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Abstract

Object tracking is a much researched subject in the computer vision commu-

nity. With more and more tracking algorithms reported every year, standard

benchmarking and evaluation methods are reported for long term tracking

systems.

In this thesis we present a public dataset to evaluate trackers used for hu-

man and robot manipulation tasks. For these tasks high degrees of freedom

(DOF) motion of the object is to be tracked with high accuracy. We describe

in detail, both the process of recording the sequences and how ground truth

data was generated for the videos. As an initial example, we evaluate the

performance of seven published trackers [42, 67, 57, 23, 6, 9, 82] and analyze

the results. We describe a new evaluation metric to test sensitivity of track-

ers to speed. A total of 100 annotated and tagged sequences are reported.

All the videos, ground truth data, tagged image frames, original implemen-

tation of trackers and evaluation scripts are made publicly available.

We also introduce a new search method in tracking. Sequential Graph

based Approximate Nearest Neighbour Search algorithm [70, 33] or SGANNS.

It uses overlapping image features in videos to build a connected graph, of-

fline. This graph is then searched efficiently during tracking to predict the

best warp parameters. We test this algorithm on the dataset reported and

further analyze the results.

Finally we show that using a detection module, registration based track-

ers can be made more robust. We address tracking challenges of occlussion

and varying appearance where a regular registration based tracker fails to

track.
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Imagination is more important than knowledge. For knowledge is limited to all we

now know and understand, while imagination embraces the entire world, and all

there ever will be to know and understand.

– Albert Einstien
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Chapter 1

Introduction

An important component of system(s) that rely on estimating the trajectory

of an object in a continuous stream of images is Object Tracking. Applications

like automated surveillance [39], targeting systems [60], robot manipulation

[23], augmented reality [49], user interface design [15], image stabilization

[80], medical analysis [72], video compression [22] and many others directly

benefit from advances in tracking research.

2D Object tracking is challenging for several reasons. One may need to

deal with complexities such as noise in images from camera sensors, vary-

ing illumination, low texture of the object, loss of information in two dimen-

sional (2D) images of original three dimensional (3D) scenes, occlusion of

the object, blur at high speed object motion and complex motion. An ideal

tracker should be both robust to these challenges and precise in predicting

the pose (position and orientation, as the case might be) of the object. Two

distinct categories are observed in tracking research. (1) Trackers that are

very precise [52, 32, 6, 23, 9], that are used in manipulation and servoing

tasks, (2) trackers that adapt to the changing appearance of the object over

time [42, 67, 57], thus focussing more on robustness, and are used in surveil-

lance tasks. The former are referred to as registration based trackers as the

core algorithm works around registering the image to the target template to

find the best match. The latter is known as Online Learned Trackers (OLT),

since the trackers learn and update the appearance of the object(s) online as

tracking goes on.
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Figure 1.1: [TOP ROW] Example of an Online Learned Tracker, tracking
(position, x,y centroid co-ordinates) in TLD [42] [BOTTOM ROW] Precise
registration based tracker tracking full pose (4 corners) in IC [6]

Figure 1.1 shows the two categories discussed, on a video sequence from

[9] 1. Inverse Compositional tracker (IC) [6] tracks the full pose (precise

bounding box represented by the green rectangle) of the object. Tracking

Learning Detection (TLD) [42] tracker on the other hand roughly follows

the centroid of the object shown by the red dot.

Object tracking is defined as a sequential state prediction problem. State

of an object (pt) at time t is a vector that represents pose (location and orien-

tation) of the object. Based on how precisely a tracker tracks, size of the state

vector (DOF - Degrees Of Freedom) varies. Precise trackers in most cases

track full pose (8 DOF, [52, 32, 6, 9, 23]) transformation of the object com-

pared to OLT, 3 in [42, 5], 6 in [67, 57]. OLT update the appearance model

of the object, taking into account newer templates, as more appearances are

exposed. This process is computationally expensive, hence in-spite of track-

ing a low DOF state, they are mostly subpar with real time requirements.

In this thesis I focus on precise tracking, trackers that converge within

sub-pixel accuracy and can be used in manipulation tasks.

1Images taken from [9] Available at: http://esm.gforge.inria.fr/ESMdownloads.html
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Figure 1.2: Example sequences show the two different sets of challenges
that each of the tracking modalities (OLT and Registration based) test in a
tracker. [TOP] IVT [67]) an OLT tracker is shown to track videos that has
high occlusion, unstructured motion and rapid change of appearance, but
they need not follow the object precisely. [BOTTOM] Registration tracker in
ESM [9] precisely tracks the high DOF motion of the object.

1.1 Motivation

Any algorithm when reported, needs proper evaluation to bring out the

full contribution and/or limits of the algorithm. Tracking research being

divided, has different challenge sets that each of the sub groups (OLT and

registration based) are interested in. This makes homogenous evaluation of

tracking difficult. There are no common grounds to evaluate trackers from

the two categories, in terms of the videos and evaluation metrics. Figure 1.2

show few example sequences used to evaluate OLT trackers 2 and registra-

tion based trackers 3 showing how they are different in their focus.

Lately, there has been much focus on evaluating OLT trackers [78, 46, 73],

which over a period of time has evolved into making the evaluation process

reach a set standard on a wide range of videos. This has been mostly miss-

ing in registration based trackers. Most published methods have been tested

2Available at: http://cvlab.hanyang.ac.kr/tracker_benchmark/
datasets.html

3Available at: http://webdocs.cs.ualberta.ca/vis/trackDB/

3
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only on a few anecdotal videos. They are however limited in the number of

challenges they present (Chapter 2). To the best of our knowledge Metaio

[48] and UCSB [27] are the only two works that report a structured dataset

and how to use it. We show in Chapter 2 how their setup is limited. This

motivated us 4 to benchmark the evaluation process for registration based

tracker by recording a diverse dataset and carefully choose the evaluation

metrics. This would be relevant for all research groups working on regis-

tration based trackers.

One of the difficult problems in the domain of registration based is to

track fast object motion maintaining the high precision required. Most search

methods [52, 6] assume very little change in object pose, which is critical

to their formulation. This restrict their application to a small set of object

motion. Travis et al. in [23] showed that with Approximate Nearest Neigh-

bour search using randomized KD-Trees this problem can be handled in

a better way than existing techniques. We provide an improvement over

this in terms of using the sequential property of video data with a Graph

based Approximate Nearest Neighbour search method [33]. We evaluate

this method on the proposed dataset, and compare it with existing trackers

[6, 9, 23, 42, 67, 57, 82].

1.2 Contribution and Thesis Organization

We report a dataset to benchmark 2D object tracking algorithms. Further-

more, a new search method in tracking is reported with detailed results

computed and analysed. The salient contributions in this thesis are:

• A publicly available dataset to evaluate registration based trackers.

Evaluation scripts are made available. 5

• A new evaluation metric, that tests a tracker’s robustness against large

object motions. 6

4In collaboration with Xi Zhang, Nina Wolleb and Camilo Perez
5In collaboration with Nina Wolleb and Camilo Perez
6In collaboration with Xi Zhang
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• A new search method in registration based tracking that uses the tem-

poral coherency of video data.

Object tracking is broken into component sub-modules of appearance

model, search method and state space. Each sub-module is further enu-

merated and a contribution is shown in search methods. Tracking is then

evaluated on a dataset we propose. The dataset is carefully recorded to cap-

ture challenges of an object tracker used in a manipulation setup. Finally,

an application of object detection and localization is shown in conjugation

with object tracking to make it robust to challenges like occlusion and ap-

pearance variations.

• Chapter 2 lists existing tracking methods in literature. The second

half of the Chapter provide a detailed summary of existing datasets

and benchmarking methods.

• Chapter 3 discusses how a tracking algorithm can be broken down

into subsequent components and individual components studied. Here

we present a new search method that can be applied to registration

based tracking and show how it’s suited for tracking application, given

the sequential nature of a video sequence.

• Chapter 4 describes in detail our setup for recording the videos and

how we generate ground truth data for all videos. Furthermore, we

describe our error metric and evaluation methods, highlighting their

relevance in evaluating a registration tracker.

• Chapter 5 presents the evaluation results of the tracker we develop

in light of the dataset reported. We present a global ranking of all

trackers we study.

• Chapter 6 shows an application of using a simple detection technique

on top of the registration trackers to make trackers robust to occlusion

without compromising convergence.

5



• Chapter 7 concludes the work highlighting the significant contribu-

tions in the thesis and how it can be further extended to cover more

challenges in the dataset.

6



Chapter 2

Background

In this chapter we discuss different existing tracking algorithms. We sum-

marize years of tracking literature and group them into different categories.

The second half of this Chapter deals with details of existing benchmarking

techniques for Object Trackers, their usability and limitations to evaluate

registration based trackers.

2.1 Tracking Algorithms

Visual tracking is the process of repeated estimation of the state of an object

(position and orientation) in an image, given state(s) in previous frame(s).

Approaches from different domains of computer vision have been adapted

to track objects. Some of the existing works can be grouped into four major

categories which are (i) Feature Based, (ii) Segmentation Based, (iii) Detec-

tion Based and (iv) Registration Based.

2.1.1 Feature Based

In feature based tracker, the object to be tracked is represented as a collec-

tion of features. Some of the popular features used in tracking are intensity

based [52, 6, 9], color [56, 18, 56], steerable filter responses in [40] (Figure 2.1

(a)) and [45], optical flow features in [7], eigen features [77, 11], integral his-

togram in [2]. Scale invariant features like SIFT [51] and SURF [37] (Figure

2.1 (b)) have also been shown to work in tracking. Sometimes, a combina-

7



tion of these features is also utilized to improve tracking performance.

(a)

(b)

Figure 2.1: (a) Tracking is done using filter responses from a steerable pyra-
mid using mixture model to fit data. Image taken from [40] show the
tracked region and the model’s mixing probability, mean, and ownership
(left to right). (b) Tracking using SURF features. Images taken from [37]
show the extracted features on the image frames and how the tracker fol-
lows the object in the video.

2.1.2 Segmentation Based

Segmentation algorithms partition the image into similar regions. This can

be adapted to be used in tracking, by segmenting the object from the back-

ground. Naturally, object clustering approaches [83] translate well into video

tracking. Approaches such as, mean shift [17] (Figure 2.2 (c)), normalised

cross cut [79] (Figure 2.2 (a)) active contour [65] (Figure 2.2 (b)) and [81, 10]

have been shown to work well in tracking. Segmentation based trackers in

most cases provide pixel level accuracy [43] of the moving object by mark-

ing the exact pixel co-ordinates of the object boundary.

8



(a)

(b)

(c)

Figure 2.2: (a) Leukocytes are tracked in [79] (b) Snake based tracking as
shown in [65]. The white boundary is the starting position of the snake
where it evolves and the final black boundary is the new snake in the cur-
rent frame (c) Mean Shift tracker in [17] is shown tracking pedestrians in a
sub way system
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2.1.3 Detection Based

Detection based trackers, use an object detection module together with a

tracker to aid long term robust tracking. The detection module localises

the object when the tracker fails to converge [5, 42] and subsequently reini-

tialises the tracker. Another way to use detection, is to use frame to frame

detection [55]. Discriminative classifiers in SVM [4] (Figure 2.3 (a)), graph

based pruning [34], kernelized structured output support vector machine

[35], online boosting [29, 30] (Figure 2.3 (b)) is used to give a binary deci-

sion of object/background. Such systems rely on having object models that

are either static or dynamic. Detection is done based on this model.

(a)

(b)

Figure 2.3: (a) Tracking using Support Vector Machine is done in [4]. The
best fitting bounding box is searched close to the last known co-ordinates
which eventually converge as shown in the right image. (b) Detected fea-
tures are used to vote for the object position in [30]. The blue lines show the
supporting features used to predict position.
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2.1.4 Registration Based

First introduced by Lucas and Kanade in [52], registration based trackers

use image alignment, to find the best possible warp parameters, that when

applied to the object image (I) closely resembles the template (I∗). Gradient

descent is the most commonly used method to acheive this among others

like difference decomposition [28] (Figure 2.4 (a)) and linear regression [19].

Different image comparision metrics like sum of squared difference [52, 6],

mutual information [21, 24], sum of conditional variance in [66] (Figure 2.4

(b)) and [23], normalised cross correlation [79] are used to compare the ob-

ject image with the original template.

(a)

(b)

Figure 2.4: (a) Piecewise projective transformation is done in [28]. This al-
lows the algorithm to track flexible objects as shown in the figure above (b)
Sum of Conditional Variance (SCV) is used with ESM tracker in [66]. SCV
corrects for illumination variation which allows it to track objects even in
the presence of specular reflection.

In this thesis we focus mainly on registration based trackers. We show

how they are more suitable for use in fine alignment tasks compared to

some of the other trackers. To do this, we need to define an evaluation

method and record videos that simulate fine alignment tasks.
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2.2 Datasets and Evaluation

An important part of tracking research is to evaluate trackers using a stan-

dard set of videos that are carefully recorded to present a wide spectrum

of challenges. Some of the existing datasets in literature are summarised in

Table 2.1.

Table 2.1: Comparision of Different Object Tracking Datasets

Geometry Appearance
Dataset TR RO PR SC SR IL TX OC DOF
Metaio X X X X 7 X X X 8
[48]
Static X X X X 7 7 7 7 8
[23, 6, 23]
Zimmermann X X X X 7 7 7 X 6
[84]
OLT Benchmark X X 7 X X X X X 2
[78]
Gauglitz X X X X X X X 7 8
[27]
ESM X X X X 7 7 7 7 8
[9]
BoBot X X 7 X X X X X 2
[44]
VOT Challenge X X 7 X X X X X 2
[46]
MOT Challenge X X 7 X X X X X 2
[47]
Smuelders et al. X X 7 X X X X X 2
[73]
KTH Dataset X X X X X X X X 6
[3]
TMT X X X X X X X X 8
[68]

TR = Translation; RO = Rotation; IL = Illumination; PR = Perspective; SR =
Specular; SC = Scale; OC = Occlusion; TX = Texture; DOF = Degrees of

Freedom of ground truth data
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2.2.1 Anecdotal Video Datasets

Previous works either use synthetically generated data by applying ran-

dom warps [41, 6] to a template followed by tracking it, or test algorithms

on a small set of videos that are either recorded or pooled from the Inter-

net. Zimmerman et al. [84] tested their algorithm on 3 grayscale videos

(linTrack) that covers 6 DOF transformation of the object. They manually

annotate the bounding box using either a special marker or visual texture

based cues. [50] and [63] showed application of template tracking in aug-

mented reality, but restricted themselves to a small test set when evaluating

their tracking system.

Other popular sources of videos in tracking literature are by Babenko et

al. in [5] 1, Ross et al. in [67] 2, Kalal et al. [42] 3, Collins et al. in PETS2005

[16] 4, Klein et al. in [44] 5 and Fisher et al. in CAVIAR [26] 6. These datasets

have sequences to test tracking algorithms that are mainly developed for

surveillance applications where loosely following (> 50% area overlap of

the target with ground truth) the object is good enough for tracking to suc-

ceed. The main focus is on testing trackers for occlusion, out of frame mo-

tion and large appearance variations.

2.2.2 Full Video Datasets

PETS2005 [16] made initial efforts of creating a comprehensive dataset hav-

ing wide range of challenges, but as tracking research evolved it needed

more diverse set of videos to test trackers. In a recent paper Wei et al. 2013

[78] 7 categorized some of the above mentioned video sequences to publish

1Available at: http://vision.ucsd.edu/˜bbabenko/project_miltrack.
html

2Available at: http://www.cs.toronto.edu/˜dross/ivt/
3Available at: http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/TLD/

TLD_dataset.ZIP
4Available at: http://vision.cse.psu.edu/data/vividEval/main.html
5Available at: http://www.iai.uni-bonn.de/˜kleind/tracking/
6Availabe at: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
7Available at: https://sites.google.com/site/trackerbenchmark/

benchmarks/v10
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Figure 2.5: Sequence showing both the robot and human user performing
identical tasks of pouring cereal in a bowl under normal light settings. The
red rectangle shows the tracking result on the sequence using ESM [9]

a common benchmark 8. Any new tracker can be evaluated and compared

with other state of the art trackers in the literature using this benchmark.

VOT 9 challenge [46] has a running catalog of videos and evaluation met-

rics by which they benchmark a new tracker. They reported an unique way

to globally rank trackers based on how each tracker perform on individual

metrices of rubustness, accuracy etc. Each frame in VOT is labelled with the

challenges it presents. This makes it easy for a user to asses performance

of the tracker, which might be suseptible to some specific challenges. MOT

[47] host a similar competition for multiple object tracking in association

with Winter conference on Application of Computer Vision (WACV). [46]

proposes an unique way of globally ranking trackers. However, these video

sequences are more suited to surveillance tracking. Furthermore, we elab-

orate why the error metrics used and the evaluation thresholds set [78, 46]

are too coarse and ill suited for manipulation tasks.

Table 2.1 shows how diverse the popular datasets are in the set of chal-

8Available at: http://cvlab.hanyang.ac.kr/tracker_benchmark/
datasets.html

9Available at: http://www.votchallenge.net
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lenges they provide. It also brings out how little attention has been paid to

benchmark registration based trackers with recent works mostly focussing

on evaluating Online Learned Trackers (OLT).

Closest to our aim use to be Metaio dataset 10 meant to evaluate planar

homography tracking by Lieberknecht et al. [48]. They collected videos

under various motions, illuminations and textures. They used a camera

mounted on a Faro arm (a passive robot arm with very high precision joint

encoders) that was calibrated and all transformations of pose were stored.

The stored values were used to calculate ground truth data. Instead of a 3D

scene the Metaio benchmark like [58], records a printed (2D planar) poster,

making the benchmark somewhat artificial. Furthermore, the setup with

a moving camera on an arm means that the motions are not from natural

tasks and were restricted by the arm workspace and mass. Metaio, haven’t

released the ground truth data which makes the dataset un-useable now

that it’s offline. An extensive dataset for 3D tracking is reported in [3]. 11 It

reports 6 DOF ground turth, 3 degrees in rotation and 3 in translation.

To this effect, we report a public video dataset 12 to evaluate 2D marker-

less single object tracking algorithms. The tasks are natural table top manip-

ulations, frequently performed in our daily life. We provide videos and an-

notated ground truth of both a human and a robot arm performing the same

tasks. All videos are tagged with the task performed and the challenges that

a tracker would face while tracking. Using these tags, susceptibility of the

tracking algorithm can be properly narrowed down and subsequently im-

proved. Each task is repeated with different speeds and under two different

lighting conditions, of normal office light and diffused light.

10Available at: http://www.metaio.com/research/
11Available at: http://robocoffee.org/datasets/
12Available at: http://webdocs.cs.ualberta.ca/˜vis/trackDB/
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Chapter 3

Modular Decomposition of
Tracking

A video stream is modeled as a temporal sequence of images, F = {I0, I1, ..., In :

R2}. The pixel locations in an image patch with N pixels are denoted by

x = (x1,x2, ...,xN)T where xk = (xk, yk) are the corresponding pixel intensi-

ties in image, denoted by I(x). When a geometric transform W with param-

eters p = (p1, p2, ..., pl) is applied to an image patch x, the transformed patch

is denoted by x′ = W(x;p) and the corresponding pixel values transform

to I(W(x;p)). Object tracking is formulated (Eq 3.1) as a state prediction

problem, where optimal transform parameters p∗t for an image It that mini-

mizes the difference, measured by a suitable distance metric d, between the

target patch I∗ = I(W(x;p0)) and the warped image template I(W(x;p)).

Equation 3.1 shows the formulation. t is dropped as both the image and

optimal parameters are for the same time instance t. Common choices of

distance functions are Eucledian distance (l2) [52] and Manhattan distance

(l1) [13].

pt = argmin
p

d(I(W(x;p)), I∗) (3.1)

In registration based tracking, the three submodules (i) Appearance (d),

(ii) Search Method and (iii) State Space (p) combine together as shown in

Figure 3.1. This process is repeated over several iterations till the warped

image (I(W(x;p))) is similar to the target (I∗). This assumes static appear-
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ance model wherein no updates are done to the model with newer tem-

plates.

Figure 3.1: Breakdown of registration tracking into three modules: (i) Ap-
pearance model that compares two image patches, (ii) State space that
parametrizes the object motion and (iii) Search method that searches for the
best alignment to minimize the dissimilarity of the template with the target
image.

3.1 Appearance Model

Appearance model is the transform space wherein the search method com-

pares different warped patches from the current image to get the closest

match with the original target I∗.
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3.1.1 Sum of Squared Difference (SSD)

Sum of squared difference (SSD) is a common measure [52, 6, 9, 23] where

raw pixel intensities are compared. SSD is expressed as an Eucleadian (l2)

norm in the image space.

SSD = ||I(W(x;p))− I∗||2 (3.2)

SSD is susceptible to lighting variations, as it does not correct for illu-

mination bias. Sometimes smoothing of the image is done prior to tracking

to reduce the effect of noise.

3.1.2 Sum of Conditional Variance (SCV)

Sum of Conditional Variance (SCV) was originally used in medical imag-

ing [64]. The authors show how SCV is invariant to non-linear illumination

variations. This motivated its use in object tracking [23, 66], where changing

appearance of the object is a common challenge. SCV corrects for illumina-

tion changes by taking into account I∗ as reference.

SCV =
∑
x

(I(W(x;p))− E[I(W(x;p))|I∗])2 (3.3)

Where E is the Expectation Operator. We use the same formulation of as

done in [23]. E[I(W(x;p))|I∗] is computed from the joint intensity distribu-

tion between I(W(x;p)) and I∗.

3.1.3 Normalised Cross Correlation (NCC)

Normalized Cross Correlation (NCC) is another measure that accounts for

illumination changes by centering and normalising the image data before

comparing the two images.

NCC =

∑
x(I(W(x;p))− Ī)(I∗(x)− Ī∗)√∑

x(I(W(x;p))− Ī)2
√∑

x(I∗(x)− Ī∗)2
(3.4)
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It has further been shown in [69] that maximizingNCC between two im-

ages I∗ and I(W(x;p)) is equivalent to minimizing the SSD score between

the corresponding Z-score [38] normalized images.

3.1.4 Illumination Invariant Appearance (IVA)

Finally, we use another Illumination Invariant Appearance (IVA) model in

[61]. Colour image is decomposed into the consitituent channels of Red

(R), Green (G) and Blue (B). These independent channels are then used

to recompute the illumination invariant image using two coefficients, α for

Blue and β for Red channel. For a 2D image the transformed IVA image is

computed as shown in Equation 3.5.

IVA = ln(G[i, j])− α ∗ ln(B[i, j])− β ∗ ln(R[i, j]) (3.5)

The parameters α and β are subjected to 1
λ1

= α
λ2

+ β
λ3

, where λ1, λ2, λ3 are

the peak sensitivity (wavelength) for each sensor. Parameters α and β for

the camera sensors we use (SONY ICX274), are 0.482 and 0.518 respectively.

(a) (b) (c) (d) (e)

Figure 3.2: Example of different transforms, (a) Original Image (b) Original
Image smoothed using a Gaussian Filter of window 5 × 5 and σ = 3 (c)
Reverse Sum of Conditional Variance (d) Normalised Cross Correlation and
(e) Illumination Invariant Appearance

3.2 Search Method

Search step finds the best transform parameters (state) p at time t, that min-

imize the difference between the target image (I∗ = I(W(x;p0))) and the
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transformed template I(W(x;p)). W is the transformation function and p

the transform parameters. The difference is expressed as a distance score, d

as shown in Eq 3.6.

pt = argmin
p

d(I(W(x;p)), I∗) (3.6)

Euclidean distance or l2 norm is a popular distance function [52, 6, 12].

The corresponding optimization is formulated as Eq 3.7.

pt = argmin
p
||I(W(x;p))− I∗||2 (3.7)

Gradient based search is the most popular [52, 6, 9, 23] method used

for optimization. Recent works include use of supervised learning [23]. In

the following sub-sections, I elaborate these methods and describe how im-

provements can be done.

3.2.1 Gradient based search

One way to solve the above non-linear optimization problem is to iteratively

update p till it converges to p∗. Typically, iterations continue till some norm

of the update (4p) is below a constant ε (4p ≤ ε). Lucas and Kanade [52]

approximated the objective function (||I(W(x;p))−I∗||2), using a first order

expansion of taylor series. Eq 3.8 is solved for the 4p. This gives a closed

form solution of the update, 4p = H−1
∑

x[∇I δW
δp

]T [I∗ − I(W(x;p))]. H,

the Hessian matrix, is computed as H =
∑

x[∇I δW
δp

]T [∇I δW
δp

] +
∑

x rxRx.

Here rx is the residual and Rx the second order differential of the residual.

Dame showed in [20] (Figure 4.11) that using an approximate hessian H ≈∑
x[∇I δW

δp
]T [∇I δW

δp
] the Gauss Newton type optimization has a larger area

of convergence compared to using Newton type optimization. The authors,

Lucas and Kanade [52] used an additive update, pk+1 ← pk+4pk, for k+1th

iteration.

With an assumption that on each iteration the template image (I∗) can

be approximated very closely by the warped image I(W(x;p)) Hager et al.
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[32], avoided the computationally expensive step of calculating H in every

iteration. Their warp update was pk+1 ← pk −4pk.

p∗ = argmin
p
||I(W(x;p +4p))− I∗||2 (3.8)

The formulations above assumes the image intensities are linearly de-

pendent on the motion vector, i.e. they are consistent, to solve the over de-

termined system. This assumption doesn’t always hold true for real images.

To avoid this, Jurie and Dhome [41] learnt the jacobian by fitting hyper-

planes. This was done by randomly sampling data in the neighbourhood of

p.

Instead of using an additive update, Baker et. al [6] used an inverse

compositional update, W(x;pk+1) ← W(x;pk) ◦W(x;4pk)−1. The resul-

tant minimization is as shown in Eq 3.9.

p∗ = argmin
p
||I∗(W(x;4p))− I(W(x;p))||2 (3.9)

The parameter update (4p) is expressed as, (4p = H−1
∑

x[∇I∗ δW
δp

]T [I(W(x;p))−

I∗]. Hessian matrix (H) is calculated only once, before tracking commences.

H =
∑

x[∇I∗ δW
δp

]T [∇I∗ δW
δp

]. This speeds up the optimization since both the

gradient (∇I∗) and the Jacobian ( δW
δp

) can be pre computed.

Benhimane and Mallis [9] presented a more robust compositional up-

date scheme for the warp parameter p, by using an Efficient Second or-

der Minimization (ESM) [54] approach. The Hessian matrix (H) is approxi-

mated using two Jacobians (H ≈ 1
2
(J(e)+J(xc))), one of which is computed

once, when tracking starts (on the template, J(e)) and the other, (J(xc)), is

updated on every iteration. This, though comparitively slow, on account

of computing the Jacobian on every iteration, has it’s own benefits. The

authors [9] show that the algorithm converges using lesser number of iter-

ations and also avoids the problem of not converging unless search starts

close to p∗.
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3.2.2 Nearest neighbour based search

As an alternative to gradient descent search, Dick et. al [23] in a recent

study (NNIC) used approximate nearest neighbor (ANN) search to find the

best matching warp from a large list of pre-computed warps. They used

randomized KD-trees [8] in Flann 1. KD-Trees were used previously in [31]

for tracking, however it was used as an object detector.

Randomised KD-Tree Based

Nearest Neighbour search by itself gives coarse alignment which needs fur-

ther refinement using a precise tracker in IC [6]. Hence, NNIC [23] uses

a cascade tracking system, with a coarse tracker using ANN (randomised

KD-Tree) and fine alignment done using IC [6]. The authors randomly sam-

ple warps from a Gaussian distribution pi. Warped template images are

generated as shown in Algorithm 1. The warped images are then used to

build KD-Tree offline. During tracking, the best warp (p∗) is searched using

randomised KD-Tree search [8]. This warp p∗ is the corresponding warp

for which I(W(x;p)) is the most similar to the target (I∗). Updates to the

parameters are done as, p← p ◦ p∗−1.

The newton type trackers in Lucas Kanade tracker [52], IC [6], ESM [9]

match the template with I∗ which prevents the tracker from accumulating

drift. Figure 3.3 show an example of how Nearest Neighbour search corrects

for drift. Say we are tracking translational motion along X-axis. The tracker

is initialised on the object on the first frame I0. Warped images are generated

prior to tracking. Now, since we are modelling translational motion along

X-axis only, those images would look like shifted versions of the template as

shown below. An intermediate frame is shown in Ik. Two cases are shown,

Case 1: tracker is tracking, shown in green, and Case 2: tracker has drifted

slightly, shown in red. For the next frame, the image region in Ik+1 within

the bounding box co-ordinates of the previous frame is matched from the

stored set of images, for pose update (4p). This would move the bounding

1Available at: https://github.com/mariusmuja/flann
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box right. For Case 1, the update would be 4p1, whereas for Case 2, the

update would be 4p2. 4p1 has a smaller magnitude compared to 4p2.

It can be seen from the corresponding warped images. This explains how

Nearest Neighbour search corrects for drift and doesn’t suffer from drift

getting added. Following this the IC part of NNIC further refines the search

for better alignment.

Figure 3.3: Three frames of a sample tracking problem is shown. First frame
I0, with the object initialised, kth frame Ik, where two cases are shown, Case
1: tracker is tracking, shown in green, and Case 2: tracker has drifted a bit,
shown in red. Finally, the next frame Ik+1 is shown where both the Cases
converge to the same bounding box.

Motivated by how intuitive this algorithm is, we adapt a Sequential

Graph Based Approximate Nearest Neighbour Search (SGANNS) [33] in

tracking in GNNIC.
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Algorithm 1 Pre-Computation of Sampled Images

1: procedure WARPIMAGE(I∗, σ) . I∗ Template Image
2: warpedData = dict{}
3: N = No of Samples
4: while I < N do
5: p = sample N (0, σ)
6: Î = I(W(x;p))
7: warpedData[p] = Î
8: I = I + 1
9: end while

10: return warpedData
11: end procedure

Sequential Graph based Approximate Nearest Neighbour Based

Randomised KD-Tree based approach doesn’t take into account the tempo-

ral coherency of video data, an assumption that is implicit in videos. It also

is restricted to multidimensional metric spaces as search is done by splitting

the feature space (image space in this case) along different dimension. The

original graph based approximate nearest neighbour algorithm proposed

in [70] was not restricted to this assumption of multi dimensional metric

spaces but didn’t use the sequential property of data. Hajebi et al. in [33]

showed how the temporal coherency of data can be used to speed up search

by having an intelligent guess of the start node. We adapt it in tracking.

Building Graph G The same pre-computed sampled images from Algo-

rithm 1 is used to construct the graph G needed in GNNIC. Each warped

image template corresponds to a node in the graph.
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Algorithm 2 Construction of the graph G

1: procedure BUILD GRAPH(warpedData,k) . k = Number of
Neighbours

2: G = {}
3: while I < len(warpedData) do
4: Q = warpedData[I]
5: (indexes) = knnsearch(Q,warpedData,k)
6: G[Q] = indexes
7: I = I + 1
8: end while
9: return G

10: end procedure

Figure 3.4: Graph is built by associating each node with k nearest nodes in
image space. Example shows a graph constructed with degree of connec-
tivity k = 3. A fully connected and directed graph is built. Complexity for
exact graph construction isO(n2d), where n is the number of nodes (warped
template image), d is the dimension of the flattened image patch.
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ThegraphG isbuilt(showninFig3.4foraconnectivityof3)bycon-

nectingeachnodewithknearestnodesintheimagespace. Weexploreboth

l2andl1distancestofindnearestnodes.Theparameterkdecidessparsityof

theresultantgraphG. Higherthevalueofkthemoreconnectedthegraph

is. Wesetkto200tohaveafairlyconnectedgraph.knnsearchwhichcalcu-

latestheknearestneighbours,isimplementedusingquick-select[53],that

hasacomputationalcomplexityofO(n),wherenisthenumberofsamples.

ThecostofconstructinganexactgraphG isO(dn2),wheredistheresolu-

tionofthetemplate(d=(m×n)).Searchduringtrackingisperformedas

explainedinAlgortihm3.

Algorithm3SGANNSSearch

1:procedureSGANNS(G,Q,T,E) T=Noofgreedysteps,E=Noof
possibilities

2: S={}
3: U={}
4: Y0:apointdrawnrandomlyfromG.
5: whileI<Tdo
6: Yt=argminY∈N(Yt 1,E,S)(Y,Q)
7: S=S∪N(Yt−1,E,S)
8: U=U∪{d(Y,Q):Y∈N(Yt−1,E,S)}
9: I=I+1

10: endwhile
11:SortU,pickthefirstKelements,andreturnthecorrespondingelements

inS
12:endprocedure

SequentialGraphSearch Whentrackingstarts,ateveryiteration,theal-

gorithmsearchesforthebestEpossible matches withinthekconnected

nodes.N(Y,E,G)searchesforEnearestneighbourofY intheconnected

graphG whereE≤k.Thisissimilartoknnsearch,butwithinthekcon-

nectedchildnodesofanode,Y.Thecurrentnodeisreplacedbytheneigh-

borthatisclosesttothequeryandeachoftheseEchildnodesarethen

furtherexplored.ThisexplorationcontinuesforTiterationstofindthebest
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Figure 3.5: Greedy search is done by replacing the current node with one of
the child nodes that has the least distance compared to the query template
untill some stopping criteria is met. Nodes highlighted in red shows the
path of search.

match. Termination can also be done when the residual of the best match

with the template is less than a set thershold. Note the difference between K

- the number of nearest neighbours to be returned and k- degree of connec-

tivity of the graph. In tracking applications, we use K = 1, that returns the

closest match. For the first frame, the algorithm initialises from a random

node. From there on, the best node of the last search is used as the start-

ing point. Hence the name Sequential Graph based Approximate Nearest

Neighbour Search (SGANNS).

This allows us to remove the random restart loop in TABLE I [33]. The

assumption here is that features are repeatable in consequtive frames, since

video being a temporal sequence, lot of overlap exists between two frames.
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We use the same setup, by using SGANNS with a cascade of IC [6] to further

improve alignment. Detailed analysis and results of this tracker GNNIC is

presented in Chapter 5.

3.3 State Space Model

The state space model parametize the motion of the object. It embodies

any constraints that are placed on the search space of warping parameters

to make the search process more efficient. This includes both the DOF of

allowed motion, as well as the actual parameterization of the warping func-

tion. For instance, the ESM tracker [9] can be considered to search over

a different parameterization of the state space than the conventional Lu-

cas Kanade type trackers [52, 6] since it uses an SL3 parameterization of

homography rather than the actual entries of the corresponding matrix as

used by the others. Different DOF common in tracking are 2, 3, 4, 6 and 8 as

shown in Figure 3.6.

Figure 3.6: Example of different 2D transform is shown. Image used from
[76].

2 DOF : 2D translation is modelled by following the object co-ordinates (X

and Y positions of centroid) in the image plane.

3 DOF : In this case translation and rotation are both modelled as part of

the object motion. This is also called 2D rigid body motion.
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4 DOF : Translation, rotation and scale parameters are estimated for 4

DOF motion. This is also known as similarity transform. VOT challenge

[46] evaluates trackers for 4 DOF motion.

6 DOF : Object motion is approximated using 6 parameters of the affine

matrix. Parallel lines remain parallel under affine transformation. IVT [67]

and L1-APG [57] are affine trackers.

8 DOF : Projective transform or homography transform accounts for the

full pose of the planar object . It preserves straight lines. Most registration

based trackers [52, 32, 9, 23, 82] track 8 DOF pose of the object.

The advantage of allowing higher DOF in the warping function to achieve

greater precision in the aligned warp since transforms that are higher up in

the hierarchy [36, sec. 2.4] can better approximate the projective transforma-

tion process that captures the relative motion between the camera and the

object in the 3D world into the 2D images. However, there are two issues

with having to estimate more free parameters. Firstly, the iterative search

takes longer to converge, making the tracker slower. Secondly, the search

process becomes more likely to either diverge or end up in a local minimum

thus causing the tracker to be less stable and more likely to lose track. The

latter is a well known phenomenon with Lucas Kanade type trackers [14]

whose higher DOF (e.g. affine) variants are much less robust than simple 2

DOF versions. In the thesis I focus on 8 DOF trackers.
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Chapter 4

Tracking for Manipulation Tasks
Dataset and Evaluation

Designing tracking systems raises the question of how to best evaluate them.

As tracking research is divided into two focus groups, it is (i) too varied to

claim generality, and (ii) each group is interesting enough to have its own

set of evaluation standards. A longstanding problem of evaluating regis-

tration based trackers is the unavailability of a standard dataset and evalu-

ation methodology. We report a Tracking for Manipulation Tasks (TMT)

[68] dataset to address this.

TMT is both a video dataset and an evaluation benchmark. The dataset

consists of more than 100 videos of manipulation tasks carefully recorded

by a human user and a robot arm. The tasks are chosen to mimic routine

tasks one would perform on a daily basis. The videos are structured to sys-

tematically evaluate a tracker with evaluation scripts, challenge tags, sam-

ple results and ground truth data are made public. 1

4.1 Video Capture Set Up

All videos (Fig 4.3) were recorded using a GRAS-20S4C-C fire-wire camera

equipped with a Kowa LM6NCM F1.2/6mm lens. For the human recorded

videos, the camera stood on a fixed position on a tabletop 90 cm from the

edge of the table. The human user had no involvement in designing track-

1Available at: http://webdocs.cs.ualberta.ca/˜vis/trackDB/
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Table 4.1: Parameter Setting for Video Capture

Parameters Diffuse Light Normal Light
Exposure (in IL) 0.73 1.06

Gain (in dB) 6.02 0
Shutter (in s) 0.04 0.07

White Balance Blue/U927 Red/V493 Blue/U757 Red/V490
Saturation (in %) 95.22 119.04

ing algorithm. This removes bias in the way the motion was planned while

manipulating the objects. Camera settings were implemented through co-

riander 2.0.1 [62]. Lighting was varied between normal office lighting and

diffused lighting by placing an umbrella to avoid direct source. The videos

were recorded at 30 frames per second (F.P.S.) at a resolution of 600x800 in

YUV colour space. Exact parameters of recording can be found in Table 4.1.

For the robot recorded videos, a 7 DOF WAM arm [1] with a Barrett hand

was used. Fig. 4.1 shows the set up. The camera was fixed on a tripod stand

at a distance of 120 cm from the WAM arm. Other parameters of exposure,

gain, shutter, white balance and saturation were kept the same as in Table

4.1.

4.1.1 Description of Videos

A tracking algorithm is considered to be robust if it successfully tracks in the

presence of “Translation (TR)”, “Rotation (RO)”, “Illumination (IL)”, “Perspec-

tive (PR)”, “Specularity (SR)”, “Occlusion (OC)”, “Texture (TX)” and “Speed

(SP)” variations.

We structure the dataset into two categories of videos. Oriented Motion

tasks (upper block in Table 4.2) and Composite Motion Tasks (lower block in

Table 4.2). Each video consits of one or more of the challenges mentioned

above.
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Figure 4.1: Set up for recording videos under normal light using a WAM
arm [1] and a Barret hand. The camera is set 120 cm from the base of the
robot arm.

Oriented Motion Tasks

Oriented or single motion tasks refer to highly structured motion of the

object, where the human user or the robot hand performs one simple action

in manipulating an object. Details of the tasks are described below.

Juice Juice from a juice box is poured onto a container. The goal is to track

the juice box in the presence of both translational (TR) and rotational (RO)

motion of the object.

Cereal This task is similar to Juice, with an added challenge. There is large

jerky motion when the cereal is poured onto the bowl. Also, the cereal box

has higher texture compared to the juice box.

Book I The object (book) is tilted from a vertical upright position to fi-

nally lie flat on the table and back up again. The challenge is to handle

perspective (PR) transformation of the object in the image plane. During
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Table 4.2: Description of Videos in TMT Dataset

Seqs Object Challenges # of Seqs
Juice Juice Box TR,RO,SP,IL 6 NL 6 DL

Cereal Cereal Box TR,RO,SP,IL 6 NL 6 DL
Book I Hardcover Book PR,SP,IL,SR 6 NL 5 DL

Book II Hardcover Book SC,SP,IL 6 NL 6 DL
Book III Hardcover Book TR,OC,SP,IL 5 NL 5 DL

Mug I Coffee Mug TR,SP,IL,SR 6 NL 6 DL
Mug II Coffee Mug TR,PR,SP,IL,SR 6 NL 6 DL

Mug III Coffee Mug RO,SP,IL,SR 6 NL 6 DL
Bus Toy Bus TR,SC,PR,SP,IL 1 NL 1 DL

Highlighting Newspaper OC,SP,IL,TR 1 NL 1 DL
Letter Envelope PR,SP,IL 1 NL 1 DL

Newspaper Newspaper Page PR,SC,SP,IL 1 NL 1DL

TR = Translation; RO = Rotation; IL = Illumination; PR = Perspective; SR =
Specular; OC = Occlusion; TX = Texture; SP = Speed; NL = Normal Light;

DL = Diffuse Light

this motion there is Specular Reflection (SR) from the cover of the book.

Book II Here a book is brought near the camera, parallel to the camera

axis and away. The goal is to capture scale (SC) variation of the object.

Book III The object (book) is placed inside a book holder. The challenge

in this video is to track the translational (TR) and Rotational (RO) motion of

the object, despite varying occlusion (OC) from the book holder.

Mug I Translational (TR) motion of a coffee mug is recorded when it’s

lifted up. The cup being a small shiny object, specular reflection (SR) and

low texture (TX) of the mug present additional challenges in this case.

Mug II This sequence, although similar to Mug I, is more difficult to track

because of high perspective (PR) deformation of the mug when it is tilted to

drink the contents.
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Figure 4.2: Image frames of the video sequences show sample tasks per-
formed by both a human user and a robot hand with two different objects.

Mug III A low texture (TX) coffee mug is rotated (RO) from its initial po-

sition and back along the axis perpendicular to the principal camera axis.

Composite Motion Tasks

Composite motion tasks consists of videos that can be decomposed into

simpler Oriented Motion tasks. Some tasks involve the use of both the hands

as against the simple motions in Oriented Motion tasks. For the composite

motion taks only human recorded videos are reported.

Bus The planar surface in front of a toy bus, that undergoes scale change

(SC) and perspective deformation (PR) at varying speed (SP), is to be tracked.

Highlighting A portion of a newspaper is highlighted with a yellow marker

pen. The challenge is to track the object in the presence of changing texture

(TX) caused by highlighting and partial occlusion (OC) by the hand of the
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Juice Cereal Box Book Mug

(a)

Newspaper Bus Page Envelope
(b)

Figure 4.3: Planar projections of the objects used in the dataset are shown,
both planar and curvilinear objects are chosen with varying texture, lam-
bertian/specular to have a full spectrum of challenges. (a) Objects used to
record Oriented Motion Tasks, (b) Objects used to record Composite Motion
Tasks
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user and the pen she uses for highlighting.

Letter The sequence records a letter being put inside an envelope and out

again. The challenge in largely to tackle the perspective deformation (PR)

of the object. This is a complex motion where both hands are used, one ma-

nipulating the envelope, the other taking out the letter from the envelope.

Newspaper A textured portion of the newspaper is to be tracked in the

presence of perspective (PR) and scale (SC) changes under varying speed.

Most of the Oriented Motion tasks have 6 videos recorded in both Natural

Light (NL) and Diffused Light (DL) settings. The six videos are of the same

task performed at varying speeds. Speed vary from very slow to very fast

with an added option of “increasing speed”, in which the speed is varied

while performing the task. Complex Motion tasks, on the other hand report

one video with varying speed. Having videos of different speeds, correctly

captures blurr as a challenge at higher speeds. A total of 8 different ob-

jects (Fig 4.3) were used to record the videos. To have a diverse selection,

we choose objects that are planar (book, cereal box, juice box), curvillinear

(mug, yogurt can), lambertian (newspaper), specular (book cover, mug, en-

velope), large (book, cereal box, juice box) and small (bus, mug).

Each frame is tagged with the different challenges it presents. The dis-

tribution of frames over the challenges is shown in Figure 4.4. Sometimes

more than one challenge is present simultaneously in one frame. All such

challenges are tagged. The number on top of each bar in Figure 4.4 shows

the number of frames having the corresponding challenge. TR or transla-

tion is the most common challenge since in most videos it is part of the

initial motion that the object goes through. Only the highlighting sequence

presents change in Texture (TX). However, we do use different objects to

cover a varied set of textures.
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Figure 4.4: The distribution of number of frames over the different chal-
lenges is shown. Blue bar shows the number of frames under diffused light
while the red bar shows the number of frames under normal light. The
number on top of each bar represent the number of frames with the corre-
sponding challenge. Abbreviations for challenges are, TR = Translation; RO
= Rotation; PR = Perspective; SR = Specular; OC = Occlusion; TX = Varying
Texture, BL = Blurr casued at high speeds, SC = Scale change.
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4.2 Ground Truth

Ground Truth (GT) refers to the correct position and orientation of the object

in the image frame. A tracker’s performance is evaluated against this data.

Video datasets that evaluate surveillance trackers manually annotate a loose

bounding box around the object of either 3 DOF (x, y, scale) [78] or 4 DOF

(x, y, scale, rotation) [46]. They also benefit from the fact that the trackers

are required to roughly follow the object with an allowable error limit of

50% overlap. Frame to frame correspondence of the target object is not very

rigid in this case.

With registration based trackers the thresholds are much more stringent.

Metaio [48] uses an absolute error threshold of 10 pixels to decide if a tracker

has failed on not. The dataset was generated using a camera mounted on

a Faro arm that was calibrated and all transformations of pose were stored.

The stored values were used to calculate ground truth data. Fiducial mark-

ers were also used to double check the ground truth thus generated. This

setup is restricted by the workspace and mass of the robot arm.

We report sub-pixel level co-ordinate positions based on tracking data.

Three trackers [23, 6, 9] are initiated on the first frame. Ground truth is

registered only when bounding box co-ordinates reported by all three of

them lie within ±1 pixel. These trackers were chosen because of their high

convergence which is further shown in Chapter 5.

The stringent convergence criterion (±1 pixel) sometimes results in the

trackers failing to converge to a common bounding box. We reinitialize

the three trackers using positional information from previous frames every

time they fail to converge. Number of reinitializations varied from 0 to 12,

for more difficult sequences. As a final step, we also verify all ground truth

data manually.
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4.3 Error Metric

Error in single object tracking is a quantitative estimate of how closely the

tracker follows the object. Tracked output (XT ) is compared with Ground

Truth (XGT ) to calculate this error. Any further analysis of a tracker first

needs an error measure. Some of the common error measures in literature

are, Center Distance [78] and Area Overlap [46].

4.3.1 Center Distance

Center distance (EC) is defined as the Eucledian distance between the cen-

troid of the tracked data and ground truth data. Mathematically, it is ex-

pressed as shown in Eq. 4.1

EC =
√

(Xt −XGT )2 (4.1)

Xt is the centroid of a tracked object, XGT the corresponding ground

truth. This measure is more suitable for 2 DOF trackers that track transla-

tional motion of the object.

4.3.2 Area Overlap

Area overlap (EA), a measure inspired from segmentation scores [71], has

been used in tracking in [78, 46]. Area overlap is defined as the ratio of the

area of intersection of the target region AT and ground truth region AGT

with that of their union. Mathematically it is expressed as Eq. 4.2.

EA =
|AT ∩ AGT |
|AT ∪ AGT |

(4.2)

Both the above mentioned errors fail to properly capture the mis-

alignment of pose. Fig 4.5 shows a case where the Ground Truth (XGT )

and Tracked result (XT ) are 180◦ out of phase. Center Distance (EC) and Area

Overlap (EA) fail to account for this out of phase alignment, and have very

low error scores. To address this, we describe a measure called Alignment

Error, Sec. 4.3.3. This error measure is similar to the one used in [48].
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Figure 4.5: Alignment error EAL accounts for the displacement of each cor-
ner (colour coded) from the corresponding GT data. It is expressed as a root
mean square (RMSE) score to account for the misalignment of pose.

4.3.3 Alignment Error

Alignment error quantifies the change in pose between the Target image

(XT ) and Ground Truth image (XGT ). Alignment Error (EAL) is expressed

as a root mean square distance of misalignment of the target image (XT )

with ground truth (XGT ). Mathematically it is expressed as shown in Eq.

4.3.

Error(EAL) =

√∑4
i=1(XT −XGT )2

4
(4.3)

The Root Mean Square Error (RMSE) is calculated between the corre-

sponding four corners of the bounding box. For all of our experiments, we

use Alignment Error (EAL).

4.4 Evaluation Measures

Using Alignment Error, Sec. 4.3.3, we evaluate trackers based on four dif-

ferent measures. (i) Overall Success (Robustness), (ii) Average Drift (Con-

vergence), a measure that we define (iii) Speed Sensitivity and (iv) Overall

Rank similar to [46].
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4.4.1 Overall Success

Overall Success (OS) is a commonly used measure [46, 78]. It is defined

as the fraction of total frames that a tracker tracks within an error (EAL)

threshold of tp pixels. It is expressed as

OS =
|S|
|F|

S = {f i ∈ F : Ei
AL < tp}

(4.4)

S is the set of successfully tracked frames, F set of all frames, EAL error

of frame (f i). Manipulation tasks calls for high precision in tracking. We set

threhold tp to be 5 pixels in our experiments.

4.4.2 Average Drift

Average Drift (AD) computes the expected error of the tracker when it oper-

ates within an allowed drift of tp pixels. This is similar to the one proposed

in [75].

AD = E[e|e < tp] =

∑
fi∈F

EAL

|S|
subject to eiAL < tp

(4.5)

Average Drift checks as to how precisely a tracker aligns itself with the

target. Yang et al. [78] used a pixel threshold tp of 20 pixels. This is too high

for manipulation tasks. As used in OS above, we set tp to be 5 pixels. It is

important to calculate AD when the tracker is within 5 pixel drift or else it

would be biased by large drifts when the tracker no longer tracks the object.

4.4.3 Speed Sensitivity

A common way [6, 23, 9] to quantify tracking convergence in dealing with

large motion is to synthetically warp the standard “Lena” image and allow

the tracker to recover this warp. The random warps are sampled from a

Normal distribution having zero mean and standard deviation σ, (N (0, σ)).

However, this experimental methodology overestimates convergence. Warps
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sampled using a large sigma, with a certain probability still have smaller

warps in them.

Figure 4.6: Success rate (tp = 2) plotted against varying inter frame motion
and sigma. It shows that even though the success rate for higher sigma is
high it’s lower for the corresponding inter frame motion.

This is further illustrated in Figure 4.6. Overall Success (OS) is plotted

against both interframe object motion mi as shown in Eq. 4.6 and sigma (σ).

Trackers perform poorly on large motions of 12 pixels (0.6 Success Rate)

compared to the corresponding sigma (0.9 Success Rate), for NNIC tracker.

mi = rmse(gti+1, gti) =

√∑4
k=1(gt

(i+1)
k − gt(i)k )2

4
(4.6)

Where gt(i) is the ground truth data for ith frame. Algorithm 4 shows

how Speed Sensitivity is computed. Since focus in given to precise trackers,

threshold tp (TH here) is 5 pixels. #tf is the number of frames that have

error threshold below tp with inter frame motion m in Algorithm 4. #f is

the total number of frames having inter frame motion m.

42



Algorithm 4 Speed Sensitivity of Trackers

1: procedure SPEEDSENSITIVITY(GT, T ) . T, tracked Result
2: r = dict{} . {[m]:(#tf , #f)}
3: TH = 5 . TH = Threshold for successful tracking
4: while I < len(GT )− 1 do
5: m = rmse(GT [I + 1], GT [I])
6: err = rmse(GT [I + 1], T [I + 1])
7: if err < TH then
8: dict[m] = (#tf+= 1, #f+= 1)
9: else

10: dict[m] = ( #tf, #f+= 1)
11: end if
12: I = I + 1
13: end while
14: return dict.items()
15: end procedure

When used with real videos from the TMT dataset, the number of sam-

ples having fast object motion is less. We skip frames (track every second,

third and fourth frame) to simulate fast motion. We also track both forward

and backward, initialise tracker on kth frame and track k + 1th frame, ini-

tialise on k + 1th and track kth frame.

4.4.4 Overall Rank

Measures discussed above rank trackers on isolated attributes of success

and robustness. They fail to provide a global view of how the trackers com-

pare. We use an idea similar to AR plots in [46]. Trackers are ranked based

on Overall Success (OS) and Robustness. Finally a 2D plot of Overall Rank

shows their relative performance taking into account both attributes of OS

(Y-axis) and Robustness (X-axis). Since we are interested in evaluating pre-

cise trackers, we use Alignment Error (EAL) instead of EA used in [46].

Robustness here is quantified by the number of times a tracker fails, and

needs to be re-initialised. A tracker is considered to have failed when EAL

> tp = 5 pixels. Once the tracker fails, the tracker is re-initialised 10 frames

from the frame it has failed to remove any bias and account for the same
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challenge twice. Total number of re-initialisations give an indication of how

robust a tracker is in a manipulation setup. Two graphs are plotted. A rank

plot graph where X-axis has the robustness rank and Y-axis the success rank,

and un-normalised graph that shows the actual number of re-initializations

on the X-axis and the overall success on the Y-axis.Trackers on the top right

are the better performing trackers.
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Chapter 5

Results and Evaluation

In this Chapter we evaluate and analyse both registration based trackers

and OLT. Since we are interested in precise tracking, we use videos from

TMT dataset (Chapter 4) [68] which is a publicly available dataset and re-

ports 8 DOF ground truth. Static experiments using the standard “Lena

Image” as done in [6, 9, 23, 82] are also performed with results reported and

analysed.

5.1 Baseline Trackers

All trackers were initialised on the first frame of the video with bound-

ing box co-ordinates of the object. Original implementations of RKLT [82],

NNIC [23], IVT [67], TLD [42] and L1-APG [57] were used. One pass eval-

uation is done on the videos, with the tracker running the full length of the

video.

Registration Based Among registration based trackers, we test ESM [9],

NNIC [23], GNNIC (Chapter 3), IC [6] and RKLT [82]. 30 iterations with

a resolution of 100 × 100 were used in IC for convergence. NNIC used a

look up table of (0.06 × 0.04), (0.03 × 0.02) and (0.015 × 0.01) sigmas, each

using 4000 samples and a resolution of 50× 50. The corresponding IC used

in the cascade setup, used 10 iterations with a resolution of 50 × 50. ESM

used 30 iterations with a resolution of 50 × 50. RKLT used a template size
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of 40 × 40, with 10 iterations in IC for refinement. The parameters were

chosen to give each tracker approximately the same execution time. Finally,

we test SGANNS agorithm in GNNIC, using the same parameters as for

NNIC, with degree of connectivity (k) for graph construction set to 200.

This gives a common baseline to compare the two related search methods of

randomized kD-Trees and SGANNS. Two distance measures are used with

GNNIC, Eucleadian distance (l2) and Manhattan distance (l1). Additionally,

all four apperance models discussed in Chapter 3 are studied in conjugation

with the registration based trackers.

Online Learning Based Three online learning based trackers (OLT) were

studied: IVT [67] , L1-APG [57] and TLD [42]. IVT and L1-APG use 6 DOF

particle filter as the search method. TLD uses median flow motion model.

Yang et al. in [78] evaluated some of the state of the art trackers that use on-

line learning to adapt the appearance model. We choose three of the track-

ers that performed well on most of the videos in their tests. Both IVT [67]

and L1-APG [57] in our experiments used 600 particles for the particle filter

search. Additionally, L1-APG [57] used a template subspace of 10 templates

of the target image. Original parameters as specified in [42] were used for

TLD.

A diverse selection, such as this, would show the usability of some of the

popular trackers in application requiring precise tracking like manipulation

and visual servoing. This is missing in the literature, since OLT benchmarks

does not impose high convergence.

5.2 Result and Analysis

Overall Success Overall Success, averaged over three speeds (very slow,

slow, normal) is reported in Table 5.1. It uses SCV as the appearance model.

Later in Chapter, we study the effect of appearance variation on tracking

performance. The best performing tracker for each sequence is shown in
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bold.

Table 5.1: Overall Success Expressed as Fraction of Frames Tracked

Video TLD L1APG IVT ESM NNIC IC RKLT GNNIC
Cereal 0.00 0.24 0.99 1.00 1.00 1.00 1.00 1.00
Book I 0.00 0.10 0.48 1.00 1.00 1.00 1.00 1.00
Book II 0.00 0.79 0.30 1.00 1.00 1.00 1.00 1.00
Book III 0.00 0.42 0.72 0.34 0.32 0.32 0.38 0.34

Juice 0.00 0.16 0.98 1.00 0.41 1.00 1.00 1.00
Mug I 0.84 0.10 0.91 1.00 1.00 1.00 1.00 1.00
Mug II 0.41 0.30 0.72 0.89 0.89 0.89 0.31 0.92
Mug III 0.51 0.54 0.68 1.00 0.59 0.65 1.00 0.68

Bus 0.37 0.57 0.94 1.00 0.99 0.96 0.81 1.00
Highlighting 0.00 0.67 0.95 0.76 0.70 0.33 0.72 0.60

Letter 0.11 0.19 0.25 1.00 1.00 1.00 1.00 0.89
Newspaper 0.00 0.61 0.92 1.00 0.51 0.43 1.00 0.24

Table 5.1 clearly shows that registration based trackers have better over-

all performance compared to OLT. OLT are ill suited for manipulation tasks.

They build an appearance model of the object (lower dimensional subspace

of the initial template(s)) to begin with. This model is then updated as track-

ing progresses. Newer templates are accounted for in the appearance of the

object. Though this makes the trackers more robust, this comes at the ex-

pense of convergence. Newer templates that are shifted, scaled from the

original, are not exactly the same as the target image.

We observe that L1-APG tracker fails to track in-plane rotation (Fig 5.1).

Although Mei et. al [57] use a 6 d.o.f motion model, the state space update

mostly accounts for two DOF. The motion model uses a velocity component

ṽ = (v1, v2) (horizontal and vertical velocities), which are the last two terms

of the state vector p. Particles are updated based on average of the last few

frames tracked. This accounts for the transitional motion of the object but

fails to capture the full pose. It is not reported in any existing work that we

know of. TLD, with it’s 3 d.o.f. parametrization, understandably fails to

precisely estimate the object pose.

We further analyse registration based trackers. We test them on higher

speed videos (fast and very fast from TMT [68] Dataset). RKLT [82] and
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Figure 5.1: L1-APG (orange) [57] and TLD (black) [42] fails to track in plane
rotation. Registration based trackers, ESM (red) [9], IC (yellow) [6] and
NNIC (cyan) [23] and IVT (green) [67] tracks without considerable drift

GNNIC are the two best performing trackers on higher speed object mo-

tion. RKLT [82] tracker uses several point trackers (KLT trackers), that it ini-

tialises on each frame. This is then followed by RANSAC to estimate pose.

This allows the tracker to handle large pose variation as long as at leastl

some inliers are detected by RANSAC to estimate homography (Algorithm

I in [82]). NNIC [23] and GNNIC use a two step search process. They model

the possible pose variations prior to tracking. With sufficient number of

samples, large motion variations can be modelled. Fine alignment follow-

ing the Approximate Nearest Neighbour step is done using Inverse Com-

positional [6] search in NNIC [23] and GNNIC. The two search methods are

complementary to each other, thus improving robustness maintaining high

convergence.

Both NNIC [23] and GNNIC use Approximate Nearest Neighbour, which

are computed using two different algorithms. We compare these two algo-

rithms on high speed videos since for slower speeds, both track the full se-

quence, which makes it hard to distinguish. Figure 5.3 shows the result. The

red boxes indicate those sequences where GNNIC is better than or equal to

NNIC [23]. Apart from the one exception of “mugI” on very fast speed

(“mugI-s5”), GNNIC is better than NNIC in terms of overall success. Fur-
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Figure 5.2: Overall Success of six registration based tracker are plotted. The
six trackers being ESM [9], IC [6], RKLT [82], NNIC [23] and two variants
of GNNIC one using Eucleadian distance (GNNIC-L2) and the other using
Manhattan distance (GNNIC-L1) on 12 video sequences from TMT Dataset
[68].

ther experiments on high speed object motions are shown and analysed in

the next Section 5.2.

Figure 5.3: Overall Succes (OC) of NNIC [23] and the two variants of GN-
NIC on the higher speed videos from TMT Dataset [68].

Both the algorithms (NNIC and GNNIC) map warps to sampled images

to model possible transformations before tracking starts. The efficiency of

the system depends on how many samples are needed to properly model

the object. We further test the two algorithms to verify this. KD-Tree [8]

based NNIC and SGANNS based GNNIC are compared without using the

cascade framework IC [6], to test the contribution of the approximate near-

est neighbour part of the algorithm. Overall success is plotted against vary-
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ing threshold tp. SGANNS using 5000 samples perform comparable to ANN

(for low pixel thresholds used in manipulation) using much higher particles

(> 10,000 particles). Figure 5.4 shows the comparison. Number of samples

needed to appropiately represent data is much less in SGANNS which in

turn makes the system more efficient. The result validates that keeping the

same setting (number of particles and resolution of templates) SGANNS has

better overall accuracy for most videos compared to KD-Tree in Figure 5.3.

Figure 5.4: Overall Success is plotted with varying threhold tp for different
number of samples on “BookI” sequence. Results show that GNNIC per-
forms well with much lesser samples compared to NNIC [23].

Not only does GNNIC require less number of samples to model the ob-

ject, it speeds up search as pointed out in [33]. The speed up using SGANNS

is measured based on the number of distance computations during search,

to find the optimal parameters.

The reason for using such a method to compare speed is because KD-

Tree is implemented using Flann 1, which is a more optimised version. The

number of distance computations are shown in the Table 5.2 on six videos.
1Available at: https://github.com/mariusmuja/flann
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Table 5.2: Speed Comparison expressed as number of distance computa-
tions.

Video BookI BookII MugI MugII Juice Cereal
NNIC 1412 1216 811 821 2107 1781

GNNIC 922 651 408 411 732 691
Speed up 1.53 1.86 1.98 1.99 2.87 2.57

All results are reported on medium speed. Speed up is the ratio of the num-

ber of distance computations needed in NNIC compared to that of GNNIC.

The speed is almost double in most cases. This is explained by the fact

that having a smart criteria to initialise search (start traversing the graph G,

from the best node in the previous search) reduces the number of distance

computations.

Speed Sensitivity Evaluation measure Speed Sensitivity, introduced in

Section 4.4.3, studies tracking performance on fast object motion. This is

important for registration based trackers, which are often used in manipu-

lation tasks, that have a wide range of motion. Originally, fast object motion

was simulated by warping the standard “Lena” image (Figure 5.5) using a

random warp, followed by the tracker retrieving this warp. Success Rate

(OC) over a large number of trials (5000) for each sigma is plotted with in-

creasing sigma.
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(a)

(b)

Figure 5.5: (a) Original “Lena” image that is morphed and tracked and (b)
Speed Sensitivity experiments on the same image.
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As reasoned in Section 4.4.3 and shown in Figure 4.6 , this is not an ac-

curate estimate of a tracker’s ability to handle large motion. This is further

shown in Figure 5.5 (b). All five registraton trackers are tested using the

original Static Experimental setup in [6, 9, 23] and the reported metric Speed

Sensitivity in Chapter 4. Registration based trackers are in general are susep-

tible to large motion however speed sensitivity show their relative perfor-

mance on large motion, with RKLT [82] and GNNIC the two best trackers.

Note that the success plots are very similar when plotted against sigma but

show a high degree of variability when plotted against interframe motion.

RKLT [82] has the best performance with GNNIC coming close second. The

trackers are tested further on real motion sequences. Speed sensitivity is re-

ported taking into account all five speeds. We have made ground truth data

publicly available so users can define their own evaluation criteria. Speed

Sensitivity results are grouped under two object categories i.e. Planar Object

and Curvillinear Object.

Planar Objects: “BookII” sequence is the easiest to track. The only chal-

lenge is scale (SC) variation. Compared to “BookII”, “BookI” (Fig 5.6) has

both perspective transformation (PR) and specularity (SR).

53



(a)

(b)

Figure 5.6: Speed Sensitivity result on “bookI” sequence. Frame 1 and
Frame 190, in the “bookI” sequence, recorded at medium speed. The con-
siderable change in appearance due to specular reflection is visually shown
in top right corner
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In this sequence, when the book is tilted, (Fig 5.6) the appearance changes

considerably because of specular reflection from the surface of the book as

shown in Figure 5.6 (b). This makes it hard to track. Another interesting

observation can be made (Fig: 5.7), though “Cereal” and “Juice” sequences

have same sets of challenges, the “Juice” sequence is more sensitive to large

motion.

Figure 5.7: Speed sensitivity is plotted against inter frame motion for “Ce-
real” (top) and “Juice” (bottom) sequences

The only difference between them being texture, we investigate further.
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Static image experiments with optimal parameters are done. The results in

Fig 5.8 show the effect of texture playing a crucial role, making the two

sequences distinct in their own way. Cereal box, having richer texture, is

easier to track.

Figure 5.8: Static experiment with 5000 trials for each sigma (σ ∈ {1, ..14}),
is done on the cereal box (top) and juice box (bottom), cereal box, having a
rich texture, is easier to track.

Curvilinear Object: The mug sequences are on average more difficult to

track. With higher inter frame motion the success rate falls steeply. The

specularity (SR) on the surface makes it even hard to track. “MugII” is the

most difficult sequence in the entire set, with the highest number of chal-
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Table 5.3: Average Drift Expressed as an Expectation Value

Video TLD L1-APG IVT ESM NNIC IC RKLT GNNIC
Juice N/A 2.39 3.27 0.79 0.89 0.94 0.73 1.57

Cereal N/A 2.67 2.80 0.61 0.61 0.15 0.63 0.64
Book I N/A 2.87 2.96 0.73 0.73 0.70 0.92 1.57
Book II N/A 3.32 3.37 0.70 0.70 0.73 0.82 1.67
Book III 4.97 1.21 1.14 1.38 1.41 1.49 1.45 1.41
Mug I 3.48 3.3 1.34 0.49 0.49 0.46 0.50 0.90
Mug II 3.64 2.47 3.09 1.87 1.88 1.870 1.87 0.74
Mug III 3.20 2.51 2.28 0.74 0.97 0.75 0.75 0.42

Bus 3.25 0.68 2.18 0.63 0.59 0.63 1.20 1.20
Highlighting N/A 3.71 1.61 1.23 1.21 0.47 1.06 1.21

Letter 4.53 1.79 1.68 0.36 0.505 0.36 1.1 0.89
Newspaper N/A 2.49 3.18 0.42 0.53 0.31 1.63 0.92

N/A = There were no frames that had an error (EAL)less than 5 pixels

lenges (Table 4.2).

Average Drift Average Drift as described in Chapter 4 is calculated on all

the sequences and reported in Table 5.3. Registration based trackers have

low average drift compared to the online learned trackers for most of the

sequences. The reason being, particle filter uses random samples to get an

initial state estimate. This is unlikely to hit the best alignment when itera-

tions are limited, while the Gauss Newton method of the original registra-

tion trackers provides fast and higher convergence when it does converge.

IC tracker has the least drift in most of the sequences. This prompted us to

use IC as the precise tracker in conjugation with the Approximate Nearest

Neighbour based trackers which in itself does coarse search that often does

not converge well.

Overall Rank: We rank the eight trackers in Figure 5.9, similar to AR plots

in [46] . This gives a global overview of how the trackers compare. The

methodology is described in Chapter 4. RKLT [82] ESM [9] and GNNIC

are the 3 top performing trackers. Approximate Nearest Neighbour based

trackers have higher success rates compared to ESM due of their ability to
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track larger object motion (Fig 4.6). The actual ranks of trackers on two

attributes are shown in Table 5.4 and 5.5.

Table 5.4: Robustness Rank of Trackers

Robustness Ranks 1 2 3 4 5 6 7 8
Trackers RKLT GNNIC ESM NNIC IC IVT L1 TLD

Table 5.5: Success Rank of Trackers

Success Ranks 1 2 3 4 5 6 7 8
Trackers GNNIC RKLT ESM NNIC IVT IC L1 TLD

(a) (b)

Figure 5.9: Rank plots are shown. Trackers that are closer to the top right
corner perform better in both metrices of robustness and overall success.
The absolute rankings are shown in tables 5.4 and 5.5. The two plots are, a)
Absolute rank plots, and (b) Un-Normalised rank plot that shows the actual
values of re-initializations and overall sucess.

Figure 5.9 shows the rank plot and the un-normalised rank plots. The

un-normalised plot (Figure 5.9 (b)) indicates that the top performing track-

ers (upper right corner of graph Figure 5.9 (a)) are similar in performance

(Figure 5.9 (b) top left corner).
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RKLT [82] initialises KLT trackers on every frame, which makes it ro-

bust to fast motion and thus it has the best overall success rate. TLD is the

worst among the eight trackers, when used for precise tracking. It tracks 3

DOF state space and re-initialises often. IVT is the best among the Online

Learned Trackers because of the 6 DOF motion model.

An important reason for the trackers to perform robustly is attributed

to the appearance model of the object. Previously we tested using SCV as

the appearance model. It corrects for illumination and hence tracks in the

presence of specular reflection. In the next subsection we study the effect of

appearance models and how it affects tracking performance.

5.2.1 Effect of Appearance Models in Tracking

Trackers are often subjected to changing appearance of the object over the

course of a video. Hence different appearance models are used in regis-

tration based trackers, to correct for illumination variation. Here we study

four illumination correcting appearance models described in Chapter 3. We

show average success rate on six videos, averaged over all the different

speeds and search methods in Figure 5.10. IVA [61] is only slightly better

than SSD. IVA [61] was originally designed to eliminate the effect of shad-

ows in autonomous navigation. A downside of this is it removes consider-

able texture information from the object to be tracked, which is important in

gradient based search. This makes tracking difficult, particularly in the case

of low textured objects like “Juice” and “Mug” sequences. Figure 5.11 show

sample transformed images. This is not the case for “Book” sequences. Im-

age of the book still retain lot of the original texture after the transform.

NCC and SCV have similar performances in terms of Overall Success.

However NCC is faster than SCV. Using NCC as the appearance model is

equivalent to using SSD on normalised image [69] as opposed to calculating

the expected intensity value in SCV. The expectation operator in SCV has a

complexity ofO(n2m2), where (n×m) is the dimension of the template. SSD,

NCC and IVA, all three have a complexity of O(nm). Table 5.6 presents a
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Figure 5.10: Average Success Rate plotted for the four appearance models
discussed in Chapter 3 on six sequences from TMT dataset [68]

list of challenges and the variants of each sub modules that can handle the

challenge.

Figure 5.11: Sample images of tranformed template image using IVA [61].
Very little texture is retained in most cases which makes tracking using this
appearance model difficult.

NCC being both fast and accurate is the preferred choice of appearance

model.
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Table 5.6: Summary of usefullness of variants of the submodules

Appearance Model Search Method State Space
Challenge NCC SSD SCV IVA GN ESM GNNIC 2 3 4 6 8
Translation X X X X X X X X X X X X
Rotation X X X X X X X 7 X X X X
Scale X X X X X X X 7 7 X X X
Affine X X X X X X X 7 7 7 X X
Perspective X X X X X X X 7 7 7 7 X
Perspective + X 7 X 7 X X X 7 7 7 7 X
Specularity
Perspective + X X X 7 7 X X 7 7 7 7 X
Large Motion
Perspective + X 7 X 7 7 X X 7 7 7 7 X
Large Motion +
Specularity +

(X) shows the ability of the variant of each submodule to track a challenge
and (7) shows if it fails to do so.
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Chapter 6

An application to track in the
presence of Occlusion

Unlike TLD [42], the trackers discussed in this thesis do not have any de-

tection module. Which means, once a tracker looses track, it never re-

initailises. This is a bottleneck when faced with occlussion or objects that

have very little texture exposed at the beginning of the sequence. Note that,

even though OLT adapts for changing appearances, they rarely re-initialize

once tracking fails. To counter this, we propose a detection system that

works together with the tracker and re-initialises when it has drifted sub-

stancially. Workflow of the full system with the tracker is shown in Figure

6.1. Alternatively the detection module can also be used to initialize track-

ing, if the object to be tracked is known ahead of time.

Object template (I∗) initialised by the user is used to build the initial

model of the object O. keypoints (positional information) and the corre-

sponding feature descriptors are extracted from I∗. We use SIFT [51]

features. This forms the initial object model, O. As shown in Figure 6.1

we check for tracker failure (blue box) at every image frame. The tracker is

considered to have failed when residual error (||I∗ − I(W(x;p∗))||2 > TH)

is above a certain threshold TH . We choose TH to be 20. If the tracker is

judged to have failed, the detection system (green box) detects the object

and re-initialises the tracker.

Feature descriptors from the new image (frame where the tracker drifted)
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Figure 6.1: Worflow of the detection system together with the tracking mod-
ule. When the residual is higher than a threshold, the object is detected
and tracker re-initialised. The object module is updated with every re-
initialization taking into account he new object template.

are matched with the existing object model using Approximate Nearest

Neighbour [8]. The matched keypoints are further filtered using RANSAC

[25]. RANSAC checks every combination for the best fit with the exist-

ing object model, O. Since RANSAC is computaionally expensive, Ap-

proximate Nearest Neighbour matching is done prior to RANSAC, narrows

down the number of potential points to be checked. Finally, we compute

homography between the keypoints in the object model and the matched

keypoints from the image frame. Homography parameters give the new

bounding box co-ordinates of the object.

This is used to re-initialise the tracker. Note that if the object is out of

focus, there are no matched keypoints, the detection system checks the next

frame. With every re-initialization, the object model is updated with the

matched keypoints (goodKeypoints in Algorithm 5). Figure 6.2 shows the

typical steps when the tracker fails. In Figure 6.2 (a) SIFT keypoints are gen-

erated, (b) matched keypoints, within a certain thereshold t (distance ratio)

are filtered out, finally (c) shows RANSAC selecting a handful of keypoints

(purple) to estimate homography parameters to give the new bounding box

shown in red.
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Algorithm 5 Detection Module

1: procedure DETECTION(O, I) . O=(reference keypoints,
feature descriptors), I = Image

2: goodKeypoints = {}
3: (keypoints, descriptors) = SIFT (I)
4: for keypoint in keypoints do
5: dist = nnsearch(O, keypoint) . Approximate Nearest Neighbour
6: if dist < t then
7: goodKeypoints.append(reference keypoint, keypoint)
8: end if
9: end for

10: RANSAC(goodKeypoints) . Filters goodKeypoints
11: POSE = HOMOGRAPHY (goodKeypoints)
12: UPDATE(O)
13: return POSE
14: end procedure

(a) (b) (c)

Figure 6.2: [TOP IMAGE] (a) Detected keypoints on an Image Frame (red
points), (b) Keypoints that match closely with the object model O, (c) Fil-
tered keypoints after RANSAC in purple, used to calculate homography
parameters. The resultant bounding box is shown in red. [BOTTOM IM-
AGE] End effector of the robot arm is tracked with the filtered keypoints.
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Two examples are shown. The first example in Figure 6.3 shows oc-

clussion from the book holder. Registration based trackers fail to track, but

NNIC [23] coupled with the detection system re-initialises the tracker and

it successfully tracks the object. The second example shows an instance of

tracking very small objects. In this case a fish head. The position of the fish

head is used as a reference to find the hook which is threaded. Being a very

small object, it lacks significant texture. Other trackers fail very fast. The

updating model of the object enables the tracker to track the fish head for a

long period of time.

Figure 6.3: Examples frames where the tracker was re-initialized using the
detection module. Seven trackers are shown, DNNIC refers to NNIC with
the detection module (red), GNNIC, NNIC [23], ESM [9], RKLT [82], IC [6]
and TLD [42]

TLD [42] is shown to track both the “Book” sequence and the small fish

head in Figure 6.3. However, in the “Book” sequence, it fails to track full

pose. This is becasue of the 3 DOF motion model used in TLD. The pro-

posed detection system tracks full pose yet maintaining high robustness by

re-initializing the tracker when it fails, hence is better suited in robotic ap-

plications.
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Chapter 7

Conclusion and Discussion

7.1 Contributions

In this thesis we address registration based tracking. While tracking evalu-

ation methodologies exist in literature, little attention has been paid to eval-

uate registration based trackers. We report an extensive dataset for that

purpose on which we evaluate a diverse set of trackers and finally rank

them. A new evaluation measure, Speed Sensitivity, is introduced that tests

a tracker on large object motion.

We adapt a new search method, SGANNS [33], in tracking. It uses the

sequential property of video data to efficiently search for the next best warp

parameters, using the current warp as the starting node. The algorithm

is explained in Chapter 3. Detailed results and analysis of the algorithm

is presented in Chapter 5. Here we also study four appearance models in

relation to registration based trackers. This is useful in making the tracker

robust to illumination changes.

Interesting observations are revealed in our study. Firstly, results show

L1-APG [57] tracker fails to track in plane rotation. This is attributed to

the motion model used that primarily updates the translational parameters.

Secondly, we observe that registration based trackers overall perform better

than OLT. This explains the popular choice of registration based trackers

in manipulation and visual servoing tasks. Thirdly, we show SGANNS to

be more efficient compared to KD-Tree in tracking, with acheiving better

66



accuracy with less number of samples to model motion. Fourthly, we study

different appearance models. NCC is shown to be have the best trade off

in terms of speed and accuracy. It corrects for illumination by centering the

data.

Finally we describe a detection system in Chapter 6. This, coupled with

a registration based tracker, re-initialises the tracker when it drifts. We show

applications in tracking occlussion, tracking small objects and objects that

change appearance.

7.2 Future Work

7.2.1 Dataset Augmentation and Tracker Evaluation

One key area, is to augment the dataset with more videos. This can be done

by including eye in hand camera or first person view camera [74] videos,

which would include large scale and perspective changes in appearance of

the object. Figure 7.1 shows a typical setup from three view points. The

camera is attached to the palm of the robot hand as it grabs the box and

puts its content in to the blue container. Tracking in such videos is more

challenging due to considerable change in appearance of the object.

(a) (b) (c)

Figure 7.1: Three view points of the setup is shown. (a) An external camera
shows the overall setup used for recording. (b) A camera attached to the
palm of the robot hand provides egocentric view. (c) First person view is
shown from a camera placed on top of the base of the robot.

Also, videos in the dataset were recorded using a fixed camera and mov-

ing object. In future we would like to record videos using moving camera
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and moving object at the same time. We evaluate eight trackers and ana-

lyze performance. However the dataset being publicly downloadable with

ground truth data, others are encouraged to use it to evaluate their trackers.

7.2.2 Approximate Nearest Neighbour Search using Graph
Structure

In this thesis we show SGANNS to work well with sequential data in track-

ing videos. Application in SLAM is shown in [33]. Future research on this is

to work on ways to efficiently add and delete nodes to the connected graph

which forms the model prior to tracking. This is important, as it would

allow for the model to adapt to newer appearances of the object (newer ob-

servations added) without substancial memory usage (prune the directed

graph and remove old observations) which are no longer useful.
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