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Abstract

Temporal-difference (TD) learning is an important approach for predictive

knowledge representation and sequential decision making. Within TD learn-

ing exists multi-step methods which unify one-step TD learning and Monte

Carlo methods in a way where intermediate algorithms can outperform either

extreme. Multi-step TD methods allows a practitioner to address a bias-

variance trade-off between reliance on current estimates, which could be poor,

and incorporating longer sequences of sampled information, which could have

large variance. In this dissertation, we investigate an extension of multi-step

TD learning aimed at reducing the variance in the estimates, and provide a

unified view of the space of multi-step TD algorithms.

In Monte Carlo methods, information about the error of a known quantity

is sometimes incorporated in an attempt to reduce the error in the estimation

of an unknown quantity. This is known as the method of control variates,

and has not been extensively explored in TD learning. We show that control

variates can be formulated in multi-step TD learning, and demonstrate their

improvement in terms of learning speed and accuracy. We then show how the

inclusion of control variates provides a deeper understanding of how n-step

TD methods relate to TD(λ) algorithms.

We then look at a previously proposed method to unify the space of n-step

TD algorithms, the n-step Q(σ) algorithm. We provide empirical results and

analyze properties of this algorithm, suggest an improvement based on insight

from the control variates, and derive the TD(λ) version of the algorithm. This
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generalization can recover existing multi-step TD algorithms as special cases,

providing an alternative, unified view of them.

Lastly, we bring attention to the discount rate in TD learning. The discount

rate is typically used to specify the horizon of interest in sequential decision

making problems, but we introduce an alternate view of the parameter with

insight from digital signal processing. By allowing the discount rate to take on

complex numbers within the complex unit circle, we can extend the types of

knowledge learnable by a TD agent into the frequency domain. This allows for

online and incremental estimation of the extent at which particular frequencies

exist in a signal, with the standard discounting framework corresponding to

the zero frequency case.
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Preface

Several chapters in this thesis have content based on published papers, or

papers in progress. One of these papers had equal contribution with two co-

authors. I have outlined all relevant portions of Chapters 3, 4, and 5 below.

The remaining contributions, particularly the latter two sections of Chapter

4, were originally produced for this thesis.

Chapter 3 of this thesis is based on a published paper (De Asis and Sutton,

2018) which resulted from an approach to reduce the variance in multi-step

TD methods. I was responsible for exploring the connection between n-step

TD methods with control variates and their TD(λ) counterparts, as well as

the view as an alternative way to extend Expected Sarsa to the multi-step

setting. The idea to focus on the explicit introduction of the control variate

terms was motivated by personal communication with Mahmood.

The first three sections of Chapter 4 are based on a published paper (De

Asis, Hernandez-Garcia, Holland, and Sutton, 2018) which aimed to analyze

and provide first empirical results on the Q(σ) algorithm. The Q(σ) algorithm

was originally proposed by Precup, Sutton, and Singh (2000). Holland was

responsible for the results in the stochastic windy gridworld environment of

Section 4.3.2, and Hernandez-Garcia was responsible for the results in the

mountain cliff environment of Section 4.3.3. I was responsible for the results

in the 19-state random walk, the analysis behind why intermediate values of σ

might perform either extreme, and the simple heuristic method for dynamically

varying the σ parameter.

Chapter 5 of this thesis is based on a paper under review (De Asis et al.,

2018). In this work, I discovered that meaningful information can be learned

when the discount rate parameter is allowed to take on complex numbers. I
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made the connection between complex returns and the Discrete Fourier Trans-

form of digital signal processing literature, and motivated the idea of a TD

agent being able to identify periodic structure in the return.
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Chapter 1

Introduction

The ability to learn online and incrementally from raw sensorimotor experi-

ence provides a powerful and scalable framework for an intelligent agent. It

would allow for adaptation in situations that haven’t been considered, and

not have to wait until the final outcome before making adjustments. This

idea of behaving in an environment and learning from experience is well cap-

tured in a reinforcement learning setting, where an agent takes actions in an

environment, and receives feedback signals from which it can learn about.

Temporal Difference (TD) methods are an important approach for rein-

forcement learning problems as they allow an agent to learn long-term pre-

dictions of signals of interest. Characteristic to TD is that it incrementally

adjusts its estimates based on the outcome of each decision. For example,

when playing a video game, an agent would not have to wait until the game

ends to update its predictions about what happens later in the game. This is

accomplished through bootstrapping, where an agent learns a prediction based

on a combination of observed outcomes and its current guess of what will hap-

pen next. Such predictions form a powerful knowledge representation that an

agent can continually test and update, and potentially base its decisions on.

Multi-step TD methods create a spectrum of algorithms which unify one-

step TD learning and Monte Carlo methods in a way where intermediate

algorithms can outperform either extreme. One-step TD methods only use

information from a single time step when computing an estimate, resulting in

large bias as it relies on its estimate of the next time step onwards to be accu-
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rate. Monte Carlo methods include information from all time steps, resulting

in large variance due to the variability in longer sampled sequences. Multi-step

TD methods allow for use of sampled information across multiple time steps

before bootstrapping off of its current estimates, addressing this bias-variance

tradeoff between the two extremes.

Off-policy learning in reinforcement learning involves an agent learning

long-term predictions given that it had behaved differently from the behavior

which generated its experience. It can be interpreted as an agent answering

counterfactual questions about its experience, and allows the agent to learn

many predictions simultaneously, vastly expanding the world knowledge it

can gather from a single stream of experience. Off-policy learning is a more

general setting, as on-policy learning can be viewed as the case where an agent

is learning about its current behavior. TD algorithms have several extensions

to the off-policy setting but, especially for multi-step TD methods, they often

suffer from having large variance.

In this dissertation, we explore a technique for reducing the variance in

the predictions learned by off-policy multi-step TD methods. We then show

that this extension provides a deeper understanding of how existing methods

relate to one another. Using this insight, we build upon a previously proposed

algorithm to unify the space of multi-step TD methods, and contextualize

recent multi-step methods within the resulting algorithm. Lastly, we extend

the types of predictive knowledge learnable by TD methods into the frequency

domain, providing another direction to explore in the space of algorithms.

1.1 Related Work

Multi-step TD methods were first extended to the off-policy setting by Precup,

Sutton, and Singh (2000). One method made use of per-decision importance

sampling, but it was readily apparent that the use of importance sampling

ratios introduced large variance in the estimates. Several proposals have been

made to address this variance issue in the TD(λ) space of multi-step TD meth-

ods (Precup et al., 2006; Mahmood et al., 2014; Mahmood and Sutton, 2015;
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Mahmood et al., 2015; Hallak et al., 2015; Munos et al., 2016; Mahmood et

al., 2017; Yu et al., 2017). Work has also been done with in offline approaches

to sequential decision making, such as the use of doubly robust estimation

(Jiang et al., 2016; Thomas et al., 2016). Some work has been done in the

n-step TD space of multi-step TD methods (Sutton et al., 2014; van Seijen et

al., 2014; Mahmood and Sutton, 2015), but n-step TD methods have gotten

relatively less attention compared to TD(λ) methods. How such modifications

in the TD(λ) space of algorithms affects their n-step TD counterparts has not

been thoroughly explored.

The idea of value functions representing predictive knowledge of the envi-

ronment can be traced back to Sutton (1988). The idea was later formalized

in a general value function (GVF) framework by Sutton et al. (2011), where

value functions are given an interpretation as an answer to a predictive ques-

tion. However, whether meaningful questions can be posed by relaxing the

range of values the discount rate can take on hasn’t been thoroughly explored.

1.2 Contributions

This dissertation claims the following contributions towards providing a unified

view of multi-step TD learning:

1. n-step Control Variates: Our first contribution is the formulation

of control variates for n-step TD learning algorithms. This results in

the n-step SCV Sarsa and n-step ACV Sarsa algorithms. We demon-

strate their improvement over comparable n-step TD methods, provide

intuitive insight for the introduced control variates, and show how their

implications in the TD(λ) class of multi-step algorithms.

2. The n-step Q(σ) Algorithm: Next, we provide analysis and empirical

results for an original proposal to unify the space of n-step methods.

We further extend the algorithm with the aforementioned n-step control

variates, resulting in the n-step CV Q(σ) algorithm.
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3. The Q(σ, λ) Algorithm: We then derive the TD(λ) version of the n-

step CV Q(σ) algorithm. We show that this algorithm can recover exist-

ing TD(λ) methods, and provides an alternate view of action-dependent

eligibility traces.

4. Complex Value Functions: Our final contribution is an extension to

the predictive knowledge representable by value functions. By relaxing

the typical range of values the discount rate can be set to, it can be

shown that a TD learning agent can incrementally learn the expected

Discrete Fourier Transform of the discounted return.
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Chapter 2

Background on Reinforcement
Learning

This chapter aims to provide background information relevant to the contribu-

tions claimed by this thesis. In particular, it introduces the agent-environment

interaction model of reinforcement learning, defines the predictive knowledge-

based approach to reinforcement learning tasks, and explains how TD methods

address it.

2.1 The Reinforcement Learning Setting

Central to all reinforcement learning problems is the agent-environment inter-

action model, as depicted by Figure 2.1. In this model, it is assumed that an

agent exists in some state of the environment, whether it’s a distinct identifier

or a set of features which characterize it. The agent interacts with the en-

vironment by selecting an available action, which results in the environment

producing the agent’s next state along with a reward. This interaction model

is typically formulated as or built on top of a Markov Decision Process (MDP).

Under the MDP framework, an agent interacts with an environment over

a sequence of discrete time steps. At each time step t, the agent receives

information about the environment’s current state, St ∈ S, where S is the set

of all possible states in the MDP. The agent then uses this state information

to select an action, At ∈ A(St), where A(s) is the set of possible actions in

state s. Based on the environment’s current state and the agent’s selected
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Figure 2.1: The agent-environment interaction model. Reprinted from Sutton
and Barto, 2018.

action, the agent receives a reward, Rt+1 ∈ R, and gets information about

the environment’s next state, St+1 ∈ S, according to the environment model :

p(r, s′|s, a) def
= Pr(Rt+1 = r, St+1 = s′|St = s, At = a).

The agent selects its actions according to a policy, defined to be a proba-

bility distribution across actions given a state: π(s, a)
def
= Pr(At = a|St = a).

Behaving under this policy, the agent is interested in a return, defined to be a

cumulative discounted sequence of rewards:

Gt
def
= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ... =

T−t−1∑
k=0

γkRt+k+1 (2.1)

given a discount rate γ ∈ [0, 1] and T equal to the final time step in an episodic

setting, or γ ∈ [0, 1) and T equal to infinity for a continuing setting. In a

reinforcement learning control task, where the rewards specify some desired

outcome, the agent’s goal to learn the policy where behaving under it will

maximize the expected return.

2.2 Value-based Methods

Value-based methods are a predictive-knowledge approach for the reinforce-

ment learning setting, and are characterized by computing value functions.

The two common types of value functions are the state-value function, defined

to be the expected return when starting in state s and following policy π:

vπ(s)
def
= Eπ[Gt|St = s] (2.2)
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and the action-value function, defined to be the expected return when starting

in state s, selecting action a, and following policy π afterwards:

qπ(s, a)
def
= Eπ[Gt|St = s, At = a] (2.3)

Of note, the action-value function provides more information, and the state-

values can be computed as the expected action-value under the policy π for a

given state:

vπ(s) =
∑
a

π(s, a)qπ(s, a) (2.4)

They address the policy evaluation problem in reinforcement learning,

where the goal is to accurately predict what the return will be for a given

policy. That said, they can also be used to address control problems, as the

predicted returns can be used to compare actions and derive a new policy. In

particular, acting greedily with respect to the action-values under some policy

will result in a strictly improved policy. This notion of policy improvement

requires that for all state-action pairs, the values under the new policy will

be greater than or equal to the values under the previous policy (Sutton and

Barto, 2018). Alternating the process of policy evaluation and policy improve-

ment is known as policy iteration, and will converge to an optimal policy which

maximizes the expected return.

2.3 Offline Algorithms

In this section we detail two offline approaches to the policy evaluation problem

which motivate the ideas behind TD learning.

2.3.1 Dynamic Programming

The definition for the state-value function in Equation 2.2 can be rewritten in

terms of the values of successor states as follows:

vπ(s) =
∑
a

π(s, a)
∑
s′,r

p(s′, r|s, a)
(
r + γvπ(s

′)
)

(2.5)

This is referred to as the Bellman equation for vπ, where vπ is the fixed point

solution that satisfies the recursion relationship. With an approximate value
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function V ≈ vπ, we can evaluate the Bellman equation directly. Doing so

involves bootstrapping off of the current estimated values of successor states s′

to update the value of each state s:

∀s : V (s)←
∑
a

π(s, a)
∑
s′,r

p(s′, r|s, a)
(
r + γV (s′)

)
(2.6)

Repeatedly updating the value of each state until convergence results in the

dynamic programming approach to policy evaluation (Bellman, 1957; Howard,

1960). Similarly, the Bellman equation for qπ and corresponding dynamic

programming update with approximate value function Q ≈ qπ are:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)
(
r + γ

∑
a′

π(s′, a′)qπ(s
′, a′)

)
(2.7)

∀s, a : Q(s, a)←
∑
s′,r

p(s′, r|s, a)
(
r + γ

∑
a′

π(s′, a′)Q(s′, a′)
)

(2.8)

A key idea behind the dynamic programming approach is that a better

estimate for a value can be computed based on its current estimates for other

values. However, it requires explicit knowledge of the environment model

p(s′, r|s, a) to evaluate the Bellman equation.

2.3.2 Monte Carlo Methods

Another approach to approximating the value function is to perform a Monte

Carlo estimate of the expected return. In the episodic setting, an agent could

perform several rollouts under a policy π until termination, storing the se-

quence of state-action pairs and rewards. For each visited state, the return Gt

from that point onward can be computed and averaged together with other re-

turns sampled from the same state. Using an exponential moving average with

α ∈ (0, 1], we get the following update for each time step in the trajectory:

V (St)← (1− α)V (St) + αGt (2.9)

Of note, the above average can be rewritten as taking a step proportional to

the difference between the sample and the current estimate with a step size α:

V (St)← V (St) + α(Gt − V (St)) (2.10)
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The above update is for the case where the rollouts are performed under the

policy we are trying to evaluate. In the off-policy case, we aim to estimate the

values under a target policy while data is being generated from a potentially

different behavior policy. One technique for correcting this discrepancy is the

use of importance sampling weights (Hammersley and Handscomb 1964; Ru-

binstein 1981). With a target policy π and behavior policy µ, the importance

sampling weight of a single transition is defined to be:

ρt
def
=

π(St, At)

µ(St, At)
(2.11)

The importance sampling weight for a trajectory can then be computed as a

product of importance sampling ratios:

T−1∏
k=t

π(Sk, Ak)p(Sk+1|Sk, Ak)

µ(Sk, Ak)p(Sk+1|Sk, Ak)
=

T−1∏
k=t

π(Sk, Ak)

µ(Sk, Ak)
=

T−1∏
k=t

ρk (2.12)

Assuming full coverage, that is, all of the actions that may occur under the

target policy may also occur under the behavior policy, the expected value of

the above product of importance sampling ratios is 1. This can be shown by

summing over all possible trajectories τ = St, At, St+1, At+2, ...ST :

Eµ

[ T−1∏
k=t

ρk

⏐⏐⏐⏐St = s

]
=

∑
τ

( T−1∏
k=t

µ(Sk, Ak)p(Sk+1|Sk, Ak)

)( T−1∏
k=t

π(Sk, Ak)

µ(Sk, Ak)

)

=
∑
τ

T−1∏
k=t

π(Sk, Ak)p(Sk+1|Sk, Ak)

= 1

Weighting a trajectory sampled by the behavior policy’s distribution by

the product of importance sampling ratios will result in computing the ex-

pectation under the target policy’s distribution (also assuming full coverage).

This can be seen if we denote some trajectory-dependent random variable X
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and compute the expectation for the state at time t:

Eµ

[( T−1∏
k=t

ρk

)
Xt

⏐⏐⏐⏐St = s

]
=

∑
x,τ

x

( T−1∏
k=t

π(Sk, Ak)

µ(Sk, Ak)

)( T−1∏
k=t

µ(Sk, Ak)p(Sk+1|Sk, Ak)

)

=
∑
x,τ

x

( T−1∏
k=t

π(Sk, Ak)p(Sk+1|Sk, Ak)

)
= Eπ

[
Xt

⏐⏐⏐⏐St = s

]
There are several ways in which importance sampling can be used to correct

the discrepancy between the behavior and target policy distributions (Sutton

et al., 2014; Mahmood and Sutton, 2015). For example, it could be used to

weight the return, or the differences between the return and the estimates:

V (St)← V (St) + α

(( T−1∏
k=t

ρk

)
Gt − V (St)

)
(2.13)

V (St)← V (St) + α

( T−1∏
k=t

ρk

)
(Gt − V (St)) (2.14)

A drawback of the importance sampling technique is that the importance

sampling weights can become arbitrarily large, resulting in large variance. Be-

tween the above two methods, the latter is typically preferred as the difference

between the return and the estimate tends to be a smaller and less variable

number than the return alone (Jiang et al., 2016). Another approach is to

only apply the importance sampling weight to the terms affected by each ac-

tion selected. This is referred to as per-decision importance sampling (Precup

et al., 2000), and estimates the return as follows:

Gt = ρt+1Rt+1 + γρt+1ρt+2Rt+2 + γ2ρt+1ρt+2ρt+3Rt+3 + ... (2.15)

Per-decision importance sampling has the appeal of computing a smaller prod-

uct of importance sampling ratios for earlier terms in the trajectory, potentially

mitigating unnecessary variance. However, it lacks the intuitive benefit of scal-

ing a difference as in Equation 2.14. The remainder of this thesis will focus on

this per-decision setting.

An appealing aspect of Monte Carlo methods are that they don’t require

a model of the environment, and can learn entirely from experience. However,
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Monte Carlo methods are restricted to episodic settings as the complete return

needs to be sampled for learning to occur.

2.4 One-step TD Learning

Combining the model-free sampling techniques of Monte Carlo learning with

the bootstrapping idea of dynamic programming results in the TD learning

approach to policy evaluation. If we recall the Bellman equation for vπ in Equa-

tion 2.5, we can compute a Monte Carlo sample of the recursive relationship.

Given a transition {St, At, Rt+1, St+1} sampled from the environment model

p(s′, r|s, a) and the target policy π, we can compute the following estimate of

the return with an approximate value function V :

Ĝt = Rt+1 + γV (St+1) (2.16)

This estimate is sometimes denoted as the TD target. After computing this

estimate, the value of the previous state can be updated with a step propor-

tional to the difference between the TD target and the current value estimate,

similar to Equation 2.10:

V (St)← V (St) + α(Ĝt − V (St)) (2.17)

where the term in brackets in Equation 2.17 is often referred to as the TD

error. This allows for online and incremental learning, as these updates can

be performed on a per-decision basis without waiting for the end result. Ex-

tending this to the off-policy setting with per-decision importance sampling,

the TD target in Equation 2.16 becomes:

Ĝt = ρt(Rt+1 + γV (St+1)) (2.18)

In the action value case, based on the Bellman equation for qπ in Equation

2.7, we can perform the following update with knowledge of the next sampled

action At+1:

Ĝt = Rt+1 + γQ(St+1, At+1) (2.19)

Q(St, At)← Q(St, At) + α(Ĝt −Q(St, At)) (2.20)
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This results in the Sarsa algorithm, often presented as the classical on-policy

algorithm (Rummery and Niranjan, 1994; Sutton, 1996) for action-values. Of

note, the immediate action is specified for action-values, and thus the imme-

diate reward does not depend on the policy. Due to this, in the off-policy

setting, the importance sampling correction only needs to be applied on the

term after the immediate reward in Equation 2.19:

Ĝt = Rt+1 + γρt+1Q(St+1, At+1) (2.21)

Another approach to the action-value case is to compute the expectation across

action-values under the target policy in the next state directly. Denoting the

expected action-value under the target policy for a given state as Q̄t, we get

the following TD target:

Q̄t =
∑
a

π(St, a)Q(St, a) (2.22)

Ĝt = Rt+1 + γQ̄t+1 (2.23)

Doing so results in the Expected Sarsa algorithm (van Seijen et al., 2009).

It avoids unnecessary variance due to policy stochasticity by not relying on

sampling the next action, and is being able to perform off-policy learning

without importance sampling ratios. In control problems where the goal is to

maximize the expected return, the target policy is typically set to one that is

deterministically greedy with respect to the action-values. This is equivalent

to performing a maximum operation on the action-values in the next state:

Ĝt = Rt+1 + γmax
a

Q(St+1, a) (2.24)

The above TD target results in the Q-learning algorithm, a popular off-policy

control method (Watkins, 1989). However, since it can be viewed as a special

case of Expected Sarsa, we will focus on the general case with arbitrary target

policies.

2.5 n-step TD Learning

TD algorithms are referred to as one-step TD algorithms when they only

incorporate information from a single time step in the estimate of the return.
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In multi-step TD methods, a longer sequence of experienced rewards is used to

compute said estimate. For example, on-policy n-step TD (Sutton and Barto,

2018) would update a value V (St) towards the following estimate:

Ĝt:t+n = Rt+1 + γRt+2 + ...+ γnV (St+n)

= γnV (St+n) +
n−1∑
k=0

γkRt+k+1 (2.25)

Multi-step methods create a spectrum of algorithms which unify one-step

TD learning and Monte Carlo methods, and address a bias-variance trade-

off (Jaakkola et al., 1994). One-step TD has lower variance as it only has

to deal with the variability in the immediate reward, as opposed to that of a

longer reward sequence. However, it has larger bias as it puts relatively more

importance on bootstrapping off of its current estimates, which could be poor.

In the off-policy case with per-decision importance sampling, it’s more

convenient to express the estimate of the return recursively. First, we define

the bootstrapping condition:

Ĝt:t = V (St) (2.26)

The return estimate for n-step TD then becomes:

Ĝt:t+n = ρt(Rt+1 + γĜt+1:t+n) (2.27)

In the action-value setting, the return estimate for n-step Sarsa with per-

decision importance sampling is:

Ĝt:t = Q(St, At) (2.28)

Ĝt:t+n = Rt+1 + γρt+1Ĝt+1:t+n (2.29)

For the Expected Sarsa algorithm, there have been several proposed extensions

to the multi-step setting. One is the n-step Expected Sarsa algorithm (Sutton

and Barto, 2018) which samples a sequence of rewards like n-step Sarsa, but

bootstraps off of the expectation across action-values on the n-th step. This

results in importance samping ratios for the reward sequence but not the final
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step. It can be expressed with the same return estimate in Equation 2.29, but

with the following bootstrapping condition:

Ĝt:t =
Q̄t+1

ρt
(2.30)

where the division by ρt is to cancel out the final importance sampling ratio

in the recursive definition. Another extension of Expected Sarsa to the multi-

step setting is the n-step Tree-backup algorithm (Precup et al., 2000), which

is characterized by computing an expectation at every time step. Maintaining

the bootstrapping condition of Equation 2.28, n-step Tree-backup’s estimate

of the return is:

Ĝt:t+n = Rt+1+γ

(
π(St+1, At+1)Ĝt+1:t+n+

∑
a̸=At+1

π(St+1, a)Q(St+1, a)

)
(2.31)

An appealing aspect of Tree-backup is that it can perform off-policy learning

without importance sampling, like one-step Expected Sarsa. This results in

lower variance, but introduces additional bias relative to n-step Expected Sarsa

for the same n (De Asis et al., 2018). The additional bias is due to the

π(St+1, At+1)Ĝt+1:t+n term in Equation 2.31. It can be seen as decaying the

remainder of the sampled return based on the stochasticity of the target policy,

effectively giving less weight to the reward sequence, and compensating by

bootstrapping off of the action-values of actions not taken.

2.6 TD(λ) Methods

Another family of multi-step TD algorithms are the TD(λ) methods (Sut-

ton and Barto, 2018). They are characterized by computing a geometrically

weighted sum of n-step returns, denoted as the λ-return:

Ĝλ
t = (1− λ)

∞∑
n=1

λn−1Ĝt:t+n (2.32)

It introduces a hyperparameter λ ∈ [0, 1] where λ = 0 gives one-step TD

learning, and increasing λ effectively increases the number of sampled rewards

in the estimate of the return.
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Substituting the return of on-policy n-step TD from Equation 2.25 into

Equation 2.32 gives the λ-return for on-policy TD(λ):

Ĝλ
t = V (St) +

∞∑
k=t

(Rk+1 + γV (Sk+1)− V (Sk))
k∏

i=t+1

γλ

This shows that the λ-return for on-policy TD(λ) can be estimated by com-

puting one-step TD errors, and decaying the weight of later TD errors at a rate

of γλ. Implementing this online and incrementally, an eligibility trace vector

is maintained to track which states led to the current step’s TD error. The

traces of earlier states are decayed at each step by the afformentioned decay

rate, and each state’s value is adjusted by the current TD error weighted by

the state’s corresponding trace.

The above derivation is easier to show via an equivalent recursive definition

for the λ-return (Assuming the value function does not change):

Ĝλ
t = Rt+1 + γ

(
(1− λ)V (St+1) + λĜλ

t+1

)
Ĝλ

t = Rt+1 + γV (St+1) + γλ(Ĝλ
t+1 − V (St+1))

Ĝλ
t − V (St) = Rt+1 + γV (St+1)− V (St) + γλ(Ĝλ

t+1 − V (St+1))

Ĝλ
t − V (St) =

∞∑
k=t

(Rk+1 + γV (Sk+1)− V (Sk))
k∏

i=t+1

γλ

Ĝλ
t = V (St) +

∞∑
k=t

(Rk+1 + γV (Sk+1)− V (Sk))
k∏

i=t+1

γλ

Due to how traces are updated after each decision, TD(λ) methods lend

themselves nicely to certain per-decision importance sampling methods. For

example, if we substitute the return of n-step Sarsa with per-decision impor-

tance sampling from Equation 2.29 into Equation 2.32, we get the following

λ-return:

Ĝλ
t = Rt+1 + γ((1− λ)ρt+1Q(St+1, At+1) + λρt+1G

λ
t+1) (2.33)

Solving this recursion, again assuming that the value estimates do not change,

results in:

Ĝλ
t = V (St) +

∞∑
k=t

(Rk+1 + γρk+1Q(Sk+1, Ak+1)−Q(Sk, Ak))
k∏

i=t+1

γλρi

(2.34)

15



Updating towards this estimate of the return results in the Sarsa(λ) algorithm,

which can similarly be estimated as a sum one-step Sarsa’s TD errors, weighted

by eligibility traces with a trace decay rate of γλρi.

Similarly, substituting the return of n-step Tree-backup from Equation 2.31

results in:

Ĝλ
t = V (St) +

∞∑
k=t

(Rk+1 + γQ̄t+1 −Q(Sk, Ak))
k∏

i=t+1

γλπ(Si, Ai) (2.35)

This shows that the λ-return of the Tree-backup(λ) algorithm can be estimated

as a sum of one-step Expected Sarsa’s TD errors, with a trace decay rate of

γλπ(Si, Ai). Of note, π(Si, Ai) ≤ ρi, resulting in traces which decay quicker

than those of the Sarsa(λ) algorithm. This captures the afformentioned addi-

tional bias of the Tree-backup algorithm, as it effectively updates fewer values

of previous state-action pairs for a given value of λ.

n-step Expected Sarsa does not have a λ-return which can be expressed as

a sum of TD errors of existing one-step TD methods. This is due to how it

performs a mix of sampling and computing expectations, and does not commit

to one at each time-step. For example, on-policy 2-step Expected Sarsa would

sample at time steps t+1 and t+2, and compute an expectation across actions

in the state at step t+ 3:

Ĝt = Rt+1 + γRt+2 + γ2Q̄t+2

Incrementing the time steps allows us to see what is computed at the next

step:

Ĝt+1 = Rt+2 + γRt+3 + γ2Q̄t+3

From this, we can see that the expectation computed at step t+2 has become

a sampled reward, and a new expectation is computed at step t + 3. TD(λ)

methods commit to a sample or expectation at a given step through the one-

step TD error used, and the amount the traces are decayed by.

Because TD(λ) methods aim to estimate a multi-step return with a sum

of one-step TD errors, the action-value setting involves subtracting an action-

value of a specific state-action pair. This subtraction can be viewed as can-

celing out a bootstrapping term of a previous n-step return, and replacing it
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with the reward and value of the next state. Since the bootstrapping condi-

tions in the recursive definitions of n-step Sarsa and n-step Tree-backup are an

individual action-value, there is a clear notion of what gets canceled out with

the subtraction and what gets replaced with the information of the next step.

This is not the case with n-step Expected Sarsa, as seen from its bootstrapping

condition in Equation 2.30.

Contrasting with n-step TD methods, the computational complexity of

TD(λ) control algorithms scales with the size of the environment, |S| × |A|.

That is, there is an environment-specific increase in complexity, but it no longer

scales with the number of sampled rewards in the estimate of the return. A

notable advantage of n-step methods is the conceptual clarity, as well as exact

computation of the multi-step returns, since the incremental estimation of the

λ-return assumes the value function isn’t changing.

2.7 Extension to Function Approximation

The aforementioned algorithms have been presented as tabular solution meth-

ods, where every state is fully observed. Many applications involve impracti-

cally large state spaces, or partial observability of the underlying state. Due

to this, function approximation is used. The use of function approximation

allows for a more compact representation of the value function, as well as

potential generalization between similar states in terms of observed features.

This is accomplished by parametrizing the value function with a set of

weights, which we will denote with w. A natural extension to tabular solution

methods is the use of linear function approximation, as a tabular representation

can be viewed as a linear function where the state features consist of indicator

vectors. However, any arbitrary function can be used, such as a non-linear

one.

The goal is then to compute a set of weights which make the approximate

value function as close to the true value function as possible. This is done by

defining an optimization objective, and searching for the best set of weights

under this objective. One possible objective is the mean-squared value error
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(MSVE). For a parametrized state-value function v̂(s, w), and a behavior dis-

tribution dµ(s) capturing the fraction of the time spent in a state s under the

behavior policy:

MSVE(w)
def
=

1

2

∑
s∈S

dµ(s)(vπ(s)− v̂(s, w))2 (2.36)

One way to optimize this objective is to use stochastic gradient descent

(Widrow and Hoff, 1960), where a sample of the gradient of the objective is

taken, and the weights are updated in the direction of the sample with step

size α. Treating w as a column vector of weights:

wt+1 ← wt +
1

2
α∇w(vπ(s)− v̂(s, wt))

2 (2.37)

Where ∇wf(w) is the gradient of a function f(w) with respect to the param-

eters w. For a function with d parameters:

∇wf(w)
def
=

(
∂f(w)

∂w1

,
∂f(w)

∂w2

, ...,
∂f(w)

∂wd

)T

(2.38)

Since TD methods don’t have access to the true value function vπ(s), they

would use the estimate of the return Ĝt in its place. Since the bootstrapped

values depend on the current set of weights, we end up with a biased estimate

of the gradient, and end up performing semi-gradient updates as it’s no longer

a true gradient descent method (Sutton, 1988). For example, one-step semi-

gradient TD would perform the following update:

Ĝt ← Rt+1 + γv̂(St+1, wt)

wt+1 ← wt + α(Ĝt − v̂(St, wt))∇wv̂(St, wt) (2.39)

To give a concrete example, let’s consider the case of linear function ap-

proximation. For a particular state, an agent observes a k-dimensional feature

vector which we denote as ϕ(St) ∈ Rk. Through a k-dimensional weight vec-

tor wt ∈ Rk, the value function is represented as a linear combination of these

features:
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v̂(St, wt) = wT
t ϕ(St) (2.40)

Under linear function approximation, the gradient of the MSVE objective

with respect to the weight vector is then:

∇wv̂(St, wt) = ϕ(St) (2.41)

resulting in the following update:

Ĝt ← Rt+1 + γwT
t ϕ(St+1)

wt+1 ← wt + α(Ĝt − wT
t ϕ(St))ϕ(St) (2.42)

The tabular setting can be viewed as a special case of linear function ap-

proximation where each state has a unique indicator vector. For notational

clarity, we will use a tabular notation for the work presented in this thesis.

Although other optimization objectives exist, as well as TD methods which

perform true gradient updates (Sutton et al., 2009), we will focus on semi-

gradient methods with the MSVE objective in this thesis whenever we mention

the use of function approximation.
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Chapter 3

Per-decision Control Variates

This chapter describes the idea of control variates and its application in Monte

Carlo estimation. This is done to investigate whether control variates can

address the large variance of multi-step TD methods mentioned earlier in this

thesis. The chapter then derives per-decision control variates for multi-step TD

learning, provides intuition on the potential variance reduction, and shows how

the introduction of these control variates provides a deeper understanding of

existing TD methods. Lastly, it provides empirical results which demonstrate

the benefit of using control variates in multi-step TD learning.

3.1 The Control Variate Method

When trying to estimate the expectation of some variable X, control variates

are often of the following form (Ross, 2013):

X∗ = X + c(Y − E[Y ]) (3.1)

where Y is the outcome of another variable with a known expected value, and

c is a coefficient to be set. X∗ then has the following variance:

Var(X∗) = Var(X) + c2Var(Y ) + 2cCov(X, Y ) (3.2)
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This variance can be minimized with the optimal coefficient c∗:

∂Var(X∗)

∂c
= 2cVar(Y ) + 2Cov(X, Y )

0 = 2c∗Var(Y ) + 2Cov(X, Y )

c∗ = −Cov(X, Y )

Var(Y )
(3.3)

Using the optimal coefficient c∗, the resulting variance is:

Var(X∗) = Var(X) +

(
Cov(X, Y )

Var(Y )

)2

Var(Y )− 2

(
Cov(X, Y )

Var(Y )

)
Cov(X, Y )

Var(X∗) = Var(X)− Cov(X, Y )2

Var(Y )

Var(X∗) = Var(X)− Cov(X, Y )2

Var(X)Var(Y )
Var(X)

Var(X∗) =
(
1− Corr(X, Y )2

)
Var(X) (3.4)

where Corr(X, Y ) is the correlation coefficient of X and Y . From this, it can

be seen that a larger magnitude of correlation between the two variables results

in a greater reduction in variance.

3.2 Control Variates for TD Learning

To derive control variates for TD learning, we first look at the action-value

setting. n-step Sarsa with per-decision importance sampling estimates the

return based on the recursive definition in Equations 2.28 and 2.29:

Ĝt:t = Q(St, At)

Ĝt:t+n = Rt+1 + γρt+1Ĝt+1:t+n

We focus on the importance sampling-corrected portion of the n-step re-

turn, ρt+1Ĝt+1:t+n. Suppose that at each step, through the sampled action,

the n-step Sarsa algorithm jointly samples the importance sampling-corrected

action-value ρt+1Q(St+1, At+1). Since the target policy is typically known, the

action-value of a particular state has a known expected value at a given time

step, Q̄t+1. Using the form of the control variate in Equation 3.1, we get the
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following estimate of the importance-sampling corrected term of the n-step

return:

(ρt+1Ĝt+1:t+n)
∗ = ρt+1Ĝt+1:t+n + c

(
ρt+1Q(St+1, At+1)− Q̄t+1

)
(3.5)

Under the assumption that the approximated value function is accurate, the

action-values represent the expected return. Due to this, the sampled reward

sequence and the action-value are, in expectation, the same quantity. The

covariance term in Equation 3.3 would be the variance of the sampled action-

value, and from this, a reasonable choice for the coefficient would be −1. This

gives:

(ρt+1Ĝt+1:t+n)
∗ = ρt+1Ĝt+1:t+n + Q̄t+1 − ρt+1Q(St+1, At+1) (3.6)

Substituting this estimate into the recursive definition of n-step Sarsa’s esti-

mate of the return gives the following n-step return (Maintaining the same

bootstrapping condition):

ĜACV
t:t+n = Rt+1 + γ(ρt+1Ĝt+1:t+n + Q̄t+1 − ρt+1Q(St+1, At+1)) (3.7)

The expectation of the additional terms under the behavior policy for a given

state is 0, so no additional bias is introduced:

Eµ[Q̄t+1−ρt+1Q(St+1, At+1)]

=
∑
a

µ(St+1, a)

(
Q̄t+1 −

π(St+1, a)

µ(St+1, a)
Q(St+1, a)

)
= Q̄t+1 −

∑
a

π(St+1, a)Q(St+1, a)

= Q̄t+1 − Q̄t+1

= 0

To provide intuition on how it might reduce the variance in the estimate,

we can consider some extreme cases of the importance sampling ratio. If

ρt+1 = 0, when the behaviour policy takes an action that the target policy

would have never taken, it will bootstrap off of the expectation of its current

estimates instead of making the remainder of the reward sequence equal to

22



0. If ρt+1 is much greater than 1, an equivalent amount of its current action-

value estimate is subtracted to compensate. This can be seen as having the

benefit of smaller products of importance sampling ratios from per-decision

importance sampling, combined with the benefit of applying the importance

sampling ratios to a difference between the sampled return and an estimate

like in Equation 2.10.

In the one-step case, the introduction of this control variate results in one-

step Expected Sarsa’s target:

Ĝt:t+1 = Rt+1 + γ(ρt+1Q(St+1, At+1) + Q̄t+1 − ρt+1Q(St+1, At+1))

Ĝt = Rt+1 + γQ̄t+1

When applying the control variate at the bootstrapping step, it implicitly

results in bootstrapping off of the expectation under the target policy as op-

posed to the importance sampling-corrected action-value. From this, it can

be viewed as an alternate generalization of Expected Sarsa to the multi-step

setting. n-step Expected Sarsa would be a special case which only applies the

control variate at the bootstrapping step, when it could be applied to each

sampled reward in the sequence.

The control variate can be interpreted as performing an expectation cor-

rection at each step based on current estimates. TD methods aim to learn

the expectation across all possible trajectories under a policy, but tries to do

so with the immediate information from the trajectory currently being taken.

An action-value is like a closer guess of what the current sampled return will

be than the computed expectation across all actions, because the agent knows

which action resulted in the immediate reward at each step. The difference

between the expected action-value across all actions and the action-value of

the action selected can be seen as a per-step estimate of the discrepancy be-

tween the expectation across all reward sequences, and the sampled reward

sequence from the current step onwards.

These additional terms in the action-value setting can also be viewed as

a model-free instance of a doubly robust estimator which has been studied in

in offline methods for sequential decision making (Jiang et al., 2016; Thomas
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et al., 2016). Harutyunyan et al. (2016) has explored similar expectation

correction terms, but in the context of whether the terms could perform off-

policy corrections without the use of importance sampling.

Looking at the state-value case, we start with the n-step return given by

Equations 2.26 and 2.27:

Ĝt:t = V (St)

Ĝt:t+n = ρt(Rt+1 + γĜt+1:t+n)

Unlike the action-value setting, the algorithm doesn’t have access to action-

values which incorporate information about the immediate reward for the ac-

tion selected. However, it can still take advantage of knowing what actions

were taken through the importance sampling ratios. It may instead jointly

sample the importance sampling-corrected state-value, ρtV (St). This quan-

tity has a known expected value of V (St), since state-values already represent

the expectation across all actions. This results in the following n-step return:

ĜSCV
t:t+n = ρt(Rt+1 + γĜt+1:t+n) + c

(
ρtV (St)− V (St)

)
(3.8)

Setting the control variate parameter c to −1 under the same assumptions

made in the action-value setting, we get:

ĜSCV
t:t+n = ρt(Rt+1 + γĜt+1:t+n) + V (St)− ρtV (St)

ĜSCV
t:t+n = ρt(Rt+1 + γĜt+1:t+n) + (1− ρt)V (St) (3.9)

This has a similar intuition as the action-value setting, where knowledge

of the action-selected allows it to have a closer guess of the current impor-

tance sampling-corrected reward sequence. For example, if the specific action

selected results in a very large importance sampling ratio, the importance

sampling-corrected state value would be a closer estimate to what the cur-

rent sampled return will be. Taking the difference between the state value

and the importance sampling-corrected state-value can be seen as estimating

the discrepancy between the current sampled sequence and its guess of what

the expected return is supposed to be. Similarly, the additional terms do not
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introduce additional bias:

Eµ[V (St+1)− ρt+1V (St+1)]

=
∑
a

µ(St+1, a)

(
V (St+1)−

π(St+1, a)

µ(St+1, a)
V (St+1)

)
= V (St+1)− V (St+1)

∑
a

π(St+1, a)

= V (St+1)− V (St+1)

= 0

Of note, the state-value control variate disappears in the on-policy setting,

while the action-value control variate does not. This makes the above control

variates generally applicable to off-policy learning, but we did not explore fur-

ther control variates which are generally applicable to the on-policy setting.

Because state-values can be computed from action-values through Equation

2.4, the state-value control variate may also be applied to action-value meth-

ods.

3.3 Relationship with Existing Algorithms

Adding the action-value control variate into the recursive definition for the

λ-return of the Sarsa(λ) algorithm in Equation 2.33, we get:

Ĝλ
t = Rt+1 + γ

(
(1− λ)(ρt+1Q(St+1, At+1) + Q̄t+1 − ρt+1Q(St+1, At+1))

+ λ(ρt+1G
λ
t+1 + Q̄t+1 − ρt+1Q(St+1, At+1))

)
Ĝλ

t = Rt+1 + γ
(
(1− λ)Q̄t+1 + λ(ρt+1G

λ
t+1 + Q̄t+1

− ρt+1Q(St+1, At+1))
)

(3.10)

Solving the above recursion, we can rearrange it into a sum of one-step

Expected Sarsa’s TD errors:

Ĝλ
t = Q(St, At) +

∞∑
k=t

(Rk+1 + γQ̄k+1 −Q(Sk, Ak))
k∏

i=t+1

γλρi (3.11)

This is equivalent to using the eligibility trace decay rate of Sarsa(λ), but

backing up the TD errors of one-step Expected Sarsa. That is, in the space

25



of action-value TD(λ) algorithms, having the one-step estimates of the return

bootstrap off of the expectation under the target policy implicitly induces this

per-decision control variate in the corresponding n-step returns.

An aforementioned algorithm that also uses one-step Expected Sarsa’s TD

error in its λ-return is the Tree-backup(λ) algorithm. Tree-backup(λ)’s esti-

mate of the return is characterized by Equation 2.35, re-stated below (Denoting

πt = π(St, At)):

Ĝλ
t = Q(St, At) +

∞∑
k=t

(Rk+1 + γQ̄k+1 −Q(Sk, Ak))
k∏

i=t+1

γλπi

If we look at n-step Tree-backup’s estimate of the return in Equation 2.31, and

rewrite the summation over actions not taken as follows, we can show that it

also includes similar expectation correction terms:

Ĝt:t+n = Rt+1 + γ

(
πt+1Ĝt+1:t+n +

∑
a̸=At+1

π(St+1, a)Q(St+1, a)

)
Ĝt:t+n = Rt+1 + γ

(
πt+1Ĝt+1:t+n + Q̄t+1 − πt+1Q(St+1, At+1)

)
The estimate takes some portion of the sampled reward sequence, and the

difference between the expected action-value under the target policy and an

equivalent portion of the sampled action-value. The algorithmic difference

between n-step Tree-backup and n-step Sarsa with the per-decision control

variate is the replacement of the πt terms with the importance sampling ratios

ρt. This per-decision function, which decides what portion of the sampled

reward sequence to use, gets captured as an action-dependent trace decay

rate.

Generalizing the above insight for the action-value setting, If we denote

a TD algorithm’s bootstrapping target as Bt, and some general per-decision

function dt, we get the following n-step return:

Ĝt:t = Q(St, At)

Ĝt:t+n = Rt+1 + γ
(
dt+1Ĝt+1:t+n +Bt+1 − dt+1Q(St+1, At+1)

)
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and corresponding λ-return:

Ĝλ
t = Rt+1 + γ

(
(1− λ)Bt+1 + λ(dt+1Ĝt+1:t+n +Bt+1 − dt+1Q(St+1, At+1)))

)
Ĝλ

t = Q(St, At) +
∞∑
k=t

(Rk+1 + γBk+1 −Q(Sk, Ak))
k∏

i=t+1

γλdi

For example, the Sarsa algorithm with per-decision importance sampling uses

the bootstrapping target Bt = ρtQ(St, At) and per-decision function dt = ρt.

Substituting these into the above equations will give the return estimates for

the off-policy n-step Sarsa and Sarsa(λ) algorithms. This insight allows for for

quickly mapping TD(λ) to their n-step TD counterparts, provided they follow

a similar form. In the state-value setting, combining Equations 3.9 and 2.32

gives the following λ-return:

Ĝλ
t = V (St) + ρt

∞∑
k=t

(Rk+1 + γV (Sk+1)− V (Sk))
k∏

i=t+1

γλρi (3.12)

which is an intuitive generalization of off-policy per-decision importance sam-

pling for state-values, having an additional importance sampling correction

term for the first reward in the sequence. It can be seen that scaling state-

value TD errors by a per-decision function, as opposed to scaling the TD

target, implicitly induces the state-value control variate in the n-step estimate

of the return.

3.4 Experimental Results

In this section, we focus on the action-value setting and investigate the per-

formance of n-step Sarsa with per-decision control variates on three problems.

The first two are multi-step prediction tasks in a tabular environment, one

being off-policy and one being on-policy. The remaining one is a control prob-

lem involving function approximation, evaluating the performance of n-step

ACV Sarsa beyond the tabular setting, as well as how it handles a changing

(greedifying) policy.

Since the introduction of the control variates can be viewed as another way

of generalizing one-step Expected Sarsa to the multi-step, we compare the use
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of control variates with the two existing multi-step generalizations: n-step

Expected Sarsa and n-step Tree-backup. We test both the state-value control

variate (denoted as n-step SCV Sarsa) and the action-value control variate

(denoted as n-step ACV Sarsa). For n-step SCV Sarsa, the state-values are

computed from the learned action-values using Equation 2.4, and it is made to

bootstrap off of the expectation across action-values on the final step because

the state-value control variate does not implicitly induce this.

3.4.1 5×5 Grid World

The 5×5 grid world is a 2-dimensional grid world having terminal states in two

opposite corners. The actions consist of 4-directional movement, and moving

into a wall transitions the agent to the same state. The agent starts in the

center, and a reward of −1 is received at each transition. Experiments were

run in both the off-policy and on-policy settings with no discounting (γ = 1),

and the root-mean-square (RMS) error between the learned value function and

the true value function were compared:

RMSE =

√
1

|S| × |A|
∑
s,a

(Q(s, a)− qπ(s, a))2 (3.13)

Figure 3.1: The 5×5 grid world environment. The top left and bottom right
corners represent terminal states, and each transition results in a reward of -1.
It was set up as an on and off-policy multi-step prediction task where the goal
was to estimate the expected return under the target policy as accurately as
possible.
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Off-policy Prediction

For the off-policy experiments, the target policy would move north with prob-

ability 1 − ϵ, and select a random action equiprobably otherwise. ϵ was set

to 0.5, and the behaviour policy was equiprobable random for all states. A

parameter study was done for 1, 2, and 4 steps, and the RMS error was mea-

sured after 200 episodes. The results are averaged over 1000 runs, and can be

seen in Figure 3.2.

Figure 3.2: 5×5 grid world off-policy prediction results. This plot shows the
performance of various parameter settings of each algorithm in terms of RMS
error after 200 episodes in the learned value function. The shaded region
corresponds to one standard deviation, and the results are averaged over 1000
runs.

It can be seen that 2-step Expected Sarsa only outperforms 1-step Expected

Sarsa for a very limited range of parameters, but is worse otherwise. 4-step

Expected Sarsa was unable to learn for most parameter settings. We can see

that 2-step ACV Sarsa outperforms 1-step Expected Sarsa for all parameter

settings, and the variance is reduced relative to 2-step Expected Sarsa. Fur-
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thermore, 4-step ACV Sarsa ends up being able to learn, and can outperform

2-step ACV Sarsa for a reasonably wide range of parameters. n-step SCV

Sarsa results in behavior in between that of n-step Expected Sarsa and n-step

ACV Sarsa, but appears more stable for larger settings of n and α in the 4-step

case. n-step Tree-backup has the lowest variance, and appears most stable at

large parameter settings. However, Tree-backup learned relatively slowly that

it did not achieve errors lower than the best settings of n-step ACV Sarsa

within the 200 episodes.

Learning curves from the best tested parameter setting of each algorithm

can be seen in Figure 3.3. It can be seen that n-step ACV Sarsa performs best

on this problem. Despite having larger variance than the other algorithms at

its best parameter setting, the control variate allowed ACV Sarsa to tolerate

large enough combinations of n and α (out of those tested) to learn signifi-

cantly faster. Of note, Tree-backup seems like it would perform better if we

allowed n to take on larger parameter settings. However, we did not investi-

gate this further as the primary focus was to investigate the effects of explicit

introduction of control variates into n-step TD methods.

Figure 3.3: 5×5 grid world off-policy prediction learning curves. This plot
shows the learning curve of the best parameter setting of each algorithm in
terms of final RMS error after 200 episodes in the learned value function. The
shaded region corresponds to one standard error, and the results are averaged
over 1000 runs.
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On-policy Prediction

In the on-policy case, the target policy and behaviour policy were both equiprob-

able random for all states. The parameters tested are identical to the off-policy

experiment with the addition of 8-step instances of each algorithm. SCV Sarsa

was not tested, as the state-value control variate is not present in the on-policy

case. The RMS error was measured after 200 episodes, and are also averaged

over 1000 runs. The results are summarized in Figure 3.4.

Figure 3.4: 5×5 grid world on-policy prediction results. This plot shows the
performance of various parameter settings of each algorithm in terms of RMS
error after 200 episodes in the learned value function. The shaded region
corresponds to one standard deviation, and the results are averaged over 1000
runs.

2-step Expected Sarsa ends up performing better than 1-step Expected

Sarsa for a wider range of parameters than in the off-policy case, but the best

parameter settings for each perform similarly. Further increasing the number

of steps results in relatively poor performance, and doesn’t do better than

the best parameter setting of 1-step Expected Sarsa. Looking at n-step ACV
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Sarsa, we can see that performance is drastically improved for all tested set-

tings of n. Of note, while introducing the per-decision control variate resulted

in lower variance for a reasonable range of parameters, assumptions were made

regarding the accuracy of the value function when setting the control variate

parameter c in Equation 3.5. If the number of steps n and the step size α get

too large, it can result in larger variance and divergence on parameter settings

where n-step Expected Sarsa did not diverge. We did not investigate alternate

methods of setting the control variate parameter in this work. Like in the off-

policy case, Tree-backup was stable for all tested parameter settings, but did

not outperform ACV Sarsa due to its relatively slow learning speed.

Figure 3.5: 5×5 grid world on-policy prediction learning curves. This plot
shows the learning curve of the best parameter setting of each algorithm in
terms of final RMS error after 200 episodes in the learned value function. The
shaded region corresponds to one standard error, and the results are averaged
over 1000 runs.

3.4.2 Mountain Car

To show that this use of control variates is compatible with function approxi-

mation, we ran experiments onmountain car as described by Sutton and Barto

(2018). A reward of −1 is received at each step, and there is no discounting.

Because the environment’s state space is continuous, we used tile coding

(Sutton and Barto, 1998) to produce a feature representation for use with

linear function approximation. The tile coder used 16 tilings, an asymmetric
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Figure 3.6: The mountain car environment (Sutton and Barto, 2018). The
agent starts at a random location in the valley, receives a reward of −1 at each
step, and its goal is to drive past the flag in as few steps as possible.

offset by consecutive odd numbers, and each tile covered 1/8-th of the feature

space in each direction.

We compared n-step Expected Sarsa, n-step Tree-backup, and n-step ACV

Sarsa with 1, 2, 4, and 8 steps across different step sizes α. Each algorithm

learned on-policy with an ϵ-greedy policy which selects an action greedily with

respect to its value function with probability 1−ϵ, and selected a random action

equiprobably otherwise. In this experiment, ϵ was set to 0.1. We measured

the return per episode up to 100 episodes, and averaged the results over 100

runs. Among the parameter settings tested, we found that n = 4 and α = 0.5

was best for n-step Expected Sarsa and n-step ACV Sarsa, while n = 8 and

α = 0.9 was best for n-step Tree-backup. Figure 3.7 shows the results for the

best parameter setting for each algorithm.

The two algorithms showed a similar trend in the parameters as in the

5×5 Grid World environment, but were less pronounced. This is likely due

to not requiring accurate value function estimates to perform the task well,

and the control variate having less of an effect with greedier target policies,

because Q̄t+1 gets relatively close to Q(St, At). Despite this, as seen in the

results for the best parameter settings, n-step ACV Sarsa still outperforms n-

step Expected Sarsa on this task. n-step Tree-backup performed similarly to

n-step ACV Sarsa. This is possibly due to the ϵ-greedy policy being relatively

less stochastic than the target policies used in the other domains, resulting in
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Figure 3.7: Mountain car on-policy control results. The plot shows the return
per episode of the best parameter setting of each algorithm in terms of the
mean return over all episodes. The shaded region corresponds to one standard
error, and the results are averaged over 100 runs.

lower bias.
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Chapter 4

A Unifying Algorithm

In this chapter, we present the n-step Q(σ) algorithm, an algorithm which

unifies the space of n-step TD methods presented in Chapter 2 of this thesis.

From being able to recover existing algorithms through various settings of the

σ parameter, we can gain insight on properties of existing methods, as well

as the potential benefit of combining them. We first provide some analysis

and empirical results for this algorithm, then extend it with the per-decision

control variates. Next, we derive the TD(λ) version of the algorithm with

eligibility traces, the Q(σ, λ) algorithm, and show how this algorithm gives an

alternate view of existing multi-step TD methods.

4.1 The Landscape of TD Control Methods

If we recall the space of one-step TD methods for action-values, there are two

main algorithms. The first is one-step Sarsa, characterized by the TD target in

Equation 2.19, and the second is one-step Expected Sarsa, characterized by the

TD target in Equation 2.23. The difference between these two algorithms is the

bootstrapping target. The Sarsa algorithm bootstraps off of the importance

sampling-corrected action-value of the sampled action, and Expected Sarsa

bootstraps off of the expected action-value under the target policy.

One-step Sarsa generalizes to the n-step Sarsa algorithm, which only uses

information from the sampled action at each step. However, one-step Expected

Sarsa has two notable extensions to the n-step setting. The first extension is

the n-step Expected Sarsa algorithm, which uses information from the sampled
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actions up until the n-th step, at which it bootstraps off of an expectation

across all actions. The second multi-step extension is the n-step Tree-backup

algorithm, which computes an expectation across all actions at each step. The

exact definitions for the above algorithms can be found in Chapter 2.

In the one-step setting, computing the expectation is generally better as

it avoids unnecessary variance due to policy stochasticity (van Seijen et al.,

2009) without incurring additional bias. This isn’t the case in the multi-step

setting, where the reduced variance in computing an expectation may result

in increased bias in the return estimate. This is evident when comparing

the weight an n-step TD algorithm gives to the sampled reward sequence for

a given number of steps n. For example, 4-step Sarsa will include 4 sampled

rewards in its estimate, while 4-step Tree-backup effectively includes fewer than

4 rewards. We can show this by expanding n-step Tree-backup’s estimate of

the return in Equation 2.31 and only consider the terms involving the sampled

rewards:

Ĝt:t+n = Rt+1 + γ

(
πt+1Ĝt+1:t+n +

∑
a̸=At+1

π(St+1, a)Q(St+1, a)

)
Ĝt:t+n = Rt+1 + γπt+1Rt+2 + γ2πt+1πt+2Rt+3 + γ3πt+1πt+2πt+3Rt+4 + ...

contrasting with n-step Sarsa, recalling that Eµ[ρt|St = s] = 1:

Ĝt:t+n = Rt+1 + γρt+1Ĝt+1:t+n

Ĝt:t+n = Rt+1 + γρt+1Rt+2 + γ2ρt+1ρt+2Rt+3 + γ3ρt+1ρt+2ρt+3Rt+4 + ...

This effective reduction in the number of steps arises from computing expecta-

tions at earlier steps, as doing so weights the remainder of the reward sequence

by the probability of the action selected. This reduced emphasis on the sam-

pled reward sequence is compensated for by bootstrapping off of the current

estimates for the actions not taken, and this additional reliance on current

estimates to be accurate results in larger bias. This shows a bias-variance

tradeoff between using sampled information and computing expectations in

the multi-step setting, and motivates the unification of these methods where

an algorithm can take advantage of the benefits of either extreme.
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4.2 The n-step Q(σ) algorithm

The n-step Q(σ) algorithm was initially proposed by Precup et al. (2000),

and unifies the aforementioned n-step TD methods for action-values. The al-

gorithm is characterized by deciding at each step whether to use information

from the sampled action, compute an expectation across all actions, or a mix-

ture of the two. This decision is controlled by a hyperparameter σ ∈ [0, 1],

and has the following recursive definition:

Ĝt:t = Q(St, At) (4.1)

Ĝt:t+n = Rt+1 + γ

(
σt+1ρt+1Ĝt+1:t+n

+ (1− σt+1)

(
πt+1Ĝt+1:t+n +

∑
a̸=At+1

π(St+1, a)Q(St+1, a)

))
(4.2)

Considering fixed values of σ, setting σ = 0 results in the n-step Tree-backup

algorithm, which commits to computing an expectation at each step. On the

σ = 1 extreme we get the n-step Sarsa algorithm, which uses information

from the sampled action at each step. Setting σ to fixed intermediate values

between these two extremes can be viewed as computing a weighted average

of n-step Sarsa and n-step Tree-backup’s TD targets. The parameter σt may

also be set dynamically. If we set σt = 1 for steps t+ 1 to t+ n− 1, and then

set σt+n = 0 for the bootstrapping step, we get the n-step Expected Sarsa

algorithm.

We can develop a simple heuristic approach for dynamically varying the

parameter based on intuition from the bias-variance tradeoff, and how the

bias relies on current estimates being accurate. The algorithm can start with

σ = 1, which has large variance but less reliance on estimates being correct.

Assuming the estimates are improving over time, we can gradually decrease σ

over time to approach σ = 0, the extreme that has lower variance, but more

reliance on accurate estimates. One way to implement this in an episodic

setting would be to multiply σ by some factor β ∈ [0, 1) after each episode.
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4.3 n-step Q(σ) Results

In this section we provide emprical results on the n-step Q(σ) algorithm, show-

casing the potential benefit of trading off between sampling and computing

expectations in multi-step TD learning. We additionally compare the afor-

mentioned heuristic approach for dynamically varying σ, and show that it can

outperform fixed values. In each experiment, dynamic σ refers to applying a

decay factor β = 0.95 after each episode.

4.3.1 19-State Random Walk

The 19-state random walk, shown in Figure 4.1, is a 1-dimensional environment

where an agent randomly transitions to one of two neighboring states. There

is a terminal state on each end of the environment, transitioning to one of

them gives a reward of -1, and transitioning to the other gives a reward of 1.

The task is formulated such that each state has two actions, and each action

deterministically transitions to one of the two neighboring states. The agent

then learns on-policy under an equiprobable random behavior policy.

Figure 4.1: The 19-state random walk environment. It was set up as an on-
policy prediction task with an agent behaving under an equiprobable random
behavior policy.

This environment was treated as a prediction task, and the RMS error

between the learned value function and the true value function was computed

after each episode. For fixed values of σ, as well as a dynamic σ, we performed

a sweep across various backup-lengths n and step sizes α. Each Q(σ) instance

and parameter setting was run for 50 episodes and the results are averaged

over 100 runs.

Figure 4.2 shows the results with n = 3 and α = 0.4, which was found to be

representative of the best parameter setting for each instance of Q(σ) on this

task. Sarsa (full sampling) had better initial performance but poor asymptotic
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performance, Tree-backup (no sampling) had poor initial performance but bet-

ter asymptotic performance, and intermediate degrees of sampling traded off

between the initial and asymptotic performances. This supports the intuition

of the afformentioned bias-variance tradeoff, and it can be seen that the dy-

namic σ outperforms all of the fixed values of σ tested.

Figure 4.2: 19-state random walk prediction results. This plot shows the
performance of Q(σ) in terms of RMS error in the value function. The results
are an average of 100 runs, and the standard errors are all less than 0.006. Q(1)
had the best initial performance, Q(0) had the best asymptotic performance,
and the dynamic σ outperformed all fixed values of σ.

4.3.2 Stochastic Windy Grid World

The windy gridworld is a tabular control task described by Sutton and Barto

(2018), and it takes place in a 2-dimensional grid world. The actions consist

of 4-directional movement, and moving into a wall transitions the agent to the

same state. There is a start state and a goal state, and the agent is affected

by column-dependent wind which shifts the resultant next state upward by a

number of cells. The agent receives a reward of -1 at each time step, encour-

aging the agent to reach the goal state in as few steps as possible. The layout

of the windy gridworld problem can be seen in Figure 4.3.

The original windy gridworld domain was deterministic, where a given

state-action pair had a single possible outcome. We implemented a stochastic
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Figure 4.3: The windy gridworld environment. The start and goal states are
denoted by S and G respectively, and the numbers underneath each column
denote the upward shift in the resultant next state when transitioning into
that column.

windy gridworld, where after each action, there is a 10% chance for the next

state to be selected at random from one of the 8 states surrounding the agent.

We ran an experiment on the stochastic windy gridworld to compare vari-

ous instances of the Q(σ) algorithm in a control setting. Each Q(σ) instance

learned on-policy under an ϵ-greedy policy with ϵ = 0.1, and no discounting

was used (γ = 1). We performed 1000 runs of 100 episodes, and the average

return over the 100 episodes was computed for each run. For fixed values of

σ, as well as a dynamic σ, we tested various backup-lengths n and step sizes

α. The results are summarized in Figure 4.4.

For all settings of σ that we tested, n = 3 resulted in the largest average

return per episode. From the results, it can be seen that intermediate values of

σ can outperform either extreme, and the dynamic σ performed best overall.

4.3.3 Mountain Cliff

We implemented a variant of mountain car, denoted as mountain cliff. In this

variant, if the agent were to go too far to the left, it would fall off a cliff, and be

returned to a random initial location in the valley with a reward of -100. All

other aspects of the task are identical to that of mountain car as described by

Sutton and Barto (2018). Both mountain car and mountain cliff environments
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Figure 4.4: Stochastic windy gridworld results. The plot shows the perfor-
mance of Q(σ) in terms of the average return over 100 episodes as a function
of the step size, α, for various values of σ. The results are for selected α
values, then are connected by straight lines, and are an average of 1000 runs.
The standard errors are all less than 0.3 which is about a line width. 3-step
algorithms performed better than their 1-step equivalents, and Q(σ) with a
dynamic σ performed the best overall.

were tested, and they showed similar trends in the results. However, the results

obtained on mountain cliff are more pronounced, and thus were more suitable

for demonstrating the Q(σ) algorithm.

Figure 4.5: The mountain cliff environment. The agent starts at a random
location in the valley, receives a reward of −1 at each step, and falling off the
cliff returns it to a random initial location in the valley with a reward of -100.
The goal is to drive past the flag in as few steps as possible.

We approximated the continuous state space with tile coding function ap-
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proximation. The tile coder used 32 tilings, an asymmetric offset by consec-

utive odd numbers, and each tile covered 1/8-th of the feature space in each

direction. For each Q(σ) instance, we performed 500 runs of 500 episodes each.

Each Q(σ) instance learned on-policy under an ϵ-greedy policy with ϵ = 0.1,

and no discounting was used (γ = 1). We performed 1500 runs of 500 episodes,

and the average return over the 500 episodes was computed for each run. For

each setting of σ, including a dynamic σ, we optimized the back-up length n

and step size α for the largest average return over the 500 episodes. The results

of the best parameter settings found for each setting of σ are summarized in

Figure 4.6.

Figure 4.6: Mountain cliff results. This plot shows the performance of four
Q(σ) instances with their best parameter settings in terms of average return
over 500 episodes. The results are smoothed with a right-centered moving
average with a window size of 50. The shaded region corresponds to a 95%
confidence interval with a t-distribution.

From the results, dynamic σ outperformed all of the fixed settings of σ

with an average return per episode of -152.56. Of note, among the fixed values

of σ, Q(0.5) had the best early performance than the other instances with an

average return over the first 50 episodes of -352.88. These algorithms may be

capable of better early or final performance, but the parameter settings were

optimized for the average return across all 500 episodes.
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4.4 n-step Q(σ) with Control Variates

Incorporating the control variates from Chapter 3 into the sampling extreme

(σ = 1) of the n-step Q(σ) algorithm, Equation 4.2 becomes:

ĜCV
t:t+n = Rt+1 + γ

(
σt+1

(
ρt+1Ĝt+1:t+n + Q̄t+1 − ρt+1Q(St+1, At+1)

)
+ (1− σt+1)

(
πt+1Ĝt+1:t+n +

∑
a̸=At+1

π(St+1, a)Q(St+1, a)

))
ĜCV

t:t+n = Rt+1 + γ
(
σt+1

(
ρt+1Ĝt+1:t+n + Q̄t+1 − ρt+1Q(St+1, At+1)

)
+ (1− σt+1)

(
πt+1Ĝt+1:t+n + Q̄t+1 − πt+1Q(St+1, At+1)

))
ĜCV

t:t+n = Rt+1 + γ
(
(σt+1ρt+1 + (1− σt+1)πt+1)Ĝt+1:t+n + Q̄t+1

− (σt+1ρt+1 + (1− σt+1)πt+1)Q(St+1, At+1)
)

(4.3)

For fixed values of σ, this resulting algorithm (denoted as n-step CV Q(σ))

can be seen as performing a weighted average between n-step ACV Sarsa and n-

step Tree-backup. Of note, this algorithm can no longer recover n-step Sarsa.

Doing so would have required a parameter to interpolate between a sample

and expectation, and an additional hyperparameter to interpolate in the di-

rection of control variates. For simplicity, the above algorithm only considers

the latter, interpolating between a control-variate adjusted sampled action,

and the expectation across all actions. From the results in Chapter 3, n-step

ACV Sarsa had improved final performance on prediction problems relative to

n-step Expected Sarsa, so n-step CV Q(σ) has less emphasis on a tradeoff be-

tween initial and final performance. However, n-step ACV Sarsa suffered from

instability for larger parameter settings, while n-step Tree-backup was stable

for all tested parameter settings. From this, n-step CV Q(σ) can be viewed

as having more emphasis on balancing stability or parameter insensitivity.

We performed an experiment on the 19-state random walk as described

in Section 4.3.1. For fixed values of σ, we performed a sweep across various

backup-lengths n and step sizes α. Results comparing the parameter study

between n-step Q(σ) and n-step CV Q(σ) for σ = 0.75 and σ = 1 can be seen

in Figure 4.7
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Figure 4.7: n-step CV Q(σ) comparison. This plot shows the performance
of various parameter settings of n-step Q(σ) and n-step CV Q(σ) in terms of
RMS error after 50 episodes in the learned value function. The results are
averaged over 100 runs.

We chose to only show larger values of σ, as both algorithms are equivalent

to Tree-backup at σ = 0. From the results, we can see that while n-step

CV Q(σ) has improved final performance, it may suffer instability for large

parameter settings. However, apparent from the σ = 0.75 plots, mixing a

small portion of Tree-backup can address this instability without impacting

the final performance. These results support the initial intuitions regarding

mixtures of n-step ACV Sarsa and n-step Tree-backup.

4.5 The Q(σ, λ) Algorithm

Extending the n-step Q(σ) for use with eligibility traces results in the Q(σ, λ)

algorithm. Using the version of the algorithm with control variates applied,

n-step CV Q(σ), Equation 4.3 results in the following recursive definition of

its λ-return:

Ĝλ
t = Rt+1 + γ

(
λQ̄t+1 + (1− λ)

(
(σt+1ρt+1 + (1− σt+1)πt+1)Ĝ

λ
t+1+

Q̄t+1 − (σt+1ρt+1 + (1− σt+1)πt+1)Q(St+1, At+1)
))

(4.4)
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Solving the recursion results in:

δt = Rt+1 + γQ̄t+1 −Q(St, At)

Ĝλ
t = Q(St, At) +

∞∑
k=t

δk

k∏
i=t+1

γλ
(
σiρi + (1− σi)πi

)
(4.5)

Based on the insight from the control variates in Chapter 3, we get a sum

of one-step Expected Sarsa’s TD errors as opposed to the TD error of one-

step Q(σ)’s error. It can be seen that the decision to sample or compute an

expectation appears as a manipulable action-dependent trace decay rate. The

idea of action-dependent trace decay rates isn’t new, as methods like Sarsa(λ)

had a trace decay rate dependent on the importance sampling ratio (If we

allow λt to be larger than 1 and denote λt = λρt). Mahmood et al. (2017)

has also investigated a general action-dependent bootstrapping framework.

However, through its corresponding n-step return, the Q(σ, λ) algorithm gives

an alternate view of action-dependent trace decay rates as managing a trade off

between sampling and computing expectations. For example, the Retrace(λ)

algorithm (Munos et al., 2016) is characterized by the following TD target:

Ĝλ
t = Q(St, At) +

∞∑
k=t

(
Rk+1 + γQ̄k+1 −Q(Sk, Ak)

) k∏
i=t+1

γλmin(1, ρi) (4.6)

This can be seen as an instance of the Q(σ, λ) algorithm where σ is applied

dynamically:

σt =

{
1, if ρt ≤ 1
1−πt

ρt−πt
, if ρt > 1

This gives Retrace(λ) an interpretation of committing to using sampled infor-

mation if the importance sampling ratio is small, then mix in a certain amount

of the expected action value under the target policy when the importance sam-

pling ratio is large.

Testing fixed values for σ in the Q(σ, λ) algorithm resulted in very similar

plots to the n-step CV Q(σ) results in Figure 4.7 with λ in place of n. Due to

this, we have omitted experimental results on this algorithm.
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Chapter 5

Predicting Periodicity with
Complex Value Functions

Following this thesis’ theme of generalizing existing methods to provide deeper

insight, this chapter introduces an alternative view of the discount rate used

in the definition of the return. We focus on a specific relaxation of the range of

values the discount rate can take on, where it may take on complex numbers.

It can be shown that the resulting complex returns and learned values have an

interpretation as identifying periodicity in the reward sequence. This extends

the types of knowledge representable by value functions into the frequency

domain, with the original setting of the discount rate representing the zero

frequency case.

5.1 Complex Discounting

The discount rate has an interpretation of specifying the horizon of interest for

the return, trading off between focusing on immediate rewards and considering

the sum of longer sequences of rewards. It can also be interpreted as a soft

termination of the return (Sutton et al., 2011), where an agent includes the

next reward with probability γ, and terminates with probability 1−γ, receiving

a terminal reward of 0. From these interpretations, it is intuitive for the

discount rate to fall in the range of γ ∈ [0, 1) with the exception of episodic

problems, where γ can be equal to 1.

With considerations for convergence, assuming the reward sequence is
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bounded, restricting the discount rate to be in the range γ ∈ [0, 1) makes

the infinite sum (in the continuing case) of Equation 2.1 finite. However, this

sum will be finite as long as the magnitude of the discount rate is restricted

to be |γ| ∈ [0, 1), allowing for the use of negative discount rates up to −1, as

well as complex discount rates within the complex unit circle.

While the use of alternative discount rates may result in some correspond-

ing value function, a question arises regarding whether these values are mean-

ingful, or if there is any situation in which an agent would benefit from this

knowledge. First, we consider the implications of exponenting a complex dis-

count rate. We look at the exponential form of a complex number with unit

magnitude, and acknowledge that it can be expressed as a sum of sinusoids by

Euler’s Formula:

e−iω = cos(ω)− i sin(ω) (5.1)

From this, it is evident that exponentiating a complex number to the power of

n correponds to taking n steps around the complex unit circle with an angle

of ω:

e−iωn = cos(nω)− i sin(nω) (5.2)

Using the above as a discount rate, assuming an episodic setting as it has a

magnitude of 1, we would get the following return for some angle ω:

Gω
t =

T−t−1∑
k=0

e−iωkRt+k+1 (5.3)

Instead of weighting the reward sequence in a way that decays the importance

of future rewards, complex discount rates weight the sequence with two si-

nusoids, one along the real axis and one along the imaginary axis. This can

be interpreted as checking the cross correlation between a reward sequence

and a sinusoid oscillating with a frequency of ω rad
step

, and effectively allows a

TD learning agent to identify periodicity in the reward sequence at specified

frequencies online and incrementally.
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5.2 The Discrete Fourier Transform

The ability to identify periodicity in the reward sequence by weighting it with

exponentiated complex numbers can be viewed as performing the Discrete

Fourier Transform (DFT) from digital signal processing literature. The DFT

is defined as follows:

Xk =
N−1∑
n=0

xne
−i2π k

N
n (5.4)

where N is the length of the sequence, and k is set to each whole number less

than N . This can be viewed as testing whether a frequency of 2π k
N

exists in

the sequence, for equally spaced values of k. Acknowledging that k is less than

N , the k
N

term is in the range [0, 1), and can be rewritten where the frequency

is specified directly:

Xω =
N−1∑
n=0

xne
−iωn (5.5)

where ω ∈ [0, 2π). This is exactly equivalent to the DFT when the length of

the sequence is known and particular frequencies ω are chosen, but has similar

functionality and interpretation for other sets of frequencies.

The DFT corresponds to the discrete form of the coefficients of a Fourier

series, and thus each complex number encodes the amplitude and phase of

a particular sinusoidal component of a sequence. Specifically, the magnitude

|Xω|/N corresponds to the amplitude, and ∠Xω = arctan Im(Xω)
Re(Xω)

gives the

phase.

Applying this to the approximate values learned by a TD learning agent

with a complex discount rate, it can be seen as computing the expected DFT

of the reward sequence from a specified state onwards, and can extract the

corresponding amplitude and phase information. However, the expected length

of the sequence is typically not known by the agent, resulting in unnormalized

amplitude information. Of note, the frequency is normalized by the agent’s

sampling frequency. That is, the frequency ω = 2π corresponds to the rate at

which the agent is sampling rewards.
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5.3 Revisiting Continuing Problems

The DFT is computed with complex numbers that have a magnitude of 1,

and thus using similar complex discount rates would only work in the episodic

setting. To see the effects of using a complex discount rate with a magnitude

less than 1, we introduce an amplitude parameter A ∈ [0, 1) to the exponential

form of a complex number:

γ = Ae−iω (5.6)

which results in a complex number with a magnitude of A. Substituting this

in the summation in Equation 2.1 gives:

Gω
t =

T−t−1∑
k=0

e−iωkAkRt+k+1 (5.7)

which can be seen as computing the DFT of a discounted reward sequence

with a discount rate of A. That is, a TD learning agent would still learn an

expected DFT, but of the discounted return that is typically used in continuing

settings.

5.4 Experimental Results

In this section we look at a simple motivating example to verify the afformen-

tioned interpretations of complex value functions.

5.4.1 Checkered Grid World

The checkered grid world environment takes place on a 5 × 5 grid world with

terminal states in the top left and bottom right corners. The actions consist

of 4-directional movement, and moving into a wall transitions the agent to

the same state. The agent starts in the center, and the board is colored

with a checkerboard pattern with colors representing the reward distribution.

Transitioning into a green cell results in a reward of 1, transitioning into a red

cell results in a reward of -1, and transitioning to a terminal state ends the

episode with a reward of 11. A diagram of the environment can be seen in

Figure 5.1.
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Figure 5.1: The checkered grid world environment. Transitioning into to a
green square results in a reward of 1, and transitioning into a green square
results in a reward of -1. The top left and bottom right corners represent
terminal states where transitioning into them results in a reward of 11. It
was set up as an on-policy prediction task with an agent behaving under an
equiprobable random behavior policy.

This environment was treated as an on-policy prediction task with no dis-

counting (|γ| = 1), and the agent learned many complex value functions in

parallel. Specifically, it learned 100 value functions corresponding to equally

spaced frequences in the range ω ∈ [0, 2π). The agent behaved under an

equiprobably random behavior policy, and action-values were learned using

the Tree-backup(λ) algorithm. State-values were computed from the learned

action-values through Equation 2.4. We performed 100 runs of 200 episodes,

and the value of the starting state, represented by the complex number’s mag-

nitude and phase information, was plotted for each frequency after the 200th

episode. The resulting learned DFT of the starting state can be seen in Figure

5.2.

In the learned DFT, the magnitude of the value at ω = 0 corresponds

to the expected return with a discount rate of γ = e−i0 = 1. That is, it

is what a ”typical” TD learning agent with a non-oscillatory discount rate
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Figure 5.2: Checkered grid world results. The magnitude of the ω = 0 point
corresponds to the ”actual” expected return under the behavior policy. The
magnitudes of the other frequencies are interpreted as a measure of how con-
fident the agent is that a particular frequency exists in the reward sequence.
Results are averaged over 100 runs, and standard errors are less than the line
width.

would have learned. The magnitudes of the values at other frequencies are

interpreted as a measure of confidence in a particular frequency existing in the

reward sequence, as exact amplitude information would require knowledge of

the expected length of the sequence. It can be seen that there is relatively

large magnitude at the frequency ω = π, which corresponds to half of the

agent’s sampling frequency. If the agent is sampling at a rate of 1 sample per

time step, this means that it is detecting an oscillation at a rate of half a cycle

per time step. This corresponds to the rewards alternating between 1 and -1

in the environment, as this pattern takes two time steps to complete a cycle.
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Chapter 6

Conclusions

This thesis was motivated by attempts to draw connections between existing

multi-step TD methods, and develop strong intuitions about their properties.

Having such a unified view could provide insight in how to effectively apply

them in practice, as well as create new algorithms.

6.1 Summary

We looked at a control variate approach to address the large variance issue of

off-policy learning in n-step TD methods. Their benefits were demonstrated

empirically, and we used the resulting algorithms to provide insight about

how n-step TD methods map to their TD(λ) counterparts. We then provided

analysis and empirical results on an existing proposal to unify the space of n-

step TD methods, the n-step Q(σ) algorithm. We further extended the n-step

Q(σ) algorithm to use the afformentioned control variates, and then derived

the TD(λ) version of the resulting algorithm: Q(σ, λ). Lastly, we showed

how alternate settings of the discount rate parameter can allow for online and

incremental learning of a signal’s frequency information. This provides a new

direction to explore in the space of TD methods, and an alternate view where

the standard discount rate settings exist as the zero frequency case.
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6.2 Future Directions

Attempting to bridge the gap between different algorithms often provides new

insight regarding the algorithms, as well as new ideas to explore. Below we

list some future directions which may follow from the work presented:

1. Studying the Control Variate Parameter: In our work, we made

assumptions regarding the accuracy of the current value function esti-

mates when setting the control variate parameter c. While this setting

worked well for a reasonable range of back-up lengths and step sizes

across several domains, it resulted in instability for some larger parame-

ter combinations. Notably, the same large parameter combinations were

sometimes stable for an equivalent algorithm without the control vari-

ates. Studying this instability may provide insight into a better approach

for setting the parameter, such as one which adapts it dynamically.

2. Improved Dynamic σ: We presented a simple heuristic method of dy-

namically varying the σ parameter in the n-step Q(σ) algorithm. We

later showed how existing algorithms like Retrace(λ) can also be inter-

preted as dynamically varying σ in the Q(σ, λ) algorithm. This direction

has been investigated in the action-dependent bootstrapping framework

by Mahmood et al. (2017), but perhaps contextualizing existing methods

within the view of trading off between sampling and computing expec-

tations may lead to new ways of dynamically varying the σ parameter.

3. Application of Complex Value Functions: By allowing the discount

rate to take on complex numbers, we showed that a TD learning agent

could incrementally estimate the expected DFT of the return. Work has

been done on using the Fourier basis as a representation in reinforcement

learning problems (Konidaris, 2008), that complex value functions may

have a place as a learnable state representation. Furthermore, the digital

signal processing community makes use of an inverse DFT to recover the

origninal signal from the complex values. It may be possible to recover

the exact reward sequence given the right set of frequencies to learn
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about, allowing for more flexibility compared to an agent which only has

access to the sum of the rewards.
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