Athabasca River in 1977 ranged in fork length from 12 to 89 mm , with those in the 25 to 49 mm range accounting for 68.5% of the total. Similar lengthfrequency distributions were obtained in both study areas (Tables 63

140

Table 62. Fecundity estimates for white sucker from the Athabasca River, 1 to 4 Kay 1977.

Fork Length (mm)	Weight (g)	Estimated Number of Eggs	$\xrightarrow{\text { Relative Fecundity }{ }^{\text {a }}}$	
			Eggs/cm.	Eggs/g
370	860	31566	853.1	36.7
448	1440	43935	980.7	30.5
451	1550	50436	1118.3	32.5
458	1580	37112	810.3	23.5
465	1710	42131	906.0	24.6
487	1860	51785	1063.3	27.8
505	2210	65067	1288.5	29.4
533	2110	67333	1263.3	31.9
542	2730	70189	1295.0	25.7
551	2630	57412	1042.0	21.8
565	3220	85461	1512.5	26.5

[^21]Table 63. Length-frequency distribution for trout-perch from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish						Total	
	May	June	July	Aug.	Sept.	Oct	N	\%
0 to 4	0	0	0	0	0	0	0	0.0
5 to 9	0	0	0	0	0	0	0	0.0
10 to 14	0	5	0	0	0	0	5	0.8
15 to 19	0	19	2	1	0	1	23	3.8
20 to 24	0	4	11	10	4	13	42	7.0
25 to 29	0	0	29	22	11	28	90	14.9
30 to 34	5	1	16	18	14	28	82	13.6
35 to 39	11	6	2	20	20	23	82	13.6
40 to 44	23	9	0	4	23	34	93	15.4
45 to 49	16	16	1	1	1	30	65	10.8
50 to 54	7	11	9	0	2	9	38	6.3
55 to 59	3	4	8	6	1	6	28	4.6
60 to 64	3	1	5	2	1	9	21	3.5
65 to 69	3	0	0	1	3	6	13	2.2
70 to 74	9	0	1	0	2	2	14	2.3
75 to 79	1	1	1	1	1	0	5	0.8
80 to 84	1	0	0	1	0	0	2	0.3
85 to 89	0	0	0	0	0	0	0	0.0
Totals	82	77	85	87	83	189	603	99.9

and 64). The May samples are believed to consist largely of age 1 fish with small numbers of older individuals. Young-of-the-year first appeared in June resulting in a bi-modal distribution. This age class became increasingly dominant throughout the summer as age 1 and older fish became less abundant.

Age-length and age-weight relationships for trout-perch taken from the Mildred Lake and Delta study areas in 1977 are summarized in Tables 65 and 66 and Tables 67 and 68, respectively. Troutperch had a maximum age of three years but the majority were young-of-the-year (62.7%) and age 1 (33.3\%) fish (Table 69). All age 3 fish and most age 2 individuals were captured in May.

Length-weight relationships for male and female trout-perch from both the Mildred Lake and Delta study areas are presented in Table 70. For the Mildred Lake sample, a significant difference was found between the slopes of the regressions for males and females ($t=4.992, \mathrm{P}<0.05$). No such difference occurred, however, in the Delta sample ($\mathrm{t}=1.331, \mathrm{P}<0.05$) .
4.2.7.3 Sex and maturity. Age-specific sex ratios and maturity data for trout-perch from both study areas are summarized in Table 69. Of 637 trout-perch for which sex was determined, 396 (62%) were females, producing an overall sex ratio that was significantly different from unity. Females out-numbered males in all age groups with significant differences occurring at age $0+i n$ the Delta sample and age 1 in both study areas.

Trout-perch in the Athabasca River first achieve sexual maturity at age 1. The data indicate that 4% of females and 17% of males were mature at age 1 while at age 2 the corresponding figures were 65% and 86% (Table 69).
4.2.7.4 Spawning. Spawning was not observed for trout-perch during the present study but ripe male and female trout-perch were collected from the Athabasca River in the Mildred Lake study area during late April and early May. Ripe trout-perch were captured near the Steepbank River fence site during May and young-of-the-year were taken

Table 64. Length-frequency distribution for trout-perch from the Delta study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish						Total	
	May	June	July	Aug.	Sept.	Oct.	N	\%
0 to 4	0	0	0	0	0	0	0	0.0
5 to 9	0	0	0	0	0	0	0	0.0
10 to 14	0	1	0	0	0	0	1	0.2
15 to 19	0	8	0	3	0	0	11	2.4
20 to 24	0	13	6	6	10	0	35	7.6
25 to 29	0	0	33	6	22	6	67	14.6
30 to 34	1	0	28	14	20	25	88	19.1
35 to 39	7	6	3	23	10	17	66	14.4
40 to 44	9	8	0	8	9	4	38	8.3
45 to 49	18	26	1	2	5	5	57	12.4
50 to 54	10	17	3	1	2	1	34	7.4
55 to 59	13	17	3	4	0	0	37	8.0
60 to 64	5	4	0	3	0	0	12	2.6
65 to 69	1	0	3	1	0	0	5	1.1
70 to 74	3	0	0	0	0	0	3	0.7
75 to 79	1	0	0	0	1	0	2	0.4
80 to 84	1	1	0	1	0	0	3	0.7
85 to 89	0	0	1	0	0	0	1	0.2
Totals	69	101	81	72	79	58	460	100.1

Table 65. Age-length (mm) relationship for trout-perch from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
0+	51	39.6	7.27	25 to 58	58	36.2	6.29	25 to 50	150	35.0	8.87	13 to 58	$2.58{ }^{\text {a }}$
1	50	49.9	7.79	35 to 67	96	49.7	9.01	31 to 73	159	48.9	8.87	31 to 73	0.15
2	11	62.6	9.41	43 to 76	16	71.9	4.92	62 to 82	27	68.1	8.38	43 to 82	$3.03^{\text {a }}$
3	2	76.0	8.49	70 to 82	3	78.3	9.45	71 to 89	5	77.4	8.02	70 to 89	0.29
Total	114				173				341				

a Significant difference between means for males and females ($P<0.05$).

Table 66. Age-weight relationship for trout-perch from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test.
	\ldots	Mean	S.o.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	51	0.73	0.41	0.20 to 2.10	58	0.58	0.31	0.16 to 1.48	150	0.56	0.38	0.02 to 2.10	$2.56{ }^{\text {a }}$
1	50	1.48	0.78	0.36 to 3.62	96	1.51	0.90	0.25 to 4.48	159	1.43	0.86	0.25 to 4.48	0.21
2	11	2.95	1.23	0.71 to 4.69	16	4.39	0.97	2.97 to 6.56	27	3.80	1.28	0.71 to 6.56	$3.25{ }^{\text {a }}$
3	2	4.73	0.63	4.29 to 5.18	3	5.73	2.26	3.82 to 8.23	5	5.40	1.72	3.82 to 8.23	0.72
Total	114				173				341				

[^22]Table 67. Age-length (mm) relationship for trout-perch from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	34	35.9	7.01	26 to 53	38	33.5	5.42	24 to 48	109	31.6	7.24	16 to 53	1.56
1	57	50.7	7.79	35 to 66	53	50.6	9.02	35 to 80	110	50.6	8.36	35 to 80	0.02
2	3	73.0	2.65	71 to 76	4	77.8	9.84	69 to 89	7	75.7	7.63	69 to 89	0.92
Total	94				95				226				

Table 68. Age-weight (g) relationship for trout-perch from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	34	0.54	0.34	0.21 to 1.56	38	0.43	0.21	0.11 to 1.13	109	0.39	0.27	0.06 to 1.56	1.61
1	57	1.60	0.70	0.42 to 3.68	53	1.72	1.07	0.50 to 6.38	110	1.66	0.90	0.42 to 6.38	0.69
2	3	4.49	0.24	4.22 to 4.69	4	5.78	2.06	4.02 to 8.14	7	5.23	1.62	4.02 to 8.14	1.24
Total	94				95				226				

Table 69. Age-specific sex ratios and maturity for trout-perch from the Mildred Lake, Delta, and combined study areas, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Otolith Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
Mildred Lake Area												
$0+$	58	53.2		0.0	51	46.8		0.0	206	315	62.3	0.44
1	96	65.8		2.1	50	34.2		8.0	13	159	31.4	$14.48{ }^{\text {a }}$
2	16	59.3		62.5	11	40.7		81.8	0	27	5.3	0.92
3	3	60.0		100.0	2	40.0		100.0	0	5	1.0	0.20
Totals	173	60.3		8.7	114	39.7		13.2	219	506	100.0	$12.12^{\text {a }}$
Delta Area												
$0+$	114	63.0		0.0	67	37.0		0.0	109	290	63.2	$12.20^{\text {a }}$
1	105	64.8		6.7	57	35.2		26.3	0	162	35.3	$14.22^{\text {a }}$
2	4	57.1		75.0	3	42.9		100.0	0	7	1.5	0.14
Totals	223	63.7		4.5	127	36.3		14.2	109	459	100.0	$26.34^{\text {a }}$
Combined Areas												
0+	172	59.3		0.0	118	40.7		0.0	315	605	62.7	$10.06{ }^{\text {a }}$
1	201	65.3		4.0	107	34.7		16.8	13	321	33.3	$28.68{ }^{\text {a }}$
2	20	58.8		65.0	14	41.2		85.7	0	34	3.5	1.06
3	3	60.0		100.0	2	40.0		100.0	0	5	0.5	0.20
Totals	396	62.9		6.3	241	37.1		13.7	328	965	100.0	$37.27^{\text {a }}$

a Significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

Table 70. Length-weight relationships for trout-perch, flathead chub, lake chub, emerald shiner, and spottail shiner from the Mildred Lake and Delta study areas, Athabasca River, 1977.

Species	Sex	Number of Fish	Range in Fork Length (mm)	Slope (b)	Intercept (a)	sb	Correlation Coefficient (r)
Mildred Lake Area							
Trout-perch	Male	114	25 to 82	3.057	-5.061	0.003	0.983
	Female	173	25 to 89	2.153	-3.539	0.013	0.822
Flathead chub	Male	44	80 to 261	2.905	-4.714	0.009	0.978
	Female	103	121 to 299	3.112	-4.862	0.005	0.970
Lake chub	Male	47	32 to 94	3.154	-5.213	0.005	0.992
	Female	68	30 to 79	3.095	-5.110	0.003	0.989
Emerald shiners	Male	47	69 to 88	2.512	-4.127	0.039	0.884
	Female	57	46 to 100	3.088	-5.189	0.016	0.953
Spottail shiners	Male	26	36 to 78	2.902	-4.788	0.028	0.989
	Female	44	35 to 89	3.168	-5.245	0.003	0.990
Delta Area							
Trout-perch	Male	94	26 to 76	3.070	-5.067	0.002	0.992
	Female	95	24 to 89	3.151	-5.189	0.002	0.991
Flathead chub	Male	8	99 to 209	2.984	-4.882	0.015	0.976
	Female	21	90 to 320	3.018	-4.942	0.007	0.993
Emerald shiners	Male	119	44 to 87	2.924	-4.922	0.008	0.988
	Female	96	36 to 98	3.127	-5.271	0.002	0.993
Spottail shiners	Male	45	50 to 83	2.802	-4.560	0.008	0.984
	Female	74	35 to 95	3.038	-5.018	0.002	0.994

as far upstream as the North Steepbank River in August (Machniak and Bond 1979). W. A. Bond captured ripe males and a 10 mm long fry in the Ells River at a point 5 km upstream from the mouth on 8 June 1977. Whether or not trout-perch spawn in the Athabasca River itself, it seems apparent that at least some tributaries are utilized for this purpose with late May or early June being the time of spawning in 1977. Young-of-the-year trout-perch (12 to 22 mm in length) first appeared in the Athabasca River in early June in both the Mildred Lake and Delta study areas.
4.2.7.5 Fecundity. Total egg counts were performed on 12 mature trout-perch captured in the Mildred Lake study area on 3 to 7 May 1977. For these fish, which ranged from 58 to 89 mm in fork length, egg counts varied between 192 and 421 with a mean of 274.8 (Table 71).
4.2.7.6 Food habits. The stomach contents of 70 trout-perch were examined for food and the overall results described in terms of percentage frequency of occurrence (Table 72). Diptera larvae (mostly Chironomidae) were the most common food item, occurring in 77.1% of the Mildred Lake samples and in 68.6% of the Delta samples. Ephemeroptera nymphs (22.8 and 8.6\%) Copepoda (22.8 and 5.7\%), Ostracoda (22.8 and 2.8%), and Cladocera (8.6 and 5.7%) were also found commonly in the food. Trichoptera larvae (5.7\%) and Plecoptera nymphs (8.6%) were found only in the stomachs of trout-perch from the Mildred Lake study area.

4.2.8 Flathead Chub

4.2.8.1 Distribution and relative abundance. Although common throughout the study area, flathead chub were not taken in large numbers either in standard gangs or large mesh beach seines. Flathead chub of a size that was susceptible to capture by standard gangs and large mesh seines (over 150 mm fork length) appeared to be more abundant within the Mildred Lake study area than in the Delta. Flathead chub made up 9.6% of the total catch in standard gangs in the

Table 71. Fecundity of trout-perch from the Athabasca River, 3 to 7 May 1977.

Fork Length (mm)	Weight (g)	Otolith Age (yrs)	Number of Eggs (Total Counts)
58	2.35	1	235
62	2.97	2	249
68	3.05	2	200
70	4.04	2	264
71	3.82	3	283
71	5.01	2	236
71	4.05	2	214
71	4.34	2	288
75	4.28	2	192
77	5.15	3	311
9	6.56	2	405

Table 72. Food habits of trout-perch from the Athabasca River, 1977.

Food Item	Percentage Frequency of Occurrence ${ }^{a}$ Mildred Lake Area $(N=35)$	Delta Area $(N=35)$
Trichoptera	5.7	0.0
Ephemeroptera	22.8	8.6
Plecoptera	8.6	0.0
Diptera	77.1	68.6
Unidentifiable Insects	0.0	22.8
Nematoda	8.6	2.8
Cladocera	8.6	5.7
Copepoda	22.8	5.7
Ostracoda	22.8	2.8
Debris	2.8	2.8
Empty	8.6	14.3

${ }^{\text {a }}$ Expressed as a percentage of the number of stomachs examined (N).

Mildred Lake study area and had an average catch-per-unit-effort of 0.115. They were most numerous from early May to early June at which time catch-per-unit-effort varied from 0.571 to 0.451 fish per gang per hour (Table 5). This species was taken in 15% of all large mesh seine hauls, accounted for 3.8% of the total catch, and had an average catch-per-unit-effort of 0.3 fish per haul. Large mesh seines showed flathead chub to be most numerous in the Mildred Lake area from midMay to mid-June (Table 7). In the Delta study area, flathead chub was the least abundant species taken in standard gangs, making up only 2.7% of the catch and having an average catch-per-unit effort of 0.016 fish per gang per hour (Table 6). In large mesh, seines flathead chub was the fifth most abundant species taken in the Delta, making up 6.2\% of the catch while occurring in 12% of all seine hauls with average catch-per-unit-effort of 0.2 fish per haul (Table 8).

Small mesh beach seines produced much larger catches in the Delta (Table 10) than in the Mildred Lake study area (Table 9). Fish taken in this gear were primarily young-of-the-year and age 1 individuals. In the Delta, flathead chub occurred in 63% of all small mesh seine hauls, comprised 5.3% of the total catch, and produced an average catch-per-unit-effort of 8.1 fish per haul (Table 10). Abundance peaks occurred in mid-June, mid-July, and mid-September at which times the catch-per-unit-effort values were $12.0,14.7$ and 22.4 , respectively. In the Mildred Lake study area, flathead chub occurred in only 16% of small mesh seine hauls, making up 2.6% of the total catch, and showed an average catch-per-unit-effort of 1.1 fish per haul (Table 9). On 18 to 19 October, however, flathead chub made up 52.4% of the total catch produced by 21 small mesh seine hauls in the Mildred Lake study area although occurring in only three of those hauls (Table 9).

In the Mildred Lake study area, flathead chub were captured at Sites 9,22 to $25,28,29,31$ to 36,38 , and 41 to 44 while in the Delta study area they were taken at Sites $52,62,71,73,75$ to 77 , $80,81,83$, and 84 (Figure 4, Appendix 6.1) and also at km 250.6L, $258.9 \mathrm{~L}, 264.8 \mathrm{~L}, 265.6 \mathrm{R}, 202.7 \mathrm{LI}, 216.0 \mathrm{R}, 241.6 \mathrm{R}$, and 223.4R.
4.2.8.2 Age and growth. Flathead chub ranged in fork length from 12 to 322 mm with the vast majority (70.4%) being less than 100 mm (Tables 73 and 74). The gap in length-frequency distribution that existed between 90 and 150 mm in the 1976 results (Bond and Berry in prep.) was partially filled, largely by the inclusion of age 2 chub for the Delta study area.

Age-length and age-weight data for flathead chub from the Mildred Lake and Delta study areas are summarized in Tables 75 and 76 and Tables 77 and 78 , respectively.

Scale ages for flathead chub ranged form $0+$ to 8 years in both study areas. Females tended to live longer than males (the oldest male was age 6) and to exceed them both in length and weight at a given age. In the Mildred Lake sample, females were significantly longer ($P<0.05$) than males at age 4 and 5 and significantly heavier in age groups 4, 5, and 6.

The length-weight relationships for male and female flathead chub from the Mildred Lake and Delta study areas are given in Table 70. No significant difference ($P>0.05$) was found between the slopes of the regressions for males and females in either the Mildred Lake ($t=0.481$) or Delta ($t=0.127$) study areas.
4.2.8.3 Sex and maturity. Age-specific sex ratios and maturity data for flathead chub from both study areas are summarized in Tables 79 and 80. Of 183 flathead chub for which age and sex were determined, 126 (86.8%) were females, giving an overall sex ratio that differed significantly ($P<0.05$) from unity.

Flathead chub in the Athabasca River may mature as early as age 3 but most do not spawn until age 4. In 1977, 63.3\% of the females and 64.7% of the males examined were sexually mature at age 4. Bond and Berry (in prep.) reported that both sexes mature at four years of age. The smallest mature female was 179 mm in fork length while the smallest mature male measured 168 mm .

Only seven mature flathead chub were captured in the Delta study area, none of which was a male. The flathead chub population in this study area appears to consist largely of immature fish (88.1\%

Table 73. Length-frequency distribution by gear type for flathead chub from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish			Total	
	Small Mesh Seines	Large Mesh Seines	Gill Nets	N	\%
10 to 19	6	0	0	6	2.2
20 to 29	13	0	0	13	4.7
30 to 39	12	0	0	12	4.4
40 to 49	8	0	0	8	2.9
50 to 59	2	0	0	2	0.7
60 to 69	0	0	0	0	0.0
70 to 79	0	0	0	0	0.0
80 to 89	1	0	0	1	0.4
90 to 99	0	0	0	0	0.0
100 to 109	0	0	0	0	0.0
110 to 119	1	0	0		0.4
120 to 129	3	0	0	3	1.1
130 to 139	1	0	0	1	0.4
140 to 149	5	4	0	9	3.3
150 to 159	1	9	0	10	3.6
160 to 169	5	19	2	26	9.4
170 to 179	3	21	4	28	10.1
180 to 189	0	16	10	26	9.4
190 to 199	4	9	6	19	6.9
200 to 209	1	3	5	9	3.3
210 to 219	0	4	5	9	3.3
220 to 229	0	2	9	11	4.0
230 to 239	1	4	3	8	2.9
240 to 249	0	5	8	13	4.7
250 to 259	0	3	9	12	4.4
260 to 269	0	3	18	21	7.6
270 to 279	2	4	6	12	4.4
280 to 289	0	1	9	10	3.6
290 to 299	0	0	4	4	1.5
300 to 309	0	1	1	2	0.7
310 to 319	0	0	0	0	0.0
320 to 329	0	0	0	0	0.0
Totals	69	108	99	276	100.3

Table 74. Length-frequency distribution by gear type for flathead chub from the Delta study area, Athabasca River, 1977.

$\begin{aligned} & \text { Fork Length } \\ & (\mathrm{mm}) \end{aligned}$	Number of Fish			Total	
	Small Mesh Seines	Large Mesh Seines	Gill Nets	N	\%
10 to 19	82	0	0	82	10.0
20 to 29	313	0	0	313	38.1
30 to 39	92	0	0	92	11.2
40 to 49	80	0	0	80	9.7
50 to 59	77	0	0	77	9.4
60 to 69	50	1	0	51	6.2
70 to 79	23	0	0	23	2.8
80 to 89	8	0	0	8	1.0
90 to 99	5	0	0	5	0.6
100 to 109	11	0	0	11	1.3
110 to 119	6	0	0	6	0.7
120 to 129	1	0	0	1	0.1
130 to 139	0	0	0	0	0.0
140 to 149	0	4	0	4	0.5
150 to 159	2	10	0	12	1.5
160 to 169	1	11	1	13	1.6
170 to 179	1	11	0	12	1.5
180 to 189	0	2	0	2	0.2
190 to 199	0	4	0	4	0.5
200 to 209	0	1	2	3	0.4
210 to 219	0	2	0	2	0.2
220 to 229	0	0	0	0	0.0
230 to 239	0	0	2	2	0.2
240 to 249	0	1	1	2	0.2
250 to 259	0	2	1	3	0.4
260 to 269	0	2	3	5	0.6
270 to 279	0	1	3	4	0.5
280 to 289	0	0	1	1	0.1
290 to 299	0	0	1	1	0.1
300 to 309	0	0	0	0	0.0
210 to 319	0	0	0	0	0.0
320 to 329	0	0	2	$3^{\text {a }}$	0.4
Totals	752	52	17	822	100.0

a
Includes one fish caught by angling.

Table 75. Age-length (mm) relationship for flathead chub from the Mildred Lake study area, Achabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				41	31.7	9.61	16 to 54	
1	2	96.0	22.63	80 to 112	1	121.0			3	104.3	21.55	80 to 121	
2	9	155.6	19.55	121 to 191	14	158.9	15.28	143 to 192	39	161.4	14.60	121 to 192	0.43
3	17	172.4	12.39	143 to 204	24	179.9	18.23	133 to 222	59	178.3	15.41	133 to 222	1.58
4	16	196.3	20.98	155 to 225	15	223.4	26.23	185 to 291	35	207.8	25.86	155 to 291	$3.17{ }^{\text {a }}$
5	3	229.3	5.77	226 to 236	17	255.2	11.55	235 to 277	30	247.3	18.30	200 to 277	$5.95{ }^{\text {a }}$
6	2	247.5	19.09	234 to 261	20	268.4	13.23	250 to 297	29	263.5	16.48	233 to 297	1.51
7	0				11	280.0	10.56	266 to 299	14	281.3	11.58	266 to 305	
8	0				3	283.7	1.53	282 to 285	3	283.7	1.53	282 to 285	
Total	49				105				253				

[^23]Table 76. Age-weight (g) relationship for flathead chub from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				41	0.3	0.27	0.1 to 1.0	
1	2	10.9	7.58		1	21.0			3	14.3	7.90	6 to 21	
2	9	48.2	17.89	25 to 86	14	45.9	11.70	25 to 70	31	48.0	13.13	25 to 86	0.35
3	15	61.8	11.99	37 to 90	24	68.2	18.13	34 to 120	45	64.7	15.61	34 to 120	1.32
4	14	91.0	27.20	45 to 140	15	129.4	32.17	73 to 180	29	110.9	35.25	45 to 180	$3.48{ }^{\text {a }}$
5	2	140.0			16	208.1	23.73	80 to 250	21	188.1	43.66	80 to 250	$11.48{ }^{\text {a }}$
6	2	195.0	21.21	180 to 210	20	237.0	41.43	180 to 320	23	229.1	45.02	140 to 320	$2.38{ }^{\text {a }}$
7.	0				10	268.0	37.06	220 to 320	10	268.0	37.06	220 to 320	
8	0				3	286.7	41.63	240 to 320	3	286.7	41.63	240 to 320	
Total	44				103				206				

[^24]Table 77. Age-length (mm) relationship for flathead chub from the Del ta study area, Athabasca River, 1977 . Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				50	27.4	12.27	14 to 67	
1	ND				ND				47	50.4	12.80	30 to 89	
2	5	117.2	20.34	99 to 152	7	104.9	9.08	90 to 119	29	123.4	22.41	90 to 158	1.27
3	2	157.5	3.53	155 to 160	3	162.3	9.07	154 to 172	33	168.4	9.52	154 to 191	0.83
4	1	207.0			0				6	203.2	10.07	192 to 220	
5	ND				ND				5	235.0	17.04	215 to 251	
6	ND				6	252.0	16.01	235 to 270	8	253.1	13.90	235 to 270	
7	ND				3	271.3	10.32	261 to 281	6	274.8	12.79	261 to 295	
8	ND				2	320,0			3	320.7	1.15	320 to 322	
Total	8				21				187				

Table 78. Age-weight (g) relationship for flathead chub from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Scale Age	Males				Females				All Fish				t-test
	N	Mean	S.0.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
0+	ND				No				404	0.1			
1	ND				ND				47	1.7	1.4	0.3 to 7.3	
2	5	21.2	11.65	12 to 40	7	16.0	8.25	8 to 30	29	24.8	13.30	8 to 50	0.86
3	2	43.5	2.12	42 to 45	3	50.0			33	56.3	12.00	40 to 90	$4.33^{\text {a }}$
4	1	120.0			ND				6	105.2	20.68	80 to 130	
5	ND				ND				5	168.0	32.71	120 to 210	
6	ND				6	210.0	41.47	160 to 250	8	205.0	39.64	160 to 250	
7	ND				3	250.0	10.00	240 to 260	6	251.7	30.60	200 to 290	
8	ND				2	395.0	35.35	370 to 420	3	423.3	55.07	370 to 480	
Total	8				21				541				

[^25]Table 79. Age-specific sex ratios and maturity for flathead chub from the Mildred Lake study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
$0+$	0	0.0		0.0	0	0.0		0.0	96	96	31.2	
1	1	33.3		0.0	2	66.7		0.0	0	3	1.0	
2	14	60.9		0.0	9	39.1		0.0	16	39	12.7	1.08
3	24	58.5		8.3	17	41.5		17.6	18	59	19.2	1.20
4	15	48.4		53.3	16	51.6		62.5	4	35	11.4	0.04
5	17	85.0		94.1	3	15.0		66.7	10	30	9.7	$9.80{ }^{\text {a }}$
6	20	90.9		95.0	2	9.1		100.0	7	29	9.4	$14.72{ }^{\text {a }}$
7	11	100.0		100.0	0	0.0		0.0	3	14	4.6	$11.00^{\text {a }}$
8	3	100.0		100.0	0	0.0		0.0	0	3	1.0	
Totals	105	68.2	:	56.2	49	31.8		34.7	. 154	308	100.2	$20.36^{\text {a }}$

a Significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square.test).

Table 80. Age-specific sex ratios and maturity for flathead chub from the Delta study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Scale Age	Females				Males				Unsexed Fish	Total	
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%
$0+$	0	0.0		0.0	0	0.0		0.0	433	433	57.2
1	0	0.0		0.0	0	0.0		0.0	234	234	30.9
2	7	58.3		0.0	5	41.7		0.0	17	29	3.8
3	3	60.0		0.0	2	40.0		0.0	28	33	4.4
4	0	0.0		0.0	1	100.0		0.0	5	6	0.8
5	0	0.0		0.0	0	0.0		0.0	5	5	0.7
6	6	100.0		66.7	0	0.0		0.0	2	8	1.1
7	3	100.0		100.0	0	0.0		0.0	3	6	0.8
8	2	100.0		100.0	0	0.0		0.0	1	3	0.4
Totals	21	72.4		42.8	8	27.6		0.0	728	757	100.1

were age $0+$ or age 1) suggesting that the Delta may represent an important rearing area for the flathead chub population that inhabits more upstream portions of the river.
4.2.8.4 Spawning. Spawning of flathead chub was not observed in 1977 but it seems certain that spawning did occur in the Mildred Lake study area of the Athabasca River. Both ripe and spent individuals were captured in this area from early June to mid-August, indicating an extended spawning period. However, it is believed that most spawning occurred during June. Of 53 flathead chub taken in standard gangs between 1 and 16 June, 34% were sexually mature and would have spawned that year, 58% were ripe, and 8% were spent. Young-of-theyear were first captured in July, at which time they ranged in fork length from 16 to 31 mm , but this age group was not found in abundance in the Mildred Lake study area during the summer. It is not known whether flathead chub spawned in the Delta study area but on the basis of our results this seems unlikely. Few ripe or spent chub were taken in this area and any spawning that does occur here is probably minor. It would appear that the significance of the Delta to the flathead chub population of the lower Athabasca is as a rearing area for juvenile fish.
4.2.8.5 Movements. During 1976 and 1977, Floy tags were applied to 78 flathead chub (Table 13). Two of these tags were recaptured; one after 28 days and one after 245 days at large. Both fish were recaptured at their original tagging sites.
4.2.8.6 Fecundity. Fecundity was estimated gravimetrically for 11 flathead chub in spawning condition. The estimated total number of eggs per female (size range 235 to 297 mm) ranged from 7000 to 15170 (Table 81) with an average of 10564 eggs per female. Lengthrelative fecundity ranged from 260.2 to 619.2 ova per cm of fork length while weight-relative fecundity varied from 30.4 to 84.3 eggs per g of body weight.

Table 81. Fecundity estimates for flathead chub from the Athabasca River, 2 June 1977.

Fork Length (mm)	Weight (g)	Estimated Number of Eggs	Relative Fecundity ${ }^{\text {a }}$	
			Eggs/cm	Eggs/g
235	180	10241	435.8	56.9
245	180	10905	445.1	60.6
245	180	15170	619.2	84.3
260	180	8346	321.0	46.4
261	200	12508	479.2	62.5
263	220	9774	371.6	44.4
263	230	9944	378.1	43.2
264	250	12186	461.6	48.7
269	230	7000	260.2	30.4
277	240	8000	288.8	33.3
297	320	12132	408.5	37.9

${ }^{\text {a }}$ Number of eggs per cm of fork length and per g of body weight.
4.2.8.7 Food habits. Examination of stomachs of flathead chub revealed an extremely varied diet consisting largely of aquatic insects (Table 82). Diptera larvae was the most common food item in the stomach contents of chub captured in the Mildred Lake study area, occurring in 61.8% of all stomachs examined. Adult Coleoptera (26.5%), Hemiptera (23.5\%), and Hymenoptera (26.5\%), larval Trichoptera (26.5\%), and nymphal Ephemeroptera (23.5\%) and Plecoptera (20.6\%) were also common in the food of flathead chub taken in this area. The same pattern of results occurred in the sample from the Delta study area but here fewer fish stomachs contained food, resulting in lower percentage frequency of occurrence values.

4.2.9 Lake Chub

4.2.9.1 Distribution and relative abundance. Only five lake chub were captured in the Delta study area, thus the following results were obtained from the Mildred Lake study area only. Lake chub was the 4 th most abundant species taken in small mesh beach seines, occurring in 29% of all seine hauls and accounting for 5.2% of the total catch. The catch-per-unit-effort values, which averaged 2.3 fish per haul, exhibited no real trends although a high value of 14.3 fish per haul was recorded on 25 to 27 July (Table 9). Lake chub were captured at Sites $3,15,21$ to 23,27 to $29,30,31,33,36$ to 39 , and 41 to 44 , many of which are tributary-associated sites (Figure 4 and Appendix 6.1).
4.2.9.2 Age and growth. Lake chub ranged from 17 to 94 mm in fork length with the majority (63.3%) being in the 25 to 39 mm range (Table 83).

Age-length and age-weight relationships for lake chub are presented in Tables 84 and 85. Otolith ages ranged from $0+$ to 3 years although the majority were $0+(45.5 \%$) and age 1 (50.6%) (Table 86). The largest chub taken was a mature age 3 male. This fish was captured in mid-April and was 94 mm in fork length with a weight of 10 g . Five years appears to be the maximum age attained by lake chub in the AOSERP study area (Bond and Machniak 1977; Machniak and Bond

Table 82. Food habits of flathead chub from the Athabasca River, 1977.

Food Item	Percentage Frequency of Occurrence ${ }^{\text {a }}$	
	Mildred Lake Area $(N=34)$	Delta Area $(N=32)$
Trichoptera	26.5	9.4
Ephemeroptera	23.5	9.4
Plecoptera	20.6	3.1
Diptera	61.8	31.2
Hymenoptera	26.5	12.5
Hemiptera	23.5	3.1
Coleoptera	26.5	9.4
Lepidoptera	5.9	0.0
Odonata	2.9	0.0
Unidentifiable Insects	38.2	56.2
Arachnida	8.8	6.2
Cladocera	0.0	3.1
Ostracoda	0.0	6.2
Nematoda	14.7	0.0
Gastropoda	5.9	3.1
Fish Remains	5.9	6.2
Shrew Remains	2.9	0.0
Plant Material	17.6	12.5
Detritus	20.6	34.4

${ }^{a}$ Expressed as a percentage of the number of stomachs examined (N).

Table 83. Length-frequency distribution for lake chub from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish							Total	
	April	May	June	July	Aug.	Sept.	Oct.	N	\%
15 to 19	0	0	1	1	0	0	0	2	0.7
20 to 24	0	3	7	7	7	1	2	27	8.8
25 to 29	2	19	1	15	6	2	1	46	14.9
30 to 34	3	27	8	32	19	6	2	97	31.5
35 to 39	4	17	12	6	8	4	1	52	16.9
40 to 44	0	8	14	2	2	3	0	29	9.4
45 to 49	1	0	22	3	0	2	0	28	9.1
50 to 54	3	0	5	2	1	1	0	12	3.9
55 to 59	0	0	1	1	1	0	0	3	1.0
60 to 64	1	0	1	0	3	1	0	6	2.0
65 to 69	0	0	0	0	1	0	0	1	0.3
70 to 74	1	0	0	0	0	0	0	1	0.3
75 to 79	1	0	1	0	0	0	0	2	0.7
80 to 84	1	0	0	0	0	0	0	1	0.3
85 to 89	0	0	0	0	0	0	0	0	0.0
90 to 94	1	0	0	0	0	0	0	1	0.3
95 to 99	0	0	0	0	0	0	0	0	0.0
Totals	18	73	74	69	48	20	6	308	100.1

Table 84. Age-length (mm) relationship for lake chub from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	5.0.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				47	30.5	5.96	20 to 45	
1	42	41.4	6.64	32 to 61	61	41.7	7.45	30 to 62	156	38.5	8.33	23 to 62	0.17
2	3	65.0	9.17	57 to 75	6	61.7	7.74	52 to 73	9	62.8	7.82	52 to 75	0.54
3	2	89.0	7.07	. 84 to 94	1	79.0			3	85.7		79 to 84	
Total	47				68				215				

Table 85. Age-weight (g) relationship for lake chub from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.O.	Range	
$0+$	ND				ND				47	0.35	0.23	0.08 to 1.12	
1	42	0.85	0.48	0.29 to 2.74	61	0.90	0.54	0.27 to 2.65	156	0.71	0.51	0.10 to 2.74	0.49
2	3	3.22	1.17	2.09 to 4.43	6	2.63	0.97	1.40 to 3.95	9	2.83	1.01	1.40 to 4.43	0.75
3	2	8.50	2.12	7.00 to 10.00	1	5.86			3	7.62		5.86 to 10.00	
Total	47				68				215				

1979). During April, May, and June, the lake chub catch in the Mildred Lake study area was dominated by one-year-old fish; however, young-of-the-year were the dominarit age class from July on.

The relationship between fork length and body weight for lake chub captured in the Mildred Lake study area in 1977 is given in Table 70 for males and females. No significant difference was found to exist between the slopes of the regressions for male and female chub ($\mathrm{t}=0.703, \mathrm{P}>0.05$).
4.2.9.3 Sex and maturity. Of 115 lake chub age 1 or older, 59% were females (Table 86). Only 1 female (age $3,79 \mathrm{~mm}$) and 2 males (age 3, 84 and 94 mm) were sexually mature. Bond and Machniak (1977) report that lake chub of both sexes spawn at age 3 in the Muskeg River.
4.2.9.4 Spawning. No observations of spawning were made and it seems likely that this event does not occur in the Athabasca River. This species seems to be more typical of the tributary streams of the area, being known to occur in the Muskeg River (Bond and Machniak 1977), the Steepbank River (Machniak and Bond 1979), and numerous other tributaries (Griffiths 1973). W. A. Bond captured lake chub from the Pierre River, the Tar River, the Ells River, and Unnamed Creek at km 116.8L on 6 to 8 June 1977. It is possible that the lake chub population of the Athabasca River, consisting largely of immature fish, results from downstream drift within the tributaries and that many of these fish eventually find their way out of the main river and back into tributaries.
4.2.9.5 Food habits. Lake chub had fed predominantly on aquatic insects of the orders Diptera, Ephemeroptera, and Hymenoptera (Table 87).

Table 86. Age-specific sex ratios and maturity for lake chub from the Mildred Lake study area, Athabasca River, $1977^{\text {a }}$. Sex ratios were based only on fish for which sex was determined.

Otolith Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
$0+$	0	0.0		0.0	0	0.0		0.0	140	140	45.5	
1	61	59.2		0.0	42	40.8		0.0	53	156	50.6	3.50
2	6	66.7		0.0	3	33.3		0.0	0	9	2.9	
3	1	33.3		100.0	2	66.7		100.0	0	3	1.0	
Totals	68	59.1		1.5	47	40.9		4.3	193	308	100.0	$3.84{ }^{\text {b }}$

${ }^{a}$ Only 5 lake chub were examined from the Delta study area; four were unsexed, age $0+$ and one was a two-year-old immature male.
${ }^{b}$ significant difference $(P<0.05)$ between the numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

Table 87. Food habits of lake chub from the Athabasca River, 1977.

Food Item	Percentage Frequency of Occurrence ${ }^{a}$ Mildred Lake Area $(\mathrm{N}=30)$	Delta Area $(\mathrm{N}=5)$
Trichoptera	0.0	20.0
Ephemeroptera	43.3	0.0
Plecoptera	3.3	0.0
Diptera	60.0	100.0
Hemiptera	10.0	20.0
Hymenoptera	16.7	0.0
Coleoptera	10.0	0.0
Unidentifiable Insects	13.3	0.0
Hydracarina	0.0	20.0
Fish Remains	3.3	0.0
Debris	26.7	0.0

[^26]
4.2.10 Emerald Shiner

4.2.10.1 Distribution and relative abundance. Emerald shiner was the third most abundant species captured in small mesh seines in the Mildred Lake study area during 1977 (Table 9). This species occurred in 31% of all seine hauls accounting for 6.0% of the total catch. During most of the summer, the catch-per-unit-effort was relatively low, the highest values occurring in July (3.7 fish per haul on 11 to 13 July). However, the catch-per-unit-effort rose sharply during September (Table 9) as the result of the appearance of large numbers of fish in the $i 3$ to 27 mm size range. In the Mildred Lake study area, emerald shiners were captured at Sites $15,21,22,25,27,28$, 31,33 to 37 , and 41 to 44 (Figure 4, Appendix 6.1).

In the Delta study area, emerald shiner was by far the most abundant of species captured in small mesh seines comprising 74.8% of the total catch (Table 10). Emerald shiner occurred in 61% of all seine hauls made in this area and had an average catch-per-uniteffort of 115.0 fish per haul. On 6 September, an estimated 10000 shiners were captured in a single seine haul. Catch-per-unit-effort fluctuated drastically through the summer in this area (Table 10) with abundance peaks occurring on 17 to 20 June, 14 to 15 July, and 6 to 7 September, on which dates the catch-per-unit-effort was 23.5, 45.8 , and 987.8 fish per seine haul, respectively. Most emerald shiners taken in the Delta study area were captured at Sites 53,62 , 74,76 , and 80 to 86 (Figure 4, Appendix 6.1) and at km 196.5LI, 202.6LI, 210.7R, 216.3R, 216.3LI, 216.OR, 216.8RI, 222.4L, 247.OR, 256.0R, 262.1L, 264.8 L , and 265.6R.
4.2.10.2 Age and growth. Emerald shiners ranged in fork length from 13 to 100 mm but the length frequency distributions varied considerably between the two study area (Tables 88 and 89). In the Mildred Lake study area, two strong modes occurred in the overall length-frequency distribution. From May to August, most fish captured in the Mildred Lake study area were found to be in the 75 to 79 mm length interval. The abundance of fish of this size, however, decreased markedly at the

Table 88. Length-frequency distribution for emerald shiner from the Mildred Lake study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish						Total	
	May	June	July	Aug.	Sept.	Oct	N	\%
10 to 14	0	0	0	0	2	0	2	0.4
15 to 19	0	0	0	0	33	43	76	15.7
20 to 24	0	0	0	0	87	57	144	29.8
25 to 29	0	3	0	0	20	11	34	7.0
30 to 34	0	0	0	0	0	2	2	0.4
35 to 39	0	1	6	0	0	0	7	1.5
40 to 44	1	0	3	0	0	0	4	0.8
45 to 49	0	0	0	0	1	0	1	0.2
50 to 54	0	0	0	0	0	0	0	0.0
55 to 59	0	0	0	0	0	0	0	0.0
60 to 64	0	0	0	0	0	1	1	0.2
65 to 69	0	4	3	0	0	0	7	1.5
70 to 74	1	10	18	3	0	3	35	7.2
75 to 79	4	37	32	5	3	5	86	17.8
80 to 84	1	27	27	4	2	1	62	12.8
85 to 89	0	8	7	0	1	4	20	4.1
90 to 94	0	1	0	0	0	1	2	0.4
95 to 99	0	0	0	0	0	0	0	0.0
100 to 104	0	1	0	0	0	0	1	0.2
105 to 109	0	0	0	0	0	0	1	0.0
Totals	7	92	96	12	149	128	484	100.0

Table 39. Length-frequency distribution for emerald shinerfrom the Delta study area, Athabasca River, 1977.

Fork Length (mm)	Number of Fish						Total	
	May	June	July	Aug.	Sept.	Oct.	N	\%
10 to 14	0	0	0	0	0	0	0	0.0
15 to 19	0	0	0	0	0	0	0	0.0
20 to 24	0	0	0	0	0	2	2	0.5
25 to 29	3	0	0	0	0	0	3	0.7
30 to 34	3	1	0	0	0	0	4	0.9
35 to 39	1	4	2	0	0	0	7	1.6
40 to 44	0	11	31	0	0	0	42	9.6
45 to 49	0	8	51	1	4	0	64	14.6
50 to 54	0	10	23	7	16	2	58	13.2
55 to 59	0	5	10	22	35	7	79	18.0
60 to 64	0	3	5	15	33	4	60	13.7
65 to 69	3	8	1	5	6	0	23	5.3
70 to 74	3	13	4	5	1	0	26	5.9
75 to 79	6	15	4	8	4	0	37.	8.5
80 to 84	4	15	1	3	0	0	23	5.3
85 to 89	5	3	0	1	0	0	9	2.1
90 to 94	0	0	0	0	0	0	0	0.0
95 to 99	0	1	0	0	0	0	1	0.2
100 to 104	0	0	0	0	0	0	0	0.0
105 to 109	0	0	0	0	0	0	0	0.0
Totals	28	97	132	67	99	15	438	100.0

end of July. Most fish taken in September and October, on the other hand, were in the 15 to 24 mm size range. Fish in the 30 to 64 mm size range made up only 3.1% of the total sample. This situation is identical to that reported in 1976 (Bond and Berry in prep.) and is believed to indicate an absence of age 1 shiners in the Mildred Lake study area.

In the Delta study area, a strong mode occurred at the 55 to 59 mm length interval with a smaller mode appearing in the 75 to 79 mm range. In this sample, 71.7% of the total measured sample fell in the 30 to 64 mm range. It must also be noted that, of the estimated 10000 emerald shiners taken in one seine haul on 6 September, the vast majority, although not measured, fell within this fork length range. Otolith ages were determined for 167 emerald shiners from the Mildred Lake study area and 253 from the Delta study area. Agelength and age-weight relationships for shiners from the Mildred Lake study area are presented in Tables 90 and 91, respectively. The age and growth features for the Delta sample are summarized in Tables 92 and 93.

Emerald shiners hatch at a length of about 4 mm (Fuchs 1967). No young-of-the-year were captured in either sampling area until September and October 1977 when large numbers began to appear in the Mildred Lake study area. These fish had a mean fork length of 21.5 mm (range 13 to 27 mm). Only two young-of-the-year were caught in the Delta.

The Mildred Lake sample contained few age lemerald shiners, accounting for the large gap between the two modes in the lengthfrequency distribution for that area. Very large numbers of age 1 shiners were found in the Delta study area throughout the summer. These fish ranged in fork length from 29 to 73 mm (mean 51.7 mm). Age 1 fish captured in the Delta in May $(N=7)$ had a mean fork length of 31.0 mm (range 28 to 36 mm). By mid-June this age class had a mean length of 44.3 mm (range 33 to 55 mm) while 13 shiners captured on 6 October ranged from 54 to 61 mm with a mean fork length of 57.6 mm .

Table 90. Age-length (mm) relationship for emerald shiner from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

0 tolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				48	21.5	2.70	13 to 29	
1	ND				2	54.0	11.31	46 to 62	17	38.8		28 to 62	
2	47	78.0	3.69	69 to 88	54	78.4	4.60	68 to 91	101	78.3	4.19	68 to 91	0.48
3	0				1	100.0			1	100.0			
Total	47				57				167				

Table 91. Age-weight (g) relationship for emerald shiner from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

0 tollith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				48	0.28			
1	ND				2	1.59	0.93	0.93 to 2.25	17	0.57		0.16 to 2.25	
2	47	4.25	0.57	3.25 to 5.61	54	4.56	1.02	2.95 to 7.44	101	4.42	0.86	2.95 to 7.44	1.91
3	0				1	9.78			1	9.78			
Total	47				57				167				

Table 92. Age-length (mm) relationship for emerald shiner from. the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).'

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	4	Mean	S.D.	Range	
$0+$	No				ND				2	23.0	1.41	22 to 24	
1	51	55.7	5.35	44 to 65	54	53.5	7.17	36 to 73	141	51.7	8.05	29 to 73	1.77
2	68	75.1	5.77	62 to 87	41	77.3	5.98	62 to 88	109	75.9	5.92	62 to 88	1.91
3	0				1	98.0			1	98.0			
Total	819				96				253				

Table 93. Age-weight (g) relationship for emerald shiner from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otollth Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	s.0.	Range	
$0+$	ND				ND				2	0.11	0.03	0.09 to 0.13	
1	51	1.57	0.43	0.75 to 2.37	54	1.45	0.58	0.42 to 3.57	141	1.31	0.58	0.13 to 3.57	1.20
2	68	3.72	0.81	2.01 to 5.45	41	4.40	1.20	1.95 to 7.26	109	3.98	1.03	1.95 to 7.26	$3.21{ }^{\text {a }}$
3	0				1	10.16			1	10.16			
Total	119				96				253				

a significant difference between means for males and females ($\mathrm{P}<0.05$).

Age 2 emerald shiners were quite abundant in the Delta study area during May and June. Their numbers dropped off quickly, however, in July, and after 10 August, only 8 emerald shiners were captured belonging to this age group. In the Mildred Lake area, age 2 fish were scarce during May but abundant during June and July. In this area too, numbers of age 2 emerald shiners declined in August. At age 2 , emerald shiners had a mean fork length of 78.3 mm (range 68 to 91 mm) in the Mildred Lake area and 75.9 mm (range 62 to 88 mm) in the Delta.

Only two age 3 emerald shiners were captured during the study indicating that few shiners live beyond age 2 in this area. These fish, both females, had fork lengths of 98 and 100 mm .

Male and female emerald shiners increased in fork length at the same rate, although among age 2 fish, females tended to be heavier than males of the same age, significantly so in the Delta sample (Table 93).

Length-weight relationships for male and female emerald shiners from the Mildred Lake and Delta study areas are presented in Table 70. In both cases, a significant difference existed between the slopes of the regressions for males and females.
4.2.10.3 Sex and maturity. Age-specific sex and maturity data for emerald shiners from the two study areas are summarized in Table 94. Females made up 54% of the overall total but the sex ratio did not differ significantly from unity ($\mathrm{X}^{2}=3.34, \mathrm{P}>0.05$). Age 1 fish were captured in quantity only in the Delta sample and in this group, males predominated, comprising 58% of the total. Both male and female emerald shiners reached sexual maturity at age 2 . The smallest mature fish were in the 65 to 69 mm fork length range for both sexes.

Among 2 year old fish, 48% of the females and 73% of the males were mature. However, this situation differed between the two study areas (Table 94) and through the summer (Table 95). Table 95 brings out two main points. It is apparent that age 2 shiners were abundant in the Athabasca River during the early part of 1977 but became scarce near the end of July. More than 82% of all 2 year old

Table 94. Age-specific sex ratios and maturity for emerald shiner from the Mildred Lake, Delta, and combined study area, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

Otolith Age	Females				Males				Unsexed Fish	Total		x^{2}
	N	\%	\%	Mature	N	\%	\%	Mature		N	\%	
Mildred Lake Area												
$0+$	0	0.0		0.0	0	0.0		0.0	256	256	52.8	
1	2	100.0		0.0	0	0.0		0.0	15	17	3.5	
2	160	75.8		42.5	51	24.2		54.9	0	211	43.5	$56.30^{\text {a }}$
3	1	100.0		100.0	0	0.0		0.0	0	1	0.2	
Totals	163	76.2		42.3	51	23.8		54.9	271	485	100.0	$58.62^{\text {a }}$
Delta Area												
0+	0	0.0		0.0	0	0.0		0.0	2	2	0.5	
1	107	41.8		0.0	149	58.2		0.0	71	327	74.5	$6.90^{\text {a }}$
2	41	37.6		70.7	68	62.4		86.7	0	109	24.8	$6.68{ }^{\text {a }}$
3	1	100.0		100.0	0	0.0		0.0	0	1	0.2	
Totals	149	40.7		20.1	217	59.3		27.2	73	439	100.0	$12.64^{\text {a }}$
Combined Areas												
$0+$	0	0.0		0.0	0	0.0		0.0	258	258	28.0	
1	109	42.2		0.0	149	57.8		0.0	86	344	37.4	$6.20^{\text {a }}$
2	201	62.8		48.3	119	37.2		73.1	0	316	34.4	$21.00^{\text {a }}$
3	2	100.0		100.0	0	0.0		0.0	0	2	0.2	
Totals	312	53.8		31.7	268	46.2		32.4	344	920	100.0	$3.34{ }^{\text {a }}$

a Significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

Table 95. Seasonal changes in sexual maturity for age 2 emerald shiner captured in the Mildred Lake and Delta study areas, Athabasca River, 1977.

Date	Mildred Lake Area					Delta Area				
	Males		Females		\% Males	Males		Females		$\begin{gathered} \% \\ \text { Males } \end{gathered}$
	N	Mature	N	Mature		N	Mature	N	Mature	
May	3	100	3	100	50	12	92	9	100	57
07 to 20 June	21	100	35	91	38	31	100	10	100	76
28 June to 2 July	1	0	25	32	4	9	100	8	100	53
11 to 15 July	12	33	31	29	28	1	100	0	0	100
25 to 28 July	7	0	$37^{\text {a }}$	24	16	8	88	$1^{\text {a }}$	100	89
09 to 11 August	1	0	$11^{\text {a }}$	27	8	3	0	$9^{\text {a }}$	11	25
23 August		No Samp				1	0	2	0	33
September	6	0	4	33	60	3	0	2	0	60
October	0	0	14	14	0		No	Sample		
Totals	51	55	160	42	24	68	87	41	71	62

[^27]fish captured were taken prior to this date. Secondly, the data indicate a dramatic shift in maturity occurring about mid-June in the Mildred Lake area and at the end of July in the Delta. Prior to this shift, virtually all emerald shiners of both sexes were sexually mature. After the shift, however, the age 2 population consisted of a few spent females and fish (mostly females) that would not spawn in 1977. No spent males were recorded. It seems likely that this reduction in age 2 emerald shiners in mid-summer reflects a post-spawning mortality among fish of this age class. A small percentage of this age class does survive, however, to spawn as 3 year old fish (two ripe 3 year old females were taken in 1977).
4.2.10.4 Spawning. Spawning of emerald shiners was not observed in 1977. However, it is believed to have occurred in the Athabasca River during June and July. Both male and female shiners were observed to be close to spawning condition between 8 June and 13 July in the Mildred Lake study area and spent females were taken between 25 July and 11 August. The greater abundance of age 2 fish and the earlier appearance of young-of-the-year in the Mildred Lake study area than in the Delta may indicate that the Mildred area or areas upstream of it are more important as spawning habitat for this species than are the lower reaches. The possibility that some spawning occurs below the Mildred Lake study area or in the Delta cannot be ruled out, however.
4.2.10.5 Movements. Although there is no direct evidence of emerald shiner migrations within the Athabasca River, the length frequency and age data available do suggest substantial movements and invite inferences with respect to the life history of this species. The following sequence of events is suggested.

The major spawning areas for emerald shiners in the lower Athabasca River are within or upstream of the Mildred Lake study area. Spawning occurs during late June and July, the spawning population consisting of age 2 fish plus a few 3 year old individuals. A severe post-spawning mortality occurs among age 2 fish. After emergence, young-of-the-year move downstream, eventually to the Delta where they
spend their next year of life. Age 1 shiners were found in abundance in the Delta throughout the 1977 sampling season. The Delta area appears to be critical as a rearing area for emerald shiners. After spending two winters in the Delta, emerald shiners migrate upstream out of the Delta onto the spawning grounds as 2 year old fish. Both spawners and non-spawners participate in this migration.
4.2.10.6 Fecundity. Total egg counts were made for 15 fully mature emerald shiner females captured between 8 and 19 June 1977 in the Mildred Lake study area. For these fish, which ranged from 73 to 100 mm in fork length, egg counts varied from 1124 to 2263 with a mean of 1464.6 eggs per female (Table 96).
4.2.10.7 Food habits. The food of emerald shiners consisted primarily of immature aquatic insects belonging to the orders Diptera, Plecoptera, Ephemeroptera, Hymenoptera, Coleoptera, and Trichoptera (Table 97). In the Mildred Lake study area, Ephemeroptera nymphs and Hymenoptera adults were the most common food items, occurring in 31.4 and 17.1%, respectively, of all stomachs. Diptera larvae occurred in 67.3% of the stomachs of emerald shiners captured in the Delta study area while Plecoptera (38.5%) and Ephemeroptera (13.5%) nymphs were also common. Hymenoptera and Hemiptera adults were identified from 13.5 and 15.4%, respectively, of the Delta fish.

4.2.11 Spottail Shiner

4.2.11.1 Distribution and relative abundance. Only 116 spottail shiners were captured in the Mildred Lake study area in 1977. In this area, spottails occurred in 15% of small mesh seine hauls accounting for 1.1% of the total catch. The average catch-per-unit-effort was 0.5 fish per haul with the highest values being 1.4 on 16 to 19 June and 1.9 on 5 to 10 October (Table 9). In the Mildred Lake study area, spottail shiners were captured at Sites $21,22,25$ to $27,29,33,36$, 37, 41, and 43 (Figure 4 and Appendix 6.1). In the Delta study area, spottail shiners proved to be considerably more abundant during 1977 ,
Table 96. Fecundity of emerald shiner
area, Athabasca River, 1977. from the Mildred Lake study

Table 97. Food habits of emerald shiner from the Athabasca River, 1977.

Food I tem	Percentage Frequency of Occurrence ${ }^{\text {a }}$	
	Mildred Lake Area $(N=30)$	Delta Area $(N=52)$
Trichoptera	2.8	1.9
Ephemeroptera	31.4	13.5
Plecoptera	5.7	38.5
Diptera	2.8	67.3
Hymenoptera	17.1	13.5
Coleoptera	2.8	3.8
Hemiptera	0.0	15.4
Odonata	0.0	1.9
Lepidoptera	0.0	1.9
Unidentifiable Insects	45.7	3.8
Cladocera	11.4	3.8
Arachnida	0.0	7.7
Gastropoda	0.0	1.9
Debris	2.8	17.3
Empty	0.0	0.0

${ }^{a}$ Expressed as a percentage of the number of stomachs examined (N).
occurring in 58% of all small mesh seine hauls and accounting for 3.8% of the total catch (Table 10). The catch-per-unit-effort, which averaged 5.8 fish per seine haul, was low during May and early June but rose to 7.0 on 17 to 20 June and to 15.8 on 14 to 15 July. At the end of July, the relative abundance dropped to 3.3 fish per haul and remained fairly constant through 7 October (Table 10). Sites in the Delta study area at which spottail shiners were captured were numbers 53, 61, 68, 73, 78 to 81 , and 83 to 87 (Figure 4 and Appendix 6.1) plus km 250.6L, 264.8L, 265.6R, 214.3LI, 210.7R, 196.0LI, 200,8L, 204.5R, and 196.5LI.
4.2.11.2 Age and growth. Spottail shiners ranged in fork length from 16 to 97 mm with 98.2% falling within the 35 to 74 mm size range (Table 98). This is a considerable change from the situation observed in 1976 when 68.8% of the sample were young-of-the-year fish in the 20 to 39 mm range (Bond and Berry in prep.).

Otolith ages were determined for 306 spottail shiners. Age and growth characteristics for shiners captured in the Mildred Lake area are summarized in Tables 99 and 100 while those for fish from the Delta study area are presented in Tables 101 and 102. Spottail shiners appear to live to a maximum age of 3 years with most fish not living beyond age 2. Samples taken in June and early July were dominated by age 1 fish with 2 year olds also well represented. Young-of-the-year appeared in August and this age group dominated the catch during the latter part of the year.

Length-weight relationships for male and female spottail shiners from the Mildred Lake and Delta study areas are given in Table 70. In both cases, significant differences occurred between the slopes of the regressions for males and females.
4.2.11.3 Sex and maturity. Age-specific sex ratios and maturity data for spottail shiners collected during 1977 from each study area are presented in Table 103. Spottail shiners matured at two years of age, and in this age class 70% of females and 80% of males were found to be sexually mature. Females (62%) out-numbered males in the overall

Table 98. Length-frequency distribution for spottail shiner from the Mildred Lake and Delta study areas, Athabasca River, 1977.

Fork Length (mm)	Mildred Lake		Delta							Grand Total	
	June	Total	May	June	July	Aug.	Sept.	Oct.	Total	N	\%
15 to 19	0	1	0	0	0	0	0	1	1	2	0.6
20 to 24	0	3	0	0	1	0	2	9	12	15	4.3
25 to 29	0	2	0	0	0	0	2	0	2	4	1.1
30 to 34	2	7	1	0	0	6	3	2	12	19	5.4
35 to 39	6	14	2	6	0	15	16	1	40	54	15.4
40 to 44	3	9	1	10	3	11	17	5	47	56	16.0
45 to 49	2	11	0	3	18	0	0	1	22	33	9.4
50 to 54	0	8	1	4	20	2	0	0	27	35	10.0
55 to 59	2	12	0	10	3	2	1	0	16	28	8.0
60 to 64	6	12	0	4	3	6	1	0	14	26	7.4
65 to 69	9	12	0	9	2	4	11	1	27	39	11.1
70 to 74	5	6	1	6	1	3	3	0	14	20	5.7
75 to 79	5	6	1	3	1	0	1	0	6	12	3.4
80 to 84	0	0	4	0	0	0	1	0	5	5	1.4
85 to 89	1	1	1	0	0	0	0	0	1	2	0.6
90 to 94	0	0	0	0	0	0	0	0	0	0	0.0
95 to 99	0	0	1	0	0	0	0	0	1	1	0.3
Totals	41	104	13	55	52	49	58	20	247	351	100.1

Table 99. Age-length (mm) relationship for spottail shiner from the Mildred Lake study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

0tolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				21	31.9	6.97	16 to 41	
1	14	54.4	9.38	36 to 66	21	50.1	6.24	35 to 64	49	48.5	8.99	31 to 66	1.50
2	12	63.6	6.10	55 to 78	23	70.2	7.45	56 to 89	35	67.9	7.62	55 to 89	$2.83{ }^{\text {a }}$
Total	26				44				105				

a Significant difference between means for males and females ($P<0.05$).

Table 100. Age-weight (g) relationship for spottail shiner from the Mildred Lake study area, Athabasca
River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				21	0.39	0.23	0.04 to 1.01	
1	14	1.90	0.83	0.51 to 3.02	21	1.43	0.55	0.50 to 2.89	49	1.37	0.74	0.27 to 3.02	1.86
2	12	2.85	0.86	1.70 to 4.89	23	4.21	1.34	1.81 to 7.09	35	3.75	1.35	1.70 to 7.09	$3.64{ }^{\text {a }}$
Total	26				44				105				

[^28]Table 101. Age-length (mm) relationship for spottail shiner from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

Otolith Age	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				46	36.3	6.85	19 to 45	
1	16	60.8	8.38	50 to 70	41	52.8	8.76	35 to 67	92	50.9	9.47	34 to 70	$3.22^{\text {a }}$
2	28	68.4	7.77	55 to 83	30	64.3	7.44	52 to 78	59	66.1	7.85	52 to 83	$2.03^{\text {a }}$
3	1	83.0			3	88.7	5.69	84 to 95	4	87.3		83 to 95	
Total	45				74				201				

[^29]Table 102. Age-weight (g) relationship for spottail shiner from the Delta study area, Athabasca River, 1977. Sexes separate and combined (includes unsexed fish).

$\begin{aligned} & \text { Otolith } \\ & \text { Age } \end{aligned}$	Males				Females				All Fish				t-test
	N	Mean	S.D.	Range	N	Mean	S.o.	Range	N	Mean	S.D.	Range	
$0+$	ND				ND				46	0.55	0.25	0.07 to 0.95	
1	16	2.58	0.91	1.30 to 3.67	41	1.78	0.85	0.41 to 3.70	92	1.61	0.91	0.33 to 3.70	$3.20{ }^{\text {a }}$
2	28	3.62	1.19	1.83 to 6.02	30	3.12	1.05	1.67 to 4.92	59	3.33	1.14	1.67 to 6.02	1.69
3	1	6.20			3	7.96	1.69	6.96 to 9.91	4	7.52		6.20 to 9.91	
Total	45				74				201				

[^30]Table 103. Age-specific sex ratios and maturity for spottail shiners from the Mildred Lake, Delta, and combined study areas, Athabasca River, 1977. Sex ratios were based only on fish for which sex was determined.

0tolith Age	Females			Males			Unsexed Fish	Total		x^{2}
	N	\%	\% Mature	N	\%	\% Mature		N	\%	
Mildred Lake Area										
0+	0	0.0	0.0	0	0.0	0.0	21	21	20.0	
1	21	60.0	0.0	14	40.0	0.0	14	49	46.7	1.40
2	23	65.7	78.3	12	34.3	91.6	0	35	33.3	3.46
Totals	44	62.9	40.9	26	38.1	42.3	35	105	100.0	$4.62^{\text {a }}$
Delta Study Area										
$0+$	0	0.0	0.0	0	0.0	0.0	92	92	37.2	
1	41	71.9	0.0	16	28.1	0.0	35	92	37.2	$10.96{ }^{\text {a }}$
2	30	51.7	63.3	28	48.3	75.0	1	59	23.9	0.06
3	3	75.0	100.0	1	25.0	100.0	0	4	1.6	1.00
Totals	74	62.2	29.7	45	37.8	48.9	128	247	99.9	$7.08{ }^{\text {a }}$
Combined Areas										
$0+$	0		0.0	0	0.0	0.0	113	113	32.1	
1	62	67.4	0.0	30	32.6	0.0	49	141	40.1	$11.14{ }^{\text {a }}$
2	53	57.0	69.8	40	43.0	80.0	1	94	26.7	1.82
3	3	75.0	100.0	1	25.0	100.0	0	4	1.1	1.00
Totals	118	62.4	33.9	71	37.6	46.5	163	352	100.1	$11.68{ }^{\text {a }}$

[^31]sample, the sex ratio being significantly different from unity. However, among 2 year old shiners, no significant difference from a $1: 1$ ratio existed between males and females $\left(X^{2}=1.83, P>0.05\right)$.
4.2.11.4 Spawning. Spawning of spottail shiners was not observed during the present study. Shiners captured in June were near ripe and spawning is believed to have occurred during late June or early July. Few age 2 fish were captured after 15 July. The first young ${ }^{-}$ of-the-year spottail shiner (a single fish) appeared on 15 July in the Delta study area (21 mm in length) but this age class was not common in either area until mid-August by which time fork lengths ranged from 30 to 41 mm .
4.2.11.5 Fecundity. Total egg counts were made for 12 fully mature female spottail shiners captured from the Mildred Lake study area on 16 to 19 June 1977. These fish were all two years old and measured 65 to 89 mm in fork length. Egg counts (Table 104) varied from 746 to 1384 with a mean of 1088.0 ova per female.
4.2.11.6 Food habits. Spottail shiners had fed predominantly on aquatic insects (5 orders), Cladocera, Copepoda, and plant material (Table 105). Diptera larvae were the single most important food item occurring in 100.0 and 83.3% of stomachs for fish from the Mildred Lake and Delta study areas, respectively.

4.2.12 Other Species

During 1976 and 1977,16 species of fish were captured that appear to be uncommon or rare in the Athabasca River downstream from Fort McMurray during the open-water period. Three of these species, pearl dace, lowa darter, and brassy minnow, were taken only in 1976, while two, Dolly Varden and northern redbelly dace, were found only in 1977. All of these species were represented in collections made in the Mildred Lake study area while only 7 were found in the Delta study area.

Table 104. Fecundity of spottail shiners from the Mildred Lake study area, Athabasca River, 16 to 19 June 1977.
$\left.\begin{array}{cccc}\hline \begin{array}{c}\text { Fork Length } \\ (\mathrm{mm})\end{array} & \begin{array}{c}\text { Weight } \\ (\mathrm{g})\end{array} & 3.50 & \begin{array}{c}\text { Otclith Age } \\ (\mathrm{yrs})\end{array}\end{array} \begin{array}{c}\text { Number of Eggs } \\ \text { (Total Counts) }\end{array}\right]$

Table 105. Food habits of spottail shiners from the Athabasca River, 1977.

Food Item	Percentage Frequency of Occurrence ${ }^{\text {a }}$	
	Mildred Lake Area $(N=10)$	Delta Area $(N=30)$
Trichoptera	0.0	10.0
Ephemeroptera	30.0	6.7
Plecoptera	10.0	0.0
Diptera	100.0	83.3
Lepidoptera	10.0	0.0
Hydracarina	0.0	3.3
Cladocera	60.0	13.3
Copepoda	20.0	0.0
Ostracoda	10.0	6.7
Turbellaria	0.0	3.3
Plant Material	0.0	23.3

[^32]Among the fish less frequently captured during the field program, eight species appear to be truly uncommon or rare within the AOSERP study area; i.e., Dolly Varden, finescale dace, northern redbelly dace, fathead minnow, ninespine stickleback, spoonhead sculpin, lowa darter, and brassy minnow. Six species, although rarely captured in the Athabasca River downstream of Fort McMurray during the ice-free period, are common in tributaries of the AOSERP area at that time; i.e., brook stickleback, slimy sculpin, pearl dace, longnose dace, Arctic grayling, and mountain whitefish. The first four species appear to be typically tributary species while the latter two species utilize the tributary streams on a seasonal basis.

Yellow perch are common in tributaries and headwater lakes both within and upstream of the AOSERP study area and the young-of-the-year perch captured by our crews are thought to have originated in those areas.

Burbot are apparently more abundant than was indicated by results of 1976 work (Bond and Berry in prep.) although they appear to be common only during the early spring.

Because these species are represented by few specimens, or few age classes, no detailed analyses are possible. Age and growth data collected during 1977 for these species are summarized in Tables 106 and 107. Results of stomach analyses, expressed in terms of percentage frequency of occurrence, are presented in Tables 108 and 109.

4.2.12.1 Mountain whitefish. Few mountain whitefish are found in

 the Athabasca River during the open-water period. In 1977 only seven mountain whitefish were captured of which four were young-of-the-year (one captured in Delta study area). A mature male and a mature female, both age 6, were caught at the mouth of the Steepbank River (Site 10) (Figure 4) on 5 May while a four-year-old female was taken at Site 42 (Figure 4) in mid-June. Jones et al. (1978) reported capturing 17 mountain whitefish at Cascade Rapids upstream of Fort McMurray during September and October 1977.Table 106. Age-length and age-weight relationships (derived from length and weight frequencies and otoliths), age-specific sex ratios, and maturity of less frequently captured species from the Mildred Lake study area of the Athabasca River, 1977.

Species	Age	Females			Males			Unsexed Fish	Total	Fork Lengch (mm) ${ }^{\text {a }}$			Weight (9)		
		N	\%	$\frac{\%}{\text { Mature }}$	N	\%	$\frac{\%}{\text { Mature }}$			Mean	S.D.	Range	Mean	S.D.	Range
Mountain whitefish	$0+$	ND			ND			3	3	14.3	6.51	38 to 51	0.85	0.18	0.67 to 1.02
	4	1	100	0	0	0	0	0	1	314.0			460.0		
	6	1	50	100	1	50	100	0	2	395.0	1.41	394 to 396	900.0	28.28	880 to 920
	Totals	2	0	50	1	0	100	3	6						
Arctic grayling	$0+$	ND			ND			4	4	20.8	2.75	18 to 24	0.08	. 039	0.04 to 0.12
	1	ND			ND			1	1	113.0					
	2	ND			ND			4	4	197.3	15.36	175 to 215			
	3	ND			ND			7	7	263.0	31.96	243 to 331			
	4	ND			ND			4	4	328.0	22.01	300 to 353			
	5	ND			ND			2	2	339.0	22.18	325 to 353	460.0	84.85	400 to 520
	6	ND			ND			1	,	375.0			620.0		
	8	ND			ND			1	,	375.0					
	Unaged	ND			ND			1	1	293.0			320.0		
	Totals	ND			ND			25	25						
Dolly Varden	4	ND			ND			1	1	178.0			58.9		
	Totals	ND			ND			1	1						
Northern redbelly dace	1	1	25	0	3	75	0	0	4	43.8	28.25	36 to 48	0.83	0.26	0.44 to 1.01
	Totals	1	25	0	3	75	0	0	4						
Finescale dace	$0+$	2	100	0	ND			4	6	34.8	7.13	21 to 41	0.44	0.65	0.99 to 0.63
	1	2	18	0	9	82	0	0	11	41.2	6.10	37 to 58	0.77	0.40	0.54 to 1.90
	2	1	50	100	1	50	100	0	2	52.0	2.83	50 to 54	1.36	0.03	1.34 to 1.38
	Totals	5	33	20	10	67	10	4.	19						

Table 106. Continued.

Species	Age	Females			Males			Unsexed Fish	Total	Fork Length (mm) ${ }^{\text {a }}$			Weight		
		N	\%	$\begin{gathered} \% \\ \text { Mature } \end{gathered}$	N	\%	$\frac{y_{6}}{\text { Mature }}$			Mean	S.D.	Range	Mean	S.D.	Range
Fathead minnow	1	6	86	0	1	14	0	0	7	31.0	7.00	23 to 38	0.35	0.72	0.12 to 0.65
	2	4	67	100	2	33	100	0	6	43.2	4.02	39 to 48	0.96	0.31	0.63 to 1.32
	Totals	10	77	40	3	23	67	0	13						
Longnose dace	$0+$	ND			ND			8	8	25.6	6.50	19 to 39	0.20	0.17	0.08 to 0.57
	1	11	61	0	7	39	0	0	18	48.6	4.83	41 to 57	1.16	0.40	0.58 to 2.00
	Totals	11	61	0	7	39	0	8	26						
Burbot	0+	ND			ND			11	11	35.9	11.19	22 to 61	0.47	0.47	0.07 to 1.75
	1	ND			ND			2	2	97.0	1.41	96 to 98	5.23	0.37	4.97 to 5.49
	2	ND			ND			3	3	178.0	8.74	171 to 188	33.45	5.03	27.68 to 36.94
	5	1	100	100	0	0	0	0	1	536.0			930.0		
	6	0	0	0	1	100	100	0	1	598.0			1130.0		
	Unaged	ND			ND			34	34	501.2	123.70	220 to 750			
	Totals	1	50	100	1	50	100	50	52						
Brook stickleback	${ }^{0+}$	ND			ND			1	1	20.0			0.05		
	1	2	50	50	2	50	50	0	4						
	2	1	100	100	0	0	0	0	1	41.0			0.46		
	Totals	3	60	67	2	40	50	1	6						
Ninespine stickleback	3	0	0	0	2	100	100	0	2	52.5	0.71	52 to 53	0.82	0.03	0.79 to 0.34
	Totals	0	0	0	2	100	100	0	2						
Yellow perch	$0+$	ND			ND			$210^{\text {b }}$	$210^{\text {b }}$	40.9	8.03	25 to 58	0.69	0.42	0.14 to 2.12
	1	ND			ND			1	1	75.0			4.39		
	Totals	ND			ND			211	211				co	tinued	

Table 106. Concluded.

Species	Age	Females			Males			Unsexed Fish	Total	Fork Length (mm) ${ }^{\text {a }}$			Weight (g)		
		N	\%	$\begin{gathered} \% \\ \text { Mature } \end{gathered}$	N	\%	$\begin{gathered} \% \\ \text { Mature } \end{gathered}$			Mean	S.D.	Range	Mean	S.D.	Range
slimy sculpin	0+	ND			ND			1	1	14.0			0.03		
	1	ND			ND			4	4	44.0	7.61	38 to 55	0.89	0.32	0.51 to 1.65
	Totals	ND			ND			5	5						
Spoonhead sculpin	$0+$	ND			ND			18	18	26.3	8.61	14 to 44	0.23	0.24	0.04 to 0.97
	1	ND			ND			5	5	53.6	4.61	47 to 60	1.61	0.35	1.06 to 2.02
	Totals	No			ND			23	23						

a Total length used for burbot, stickleback, and sculpins.
b Calculations based on 70 fish.

Table 107. Age-length and age-weight relationships (derived from length and weight frequencies and otoliths), age-specific sex ratios and maturity of less frequently captured fish species from the Delta study area of the Athabasca River, 1977.

Species	Age	Females			Males			Unsexed Fish	Total	Fork Length (mm) ${ }^{\text {a }}$			Weight (g)		
		N	\%	\% Mature	N	\%	$\%$ Nature			Mean	S.D.	Range	Mean	S.D.	Range
Mountain whitefish	$0+$	ND			ND			1	1	63.0			1.69		
	Total	ND			ND			1	1						
Longnose dace	1	1	100	0	0	0	0	0	1	43.0			0.83		
	Total	1	100	0	0	0	0	0	1						
Burbot	$0+$	ND			ND			73	73	33.8	5.72	21 to 52	0.32	0.17	0.12 to 1.02
	Unaged	ND			ND			3	3	636.8	230.93	470 to 900			
	Total	ND			ND			76	76						
Brook stickleback	$0+$	1	100	0	0	0	0	0	1	28.0			0.15		
	Total	1	100	0	0	0	0	0	1						
Winespine stickleback	1	2	100	0	0	0	0	0	2	36.5	4.95	33 to 40	0.29	0.11	0.21 to 0.37
	Total	2	100	0	0	0	0	0	2						
Yellow perch	0+	ND			ND			24	24	36.1	9.27	19 to 63	0.65	0.63	0.05 to 3.00
	Total	ND			ND			24	24						
Spoonhead sculpin	0+	ND			ND			13	13	20.4	5.71	14 to 36	0.11	0.14	0.03 to 0.53

a rotal length used for burbot, stickleback and sculpins.

Table 108. Percentage frequency of occurrence for food items found in the stomach contents of the less frequently captured fish species of the Mildred Lake study area of the Athabasca River, 1977. Sample size (N), Diptera (1), Ephemeroptera (2), Trichoptera (3), Hemiptera (4), Coleoptera (5), Hymenoptera (6), Plecoptera (7), Odonata (8), Insect Parts (9), Arachnida (10),

Nemotoda (11), Amphipoda (12), Copepoda (13), Cladocera (14), Ostracoda (15), Fish Remains (16), Detritus (17), and Empty (18).

Species	N	Percentage Frequency of Occurrence ${ }^{\text {a }}$																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Mountain whitefish	6	33	67	0	0	0	0	17	17	0	0	0	0	0	0	0	0	0	17
Arctic grayling	6	67	17	0	33	17	0	33	0	0	17	0	0	0	0	0	0	0	17
Finescale dace	10	90	0	0	10	10	10	30	0	10	0	0	0	0	0	0	0	40	0
Northern redbelly dace	4	50	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	50	25
Fathead minnow	10	100	0	0	0	0	0	10	0	0	0	0	0	0	30	0	0	0	0
Longnose dace	10	70	60	0	10	0	0	10	0	0	0	0	0	10	0	0	0	0	0
Burbot	10	10	30	10	0	0	0	20	30	20	0	0	0	0	0	0	10	0	20
Brook stickleback	4	100	0	25	0	50	0	25	0	25	25	0	0	75	25	0	0	0	0
Ninespine stickleback	2	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	50
Yellow perch	10	100	30	20	20	0	0	0	0	0	0	0	0	30	40	0	0	0	0
Slimy sculpin	5	100	80	0	0	0	0	20	0	0	0	20	0	0	0	20	0	80	0
Spoonhead sculpin	10	70	30	0	0	0	0	40	0	20	0	20	0	0	0	0	0	0	0

[^33]Table 109. Percentage frequency of occurrence for food items found in the stomach contents of the less frequently captured fish species of the Delta study area of the Athabasca River, 1977.
Sample size (N), Diptera (1), Ephemeroptera (2), Trichoptera (3), Hemiptera (4), Coleoptera (5), Hymenoptera (6), Plecoptera (7), Odonata (8), Insect Parts (9), Arachnida (10), Nemotoda (11), Amphipoda (12), Copepoda (13), Cladocera (14), 0stracoda (15), Fish Remains (16), Detritus (17), and Empty (18).

Species	N	Percentage Frequency of Occurrence ${ }^{\text {a }}$																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Mountain whitefish	1	100	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0
Longnose Dace	1	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Burbot	12	25	42	0	0	0	0	0	0	17	0	0	0	0	42	0	0	0	25
Brook stickleback	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Ninespine stickleback	2	50	0	0	0	0	0	50	0	0	0	0	0	50	50	0	0	0	0
Yellow perch	11	27	0	0	0	0	0	0	0	18	0	0	0	27	54	0	0	0	18
Spoonhead sculpin	10	90	30	0	0	0	0	0	0	0	0	0	0	0	0	20	0	80	0

[^34]The movements of mountain whitefish are known to be quite compiex and it is clear from studies on the Muskeg River (Bond and Machniak 1977, 1979) and Steepbank River (Machniak and Bond 1979) that they are more abundant in the AOSERP area than previously supposed and that the Athabasca River is an important migration path for this species. During late April and early May 1976, Bond and Machniak (1977) documented a small migration of mountain whitefish into the Muskeg River and noted that these fish left the tributary in June, returning to the Athabasca River. In 1977, Machniak and Bond (1979) enumerated 504 mountain whitefish in a counting fence operation in the Steepbank River during late April and May. By 28 May, only 55 of these fish had left the tributary and these authors took only six mountain whitefish in their downstream trap between 12 September and 15 October. It is unknown whether these mountain whitefish remained in the Steepbank River beyond 15 October or left the tributary during the summer.

Spawning areas for this species are unknown but the presence of few young-of-the-year in the Muskeg (Bond and Machniak 1977, 1979) and Steepbank rivers (Machniak and Bond 1979) suggests that these tributaries are not utilized to any extent for this purpose. Griffiths (1973) believed that mountain whitefish spawned in the High Hill River, a tributary of the Clearwater River (Figure 4). Overwintering probably occurs in deeper areas of the Athabasca River upstream of the Mildred Lake study area.
4.2.12.2 Arctic grayling. No grayling were captured in the Delta study area in 1977 but 26 were taken in the Mildred Lake area. The majority of these fish were captured between 23 April and 13 May ($N=13$) and between 6 and 20 october $(N=7)$. Jones et al. (1978) took 25 Arctic grayling during their study but none prior to midOctober.

In the AOSERP study area, Arctic grayling (excluding young-of-the-year) probably overwinter in the Athabasca River upstream of Fort McMurray although specific overwintering areas are unknown. In late April and early May, grayling leave the main river to migrate into
tributary streams where they spawn. The Muskeg River (Bond and Machniak 1977, 1979) and the Steepbank River (Machniak and Bond 1979) are known to be important in this respect. Grayling remain in these two tributary streams to feed following spawning. A counting fence operation on the Steepbank River (Machniak and Bond 1979) documented a downstream grayling migration between 6 and 8 October 1977, during which period minimum daily water temperature ranged from 3.3° to $0^{\circ} \mathrm{C}$.

It is believed that most young-of-the-year grayling overwinter in these two streams, leaving the tributary for the first time at the end of their second summer (Machniak and Bond 1979).

Arctic grayling have also been reported to frequent other tributaries in the AOSERP area during the summer months (Griffiths 1973).
4.2.12.3 Dolly Varden. Dolly Varden are common in Alberta in the headwaters of the Peace, Athabasca, Red Deer, Bow, and Oldman drainages and in the North Saskatchewan River as far downstream as Edmonton (Paetz and Nelson 1970). This species was not captured in the Athabasca River during 1976 (Bond and Berry in prep.) but a single specimen was captured at Site 2 (Figure 4) on 6 June 1977. This fish was one of several strays reported in the AOSERP study area in 1977. Eight Dolly Varden were taken at the Steepbank River counting fence (Machniak and Bond 1979) while four were captured at the Muskeg River counting fence (Bond and Machniak 1979).
4.2.12.4 Finescale dace. Nineteen finescale dace were captured from the Athabasca River in 1977, most being taken at tributary-associated sites (Sites $21,22,27$, and 34) (Figure 4). No finescale dace were captured in the Delta study area and in the Mildred Lake study area, none was taken downstream of the MacKay River (Figure 4).
4.2.12.5 Northern redbelly dace. The northern redbelly dace occurs in boggy lakes, creeks, and ponds (Scott and Crossman 1973). In Alberta it is known from scattered locations throughout much of the province (Paetz and Nelson 1970) and Griffiths (1973) reported finding
it in the Steepbank River within the AOSERP study area. This species was not taken from the Athabasca River in 1976 (Bond and Berry in prep.) but four specimens were captured from the Mildred Lake study area in 1977 (Sites 21, 22, and 31) (Figure 4). All were taken from tributary-associated sites and none was found downstream of the Muskeg River.
4.2.12.6 Fathead minnow. During 1977, 13 fathead minnows were captured, all being taken from the Mildred Lake study area (Sites 21, 22, 28, 31, 35, and 43) (Figure 4) between 6 May and 16 June.
4.2.12.7 Longnose dace. A single longnose dace (age 1) was found at Site 66 in the Delta study area (Figure 4) while 26 were captured in the Mildred Lake study area. Most of those occurring in the Mildred area were taken at tributary-associated sites (Sites 23, 27, 28, 33, $34,36,37,42,43$, and 44) (Figure 4). Five were captured on 19 June at Site 34 while seven were taken in July at site 36 . Young-of-theyear longnose dace taken in the Athabasca River during July ranged in fork length from 19 to $39 \mathrm{~mm}(N=8)$.

Longnose dace occur in many tributary streams in the AOSERP area (Griffiths 1973) and are more typical of the tributaries than of the Athabasca River. During 1977 , this species accounted for 4.4% of the fish (excluding suckers) captured in small mesh seines in the Muskeg River (Bond and Machniak 1979). In the Steepbank River, (Machniak and Bond 1979) longnose dace made up 10.7% of the catch in small mesh seines (excluding suckers).
4.2.12.8 Burbot. A total of 53 burbot were captured in the Mildred Lake study area in 1977. Large burbot (220 to 750 mm total length) were common in the Mildred Lake study area between 17 April and 19 May 1977 and were taken at numerous sites (Sites $1,3,4,6,7,10$, $12,13,15$ to $21,31,33,37$ to 39 , and 41 to 43) (Figure 4). After 19 May few large burbot were captured. Young-ofothe-year burbot taken in June $(N=10)$ ranged from 22 to 44 mm in total length. Two burbot
fry captured in a drift net near site 37 on 6 June had total lengths of 16 and 26 mm .

In the Delta study area, 77 burbot were captured in 1977, of which 73 were young-of-the-year (21 to 55 mm TL) taken between 7 June and 2 July. Young-of-the-year burbot were taken in the Delta at Sites $79(N=39)$ and 82 to 85 and at km 202.6 LI (Figure 4).

Burbot usually spawn under ice in late winter and early spring. Although they usually spawn in lakes, river spawning is also known to occur (Scott and Crossman 1973). The presence of large burbot in the Mildred Lake study area in the early spring and appearance of young-of-the-year in early June suggests that burbot utilize the Mildred area of the Athabasca River or areas upstream of it for spawning purposes. The disappearance of large burbot after May was probably related to rising water temperatures. Optimum temperature for the species is 15.6° to $18.3^{\circ} \mathrm{C}$ (Scott and Crossman 1973). Maximum daily water temperature in the Mildred Lake study area exceeded $18.3^{\circ} \mathrm{C}$ from approximately mid-June to mid-July, causing these burbot to seek cooler water. It seems likely that many of these fish would return to Lake Athabasca although there is no direct evidence to support this suggestion. A small number of burbot are known to have entered the Steepbank River and to have remained in the tributary until fall when 43 were captured in the downstream trap (Machniak and Bond 1979).
4.2.12.9 Brook stickleback. Only one brook stickleback was captured in the Delta study area. This fish was a young-of-the-year taken 25 August near Site 75 (Figure 4). Eight brook stickleback were captured in the Mildred Lake area (Sites 21, 27, 29, and 33) (Figure 4). While not commonly found in the Athabasca River proper, brook stickleback are widely distributed in the tributary streams of the AOSERP area (Griffiths 1973). This species is known to be abundant in the upper reaches of the Muskeg River drainage (Bond and Machniak 1977, 1979) and in the Steepbank River (Machniak and Bond 1979).
4.2.12.10 Ninespine stickleback. Ninespine stickleback are rarely found either in the Athabasca River or in tributary streams of the AOSERP study area. During 1977, two ninespines were caught in the Delta study area, one at km 256 . OR in August and the other at km 207.2 L in october. Two ninespine stickleback were also taken by small mesh seine in the Mildred Lake area (Sites 36 and 42) (Figure 4). The latter were both mature males, aged three.
4.2.12.11 Yellow perch. Yellow perch are known to inhabit many lakes and streams of the Athabasca drainage including the Ells and Christina rivers within the AOSERP study area (Paetz and Nelson 1970). Yellow perch captured from the Athabasca River in 1977 were all young-of-theyear (one age 1) that are thought to have originated upstream of the study area.

In the Mildred Lake study area, small mesh seines produced 213 yellow perch, of which 212 were young-of-the-year ranging in fork length from 25 to 58 mm . Perch first appeared in the samples on 28 to 29 June. Their abundance peaked on 9 to 10 August at which time they occurred in 53% of all small mesh seine hauls and accounted for 17.4% of the total catch in that gear (Table 9). Capture sites for yellow perch in the Mildred Lake study area were Sites $21,22,25$ to 31, 33, 36, 37, and 41 to 43 (Figure 4). Machniak and Bond (1979) report capturing 101 young-of-the-year yellow perch in the lower Steepbank River in 1977. Small mesh seines produced 25 young-of-theyear yellow perch in the Delta study area between 29 June and 7 September. In the Delta, perch were captured at Sites $73,75,76$, and 79 and at $\mathrm{km} 200.6 \mathrm{LI}, 294.5 \mathrm{R}, 210.7 \mathrm{R}, 211.5 \mathrm{LI}$, and 256.2 R (Figure 4).
4.2.12.12 slimy sculpin. Only 13 slimy sculpins were captured in the Athabasca River in 1977, all of which were taken in the Mildred Lake study area where they occurred at Sites $27,31,36,37$, and 41 (Figure 4). Slimy sculpins are common in the lower reaches of the Muskeg River (Bond and Machniak 1977, 1979) and in the Steepbank River (Machniak and Bond 1979) and are known to frequent numerous other tributaries within the AOSERP study area (Griffiths 1973).
4.2.12.13 Spoonhead sculpin. A total of 39 spoonhead sculpins were captured from the Athabasca River during 1977. Thirteen spoonheads were taken in the Mildred Lake study area while 26 occurred in the Delta samples. Capture locations within the Mildred Lake study area were Sites $23,25,27,31,33,35,36$, and 43 while in the Delta, spoonhead sculpins were taken at Sites $79,81,82$, and 85 and at km 223.5R (Figure 4).

5. REFERENCES CITED

Battle, H. I., and W.M. Sprules. 1960. A description of the semibuoyant eggs and early developmental stages of the goldeye, Hiodon alosoides (Rafinesque). J. Fish. Res. Board Can. 17:245-266.

Beamish, R.J. 1973. Determination of age and growth of populations of the white sucker (Catostomus commersoni) exhibiting a wide range in size at maturity. J. Fish. Res. Board Can. 30:607-616.

Beamish, R.J., and H.H. Harvey. 1969. Age determination in the white sucker. J. Fish. Res. Board Can. 26:633-638.

Bidgood, B.F. 1971. Ecology of walleyes, Stizostedion v. vitreum, in Richardson Lake-Lake Athabasca complex. Pages 187-203 in R.E. Reinelt, K. Kellerhals, M.A. Molot, W.M. Schultz, and W.E. Stevens, eds. Proc. Peace-Athabasca Delta Symposium, Univ. Alberta, Edmonton.

Bond, W.A., and D.K. Berry. in prep. Fishery resources of the Athabasca River downstream of Fort McMurray, Alberta. Volume II. Prep. for the Alberta Oil Sands Environmental Research Program by the Department of Fisheries and Oceans and Alberta Environment. AOSERP Project AF 4.3.2. 154 pp .

Bond, W.A., and K. Machniak. 1977. Interim report on an intensive study of the fish fauna of the Muskeg River watershed of northeastern Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service. AOSERP Report 26. 136 pp.

Bond, W.A., and K. Machniak. 1979. An intensive study of the fish fauna of the Muskeg River watershed of northeastern Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service. AOSERP Report 76.175 pp.

Craig, P.C., and V.A. Poulin. 1975. Movements and growth of Arctic grayling (Thymallus arcticus) and juvenile Arctic char (SalveZinus alpinus) in a small Arctic stream, Alaska. J. Fish. Res. Board Can. 32:689-697.

Donald, D.B., and A.H. Kooyman. 1974. Status of goldeye (Hiodon alosoides) populations in the Peace-Athabasca Delta of Wood Buffalo National Park 1971-1973. Can. Wildl. Serv., Ms. Rep. 63 pp.

Fuchs. E.H. 1967. Life history of the emerald shiner, Notropis atherinoides, in Lewis and Clark Lake, South Dakota. Trans. Am. Fish. Soc. 96:247-256.

Griffiths, W.E. 1973. Preliminary fisheries survey of the Fort McMurray Tar Sands Area. Alberta Dept. of Lands and Forests, Fish and Wildl. Div., Edmonton. 660 pp .

Hatfield, C.T., J.N. Stein, M.R. Falk, and C.S. Jessop. 1972. Fish resources of the Mackenzie River Valley, Interim Report I, Vol. 1, Dept. of the Environment, Fisheries Service, Winnipeg, Manitoba. 247 pp .

Healey, M.C., and C.W. Nicol. 1975. Fecundity comparisons of lake whitefish, Coregonus clupeaformis. J. Fish. Res. Board Can. 32:404-407.

Jones, M.L., G.J. Mann, and P.J. McCart. 1978. Fall fisheries investigations in the Athabasca and Clearwater rivers upstream of Fort McMurray. Volume I. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Report 36. 71 pp.

Kellerhals, R., C.R. McNeill, and D.T. Bray. 1972. Hydraulic and geomorphic characteristics of rivers in Alberta. River engineering and surface hydrology report. Alberta Research Council. 72-1. 52 pp .

Kennedy, W.A., and W.M. Sprules. 1967. Goldeye in Canada. Bull. Fish. Res. Board Can. 161. 45 pp .

Kooyman, A.H. 1973. Status of goldeye, Hiodon alosoides, populations in the Peace-Athabasca Delta. in Ecological Investigations, the Peace-Athabasca Delta Project, Tech. Append. Vol. 2, Appendix F.

Kristensen, J., and S.A. Pidge. 1977. Fish populations in the PeaceAthabasca Delta and the effects of water control structures on fish movements. Prep. for the Dept. of Supply and Services, Govt. of Canada by LGL Ltd. 128 pp.

Machniak, Kazimierz. 1975a. The effects of hydroelectric development on the biology of northern fishes (Reproduction and population dynamics) lll. Yellow walleye Stizostedium vitreum vitreum (Mitchill). A Literature Review and Bibliography. Fish. Mar. Serv. Res. Dev. Tech. 529. 69 pp.

Machniak, Kazimierz. 1975b. The effects of hydroelectric development on the biology of northern fishes (Reproduction and population dynamics) Il. Northern pike Esox Zuciue (Linnaeus). A Literature Review and Bibliography. Fish. Mar. Serv. Res. Dev. Tech. Rep. 529. 68 pp.

Machniak, K., and W.A. Bond. 1979. An intensive study of the fish fauna of the Steepbank River watershed of northeastern Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by Fisheries and Environment Canada, Fisheries and Marine Service. AOSERP Report 61. 191 pp.

Machniak, K., W.A. Bond, M.R. Orr, D. Rudy, and D. Miller. in prep. Fisheries and aquatic habitat investigations in the Mackay River watershed of northeastern Alberta. Prep. for the Alberta Oil Sands Environmental Research Program by the Department of Fisheries and Oceans. AOSERP Project WS 1.3.1. 241 pp .

McCart, P.J., D. Tripp, P.T.P. Tsui, W. Grant, and R. Green. 1979. Baseline study of the $\mathrm{H}_{2} \mathrm{O}$ quality and aquatic resources of the MacKay River, Alberta. Prep. for Syncrude Canada Ltd. by Aquatic Environments Ltd. 200 pp.

Northwest Hydraulic Consultants L.td. 1975. Northeast Alberta regional plan, water resources study, sector 1. Prep. for Ekistic Design Consultants Ltd. 27 pp . and appendices.

Paetz, M.J., and J.S. Nelson. 1970. The fishes of Alberta. Queen's Printer, Edmonton. 282 pp.

Priegel, G.R. 1970. Reproduction and early life history of the walleye in the Lake Winnebago region. Tech. Bull. Wis. Dep. Natur. Res. 45. 105 pp.

Rawson, D.S. 1951. Studies of the fish of Great Slave Lake. J. Fish. Res. Board Can. 8:207-240.

Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Bull. Fish. Res. Board Can. 184. 966 pp.

Shell Canada Ltd. 1975. Environmental Impact Assessment. Lease 13 mining project, Alberta $0 i l$ Sands. Prep. for Alberta Environment. 257 pp.

Tripp, D.B., and P.J. McCart. in prep. Investigations of the spring spawning fish populations in the Athabasca and Clearwater rivers upstream from Fort McMurray. Volume 1. Prep. for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Report 84.128 pp.

Water Survey of Canada. 1978. Surface Water data, Alberta, 1977. Inland Waters Directorate, Ottawa, Canada.
6. APPENDIX
6.1 DESCRIPTIONS FOR SAMPLING SITES USED IN THE 1977 STUOY OF THE ATHABASCA RIVER
The locations described below refer to the standard gang, large mesh, and small mesh seine sites shown in Figure 4 of this report. Many of the sites became difficult to sample at high Athabasca River discharge rates ($>1416 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$) and have been indicated as such. Discharge values given with the descriptions of tributary-associated sites refer to the 1976 mean annual discharge for the tributary (Water Survey of Canada 1977).

6.1.1 Mildred Lake Study Area

6.1.1.1 Standard gang sites. Site 1 (km 37.0) (Mile 23.1) Right bank. Eddy behind point of limestone bluff, diminishing with high discharges. Shallow, mud bottom sloping to gravels.

Site 2 (km 42.1)(Mile 26.3) Left bank. Large eddy behind point of limestone bluff, persisting through high discharge levels. Shallow along shore sloping to deep at mid-channel. Mud shore sloping to gravels.

Site 3 (km 59.5) (Mile 37.2) Right bank. Eddy behind point of limestone cliff, diminishing with high discharges. Mud shore sloping to sand and gravels, dropping off to deep at mid-channel.

Site 4 (km 81.8) (Mile 51.1) Right bank. Eddy created by large bank slumps, persists through high discharge. Vertical bank, sloping mud shore, gravel substrate. Fast drop off.

Site 5 (km 95.8) (Mile 59.9) Right bank. Medium to large size eddy, indentation in high clay bank mear small tributary $\left(0.028 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$. Persists through high discharge levels. Mud shore sloping steeply to deep mid-channel area.

Site 6 (km 100.0) (Mile 62.5) Left bank. Mouth of
Eymundson Creek ($0.42 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$). Tributary warm and usually highly turbid from silts. Flow often held back by high Athabasca discharge. Slack water hole and small eddy at stream mouth behind deflection point of oil sand bluff. Shallow in tributary mouth with bottom of
mud and sand. Fast drop off.
6.1.1.2 Large mesh seine sites. Site 7 (km 30.6) (Mile 19.1) Right bank. Slack water area and small eddy behind point of limestone cliff, diminishing with high discharge. Shallow with sloping shore of mud over sand and gravel.

Site 8 (km 37.0) (Mile 23.1) (see standard gang site 1).
Site 9 (km 39.8) (Mile 24.9) Left bank. Eddy created at low to medium discharge by gravel point bar. Mud shore, mud over gravel bottom, shallow.

Site $10(\mathrm{~km} \mathrm{40.0})$ (Mile 25.0) Right bank. Confluence of Steepbank River ($4.1 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-2}$), a clear, warm, brown-water stream. Eddy formed by bitumen delta at low to medium discharge. Alternate site-Steepbank channel when flow held back by high Athabasca discharge.

Site 11 ($k m$ 40.5) (Mile 25.3) (see standard gang site 2).
Site 12 ($k m 55.5$) (Mile 34.7) Right bank. Confluence of Muskeg River ($2.1 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$), a warm, clear, brown-water stream. Gravel substrate. Best at high Athabasca discharge when Muskeg River is backed up.

Site 13 (km 59.5) (Mile 37.2) Left bank. Slack water behind sand bar exposed at low discharge. Confluence of Mackay River ($14.7 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$), a warm, clear, brown-water stream. Gravel substrate. Flow held back at high Athabasca discharge.

Site 14 (km 59.5) (Mile 37.2) (see standard gang site 3).
Site 15 (km 70.6) (Mile 44.1) Right bank. Medium size eddy created by old barge docking site, best at medium discharge levels. Bitumen bank with fast drop off.

Site 16 ($k m 76.8$) (Mile 48.0) Left bank. Slack water behind sand bar which is exposed at low discharge. Confluence with Ells River ($6.3 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$), a warm, brown-water stream. Often slight turbidity. Flow held back at high Athabasca discharge.

Site 17 ($k m$ 81.8) (Mile 51.1) (see standard gang site 4).
Site 18 (km 95.8) (Mile 59.9) (see standard gang site 5)
Willows on low bank make this site difficult to seine at high discharge levels.

Site 19 (km 100.0) (Mile 62.4) (see standard gang site 6) Vertical banks make this site difficult to seine at high discharge levels.

Site 20 (km 110.0) (Mile 68.8) Right bank. Several small eddies created by gravel side bars. Dominant eddy varies with discharge level. Sloping gravel shore, shallow.
6.1.1.3 Small mesh seine sites. Site 21 ($k m 27.2$) (Mile 17.0) Left bank, confluence of Poplar Creek $\left(1.1 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$, a clear, warm, brownwater stream, whose flow is held back at high Athabasca discharge (construction of weirs and diversion channel upstream).

Site 22 ($k m$ 29.6) (Mile 18.5) Right bank. Confluence
Leggett Creek, a small, sluggish, clear, warm, brown-water stream. Deep side channel appearance. Emergent aquatic plants. Floods back at high Athabasca discharge.

Site 23 (km 30.6) (Mile 19.1) (see large mesh seine site 7).
Site 24 (km 34.9) (Mile 21.8) Left bank. Island-sand bar.
Shallow, slack water site.
Site 25 (km 37.0) (Mile 23.1) (see standard gang site 1).
Site 26 ($k m$ 39.2) (Mile 24.5) Left bank. Small eddy behind rocky point, persisting at high discharge. Steep dropoff.

Site 27 (km 40.0) (Mile 25.0) (see large mesh seine site 10).
Site 28 ($k m 42.1$) (Mile 26.3) (see standard gang site 2).
Site 29 ($k m$ 46.4) (Mile 29.0) Left bank. Slack water hole at outlet from Horseshoe Lake. Willows, snags, and mud make this site difficult to sample.

Site 30 (km 54.2) (Mile 33.9) Left bank. Confluence Beaver River $\left(0.7 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$. Mud bottom, warm, of ten turbid (dammed and diverted upstream).

Site 31 (km 55.5) (Mile 34.7) (see large mesh seine site 12).
Site 32 ($k m$ 57.6) (Mile 36.0) Mid-channel slack water site associated with sandbar. Innundated at higher discharge. Shallow, sloping sand shore and substrate.

Site 33 (km 59.5) (Mile 37.2) (see large mesh seine site 13).
Site 34 ($k m$ 59.5) (Mile 37.2) (See standard gang site 3).

Site 35 (km 74.9) (Mile 46.8) Left benk. Low current area downstream of mud bank, diminishing with medium to high discharge. Shallow sloping mud shore and bottom.

Site 36 ($k m$ 76.8) (Mile 48.0) (see large mesh seine site 16).
Site 37 (km 78.9) (Mile 49.3) Left bank. Confluence of Tar River ($0.9 \mathrm{~m}^{3} . \mathrm{s}^{-1}$), a warm, clear, brown-water stream. Shallow with mud-sand substrate. Flow held back at high Athabasca discharge.

Site 38 (km 81.8) (Mile 51.1) (see standard gang site 4).
Site 39 ($k m$ 89.0) (Mile 55.6) Left bank. Confluence Calumet River $\left(0.1 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$, a warm, clear, slightly brown-water stream. Shallow with mud-sand substrate.

Site 41 (km 94.1) (Mile 58.8) Left bank. Small eddy associated with Pierre River ($0.2 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$), a clear, slightly brown-water stream. Shallow with sloping mud shore.

Site 42 (km 95.8) (Mile 59.9) (see standard gang site 5).
Site 43 (km 99.8) (Mile 62.4) (see standard gang site 19).
Site 44 (km 110.1) (Mile 68.8) (see large mesh stine site 20).
6.1.2 Delta Study Area
6.1.2.1 Standard gang sites. Site 51 (km 212.8) (Mile 133.0) Slack water site at the tail of a large island with a current sweep on both sides. Shallow area, substrate of silt and sand.

Site 52 (Embarras River distributary) Left bank. Mouth of muskeg drainage channel, often flooded back by high Athabasca discharge. Small slack water hole with current sweep in main channel. Best at high discharge levels. Shallow, silt and sand substrate.

Site 53 (km 223.4) (Mile 139.6) Right bank. Large, deep, and turbulent eddy at the origin of an antropogenic channel, persisting through high discharge levels. Vertical sand bank extending to downstream sand bar. Sand substrate.

Site 54 (km 241.4) (Mile 150.9) Right bank. Small slack water eddy behind point bar, persisting at most discharge levels. Vertical to sloping sand banks. Silt over sand substrate. Shallow.

Site 55 (km 251.2) (Mile 157.0-Devil's Elbow) Right bank. Small slack water eddy behind point bar, persisting at most discharge levels. Better at medium to high discharge. Shallow with sloping sand shore and bottom.

Site 56 (km 255.8) (Mile 159.9-Ess Bend) Right bank. Large, deep, and turbulent eddy associated with the inside loop of a meander bend, persisting at high discharge.

6.1.2.2 Large mesh seine sites. Site 57 ($k m 196.0$)(mile 122.5)

 Right bank. Slack water site behind a point bar, persisting at most discharge levels. Shallow with silt over sand substrate.Site 58 ($k m$ 198.4) (Mile 124.0) Left bank. Slack water site behind point bar, not suitable at higher discharges when sand bar becomes inundated. Shallow with sloping sand substrate.

Site 59 (km 200.6) (Mile 125.4) Slack water site associated with mid-channel sand bar at the tail of a small island. Shallow, best at low to medium discharge.

Site 60 (km 202.4) (Mile 126.5) Slack water site associated with indentation of island shoreline. Sloping silt over sand substrate, shallow.

Site 61 (km 206.9) (Mile 129.3) Slack water site created by a side bar, persisting at most discharge levels. Sloping mud shore, drop-off to deeper area.

Site 62 ($k m 211.7$)(Mile 132.3) Slack water site associated with a mid-channel sand bar at the tail of a small island, persisting at most discharge levels. Shallow with sand substrate.

Site 63 (km 215.7) (Mile 134.8) Right bank. Eddy behind sand point persisting at high discharge. Vertical banks with sand substrate sloping to moderately deep area.

Site 64 (km 216.5) (Mile 135.3) Right bank. Slack water site associated with bank indentation of island shoreline, best at medium to high discharge. Shallow with mud shoreline and bottom. Alternate site - mouth of delta back channel.

Site 65 (km 220.8) (Mile 138.0) Left bank. Slack water site behind point bar in an exit channel to the Embarras River distributary,
persisting at most discharge levels. Shallow with silt over sand substrate.

Site 66 (km 222.6) (Mile 139.1) Left bank. Small eddy behind sand point, best at medium discharge. Shallow with sloping mud shore and bottom

Site 67 (km 241.4) (Mile 150.9) (see standard gang site 54).
Site 68 (km 247.0) (Mile 154.4) Right bank. Slack water to reversed current site at confluence of Richardson River, a warm, clear, slightly brown-water stream. Frequent reversing of flow to Limon and Blanche Lake complexes.

Site 69 (km 251.2) (Mile 157.0) (see standard gang site 55).
Site 70 (km 255.7) (Mile 159.8) Left bank. Large turbulent eddy and back sweep shore current, persisting at high discharge levels. Mud shore with fast drop off.

Site 71 ($k m$ 255.8) (Mile 159.9) (see standard gang site 56).
Site 72 (km 260.5) (Mile 162.8) Left bank. Slack water site behind sand point at exit to Fletcher Channel distributary, best at medium discharge levels. Shallow with sloping sand shore and substrate.
6.1.2.3 Small mesh seine sites. Site 73 (km 196.0) (Mile 122.5) (see large mesh seine site 57).

Site 74 (km 196.2) (Mile 122.6) Right bank. Low current site along shoreline of small island. Shallow with sand substrate.

Site 75 ($k m 200.6$) (Mile 125.4) (see large mesh seine site 59).
Site 76 (km 206.9) (Mile 129.3) (see large mesh seine site 61).
Site 77 (km 211.2) (Mile 132.0) (see large mesh seine site 62).
Site 78 (km 215.4) (Mile 134.6) Left bank. Slack water site at confluence of delta back channel (Pine Creek), floods back at high Athabasca discharge. Shallow with sloping mud shore and bottom.

Site 79 ($k m 216.5$) (Mile 135.3) (see large mesh seine site 64).
Site $80(\mathrm{~km} \mathrm{220.8})$ (Mile 138.0) (see large mesh seine site 65).
Site 81 ($k m 22.6$) (Mile 139.1) (see large mesh seine site 66).
Site 82 ($k m$ 2224.0) (Mile 140.0) Right bank. Low current area along sloping shoreline best at low to medium discharge. Shallow
with sand substrate.
Site 83 (km 241.4) (Mile 150.9) (see standard gang site 54).
Site 84 (km 251.2) (Mile 157.0R) (see standard gang site 55).
Site 85 (km 255.8) (Mile 159.9) (see standard gang site 56).
Site 86 (km 260.5) (Mile 162.8) (see large mesh seine site 72).
Site 87 (km 261.0) (Mile 163.1) Right bank. Slack water
site behind point bar, persisting at high discharge levels. Shallow with sloping sand shore and substrate.
6.2 NUMBERS (N) AND PERCENTAGES (\%) FOR FISH CAPTURED IN EACH MESH SIZE OF STANDARD GANGS, ATHABASCA RIVER, 1977. (TABLES 110 and 111).

Table 110. Numbers (N) and percentages (\%) for fish captured in each mesh size of standard gangs, Mildred Lake study area, Athabasca River, 1977.

Specles	$\begin{aligned} & \text { Me, oh } \\ & 5(\mathrm{ze} \\ & (\mathrm{cm}) \end{aligned}$	Oate of sample																													
		$\begin{gathered} 26 \text { to } 27 \\ \text { Aprli } \end{gathered}$		$\begin{aligned} & 4605 \\ & \mathrm{HaY} \end{aligned}$		$\begin{aligned} & \text { 1 to } 6 \\ & \text { June } \end{aligned}$		$15 \text { to } 16$ June		$\begin{gathered} 27 \text { to } 29 \\ \text { June } \end{gathered}$		$\begin{gathered} 128,1313 \\ \text { Julv } \end{gathered}$		$\begin{gathered} 26 \text { to } 27 \\ \text { July } \end{gathered}$		$\begin{aligned} & 81010 \\ & \text { August } \end{aligned}$		$\begin{aligned} & 238024 \\ & \text { August } \end{aligned}$		$\begin{gathered} 5107 \\ \text { Septerber } \end{gathered}$		$\begin{gathered} 20 \text { to } 22 \\ \text { September } \end{gathered}$		$n \text { to } 5$Octeber		$\begin{aligned} & 17 \text { to } 18 \\ & \text { October } \end{aligned}$		$\begin{gathered} 1 \text { to } 2 \\ \text { Hovember } \end{gathered}$		Total	
		N	\%	N	\&	N	\$	N	\%	N	$\%$	N	\%	N	2	H	2	N	2	N	\%	N	*	N	\%	H	*	\cdots	\%	н	2
Goldey	10.2	${ }^{\circ}$	0.0	0	0.0	0	0.0	0	0.0	0	0.0		0.0	0	0.0	0	0.0	-	0.0	2	4.8	0	0.0	0	0.0	0	0.0	0	0.0	2	0.4
	8.9	6	37.5	1	2.6	0	0.0	0	0.0	3	3.4	2	25.0	1	2.5	4	10.2	1	9.1	7	16.7	2	8.0	4	26.7	1	6.3	5	12.5	33	6.9
	7.6	7	43.8	${ }^{8}$	21.0	7	10.2	${ }^{3}$	4.9	21	23.9	3	37.5	7	17.5	14	35.9	4	36.4	16	30.1	11	${ }^{44.0}$	4	26.7	8	50.0	5	62.5	118	24.8
	6.3	0	0.0	26	68.4	34	50.0	39	63.9	45	51.1	1	12.5	22	55.0	18	46.1	6	54.5	16	38.1	11	44.0	3	20.0	5	31.2	1	12.5	227	47.8
	5.1	3	18.7	3	7.9	20	29.4	14	27.9	17	19.3	2	25.0	10	25.9	3	7.7	0	0.0	1	2.4	1	4.0	2	13.3	2	12.5	1	12.5	79	10.3
	3.8	0	0.0	0	0.0	7	10.2	5	8.2	2	2.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	13.3	0	0.0	0	0.0	16	3.4
	total	16		38		68		61		88		8		40		39		11		42		25		15		16		8		475	
Halieye	10.2	4	44.4	2	$25.0{ }^{\text {a }}$	0	0.0	0		1	6.7	,	20.0	0	0.0					4			26.3	1	8.3	6	54.5	2	33.3	27	20.0
	8.9	0	0.0	2	25.0	1	14.3	0	0.0	5	33.3	1	20.0	0	0.0	2	16.7	0	0.0		10.0	8	42.3 26.3	3	16.7 8.3	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	0.6	1	16.7	23	17.0 26.7
	7.6 6.3	4	11.14	1	12.5	3	42.9 42.9	5	27.8 33.3	5	33.3 6.8	$\stackrel{1}{1}$	20.0 0.0	1	50.0 50.0	4	${ }_{8.3}^{31.3}$	0	0.0	3	30.0 10.0	5	26.3 5.3	3	8.3 25.0		36.4 9.1	1	31.3 16.7	36 26	26.7 19.2
	5.1	0	4.4	0	12.5	0	${ }^{42.0}$	4	22.2	3	20.0	2	to. 0	0	${ }^{50.0}$	3	25.0	1	100.0	0	${ }^{10.0}$	0	5.3	2	16.7	0	0.0	0	16.7	15	11.1
	3.8	0	0.0	0	0.0	0	0.0	3	16.7	0	0.0	0	3.0	0	0.0	1	8.3	0	0.0	0	0.0	0	0.0	3	25.0	0	0.0	0	0.0	7	5.1
	Total	9		8		7		18		15		5		2		12		1		10		19		12		11		6		135	
Lake whitelish	10.2	4	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	50.0	1	25.0	5	35.7	6	33.3	,	8.3	11	31.4	3	23.1	34	25.3
	8.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	50.0	2	14.2	5	28.8	${ }_{8}$	22.2	10	28.6	4	30.8	31	23.1
	7.6	3	37.5	3	75.0	0	0.0	0	0.0	0	0.0	${ }^{\circ}$	0.0	0	0.0	!	50.0	!	25.0	4	28.5	3	${ }^{16.7}$	12	33.3	3	8.6	3	23.1	33	24.6
	6.3	1	12.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	3	21.4	4	22.2	11	30.5	6	17.1	1	7.7	26	19.4
	5.1	0	0.0	1	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	5.5	4	11.4	2	15.4	9	6.7
	Tous 1	8		4		0		0		0		0		0		2		4		14		18		36		35		13		134	
Horthern plke	10.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0		40.0	0	0.0	1	10.0	1	25.0	,	7.1
	8.9	9	0.0	1	20.0	2	66.7	0	0.0	1	11.1	0	0.0	1	50.0	0	0.0	$?$	180.0	1	33.3	,	40.0	,	12.5	2	20.0	0	0.0	13	23.2
	7.6	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	,	20.0	4	50.0	2	20.0	2	50.0	10	17.8
	6.3	1	50.0	1	20.0	1	33.3	0	0.0	6	66.7	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	5	50.0	0	0.0	15	26.8
	5.1	0	0.0	1	20.0	0	0.0	1	50.0	1	11.1	0	0.0	1	50.0	0	0.0	0	0.0	?	66.7	0	0.0	$?$	25.0	0	0.0	0	0.0	0	14.3
	1.11	0	0.0	7	40.0	0	0.0	1	00.0	1	11.1	0	0.0	0	0.0	0	0,0	0	\%.1	0	1.0	0	日. 0	-	17.5	-	11.11	1	36.0	6	14.1
	total	2		5		3		2		9		1		2		0		2		3		5		-		10		4		56	
Flathesd chub	10.2		0.0		0.0		0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	8.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	1.6	0	0.0	!	10.0	${ }^{3}$	7.1	0	0.0	-	50.0	2	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	7	7.4
	6. ${ }^{6}$	1	100.0	6	60.0	11	26.2	5	45.5	0	0.0	0	0.0	1	20.0	1	14.3	0	0.0	-	0.0	-	50.0	-	50.9	0	0.0	0	0.0	${ }^{27}$	28.7
	5.1	0	0.0	2	20.0	18	42.8 23	5	45.5	0	0.0	0	80.0	0	0.0	4	57.1	2	6.7	'	33.3	-	0.0	1	50.6	0	0.0	-	0.0	${ }_{23} 17$	35.1 28.7
	Total	1		10		1.2		11		2		6		5		7		3		3		2		2		0		0		94	
Suckers	10.2	0	0.0	,	57.1	3	14.3	4	36.4	1	33.3		50.0	1	50.0		100.0		0.0		75.0	1	33.3		33.3	4	40.0		0.0	77	33.3
	8.9	3	75.0	1	14.3	6	28.6	3	27.3	2	66.7	1	50.0	1	50.0	0	0.0	0	0.0	,	25.0	1	33.3	3	33.3	4	40.0	0	0.0	26	32.1
	7.6	0	0.0	2	28.6	7	33.3	3	27.3	0	0:0	-	0.0	0	0.0	0	0.0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		0	0.0	1	33.3	+	11.1	0		2	66.7	16	19.7
	6.3	1	25.0	0	0.0	4	19.0	0	0.0	-	0.0		0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	$!$	11.1	0	0.0		33.3	?	8.6
	5.1 3.8	0	0.0	0	0.0 0.0	$!$	4.8 0.0	i	0.0	${ }_{0}^{0}$	0.0 0.0	0	0.0	0	0.0 0.0	$\stackrel{0}{0}$	0.0 0.0	0	0.0 0.0	0	0.0 0.0	0	0.0 0.0	$!$	11.1 0.0	0	20.0 0.6	8	0.0 0.0	i	4.9 1.2
	Total	4		7		21		11		3		2		2		2		0		4		3		9		10		3		81	*

Table 111. Numbers (N) and percentages (\%) for fish captured in each mesh size of standard gangs, Delta study area, Athabasca River, 1977.


```
6.3 NUMBER (N), PERCENTAGE (%), AND CATCH-PER-UNIT-EFFORT (C/E)
    FOR FISH CAPTURED IN STANDARD GANGS AT EACH SAMPLING SITE
    DURING EACH SAMPLING PERIOD, ATHABASCA RIVER, 1977.
    (TABLES 112 TO 137)
    Abbreviations used for fish species are as follows:
        GO - Goldeye
        WA - Walleye
    NP - Northern Pike
    LW - Lake Whitefish
    MW - Mountain Whitefish
    AG - Arctic Grayling
    DV - Dolly Varden
    LS - Longnose Sucker
    WS - White Sucker
    BU - Burbot
    FC - Flathead Chub
Site numbers refer to Figure 4 and Appendix 6.1.
```

Table 112. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 26 to 27 April 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C / E	-	-	-	-	-	-	-	-	-	
2 N	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C / E	-	-	-	-	-	-	-	-	-	
3 N	16	9	2	8	3	1	0	1	40	17.0
\%	40.0	22.5	5.0	20.0	7.5	2.5	0	2.5		
C / E	0.941	0.529	0.117	0.470	0.176	0.058	0	0.058	2.352	
$4 N$	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C / E	-	-	-	-	-	-	-	-	-	
5 N	ND	0.0								
$\%$	-	-	-	-	-	-	-	-	-	
C/E	-	-	-	-	-	-	-	-	0	
6 N	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C / E	-	-	-	-	-	-	-	-	-	
Com- N	16	9	2	8	3	1	0	1	40	17.0
bined \%	40.0	22.5	5.0	20.0	7.5	2.5	0	2.5		
C / E	0.941	0.529	0.117	0.470	0.176	0.058	0	0.058	2.352	
$\%$										
Occurrence	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0		

Table 113. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 4 to 5 May 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C / E	-	-	-	-	-	-	-	-	-	
$2 N$	38	8	5	4	6	1	0	10	72	17.5
\%	52.8	11.1	6.9	5.5	8.3	1.4	0	13.9		
C / E	2.171	0.457	0.285	0.228	0.342	0.057	0	0.571	4.114	
3 N	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C / E	-	-	-	-	-	-	-	-	-	
$4 N$	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C/E	-	-	-	-	-	-	-	-	-	
5 N	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C/E	-	-	-	-	-	-	-	-	-	
6 N	ND	0.0								
$\%$	-	-	-	,	-	-	-	-	-	
C/E	-	-	-	-	-	-	-	-	-	
Com- N	38	8	5	4	6	1	0	10	72	17.5
bined \%	52.8	11.1	6.9	5.5	8.3	1.4	0	13.9		
C/E	2.171	0.457	0.285	0.228	0.342	0.057	0	0.571	4.114	
\%										
Occurrence	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	

Table 114. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 1 to 6 June 1977.

Site	Species Captured ${ }^{\text {a }}$								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	6	1	0	0	3	0	0	9	19	18.0
\%	31.5	5.2	0	0	15.8	0	0	47.4		
C/E	0.333	0.055	0	0	0.166	0	0	0.500	1.055	
2 N	0	0	0	0	12	0	0	4	17	17.5
\%	0	0	0	0	70.6	0	0	23.5		
C/E	0	0	0	0	0.685	0	0	0.228	0.971	
3 N	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C/E	-	-	-	-	-	-	-	-	-	
$4 N$	27	6	2	0	1	0	0	17	54	19.5
\%	49.0	10.9	3.6	0	1.8	0	0	30.9		
C / E	1.384	0.307	0.102	0	0.051	0	0	0.871	2.769	
5 N	20	0	0	0	0	0	0	10	39	19.5
\%	74.3	0	0	0	0	0	0	25.6		
C/E	1.487	0	0	0	0	0	0	0.512	2.000	
6 N	6	0	1	0	5	0	0	2	14	18.5
\%	42.8	0	7.1	0	35.7	0	0	14.3		
C/E	0.324	0	0.054	0	0.270	0	0	0.108	0.756	
Com- N	68	7	3	0	21	0	0	42	142	93.0
bined \%	47.5	4.9	2.0	0	14.7	0	0	29.3		
C/E	0.731	0.075	0.032	0	0.225	0	0	0.451	1.526	
\%										
Occurrence	80.0	40.0	40.0	0.0	80.0	0.0	0.0	100.0		

a One Dolly Varden captured at Site 2 and one Arctic grayling captured at Site 4.

Table 115. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 15 to 16 June 1977.

Site	Species Captured ${ }^{\text {a }}$								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
2 N	7	4	1	0	2	0	0	2	16	14.0
\%	43.7	25.0	6.25	0	12.5	0	0	12.5		
C/E	0.500	0.285	0.071	0	0.142	0	0	0.142	1.142	
3 N	28	7	0	0	1	0	1	2	59	13.5
\%	71.8	17.9	0	0	2.5	0	2.5	5.1		
C/E	2.074	0.518	0	0	0.074	0	0.074	0.148	2.888	
$4 N$	20	5	0	0		0	0		35	16.0
\%	57.1	14.3	0	0	14.3	0	0	14.3		
C / E	1.250	0.312	0	0	0.312	0	0	0.312	2.187	
5 N	6	2	1	0	2	1	0	2	15	16.0
\%	40.0	13.3	6.7	0	13.3	6.7	0	13.3		
C/E	0.375	0.125	0.062	0	0.125	0.062	0	0.125	0.937	
6 N	ND	0.0								
\%	-	-	-	-	-	-	-	-	-	
C/E	-	-	-	-	-	-	-	-	-	
Com- N	61	18	2	0	10	1	1	11	105	59.5
bined \%	58.0	17.1	1.9	0	9.5	0.95	0.95	10.5		
C/E	1.020	0.302	0.033	0	0.168	0.016	0.016	0.184	1.764	
\%										
Occurrence	100.0	100.0	50.0	0.0	100.0	25.0	25.0	100.0		

a One mountain whitefish captured at site 5 .

Table 116. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 27 to 29 June 1977.

Site		Species Captured								Total	Hours of Set
		G0	WA	NP	LW	LS	WS	BU	FC		
1	N	ND	0.0								
	\%	-	-	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	-	-	
2	N	26	5	3	0	1	0	0	0	35	14.0
	\%	74.3	14.3	8.6	0	2.8	0	0	0		
	C/E	1.857	0.357	0.214	0	0.071	0	0	0	2.500	
3	N	15	2	0	0	1	0	0		19	13.5
	\%	78.9	10.5	0	0	5.3	0	0	5.3		
	C/E	1.111	0.148	0	0	0.074	0	0	0.074	1.407	
4	N	25	5	1	0	1	0	0	1	33	16.0
	\%	75.8	15.2	3.0	0	3.0	0	0	3.0		
	C/E	1.562	0.312	0.062	0	0.062	0	0	0.062	2.063	
5	N	22	3	5	0	0	0	0	0	30	16.0
	\%	73.3	10	16.7	0	0	0	0	0		
	C/E	1.375	0.187	0.312	0	0	0	0	0	1.875	
6	N	ND	0.0								
	\%	-	-	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	-	-	
Combined	N	88	15	9	0	3	0	0	2	117	59.5
	\%	75.2	12.8	7.7	0	2.6	0	0	1.7		
	C / E	1.478	0.252	0.151	0	0.050	0	0	0.033	1.966	
\%											
Occurrence		100.0	100.0	75.0	0.0	75.0	0.0	0.0	50.0		

Table 117. Number (N) , percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 12 to 13 July 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C / E	-	-	-	-	-	-	-	-	-	
2 N	5	2	0	0	2	0	0	3	12	18.0
\%	41.7	16.7	0	0	16.7	0	0	25.0		
C / E	0.277	0.111	0	0	0.111	0	0	0.166	0.666	
3 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
4	3	3	1	0	0	0	0	3	10	17.0
$\%$	30.0	30.0	10.0	0	0	0	0	30.0		
C/E	0.176	0.176	0.058	0	0	0	0	0.176	0.588	
5 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
6 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
Com- N	8	5	1	0	2	0	0	6	22	35.0
bined \%	36.4	22.7	4.5	0	9.0	0	0	27.3		
C/E	0.228	0.142	0.028	0	0.057	0	0	0.171	0.628	
\%										
Occurrence	100.0	100.0	50.0	0.0	50.0	0.0	0.0	100.0		

Table 118 . Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 26 to 27 July 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
2 N	26	0	2	0	2	0	0	1	31	17.5
\%	83.9	0	6.5	0	6.5	0	0	3.2		
C/E	1.485	0	0.114	0	0.114	0	0	0.057	1.771	
3 N	ND	0.0								
\%	-	-	.	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
4 N	14	2	0	0	0	0	0	4	20	15.5
\%	70.0	10.0	0	0	0	0	0	20.0		
C/E	0.903	0.129	0	0	0	0	0	0.258	1.290	
$5 N$	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C / E	-	-	-	-	-	-	-	-	-	
6 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	.-	-	-	-	-	-	-	
Com- N	40	2	2	0	2	0	0	5	51	33.0
bined \%	78.4	3.9	3.9	0	3.9	0	0	9.8		
C/E	1.212	0.060	0.060	0	0.060	0	0	0.151	1.545	
\%										
Occurrence	100.0	50.0	50.0	0.0	50.0	0.0	0.0	100.0		

Table 119. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 8 to 10 August 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	- 0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
2 N	16	3	0	1	0	0	0	2	22	15.5
\%	72.7	13.6	0	4.5	0	0	0	9.0		
C/E	1.032	0.193	0	0.064	0	0	0	0.129	1.419	
3 N	6	7	0	0	0	0	0	2	15	14.0
\%	40.0	46.7	0	0	0	0	0	13.3		
C/E	0.428	0.500	0	0	0	0	0	0.142	1.071	
$4 N$	17	2	0	0	0	0	1	3	23	17.5
\%	73.9	8.7	0	0	0	0	4.3	13.0		
C/E	0.971	0.114	0	0	0	0	0.057	0.171	1.314	
5 N	0	0	0	1	1	1	0	0	3	18.0
\%	0	0	0	33.3	33.3	33.3	0	0		
C/E	0	0	0	0.055	0.055	0.055	0	0	0.166	
6 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
Com- N	39	12	0	2	1	1	1	7	65	65.0
bined \%	60.0	18.5	0	3.1	1.5	1.5	1.5	10.8		
C/E	0.600	0.184	0	0.030	0.015	0.015	0.015	0.107	1.000	
\%										
0ccurrence	75.0	75.0	0.0	50.0	25.0	25.0	25.0	75.0		

Table 120. Number (N), percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 23 to 24 August 1977.

site	Species Captured								Total	Hours of Set
	60	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
2 N	11	1	2	3	0	0	0	2	19	18.0
$\%$	57.9	5.2	10.5	i5.8	0	0	0	10.5		
C/E	0.611	0.055	0.111	0.166	0	0	0	0.111	1.055	
3 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
4 N	0	0	0	1	0	0	0	1	2	15.5
\%	0	0	0	50.0	0	0	0	50.0		
C/E	0	0	0	0.064	0	0	0	0.064	0.129	
$5 \quad N$	ND	0.0								
$\%$	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
6 N	ND	0.0								
$\%$	-	-	-	-	-	+	-	-		
C/E	-	-	-	-	-	-	-	-	-	
Com- N	11	1	2	4	0	0	0	3	21	33.5
bined \%	52.4	4.7	9.5	19.0	0	0	0	9.5		
C / E	0.328	0.029	0.059	0.119	0	0	0	0.089	0.626	
$\%$										
Occurrence	50.0	50.0	50.0	100.0	0.0	0.0	0.0	100.0		

Table 121. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 5 to 7 September 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
2 N	16	4	2	2	0	0	0	0	24	15.0
\%	66.7	16.7	8.3	8.3	0	0	0	0		
C/E	1.066	0.266	0.133	0.133	0	0	0	0	1.600	
3 N	0	1	0	2	1	0	0	0	4	14.5
\%	0	25.0	0	50.0	25.0	0	0	0		
C/E	0	0.068	0	0.137	0.068	0	0	0	0.275	
4 N	1	1	0	4	2	0	0	2	11	1\%.0
\%	9.0	9.0	0	45.5	18.2	0	0	18.2		
C/E	0.058	0.058	0	0.294	0.117	0	0	0.117	0.647	
5 N	25	4	1	5	1	0	0		37	17.5
\%	67.5	10.8	2.7	13.5	2.7	0	0	2.7		
C/E	1.428	0.228	0.057	0.285	0.057	0	0	0.057	2.114	
6 N	ND	0.0								
$\%$	-	-	-	-		-	,	-		
C / E	-	$-$	-	-	-	-	-	-	-	
Com- N	42	10	3	14	4	0	0	3	76	64.0
bined \%	55.3	13.1	3.9	18.4	5.3	0	0	3.9		
C/E	0.656	0.156	0.046	0.218	0.062	0	0	0.046	1.187	
\%										
Occurrence	75.0	100.0	50.0	100.0	75.0	0.0	0.0	50.0		

Table 122. Number (N), percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 20 to 22 September 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
2 N	10	8	2	9	0	0	0	1	30	16.5
\%	33.3	26.7	6.7	30.0	0	0	0	3.3		
C/E	0.606	0.484	0.121	0.545	0	0	0	0.060	1.818	
3 N	6	3	3	1	0	0	0	1	14	16.5
\%	42.8	21.4	21.4	7.2	0	0	0	7.2		
C/E	0.363	0.181	0.181	0.060	0	0	0	0.060	0.848	
$4 N$	6	8	0	8	2	0	0	0	24	18.0
\%	25.0	33.3	0	33.3	8.3	0	0	0		
C/E	0.333	0.444	0	0.444	0.111	0	0	0	1.333	
$5 N$	3	${ }_{-} 0$	0	0	1	0	0	0	1	17.5
\%	75.0	0	0	0	25.0	0	0	0		
C/E	0.171	0	0	0	0.057	0	0	0	0.228	
6 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
Com- N				18		0	0	2	72	68.5
bined \%	34.7	26.4	6.9	25.0	4.2	0	0	2.8		
C/E	0.364	0.277	0.072	0.262	0.043	0	0	0.029	1.051	
\%										
Occurrence	100.0	75.0	50.0	75.0	50.0	0.0	0.0	50.0		

Table 123. Number (N), percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 4 to 5 0ctober 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	8	2	1	1	0	0	0	0	12	17.0
\%	66.7	16.7	8.3	8.3	0	0	0	0		
C/E	0.470	0.117	0.058	0.058	0	0	0	0	0.705	
2 N	0	1	4	13	2	0	0	0	20	17.5
\%	0	5.0	20.0	65.0	10.0	0	0	0		
C/E	0	0.057	0.228	0.742	0.114	0	0	0	1.142	
3 N	2	5	1	6	2	0	0	1	17	17.5
\%	11.7	29.4	5.9	35.2	11.7	0	0	35.2		
C/E	0.114	0.285	0.057	0.342	0.114	0	0	0.057	0.971	
$4 N$	1	0	0	4	4	0	1	0	10	17.5
\%	10.0	0	0	40.0	40.0	0	10.0	0		
C/E	0.057	0	0	0.228	0.228	0	0.057	0	0.571	
5 N	2	4	2	12	1	0	0	0	21	16.0
\%	9.5	19.0	9.5	57.1	4.8	0	0	0		
C/E	0.125	0.250	0.125	0.750	0.062	0	0	0	1.312	
6	2	0	0	0	0	0			4	17.0
$\%$	50.0	0	0	0	0	0	25.0	25.0		
C/E	0.117	0	0	0	0	0	0.058	0.058	0.235	
Com- N	15	12	8	36	9	0	2	2	84	102.5
bined \%	17.8	14.3	9.5	42.8	10.7	0	2.4	2.4		
C / E	0.146	0.117	0.078	0.351	0.087	0	0.020	0.020	0.819	
\%										
Occurrence	83.3	66.7	66.7	83.3	66.7	0.0	33.3	33.3		

Table 124. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 17 to 18 0ctober 1977.

Site		Species Captured								Total	Hours of Set
		G0	WA	NP	LW	LS	WS	BU	FC		
1	N	1	2	2	12	1	1	0	0	19	17.0
	$\%$	5.3	10.5	10.5	63.1	5.3	5.3	0	0		
	C / E	0.058	0.117	0.117	0.705	0.058	0.058	0	0	1.117	
2	N	13	2	4	9	0	0	0	0	28	17.5
	\%	46.4	7.1	14.3	32.1	0	0	0	0		
	C/E	0.742	0.114	0.228	0.514	0	0	0	0	1.600	
3		1	5	0	3	3	1	0	0	13	18.0
	\%	7.7	38.5	0	23.1	23.1	7.7	0	0		
	C/E	0.055	0.277	0	0.166	0.166	0.055	0	0	0.722	
4	N	1	2	4	9	2	0	0	0	18	18.0
	\%	5.5	11.1	22.2	50.0	11.1	0	0	0		
	C/E	0.055	0.111	0.222	0.500	0.111	0	0	0	1.000	
5	N	0	0	0	2	1	0	0	0	3	18.0
	\%	0	0	0	66.7	33.3	0	0	0		
	C/E	0	0	0	0.111	0.055	0	0	0	0.166	
6		0	0	0	0	1	0	0	0	1	18.0
	\%	0	0	0	0	100.0	0	0	0		
	C / E	0	0	0	0	0.055	0	0	0	0.055	
Combined	N	16	11	10	35	8	2	0	0	82	106.5
	\%	19.5	13.4	12.2	42.7	9.7	2.4	0	0		
	C/E	0.150	0.103	0.093	0.328	0.075	0.018	0	0	0.769	
\%											
Occurrence		66.7	66.7	50.0	83.3	83.3	33.3	0.0	0.0		

Table 125. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, 1 to 2 November 1977.

Site	Species Captured								Total	Hours of Set
	G0	WA	NP	LW	LS	WS	BU	FC		
1 N	0	4	3	11	0	0	0	0	18	18.0
\%	0	22.2	16.7	61.1	0	0	0	0		
C/E	0	0.222	0.166	0.611	0	0	0	0	1.000	
2 N	7	2	1	1	0	0	0	0	11	18.0
\%	63.6	18.2	9.1	9.1	0	0	0	0		
C/E	0.388	0.111	0.055	0.055	0	0	0	0	0.611	
$3 \quad N$	1	0	0	1	3	0	0	0	5	18.0
$\%$	20.0	0	0	20.0	60.0	0	0	0		
C/E	0.055	0	0	0.055	0.166	0	0	0	0.277	
4 N	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
$5 N$	ND	0.0								
\%	-	-	-	-	-	-	-	-		
C/E	-	-	-	-	-	-	-	-	-	
6 N	ND	0.0								
\%	ND	-	-	-	ND	ND	-	-		
C. E	-	-	-	-	-	-	-	-	-	
	8		4			0	0	0	34	54.0
bined \%	23.5	17.6	11.8	38.2	8.8	0	0	0		
C/E	0.148	0.111	0.074	0.240	0.055	0	0	0	0.629	
\%										
Occurrence	66.7	66.7	66.7	100.0	33.3	0.0	0.0	0.0		

Table 126. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Mildred Lake study area, all dates combined, 1977.

Table 127. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 1 to 6 June 1977.

Site		Species Captured						Total	Hours of Set
		60	WA	NP	LW	LS	FC		
51	N	2	1	0	0	0	1	4	16.5
	\%	50.0	25.0	0	0	0	25.0		
	C/E	0.121	0.060	0	0	0	0.060	0.242	
km	, N	2	4	1	0	1	0	8	16.0
222.4 L	\%	25.0	50.0	12.5	0	12.5	0		
	C/E	0.125	0.250	0.062	0	0.062	0	0.500	
52	N	1	3	0	0	3	0	7	16.5
	\%	14.3	42.8	0	0	42.8	0		
	C/E	0.060	0.181	0	0	0.181	0	0.424	
54	N	0	5	0	0	2	1	8	18.0
	\%	0	62.5	0	0	25.0	12.5		
	C/E	0	0.277	0	0	0.111	0.055	0.444	
56	N	0	3	0	0	0	1	4	19.5
	\%	0	75.0	0	0	0	25.0		
	C/E	0	0.153	0	0	0	0.051	0.205	
$\stackrel{\mathrm{km}}{261.1 \mathrm{R}}$	N	1	1	0	0	3	0	5	20.0
	\%	20.0	20.0	0	0	60.0	0		
	C/E	0.050	0.050	0	0	0.150	0	0.250	
Com- bined	N	6	17	1	0	9	3	36	106.5
	\%	16.6	47.2	2.8	0	25.0	8.3	0.338	
	C/E	0.056	0.159	0.009	0	0.084	0.028		
\%0ccurrence		66.7	100.0	16.7	0.0	66.7	50.0		

Table 123. Number (N), percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 15 to 16 June 1977.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
55	N	7	3	0	0	0	0	10	18.0
	\%	70.0	30.0	0	0	0	0		
	C/E	0.388	0.166	0	0	0	0	0.555	
51	N	12	1	0	0	1	2	16	17.5
	\%	75.0	6.2	0	0	6.2	12.5		
	C/E	0.685	0.057	0	0	0.057	0.114	0.914	
52	N	11	2	7	0	0	0	20	17.0
	\%	55.0	10.0	35.0	0	0	0		
	C/E	0.647	0.117	0.411	0	0	0	1.176	
53	N	0	1	0	0	0	2	3	17.5
	\%	0	33.3	0	0	0	66.7		
	C/E	0	0.057	0	0	0	0.114	0.171	
54	N	12	1	4	0	0	0	17	19.0
	\%	70.6	5.9	23.5	0	0	0		
	C/E	0.631	0.052	0.210	0	0	0	0.894	
56	N	6	6	2	1	0	0	15	18.0
	\%	40.0	40.0	13.3	6.6	0	0		
	C/E	0.333	0.333	0.111	0.055	0	0	0.833	
Combined	N	48	14	13	1	1	4	81	107.0
	\%	59.2	17.3	16.0	1.2	1.2	4.9		
	C/E	0.448	0.130	0.121	0.009	0.009	0.037	0.757	
\%									
Occurrence		83.3	100.0	50.0	16.7	16.7	33.3		

Table 129. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 27 to 29 June 1977.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
51	N	17	1	0	0	0	1	19	18.0
	\%	89.5	5.3	0	0	0	5.3		
	C/E	0.944	0.055	0	0	0	0.055	1.055	
52	N	5	1	0	0	,	1	8	18.0
	\%	62.5	12.5	0	0	12.5	12.5		
	C/E	0.277	0.055	0	0	0.055	0.055	0.444	
53	N	ND	17.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
54.	N	3	2	4	1	0	0	10	18.5
	\%	30.0	20.0	40.0	10.0	0	0		
	C/E	0.162	0.108	0.216	0.054	0	0	0.540	
55	N	2	1	1	0	0	0	4	18.5
	\%	50.0	25.0	25.0	0	0	0		
	C/E	0.108	0.054	0.054	0	0	0	0.216	
$\begin{gathered} \mathrm{km} \\ 255.5 \mathrm{R} \end{gathered}$	N	4	0	10	1	0	0	15	18.0
	\%	26.7	0	66.6	6.6	0	0		
	C/E	0.222	0	0.555	0.055	0	0	0.833	
Com- bined	N	31	5	15	2	1	2	56	108.0
	\%	55.3	8.9	26.8	3.6	1.8	3.6		
	C/E	0.287	0.046	0.138	0.018	0.009	0.018	0.518	
\% \% $\%$ currence		83.3	66.7	50.0	33.3	16.7			
		33.3							

Table 130. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 11 to 13 July 1977.

site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
51	N	5	1	0	0	0	1	7	17.0
	\%	71.4	14.3	0	0	0	14.3		
	C/E	0.294	0.058	0	0	0	0.058	0.411	
52	N	4	1	2	0	0	0	7	17.0
	\%	57.1	14.3	28.6	0	0	0		
	C/E	0.235	0.058	0.117	0	0	0	0.411	
54	N	1	0	0	0	0	0	1	17.5
	\%	100.0	0	0	0	0	0		
	C/E	0.057	0	0	0	0	0	0.057	
56	N	6	3	7	6	1	0	23	17.5
	\%	26.1	13.0	30.4	26.1	4.3	0		
	C/E	0.342	0.171	0.400	0.342	0.057	0	1.314	
53	N	ND	0.0						
	\%	-	-	-	㖪	-	-		
	C/E	-	-	-	-	-	-	-	
55	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Com- bined	N	16	5	9	6	1	1	38	69.0
	\%	42.1	13.1	23.7	15.8	2.6	2.6		
	C/E	0.231	0.072	0.130	0.086	0.014	0.014	0.550	
\%		100.0	75.0	50.0	25.0	25.0			
Occurr	ence						25.0		

Table 131. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 25 to 27 July 197%.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
51	N	10	1	0	0	0	1	12	17.0
	\%	83.3	8.3	0	0	0	8.3		
	C/E	0.588	0.058	0	0	0	0.058	0.705	
52	N	4	2	4	0	0	0	10	17.0
	\%	40.0	20.0	40.0	0	0	0		
	C/E	0.235	0.117	0.235	0	0	0	0.588	
54	N	4	2	0	0	0	0	6	17.0
	\%	66.6	33.3	0	0	0	0		
	C/E	0.235	0.117	0	0	0	0	0.352	
56	N	0	8	0	6	0	0	14	17.0
	\%	0	57.1	0	42.8	0	0		
	C / E	0	0.470	0	0.352	0	0	0.823	
53	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
55	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Combined	N	18	13	4	6	0	1	42	68.0
	\%	42.8	30.9	9.5	14.3	0	2.4		
	C / E	0.264	0.191	0.058	0.088	0	0.014	0.617	
\%									
Occurrence		75.0	100.0	25.0	25.0	0.0	25.0		

Table 132. Number (N), percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 8 to 9 August 1977.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	1.5	FC		
51	N	9	0	0	0	0	1	10	17.0
	\%	90.0	0	0	0	0	10.0		
	C/E	0.529	0	0	0	0	0.058	0.588	
52	N	6	1	1	0	0	0	8	17.0
	\%	75.0	12.5	12.5	0	0	0		
	C/E	0.352	0.058	0.058	0	0	0	0.470	
54	N	0	2	3	0	0	0	5	16.0
	\%	0	40.0	60.0	0	0	0		
	C/E	0	0.125	0.187	0	0	0	0.312	
56	N	3	1	10	2	1	0	17	17.0
	\%	17.6	5.9	58.8	11.8	5.9	0		
	C/E	0.176	0.058	0.588	0.117	0.058	0	1.000	
53	N	ND	0.0						
	\%	-	-	-	-	-.	-		
	C/E	-	-	-	-	-	-	-	
55	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Com- bined	N	18	4	14	2	1	1	40	67.0
	\%	45.0	10.0	35.0	5.0	2.5	2.5		
	C/E	0.268	0.059	0.208	0.029	0.014	0.014	0.597	
\%		75.0	75.0	75.0	25.0	25.0			
Occurr	ence						25.0		

Table 133. Number (N), percentage (\%), and catch-per-unit-effort (C / E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 22 to 24 August 1977.

Site		Species Captured						Total	Hours per Set
		G0	WA	NP	LW	L.S	FC		
54	N	2	3	1	5	0	1	12	18.0
	\%	16.6	25.0	8.3	41.7	0	8.3		
	C/E	0.111	0.166	0.055	0.277	0	0.055	0.666	
56	N	6	4	5	8	0	0	23	18.0
	\%	26.1	17.4	21.7	34.8	0	0		
	C/E	0.333	0.222	0.277	0.444	0	0	1.277	
51	N	9	3	0	0	0	0	12	16.0
	\%	75.0	25.0	0	0	0	0		
	C/E	0.562	0.187	0	0	0	0	0.750	
52	N	5	0	0	0	0	0	5	16.5
	\%	100.0	0	0	0	0	0		
	C/E	0.303	0	0	0	0	0	0.303	
53	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
54	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Combined	N	22	10	6	13	0	1	52	68.5
	\%	42.3	19.2	11.5	25.0	0	1.9		
	C/E	0.321	0.145	0.087	0.189	0	0.014	0.759	
\%									
Occurrence		100.0	75.0	50.0	50.0	0.0	25.0		

Table 134. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 6 to 7 September 1977.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
51	N	6	0	1	0	1	0	8	16.5
	\%	75.0	0	12.5	0	12.5	0		
	C / E	0.363	0	0.060	0	0.060	0	0.484	
52	N	5	0	0	0	0	0	5	16.0
	\%	100.0	0	0	0	0	0		
	C / E	0.312	0	0	0	0	0	0.312	
54	N	0	1	1	12	0	0	14	16.5
	\%	0	7.1	7.1	85.7	0	0		
	C/E	0	0.060	0.060	0.727	0	0	0.848	
56	N	4	7	2	9	2	0	24	17.5
	\%	16.7	29.2	8.3	37.5	8.3	0		
	C/E	0.228	0.400	0.114	0.514	0.114	0	1.371	
53	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C / E	-	-	-	-	-	-	-	
55	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Combined	N	15	8	4	21	3	0	51	66.5
	\%	29.4	15.7	7.8	41.2	5.9	0		
	C/E	0.225	0.120	0.060	0.315	0.045	0.	0.766	
\%									
Occurrence		75.0	50.0	75.0	50.0	50.0	0.0		

Table 135. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 19 to 21 September 1977.

Site		Species Captured						Total	Hours per Set
		G0	WA	NP	LW	I.S	FC		
51	N	2	1	0	1	3	0	7	15.0
	\%	28.6	14.3	0	14.3	42.8	0		
	C/E	0.133	0.066	0	0.066	0.200	0	0.466	
52	N	1	1	0	0	0	0	2	15.5
	\%	50.0	50.0	0	0	0	0		
	C/E	0.064	0.064	0	0	0	0	0.129	
54	N	1	3	0	6	0	0	10	16.5
	\%	10.0	30.0	0	60.0	0	0		
	C/E	0.060	0.181	0	0.363	0	0	0.606	
56	N	3	32	1	9	,	0	46	17.0
	\%	6.5	69.5	2.2	19.6	2.2	0		
	C/E	0.176	1.882	0.058	0.529	0.058	0	2.705	
53	N	ND	0.0						
	\%	-	-		-	-	-		
	C/E	-	-	-	-	-	-	-	
55	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Combined	N	7	37	1	16	4	0	65	64.0
	\%	10.8	56.9	1.5	24.6	6.1	0		
	C/E	0.109	0.578	0.015	0.250	0.062	0	1.015	
\%		100.0		25.0	75.0	500	0.0		
		100.0							

Table 136. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, 3 to 7 0ctober 1977.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
51	N	1	0	0	0	1	0	2	16.0
	\%	50.0	0	0	0	50.0	0		
	C/E	0.062	0	0	0	0.062	0	0.125	
52	N	0	0	0	0	1	0	1	16.0
	\%	0	0	0	0	100.0	0		
	C/E	0	0	0	0	0.062	0	0.062	
53	N	1	0	0	6	5	0	12	18.5
	\%	8.3	0	0	50.0	41.7	0		
	C/E	0.054	0	0	0.324	0.270	0	0.648	
54	N	0	1	0	1	0	0	2	18.5
	\%	0	50.0	0	50.0	0	0		
	C/E	0	0.054	0	0.054	0	0	0.108	
55	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
56	N	ND	0.0						
	\%	-	-	-	-	-	-		
	C/E	-	-	-	-	-	-	-	
Combined	N	2	1	0	7	7	0	17	69.0
	\%	11.8	5.9	0	41.2	41.2	0		
	C/E	0.028	0.014	0	0.101	0.101	0	0.246	
\%									
Occurrence		50.0	25.0	0.0	50.0	75.0	0.0		

Table 137. Number (N), percentage (\%), and catch-per-unit-effort (C/E) for fish captured in standard gangs at each sampling site in the Delta study area, Athabasca River, all dates combined, 1977.

Site		Species Captured						Total	Hours of Set
		G0	WA	NP	LW	LS	FC		
51	N	73	9	1	1	6	7	97	166.5
	\%	75.2	9.3	1.0	1.0	6.2	7.2		
	C/E	0.438	0.054	0.006	0.006	0.036	0.042	0.582	
56	N	32	64	37	42	5	1	181	159.5
	\%	17.7	35.3	20.4	23.2	2.8	0.5		
	C/E	0.200	0.401	0.231	0.263	0.031	0.006	1.134	
52	N	42	11	14	0	5	1	73	166.5
	\%	57.5	15.1	19.2	0	6.8	1.4		
	C/E	0.252	0.066	0.084	0	0.030	0.006	0.438	
54	N	23	20	13	25	2	2	85	175.5
	\%	27.0	23.5	15.3	29.4	2.3	2.3		
	C/E	0.131	0.113	0.074	0.142	0.011	0.011	0.484	
OTHERS	N	13	10	2	6	9	2	42	125.5
	\%	30.9	23.8	4.8	14.3	21.4	4.8		
	C/E	0.103	0.079	0.015	0.047	0.071	0.015	0.334	
Com- bined	N	183	114	67	74	27	13	478	793.5
	\%	38.3	23.8	14.0	15.5	5.6	2.7		
	C/E	0.230	0.143	0.084	0.093	0.034	0.016	0.602	
\% $\%$ \% ${ }_{\text {ccurrence }}$		82.2	80.0	42.2	33.3	33.3	24.4		

6.4 DATES OF TAGGING AND RECAPTURE, LOCATIONS OF RELEASE AND recapture, distance travelled, and elapsed time setween release and recapture for fish tagged in the athaba.sca RIVER IN 1976 AND 1977 AND RECAPTURED IN AND SINCE 1977 (TABLES 138 AND 139).

Table 138. Dates of tagging and recapture, locations of release and recapture, distances travelled, and elapsed time between release and recapture for fish tagged in the Mildred Lake study area in 1976 and 1977 and recaptured in and since 1977.

Species	Tag Releases		Tag Recaptures		Elapsec Time (Days)	```Distance Travelled}\mp@subsup{}{}{\mathrm{ a} (km)```
	Date	Site ${ }^{\text {b }}$	Date	site ${ }^{\text {b }}$		
Walleye	6 May 1976	42.11	31 May 1978	km 6.0 Athabasca River	755	$+36$
	6 May 1976	42.1 L	16 June 1977	0id Fort Point ${ }^{\text {c }}$	406	-272
	6 May 1976	42.11	4 May 1977	$40.0 \mathrm{R}$	363	+ 2
	9 May 1976	42.11	21 June 1977	Big Point ${ }^{\text {c }}$	408	-264
	10 May 1976	42.11	12 June 1977	01 d Fort Point ${ }^{\text {c }}$	397	-272
	10 May 1976	42.11	21 June 1977	Mouth Flatcher Ch. ${ }^{\text {c }}$	406	-256
	10 May 1976	38.2 L	21 June 1977	01d Fort Point ${ }^{\text {c }}$	407	-275
	21 May 1976	40.0 L	1 June 1977	248.0	376	-208
	15 June 1976	132.8L	1 June 1977	Big Point ${ }^{\text {c }}$	351	-172
	15 June 1976	132.8L	15 June 1977	010 Fort Point ${ }^{\text {c }}$	365	-180
	17 June 1976	60.0 L	Nov. 1978	Lake Athabasca	880	>-250
	20 July 1976	42.11	28 June 1977	37.1 L	343	$\div 5$
	13 Sept. 1976	11.2R	12 May 1977	Muskeg River Fence	241	- 45
	14 Sept. 1976	$55.5 R$	22 May 1977	Muskeg Kiver Fence	250	+ 1
	1 Oct. 1976	27.4 L	10 May 1977	Mouth Horse River	222	$+24$
	24 Apr. 1977	59.5R	27 May 1977	59.5 L	33	Across River
	24 Apr. 1977	59.5L	11 May 1977	2 km up Mackay River	17	+ 2
	25 Apr. 1977	59.5L	11 May 1977	59.5L	16	0
	25 Apr. 1977	59.5 L	26 Apr. 1977	59.5L	1	0
	26 Apr. 1977	59.5L	20 Oct. 1977	Poplar Creek Bridge	177	+ 33
	26 Apr. 1977	59.5L	26 May 1977	6.4 R	30	+ 53
	26 Apr. 1977	59.5L	14 Sept. 1977	102.6R	141	- 43
	26 Apr. 1977	59.5L	14 May 1977	59.5 L	18	0
	26 Apr. 1977	59.5L	14 May 1977	59.5 L	18	0
	26 Apr. 1977	59.51	29 Sept. 1977	50.6 R	156	+ 9
	26 Apr. 1977	40.0R	28 Apr. 1977	39.8L	2	0
	26 Apr .1977	42.11	13 Sept. 1977	102.6 R	140	-61
	27 Apr. 1977	59.5L	7 May 1977	40.0 R	10	+ 20
	27 Apr. 1977	59.5L	17 Aug. 1977	60 km up Mackay River	112	+ 60
	27 Apr. 1977	59.5 L	31 May 1977	Old Fort Pointc	34	-246
	27 Apr. 1977	59.5L	21 May 1977	59.5L	24	0
	28 Apr. 1977	59.5 L	16 May 1977	Mouth Horse River	18	- 56
	28 Apr. 1977	39.8 L	10 Oct. 1977	Snye Outlet (km 5.0)	165	+ 35
	28 Apr. 1977	39.8 L	6 July 1977	168.0L	69	-128
	28 Apr. 1977	39.8 L	4 May 1977	40.0R	6	Across River
	28 Apr. 1977	42.1 L	14 June 1977	Goose Island ${ }^{\text {c }}$	47	-264
	28 Apr. 1977	42.1 L	12 oct. 1977	50.4 R	167	- 8
	28 Apr. 1977	42.11	22 June 197\%	0id Fort Pointe	55	-272
	28 Apr. 1977	42.11	17 Oct. 1977	59.5L	172	- 17
	28 Apr. 1977	42.11	20 Oct. 1977	Poplar Creek Bridge	175	+ 15
	29 Apr. 1977	27.5L	8 May 1977	Mouth Horse River	9	+24
	29 Apr. 1977	42.11	June 1978	Athabasca Delta	426	-250
	29 Apr. 1977	27.5 L	Mar. 1978	At Jarvie in Pembina R.	356 to 396	$+600$
	7 May 1977	37. OR	7 May 1978	Poplar Creek	365	+ 11
	6 May 1977	59.5L	16 July 1977	24 km up Mackoy River	71	+ 24
	7 May 1977	39.8L	19 Oct. 1977	168.0L	165	-129
	14 May 1977	37.0 R	19 May 1977	42.11	5	- 5
	14 May 1977	40.0 R	9 July 1977	40.01	56	0
	9 June 1977	94.91	20 Sept. 1977	Quatre Fourches	103	-241
	17 June 1977	46.4 L	June 1978	Mouth Athabasca River	365	-254
	29 Sept. 1977	50.6R	16 Oct. 1978	40.0 L	382	+ 11
	30 Sept. 1977	51.0 R	26 May 1979	Poplar Creek Bridge	603	+ 25
	12 Oct. 1977	$50.4 R$	5 May 1978	Mackay Fence	205	- 20
Goldeye		109.6R		Potato Island ${ }^{\text {c }}$	149 to 179	-215
	6 Aug. 1976	$116.5 R$	28 May 1978	Jackfish Creek	660	-156
	6 Aug. 1976	130.4 L	21 June 1977	Big Pointc	319	-170
	18 Aug. 1976	104.6L	14 June 1977	Goose 15land ${ }^{\text {c }}$	300	-201
	13 Sept. 1976	9.6R	6 Aug. 1977	216.3R	327	-193
	15 Sept. 1976	42.1 L	30 Aug. 1977	Quatre Fourches	380	-294
	15 Sept. 1976	42.1 L	15 June 1977	N. Of Big Point Ch.c	273	-264

Table 138. Continued.

Table 138. Continued.

Species	Tag Releases		Tag Recaptures		Elapsed Time (Days)	Distance Travelleda (km)
	Date	Siteb	Date	Site ${ }^{\text {b }}$		
Northern pike (con't.)	23 Aug. 1977	40.0R	22 Sept. 1977	40.0R	30	0
	7 May 1977	37.0R	23 May 1978	27.5 (Poplar River)	381	+ 10
	25 Sept. 1977	54.21	July 1978	Mackay River Bridge	279 to 308	- 5
	7 Sept. 1977	55.5R	28 Sept. 1977	40.0L	21	+16
	25 Sept. 1977	46.2 L	8 Oct. 1977	54.2 L	13	- 8
	25 Sept. 1977	54.2 L	2 Oct. 1977	0.0	7	+ 55
	27 Sept. 1977	55.5R	1 Oct. 1977	53.01	4	+ 3
	28 Sept. 1977	54.2 L	30 Sept. 1977	46.4 L	2	+ 8
	28 Sept. 1977	46.4 L	1 Oct. 1977	46.4 L	3	0
	10 Oct. 1977	40.0 L	20 Oct. 1977	40.6 L	10	- 16
	28 Sept. 1977	54.20	5 May 1978	MacKay Fence	219	- 16
	12 Oct. 1977	50.4 R	18 May 1978	Poplar Creek	218	+23
	24 Oct. 1977	39.8 L	6 May 1978	Mackay Fence	194	+ 31
	25 Oet. 1977	11.2 R	6 May 1978	Mackay Fence	193	- 60
Lake whitefish	$\text { i6 Sept. } 1976$	94.11	22 June 1977		279	-211
	16 Sept. 1976	94.1 L	22 June 1977	0id Fort Bayc	279	-259
	13 Sept. 1976	102.61	22 June 1977	Mouth Big Point Ch. ${ }^{\text {c }}$	277	-203
	18 Sept. 1976	102.61	28 Apr. 1977	42.1L	222	+61
	18 Sept. 1976	102.6 L	June 1978	8 km S . Bustard $1 \mathrm{~s} . \mathrm{c}$	635	-209
	29 Sept. 1975	100.0 L	15 June 1977	01d Fort Pointc	259	-212
	29 Sept. 1976	46.2 L	19 June 1977	1.6 km N . E. Fort Chipewyan ${ }^{\text {c }}$	${ }^{\text {c }} 263$	-282
	30 Sept. 1976	770.1	13 June 1977	Old Fort Bayc	256	-277
	30 Sept. 1976	59.5R	13 Oct. 1977	Mountain Rapids	378	+63
	30 Sept. 1976	77.0 L	16 June 1977	Old Fort Bayc	259	-277
	1 Oct. 1976	27.4 L	15 May 1977	216.OR	226	-190
	1 Oct. 1975	24.5R	13 June 1977	Big Point	255	-282
	1 Oct. 1976	36.5R	23 Oct. 1977	Quatre Fourches	387	-299
	1 Oct. 1976	27.4 L	1 June 1977	248.0	243	-222
	28 Apr. 1977	40.0R	2 May 1978	Jackfish Creek	369	-232
	4 May 1977	40.0 R	5 May 1977	40.0 R	1	0
	5 May 1977	40.0R	7 May 1977	40.0 R	2	0
	10 Aug. 1977	55.5 R	24 Sept. 1977	6.4	45	$+50$
	7 Sept. 1977	30.6 R	22 July 1979	Jackfish Creek	683	-242
	22 Sept. 1977	59.5R	6 Oct. 1977	Mountain Rapids	14	+63
	25 Sept. 1977	40.0 R	28 Sept. 1977	40.0R	3	0
	22 Sept. 1977	59.5R	Dec. 1977	Popular Pt. - Mamawi L.	69 to 100	-284
	22 Sept. 1977	40.0L	28 May 1978	Jackfish Creek	248	-232
	25 Sept. 1977	39.8R	28 Sept. 1977	40.01	3 A	Across River
	26 Sept. 1977	55.5R	27 Sept. 1977	55.5R	1	0
	30 Sept. 1977	41.0 L	23 Oct. 1977	Quatre Fourches	23	-295
	28 Sept. 1977	41.3L	23 Oct. 1977	Quatre Fourches	25	-295
	7 Oct. 1977	42.1L	23 Oct. 1977	Quatre Fourches	16	-294
	25 Sept. 1977	42.11	Jan. 1978	Potato Island C	98 to 128	$8-283$
	27 Sept. 1977	$50.4 R$	Jan. 1978	Potato Island ${ }^{\text {c }}$	96 to 126	$6-275$
	1 Oct. 1977	41.0 L	Jan. 1978	Potato Island ${ }^{\text {c }}$	93 to 123	$3-284$
	29 Sept. 1977	102.6 L	Jan. 1978	Potato Island ${ }^{\text {c }}$	94 to 124	$4-222$
	26 Sept. 1977	59.5R	Oct. 1977	248.0	5 to 35	-189
	27 Sept. 1977	46.2 L	Oct. 1977	248.0	4 to 34	-202
	27 Sept. 1977	46.2 L	Dec. 1977	248.0	65 to 95	-202
	28 Sept. 1977	53.0L	1 Oct. 1977	41.40	3	+ 12
	28 Sept. 1977	41.3 L	30 Sept. 1977	40.0 R	2	+ 1
	28 Sept. 1977	43.0R	Oct. 1977	248.0	3 to 33	-206
	29 Sept. 1977	46.2 L	1 Oct. 1977	43.08	2	+ 3
	29 Sept. 1977	$59.5 R$	20 Oct. 1977	Mountain Rapids	21	+ 53
	29 Sept. 1977	53.0L	14 Sept. 1978	Jackfish Creek	350	-219
	21 Oct. 1977	59.7R	June 1978	Bustard Is land ${ }^{\text {c }}$	222 to 252	-252
	29 Sept. 1977	46.2L	22 July 1978	Jackfish Creek	296	-226
	30 Sept. 1977	46.4L	1 Oct. 1977	47.7R	1	- 1
	1 Oct. 1977	59.5R	2 Oct. 1977	59.7R	1	0
	7 Oct. 1977	40.0 L	June 1978	Mouth Athabasca River ${ }^{\text {c }}$	237 to 267	-260
	10 Oct. 1977	39.8 L	20 Oct. 1977	40.6L	10	- 1
	10 Oct. 1977	40.8 L	Dec. 1977	Popular Pt. - Mamawi L.	52 to 82	-300

Table 138. Continued.

continued...

Table 138. Conctuded.

[^35]Table 139. Dates of tagging and recapture, locations of release and recapture, distances travelled, and elapsed time between release and recapture for fish tagged in the Delta study area in 1977 and recaptured in and since 1977.

Species		Too Releases			Tag Recaptures				Elapsed Time (Days)	$\begin{gathered} \text { Distance } \\ \text { Travelled } \\ (\mathrm{km}) \end{gathered}$
			Date	Site ${ }^{\text {b }}$		Date		Site ${ }^{\text {b }}$		
Walleye			May 1977	271.01		Jan. 1978	Potatc	Island ${ }^{\text {c }}$	229 to 259	- 54
			May 1977	260.61		8 June 1977	01d For	t Point ${ }^{\text {c }}$	22	- 51
			May 1977	271.0 R		2 June 1977	5 mi . out	trom Big Pt. ${ }^{\text {C }}$	26	- 42
			May 1977	271.0 R		6 June 1977	Goose I	sland ${ }^{\text {e }}$	30	- 34
			Hay 1977	271.0 R		8 June 1977	Old For	t Point ${ }^{\text {c }}$	22	- 42
			May 1977	271.0 R		3 June 1977	3 mi . N.	E. Big Point Ch. ${ }^{\text {c }}$	27	- 42
			June 1977	216.5R		June 1977	216.3R		16	Across River
			June :977	195.7R		4 May 1978	MacKay	Fence	314	$+147$
			Sept. 1977	$223.5 R$		June 1978	8 km s .	Bustard Island ${ }^{\text {c }}$	249 to 279	-88
		24	Oct. 1977	195.7R		4 May 1978	MacKay	Fence	192	+147
Goldeye			May 1977	241.4R		7 May 1977	216.0R		12	+ 25
			May 1977	$241.4 R$		8 June 1977	110.18		44	+131
			May 1977	256.0R		2 Sept. 1977	Quatre	Fourches	118	- 80
		12	June 1977	216.3 Ll		June 1977	248.0		18	- 32
		13	June 1977	216.311		July 1977	216.3R		36	0
		22	June 1977	215.4L		July 1977	95.8 R		33	+120
		24	June 1977	195.7R		9 July 1977	168.0		15	+28
		26	June 1977	215.7 R		5 July 1977	216.3R		29	+ 1
		29	June 1977	215.78		July 1977	215.4 L		23	0
			July 1977	222.4L		5 July 1977	Quatre	Fourches	13	-114
			July 1977	215.4L		8 July 1977	215,8R		3	0
			July 1977	215.2L		9 Aug. 1977	212.8 LI		24	+ 2
			july 1977	215.4 L		5 July 1977	216.3R		7	+ 1
		20	July 1977	195.5 LI		3 July 1977	200.8 L		3	+ 5
		20	July 1977	215.4L		3 Oct. 1977	$6.4 \mathrm{kmo}$	down from Peace P t. (Peace R.)	85	-+257
		22	July 1977	215.4 L		6 Sept. 1977	Quatre	Fourches	66	-121
			Aug. 1977	220.8 L		9 Sept. 1977	Graylin	(167.4R)	38	+ 55
			Aug. 1977	212.8 LI		9 Aug. 1977	212.8 LI		4	0
			Aug. 1977	207.0L		5 Aug. 1977	196.8R		5	- 10
			Aug. 1977	217.081		Aug. 1977	Quatre	Fourches	14	-119
		14	Aug. 1977	215.7 R		June 1978	8 km S.	Bustard Island ${ }^{\text {c }}$	290 to 320	- 96
			Aug. 1977	220.8L		2 Sept. 1977	223.58		15	+ 3
			Aug. 1977	223.4 L		Aug. 1977	223.51		8	0
		20	Sept. 1977	223.4 L		4 June 1978	Potato	\|sland ${ }^{\text {c }}$	257	-102
Northern	pike	17	May 1977	262.1 L		9 July 1977		Fourches	63	- 74
		12	June 1977	220.8L		5 July 1977	220.8L		23	0
		12	June 1977	210.5R		0 Oct. 1977	216.3R		120	0
		12	June 1977	216.5R		5 July 1977	215.4 L		23	+ 1
		22	June 1977	215.4L		9 Sept. 1977	216.3R		89	- 1
		22	June 1977	215.4L		5 July 1977	215.4 L		13	0
		22	June 1977	215.4 L		June 1977	215.4 L		2	0
		22	June 1977	215.4L		7 June 1979	2 km S.	Ft. Chipewyan ${ }^{\text {c }}$	360	-113
		24	June 1977	206.6 L		7 Sept. 1977	207.01		75	- 1
			June 1977	215.4L		5 July 1977	215.4 L		11	0
			June 1977	215.4L		5 July 1977	215.4 L		9	0
			June 1977	215.4L		5 July 1977	215.4 L		9	0
			June 1977	215.4 L		5 July 1977	215.4 L		9	0
			July 1977	215.4L		July 1977	215.4 L		17	0
			July 1977	215.4 L		0 July 1977	215.7 L		5	0
			July 1977	215.4L		4 Oct. 1977	215.4 L		111	0
			July 1977	215.4 L		July 1977	215.4 L		12	0
			July 1977	215.4L		3 July 1977	215.4L		4	0
		19	July 1977	216.3R		July 1977	216.3R		0	0
		2nd Recapture				6 Sept. 1977	216.3R		59	0
		20	July 1977	215.4L		3 July 1977	215.4 L		3	0
		20	July 1977	215.4 L		3 July 1977	215.4L		3	0
		20	July 1977	215.4 L		3 July 1977	215.4 L		3	0
		2nd Recapture				7 Sept. 1977	212.8 LI		46	

Table 139. Concluded.

Species	Tag Releases		Tag Recaptures		```Elapsed Time (Days)```	Distance Travelled ${ }^{3}$ (km)
	Date	siteb	Date	Site ${ }^{\text {b }}$		
Northern pike (con't.)	21 July 1977	256.2L	28 July 1977	256.OR	7	0
	22 July 1977	215.4L	7 Sept. 1977	$215.4 \mathrm{~L}$	47	0
	2 Sept. 1977	247.0R	15 May 1978	27.5 (Poplar River)	255	+220
	22 July 1977	215.4L	10 Oct. 1977	215.4 L	80	0
	17 Aug. 1977	215.7R	7 Sept 1977	215.7R	31	0
	10 Sept. 1977	217.0 LI	21 Sept. 1977	216.3R	11	+ 1
	18 Sept. 1977	223.4L	Mar. 1978	Embarras Portage (km 219.0)	164 to 194	+ 4
	29 Sept. 1977	223.5R	22 Oct. 1977	168.0	23	+ 56
	1 0ct. 1977	223.511	20 Oct. 1977	216.0	19	+ 8
Lake whitefish	10 Aug. 1977	222.4L	8 Sept. 1977	Grayling Creek (157,4R)	29	- 55
	12 Sept. 1977	$223.5 \mathrm{LI}$	Oct. 1977	248.0	$19 \text { to } 49$	- 24
	13 Sept. 1977	223.5LI	5 Oct. 1977	$81.8 R$	22	+142
	6 Sept. 1977	256. OR	June 1978	Goose Island ${ }^{\text {c }}$	267 to 297	- 49
	17 Sept. 1977	223.4 L	22 July 1979	Jackfish Creek	308	- 49
	18 Sept. 1977	223.4L	31 Oct. 1977	Jackfish Creek	43	-49
	16 Sept. 1977	223.4 LI	11 Nov. 1978	Quatre Fourches	421	-113
	26 Sept. 1977	223.5 LI	11 Oct. 1977	223.4	15	+ 0.1
	26 Sept. 1977	223.5L1	Oct. 1977	248.0	5 to 35	- 24
	26 Sept. 1977	223.5 LI	14 Oct. 1977	168.0	18	+ 56
	10 0ct. 1977	223.511.	18 Oct. 1977	168.0	8	+ 56
	10 Oct. 1977	223.4L	June 1978	Mouth Athabasca Riverc	234 to 264	- 77
White sucker	5 July 1977	217.0R1	17 Aug. 1977	7.6LI	43	- 1

[^36]
AOSERP RESEARCH REPORTS

1. AOSERP First Annual Report, 1975
2. AF 4.1.1 Walleye and Goldeye Fisheries Investigations in the Peace-Athabasca Delta--1975
3. HE l.1.1 Structure of a Traditional Baseline Data System
4. VE 2.2 A Preliminary Vegetation Survey of the Alberta Oil

Sands Environmental Research Program Study Area
5. HY 3.1 The Evaluation of Wastewaters from an Oil Sand Extraction Plant
6. Housing for the North--The Stackwall System
7. AF 3.1.1 A Synopsis of the Physical and Biological Limnology and Fisheries Programs whithin the Alberta Oil Sands Area
8. AF 1.2.1 The Impact of Saline Waters upon Freshwater Biota (A Literature Review and Bibliography)
9. ME 3.3 Preliminary Investigations into the Magnitude of Fog Occurrence and Associated Problems in the Oil Sands Area
10. HE 2.1 Development of a Research Design Related to Archaeological Studies in the Athabasca Oil Sands Area
11. AF 2.2.1 Life Cycles of Some Common Aquatic Insects of the Athabesca River, Alberta
12. ME 1.7 Very High Resolution Meteorological Satellite Study
of Oil Sands Weather: "A Feasibility Study"
13. ME 2.3.1 Plume Dispersion Measurements from an Oil Sands Extraction Plant, March 1976
14.
15. ME 3.4 A Climatology of Low Level Air Trajectories in the Alberta Oil Sands Area
16. ME 1.6 The Feasibility of a Weather Radar near Fort McMurray, Alberta
17. AF 2.1.1 A Survey of Baseline Levels of Contaminants in Aquatic Biota of the AOSERP Study Area
18. HY 1.1 Interim Compilation of Stream Gauging Data to December 1976 for the Alberta $0 i l$ Sands Environmental Research Program
19. ME 4.1 Calculations of Annual Averaged Sulphur Dioxide Concentrations at Ground Level in the AOSERP Study Area
20. HY 3.1.1 Characterization of Organic Constituents in Waters and Wastewaters of the Athabasca 0 il Sands Mining Area AOSERP Second Annual Report, 1976-77
Alberta Oil Sands Environmental Research Program Interim Report to 1978 covering the period April 1975 to November 1978
23. AF 1.1.2 Acute Lethality of Mine Depressurization Water on Trout Perch and Rainbow Trout
24. ME 1.5.2 Air System Winter Field Study in the AOSERP Study Area, February 1977.
25. ME 3.5.1 Review of Pollutant Transformation Processes Relevant to the Alberta Oil Sands Area

| 26. AF 4.5.1 | Interim Report on an Intensive Study of the Fish
 Fauna of the Muskeg River Watershed of Northeastern |
| :--- | :--- | :--- |
| 27. ME 1.5.1 | Alberta
 Meteorology and Air Quality Winter Field Study in
 the AOSERP Study Area, March Ig76 |
| 28. VE 2.1 | Interim Report on a Soils Inventory in the Athabasca |
| Oil Sands Area | |

79. AF 3.6.i The Multiple Toxicity of Vanadium, Nickel, and Phenol to $\mathrm{i} i s h$.
80. L5 22.3.1 Biology and Management of Peregrin Falcons (Falco peregrinus anatum) in Northeastern Alberta.
81. LS 22.1.2 Species Distribution and Habitat Relationships of Waterfowl in Northeastern Alberta.
82. LS 22.2 Breeding Distribution and Behaviour of the White Pelican in the Athabasca Oil Sands Area.
83. LS 22.2 The Distribution, Foraging Behaviour, and Allied Activities of the White Pelican in the Athabasca Oil Sands Area.
84. WS 1.6.1 Investigations of the Spring Spawning Fish Populations in the Athabasca and Clearwater Rivers Upstream from Fort McMurray; Volume 1.
85. HY 2.5 An intensive Surface Water Quality Study of the Muskeg River Watershed. Volume 1: Water Chemistry.
86. AS 3.7 An Observational Study of Fog in the AOSERP Study Area. 87. WS 2.2. Hydrogeological Investigation of Muskeg River Basin, Alberta

These reports are not available upon request. For further information about availability and location of depositories, please contact:

Alberta Oil Sands Environmental Research Program
15th Floor, Oxbridge Place
9820-106 Street
Edmonton, Alberta
T5K 2 Jo

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:
"The source of the materials is Alberta Environment and Sustainable Resource Development http://www.environment.gov.ab.ca/. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.

[^0]: ${ }^{a}$ Numbers are actual except for those shown for small mesh seines. In some cases, fish captured in a small mesh seine haul were only partially counted and then the total number was estimated.

[^1]: a Numbers are actual except for those shown for small mesh seines. In some cases, fish captured in a small mesh seine haul were only partially counted and then the total number was estimated.

[^2]: ${ }^{\text {a }}$ Catch-per-unit-effort is expressed as number of fish per standard gang per hour.

[^3]: ${ }^{a}$ Catch-per-unit-effort is expressed as number of fish per standard gang per hour.

[^4]: a Includes both longnose and white suckers.

[^5]: a Includes both longnose and white suckers.

[^6]: ${ }^{a}$ significant difference between means for males and females ($P<0.05$).

[^7]: a Significant difference between means for males and females ($P<0.05$).

[^8]: ${ }^{3}$ Fish from large mesh beach seines.
 ${ }^{b}$ Significant difference between means for males and females ($P<0.05$).

[^9]: a Significant difference between slopes ($P<0.05$) for males and females.

[^10]: a significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

[^11]: a Significant difference between means for males and females ($P<0.05$).

[^12]: ${ }^{a}$ Significant difference between means for males and females ($P<0.05$).

[^13]: ${ }^{a}$ Significant difference between slopes ($P<0.05$) for males and females.

[^14]: a Significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

[^15]: a significant difference ($P<0.05$) between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

[^16]: a Significant difference between means for males and females ($P<0.05$).

[^17]: a Significant difference between means for males and females ($P<0.05$).

[^18]: a Significant difference $(P<0.05)$ between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

[^19]: a Significant difference between means for males and females ($P<0.05$).

[^20]: ${ }^{\text {a }}$ Number of eggs per cm of fork length and per g of body weight.

[^21]: ${ }^{\text {a }}$ Number of eggs per cm of fork length and per g of body weight.

[^22]: a significant difference between means for males and females ($P<0.05$).

[^23]: a significant difference between means for males and females ($P<0.05$).

[^24]: a significant difference between means for males and females ($\mathrm{P}<0.05$).

[^25]: a significant difference between means for males and females ($\mathrm{P}<0.05$).

[^26]: a
 Expressed as a percentage of the number of s tomachs examined (N).

[^27]: ${ }^{a}$ Spent fish were present in the sample (A total of 12 spent females were captured in the Mildred Lake study area, and two were taken in the Delta).

[^28]: a significant difference for means between males and females ($P<0.05$).

[^29]: a significant difference between means for males and females ($P<0.05$).

[^30]: ${ }^{2}$ significant difference between means for males and females ($P<0.05$).

[^31]: ${ }^{\text {a }}$ Significant difference ($P<0.05$) between numbers of males and females observed and expected for a sex ratio of unity (Chi-square test).

[^32]: ${ }^{a}$ Expressed as a percentage of the number of stomachs examined (N).

[^33]: a Expressed as a percentage of the total number of stomachs examined (N).

[^34]: a Expressed as a percentage of the total number of stomachs examined (N) .

[^35]: a Distance shown is approximate distance upstream (+) or downstream(-) in the Athabasca River. On occasion movement was upstream or downstream in the Athabasca River and then upstream in a さributary.
 b Distance downstream of waterways (km 0.0) on right (R) or left (L) bank.
 C Lake Athabasca.

[^36]: a Distance shown is approximate distance upstream $(+)$ or downstream (-) in the Athabesca River. On occasion movement was upstream or downstream in the Athabasca River and then upstream in a tributary.
 b Distance downstream of Waterways (km 0.0) on the right (R) or left (L) bank. I denotes island site.
 c Lake Athabasca.

