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Abstract

Dealing with merge conflicts in version control systems is a challenging task

for software developers. Resolving merge conflicts is a time-consuming and

error-prone process, which distracts developers from important tasks. Re-

cent work shows that refactorings are often involved in merge conflicts and

that refactoring-related conflicts tend to be larger, making them harder to

resolve. In the literature, there are two refactoring-aware merging techniques

that claim to automatically resolve refactoring-related conflicts, an operation-

based refactoring-aware merging approach called MolhadoRef and a graph-

based refactoring-aware merging approach called IntelliMerge. However,

these two techniques have never been empirically compared. In this thesis, we

present RefMerge, a Java re-implementation of operation-based refactoring-

aware merging, but built on Git. In addition to contributing this new de-

sign and implementation of refactoring-aware operation-based merging, this

thesis contains the experimental results of comparing RefMerge to Git and

IntelliMerge on 2,001 merge scenarios with refactoring-related conflicts from

20 open-source projects. The results show that RefMerge completely resolves

143 (7%) merge scenarios while IntelliMerge resolves only 78 (4%). This

thesis also presents a qualitative analysis of the differences between the three

merging algorithms and provides insights into the strengths and weaknesses of

each refactoring-aware tool.
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Chapter 1

Introduction

Version control systems (VCSs) play a crucial role in enabling software devel-

opers to collaborate on large projects. Whether developers are working on the

same branch [15], using branch-based development [51], or using pull requests

to contribute changes from their external forks [52], integration issues can arise

when they push their changes to the repository. When two1 developers try to

contribute different changes to the same part of the code, a VCS reports a

merge conflict. Developers then need to spend time and effort understanding

and resolving the reported conflict. Previous work found that merge conflicts

occurred more than 34% of the time and could sometimes take several days

to resolve [36]. Even worse, existing merge tools cannot detect every merge

conflict; such conflicts might not be discovered until building or testing and

may even be released in software products, causing unexpected behavior [8].

Most modern version control systems, such as Git [1], Mercurial [2], or

SVN [3], treat all stored artifacts as plain text and merge files line by line.

When two different changes happen to the same line of code, a textual line-

based merging tool (often referred to as an unstructured merge tool [14]) will

report a conflict since it cannot automatically decide which change to choose.

However, depending on the semantics of these code changes, automated reso-

lution may still be possible if a tool understands the nature of the code change

that occurred [12], [44].

1Note that in this thesis, we focus on the common practice of merging of changes from
two versions of the code, and do not consider what is often referred to as octopus merges
when more than two branches/versions are involved.
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Refactorings are code changes that modify the structure of the code to

improve its readability or maintainability without altering its observable be-

havior [30]. Refactoring is commonly used to enhance the software with re-

gards to reusability, modularity, extensibility, and more [46]. It is also utilized

in software re-engineering [23], which involves examining and altering a sys-

tem to reconstruct it in a new form and the following implementation of the

new form. Refactorings are prevalent in Agile development processes and are

readily available in the top-level menu in popular IDEs. Refactorings are

one example of a code change with well-defined semantics that an automated

merge-conflict resolution tool can understand and resolve [24], [44], [45], [55].

For example, if on one branch, Bob refactors method foo by moving it from

one class to another while Alice, on another branch, adds a line of code to

foo’s body, an unstructured merging tool will report a merge conflict because

Bob and Alice changed the same line of code. However, a merge tool that

is aware of the semantics behind these refactoring changes could simply add

the new line of code to the new location of foo. Thus, understanding the se-

mantics of refactorings could result in more precise merging results, avoiding

unnecessary merge conflicts. A recent study investigated 15 of more than 70

known refactorings and found the studied refactorings are involved in 22% of

merge conflicts and tend to result in larger conflicts [45]. The considerable

portion of merge conflicts that refactorings complicate motivates the need for

automated merging tools that can handle refactorings.

While there are several research efforts that work on understanding the

structure of the underlying code to automate more merge-conflict resolutions [10]–

[12], [20], [40], [54], [63], there are mainly two efforts that specifically focus on

refactorings. The first is by Dig et al. [24] that proposes an operation-based

refactoring-aware merging technique. The premise of their technique is that if

the version-control history records operations (i.e., the types of code changes

that occur instead of simple textual changes), then we can leverage refactoring

operations in the history to resolve conflicts. To that end, their technique relies

on developers using their operation-based version control system, Molhado. At

a high level, given two branches to be merged, the technique first inverts refac-
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torings on both branches, textually merges the refactoring-free version of the

code, and then replays the refactorings on the merged code. Their evaluation,

based on one project, shows a 97% reduction of merge conflicts. However, re-

cently, Shen et al. [55] argued that such an operation-based technique has its

limitations, because certain complex refactoring types, such as extract method,

cannot easily be inverted. Instead, they propose IntelliMerge, a graph-based

refactoring-aware approach. IntelliMerge converts code on both branches to

graphs, and does a graph-based three-way merge (i.e., considering the common

ancestor of both branches too) where it tries to match nodes across the three

versions. This node matching is based on a set of predefined rules that are

meant to capture refactoring semantics along with a similarity score threshold.

The authors evaluate IntelliMerge on 10 projects and report 88% and 90%

precision and recall, respectively, when compared to the resolution committed

by developers. While the results reported by both these techniques in their

respective publications is promising, they have never been directly compared

to each other. Given the merit of solving merge conflicts when refactorings

are involved, we believe a direct comparison will shed light on the strengths

and weaknesses of these techniques. Such insights can help push the state of

the art of refactoring-aware merging techniques further.

In this thesis, our goal is to compare these two techniques on real-world

projects that use Git as their VCS, since it is the most popular VCS used

by practitioners [16]. However, while IntelliMerge has a publicly available

implementation, Dig et al.’s approach [24] does not. Even if such an imple-

mentation is available, the reliance on Molhado (a VCS that stores operations

in its history) is a major deterrent to the application of this merging technique

in practice. Thus, we first develop and present RefMerge, an operation-based

refactoring-aware merging tool for Java programs that works with Git his-

tory. RefMerge is a re-imagined design and implementation of Dig et al.’s

work [24]. RefMerge follows the same approach of reverting and replaying

refactors, but has the following key novelties to enable a practical evaluation:

(1) RefMerge directly works on top of Git and does not rely on the version

control system already storing operations in its history, (2) to detect refac-
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torings, RefMerge uses the state-of-the art refactoring detection tool, Refac-

toringMiner [59] which does not rely on similarity thresholds, (3) RefMerge

supports merging changes with the most complex types of refactorings that

challenge the idea of operation-based merging, specifically ExtractMethod and

InlineMethod, and finally (4) we evaluate RefMerge on a large scale. In sum-

mary, this thesis makes the following contributions:

• An open-source design and implementation [4] of operation-based refactoring-

aware merging for Java programs, RefMerge, built on top of Git and which

covers 8 refactoring types, including two complex refactorings that compli-

cate conflicts [45], Extract Method and Inline Method.

• A large-scale quantitative comparison of the effectiveness of operation-based

refactoring implemented in RefMerge versus graph-based based refactoring

implemented in IntelliMerge. Our evaluation includes 2,001 merge sce-

narios from 20 open-source Java projects.

• A systematic qualitative comparison of the strengths and weaknesses of both

techniques through a manual analysis of their results across a sample of 50

merge scenarios.

• A discussion of how refactoring-aware merging can be improved based on

the identified strengths and weaknesses of the two techniques.

Overall, our evaluation results show that IntelliMerge reduces the num-

ber of refactoring conflicts and conflicting merge scenarios that a developer

needs to deal with. However, graph node matching errors and the reliance on

a similarity score cause it to almost triple the number of false positives and

result in more than 10 times as many false negatives than Git. On the other

hand, RefMerge resolves almost twice as many conflicting merge scenarios as

IntelliMerge while reporting less false positives than Git and resulting in

only two false negatives. Our findings shed light on how both refactoring-

aware approaches can be improved and we recommend adding support for

more refactorings with operation-based merging. Our complete replication

package is available online [4].
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1.1 Thesis Organization

The thesis is organized as follows. We provide necessary background and

terminology in Chapter 2. After that, we discuss related work in Chapter 3.

Then, we introduce our approach in Chapter 4. Chapters 5, 6, and 7 describe

the evaluation setup and results. We discuss the results in Chapter 8. We

then discuss the threats to validity of the results presented in this thesis in

Chapter 9. Finally, we conclude the thesis in Chapter 10.
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Chapter 2

Background and Motivating
Example

To introduce the terms we use, we briefly describe how merging works in Git

and provide an example to motivate the need for refactoring-aware merging

techniques. We briefly describe graph-based merging in IntelliMerge. We

also describe operation-based merging in MolhadoRef to provide the back-

ground required to understand how it works and how it differs from RefMerge

in this thesis.

2.1 Software Merging in Git

Figure 2.1 represents a typical merge scenario. A merge scenario occurs when

developers using Git need to integrate changes they separately worked on in

different branches. The merge tools that are commonly utilized by VCSs

such as Git use three-way merging techniques [46]. In three-way merging, two

versions of the software are merged by making use of these versions’ common

ancestor, which is the common version of the code the two versions originated

from before they started diverging. When merging two branches, Git attempts

to merge the most recent commit on each branch, which we refer to as the

parent commits, using the common ancestor of these commits, which we refer

to as the base commit. The result of the merge is stored in a merge commit..

A conflicting merge scenario is one where a merge tool is not able to au-

tomatically merge the changes from the two versions being integrated. Git

6



Figure 2.1: An overview of a merge scenario. The black-shaded commits and
commits in-between represent a merge scenario.

reports the conflicting locations by annotating them with <<<, ===, and >>>

markers. We call these regions conflict blocks. When a file contains at least

one conflict block, we refer to the file as a conflicting file. We refer to the lines

within the conflict block as conflicting lines of code (conflicting LOC). For ex-

ample, Figure 2.2d shows two conflicting files, Scanner.java and Reader.java.

Each file has one conflict block. The first conflict block in Scanner.java has

three conflicting LOC while the second conflict block in Reader.java has 3

conflicting LOC (Assuming we treat the whole body of the Read class as one

line here for better visualization). We discuss the details of this example in

Section 2.2.

2.2 Motivating Example

To understand how refactorings complicate merge scenarios, consider the ex-

ample inspired by multiple real conflicts in Figure 2.2. In the left branch (Fig-

ure 2.2c), the developer renames class Listen to Read in Reader.java and

extracts the notNull and validate calls from addListener to a new method,

validateObject. In the right branch (Figure 2.2b), the other developer: (1)

moves class Listen from being an outer class in Reader.java into an inner

class of class Reader in the same file, (2) renames method validateReader to

validateObject, (3) renames method addReader to scanReader in

Scanner.java, and (4) changes the code inside addListener.

As shown in Figure 2.2d, Git reports a conflict in file Reader.java because

7



(a) Base commit
(b) Right parent

(c) Left parent
(d) Merge result for Git

(e) Ideal merge result

Figure 2.2: The three versions (base, left, and right) of code from Scanner.java
and Reader.java, as well as the results merged by Git and an ideal merge tool.

the developers rename Listen on one branch and move it into class Reader

on the other. Although both branches change the same lines of code, a smart

merge tool could automatically merge these changes by considering their se-

mantics and renaming class Listen to Read, then moving it into Reader, as

shown in the “ideal” merge result in Figure 2.2e. We refer to the Git conflict

in Reader.java from Figure 2.2d as a false positive, because it is a conflict

that can be automatically resolved. If the conflict cannot be automatically

resolved and required manual intervention, we refer to it as a true positive.

Git reports another conflict in file Scanner.java, where the developer on

the left branch extracts code from the same region that the right branch edits

the code within addListener. The developer now needs to compare the code

8



inside of the extracted method with the conflict block, which may even be

worse if the method was extracted to a distant location in the file, or another

file altogether. However, a merge tool that considers the semantics of extract

method would realize that the changes should be performed in the extracted

method, rather than in addListener and that these changes can be merged,

as shown in Figure 2.2e.

Figure 2.2e shows the ideal merge result for this scenario. This merge result

avoids the unnecessary conflict in Reader.java by understanding the seman-

tics of the rename and move operations. It also avoids the unnecessary conflict

in Scanner.java by understanding the semantics of the extract method opera-

tion and applying the right changes from the right branch within the extracted

method, validateObject. Note, however, that the ideal merge result also re-

ports a conflict in Reader.java and Scanner.java for validateObject. By

renaming validateReader to validateObject on the right branch and ex-

tracting a method with the same name on the left branch, the developers

introduce an accidental override, which could introduce bugs or critical errors

that may not be discovered until their software is released. Git fails to report

this because the developers did not change the same lines of code. Such a

case illustrates Git reporting a false negative, where the merge tool should

report a conflict because integrating these changes requires the developer’s

intervention, but the tool silently merges the changes.

2.3 Graph-based Refactoring-aware Merging

in IntelliMerge

Figure 2.3 shows an overview of graph-based refactoring-aware merging pro-

vided by the IntelliMerge paper [55]. As shown in the figure, there are four

main steps in graph-based merging.

In Step 1, graph-based merging converts the base, left, and right versions

of the code into graphs where the nodes are program elements and edges are

their relationships, referred to as program element graphs (PEGs). A PEG is a

labeled, weighted, and directed graph where program elements (such as classes,

9



Figure 2.3: An overview of graph-based merging provided in the IntelliMerge
paper [55].

methods, and fields) are nodes and their relationships are the edges [55]. For

each of the sets of source files, the source files are first parsed into abstract

syntax trees (ASTs). Then, the program elements are extracted from the AST

to form the nodes of a PEG and the relationships between program elements

are used to create the edges.

In Step 2, graph-based merging uses a matching algorithm to match the

base PEG with the left and right PEGs, respectively. The matching algorithm

works in two steps: top-down and bottom-up.

1. Top-down Phase. In this phase, the mapping relationship between nodes

with the same signature in the base and corresponding left and right

PEGs are built. This phase starts at the root of the PEG and traverses

to the leaf nodes in the PEGs. The assumption here is that if two nodes

in different PEGs have the same signature, then they correspond to the

same program element [60].

2. Bottom-up Phase. In this phase, the PEGs are traversed from the leaf

nodes back up to the root and matched based on their semantics. The

bottom-up matching algorithm takes the context of the nodes into con-

sideration into determine if there is a matching relationship. This phase

detects two kinds of matching: 1-to-1 and m-to-n. The 1-to-1 matching

considers changes that affects signatures of program elements, such as

refactorings like rename, move, and parameter changes to methods. The

m-to-n matching results from more complex refactorings like extract and

10



inline type refactorings.

When matching refactored program elements, the authors of IntelliMerge

make the assumption that each pair of refactored nodes must have the same

type of program element [55]. Based on this assumption, they further partition

the unmatched nodes and detect refactorings in a divide and conquer manner

using a list of heuristics [55]. For the 1-to-1 matching, if a node has multiple

matching candidates, IntelliMerge ranks the candidates in descending order

based on the following three criteria:

1. The context similarity (given two nodes, the node with more similar

edges ranks higher).

2. The body-AST similarity for leaf nodes and the node-label similarity

(When two candidate nodes have the same context similarity, the node

with a body that is more similar ranks higher).

3. The location distance (determined by their file paths and start line num-

bers).

For m-to-n matching, IntelliMerge primarily refers to the extracted method

with the origin(s) and inlined methods with their target(s). The origin of an

extracted method refers to the method that it was extracted from, while the

target of an inlined method denotes the method that it was inlined to. Pro-

grammers often extract the common part of multiple methods into a new

method, so there can be more than one origin. Similarly, a method can be

inlined to more than one location, so there can be more than one target. When

there are multiple candidates, IntelliMerge extends the context of each can-

didate, then ranks the candidates by the similarity of the updated context.

In Step 3, the matched and unmatched sets for each pair of PEGs are

input into a three-way merging algorithm. First, all matched nodes are merged

recursively. After all matched nodes have been merged, each set of unmatched

nodes are treated as additions and inserted into the merged PEG.

In Step 4, the merged PEG is converted into a set of source files, with

possible conflict blocks that require manual intervention. If there are conflicts,

11



IntelliMerge surrounds the conflicting code with the same conflict markers

that Git uses.

2.4 Operation-based Refactoring-aware Merg-

ing in MolhadoRef

Dig et al.’s implementation of operation-based merging, MolhadoRef, works

in five main steps [24].

In Step 1, MolhadoRef utilizes Molhado, the operation-based VCS, to track

the code changes that happened between the base version and the left and

right versions. MolhadoRef also collects refactoring logs that are collected by

Eclipse [5]. From the refactoring logs and changes, MolhadoRef differentiates

edit and refactoring operations.

In Step 2, MolhadoRef detects and solves refactoring conflicts and circular

dependencies. When detecting refactoring conflicts, it uses a conflict matrix

which was constructed by carefully considering refactoring semantics and how

refactorings interact with each other. For any two kinds of supported opera-

tions, the conflict matrix gives a set of rules that determines whether the pair of

operations results in a conflict. If MolhadoRef determines that two operations

are conflicting, it requires manual intervention from the developer before pro-

ceeding. Then, MolhadoRef creates a dependence graph between performed

operations. The dependence graph is necessary because the operations can

be replayed in any order when merging unless there is a dependence between

the operations. Thus, MolhadoRef maintains the order for such operations

in a dependence graph. Similar to detecting conflicts, MolhadoRef utilizes a

set of rules within the dependence matrix which were carefully developed by

considering how operations could be performed such that there is no way to

determine the order that the operations need to be replayed in. However,

it is possible for operations with a dependence relationship to form a circu-

lar dependence. When MolhadoRef detects a circular dependence, it requires

manual intervention from the practitioner before it can continue building the

dependence graph.
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In Step 3, MolhadoRef inverts the detected refactorings. To invert a refac-

toring, MolhadoRef must first create an inverse refactoring that it performs on

the original refactoring operation to cancel out the refactoring. MolhadoRef

uses the information provided by Eclipse’s refactoring logs to create and per-

form the inverse refactoring. In the case that MolhadoRef cannot invert a

refactoring, it treats the refactoring like a textual edit and does no worse than

textual merging.

After all of the refactorings have been inverted, MolhadoRef performs a

three-way textual merge in Step 4. By inverting all of the detected refactorings,

any chance of a refactoring conflict have been removed from the textual merge.

In Step 5, MolhadoRef replays the refactorings. Refactorings that touch

the same program element can has side effects on that program element. For

example, if a method refactoring occurs within a class that is refactored, the

refactoring engine may not be able to find the method after the class is refac-

tored. To avoid this issue, MolhadoRef replays refactorings in a bottom-up

approach. While a class refactoring can influence the method’s fully qualified

name, performing a method refactoring will not change the class’s fully qual-

ified name. MolhadoRef continues replaying refactorings until there are no

more refactorings to replay.
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Chapter 3

Literature Review

3.1 Software Merging

The proposed software merging techniques in the literature can generally be

categorized into unstructured, structured, and semi-structured merging tech-

niques [46].

Unstructured merging techniques represent any software artifact as a se-

quence of textual lines [14]. This gives unstructured merging techniques the

strength of being able to process all textual artifacts, regardless of the pro-

gramming language [46]. Due to its simplicity and versatility, modern version-

control systems such as Git or mercurial still rely on such unstructured merg-

ing. The downside to this technique is that unstructured merging cannot

handle multiple changes to the same lines, since it cannot consider the the

syntactic and semantic meaning in software artifacts [12]. Because of that,

unstructured merging cannot handle or understand refactorings, causing con-

flicts similar to those shown in Figure 2.2d.

Structured merging tries to alleviate the problems of unstructured tools by

leveraging the underlying structure of software artifacts, typically through op-

erating on an Abstract Syntax Tree (AST) instead of textual lines [10]. West-

fechtel [61] and Buffenbarger [18] pioneered in proposing structured merge

algorithms, proposing algorithms which incorporate context-free and context-

sensitive structures. Considering the structure of software artifacts allows

structured merging techniques to handle syntactic and semantic conflicts [35],

[39], [62]. This comes at the cost of generally being language specific and being
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too expensive to be used in practice. Leßenich et al. [40] proposed auto-tuning,

an approach that switches between structured and unstructured merging, and

implemented JDime to demonstrate their approach. Zhu et al. [63] built on top

of JDime by matching nodes based on an adjustable quality function. Seibt

et al. [54] recently performed a large-scale empirical study with unstructured,

semi-structured, and structured merge algorithms and their findings suggest

that combined strategies are promising moving forward. Additionally, struc-

tured merge approaches do not specifically handle all refactoring semantics.

Semi-structured techniques aim to create a middle ground by considering

both the language independence of unstructured merging and the precision of

structured merging [12]. FSTMerge was proposed by Apel et al. [12] as one

of the first semi-structured merging approaches. While FSTMerge reduces the

number of merge conflicts reported compared to unstructured merge, FSTMerge

struggles with renamings. Cavalcanti et al. [20] proposed jFSTMerge, build-

ing upon FSTMerge by adding handlers for different types of conflicts such

as renaming. Cavalcanti et al. [20] go further and provide evidence that

the number of unecessary conflicts is significantly reduced when using semi-

structured merge. However, they do not find evidence that semi-structured

merge misses fewer actual conflicts (false negatives). Similar findings are ob-

served by Trindade et al. [58], but at a lesser extent, when investigating semi-

structured merging in JavaScript systems.

By representing software artifacts partly as text and partly as trees, semi-

structured merging achieves a certain level of language-independence. Caval-

canti et al. [19] performed an empirical study to compare unstructured and

semi-structured merging techniques. They found that semi-structured merge

can reduce the number of merge conflicts by half. We compare only against

IntelliMerge because the IntelliMerge paper already shows that it already

outperforms jFSTMerge [55]. Furthermore, we are focusing on techniques that

specifically target refactorings in order to compare their strengths and weak-

nesses.
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3.2 Proactive Conflict Detection & Preven-

tion

The key idea behind this research line is that detecting conflicts as soon as

they happen, even before a developer commits the changes, can lead to conflicts

that are easier to resolve. Knowing what changes other developers are making

is beneficial for team productivity and reducing the number of reported merge

conflicts [28]. One such approach is speculative merging [17], [33], where all

combinations of available branches are pulled and merged in the background.

Owhadi-Kareshk et al. [49] designed a classifier for predicting merge conflicts

with the aim of reducing the computational costs of speculative merging by

filtering out merge scenarios that are unlikely to be conflicting.

Syde [34] and Palantir [53] are two tools that increase developer awareness

by illustrating the code changes their team members are making. Cassandra [37]

minimizes simultaneous edits to the same file by optimizing task scheduling.

ConE [43] is an approach that proactively detects concurrent edits to help miti-

gate certain resulting problems, including merge conflicts. Silva et al. [57] pro-

posed utilizing automated unit test creation to detect semantic conflicts that

a merge tool could have missed. Fan et al. [29] proposed using dependency-

based automatic locking to support fine-grained locking and avoid semantic

conflicts. DeepMerge is a recent effort that defines merge conflict resolution

as a machine learning problem [25]. The approach primarily leverages the

fact that around 80% of merge conflict resolution only rearrange lines [32].

However, they do not explicitly consider refactoring semantics in their merge

conflict resolution.

3.3 Refactoring Detection

Refactoring is a widespread practice that enables developers to improve the

maintainability and readability of their code [56]. Refactoring has been ex-

tensively studied over the past few decades [47], with recent work focusing

on the detection of refactoring changes and the relationship between refac-

16



torings and code quality [22]. Palomba et al. [50] performed a quantitative

investigation on the relationship between refactorings and different types of

code changes. They found that developers perform complex refactorings to

improve code cohesion. Similarly, Bavota et al. [13] investigated whether com-

mon quality metrics might suggest whether refactoring operations might be

necessary. RIPE is a technique that estimates what the impact of performing

a refactoring operation will be on code quality metrics [21].

Multiple tools have been developed to detect different refactoring types,

such as Ref-Finder [38] and RefDistiller [9]. We use the state-of-the-art

refactoring detection tool, RefactoringMiner, which achieves a precision of

98% and a recall of 87% [59].

3.4 Operation-based & Refactoring-aware Merg-

ing

Operation-based merging is a semi-structured merging technique that models

changes between versions as operations or transformations [26], [41], [42] which

could be used to support refactoring-aware merging [24]. Nishimura et al. [48]

proposed a tool that reduces the manual effort necessary to resolve merge

conflicts by replaying fine-grained code changes related to conflicting class

members. Their approach only considers edits and has problems with long

edit histories and finer granularity of operations [24].

Ekmaan et al. [27] proposed a refactoring-aware versioning system designed

for Eclipse IDE. Their approach keeps program elements in volatile memory,

thus allowing for a short-lived history of refactored operations. However, their

approach does not support software merging.

Dig et al. [24] proposed MolhadoRef, the first operation-based refactoring-

aware merging algorithm. As described in more detail in Section 2.4, the

premise behind their idea is that refactorings have well-defined semantics which

can be used to treat refactorings as operations which can be undone and re-

played. By undoing refactorings, it takes the refactorings out the merge, allow-

ing a textual merge tool to perform a merge without refactorings complicating
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it. The well-defined refactoring semantics can further be used to check if two

refactoring operations are conflicting and aid in conflict resolution. However,

they did not provide coverage for any complex refactorings and they did not

evaluate their approach on a large scale. In addition, MolhadoRef relied on a

research-based version control system to keep track of operations, so it could

not be applied to popular version control systems.

Meanwhile, Shen et al. [55] proposed IntelliMerge, a graph-based

refactoring-aware merging algorithm. As described in more detail in Sec-

tion 2.3, IntelliMerge merges two software versions by converting software

artifacts to graphs. It then performs a matching step to detect refactorings

and code edits, merges the graphs, and then serializes the merged graph

back into text files. However, IntelliMerge’s evaluation did not include a

qualitative analysis to check for false positives and false negatives. In addi-

tion, IntelliMerge relies on a similarity score which increases the chances of

IntelliMerge missing a refactoring or incorrectly detecting a refactoring.

In our work, we make multiple design choices to re-imagine operation-

based refactoring-aware merging on top of git in a scalable way. We add

coverage for complex refactorings to investigate if operation-based merging

can handle complex refactorings. In this thesis, we perform the first large-

scale empirical evaluation on operation-based refactoring-aware merging and

compare it with IntelliMerge for the first time. We also perform a systematic

qualitative analysis to determine if either approach reports false positives or

misses conflicts, resulting in false negatives or unexpected merges.
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Chapter 4

RefMerge: Refactoring-aware
Operation-based Merging for
Java

The high level idea of operation-based refactoring-aware merging is that if we

invert refactorings before merging and then replay the refactorings, there will

be no refactoring related conflicts to complicate the merge. Figure 4.1 presents

the following overview of our implementation of RefMerge, which targets Java

programs and consists of the following five steps.

1. Detect and Simplify Refactorings : We use RefactoringMiner, a state-of-

the-art refactoring detection tool with 99.7% precision and 94.2% recall [59]

to detect refactorings in each commit between the base commit and each

parent respectively. We check if each detected refactoring can be simplified

and simplify the refactorings accordingly.

2. Invert Refactorings : We use the corresponding refactoring list from Step

1 to invert each refactoring until all supported refactorings have been in-

verted.

3. Merge: We use Git to merge the left and right parents, P ′
L and P ′

R, after

all their refactorings have been inverted.

4. Detect Refactoring Conflicts : We compare the left and right refactoring

lists for potential refactoring conflicts and commutative relationships and

merge them into one list.
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Figure 4.1: An overview of RefMerge’s merging algorithm.

5. Replay Refactorings : We finally use the merged refactoring list to replay

all non-conflicting refactorings.

In this section, we focus on our design and implementation of the operation-

based approach to enable it to work on top of Git, which makes some of the

details different from MolhadoRef.

4.1 Step 1: Detect and Simplify Refactorings

4.1.1 Refactoring Detection

We use RefactoringMiner to detect refactorings in each commit between the

base commit and each parent commit respectively. We detect refactorings

in each commit instead of only comparing the base and parent commits to

ensure precise detection in longer histories. This is an important difference

from MolhadoRef as the use of RefactoringMiner allows RefMerge to be im-

plemented for Git, instead of relying on a research-based VCS.

4.1.2 Refactoring Simplification

RefMerge processes each detected refactoring one by one and keeps a list of

processed refactorings for each of the left and right branches. We compare

each detected refactoring to the processed refactorings in the list to determine

if it is either a transitive refactoring or part of a refactoring chain (defined

below).
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We define transitive refactorings as successive related refactorings of the

same refactoring type. For example, consider that method foo is renamed to

bar. In the next commit, bar is renamed to foobar. In this case, the two method

renamings are transitive and foo is eventually being renamed to foobar. When

RefMerge finds that a newly detected refactoring is a transitive refactoring of

an existing refactoring in the list, it updates the related transitive refactorings

in the list instead of adding this new refactoring. In this example, RefMerge

would first add rename foo to bar to the list. When it processes rename bar to

foobar, it would detect that this is a transitive refactoring of an existing refac-

toring in the list so it will simply update that existing refactoring to rename

foo to foobar. We carefully considered the semantics of each refactoring oper-

ation to determine transitive refactorings. The logic for detecting transitive

refactorings can be found in Appendix A.3.

Refactoring chains consist of two or more refactorings that touch the same

program element. When two refactorings touch the same program element,

the details of that program element will diverge from what is stored in Refac-

toringMiner’s refactoring object, causing the refactoring to not be found when

later inverting the refactoring or detecting refactoring conflicts. For example,

when a method is renamed in class A and class A is renamed to class B in a

later commit, the first refactoring object will still associate the method with

class A. This means that if a transitive refactoring is later performed on the

same method, we will not be able to detect the transitive relationship because

the methods will be associated with different classes.

When we find that a refactoring is part of a refactoring chain, we update

the refactorings in the refactoring chain. For example, consider that after A.foo

is renamed to A.bar, class A is renamed to class B. Then in a later commit,

B.bar is renamed to B.foobar. Since method foo was renamed to bar inside of

class A, A.bar and B.bar have different method signatures and the information

that these Rename Methods are transitive is lost. To address this, RefMerge

first adds the first refactoring rename A.foo to A.bar to the list. When it

later processes the second refactoring rename class A to B, it adds this second

refactoring to the list and also updates the first refactoring to rename B.foo to
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B.bar. That way, when RefMerge processes the third refactoring rename B.bar

to B.foobar, it can detect the transitive relationship and update it accordingly.

All of our detailed logic for detecting transitive refactorings and refactoring

chains can be found in Appendix A as well as our artifact [4].

4.1.3 Refactoring Order

Since we do not know the order in which developers performed refactorings

within the same commit, we cannot simply invert the refactorings in the oppo-

site order they are detected in, similar to what MolhadoRef does. Instead, we

reorder the refactorings in a top-down order based on the granularity of the

program element being refactored. For example, class level refactorings come

before method level refactorings.

Combining transitive refactorings, updating refactoring chains and using

a top-down order has three advantages. First, when inverting and replaying

refactorings, all transitive refactorings are combined and can be treated as if

they were detected at a coarse-grained granularity. This is an important dis-

tinction from MolhadoRef, because it reduces the number of refactorings that

need to be performed and simplifies conflict detection while at the same time

ensuring precise refactoring detection. Second, the combination of updating

refactoring chains and using the pre-determined order removes any need to

keep track of the order that the refactorings are detected in. Lastly, using a

top-down order while simplifying refactorings automatically breaks any circu-

lar dependencies between refactoring operations. This is an important differ-

ence from MolhadoRef which required user intervention to help resolve circular

dependencies. By automatically breaking circular dependencies, RefMerge al-

lows the user to focus only on actual conflicts.

4.2 Step 2: Invert Refactorings

Once refactorings are detected, RefMerge creates a refactoring-free version of

each parent commit by inverting the refactorings in the refactoring lists from

Step 1. To invert a refactoring r, RefMerge needs to create and apply the
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inverse refactoring r̄. r̄ is an inverse of r if r̄(r(E)) = E. For example, the

inverse of a refactoring that renames method foo to bar is another refactoring

that renames bar to foo.

RefMerge uses the information provided by RefactoringMiner to create

each inverse refactoring. Each refactoring detected by RefactoringMiner is

represented by a data structure that contains important information about

the refactoring. Among others, the data structure contains information such

as the refactoring type, information about the original program element, and

information about the refactored program element. From the provided infor-

mation, RefMerge obtains the corresponding elements and executes the refac-

toring through a refactoring engine. Importantly, executing the inverse refac-

toring does not only invert the refactored program element, but it also changes

any references to the program element. This includes references added at any

point after the refactoring was performed. In the case that the refactored pro-

gram element is deleted in a future commit, the inverse refactoring cannot be

performed and RefMerge moves on to the next refactoring.

4.3 Step 3: Merge

After all refactorings are inverted on both branches, only non-refactoring

changes remain in the parent commits. We refer to this version of each par-

ent as P ′ in Figure 4.1. In this step, we textually merge P ′
L and P ′

R. Most

same-line or same-block conflicts that would have been caused by refactorings

are now eliminated through inverting the refactorings. However, some same-

line and same-block conflicts may still exist because additional edits may have

been performed to or beyond the refactored code.

For example, consider the conflict blocks in Scanner.addListener in Fig-

ure 2.2. If the developer adds several other lines of code to the extracted

method, those lines will be inlined to the validateObject method invocation

and reported in the conflict block. In this case, RefMerge will report more

conflicting lines than Git because no matter how many lines of code are added

to Scanner.validateObject(), Git’s conflicting region will remain the same.

23



While the extra conflicting lines that RefMerge reports could be considered to

be disadvantageous, inlining the extracted code clearly indicates what code is

part of the conflict in a single location.

4.4 Step 4: Detect Refactoring Conflicts

Generally speaking, a pair of refactorings that touch unrelated program ele-

ments do not have any interaction. However, a pair of refactorings that touch

related program elements will have interactions, which can be conflicting or

commutative. For each pair of refactorings, we have to predetermine the in-

teractions that the refactorings can result in and then use that knowledge to

detect conflicts and commutative refactorings. Refactoring operations that

conflict cannot both be replayed, while refactoring operations that are com-

mutative can be replayed in either order and will result in the same code. We

make the assumption that two refactoring operations cannot both conflict and

have a commutative relationship. Using the semantics of refactoring opera-

tions, we carefully compute and revise the conflict and commutative logic for

each refactoring combination, which we explain below and can be found in our

artifact [4] as well as Appendix A. RefMerge uses this knowledge to compare

each refactoring in the left branch with each refactoring in the right branch

and detect refactoring conflicts.

Detecting Conflicts

RefMerge first checks if the two refactoring operations are conflicting. There

are a series of preconditions that must be met for two refactoring operations

to conflict. To illustrate, we provide an example using the conflict logic for

RenameMethod(m1,m2) and RenameMethod(m3,m4):

hasConflict(RenameMethod(m1,m2),MoveMethod(m3,m4)) :=

((m1 == m3 ∧m2 �= m4) ∨ (m1 �= m3 ∧m2 == m4))∨
(¬overrides(m1,m3) ∧ overrides(m2,m4)∨
(¬overloads(m1,m3) ∧ overloads(m2,m4)

(4.1)
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These two refactorings result in a conflict if (1) the source of both refac-

torings is the same program element (m1 == m3) but their names differ

(m2 �= m4) or (2) the sources of both renames are different program ele-

ments (m1 �= m3) but the renamed destinations are the same program element

(m2 == m4). In other words, if the same method is renamed to two separate

names or if two different methods inside of the same class are renamed to the

same name with the same signature, then the refactorings conflict.

In addition, two refactoring operations can conflict without changing the

same program element. We refer to this as a semantic conflict. There are two

examples of semantic conflicts for RenameMethod/RenameMethod: (1) an

accidental overload and (2) an accidental override. In the case of an accidental

overload, two methods with different names are renamed to the same name in

the same class but have different signatures. In the case of an accidental over-

ride, two methods within classes with an inheritance relationship are renamed

to the same name with the same signature, which causes one of the methods

to override the other. Semantic conflicts will not be detected by a text-based

merge tool such as Git because the same line is not changed by both branches.

The developer might not realize the problem until it appears in testing, or

worse in production. The motivating example in Figure 2.2 showed an ex-

ample of an accidental override due to the combination of Rename Method

and Extract Method refactorings. The full conflict logic of the refactorings we

support can be found in Appendix A.1.

Detecting Commutative Relationships

After RefMerge checks for refactoring conflicts, it checks for a commutative

relationship between the two refactoring operations using the corresponding

predetermined commutative logic. Two refactoring operations can only be

commutative if they do not conflict and if they are different types of refactor-

ings. If the pair of refactorings meets these conditions and they both refactor

the same program element, then they are commutative. For example, Rename
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Method and Rename Method cannot be commutative because they are the

same refactoring type and there is no way the same program element can be

renamed on both branches to different names without conflicting. However,

Move Method and Rename Method can be performed on the same program

element commutatively. Similarly, the Move Class and Rename Class refac-

torings performed on class Listen in Figure 2.2 are an example of commutative

refactorings.

The commutative logic forMoveMethod(m1,m2) andRenameMethod(m3,m4)

is as follows:

isCommutative(MoveMethod(m1,m2), RenameMethod(m3,m4) :=

(m1 == m3 ∧m2 �= m4)

These two refactorings are commutative if the source of both refactorings is

the same program element (m1 == m3) and their destinations are different

(m2 �= m4). The idea is that if aMove Method and Rename Method refactoring

are performed on the same program element, then we can move the program

element and then rename it, or rename it and then move it. We consider the

semantics of each refactoring to determine commutativity.

After all detected refactorings have been compared between branches for

refactoring conflicts and commutative relationships, RefMerge combines the

refactoring lists containing non-conflicting refactorings from each branch into

one list. While RefMerge inverts the refactorings on each branch in a top-down

order (after simplifying the refactoring lists to enable this), it orders the com-

bined refactoring list in a bottom-up order based on the element hierarchy (for

example, method before class) for replaying refactorings. Multiple refactorings

might touch the same program element, such as a Move Method and a Rename

Class. By renaming the class before moving the method, RefMerge will not

be able to find the method refactoring, because the class that the method is

moved from will no longer exist. Since higher-level program elements do not

depend on lower level program elements, replaying refactorings bottom-up al-
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lows RefMerge to replay the refactorings without any additional effort. The

replay refactoring list for Figure 2.2 after detecting refactoring conflicts and

commutative conflicts would contain (1) Rename Method addReader to scan-

Reader and (2) Move And Rename Class Listen to inner class Reader.Read.

The conflicting refactoring list would contain Extract Method

validateObject from addListener and Rename Method validateReader to

validateObject. The full logic for detecting commutative refactorings can

be found in Appendix A.2.

4.5 Step 5: Replay Refactorings

Finally, RefMerge replays the refactorings. For each inverted refactoring,

RefMerge re-creates and performs the refactoring that was originally per-

formed by the developer. Executing the refactoring includes updating all

references in the program, including those added on the other branch.

4.6 Current Implementation

Technologies and Tools We implement RefMerge as an IntelliJ1 plugin

for merging Java programs. It consists of four key modules corresponding

to the steps of the proposed technique. We use the state-of-the-art refactor-

ing detection tool, RefactoringMiner [59] to detect the refactorings and we

use the IntelliJ refactoring engine to programatically invert and replay the

refactorings.

Supported Refactorings Even though the idea of operation-based

refactoring-aware merging and our proposed implementation of it generally

applies to all refactorings, there are more than 70 known refactoring types

[30]; it is a large engineering effort to implement every refactoring. Instead of

implementing every refactoring, we use a subset of eight refactorings to show

the feasibility of the approach and enable the empirical comparison.

1https://www.jetbrains.com/idea
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We first choose refactorings that commonly appear in merge scenarios since

these are refactorings developers will deal with. We find the top 10 occurring

refactoring types from a recent large-scale empirical study of code changes in

450,000 commits [6]. Of these top 10 refactoring types, only Extract Method,

Rename Method, and Move Class are involved frequently in merge scenarios

with refactoring-related conflicts [45]. Thus, we include these three refactoring

types in our implementation.

Next, we select refactorings that can conceptually challenge the idea of

operation-based merging. The IntelliMerge authors suggested that operation-

based merging cannot handle Extract Method or Inline Method, because they

do not have an inverse refactoring [55]. However, in theory, Extract Method

can be inverted by performing an Inline Method refactoring, and vice versa.

Thus, we select Extract Method and Inline Method as two refactorings that

conceptually challenge operation-based merging.

Finally, we select additional refactorings from the class and method level

to cover refactorings that can result in larger conflicting regions and evaluate

potential problems such as accidental override. We select Rename Class be-

cause it is at the class granularity and renames are the most universally used

refactoring in the IntelliJ IDE [31]. We select Move Method and Move And Re-

name Method to evaluate potential inheritance problems, and we select Move

And Rename Class to add full coverage of Move and Rename refactorings at

the method and class granularity.

When a refactoring is performed that RefMerge does not support or

RefMerge fails to invert, RefMerge results in the same merge as Git for the

program element. Thus, RefMerge should improve on Git for supported refac-

torings, but should be no worse than Git for refactorings that are not currently

supported.

Although our current implementation covers only eight refactorings, our

implementation is well documented and implemented in a modular way to

easily allow for extension. Supporting a new refactoring involves: (1) consid-

ering how the new refactoring interacts with presently supported refactorings,

(2) adding conflict logic and simplification logic for any refactoring that the
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new refactoring interacts with, (3) adding handlers for the conflict logic and

simplification logic, (4) adding the new refactoring to the top-down order,

(5) adding a method to invert the refactoring with the corresponding IntelliJ

refactoring processor, and (6) add a method to replay the refactoring with the

corresponding IntelliJ refactoring processor. Overall, this amounts to adding

five methods in three classes as well as n + 1 conflict handlers where n is

the current number of supported refactorings, with the full guidance of our

documentation.
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Chapter 5

Evaluation Setup

We compare the effectiveness of RefMerge, Git, and the state-of-the-art

refactoring-aware merge tool, IntelliMerge [55] on 2,001 merge scenarios

that contain refactoring-related conflicts from 20 open-source projects. These

projects include the original 10 projects IntelliMerge was evaluated on as

well as an additional 10 projects with different distributions of conflicting

merge scenarios. We answer the following research questions:

RQ1 How many merge conflicts do the three merge tools report? A tool that

automatically resolves more merge conflicts will reduce the time and

effort developers have to spend resolving conflicts. We report conflicts

at all granularity levels (scenarios, files, and conflict blocks).

RQ2 What are the discrepancies between the merge conflicts that RefMerge

and IntelliMerge report? While either tools may report less conflicts,

which seems better at face value, we need to investigate if they cor-

rectly resolve the conflicts or if they miss reporting real conflicts. We

perform a qualitative analysis on the results reported by RefMerge and

IntelliMerge to understand the strengths and weaknesses of each tool.

5.1 Project & Merge Scenario Selection

We use the same 10 projects that the IntelliMerge authors use in their eval-

uation [55]. To select these projects, the authors searched for the top 100

Java projects with high numbers of stargazers on Github, and then selected
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the projects with the most merge commits and contributors [55]. The authors

then ran the analysis by Mahmoudi et al. [45] on these 10 projects to iden-

tify conflicting merge scenarios that have refactoring changes involved in the

conflict. In a nutshell, this analysis replays merge scenarios in the Git history

to find conflicting ones, uses RefatoringMiner [59] to find refactorings in the

history of these conflicting merge scenarios, and then compares the location of

the refactorings to the location of the conflict blocks to determine if a conflict

has an involved refactoring. At the time of the IntelliMerge publication,

these 10 projects contained 1,070 conflicting merge scenarios with involved

refactorings.

For generalizability, we expand our evaluation to cover an additional 10

projects. Mahmoudi et al. [45] shared a data set with the results of their

analysis for 2,955 open-source GitHub projects. We use this data set to select

the additional 10 projects for our evaluation. Our goal is to have a selection of

projects with different distributions of (conflicting) merge scenarios to avoid

any bias towards project-specific practices. Thus, we sort the 2,955 projects

within the dataset based on the number of refactoring-related conflicts each

project has. We randomly select three projects from the bottom 30% of the

projects, four from the middle 40%, and three from the top 30%.

Given the 20 selected projects, we collect an up-to-date set of merge sce-

narios with involved refactorings by re-running Mahmoudi et al.’s analysis [45]

on the latest history of each project as of September 26, 2021. Our artifact

page [4] contains the exact version of each project that we consider. This

means that for the 10 projects originally used by IntelliMerge, our data set

contains the original 1,070 merge scenarios as well as any additional ones that

appear in the Git history since their publication date.

Table 5.1 shows the number of merge scenarios with refactoring-related

conflicts in all 20 selected projects, with the projects used in the IntelliMerge

paper in bold. For additional context, we also show the number of stargazers

of each project. Overall, we evaluate on 2,001 conflicting merge scenarios with

involved refactorings.
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Table 5.1: Number of conflicting merge scenarios with involved refactorings
for the 20 projects we evaluate on. The 10 projects from the IntelliMerge

paper are in bold.

Project Stargazers Merge Scenarios

cassandra 6,882 922

elasticsearch 56,665 178

gradle 12,410 117

antlr4 10,738 100

platform frameworks support 1,609 96

deeplearning4j 12,208 93

realm-java 11,206 92

jackson-core 1,984 81

android 3,161 81

cometd 535 63

storm 6,278 33

ProjectE 308 30

javaparser 3,859 23

druid 24,576 17

androidannotations 11,171 15

junit4 8,198 14

MinecraftForge 4,945 14

iFixitAndroid 143 13

MozStumbler 609 10

error-prone 5,717 9

Total 2,001

5.2 Reproducing IntelliMerge

Before describing the evaluation metrics we use for comparing the merge tools,

we need to ensure that we are correctly running IntelliMerge. Thus, we first

attempt to reproduce the results found in the corresponding publication [55]

using their exact setup and data, as shared in their Github repository [7].

We share the exact steps we followed as well as the details of the results of

reproducing IntelliMerge1.

We run IntelliMerge v1.0.7 on the same 1,070 merge scenarios used in the

original publication, including their same post-processing steps such as remov-

1https://github.com/max-ellis/IntelliMerge/tree/evaluation
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ing all comments from the merged files. We use the same calculation proposed

by IntelliMerge’s authors to measure precision and recall for IntelliMerge

and Git. They propose comparing auto-merged code with manually-merged

code to measure precision and recall. They define auto-merged code as code

that is not part of a conflict block in a tool’s merge result and manually-merged

code as the code that appears in the resolved merge commit. We use the same

diff tool provided by Git that the IntelliMerge authors used to calculate

the number of different lines between the auto-merged and manually-merged

code. Note that IntelliMerge reports precision and recall based only on the

conflicting files in each merge scenario, not on all changed files in the scenario.

We were not able to reproduce the exact numbers found in the

IntelliMerge paper [55]. After emailing the authors, we verified that they

perform post-processing steps to deal with some cases that are caused by the

program elements being in a different order as well as format related diffs,

such as textually moving, reordering, and cosmetic diffs. Because of these

undocumented manual post-processing steps, it is impossible to reproduce the

exact numbers in the IntelliMerge paper. Although we were not able to

get the exact numbers, the precision and recall we obtained were within 10%

of the numbers in their paper. For further confirmation, we explicitly shared

our setup1 with the IntelliMerge authors and received confirmation that

our setup is correct and that the differences in results we obtained do not

misrepresent IntelliMerge.

5.3 Tool Comparison Setup

After verifying with the IntelliMerge authors that we are correctly running

their tool, we could proceed with our evaluation. Given the 2,001 merge scenar-

ios, we identify the base commit, left parent commit, and right parent commit

of each scenario. We provide each tool (Git, IntelliMerge, RefMerge) with

these three commits in order to perform its three-way merge. We record the

results of all changed files in the merge scenario, as opposed to only conflicting

files (which is what the IntelliMerge evaluation does). Considering the result
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of all changed files allows us to catch cases where one of the tools introduces a

conflict in a file that Git did not originally report a conflict for. Additionally,

while the IntelliMerge authors removed comments in their evaluation, we

do not post-process the results of any of the merge tools in any way to ensure

that we see the same results a developer using the tool in practice would see.

Overall, our goal in this evaluation is to minimize any manual pre and post

processing steps such that we can compare the results of these tools in a prac-

tical setting. Note that IntelliMerge supports 21 refactorings, including the

15 refactorings supported by Mahmoudi et al.’s analysis [45] while RefMerge

supports a subset of only 8 refactorings. While the scenarios we evaluate on

may have refactorings that either tools do not support, we do not limit the

evaluation to only supported refactorings so we can also understand how the

tools handle unsupported refactorings.

We run our experiments on a quad-core computer with Intel (RJ) Core

(TM) i7-7700HQ CPU @ 2.80GHz, 16 GB RAM and Ubuntu 20.04 OS. Origi-

nally, we attempted to complete our evaluation without a timeout but IntelliMerge

took several hours to complete a merge in multiple merge scenarios. For fea-

sibility of completing the evaluation, we re-run the evaluation from start and

use a 15 minute timeout for each tool. We investigated what was causing

IntelliMerge to take so long and found that merge scenarios where several

files were changed caused the graph building step for IntelliMerge to take

significantly longer.

5.4 Used Metrics and Analysis Methods

We choose not to use the same recall and precision metrics that the

IntelliMerge authors propose, because (1) these metrics do not correctly

capture the effectiveness of a merge tool and (2) auto-merged code is not

a reliable way to measure false positives and false negatives. Consider the

merge conflict in Scanner.java in Figure 2.2d. If the developer accepted the

left changes but a merge tool accepted all changes, causing the auto-merged

code to contain both sides of the conflict, then the auto-merged code will have
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18 lines of code and the manually merged code will have 14 lines. Git diff will

report 4 different lines since the auto-merged code also contains right side of

the conflict, which are 4 lines that the manually merged file does not contain.

In this case, the recall will be 1 because subtracting the number of lines in the

diff from the number of auto-merged lines will result in the same number of

lines as the manually merged code. Although the precision will suffer, it will

also still be high (78%) and will not reflect the fact that the tool failed to detect

the conflict. In their threats, the IntelliMerge authors themselves recognize

that using manually committed code as the ground truth is unreliable, because

manually committed files often contain mistakes.

Instead, in RQ1, we report the number of conflicts each tool detects at

various granularity levels (scenarios, files, and conflict regions). Additionally,

we do not only report these numbers in isolation but instead report them at

a scenario level to understand the proportion of scenarios in which each tool

can improve the situation for a developer. Additionally, for RQ2, we manually

sample merge conflicts that differ between the merge tools to understand the

quality of the merge results and how the behavior of these tools differ in

handling different types of merge scenarios. A similar analysis has been used

in the past by Cavalcanti et al. [20] to get a better understanding of merge

results.
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Chapter 6

RQ1: Quantitative Tool
Comparison

In this RQ, we compare the effectiveness of each tool in resolving merge con-

flicts at all granularity levels: complete merge scenarios, conflicting files, con-

flict blocks, and conflicting lines of code reported by each merge tool for the

merge scenarios in our data set. We first focus on comparing the number of

completely resolved conflicting scenarios. Completely resolving a conflicting

scenario is the best case for any tool since this completely relieves the devel-

oper from looking at this scenario. While a tool may not be able to completely

resolve a scenario, it may be able to reduce the number of conflicting files or

conflicting regions a developer needs to deal with, or it may also reduce the

size of the reported conflicts in terms of lines of code (LOC). We report the

cases in which such reduction happens. Alternatively, a tool may worsen the

situation for a developer where it actually complicates the conflict by reporting

more conflicting files, blocks, or lines of code.

6.1 Completely Resolved Merge Scenarios

Table 6.1 shows the breakdown of the merge results for each project. The Total

Scenarios column shows the number of conflicting Git scenarios evaluated for

each project. We then show the results for IntelliMerge and RefMerge,

respectively. For each tool, we show the number of completely resolved merge

scenarios (columns Resolved), the number of merge scenarios where the conflict
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Table 6.1: Breakdown of merge scenario results for each tool, compare to Git.
The percentage in parentheses shows the proportion from total scenarios in
each project. For each project, the tool that was able to completely resolve
more merge scenarios is shown in bold.

Project Name Total Scenarios
IntelliMerge RefMerge

Resolved Changed Unchanged Timeout Resolved Changed Unchanged Timeout

cassandra 922 41 (5%) 88 (9%) 3 (0%) 790 (86%) 84 (9%) 49 (5%) 298 (33%) 491 (53%)

elasticsearch 178 3 (2%) 99 (56%) 5 (3%) 71 (40%) 8 (4%) 57 (32%) 96 (54%) 17 (10%)

gradle 118 1 (1%) 105 (89%) 6 (5%) 6 (5%) 10 (8%) 38 (32%) 70 (59%) 0 (0%)

antlr4 100 1 (1%) 95 (95%) 1 (1%) 3 (3%) 1 (1%) 28 (28%) 71 (71%) 0 (0%)

platform fwk support 95 5 (5%) 55 (58%) 3 (3%) 32 (34%) 7 (7%) 25 (26%) 63 (66%) 0 (0%)

deeplearning4j 93 3 (3%) 83 (89%) 6 (6%) 1 (1%) 5 (5%) 19 (20%) 69 (74%) 0 (0%)

realm-java 92 7 (8%) 69 (75%) 14 (15%) 2 (2%) 8 (9%) 20 (22%) 64 (70%) 0 (0%)

jackson-core 81 0 (0%) 80 (99%) 1 (1%) 0 (0%) 3 (4%) 28 (35%) 50 (62%) 0 (0%)

android 81 3 (4%) 73 (90%) 5 (6%) 0 (0%) 8 (10%) 12 (15%) 61 (75%) 0 (0%)

cometd 63 2 (3%) 55 (87%) 5 (8%) 1 (2%) 5 (8%) 11 (17%) 47 (75%) 0 (0%)

storm 33 1 (3%) 29 (88%) 3 (9%) 0 (0%) 0 (0%) 5 (15%) 28 (85%) 0 (0%)

ProjectE 30 1 (3%) 26 (87%) 2 (7%) 1 (3%) 0 (0%) 12 (40%) 18 (60%) 0 (0%)

javaparser 23 3 (13%) 13 (57%) 7 (30%) 0 (0%) 0 (0%) 9 (39%) 14 (61%) 0 (0%)

druid 17 2 (12%) 13 (76%) 2 (12%) 0 (0%) 1 (6%) 9 (53%) 7 (41%) 0 (0%)

androidannotations 15 1 (7%) 14 (93%) 0 (0%) 0 (0%) 0 (0%) 4 (27%) 11 (73%) 0 (0%)

junit4 14 1 (7%) 12 (86%) 1 (7%) 0 (0%) 1 (7%) 5 (36%) 8 (57%) 0 (0%)

MinecraftForge 14 2 (14%) 10 (71%) 0 (0%) 2 (14%) 0 (0%) 6 (43%) 8 (57%) 0 (0%)

iFixitAndroid 13 0 (0%) 13 (100%) 0 (0%) 0 (0%) 1 (8%) 7 (54%) 5 (38%) 0 (0%)

MozStumbler 10 0 (0%) 8 (80%) 2 (20%) 0 (0%) 1 (10%) 6 (60%) 3 (30%) 0 (0%)

error-prone 9 1 (11%) 7 (78%) 1 (11%) 0 (0%) 0 (0%) 3 (33%) 6 (67%) 0 (0%)

Total 2,001 78 (4%) 947 (46%) 67 (4%) 909 (46%) 143 (7%) 353 (18%) 997 (50%) 508 (25%)

result changed from what Git reports (columns Changed), the number of merge

scenarios where the merge conflict remains the same (columns Unchanged) and

the number of merge scenarios where the tool times out (columns Timeout).

Note that a change in the conflict result could mean either a decrease or

increase in the number or size of the reported conflicts; we discuss the details of

these changed scenarios in Section 6.1.1. Note that RefMerge times out on 508

merge scenarios across two different projects and IntelliMerge times out on

909 merge scenarios across nine different projects. The main reason RefMerge

times out is because of long commit histories that slow RefactoringMiner

down, often timing out before RefMerge begins inverting refactorings. As for

IntelliMerge, the main contributor to timing out is larger merge scenarios

where more changed files cause IntelliMerge to take significantly longer in

the graph building step.

As the table shows across all evaluated merge scenarios, IntelliMerge was

able to completely resolve 78 merge scenarios out of the 2,001 total scenarios

(i.e., 4%) while RefMerge was able to completely resolve 143 (7%) scenarios. At
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a project level, IntelliMerge and RefMerge are able to completely resolve at

least one scenario in a total of 17 (85%) and 14 (70%) of projects respectively.

However, there are seven projects where IntelliMerge resolves more scenarios

than RefMerge, while there are 11 projects where RefMerge resolves more

scenarios than IntelliMerge.

6.1.1 Merge Scenarios with Differences in Conflicts

We now look at the remaining scenarios that the tools are not able to com-

pletely resolve, but for which the result of the conflict changed. We use Fig-

ures 6.1-6.3 to discuss these scenarios per project at the file, block, and lines of

code levels respectively1. There are two parts to each figure. On the left-hand

side, we provide a box plot of the overall distribution of reported conflicts at

that granularity level for all three tools across all evaluated scenarios. On the

right-hand side, we provide a table that zooms in on the conflicting scenarios

from the Changed column of Table 6.1. For each granularity level (conflicting

files, conflict blocks, and conflict size in terms of LOC), we show the number

of scenarios for which a tool increased or decreased the resulting number of

conflicts. For example, for the last project error-prone in Figure 6.1b, we

can see that there are four scenarios that IntelliMerge reduced the number

of conflicting files for, while it increased the number of conflicting files for

three scenarios. The percentage shown in parentheses is the median reduc-

tion/increase per merge scenario in that project (or over all scenarios in the

last row of the table). For example, if Git reports 4 conflicting files while a

tool reports 2 conflicting files, then this is a (4−2)/4 = 50% reduction. In the

example of error-prone, the median reduction of the number of conflicting

files for the corresponding four scenarios is 46%. The same interpretation of

the numbers can be used for all granularity levels, which we discuss in detail

below. Ideally, even if a tool cannot completely resolve a scenario, it would be

able to partially resolve some of the reported conflicts. For each project, we

show in bold which tool achieves the most reduction and the least increase.

1We use platform fwk supp as a shortened version of platform frameworks support for
better table sizing for readability

38



(a) Overall Distribution

Project
Reduced Confl. Files Increased Confl. Files

IntelliMerge RefMerge IntelliMerge RefMerge

cassandra 3 (33%) 37 (50%) 68 (438%) 0 (0%)

elasticsearch 4 (20%) 15 (33%) 99 (260%) 24 (55%)

gradle 6 (33%) 10 (22%) 91 (500%) 14 (50%)

antlr4 2 (56%) 6 (18%) 92 (445%) 15 (17%)

platform fwk supp 5 (70%) 5 (4%) 44 (375%) 9 (18%)

deeplearning4j 6 (67%) 0 (0%) 59 (160%) 9 (80%)

realm-java 10 (39%) 4 (25%) 46 (181%) 5 (50%)

jackson-core 0 (0%) 6 (33%) 79 (850%) 11 (50%)

android 6 (38%) 2 (30%) 55 (167%) 1 (10%)

cometd 2 (47%) 3 (25%) 48 (658%) 3 (8%)

storm 3 (33%) 1 (33%) 22 (345%) 1 (100%)

ProjectE 4 (12%) 2 (45%) 24 (79%) 6 (7%)

javaparser 5 (43%) 4 (59%) 8 (150%) 3 (50%)

druid 8 (46%) 2 (33%) 0 (0%) 1 (50%)

androidannotations 1 (67%) 3 (50%) 13 (100%) 1 (10%)

junit4 5 (33%) 0 (0%) 7 (150%) 5 (50%)

MinecraftForge 1 (10%) 1 (17%) 9 (100%) 2 (149%)

iFixitAndroid 5 (81%) 4 (93%) 5 (78%) 3 (1500%)

MozStumbler 1 (25%) 2 (37%) 5 (50%) 1 (20%)

error-prone 4 (46%) 2 (25%) 3 (750%) 0 (0%)

Total 81 (38%) 109 (50%) 777 (333%) 120 (33%)

(b) Breakdown by merge scenario

Figure 6.1: Conflicting files per merge scenario.

6.1.2 Conflicting Files

We first look at the conflicting file level in Figure 6.1. Figure 6.1a shows the

distribution of the number of reported conflicting files per merge scenario. The

figure shows that Git and RefMerge have a median number of two conflicting

files while IntelliMerge has a median of eight. However, such a plot does

not give us any indication about the developer experience on a scenario level,

when it compares to what they currently experience with Git. To understand

the tool’s behavior on a scenario level, we look at the table in Figure 6.1b,

which shows the number of scenarios for which each tool results in an increase

or decrease in the number of conflicting files. Overall, the table shows that

IntelliMerge reduces the number of reported conflicting files in 81 scenarios

(4% of all evaluated scenarios) by a median 38% reduction. On the other

hand, IntelliMerge increases the number of reported conflicting files in 777

scenarios (39%) by a median 333% increase. In other words, on average,

IntelliMerge increases the number of conflicting files by three-fold in these

scenarios. RefMerge reduces the number of reported conflicting files for 109
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(a) Overall Distribution

Project
Reduced Confl. Blocks Increased Confl. Blocks

IntelliMerge RefMerge IntelliMerge RefMerge

cassandra 5 (46%) 11 (14%) 83 (500%) 38 (25%)

elasticsearch 4 (28%) 22 (33%) 95 (271%) 35 (25%)

gradle 10 (33%) 18 (19%) 95 (433%) 20 (45%)

antlr4 3 (20%) 7 (5%) 92 (479%) 21 (13%)

platform fwk supp 8 (51%) 9 (25%) 47 (517%) 16 (13%)

deeplearning4j 20 (42%) 6 (9%) 63 (175%) 13 (29%)

realm-java 22 (50%) 13 (21%) 47 (200%) 7 (40%)

jackson-core 0 (0%) 11 (33%) 80 (1522%) 17 (38%)

android 21 (40%) 3 (17%) 52 (124%) 9 (33%)

cometd 3 (23%) 6 (25%) 52 (809%) 5 (11%)

storm 3 (25%) 4 (25%) 26 (233%) 1 (6%)

ProjectE 4( 15%) 4 (20%) 22 (94%) 8 (11%)

javaparser 3 (90%) 5 (80%) 10 (369%) 4 (21%)

druid 13 (67%) 6 (50%) 0 (0%) 3 (8%)

androidannotations 1 (89%) 2 (58%) 13 (114%) 2 (17%)

junit4 5 (60%) 0 (0%) 7 (233%) 5 (25%)

MinecraftForge 1 (5%) 3 (19%) 9 (100%) 3 (33%)

iFixitAndroid 6 (57%) 3 (96%) 7 (100%) 4 (583%)

MozStumbler 3 (50%) 4 (24%) 5 (86%) 2 (21%)

error-prone 2 (91%) 3 (33%) 5 (417%) 0 (0%)

Total 137 (50%) 140 (25%) 810 (367%) 213 (25%)

(b) Breakdown by merge scenario

Figure 6.2: Conflicting blocks per merge scenario.

scenarios (5%) by a median 50% reduction while it increases the number of

reported conflicting files for 120 scenarios (7%) by a median 33% increase.

6.1.3 Conflict Blocks

We now look at the conflict block level in Figure 6.2. The number of conflict

blocks indicates the number of individual conflicting regions a developer needs

to deal with. Figure 6.2a shows that Git and RefMerge have almost the same

overall distribution of number of conflicting blocks per merge scenario (with

a median of 4). However, IntelliMerge has a much higher median number

of conflicting blocks at 16. Zooming in on the breakdown of increased and

reduced conflict blocks in Figure 6.2b, we find that IntelliMerge reduces

the number of reported conflict blocks for 137 scenarios (7%) by a median

50% reduction, while it increases the number of reported conflict blocks for

810 scenarios (40%) by a median of 367%. On the other hand, RefMerge

reduces the number of reported conflicts in 140 scenarios (7%) by a median

25% reduction and increases the number of reported conflicts for 213 scenarios
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(a) Overall Distribution

Project
Reduced Confl. LOC Increased Confl. LOC

IntelliMerge RefMerge IntelliMerge RefMerge

cassandra 25 (39%) 21 (9%) 19 (164%) 37 (25%)

elasticsearch 38 (45%) 48 (17%) 65 (118%) 41 (28%)

gradle 38 (45%) 33 (19%) 73 (190%) 28 (47%)

antlr4 20 (27%) 23 (4%) 75 (102%) 39 (10%)

platform fwk supp 24 (58%) 27 (16%) 33 (130%) 24 (10%)

deeplearning4j 45 (45%) 13 (10%) 43 (148%) 15 (20%)

realm-java 45 (45%) 13 (10%) 43 (148%) 15 (20%)

jackson-core 8 (47%) 20 (9%) 72 (430%) 22 (42%)

android 54 (58%) 10 (6%) 23 (119%) 7 (44%)

cometd 15 (51%) 9 (24%) 43 (241%) 10 (9%)

storm 14 (39%) 9 (30%) 16 (119%) 1 (1%)

ProjectE 18 (45%) 13 (11%) 10 (75%) 9 (9%)

javaparser 12 (59%) 6 (40%) 7 (275%) 7 (21%)

druid 15 (85%) 10 (7%) 0 (0%) 1 (57%)

androidannotations 4 (87%) 6 (37%) 10 (42%) 6 (46%)

junit4 10 (65%) 3 (6%) 3 (18%) 5 (33%)

MinecraftForge 4 (27%) 4 (13%) 4 (150%) 4 (58%)

iFixitAndroid 7 (34%) 4 (78%) 5 (55%) 5 (74%)

MozStumbler 7 (56%) 5 (34%) 3 (38%) 2 (17%)

error-prone 3 (84%) 3 (33%) 5 (187%) 4 (65%)

Total 414 (51%) 287 (13%) 584 (164%) 274 (23%)

(b) Breakdown by merge scenario

Figure 6.3: Conflicting LOC per merge scenario.

(11%) by a median of 25% increase.

6.1.4 Conflicting Lines of Code

Finally, we look at the conflicting lines of code (LOC) in Figure 6.3, which

measures the total number of lines in all conflict blocks/regions of a merge

scenario. From Figure 6.3a, we observe similar behavior of the tools as what

we observed for the conflicting files in Figure 6.1a. More closely from the table

in Figure 6.3b, we find that IntelliMerge reduces the number of conflicting

LOC in 414 scenarios (21%) by a median 51% reduction, while it increases the

conflicting LOC for 584 (29%) scenarios by a median 164% increase. RefMerge

reduces the conflicting LOC in only 287 scenarios (14%) by a median 13%

reduction and increases the conflicting LOC in 274 scenarios (14%) by a median

23% increase. Note that the discrepency between IntelliMerge’s increase rate

for conflicting regions and conflicting loc suggests that while IntelliMerge

results in a lot more conflicting regions than Git, the size of these conflicting

regions is small. To confirm this, we show the distribution of the reported
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Figure 6.4: Conflicting lines of code per conflict block.

conflicting loc per block (rather than over a whole scenario) in Figure 6.4.

The plot confirms that the conflict regions that IntelliMerge reports are

indeed quite small, even if they are much more frequent than the other tools.

6.2 Interpretation of RQ1 Results

The above results indicate that RefMerge completely resolves about twice as

many merge scenarios as IntelliMerge (143 versus 78). While IntelliMerge

is able to reduce conflicting LOC for a higher portion of scenarios than

RefMerge (51% versus 13%), this comes at a cost of a high increase in the

reported conflicts across all granularity levels for a large portion of the merge

scenarios. Additionally, IntelliMerge times out on a higher number of merge

scenarios than RefMerge. Thus, it seems IntelliMerge works extremely well

for a small proportion of scenarios where it is able to highly reduce the resulting

conflicts in a scenario, but actually makes it much worse for other scenarios.

Specifically, taking the total number of scenarios it can completely resolve

(78 from Table 6.1) and the ones in which it can reduce the total number

of conflicting LOC for (414 from Figure 6.3b), IntelliMerge can help the

developer deal with less conflicts in 492 scenarios (25% of the overall scenarios).

However, taking both timeouts (909 scenarios from Table 6.1) and worsened

results in terms of overall conflicting LOC (584 scenarios from Figure 6.3b),

IntelliMerge will not help the developer in the remaining 1,493 (75%) of the

scenarios, and will in fact make it worse.
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On the other hand, RefMerge can completely resolve or reduce the number

of conflicting LOC for only 430 scenarios (22%). However, RefMerge worsens

the situation at a much lower rate than IntelliMerge in only 782 (39%).

Additionally, the median percentage increase for RefMerge in terms of con-

flicting LOC is much lower at 23% as opposed to 164% for IntelliMerge.

Thus, RefMerge makes the situation worse for the developer both in a smaller

proportion of merge scenarios and by a lower percentage increase. Note that

the number of unchanged merge scenarios for RefMerge is also much higher

than IntelliMerge, because by construction, RefMerge resorts to a regular

Git merge when there are no supported refactorings for it to work with. Over-

all, our quantitative results show that each tool has its pros and cons, and it

is obvious that the characteristics or difficulty of a merge scenario impact the

results in some way. This is why we perform a qualitative analysis of these

discrepancies in RQ2 to understand the strengths and weaknesses of each tool,

as well as the characteristics of merge scenarios that cause them to fail.

RQ1 Summary: IntelliMerge completely resolves 78 (4%) of the merge
scenarios while RefMerge completely resolves 143 (7%). For scenarios the
tools cannot completely resolve, IntelliMerge reduces the overall conflicting
LOC in 414 scenarios (21%) by a median 51% reduction while it increases
it in 584 scenarios (29%) by a median 164% increase. RefMerge reduces
the conflicting LOC in 287 scenarios (14%) by a median 13% reduction and
increases it for 274 scenarios (14%) by only 23% increase.
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Chapter 7

RQ2: Discrepancies Between
the Tools

The quantitative numbers described in RQ1 are valuable for determining if

a merge tool reports less conflicts. However, these numbers do not provide

us information about the quality of the resolutions the tools provide. For

example, a merge tool could report no merge conflicts in a merge scenario

where conflicts should be reported. Similarly, we do not know if the reported

conflicts are real conflicts or not. Thus, we perform a qualitative study for

RQ2 to dig deeper into the reported results.

7.1 Research Method

7.1.1 Sampling Criteria

We manually analyze a sample of 50 merge scenarios to shed light on the

strengths and weaknesses of each tool. We randomly sample the 50 merge

scenarios across the following criteria: (1) IntelliMerge and RefMerge pro-

duce similar results, in terms of completely resolving the merge scenario, or

equally increasing/reducing the number of Git conflicts. (2) IntelliMerge

outperforms RefMerge in terms of completely resolving the scenario or re-

porting a lower number of conflicts at any granularity level and (3) RefMerge

outperforms IntelliMerge. When sampling the merge scenarios, we also try

to evenly sample across projects.
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Table 7.1: Comparing the false positives and false negatives reported by each
tool, across the 50 sampled scenarios.

RefMerge Git IntelliMerge

# Conflict Blocks Investigated 432 453 1,243

True Positives 199 198 142

False Positives 231 243 923

False Negatives 2 12 178

7.1.2 Analysis Method

The goal of our manual analysis is to analyze the conflicts reported by all three

tools across the sampled scenarios. To investigate if a merge conflict is a true

positive or false positive, we look at the code region in the base commit, left

commit, and right commit. We determine whether integrating the changes

from both parents should result in a merge conflict, based on the semantics

of the changes. If a merge conflict is expected, we label this conflict region

as a true positive. If it should not result in a merge conflict, we label it as a

false positive. If the other merge tools do not report the same merge conflict,

we investigate the result of their merge and decide if it is a true negative (i.e.,

conflict should not be reported) or false negative (i.e., the tool missed the

conflict). Additionally, we investigate and categorize the reasons behind false

positives and false negatives for each tool. This process takes an average of 69

minutes per merge scenario.

7.2 Results

Table 7.1 shows the total number of conflict blocks that we analyze across

the 50 sampled scenarios, as well as the number of false positives and false

negatives that we find for each tool. As shown, Git reports 243 false posi-

tives and 12 false negative. IntelliMerge reports 923 false positives and 178

false negatives. Meanwhile, RefMerge reports 231 false positives and two false

negatives. When compared to Git, RefMerge reduces the number of false pos-

itives and false negatives by 5% and 83% respectively, while IntelliMerge in-
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Table 7.2: The reason for each false positive and false negative reported by
Git, as well as the frequency for each reason.

Git Reasons Type Frequency

No Refactoring Handling False Positive 157

Ordering Conflict False Positive 75

Formatting Conflict False Positive 11

No Refactoring Handling False Negative 12

Total 257

creases the number of false positives and false negatives by 279% and 1,383%.

We also show the number of true positives reported by each tool. While

Git and RefMerge report a total of 198 and 199 true positives respectively,

IntelliMerge reports only 142 true positives.

7.2.1 Git Results

Table 7.2 shows the reasons behind the false positives and false negatives for

Git. There were generally three main reasons for false positives. The most

prevalent reason for Git’s false positives is not being able to handle refactor-

ings, and thus reporting conflicts that could be resolved automatically. There

are 157 (65%) false positive conflicts that Git reports which involve refactor-

ings. Given the selection of merge scenarios we use in our evaluation, it is

natural to find that many of the conflicts Git reports are related to refactor-

ings. Table 7.2 also shows that 75 (31%) of Git’s reported false positives are

due to ordering conflicts. An ordering conflict is a conflict caused by adding

two program elements to the same location and the merge tool not knowing

which order to put them in, when the order does not matter [12]. For exam-

ple, if Bob and Alice add two new Java methods to the same location, Git will

report a conflict when both methods can be added in either order. Finally,

the remaining 11 (5%) of Git’s false positives are formatting conflicts that are

caused by different formatting between branches. This could be an additional

white space or a new line on one branch that does not exist on the other.

Not being able to handle refactorings causes Git to miss 12 conflicts (false
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Table 7.3: The reason and frequency for false positives and false negatives
reported by RefMerge.

RefMerge Reasons Type Frequency

Unsupported Refactoring False Positive 88

Ordering Conflict False Positive 75

Refactoring-related Ordering Conflict False Positive 26

Refactoring-related Formatting Conflict False Positive 21

Formatting Conflict False Positive 11

IntelliJ Optimization False Positive 5

Undetected Refactoring False Positive 3

Fails to Invert Refactoring False Positive 2

Fails to Replay Refactoring False Negative 2

Total 233

negative), where a pair of Rename Class refactorings performed on each branch

cause Git to miss several conflicting regions and result in syntax errors.

7.2.2 RefMerge Results

Table 7.3 shows the reasons behind the false positives and negatives for

RefMerge. Similar to Git, RefMerge also suffers from being unable to resolve

ordering and formatting conflicts, reporting the same 75 ordering conflicts and

11 formatting false positives as Git. RefMerge reports an additional 26 order-

ing conflicts and 21 formatting conflicts that arise from its refactoring handling,

totalling 101 (44%) ordering conflicts and 32 (14%) formatting conflicts. The

majority of these additional ordering conflicts are caused by Move Method and

Move Inner Class refactorings being moved to the correct class but not being

moved to the correct location within the file. Instead of reporting the origi-

nal move-related refactoring conflict, RefMerge reports a much larger ordering

conflict containing several methods and classes. The additional formatting

conflicts are caused by formatting differences from inverting refactorings, also

typically observed with Move Method and Move Inner Class refactorings. In

these conflicts, RefMerge resolves the refactoring conflict but leaves behind a

small conflict that usually consists of different amounts of white space.

In 88 (38%) of the false positives that RefMerge reports, the underlying
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issue is a refactoring that is not supported in the current implementation.

For example, merge scenario ea42d642 within gradle has an Add Parameter

refactoring that is involved in one of the reported conflicts.

There are five (2%) false positives caused by IntelliJ optimizations, which

are automatic optimizations done to the code after using the refactoring engine.

All five of the IntelliJ optimizations were caused by inverting refactorings that

were not involved in the original refactoring conflicts reported by Git. An ex-

ample of this is replacing several import statements with import package.*,

which then cause Git to detect a conflict in the merging step.

There are three (1%) false positives that are due to undetected refactorings

that RefactoringMiner did not detect. There are several similar methods,

both in structure and naming, in the classes where RefactoringMiner misses a

refactoring, which likely made it difficult for RefactoringMiner to detect the

refactoring. We reported the issue to the RefactoringMiner developers.

The remaining two (1%) of RefMerge’s false positives are refactoring con-

flicts that RefMerge fails to resolve because it could not invert a Move Method

refactoring. After investigating, we found that an additional unsupported

refactoring was performed on the method, causing RefMerge to be unable to

provide the correct information to the refactoring engine.

Finally, RefMerge reports two false negatives. These false negatives are

caused by successfully inverting the refactoring and resolving the conflict but

failing to replay the refactoring. Although this does not result in a syntax

error, this is not a result that the developer would expect. This happens for a

Move Method refactoring and an Extract Method refactoring. Replaying the

merges resulted in null pointer exceptions, which suggests this is caused by a

bug in our implementation, which we will further investigate.

7.2.3 IntelliMerge Results

Table 7.4 shows the reasons behind the false positives and negatives for

IntelliMerge. We start with some of the reasons we already observed for the

other tools. IntelliMerge reports 25 false positives due to ordering conflicts

and also has 74 false positives because of undetected refactorings. There are
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Table 7.4: The reason and frequency of false positives and false negatives
reported by IntelliMerge.

IntelliMerge Reasons Type Frequency

Matching Error False Positive 814

Undetected Refactoring False Positive 74

Ordering Conflict False Positive 25

Missing Refactored Reference False Positive 7

Incorrectly Detected Refactoring False Positive 2

Formatting Conflict False Positive 1

Deletes Conflict Block False Negative 87

Matching Error False Negative 75

Incorrectly Detected Refactoring False Negative 16

Total 1,101

12 refactoring types where IntelliMerge fails to detect a refactoring with the

top three being Add Parameter (19), Rename Parameter (15), and Extract

Method (8). The undetected refactorings can be split into two groups: (1)

where there are several similar program elements and a refactoring drops the

program element below the similarity threshold, and (2) where several changes

to a program element cause IntelliMerge to think that the refactored pro-

gram element is an addition.

Note that, unlike Git and RefMerge, IntelliMerge reports only one false

positive related to formatting conflicts. However, 814 of IntelliMerge’s false

positives (88%) are due to matching errors. We define a matching error as an

error caused by IntelliMerge’s graph node matching process. This primarily

happens with comments, annotations, and imports.

There are seven false positives that are due to missing refactoring refer-

ences, where IntelliMerge detects a refactored program element but fails to

match added references on the other branch. Both branches added a new ref-

erence in the same location, causing IntelliMerge to think that a program

element was refactored while an addition was made to the same location which

resulted in a conflict.

The last two false positives that IntelliMerge reports are caused by in-
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correctly detecting a refactoring that was never performed. IntelliMerge in-

correctly performs an Add Parameter refactoring to a method causing merge

conflicts whenever the method is called.

IntelliMerge results in 87 (49% of all false negatives) false negatives be-

cause it deletes conflict blocks, incorrectly deleting code that exists in con-

flict blocks reported by Git and RefMerge. This primarily happens when

IntelliMerge deletes the file containing a merge conflict. When a file or

program element exists in the base commit and IntelliMerge cannot find

a match for it in either parent commit, IntelliMerge seems to incorrectly

delete it. Note that this is a lower bound for how many times IntelliMerge

results in a false negative. IntelliMerge could have deleted other files or

program elements that were not part of a conflict block and since we focused

on the reported conflicts by each tool, we would have missed this happening

in files where no merge tool reported a conflict.

We find that 75 (42% of all false negatives) of IntelliMerge’s false nega-

tives are due to matching errors which lead to syntax errors. Most of the syntax

errors seem to happen in classes that contain several method-level refactorings

and several similar method declarations.

Finally, the 16 (9%) remaining false negatives are due IntelliMerge de-

tecting refactorings that were not performed, leading to IntelliMerge moving

methods to classes that the developers never moved them to and causing ad-

ditional syntax errors. This causes IntelliMerge to not detect any conflicts

where conflicts should have occurred.

7.3 Interpretation of RQ2 Results

The above results indicate that RefMerge reports about the same amount of

false positives as Git (231 versus 243) while IntelliMerge increases the num-

ber of false positives by almost three-fold (923 versus 243). Unlike Git and

RefMerge, IntelliMerge does well with ordering and formatting conflicts due

to its graph-based approach. While IntelliMerge also decreases the number

of refactoring conflicts a developer needs to deal with, this comes at the price of
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many more false positives: 814 of IntelliMerge’s false positives are matching

errors which are typically small in size. This explains the quantitative results

of RQ1 where IntelliMerge reports more conflicts but less conflicting LOC.

Additionally, while IntelliMerge does not detect refactorings in 74 conflict

blocks reported by Git (struggling the most with parameter level refactorings),

IntelliMerge typically does well with the refactoring conflicts it does detect.

However, IntelliMerge also incorrectly detects 18 refactorings (two false pos-

itives and 16 false negatives from Table 7.4) and reports a total of 178 false

negatives. Thus, while the results of RQ1 suggest that IntelliMerge works

extremely well for a small proportion of scenarios where it is able to highly

reduce the resulting conflicts in a scenario, our qualitative results suggest that

some of these may actually be false negatives.

On the other hand, RefMerge nearly eliminates false negatives, reducing

them by 83%, while reducing the number of false positives reported by 5%

when compared to Git. RefMerge worsens the situation at a much lower rate

than IntelliMerge, reporting 52 false positives that Git does not, and 21

of them are formatting conflicts left after resolving a refactoring conflict. In

general, RefMerge struggles most with move-related refactorings.

RQ2 Summary:
RefMerge reduces the number of false positives and false negatives by 5% and
83% respectively, while IntelliMerge increases them by 279% and 1,383%.
RefMerge struggles most with Move Method whereas IntelliMerge struggles
most with Add Parameter, Rename Parameter.

51



Chapter 8

Discussion

In this thesis, we compared two refactoring-aware merging approaches that

have not been compared before. RQ1 results show that despite supporting

less refactorings, RefMerge managed to resolve about twice as many conflict-

ing merge scenarios as IntelliMerge. We found that while IntelliMerge re-

duced the number of conflicting LOC in more scenarios compared to RefMerge,

IntelliMerge also increased the number of conflicting LOC in more scenar-

ios. On the other hand, RefMerge makes the situation worse in a smaller

proportion of merge scenarios and by a lower percentage increase. Addition-

ally, our qualitative analysis shows that IntelliMerge reported a much higher

number of false negatives whereas RefMerge reported only two false negatives

in all 50 merge scenarios. Thus, even considering unsupported refactorings,

operation-based refactoring-aware merging shows promise to help improve the

developers’ experience without the risk of increasing the number of false neg-

atives. In other words, the results in this study are a lower bound of its

potential.

8.1 Strengths and Weaknesses ofIntelliMerge

The nature of IntelliMerge’s graph-based approach makes it avoid format-

ting and ordering conflicts. However, IntelliMerge seems to struggle with

correctly matching graph nodes across the two versions of the code. We believe

that IntelliMerge’s use of a similarity score for its refactoring detection is

one of the main reasons for this. IntelliMerge often failed to detect a refac-
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toring because the refactored program element was too similar to other exist-

ing program elements. We also found cases where a non-refactoring change

caused a program element to be within the similarity threshold of other pro-

gram elements, causing IntelliMerge to treat it as a refactoring. Although

IntelliMerge could potentially change the used similarity threshold, the use

of a similarity score will always run into these problems. IntelliMerge also

results in several files being deleted. Upon further examination and contact-

ing the IntelliMerge authors, IntelliMerge sometimes does not detect a

match for a class between a parent commit and the base commit. This leads

to it thinking that the class is deleted by one side, so it deletes the class when

merging the three versions. This process results in the file containing the class

to be deleted if there are no other classes within the file. However, when

IntelliMerge successfully detects a refactoring, it handles it almost always

handles it correctly and resolves the conflict.

8.2 Strengths and Weaknesses of RefMerge

Whereas IntelliMerge’s graph-based approach makes it avoid formatting and

ordering conflicts, RefMerge’s operation-based approach is more prone to such

conflicts. While formatting conflicts are a small price to pay considering they

are typically easier to resolve than refactoring conflicts, move-related refactor-

ings proved to be conceptually challenging when it comes to undoing/redoing

them. Although RefMerge can move the program element to the correct class,

it cannot guarantee that it is moved to the same location it was previously

at. This happens because the IntelliJ refactoring engine moves the method

to a location alphabetically and this is usually not the textual location it was

moved from. We attempted to use information provided by RefactoringMiner

to move it to the correct location textually; however other changes made on

the same branch such as method additions or deletions still lead to it being

moved to the wrong location. Despite this, overall, RefMerge resolves or sim-

plifies more refactoring conflicts than the complications it creates, all while

avoiding syntax errors.
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8.3 Moving Forward

Driven by these findings, we propose a few paths moving forward in refactoring-

aware merging. We believe that improvements in graph-based refactoring-

aware merging require addressing the matching algorithm. The current merg-

ing algorithm IntelliMerge uses seems to work well, but the initial match-

ing phase can be improved by avoiding the similarity score matching and

instead using a refactoring detection algorithm such as that used in Refactor-

ingMiner [60]. Additionally, further investigation and resolving the deleting

files limitation is necessary to continue this line of work.

We believe that operatoin-based refactoring-aware merging shows very

promising results, despite a small list of supported refactorings. Future work

could go in three different directions: (1) adding support for more refactoring

types, (2) handling move-related ordering conflicts using light-weight program

analysis to determine where the program element was in the base commit, and

(2) treating add and delete edits as operations which could help resolve the

move-related ordering conflicts as well as improving conflict detection.

Finally, it could make sense to combine the two refactoring-aware ap-

proaches in some way similar to how changing strategies/auto-tuning between

semi-structured and structured merge was previously proposed [11]. As the

nature of graph-based merging seems to do well with ordering conflicts and for-

matting conflicts, this would address the weaknesses of operation-based merg-

ing. However, IntelliMerge’s limitations in terms of its matching algorithm

would need to be addressed before this path could be considered further.
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Chapter 9

Threats to Validity

We explain the potential threats to the validity of our results.

9.1 Construct Validity

By comparing implementations with different numbers of supported refactor-

ings, the quantitative comparison could be unfair. On one hand, it could be

unfair to IntelliMerge because by supporting more than double the refac-

torings compared to RefMerge, IntelliMerge has more room for error. On

the other hand, it could be unfair to RefMerge because RefMerge has less

potential to improve the scenarios. While this could threaten the validity

of our evaluation, the evaluation is focused on a practical evaluation of the

current capabilities of each tool. As each tool promises to be able to handle

the refactorings they support, our evaluation looks at that and reports what

their outputs are. The qualitative analysis alleviates these concerns and dives

into the reasons by looking at the results more closely. All of the reasons

for IntelliMerge seem to point to graph matching being IntelliMerge’s

core issue, not necessarily because it handles extra refactorings poorly. Simi-

larly, false positives for RefMerge actually point to unsupported refactorings

so if anything, the evaluation is unfair to RefMerge and yet RefMerge showed

positive results. Further analysis of only the merge scenarios that contain

refactorings supported by both tools would be necessary to compare how both

tools handle the same set of refactorings. Additionally, adding support for all

of the refactorings that IntelliMerge supports to RefMerge and re-running
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the comparison would is another strategy to compare against the same set of

refactorings.

In our qualitative analysis, we manually compare the results of the three

tools to identify false positives and false negatives. This means we may miss

false negatives that all three tools fail to report. Additionally, the analysis

was done by a single author and is thus subject to their understanding of the

scenario. To alleviate this as much as possible, we compare the changes in the

left parent, right parent, and base commit for each merge scenario to first try

to understand the developer’s intentions and the expected merge result. We

record a detailed description of our interpretation of the scenario and conflicts

and share this in our artifact to allow further external validation. Further

analysis involving investigating run time and compile time errors could also

further shed further light on false negatives reported by the three approaches.

9.2 Internal Validity

Any problems inherited from the tools used in RefMerge or in our evaluation

setup may lead to inaccuracies in the results. To mitigate this, we carefully

consider the role of each tool used in our study and analyze its results through

manual verification. While not a bug with IntelliJ per se, our qualitative

analysis showed that IntelliJ’s refactoring engine, which we use to invert and

replay refactorings, performs optimizations that lead to unnecessary merge

conflicts. This means that the reported number of conflicts in our results is an

upper bound and with engineering effort and help from the IntelliJ developers

to allow us to disable these optimizations, these limitations can be mitigated.

Alternatively, a different refactoring engine that does not force these optimiza-

tions can be used. Any refactoring that RefactoringMiner misses will not be

inverted and replayed, which will result in the same merge as Git. Any refac-

torings that RefactoringMiner detects which were not performed will result

in RefMerge inverting and replaying a “fake” refactoring, which may lead to

unnecessary merge conflicts. During our development, we came across some

such occurrences and the RefactoringMiner author fixed these in the tool. In
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our qualitative analysis, we came across three refactorings that Refactoring-

Miner did not detect, which we recently reported. Overall, RefactoringMiner

achieves a precision of 98% and 87% recall [59]. In general, it is important for

RefMerge to rely on a tool with high precision to ensure we do not result in

unnecessary conflicts. A lower recall simply means RefMerge will result in the

same resolution as Git.

9.3 External Validity

By selecting sample projects with different sizes and refactoring histories, we

try our best to have a representative evaluation. Our evaluation is limited

to Java open-source projects since both tools are Java specific. That said,

while our implementation of RefMerge is Java specific, an operation-based

approach does not need to be. Our qualitative analysis is based only on a

sample of 50 merge scenarios due to the time consuming nature of the process

(avg. 69min/scenario). However, the 50 merge scenarios we investigated have

more than 1,300 unique merge conflicts. As far as we are aware, this is the most

extensive qualitative analysis performed in terms of unique merge conflicts [11],

[20], [54] Naturally, investigating additional merge scenarios could reveal more

for each tool.
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Chapter 10

Conclusion

In modern software development, version control systems play a crucial role

in enabling developers to collaborate on large projects. Most modern ver-

sion control systems use unstructured merging techniques that do not un-

derstand code-change semantics such as refactorings. There are primarily

two lines of work that specifically focus automating refactoring conflict res-

olution: (1) operation-based refactoring-aware merging, originally proposed

by Dig et al. [24] and (2) a graph-based refactoring-aware merging called

IntelliMerge [55]. While the evaluation results in both of their respective

publications seem promising, the two refactoring-aware approaches have never

been compared.

To compare the two refactoring-aware techniques, we first develop and

present RefMerge, an operation-based refactoring-aware merging tool that

works with Git history. As complex refactorings such as extract method have

been proposed to be conceptually challenging for operation-based merging [55],

we added support for extract method and inline method.

To evaluate the two refactoring-aware techniques, we perform a large scale

quantitative comparison of the effectiveness of operation-based refactoring-

aware merging implemented in RefMerge versus graph-based refactoring-aware

merging implemented in IntelliMerge. Our evaluation consists of 2,001

merge scenarios from 20 open-source projects. We find that while IntelliMerge

reduces the individual number of conflicts at a higher level than RefMerge,

RefMerge resolves almost twice as many conflicting merge scenarios.
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We additionally perform a systematic qualitative comparison of the strengths

and weaknesses of both techniques through a manual analysis of their re-

sults across 50 merge scenarios. Our findings suggest that the nature of

IntelliMerge’s graph-based approach makes it avoid formatting and ordering

conflicts. Furthermore, when IntelliMerge successfully detects a refactor-

ing, it almost always handles it correctly. However, IntelliMerge seems to

struggle with correctly matching graph nodes across the two versions of code,

resulting in almost three times as many unnecessary conflicts and more than

10 times as many false negatives. On the other hand, RefMerge’s operation-

based approach seems to be more prone to formatting and ordering conflicts.

Despite this, RefMerge resolves and simplifies more refactoring conflicts than

the complications it creates, all while nearly eliminating false negatives.

Further work can explore adding support for more refactoring types, such

as parameter and field level refactorings. Another possible direction could be

to collaborate with IntelliJ developers to resolve the conflicts caused by IntelliJ

optimizations. Additionally, extending the work to treat edits as operations

could improve refactoring conflict resolution as well as other types of conflicts.

Finally, resolving refactoring-related ordering conflicts that our implementa-

tion of operation-based refactoring-aware merging cause would greatly improve

the results.
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Appendix A

Conflict Resolution Logic

We introduce the notations used to describe refactoring logic by using the

program elements in the motivating example within Figure 2.2.

• simpleName(p) denotes the simple name of a program element, while fqName(p)

denotes the fully qualified name of the program element. For example, when

p = addListener in Scanner.java, simpleName(p) = addListener and

fqName(p) = Scanner.addListener.

• classOf(p) denotes the parent class that defines program element p. Using

addListener as p, classOf(p) = Scanner.

• packageOf(p) denotes the package of program element p. signature(p) is

the signature of program element p, or signature(p) = void addListener(O

obj).

• inherits(ci, cj) is true when class ci inherits cj are in an inheritance relation-

ship. For example, when ci = Reader and cj = Scanner, inherits(ci, cj) =

True.

• overrides(mi,mj) is true when method mi overrides method mj. Simi-

larly, overloads(mi,mj) is true when method mi overloads method mj.

codeOverlaps(mi,mj) is true when two extracted code fragments overlap

within the same source method.

The following are the equality conditions for classes (c) and methods (m):

ci = cj iff signature(ci) = signature(cj) ∧ fqName(ci) = fqName(cj)
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mi = mj iff signature(mi) = signature(mj) ∧ fqName(mi) = fqName(mj)

To remove redundant logic predicates, we combineMoveMethod, RenameMethod,

andMoveAndRenameMethod into one logic predicate,MoveAndRenameMethod.

We do the same for MoveClass, RenameClass, and MoveAndRenameClass.

We can do this becauseMoveMethod is essentially aMoveAndRenameMethod

refactoring where the method is renamed to itself. We use sameType() to dif-

ferentiate between predicates within the same logic cell. sameType is false

only when both refactorings are different refactoring types. For example,

sameType() is false if one refactoring is Rename Method and the other is

Move Method. However, if the refactorings are Rename And Move Method and

Rename Method, then sameType is true because Rename And Move Method

contains Rename Method.

A.1 Conflict Predicates

If a conflict predicate returns true, then the refactoring pair is conflicting.

MoveAndRenameMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(((m1 = m3 ∧m2 �= m4)∨
(m1 �= m3 ∧m2 = m4)) ∧ sameType())∨

(¬overrides(m1,m3) ∧ overrides(m2,m4)∨
(¬overloads(m1,m3) ∧ overloads(m2,m4)

(A.1)

MoveAndRenameClass(c1, c2)/MoveAndRenameMethod(m1,m2) :=

false
(A.2)

MoveAndRenameClass(c1, c2)/MoveAndRenameClass(c3, c4) :=

((c1 = c2 ∧ c3 �= c4)∨
(c1 �= c2 ∧ c3 = c4)) ∧ sameType()

(A.3)
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ExtractMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m2 = m4)∨
(overrides(m2,m4)∨
(overloads(m2,m4)

(A.4)

ExtractMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

false
(A.5)

ExtractMethod(m1,m2)/ExtractMethod(m3,m4) :=

(m2 = m4)∨
(overrides(m2,m4)∨
(overloads(m2,m4)∨

(overlappingFragments(m1,m3)

(A.6)

InlineMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m1 = m3)
(A.7)

InlineMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

false
(A.8)

InlineMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.9)

InlineMethod(m1,m2)/InlineMethod(m3,m4) :=

false
(A.10)

A.2 Commutative Predicates

If a commutative predicate returns true, then the refactoring pair has a com-

mutative relationship.
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MoveAndRenameMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m1 = m3) ∧ ¬sameType()
(A.11)

MoveAndRenameClass(c1, c2)/MoveAndRenameMethod(m1,m2) :=

(classOf(m1) = c1)∨
(classOf(m2) = c1)

(A.12)

MoveAndRenameClass(c1, c2)/MoveAndRenameClass(c3, c4) :=

(c1 = c3) ∧ ¬sameType()
(A.13)

ExtractMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m1 = m3)
(A.14)

ExtractMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

(classOf(m1) = c1)∨
(classOf(m2) = c1)

(A.15)

ExtractMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.16)

InlineMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m2 = m3)
(A.17)

InlineMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

(classOf(m1) = c1)∨
(classOf(m2) = c1)

(A.18)

InlineMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.19)

InlineMethod(m1,m2)/InlineMethod(m3,m4) :=

(m2 = m3)∨
(m1 = m4)

(A.20)
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A.3 Simplification Predicates: Transitivity

If the transitivity predicates return true, then the refactorings are transitive.

MoveAndRenameMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m2 = m3)
(A.21)

MoveAndRenameClass(c1, c2)/MoveAndRenameMethod(m1,m2) :=

false
(A.22)

MoveAndRenameClass(c1, c2)/MoveAndRenameClass(c3, c4) :=

(c2 = c3)
(A.23)

ExtractMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m1 = m3)
(A.24)

ExtractMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

false
(A.25)

ExtractMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.26)

InlineMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

false
(A.27)

InlineMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

false
(A.28)

InlineMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.29)

InlineMethod(m1,m2)/InlineMethod(m3,m4) :=

false
(A.30)
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A.4 Simplification Predicates: Refactoring Chain

If a refactoring chain predicate returns true, then the refactorings are part of

a refactoring chain.

MoveAndRenameMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

false
(A.31)

MoveAndRenameClass(c1, c2)/MoveAndRenameMethod(m1,m2) :=

(classOf(m1) = c1)∨
(classOf(m2) = c2)

(A.32)

MoveAndRenameClass(c1, c2)/MoveAndRenameClass(c3, c4) :=

false
(A.33)

ExtractMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m2 = m3)
(A.34)

ExtractMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

(classOf(m1) = c2)∨
(classOf(m2) = c1)

(A.35)

ExtractMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.36)

InlineMethod(m1,m2)/MoveAndRenameMethod(m3,m4) :=

(m1 = m4)
(A.37)

InlineMethod(m1,m2)/MoveAndRenameClass(c1, c2) :=

(classOf(m1) = c2)∨
(classOf(m2) = c1)

(A.38)
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InlineMethod(m1,m2)/ExtractMethod(m3,m4) :=

false
(A.39)

InlineMethod(m1,m2)/InlineMethod(m3,m4) :=

false
(A.40)
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