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ABSTRACT Real-time contingency analysis (RTCA) is paramount for modern power systems as it forms the
basis for important operator actions that help to improve system stability, optimize generator dispatch, man-
age disparate resources, prevent cascading outages, and enhance market operations. With increasing system
size and the number of contingency scenarios, RTCA is faced with computational challenges. To alleviate
this situation, massively parallel graphics processing units (GPUs) are introduced for the acceleration of
RTCA solution in this paper, where the compensation method (CM) is utilized for the concurrent AC power
flow solution. Strategies and principles on the data structure, kernel function, and memory management are
provided. Five benchmark systems (ranging from 300- to 13,659-bus) are employed for case studies. Based
on the sequential CM implemented on single-thread CPU, the performance analysis related to execution
time and speedup is carried out for parallel CMs running on other architectures, including multi-thread
CPU, single-GPU, and multi-GPUs. Results indicate that the parallel CM with multi-GPUs has sufficient
accuracy, convergence, and scalability. Finally, the potential of the proposal for practical RTCA has been
discussed with the reviewing of other state-of-the-art parallel computing methods reported in the literature.

INDEX TERMS Compensation method, fast decoupled power flow, graphics processing unit, parallel
computing, real-time contingency analysis.

I. INTRODUCTION
Real-Time Contingency Analysis (RTCA), which seeks to
assess the ability of a grid to withstand cascading com-
ponent failures/contingencies within a specified time span
(a few minutes) [1], is paramount for the reliable operation
of modern power systems, underpinning system stability and
economic prosperity [2]. In RTCA, each grid configuration
with component outages is simulated as a scenario, whose
feasibility is evaluated by the solution of nonlinear Alternat-
ing Current Power Flow (ACPF). If collapse consequence is
detected in any scenario, preventive and corrective operations
should be immediately implemented based on the analysis
results. Therefore, fast solution of multiple ACPFs/scenarios
is of great significance for RTCA. Nevertheless, the number
of possible contingency scenarios for N − k security criteria
is
∑k

n=1
N !

n!(N−n)! , which holds an exponential relationship
with N and k . During the last few decades, the system

scale has expanded and more stringent criteria have been
proposed by the North American Electric Reliability Corpo-
ration (NERC) [3], i.e., both N and k are increased, which
introduces great challenges for RTCA in the context of smart
grid as well as real-time operation.

Conventionally, two directions have been exploited to
alleviate the difficult compromise between a large num-
ber of contingency scenarios and the limited solution
time:
• Robust selection procedure: Since the evaluation of all
scenarios is impractical, a subset is usually generated
for analysis according to appropriate selection rules,
such as the Performance Index (PI) contingency ranking
method [4]. The size of the subset has a considerable
impact on the solution process of RTCA: if it is very
large (the conservative principle), the subsequent eval-
uation burden would be heavy; if it is relatively small
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(the progressive principle), the critical scenarios might
be skipped.

• Fast evaluationmethodology:The cardinality of the con-
tingency set can still be very large for practical systems
even if progressive selection strategy is utilized, there-
fore the High-Performance Computing (HPC) platform
should be resorted for acceleration. If the fast evaluation
methodology can process thousands of scenarios with
acceptable accuracy and efficiency, it may dominate
the solution process of RTCA and relieve the pressure
of selection procedure, which formulates the original
motivation for this paper.

Investigations on RTCA with HPC were implemented
on the multi-core Central Processing Unit (CPU) archi-
tecture [1], [5]–[10], such as shared memory computers,
distributed systems, and CPU clusters. Although the per-
formance reported is acceptable, their application scope is
restricted since most engineers and researchers have limited
access to supercomputers and large-scale CPU clusters.
On the other hand, the many-core Graphics Processing
Unit (GPU) architecture is accessible for the common
researcher with PC or workstation. It has received signif-
icant attention in HPC [11]–[20] as a result of its higher
floating-point performance, massive numbers of threads,
lower power consumption, and lower thread launch time
in comparison to its CPU counterpart. Therefore, GPU
is determined as the implementation platform in this
work.

On the GPU platform, both the Direct Current Power
Flow (DCPF) and ACPF have been implemented to formu-
late the RTCA by [11]–[13] and [14]–[20] respectively. The
DCPF is a linear simplification of real systems, with great
advantages on the computation efficiency and convergence;
however, the accuracy and capability of the solution are
insufficient, e.g., inability to check voltage limit violations.
On the contrary, the nonlinear ACPF is more accurate but
complicated. In the literature, several sophisticated methods
have been implemented on GPU to address ACPF-based
RTCA, such as the Newton-Raphson (NR) method [14]–[19]
and the Fast Decoupled (FD) method [14], [20]. Compared
with NR, the FD is more efficient algorithmically [4] due
to: 1) The Jacobian matrices B′ and B′′ need to be factor-
ized only once for the whole process of FD, while in NR
the Jacobian matrix J should be decomposed in each iter-
ation; 2) The dimension of B′ and B′′ is less than or equal
to half of the dimension of the original J , thus the total
factorization time of B′ and B′′ is less than that of J as
the time complexity of the fastest factorization algorithm
is O( 23n

3) [21].
The process of FD for single-scenario RTCA problem can

be concluded as the solution of a series of Axi = bi (i is the
iteration index), for which the direct method [13]–[19] seems
to be more attractive than the iterative method [11], [20] since
A is fixed. Taking the LU decomposition as an example,
A is factorized into L and U matrices, and yi is generated
from Lyi = bi by forward substitution, then xi is deduced

from Uxi = yi by backward substitution. During the whole
process, the factorization takes the majority of the time even
though it is executed only once while Forward and Backward
(F/B) substitutions are performed several times. In order to
accelerate the solution, efforts have been put forward on the
sparse LU decomposition, such as reducing the number of
fill-ins [21].

Nevertheless, in reality, RTCA comes with large num-
bers of scenarios, which can be represented as Akxi = bi
(k distinguishes different scenarios). The solution methodol-
ogy depicted above for single-scenario RTCA can be easily
extended into multi-scenario RTCA since each scenario is
spontaneously independent. According to the classical FD
method, each Ak should be factorized to perform the F/B
substitutions. In order to boost the efficiency to a higher
extent, the concept of Compensation Method (CM) is pro-
posed [4], [22], which factorizes the matrix A of base case
for only once, and deduces compensation factors for each
scenario during the F/B substitutions, thus the time and
effort corresponding to LU decomposition for all the other
scenarios can be saved. In addition to the superb solution
efficiency, the CM possesses satisfactory accuracy. Theoreti-
cally, the CM is integrated within the framework of FD, and
FD derives from the same mathematical formulation with
NR, therefore, the CM, FD, and NR should generate the
same accuracy of results if the same convergence criterion
is adopted. Different from the FD and NR with high popu-
larity, the CM has not been reported with GPU architecture
to the best of our knowledge, thus we intend to fill this
gap.

Based on the sparse matrix techniques and double-
precision floating-point format, the CM is implemented on
GPU parallel architecture. Instead of the trivial integrated
kernel design strategy, the decoupled kernels are developed
to achieve high performance. Principles for memory manage-
ment andmulti-GPUs implementation are also presented. The
accuracy and convergence properties of the proposed parallel
implementation scheme are validated by the open source
packageMatpower [23], where five test systems ranging from
300 to 13,659 buses are utilized. In order to evaluate the
performance of CM on parallel architectures, the sequen-
tial CM executed on single-thread CPU is determined as
the benchmark. Results for full N − 1 RTCA with parallel
CM on multi-thread CPU, single-GPU, and multi-GPUs are
collected, regulated, and compared, showing that the GPU is
superior on the speedup and scalability over CPU for RTCA
with CM. Finally, discussions on the potential of parallel CM
for practical RTCA are provided based on the reviewing of
other state-of-the-art parallel computing methods reported in
the literature.

The remainder of this paper is organized as follows.
Section II derives the solution framework of CMwith detailed
formulations. Parallel implementation strategies and princi-
ples with GPU are illustrated in Section III. Case studies and
discussions are provided in Section IV. Finally, Section V
concludes this paper.
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II. COMPENSATION METHOD
Given a specified ACPF, the efficient FD method can be
summarized as the iterative solution of correction equations:

1P/V = B′1θ , (1)

1Q/V = B′′1V , (2)

where 1θ and 1V are decision vectors; P, Q, V , and θ are
nodal active power, reactive power, voltage magnitude, and
phase angle, respectively; 1 represents the error; B′ and B′′

are symmetric square matrices with the dimension of n − 1
and n− r − 1, whose off-diagonal and diagonal elements are
given in (3) and (4); n is the total number of buses and r is the
number of PV nodes.

B′ij = −
xij

r2ij + x
2
ij

, B′ii = B′jj =
∑
j∈i

xij
r2ij + x

2
ij

, (3)

B′′ij =
−1
kijxij

, B′′jj =
∑
j∈i

(
1
xij
+ 0.5bij

)
, B′′ii =

B′′jj
k2ij
, (4)

where rij, xij, bij, and kij are the resistance, reactance, total
line charging susceptance, and transformer off nominal turns
ratio of branch ij, respectively.
Instead of single ACPF, nc � 1 scenarios/ACPFs need to

be evaluated for the solution of practical RTCA. Based on the
aforementioned solution process, there will be nc times of LU
decomposition forB′ andB′′, which is a heavy computational
workload. Fortunately, the CM [22] is capable to reduce the
number of LU factorization from nc to 1 since the coefficient
matrices for different scenarios are similar.

Suppose B′ = L′U ′ and B′′ = L′′U ′′ are matrices gen-
erated from the base case without branch outage, the fol-
lowing process is devoted to derive 1θ and 1V from (1)
and (2) for a new scenario (where the branch ij is out of
service) without LU factorization operations. For simplicity,
only the solution steps of (1) are given; (2) can be addressed
accordingly.

1) Based on the topology variation induced by the outage
of branch ij, B′ can be updated as:

B′∗ = B′ +1B′∗ = B′ +M ′∗δb
′
∗M
′T
∗ , (5)

where subscript ∗ is a stamp for the specified scenario,
i.e., outage of branch ij; δb′∗ is a m × m matrix con-
taining correction information, m = {1, 2}; M ′∗ is a
n×m incidence matrix relates to i and j. The details on
generating δb′∗,M

′
∗, and m will be demonstrated later.

2) Calculate intermediate matrix:

c′∗ =
[
I + δb′∗M

′T
∗ (U

′−1(L′−1M ′∗))
]−1

δb′∗, (6)

where I is a m× m identical matrix.
3) Calculate voltage angle variation vector:

1θ1 = L′−1(1P∗/V∗), (7)

1θ2 = 1θ1 − L′−1
(
M ′∗c

′
∗M
′T
∗ (U

′−11θ1)
)
, (8)

1θ∗ = U ′−11θ2. (9)

FIGURE 1. Demonstration of fixed pattern calculation.

Algorithm 1 Data Preparation of δb′∗ andM
′
∗

1: if Node i is a slack bus then
2: LetM ′∗ = e′j and δb

′
∗ = −

xij
r2ij+x

2
ij
.

3: else
4: if Node j is a slack bus then
5: LetM ′∗ = e′i and δb

′
∗ = −

xij
r2ij+x

2
ij
.

6: else
7: Set ρ′ = − xij

r2ij+x
2
ij
,

8: LetM ′∗ =
[
e′i e′j

]
and δb′∗ =

[
ρ′ −ρ′

−ρ′ ρ′

]
.

9: end if
10: end if
11: Output δb′∗ andM

′
∗.

The detailed derivation process of the above steps based on
inverse matrix modification lemma [24] is given in Appen-
dices A and B.

It should be noted that all the inverse operations of L′

and U ′ can be performed by F/B substitutions to reduce the
computation burden, which are marked in the above by paren-
theses. Although the inverse operation indicated by brackets
in (6) is inevitable, fortunately, the matrix size (m × m) is
limited. The matrix inverse operations for m = 1 and m = 2
are trivial, i.e.,

[
a
]−1
=
[ 1
a

]
and

[
a b
c d

]−1
=

 d
ad−bc

−b
ad − bc

−c
ad − bc

a
ad − bc

 .
(10)

More notes are given for the calculations related withM ′∗.
Due to its highly sparse and fixed pattern, the calculation can
be predefined to save time and effort, i.e., only few fixed
points of the final result should be calculated and filled.
Take

(
M ′∗c

′
∗M
′T
∗ (U

′−11θ1)
)
in (8) as an example, suppose

m = 2 and rewrite the dense column vector (U ′−11θ1) as
u∗, the solution process is illustrated by Fig. 1, where the final
result can be directly derived and filled.

The critical step of utilizing CM is constructing δb′∗ and
M ′∗, which dominates the solution steps (6) – (9). The pattern
and value of δb′∗ and M

′
∗ are dependent on the parameters

of branch ij and the node type of bus i and j. The pseudo
code of generating δb′∗ and M ′∗ is summarized in Algo-
rithm 1, where e′i and e

′
j are basis vectors with size n − 1.
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Algorithm 2 Data Preparation of δb′′∗ andM
′′
∗

1: if Node i is a PQ bus then
2: if Node j is a PQ bus then
3: Set σ = 1

kijxij
and ρ′′ = − 1

xij
− 0.5bij,

4: LetM ′′∗ =
[
e′′i e′′j

]
and δb′′∗ =

[
ρ′′/k2ij σ
σ ρ′′

]
.

5: else
6: LetM ′′∗ = e′′i and δb

′′
∗ = −

1
xij
− 0.5bij.

7: end if
8: else
9: if Node j is a PQ bus then

10: LetM ′′∗ = e′′j and δb
′′
∗ = −

1
xij
− 0.5bij.

11: else
12: LetM ′′∗ = 0 and δb′′∗ = 0.
13: end if
14: end if
15: Output δb′′∗ andM

′′
∗.

FIGURE 2. Flowchart of the compensation method.

Accordingly, the generation process for δb′′∗ andM
′′
∗ is given

by Algorithm 2, where e′′i and e
′′
j are basis vectors with size

n−r−1. A comprehensive implementation flowchart of CM
corresponding to the above steps is illustrated in Fig. 2.
In order to validate the solution efficiency, the CM is imple-

mented on a 2746-bus test system. It takes 40.31ms to analyze
each scenario, which means 1,488 contingencies can be eval-
uated everyminute. Nevertheless, in industry application, this

FIGURE 3. Transformation from CSC to CSR by matrix transposition.

performance is far from satisfactory. For example, Midcon-
tinent Independent System Operator (MISO) [25], Electric
Reliability Council of Texas (ERCOT) [7], and Pennsylvania-
New Jersey-Maryland Interconnection (PJM) [26] simulate
2,875, 3938, and 6,000 contingency scenarios of large-scale
power system in one minute, respectively.

III. PARALLEL IMPLEMENTATION ON GPUs
Since the sequential CM is not sufficient for industry appli-
cation, advanced parallel hardware GPU is resorted for accel-
eration in this section, where CUDA [27] version 8.0 is
employed for programming.

A. DATA STRUCTURE AND PRECISION
It is widely accepted that sparse matrix techniques should be
adopted for the solution of large-scale power systems due to
their high sparsity ratio of bus admittance matrix Y . In order
to reduce the amount of data transfer and the number of
atomic operations, the sparse storage formats are commonly
employed. In accordance with [21] and [23], the Compressed
Sparse Column (CSC) format is utilized for the storage of Y ,
B′, L′, U ′, B′′, L′′ and U ′′. Unfortunately, part of cuSparse
library [28] operations do not support the CSC format, such
as matrix-vector multiplication (related with Y ) and F/B sub-
stitutions (implemented on L′, U ′, L′′ and U ′′). Therefore,
L′, U ′, L′′ and U ′′ are translated into the Compressed Sparse
Row (CSR) format from CSC. The transformation can be
performed by a matrix transposition, which is demonstrated
in Fig. 3. On the other hand, the matrix Y is free from
transformation due to its symmetry, i.e., its CSC is the same
with CSR. Except for the matrices, all the vectors are stored
in dense format.

In this work, the NVIDIA GeForce GTX 1080 GPU is
utilized, whose compute capability is 6.1 with 8.876TFLOP/s
and 277.36GFLOP/s on single and double precision.
Although the single precision is much faster, the accuracy is
limited, which is illustrated by Fig. 4, therefore the double
precision is finally applied.

B. SPARSE LINEAR SOLVER
The linear solver is a basic component of key importance for
the whole performance of NR, FD, and CM, especially for
NR, where it may take 80% of the total execution time [16].

44522 VOLUME 6, 2018



S. Huang, V. Dinavahi: RTCA on Massively Parallel Architectures With CM

FIGURE 4. Convergence properties of CM for a 2746-bus test system with
single and double precision.

FIGURE 5. Performance illustration of AMD on a 2746-bus test system
with sparsity pattern (nnz is the number of nonzero elements).

Two types of sparse linear solver are intensively discussed:
iterative methods and direct methods. Although the former
demands less memory and the solution process is controllable
based on absolute or relative error [11], [20], the latter is more
popular in the community [13]–[19].

Decomposition or factorization of the coefficient matrix A
is ubiquitous in direct methods. Although the sparsity of A
is inherited by L and U , there still exists a lot of fill-ins
(entries in L and U that do not appear in A). Generally,
fewer fill-ins means less requirement on the system memory
and atomic operations; therefore, the approximate minimum
degree (AMD) algorithm [21] is utilized, which is a heuristic
to find the permutation P such that PAPT has fewer fill-ins
than A after the factorization. Fig. 5 illustrates the perfor-
mance of AMD on the Jacobian matrix B′ of a 2746-bus
system. After AMD ordering, the B′ is more concise, and
the number of fill-ins after LU factorization is reduced from
451,657 to 17,328, which means the reduction rate reaches
96.16%.

C. SINGLE GPU ARCHITECTURE
1) KERNEL DESIGN STRATEGIES
One kernel function can be executed N times in parallel if N
different CUDA threads are launched. Since all scenarios are
independent, a naive parallel implementation strategy is that
integrating all the CM steps into one whole kernel function
and running in a fixed thread, whose execution pattern is

FIGURE 6. Illustration of kernel design strategies. (a) Integrated kernel:
all steps are included in one whole kernel. (b) Decoupled kernel: different
steps are performed by various kernels.

demonstrated by Fig. 6 (a). Although the integrated kernel
strategy is straightforward and the waiting time can be mini-
mized by static/dynamic load balancing [8], it is not suitable
for CUDA due to its random data access feature. In CUDA,
the parallel threads are managed, scheduled, and executed in
groups of 32 called warps. A warp executes one common
instruction at a time, and the full efficiency is achieved when
all 32 threads within the warp agree on their execution path
(coalesced access) [27]. Faced with path diversity, the warp
serially executes each branch path by disabling threads that
are not on that path. When all paths complete, the warp con-
verges back to the same execution path. In Fig. 6 (a), threads
1 – 4 in the same warp should access successive addresses
and do the same operations to achieve growth in performance.
However, at tA, thread 2 starts to execute step 2 whereas the
other threads are still doing step 1, thus the coalesced access
is declined. In addition, the path diversity increases as time
goes on.

In order to achieve coalesced access, the whole kernel
function is decoupled in Fig. 6 (b), i.e., each step is realized
with one kernel function. It is observable that all threads
do the same operations (go to the same path) within vari-
ous intervals, e.g., execute step 1 from 0 to tE and step 2
from tE to tF . Therefore, there is no branch diversity within
warps. On the other hand, successive addresses are easily
accessed by threads since scenario data is commonly stored
in regulation. Detailed access pattern will be exemplified in
the following subsection. Compared with Fig. 6 (a) and (b),
the execution efficiencies of thread 2 for step 1 should be
similar, i.e., tA ≈ tD. The reason is that coalesced execution
pattern is also achieved by Fig. 6 (a) from 0 to tA. However,
due to path diversity, deterioration will subsequently emerge
in Fig. 6 (a), thus tB > tE and tC > tF . It should be noted that
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FIGURE 7. Solution process of multiple ACPFs/scenarios.

there is an implicit barrier between the successive kernels,
which guarantees the logical sequence between iterations.
Theoretically, wait time always exists before the barrier, but
it is relatively small since the work load for each scenario on
each kernel is even. Due to the multiple kernels execution,
different steps of one specified scenario may not be executed
on the same thread, which is illustrated in Fig. 6 (b).

The solution process of multiple ACPFs/scenarios is given
in Fig. 7, wherein each scenario consists of several iterations,
and each iteration comprises of various steps. Since a series of
steps are executed in a fixed order across different iterations,
and coalesced access within each step is achieved by the
aforementioned decoupled kernel design strategy, it can be
concluded that coalesced access within each iteration is also
guaranteed. In Fig. 7, iterations 1 and 2 will be executed
with coalesced access, but iteration x may not be. In Fig. 7,
scenarios 3 and 4 achieve convergence at iteration x − 1,
resulting in 2 threads (may not be thread 3 and 4) being idle at
iteration x. If new tasks (e.g., iteration 1 of scenarios 33 and
34) are assigned to these idle threads, coalesced access might
be destroyed since the scenario number is not successive.
In order to keep consistency and coalesced access, a group
of scenarios will terminate only if all of them finished the
calculation, i.e., the iteration x of scenarios 3 and 4 will
be executed although they have achieved the convergence.
It should be noted that there is a waste of computational
resources on scenarios 3 and 4, but it is needed to pre-
serve the efficiency. If computational resources are fully
utilized for net computation, i.e., idle threads are assigned
with new scenarios, and all threads can achieve coalesced
access, the efficiency can be improved to a rate of up to 40%
(supposing the longest scenario takes 80% more iterations
than the shortest one). Nevertheless, if the coalesced access
is not guaranteed, the efficiency can be tens of times slower
since a maximum of 32 branches will be executed in each
warp. Therefore, in this work, a part of the computational
resource is sacrificed for coalesced access. In futurework, full
utilization of computational resource with coalesced access
will be investigated.

2) KERNEL FUNCTIONS
In this work, nc scenarios are solved simultaneously in a
step-by-step pattern, with each step corresponding to one
kernel. Fig. 8 demonstrates the implementation scheme of
key steps of CM, where both self-built and cusparse
library provided kernels are utilized. It should be noted
that, every operation shown in Fig. 8 will be executed
for nc times with one for each scenario. As indicated in
Section II, all scenarios derive the solutions from the base
case, i.e., triangle matrices L′ and U ′ are the same for all
scenarios. Therefore, equations Ta = L′−1M ′∗ for all sce-
narios can be jointly considered as a sparse triangular linear
system with multiple right-hand sides. Library cusparse
provides efficient solution routine for this kind of sys-
tems. Kernel cusparseDcsrsm_analysis() performs
the matrix analysis of L′ and U ′. This function needs to
be executed only once since its result is reusable. Kernel
cusparseDcsrsm_solve() is utilized to generate the
result based on matrix analysis information.

For all cusparse kernels, the thread utilization mecha-
nism is concealed. On the other hand, the thread organization
of self-built kernel is tuned based on the target data storage
pattern to achieve coalesced access and high efficiency. Take
the kernel_Update() in Fig. 9 as an example, where θ is
stored scenario after scenario. If each scenario is intuitively
performed with one thread, diversity will occur since threads
1 and 2 will access discrete addresses θ0 and θn at the
same time. Therefore, each scenario is attributed to one warp
in Fig. 9, where lanes 0 – 31 will access a series of successive
addresses θ0 – θ31. Different warps are independent of each
other, and the branch divergence over warps does not affect
the performance.

3) MEMORY MANAGEMENT
CUDA threads may access data from on-chip (register, shared
memory, and L2 cache) and off-chip memories (global mem-
ory). The former is very fast but the size is limited, while
the latter is large but more latency is required for accessing.

44524 VOLUME 6, 2018



S. Huang, V. Dinavahi: RTCA on Massively Parallel Architectures With CM

FIGURE 8. Decoupled kernels for the solution of equations (6)–(9).

FIGURE 9. Coalesced access of θ in kernel_Update().

To pursue a balance between the performance and feasibility,
both are utilized with principles:
• To achieve the best performance of on-chip memory, all
the small size intermediate vectors are stored as scalar
variables. Take Tc in Fig. 8 as an example, instead of
storing a matrix or vector, all the elements are declared
as independent variables.

• All the long vectors and large matrices are stored in
global memory, which can be accessed by every kernel
for reading and writing. The maintenance of data in

device memory is also beneficial to minimize the data
exchange between host and device memories.

• Shared memory is widely utilized due to its low access
latency, especially for the reduction operations, includ-
ing the calculation of summation, minimum, and max-
imum values of a vector. For example, vector 1P
is copied into the shared memory before calculating
||1P||∞.

As indicated in Fig. 8, the CPU main function calls the
GPU kernels but cannot get any feedback from them. The
common strategy of controlling is data exchange between
CPU and GPU via cudaMemcpy(). However, due to the
limited bandwidth of PCIe, fewer data transformations are
better. In this work, except for the data to start CM, which is
copied from CPU to GPU at the beginning, only one boolean
variable (showing that the termination condition has been
met or not) is transferred from GPU to CPU at the end of
each iteration.

D. MULTIPLE-GPU ARCHITECTURE
In order to further accelerate the computation, multiple-
GPU architecture is also explored. As the scenarios are
solidly independent, there is no communication between dif-
ferent devices; therefore, the implementation is relatively
straightforward, i.e., evenly distribute the workload to all the
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TABLE 1. Solution differences between GPU-based parallel CM,
Matpower NR, and Matpower FD.

devices. Each device is administrated by one CPU thread,
which is launched by OpenMP in this work.

IV. EXPERIMENTAL RESULTS
Five benchmark cases reported in [23] with scales ranging
from 300 to 13,659 buses are employed in this section to
validate the performance of the parallel CM with respect
to accuracy and execution time. Based on the open source
package Matpower 6.0b2 [23], the first test is provided to
validate the accuracy and convergence properties of CM.
The second test measures the execution time and speedup
of CM in different platforms (CPU and GPU) with various
implementation schemes (sequential and parallel). Finally,
three types of state-of-the-art GPU-based parallel computing
methods reported in the literature are included for discus-
sion. Both CPU- and GPU-based CM are implemented with
Visual Studio 2015 on a PC equipped with 12 physical Intel
Xeon E5-2620 2.10GHz CPU cores and 2 NVIDIA GTX
1080 GPUs, running onWindows 8.1 operating system. Mat-
lab version 2015b is utilized to execute Matpower. For all
experiments, the convergence criteria ε is set as 10−8 p.u.

A. ACCURACY AND CONVERGENCE OF GPU-BASED
PARALLEL CM
For any RTCA solution method, the credibility is of higher
priority over efficiency. Thus the accuracy and convergence
properties of GPU-based parallel CM are evaluated in this
subsection. Matpower is introduced as a reference, where
both NR and FD algorithms are utilized. For each test system,
the same scenario is solved with three different methods.
Table 1 summarizes the maximum differences on the node
active/reactive powers max{|1P|, |1Q|}. The data of column
3 is determined by the tolerance ε = 10−8, while column
4 shows that the parallel CM is highly identical with FD.
Therefore, it can be concluded that the proposed parallel
implementation of CM based on GPU is credible.

Fig. 10 illustrates the convergence properties of parallel
CM and NR on different cases, where parabola and straight
lines can be approximated for the NR and CM on the log-
arithmic coordinate due to their quadratic and geometric
convergent properties respectively. It should be noted that
only the maximum error after Q iteration is collected for
the lines of CM. If maximum errors after both P and Q
iterations are recorded, a wavy line with the same trend will
appear. Although the CM takes more iterations to meet the

FIGURE 10. Convergence properties of FD and parallel CM on different
cases.

convergence criteria, its computing requirement and execu-
tion time is far less than that of the NR. The comparison
on the convergence process between CM and FD is omitted
since they always take the same number of iterations before
termination, which can also be accessed from the theoretical
analysis in Section II.

B. PERFORMANCE OF CM ON VARIOUS PARALLEL
ARCHITECTURES
In order to fully explore the potential of CM and parallel
architectures, many implementation schemes are tested and
compared. For each case, nc different scenarios generated by
the withdrawing of a single transmission line are considered
and solved, i.e., the N − 1 contingency criterion is addressed
without any scenario reduction strategy. Table 2 illustrates the
values of nc for various cases. Due to the large variance of
nc, the total execution time for RTCA with the solution of all
scenarios presents great differences across cases. Therefore,
it is regulated by the division of nc in the following, i.e., the
henceforth reported time is the average execution time for the
full iterative solution of single scenario without specification.

All CM implementation schemes to be presented below
follow the flowchart shown in Fig. 2, where the LU decom-
position for B′ and B′′ at the very beginning is performed
based on algorithms developed in [21]. The main differences
between various implementation schemes are: 1) all con-
sidered scenarios will be evaluated in either sequential or
parallel, which will be specified subsequently; 2) on GPU
platform, the F/B substitution is performed with cusparse
kernel functions presented in Section III.C; 3) on CPU plat-
form, the F/B substitution is executed based on the routines
provided by [21]. It should be noted that the basic mechanism
and program logic of other steps are the same for both CPU
and GPU versions, but the realized codes are different due
to special GPU implementation strategies. Take the updating
of θ as an example, the code for GPU execution is shown
in Fig. 9, where a lot of indices are included for threads, lanes,
and warps.
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TABLE 2. Number of scenarios considered for different cases.

TABLE 3. Execution time (ms) of sequential CM with single-thread CPU.

1) SEQUENTIAL CM WITH SINGLE-THREAD CPU
In this test, the single-thread CPU computing architecture is
utilized, where all scenarios are evaluated in series with CPU.
The execution time T0 is reported in Table 3 with the coverage
of all steps after the initial data reading, including admit-
tance matrix generation, LU decomposition, compensation
matrices construction, F/B substitution, and power mismatch
calculation, etc. This test is determined as the reference for
speedup analysis of other tests since it is the basic version of
CPU implementation. The speedup S is defined as follows:

Sx =
T0
Tx
, (11)

where subscript x represents the following tests.

2) PARALLEL CM WITH MULTI-THREAD CPU
In order to accelerate the solution process of RTCA, multi-
thread CPU is employed in this test, where all scenarios are
assessed in parallel with CPU based on OpenMP. The CPU
part shown in Fig. 2 is performed with the main thread,
and the GPU part is fulfilled by y threads for concurrent
execution. All scenarios are evenly distributed to y threads.
In this test, y takes the values of 2, 4, 8, and 12 with the PC
specified above. The execution time T1,y and speedup S1,y are
summarized and illustrated in Table 4 and Fig. 11. Compared
with T0, a speedup is achieved with parallel computing. Two
observations can be obtained: 1) For every y, S1,y is higher
with larger cases. The parallel efficiency depends on both
task workload and thread launch latency. If the latency is
fixed, heavier work for each launch brings higher parallel
efficiency. Thus, larger cases have higher speedups. 2) For
each case, S1,y rises with y, but the increase rate is decreas-
ing. The biggest performance gain is obtained by the thread
number increasing from 1 to 2. More threads bring complex
coordination challenge, thus the parallel efficiency is lower
although the absolute speedup value is higher.

3) PARALLEL CM WITH SINGLE GPU
Due to the limited memory bandwidth, the saturation point
of multi-thread CPU implementation is approaching, which
means adding more CPU cores does not result in remark-
able enhancement on the computational performance. There-
fore, the GPU is introduced as an alternative. Based on
the flowchart shown in Fig. 2 and details revealed in

TABLE 4. Execution time (ms) and speedup of parallel CM with
multi-thread CPU.

FIGURE 11. Speedup of parallel CM with multi-thread CPU.

Section III.C, two tests are implemented, i.e., single GPU
with integrated and decoupled kernels, whose execution time
are marked as T2,I and T2,D respectively. In addition to all
steps covered by T0 and T1,y, the device memory allocation
and data transmission between CPU and GPU are included
in T2,I and T2,D. As shown in Fig. 2, all the iterative pro-
cesses within each scenario are executed on GPU without
the data exchange with CPU. The data copy from CPU to
GPU is mainly done before the launch of GPU, where grid
configuration and decomposed matrices (L′, U ′, L′′, and U ′′)
are transferred to device memory. The feedback from GPU to
CPU is only one binary vector with the length of nc, where
‘1’ represents the corresponding scenario is sufficient, and
vice versa. Therefore, the communication time Tc mainly
depends on the system scale (which dominates the size of
matrices), whereas nc has a limited influence on Tc. In our
tests, Tc is always less than 5% of the total execution time.
Table 5 summarizes the main results. It is observable from
S2,I and S2,D that the proposed decoupled kernel performs
better than integrated kernel for all cases. In addition, S2,D has
a better scalability from CaseA to CaseE since the increase
rates are higher, such as 34.67

2.80 >
21.15
2.51 and 38.43

2.80 >
22.54
2.51 . The

fastest multi-thread CPU execution is compared with GPU
implementations in Fig. 12, which validates the superiority
of GPU parallel architecture for RTCA.
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TABLE 5. Execution time (ms) and speedup of CM with single GPU.

FIGURE 12. Speedup comparison between multi-thread CPU and GPU.

4) PARALLEL CM WITH MULTIPLE GPUs
Based on T2,D, the total execution time of N − 1 RTCA
for CaseD and CaseE is 72.99s and 117.69s, respectively.
In order to finish the solution within one minute, two-GPUs
architecture is employed for acceleration. The implementa-
tion scheme is similar to single GPU, except that all scenarios
are evenly distributed to two GPUs. Each GPU is managed
with one CPU thread, and the CPU threads are separated
with OpenMP. Since the CPU threads are launched for only
once, the latency is insignificant when compared with the
total execution time. Table 6 reports the results, where a
maximum of 75.70× speedup is gained by the decoupled ker-
nel strategy, which facilitates the RTCA to complete within
one minute. In order to investigate the parallel efficiency of
multiple GPUs, comparison with single GPU is demonstrated
in Fig. 13. It is noticeable that both S3,I/S2,I and S3,D/S2,D
are close to 2.0, which means the scalability of multiple
GPUs is satisfactory. The main reasons are: 1) all scenarios
are independent, such that there is no communication and
synchronization between two GPUs; 2) the iterative process
of ACPF is fully executed on GPU without the data exchange
between CPU and GPU.

C. COMPARISON WITH OTHER PARALLEL
COMPUTING METHODS
The superiority of parallel CM running on GPUs is estab-
lished in the above subsection with the comparison of CM
running on CPU. This subsection is devoted to the compar-
ison against three types of state-of-the-art parallel comput-
ing methods running on GPU. It should be noted that all

TABLE 6. Execution time (ms) and speedup of CM with multiple GPUs.

FIGURE 13. Speedup ratio of multiple GPUs over single GPU.

TABLE 7. Runtime reported in the literature with GS running on GPU (ms).

results reported in this subsection are strictly retrieved from
references. Due to differences on computation platforms and
programming skills, the comparison can only be regarded as
qualitative rather than quantitative.

1) PARALLEL GAUSS-SEIDEL (GS) METHOD
In [14], [15], and [18], the GS was implemented on GPU
for power flow analysis, whose solution time is summarized
in Table 7. Although larger cases have been reported in [14]
and [18], the performance is weaker than [15] due to the
utilization of dense matrix. The maximum case given in [15]
is the 300-bus system, which consumes 56.293ms for each
scenario, while that number is 0.473ms for parallel CM in this
paper. Therefore, the advantage of CM over GS is identified.

2) PARALLEL NR METHOD
Although the combination of NR with GPU has been intro-
duced in [14], [18], and [19], only three better results reported
by [15]–[17] are included in Table 8 for comparison. The data
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TABLE 8. Runtime reported in the literature with NR running on GPU (ms).

FIGURE 14. Runtime reported in the literature with NR running on GPU.

in Table 8 has been illustrated in Fig. 14. It is observable that
the parallel CM consumes less time for all scales of cases,
including small, medium, and large.

3) PARALLEL FD METHOD
In [14], the performance of FD on GPU is better than
GS and NR; however, it is limited due to the utilization
of dense matrix. [20] implements the FD on GPU with
preconditioned conjugate gradient iterative solver and inex-
act Newton method. Although the reported execution time
is 260∼1,210ms for cases with scales 1,354∼13,173, it is
a worthwhile endeavor (especially for large-scale systems)
since the majority of works rely on the direct solver.

V. CONCLUSION
While the real-time contingency analysis (RTCA) is an
important energy management system functionality in many
electric utilities, it is faced with the challenge of high com-
putational burden. To address the requirement of fast solu-
tion for RTCA, the parallel implementation of compensation

method (CM) on multi-GPU architecture is presented in this
paper. Accuracy and efficiency have been validated with
case studies on five benchmark systems ranging from 300 to
13,659 buses. The generated speedups are significant when
compared with other platforms, including single-thread CPU,
multi-thread CPU, and single-GPU. In addition, superior-
ity over other state-of-the-art parallel computing methods is
established. In conclusion, the parallel CM is promising for
industrial application since it is capable to finish the whole
N − 1 RTCA analysis for the 13,659-bus system within
one minute. A potential application of this method could
be for post-contingency corrective transmission switching,
toward which future efforts will be directed. On the other
hand, the extension of parallel CM to GPU cluster will be
investigated in the future.

APPENDIX A
DERIVATION OF THE CM IMPLEMENTATION STEPS
The process can be described as generating 1θ∗ from,

1P∗/V∗ = B′∗1θ∗, (A.1)

where B′∗ = B′ +M ′∗δb
′
∗M
′T
∗ and B′ = L′U ′.

Based on B′∗ = B′ + M ′∗δb
′
∗M
′T
∗ and the inverse matrix

modification lemma (given in Appendix B), the inverse of B′∗
can be obtained as,

B′−1∗ = B′−1 − B′−1M ′∗c∗M
′T
∗ B
′−1, (A.2)

c′∗ =
[
I + δb′∗M

′T
∗ (U

′−1(L′−1M ′∗))
]−1

δb′∗. (A.3)

Therefore, based on (A.1) and (A.2), we have,

1θ∗ = B′−1∗ (1P∗/V∗) (A.4)

=

(
B′−1 − B′−1M ′∗c∗M

′T
∗ B
′−1
)
(1P∗/V∗) (A.5)

=

(
U ′−1L′−1 (1P∗/V∗)

− U ′−1L′−1M ′∗c∗M
′T
∗ U
′−1L′−1 (1P∗/V∗)

)
(A.6)

= U ′−1
(
1θ1 − L′−1M ′∗c∗M

′T
∗ U
′−11θ1

)
(A.7)

= U ′−11θ2. (A.8)

The transformation from (A.6) to (A.7) – (A.8) is based on
the definition of (7) – (8). Finally, the identity between (A.7)
– (A.8) and (8) – (9) concludes the derivation process. �

APPENDIX B
PROOF OF INVERSE MATRIX MODIFICATION LEMMA
This lemma is utilized to derive (A.2). We start from B′−1,

B′−1 =
(
B′ +M ′∗δb

′
∗M
′T
∗

)−1 (
B′ +M ′∗δb

′
∗M
′T
∗

)
B′−1

=

(
B′ +M ′∗δb

′
∗M
′T
∗

)−1 (
I +M ′∗δb

′
∗M
′T
∗ B
′−1
)

=

(
B′ +M ′∗δb

′
∗M
′T
∗

)−1
+

(
B′ +M ′∗δb

′
∗M
′T
∗

)−1
M ′∗δb

′
∗M
′T
∗ B
′−1 (B.1)

=

(
B′ +M ′∗δb

′
∗M
′T
∗

)−1
+ B′−1M ′∗

(
δb′−1∗ +M

′T
∗
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B′−1M ′∗
)−1

M ′T∗ B
′−1. (B.2)

Since B′∗ = B′ +M ′∗δb
′
∗M
′T
∗ , we have,

B′−1∗ = B′−1 − B′−1M ′∗c
′
∗M
′T
∗ B
′−1, (B.3)

where

c′∗ =
(
δb′−1∗ +M

′T
∗ B
′−1M ′∗

)−1
(B.4)

=

(
I + δb′∗M

′T
∗ B
′−1M ′∗

)−1
δb′∗ (B.5)

=

[
I + δb′∗M

′T
∗ (U

′−1(L′−1M ′∗))
]−1

δb′∗. (B.6)

Thus, equations (B.3) and (B.6) are identical with (A.2)
and (A.3). �
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