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Abstract

The Einstein-de Haas (EdH) e↵ect was measured for the first time more than a

century ago, and a classical theory of its operational principle existed many years

before the first observation of the e↵ect. EdH torques are generated by the time rate of

change of angular momentum and represent the close relationship between magnetism

and mechanical angular momentum. This work serves to build upon a trend of

miniaturizing EdH experiments, thereby increasing the frequency that EdH torques

are applied. The pursuit of extending EdH torques to higher frequency outlines a

distinct benefit of the EdH e↵ect: the torque scales linearly in magnitude with drive

frequency. This linear scaling of EdH torques is in stark contrast with conventionally

studied cross-product torques, which scale linearly with applied DC field and are

frequency independent. The first measurement of the EdH e↵ect featured torques

that were of order one million times smaller than cross-product torques. Enabled by

nanofabrication of mechanical torsional resonators, we have brought measurements

of the EdH e↵ect to the nanoscale, and subsequently to radio frequencies where EdH

and cross-product torques are of similar magnitude.

Single crystal disks of yttrium iron garnet (YIG) with vortex ground states were

a�xed to the nanofabricated torsional resonators. Owing to the distinct origin of

EdH and cross-product torques, we were able to simultaneously measure the torques

and observed relative di↵erences in the signal phases as the field was swept. The DC

field where EdH and cross-product torque signals intersect allows us to calculate the

magnetomechanical ratio g
0 for YIG: the first measurement of its kind. Our results

yield g
0 = 1.78±0.16. The uniformity of driving fields allows for the extension of EdH
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torque measurements beyond the low field and ultimately beyond annihilation of the

vortex state. EdH torques in intermediate and high field ranges serve as a sensitive

probe of magnetic surface defects. Future directions of this work are presented with an

emphasis on testing the limit of the linear increase of EdH torque with frequency. We

suggest that a phase-lag with respect to the driving field will emerge for high enough

mechanical frequencies that will signal the out-pacing of spin lattice relaxation times.
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“Wonder. Go on and wonder.”

-William Faulkner, The Sound and the Fury
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Chapter 1

Introduction to Magnetism

The central theme of this thesis is magnetism, a deep and complicated subject. This

introduction serves to acquaint the reader with the broad strokes of magnetic be-

haviour that I feel will be of utmost importance for following discussions. I will begin

with a whirlwind tour of magnetism throughout history with an emphasis on no-

table examples of magnetometery, and the development of theories of ferro-, ferri-,

and antiferromagnetism. Following this brief description of magnetism in history,

our discussion will cover two kinds of torque that are especially important in mag-

netism: the cross-product torque and the Einstein-de Haas torque. I will then provide

a description of experimental techniques of torque magnetometry, and finally I will

touch on two important results of micromagnetism: the micromagnetic vortex, and

the quasi-uniform state.

1.1 Background

1.1.1 Early History

Magnetism and technological advancement are deeply intertwined subjects. Chinese

writing that dates back to 4000 B.C. describe magnetite (or lodestone as it has been

historically referred to) and use it to create a primitive compass in 3000-2500 BC. As

far as we know, this ancient compass was not used for navigational purposes. By 800

BC, Greek philosophers wrote on the subject of magnetism when it was discovered

1



that deposits of Lodestone found around Macedonia and Magnesia attracted iron.

Chikazumi in his book points out that these peculiarly attractive stones. “[magnetite]

could be found in the Magnesia district of Macedonia, and the city of Magnesia in

Ionia. The word ‘magnetism’ is believed to originate from these names.” [1]. Humans

have relied on magnetic behaviour for navigational purposes since the compass was

first used for oceanic exploration. The use of the compass for navigation doesn’t only

represent the first of many paradigmatic shifts surrounding the use of magnetism; it

also serves as an example of a torque magnetometer. A magnetometer is any device

that responds uniquely to magnetic fields. In the case of the compass, the shape

of the needle promotes magnetization along the length of the needle. An external

field applied at some angle with respect to the length of the compass needle (say the

Earth’s magnetic field) will exert a torque that rotates the needle towards the applied

field. This torque is perpendicular to the plane in which the magnetization, m~ , and

external field, H~ ext, are applied. Thus we may represent this ‘compass needle’ torque

as a cross-product relation: ⌧~ = µ0m~ ⇥H~ ext. In this case, the magnetometer tells the

user what direction the Earth’s magnetic field is pointing.

1.1.2 Classical Theory of Magnetism

The applicability of magnetism allowed for oceanic navigation, however when the

compass was invented, the theory of magnetism was not well-understood. It was

not until the nineteenth century when the world of physics saw the genesis of elec-

tromagnetic theory, which gave way to the classical theory of magnetic fields. One

of the major contributors to the theory of fields was Carl Friedrich Gauss who, in

1832, surprisingly played role of experimenter when he used a torque magnetometer

to measure the strength of the Earth’s magnetic field (this is not the last time in this

thesis that we will encounter a theorist performing experiments). The account of this

measurement is nicely detailed by Malin’s 1982 Nature article [2]. In his first experi-

ment, Gauss suspended a bar magnet from a gold fibre and measured the period of the
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magnet’s oscillation about the normal. A cross product of compass-needle-like origin

induced a torque resulting from misalignment of the magnetic field of the Earth and

the bar magnet. The torque imposed on the bar magnet rotated the sample about the

axis of the gold fibre. Gauss was able to measure the period of oscillation by a�xing

a mirror to one end of the magnet which, through a telescope pointed at the mirror,

he observed on a linear scale a�xed a distance from the magnet. He measured the

period of oscillation and Gauss’ first result was the magnetic moment of the bar mul-

tiplied by the Earth’s field (mH). Next, Gauss measured the ratio of the magnetic

moment to the Earth’s field by recording the deflection of a suspended bar magnet

when a second, perpendicular, magnet is introduced. By assuming dipolar scaling of

attraction strength, Gauss had measured the ratio m/H. By multiplying the result

for m/H to his first result both m and H could be calculated. Gauss’ result was the

first of many subsequent measurements of the Earth’s magnetic field, however this

experiment bears a striking resemblance to modern magnetic torque magnetometers.

Section 1.3 will explore ways that torque magnetometers can be used to tell us about

important magnetic phenomenon.

1.1.3 Magnetism at the Beginning of the 20th Century and
Beyond

With the culmination of classical electrodynamics being marked by the formulation

of Maxwell’s equations, theories about the origin of magnetism in materials was still

mysterious. Classical magnetostatic theories did a good job explaining how magnets

interacted, but did not explain the emergence of magnetic behaviour. Ampère hy-

pothesized that electrons orbiting atoms could act like small loops of current, the

volume average of which would generate a net magnetic field. As we will see soon,

this theory was the impetus for Einstein and de Haas’ 1915 experiment, and the two

were quite convinced that their experiment had proven the existence of these molec-

ular current loops [3]. However, open questions of magnetic behaviour remained. In
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his 1911 thesis, Niels Bohr showed that thermal averaging of classical spins cannot

produce a nonzero magnetization, thereby stating that ferromagnetism should not be

possible under theory of classical physics [4]. This fact was brought up once again in

1921 by Hendrika Johanna van Leeuwen [5]. A theorem was formalized based on this

anomaly of classical statistical mechanics by Van Vleck and was called the Bohr-van

Leeuwen theorem [6]. At the time of the Bohr-van Leeuwen theorem’s publication,

quantum mechanics was in its infancy, and would thankfully soon serve to demystify

qualities of magnetic behaviour that classical physics was not capable of explaining.

The theory of ferromagnetism could uniquely be described by the exchange inter-

action, introduced by statistics of identical objects in quantum mechanics. Consider

the wavefunction of two indistinguishable quantum objects (a and b) that are close

to one another, so their wavefunctions overlap. The wavefunction describing this

superposition is

� =
1p
2

⇣
�a(r~1)�b(r~2)± �b(r~1)�a(r~2)

⌘
. (1.1)

For fermionic particles, the exchange must be antisymmetric (so we use the � of the

±), and bosons follow symmetric exchange (so the wavefunction is described with the

+). The exchange interaction forces spins to either align or anti-align depending on

the sign of an exchange constant, J . Quantum mechanically, we describe this e↵ect

using the Heisenberg Hamiltonian,

H = �2
X

i>j

Ji,jS
~
i · S~ j. (1.2)

Here the Heisenberg Hamiltonian is generalized for N particles in a solid. It is worth

noting that the Heisenberg Hamiltonian does not explain e↵ects that emerge due to

spin orbit interactions, so an additional contribution must be included to describe

this behaviour. An important property of magnetic systems that is not accounted

for by the Heisenberg Hamiltonian is magnetocrystalline anisotropy, which is largely

treated phenomenologically within the continuum approximation, though first prin-

ciple calculations do exist [7].
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1.1.4 Magnetic Ordering

Figure 1.1: Three common examples of magnetic ordering at low temperature. The
leftmost panel is a microscopic example of spin ordering in a ferromagnet. The magni-
tude of the volume average of each spin’s magnetic moment gives the saturation mag-
netization. The centre panel shows antiferromagnetic order. Here the anti-alignment
of magnetic moments produces a vanishing volume average magnetization. The right
most panel shows ferrimagnetic ordering. A ferrimagnet has nonzero volume average
magnetization despite the antiferromagnetic spin order.

The exchange constant, J , presented in equation 1.2 plays a significant role in

spin ordering, by selecting a particular sign of J we observe dramatic di↵erences in

magnetic ordering. We will consider a few examples of J . Let us begin with a positive

exchange constant (J > 0). We find that each spin is aligned with its neighbours,

which we call ferromagnetic ordering (leftmost panel of Figure 1.1). In this case,

the net magnetization throughout the volume of the sample is nonzero. A negative

exchange constant (J < 0) gives rise to anti-aligned neighbouring spins, known as

antiferromagnetic ordering (centre panel of Figure 1.1). It is convenient to consider

antiferromagnetism as two equal and oppositely oriented ferromagnetically ordered

sublattices. An example is given in Figure 1.1 where the sublattices are colour-coded.

The magnitude of the volume average of magnetic moment results in a vanishing

contribution to the net magnetization.
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1.1.5 Ferrimagnetism and Yttrium Iron Garnet

Figure 1.2: Plots for consideration of cubic magnetocrystalline anisotropy of YIG.
The above plots were created for K1,c = �620 J/m3 and K2,c = �5 J/m3. Panel a)
and b) show the cubic anisotropy energy density surface. Panel b) in particular shows
a cross section of the energy density surface that is plotted against polar angle � in
panel c). The first order derivative of the energy density with respect to polar angle
is shown in panel d).

Ferromagnetism and antiferromagnetism are not the only kinds of magnetic order-

ing that are possible. For the purpose of this thesis, we will be especially interested in

ferrimagnetic ordering, where two oppositely magnetized sublattices are present (as

in an antiferromagnet) however the average magnetization of each sublattice is not

equal. Therefore the combination of the two sublattices has a nonzero average mag-

netization despite antiferromagnetic microscopic ordering. Ferrimagnetic ordering is

illustrated in the rightmost panel of Figure 1.1. The nonzero average magnetization

could be due to a smaller number of magnetic atoms on one of the two sublattices,

or simply the atoms on one lattice could contain a di↵erent magnetic moment from
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those on its antialigned counterpart. We can treat a ferrimagnet like a ‘soft ferromag-

net’; a material or structure that is ferromagnetically soft is similar to a ferromagnet,

but has a relatively low anisotropy allowing the material to easily demagnetize. We

may compare this to a typical ferromagnet like Neodymium Iron Boron (NdFeB),

which is a material frequently used to create exceptionally strong permanent magnet.

Permanent magnets harbour large anisotropy and as a result, are very di�cult to de-

magnetize. This is in stark contrast with a soft ferromagnet that demagnetizes easily

due to its relatively small anisotropy constants. The magnitude of the anisotropy is

given by anisotropy constants K, that have dimension of J/m3. A notable example

of a ferrimagnet that is often treated as a soft ferromagnet is the ferrite insulator,

yttrium iron garnet (Y3Fe5O12, commonly referred to as YIG). YIG has a weak cubic

magnetocrystalline anisotropy that hosts 4 easy axes of magnetization, and 3 hard

axes since it has negative anisotropy constants K1,c and K2,c. It is useful to con-

sider anisotropies in terms of the anisotropy energy density, "anisotropy expressed as an

expansion of magnetization directions in spherical coordinates

"anisotropy =K1,c

�
sin4(✓) cos2(�) sin2(�) + cos2(✓) sin2(✓)

�

+K2,c

�
sin4(✓) cos2(✓) sin2(�) cos2(�)

�
.

(1.3)

We have assumed the usual spherical coordinate convention, so ✓ and � are the

azimuthal and polar angles respectively. The energy density surface show in Figure

1.2 gives us useful insight into the anisotropic behaviour of YIG. Panel a) and b) show

the energy density surface. The lobes along the x, y, and z directions correspond to

‘hard’ axes, while surface minima, found along the diagonals, correspond to ‘easy’

axes of magnetization. To magnetize along a hard axis, a large field must be applied

since there is a significant anisotropic energy. The easy axis will preferentially be

magnetized at lower field strength. A cross section of the surface is shown in panel

b) of Figure 1.2, and plotted against polar angle in panel c). We will see in due time

that the derivative of the anisotropy energy with angle represents the cross-product

torque so the first order derivative of energy with respect to polar angle is presented
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in panel d). We see that the torque goes to zero at energy extrema. Naturally, we

may consider the use of the torque as a probe of the magnetic energy density.

In addition to it’s ideal soft-ferromagnetic behaviour, YIG has impressively low

damping and, as such, a reasonably high spin resonant quality factor, Q. In 1957,

Geller and Gilleo synthesized single-crystal YIG for the first time [8], paving the way

for studies on high purity YIG samples. Low damping, coupled with availability of

single crystal YIG samples make it an ideal material for studying spin dynamics and

magneto-optics.

1.2 Manifestations of Magnetic Torque

For the purposes of this thesis, we should begin with a distinction between two kinds

of magnetic torque. The first kind of torque is the earliest observed torque, that is

the ‘compass-needle’ or cross product torque. The second kind of torque that we

will discuss is the Einstein-de Haas (EdH) torque, which is a direct result of angular

momentum conservation within a magnetic system. In the remainder of this section,

I will present each torque’s distinct origin, and give a history of notable experimental

results.

1.2.1 Cross-Product Torque

Cross product torque arises when the magnetization directionm~ is not along the same

direction as a magnetostatic field, H~ . Contributions to H~ may be due to anisotropy,

demagnetizing field, and externally applied field. The magnetic torque is written in

the recognizable form ⌧~ = µ0V m~ ⇥H~ where µ0 is the vacuum permeability. Figure 1.3

shows a way in which an AC cross-product torque can be applied along the y-axis of

a cylindrical magnet. In this case, we assume that the magnetization of the cylinder

is mostly within the plane due to the influence of demagnetizing fields.

The cross-product torque can also be represented as the derivative of the magnetic

energy density, ", with respect to the angular deviation of the magnetic moment, ✓

8



Figure 1.3: A diagram showing the directions that fields should be applied to induce
a torque along the y-axis. A DC field is applied to magnetize the cylinder in the
positive x direction, an RF driving field is applied along the z axis so the resulting
torque is along y.

(for a derivation of this equivalence, see Appendix A). We find

⌧ = �V
d"

d✓
, (1.4)

where V is the volume of the magnet. Consider the simplest case of a sphere of

magnetically-isotropic material, which therefore harbours no contribution to anisotropy.

When we apply a magnetic field to the sphere, the energy is given entirely by the Zee-

man energy density, "Z , which describes the interaction between the magnetization

(M~ = m~

V
) and a magnetic field H~

"Z = �µ0M
~ ·H~ (1.5)

Since there is no external source of anisotropy, the angle between m~ and H~ is small,

therefore in the case where there is no anisotropy, no torque is produced. This

places the development of torque entirely upon intrinsic anisotropies, like that of

magnetocrystalline nature, or anisotropy introduced by magnetic sample geometry.

Since there is no contribution to torque from the Zeeman term, the measurement of

cross-product torque is an extremely precise way to understand a material’s magnetic

anisotropy. Of particular importance for this thesis, is the AC torque which is given
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by the second order di↵erential with respect to angle ✓

⌧
AC = �V

d
2
"

d✓2

d�

dH

��H~
AC�� (1.6)

where � is the angle created between the DC field, H~
DC

, and the modulated, AC

field (I will occasionally refer to this as the dither field), H~
AC

, combined with the

DC field H~
AC

+ H~
DC

. Using the usual cross product relationship we find sin(�) =���
H~

AC
+H~

DC
�
⇥H~

DC
��

��
H~

AC
+H~

DC
����

H~
DC
�� . For a su�ciently small AC field compared to the DC field, we

may use the small angle approximation sin(�) ⇠ �. Once again, figure 1.3 shows

how this kind of torque can be generated along the y-axis since the driving field

draws the magnetization out of the plane of the cylinder. The large curvature of the

energy density surface due to the demagnetizing energy term results in a cross-product

torque.

1.2.2 Einstein-de Haas Torque

Figure 1.4: An individual magnetic moment, m~ , with angular momentum L~ , gener-
ated by an orbiting electron in the presence of an externally applied field H~ ext. Panel
a) shows the field pointing towards the top of the page, the current in the loop is ap-
plied in the clockwise direction to create a magnetic moment that also points towards
the top of the page. Additionally, the angular momentum generated by the orbital
motion is aligned with the magnetic moment. In panel b) the field is reversed, and
crucially so is the direction of rotation. Panel c) shows how an EdH torque can be
generated in a thin cylindrical ferromagnet.

The second kind of magnetic torque we will discuss is the Einstein-de Haas (EdH)

torque. Consider, as we did in Section 1.1, Ampère’s idea of a molecular current loop.
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In this case, the orbiting electron can be thought of as a current of a single elementary

charge which generates a magnetic moment. We can obtain the relationship between

the magnetic moment, m~ , and angular momentum L~ simply in this toy model. For

an orbital radius a, the current is given by that of a current loop I = e|v~|
2⇡a

. Since

the e↵ective dipole moment is m~ = IA~

c
, where A~ is the vector area bounded by the

electron’s orbit and L~ = ma(�Î ⇥ r̂) for a current and radial unit vectors, Î and r̂,

m~ =
I⇡a

2

c
(Î ⇥ r̂) =

�e

2mc
L~ . (1.7)

Therefore, the magnetic moment is along the same axis as L~ and the two quantities

are related through fundamental constants of the electron. If a field is applied to the

current loop, the magnetic moment will align with the field, by subsequently reversing

the field direction, the moment and angular momentum will follow. The aforemen-

tioned process is illustrated in Figure 1.4. The crucial information in this case is the

direction of the magnetic moment in the presence of an external magnetic field. For a

moment pointing towards the top of the page, an electron must orbit CW, if we then

change the field direction, the electron must orbit CCW to create a magnetic moment

pointing towards the bottom of the page. Quantum mechanics tells us that the e↵ect

of magnetic moment is twofold in an electron-nucleus system: there is the orbital

angular momentum, and the electron has its own magnetic moment that is generated

by its intrinsic spin angular momentum. Both orbital angular momentum (L~ ), and

electronic angular momentum (S~ ) will contribute to the total angular momentum

(J~ = L~ + S~ ) expended in the process of switching the direction of the applied field.

If we now consider the macroscopic example of a ferromagnetic cylinder, which has

many magnetic moments that contribute to it’s total magnetization. Consider the

application of a field along the long axis of the cylinder, we can imagine the magnetic

dipole moments aligning with the field. If then, the field direction is reversed, the mo-

ments will rotate with the field, the spins now take on a di↵erent angular momentum

value, and by conservation of angular momentum, will contribute angular momentum
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to the ferromagnet. Conservation of angular momentum necessarily rotates the mag-

netic sample to account for this change in field direction. We thus relate the resulting

torque about an axis i, ⌧EdH
i

, to the angular momentum Ji by observing the time rate

of change of the angular momentum

⌧
EdH

i
= �dJi

dt
. (1.8)

This e↵ect of rotation was predicted by O.W. Richardson in 1908 [9], however the

namesake of the e↵ect is attributed to the first two physicists to successfully observe

the e↵ect experimentally: Albert Einstein and Wander Johannes de Haas [3]. A pri-

mary goal of EdH experiments is to measure the magnetomechanical ratio g
0, which

gives the ratio of magnetic moment to angular momentum. Early EdH measurements

yielded a notable disagreement in the calculated value of g0. At the time of the first

EdH experiment, it was not known that the electron had it’s own intrinsic spin an-

gular momentum that contributed to the total angular momentum in Equation 1.8.

A fascinating historical account of EdH experiments is given in chapter 2 of Peter

Galison’s book ‘How Experiments End’ [10]. Experimental consensus was eventually

reached sometime in the mid twentieth century owing to experiments by Sucksmith,

Barnett, and Scott [11–13], and theoretical investigations disentangling the gyromag-

netic ratio, g, from the magnetomechanical factor, g0, by Charles Kittel [14]. In his

paper, Kittel expresses

g
0 =

2me

e

�m

�J
=

2me

e

�morbital +�mspin

�L+�S
. (1.9)

This definition of g0 is compared to the g-factor, g, which does not depend on spin

orbit angular momentum

g =
2me

e

�morbital +�mspin

�S
. (1.10)

This indicates that the magnetomechanical ratio, g
0, is smaller than the g-factor,

g, since the total angular momentum adds to the denominator of g0. Experimental

results have historically shown g
0
< g [13, 14].
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To this day, Einstein-de Haas experiments are an important way to understand

consequences of angular momentum conservation in magnetic systems. The mecha-

nism by which angular momentum is transferred from electrons to the lattice is still

not a well-understood process and EdH experiments present a natural way to study

angular momentum transfer. New avenues of experimental methods such as cavity

opto-mechanics, nanofabrication techniques, and the broad availability of RF instru-

mentation all serve as a host of new tools that are extremely useful for exploring the

EdH e↵ect, as we will see in subsequent chapters.

A trend in modern EdH experiments is the miniaturization of torque magnetome-

ters. This miniaturization does two things. First, smaller mechanical structures

have higher frequency resonant modes, therefore torques must be applied at higher

frequencies. As we can tell from equation 1.8, if we sinusoidally vary the direction

of magnetic moments, the torque should exhibit a linear scaling of magnitude with

frequency. Second, miniaturization brings the magnetic samples into the regime of

micromagnetics (to be discussed further in Section 1.4).

1.3 Torque Magnetometry

We have so far encountered one example of torque magnetometry in Section 1.1: the

compass. To reiterate, magnetometers are devices that measure one or more compo-

nents of a magnetic field or a magnetic moment. The response of a torque magnetome-

ter to a magnetic field, is a mechanical torque. In Section 1.2 we identified that torque

magnetometry is an extremely useful tool for understanding magnetic anisotropies,

and can be used to study angular momentum conservation in magnetic systems. Early

examples of magnetic torque magnetometers were primarily DC magnetometers. A

wealth of examples of early torque magnetometers, discussed in Williams’ review of

torque magnetometer applications [17], were used for measurement of anisotropy en-

ergies. This sentiment hearkens back to Figure 1.2, wherein the cross-product torque

(produced by the angle variation with anisotropy energy density) could give essential
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Figure 1.5: Two examples of torque magnetometers. Panel a) represents a traditional
DC torque magnetometer where the sample is positioned along the torsion arm, and
by applying external fields at di↵erent angles, the torque is nulled. Panel b) represents
the deceptively simple EdH experimental schematic. A ferromagnetic rod is hung
from a torsion wire and surrounded by a coil. The application of an alternating field
changes the magnetization direction of the rod, thus inducing a rotation. Panel a)
is used with permission from Cullity and Graham’s text, Introduction to Magnetic
Materials [15] and panel b) is used with permission from Magnetism in Condensed
Matter by Stephen Blundell [16].

information about the location of hard or easy axes of magnetization. Measurements

of DC torque on magnetic samples were much more accurate than measurements of

magnetization, and it was adopted by the field quickly. An example of the DC torque

magnetometer is shown in panel a) of Figure 1.5. Typical operation of a DC torque

magnetometer consisted of applying a field which rotated the sample, then applying

an opposing mechanical torque to null the e↵ect of the magnetic torque.

Einstein and de Haas, in their 1915 investigation of rotation by magnetization, cre-

ated an AC torque magnetometer since EdH torques are an exclusively time-varying
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e↵ect. A simplified example of an EdH apparatus is shown in panel b) of Figure

1.5. A ferromagnetic rod is suspended from a torsion fibre, and a coil is wrapped

around. By running an alternating current through the coil, the magnetization of the

rod is modulated, as seen in Section 1.2.2, this induces a mechanical rotation of the

ferromagnet. The magnetometer used by Einstein and de-Haas operated at low fre-

quency (49 Hz), partly due to the size of the sample of iron they were studying. This,

as alluded to in subsection 1.2.2, means the EdH torque would be extremely small

compared to cross-product torques. Subsequent measurements of the EdH e↵ect in

the first half of the 20th century were also performed at low frequency

Early EdH experiments were notoriously di�cult to perform since there were a host

of disturbing factors that interfered with experimental results. Most notably was the

measurement of g0. During the first half of the twentieth century, there was consider-

able debate as to whether g0 should be close to 2, or close to unity. One of the reasons

there is such a spread in experimental results could be described by the admixture

of cross-product and EdH torques. As we will see, phase sensitive measurements of

these torques are a smoking gun owing to the 90� phase shift introduced by equation

1.8. In order to disentangle these e↵ects, later experiments went through great e↵ort

to eliminate sources of uncertainty [13] and g
0 was found to be close to 2 for most

materials. A 1949 paper written by Charles Kittel [14] gives the relationship between

the magnetomechanical ratio, and the spectroscopic splitting factor, g, 2�g
0 ⇡ g�2.

This is a useful relation since we can predict g0 for a material if we know g, which in

general is more widely studied.

Silicon micromachining has paved the way forward for development of torque sen-

sors that enable study for a broad host of applications [18]. Quite naturally, mi-

croscopic torsional resonators fit into studies of magnetism since the spin angular

momentum is intimately related to magnetic materials. Adoption of micromachined

torsional resonators for magnetometry grew as availablity to microfabrication facili-

ties improved [19–22]. The first micromechanical EdH experiment was performed by
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T.M. Wallis, J.M. Moreland, and P. Kabos at NIST [23]. The resonator frequency was

13 kHz, several orders of magnitude larger than foundational EdH experiments, and

report a magnetomechanical ratio g
0 = 1.83± 0.10 for permalloy (Ni80Fe20). Chapter

2 will describe our e↵orts to the further miniaturize the EdH experiment.

1.4 Micromagnetism

The atomistic model of magnetism, while explaining quantum mechanics’ role in

magnetism, is unable to explain a swath of magnetic behaviour since the Heisenberg

Hamiltonian does not account for spin-orbital e↵ects, like spin-phonon interactions,

that otherwise could give rise to magnetocrystalline anisotropy and spin-lattice re-

laxation. William Fuller Brown, Jr. published the theory of micromagnetics in his

1963 book [24], which introduced a phenomenological method for studying magnetic

materials. Brown Jr.’s assumption was, for a magnetic specimen that is large enough,

the continuum approximation can be introduced, thus neglecting underlying atomic

structure and treating interactions classically. In this classical framework, the mag-

netostatic e↵ects of the magnet can be considered as energy density contributions to

the total energy density of the system. Generally speaking, micromagnetism deals

with the specific range of magnetic geometries wherein unpredictable domain struc-

ture does not form. For the purposes of our discussion, complicated domain structure

does not form since our magnetic samples are su�ciently spatially confined. Even

though the domain structure is less elaborate than what is found in larger magnetic

samples, micromagnetic analysis is nevertheless complicated, with early micromag-

netic theory relying on generalizations and simplified modelling. Today, micromag-

netism can be studied in the lab thanks to nanofabrication, and thin film deposition;

with comparison to experiment made via computational techniques of energy density

minimization.
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1.4.1 The Landau-Lifshitz-Gilbert Equation

The success of micromagnetism can be expanded on further by introducing dynamical

properties of ferromagnets. Dynamics in magnets, commonly known as spin dynam-

ics, is an extremely important subject since widely studied magnetic behaviour, such

as spin resonance, cannot be captured without an equation that governs time depen-

dent evolution of magnetic dipoles within a magnetic system. To study dynamics

of magnetization, we introduce the magnetization equation of motion: the Landau-

Lifshitz-Gilbert (LLG) equation. The LLG equation has a form similar to that of a

damped oscillator, the time rate of change of magnetization is equal to two terms, a

precession term and a damping term. The equation is as follows

dM~

dt
= ��M~ ⇥H~ e↵ +

↵

Ms

M~ ⇥ dM~

dt
, (1.11)

where the first term on the right hand side of the equation is the precession term

and the second is the damping term; � is the gyromagnetic ratio, H~ e↵ is the e↵ective

field, ↵ is the Gilbert damping parameter (introduced in 1954, with an addendum

published in 2004 [25, 26]), and Ms is the saturation magnetization. An intuitively

useful way to present the above equation is by taking a cross product of M~ on both

sides to find

M~ ⇥ dM~

dt
= ��M~ ⇥ (M~ ⇥H~ ) + ↵MS

dM~

dt
. (1.12)

We may rearrange Equation 1.11 and substitute Equation 1.12 to the damping term

such that we may equivalently write

dM~

dt
=

��
1 + ↵2

M~ ⇥H~ e↵ �
↵�

Ms(1 + ↵2)
M~ ⇥ (M~ ⇥H~ e↵). (1.13)

Equation 1.13 suggests that the precession term is perpendicular to the magnetic

moment, and the damping term is perpendicular to both the moment and precession

term. For a three dimensional magnet, the LLG equation is a system of three coupled

di↵erential equations in Cartesian coordinates. If we convert the LLG equation to

spherical coordinates and assume that the magnitude of magnetization is unchanging
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for all times (Ms =
p

M2
x
+M2

y
+M2

z
) we may write the LLG equation as two coupled

di↵erential equations. We utilize the common substitution of the e↵ective field for

the functional derivative of the energy density with respect to the magnetization,

H~ e↵ = �E

�M~
. These substitutions lead us to the following two coupled partial di↵erential

equations
dM✓

dt
= ��Ms

�"

�M�

� ↵
dM�

dt

dM�

dt
= ��Ms

�"

�M✓

+ ↵
M�

dt

(1.14)

Where ✓ and � are the azimuthal and polar angles respectively. The above system

of equations can be further simplified by using the Jacobian to exchange the mag-

netization di↵erentials with angular di↵erentials. We are thus left with the coupled

di↵erential equations

d✓

dt
sin(✓) = � �

Ms

@"

@�
� ↵

d�

dt
sin2(✓)

d�

dt
sin(✓) =

�

Ms

@"

@✓
+ ↵

d✓

dt

(1.15)

Further simplifying, by inverting the matrix equation, we arrive at a form of di↵er-

ential equation wherein only one derivative of ✓ or � is included

d✓

dt
=

��
Ms(1 + ↵2)

⇣ 1

sin(✓)

@"

@�
+ ↵

@"

@✓

⌘

d�

dt
=

�

Ms(1 + ↵2)

⇣
↵

sin2(✓)

@"

@�
� 1

sin(✓)

@"

@✓

⌘ (1.16)

By solving the above equation, we can obtain the behaviour of the magnetization

over time.

A key feature of micromagnetism is the ability to predict the influence of vari-

ous energy contributions on measurements of ferromagnets. Equation 1.16 explicitly

depends on the energy density, which can be broken down into several energy contri-

butions. For the purpose of our discussion, we introduce the following energy density

terms: the anisotropy energy density "a, the demagnetizing energy density, "d, clas-

sical exchange energy density "e and the Zeeman energy density, "Z. The anisotropy

energy density can be dictated by magnetocrystalline anisotropy energy density (an
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example of cubic anisotropy was described in Section 1.1.5), or induced anisotropy

due to e↵ects such as exchange bias [27]. As was the case for Equation 1.3, the magne-

tocrystalline anisotropy energy density is typically written in the form of trigonomet-

ric terms. The demagnetizing energy density is also sometimes known as the shape

anisotropy, or, the contribution to the total energy density of interacting magnetic

dipoles. This term plays a significant role in formation of magnetic spin textures

which we will describe in Section 1.4.2, and is generally the most computationally

expensive task that must be undertaken when solving problems in micromagnetism.

The demagnetizing energy density is defined by the equation

"d = �1

2
µ0H
~

d ·M~ (1.17)

where H~ d is the demagnetizing field. The demagnetizing energy density depends

uniquely on the magnetic sample geometry. Often times magnetic demagnetizing

factors, N , are calculated and can be included as a contribution to an e↵ective field

given by the relation

H~ = H~ ext �H~ d = H~ ext �NM~ . (1.18)

The demagnetizing factor can be calculated by solving the di↵erential equation H~ =

�rU where U is the magnetostatic potential. Several examples exist for analytic

solutions to this equation for the especially relavent case of a cylinder and ellipsoid

[28, 29]. We can also study the classical exchange energy density, which is given by

"e = A

✓
rM~ (r~)

MS

◆2

, (1.19)

where A is the material dependent exchange sti↵ness. A crucial quality of the ex-

change energy density, is that it becomes large in regions where the gradient of M~ is

large. Finally, the Zeeman energy is the energy of interaction between magnetization

and externally applied field as shown in Equation 1.5.
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Figure 1.6: Simulation output from macrospin simulation of an isotropic sphere with
a uniaxial anisotropy axis along the x axis.

The Macrospin Model

Our mathematical rearrangement of the LLG equation permits integration of the sys-

tem of coupled di↵erential equations 1.16 using python. The solution to this equation

gives the magnetization dynamics and magnetic torque as they evolve in time. In the

simple case where we introduce a priori calculated demagnetizing factors to assume

shape anisotropy. The solution to this equation thus excludes direct calculation of

dipolar influences on neighboring spins, we call this model a ‘macrospin’ model, since

we are treating the bulk system as a classical, macroscopic, spin.

From the solutions to equation 1.16 we can represent the magnetization components

by using the spherical representation of the Cartesian coordinates. This allows for

the simple calculation of the cross-product torque. Figure 1.6 shows the solution to
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the macrospin model for an isotropic sphere with no intrinsic anisotropy. Initially, the

magnetization is along the x direction, and a static magnetic field is applied along y.

The magnetization direction rotates, all the while precessing (indicated by oscillatory

behaviour), and eventually comes to rest along the field direction after about 110

ns. In panel b), the cross-product torque is shown. During the precession, the cross

product torque about the x and z directions is nonzero. Once the e↵ects of precession

have been damped, there is zero torque along all axes, as we predicted in Section 1.2.

Solving the LLG equation to the time where the e↵ects of precession are no longer

contributing to torques signifies the equilibrium state of the magnet.

1.4.2 Case Studies of Spin Texture: The Vortex and Quasi-
uniform State

Figure 1.7: Results of micromagnetic simulations in the low and high field regime.
The colour represents the angle with which the spins are pointing in the plane. A
grayscale indicates the direction of spins out of the plane. Panel (a) shows the highly
demagnetized vortex state. The core of the vortex is notably white indicating an
out-of-plane magnetization. Panel (b) shows a quasi-uniform spin texture where an
external field is applied towards the right hand side of the page. Slight changes in
colour and spin direction can be seen close to the edges. These regions are known as
closure domains.

Progress in micromagnetism has been greatly accelerated by powerful computa-
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tional devices allowing for rapid calculation of systems with ever growing complexity.

Calculating the demagnetizing energy, for example, is a particularly computationally

expensive task, however one of the beautiful aspects of micromagnetic simulations

software is that demagnetizing terms do not need to be known a priori. It is con-

venient to use geometry provided by electron micrograph, or deposition data, rather

than make an analytical calculation for the demagnetizing factors. Today, micro-

magnetics is commonly performed using finite element model generalizations of the

macrospin model. Some examples of notable simulation packages is the CPU-run sim-

ulation software, OOMMF [30] and the extremely robust, GPU-run software mumax3

[31]. Parallel computing, enabled by graphical processors, vastly accelerates the al-

ready complicated calculations made in micromagnetic simulations and can out-pace

even the most powerful CPUs currently available. Since OOMMF does not utilize

parallel computing, it tends to be slower so the simulations presented within this

thesis will be run through mumax3.

Importantly, micromagnetism introduces the concept of spin texture. Two partic-

ular micromagnetic phases will be important for our purposes: the vortex, and the

quasiuniform spin textures. The vortex spin texture forms in low fields and largely

acts as a demagnetized phase of the ferromagnet. A vortex state is shown in panel (a)

of figure 1.7. In the absence of large external field, dipolar interactions of magnetic

elements will produce a spin texture that minimizes the field that exists outside of the

micromagnet. Around the edges of the magnet, in-plane spin direction is favoured

due to demagnetizing energy. In the centre of the magnetic disk, a vortex core forms.

The core distinctly exhibits out-of-plane magnetization and a large magnetization

gradient promotes large exchange energy density in the core region. This large en-

ergy density enhances the core’s interactions with its surroundings. Interaction of a

vortex core with defects is especially noteworthy [32].

In high fields the vortex structure annihilates, giving way to the quasi-uniform

spin texture which can be seen in panel (b) of Figure 1.7. The field is applied in the
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positive x direction, which in the present case is to the right hand side of the page.

The magnetization is saturated (Mx ⇠ MS), and several small regions form where

spins are not aligned with the applied field. These regions are created due to dipolar

interactions and are called closure domains.

Micromagnetism is useful for studies of the EdH e↵ect since micromagnetic simula-

tions can be used to verify relatively uncomplicated spin textures. The spin textures

that will be of primary importance here are the micromagnetic vortex state, and the

quasi-uniform magnetization state. Keeping with historical tradition, we present our

own calculation of g0. The calculation of the magnetomechanical ratio hinges on re-

liability of micromagnetism, simultaneous measurements of EdH and cross-product

torques, and the scaling of torque with frequency as we will see in chapter 2. We

expect the spin dynamics predicted by the LLG equation, to be much faster than the

mechanical dynamics in the experiment described here, so we will numerically solve

the LLG equation out to some distant time where all behaviour of precession has

been dominated by the damping. In order to simulate an AC magnetic torque along

the y axis, we will have one step wherein the DC field applied along the x direction,

then several steps where a dither field along the z direction. A linear fit is applied to

the dither and the AC torque can be calculated. Additionally, we calculate the EdH

torque along y in a similar way by applying a dither field step along the y, and using

the slope of the magnetization variation with dither field we find the EdH torque.

We will see in the following chapter that, in EdH experiments, the vortex core and

closure domains become extremely sensitive probes of the surface of magnets. This

behaviour is mediated by the unique way in which EdH torques are produced.
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Chapter 2

The Einstein-de Haas E↵ect at
Radio Frequencies

The Einstein-de Haas (EdH) e↵ect highlights a deep connection between magnetism

and angular momentum. Torque generated as a consequence of the EdH e↵ect is a

direct result of the time rate of change of angular momentum in a magnetic system,

ultimately enabled by contribution from spin and spin-orbit angular momentum [14],

as described in section 1.2.2. The purpose behind many EdH experiments has been the

calculation of the magnetomechanical ratio, g0, which represents the ratio of magnetic

moment to total angular momentum.

In this chapter, I will begin by introducing a trend in EdH experiments; that is

the miniaturization of EdH experiments. I will provide motivation for continuing

this trend of miniaturization. A discussion of the experimental apparatus will follow:

first I describe the micromechanical torsional resonator and a method of thermome-

chanical calibration for torsional resonators. Next, I present the design of the RF

magnetic field coils and subsequent field phase measurements. Finally a description

of optical interferometry is presented. In Section 2.3, I present experimental results

with observations of simultaneous measurements of cross-product and EdH torques,

calculation of g0, extensions of EdH experiments to higher fields, and comparison of

experimental results with micromagnetic simulations. The results of the forthcoming

discussion have been published recently in Physical Review B [33], including Figures
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2.5, 2.6, 2.7, 2.8, 2.10, 2.11, 2.12, 2.13, 2.14, and 2.15. I was responsible for the de-

sign and simulations of the driving coils, COMSOL simulation analysis of resonator

degree of torsionality (DoT), code for the toy model of coupled translational and

torsional mode, thermomechanical calibration, analysis of data, writing and analysis

of some mumax3 simulations, as well as figure creation. K. Mori was responsible for

the data collection and assistance with driving coil design and creation. J. E. Losby

constructed the apparatus, and manufactured the nanomechanical resonators. D. M.

Jenson assisted with creation of Figures and mumax3 simulations. M. Belov created

the YIG disk via focused ion beam milling and placed it on the resonator. M. R.

Freeman was the supervisory author and was involved with concept formation and

manuscript composition.

2.1 Miniaturization of Einstein-de Haas experiments

More than a century has passed since the first measurement of the EdH e↵ect [3].

Following this landmark experiment many more measurements of this e↵ect have

been performed [13, 23, 34]. In this section I would like to begin by introducing

a particularly interesting trend in EdH measurements: the miniaturization of the

experiment. As described in Chapter 1 the EdH e↵ect is a consequence of angular

momentum conservation in magnets which translates to a directly observable torque.

This torque, ⌧EdH
i

, is defined by the time rate of change of angular momentum, Ji,

rotating about some axis, i

⌧
EdH

i
= �dJi

dt
. (2.1)

If the torque is driven by a sinusoidally varying magnetic field to modulate a compo-

nent of magnetic moment at frequency !, with amplitude H
AC

i
, the angular momen-

tum is modulated at the frequency of the varying magnetic field, Ji / H
AC

i
sin(!t).

The proportionality to amplitude of the driving field implies a linear di↵erential sus-
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ceptibility. Therefore we obtain the following proportionality

⌧
EdH

i
/ �!HAC

i
cos(!t). (2.2)

This proportionality reveals a linear dependence between the magnitude and fre-

quency of EdH torque. Additionally, it indicates that the EdH torque is out-of-phase

with the driving field by 90�. This phase di↵erence is in contrast with cross-product

torques, which are in-phase with the driving field. The relationship between torque

magnitude and frequency highlights a significant motivation for miniaturizing EdH

experiments: higher frequencies produce larger magnitude EdH torques.

The resonator used in the original experiment by Einstein and de Haas was a cylin-

der of iron hung from a quartz fibre. The 1915 experiment featured a driving field

frequency of 49 Hz. The first major step in EdH e↵ect miniaturization was demon-

strated in 2006 by Wallis et al. [23] where g
0 was measured for a permalloy thin

film deposited on a microscale cantilever. Wallis’ experiment featured a significant

increase in frequency compared to Einstein’s work by several orders of magnitude

from Einstein’s 49 Hz measurement to Wallis’ measurement at 13 kHz: the high au-

dio frequency range. The present work miniaturized the Einstein-de Haas experiment

even further. The nanoscale torsional resonators we developed brought the fundamen-

tal torsional eigenfrequency to the radio frequency range at several MHz [33]. The

frequency scaling of EdH torques indicates that the original work of Einstein and de

Haas feature torque magnitudes that are as much as a million times smaller than those

reported for nanoscale objects. Relative to the corresponding cross-product torques,

the work by Wallis features EdH torques that are, relatively, a thousand times smaller

than those reported in this thesis. The magnitude of EdH torque compared to con-

ventional cross-product torques is of particular importance for this experiment. We

know from Chapter 1 that the cross-product torque depends linearly on DC bias field

strength and is independent of driving frequency whereas EdH torques are linearly

dependent on driving field frequency. This tells us that extension of cross-product
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torque measurements to higher frequencies will not enhance these torque magnitudes.

A further discussion of why the comparison of these two torques is essential will be

presented in Section 2.3.

2.2 Apparatus

The apparatus that is used for simultaneous measurement of cross-product and EdH

torques at radio frequencies consists of several components: the nanoscale torsional

resonator, the driving field coil geometry, and the optical interferometer that is used

to detect subtle changes in displacement of the nanomechanical resonator. Subse-

quent sections will describe each of these components, and additionally cover topics

of thermomechanical calibration, and phase measurement of excitation coils.

2.2.1 Micromachined Mechanical Devices

Silicon micromachining has allowed for the continuation of EdH experiment minia-

turization, the present work features a nano-scale torsional resonator with a�xed

yttrium iron garnet (YIG) disk. The resonator was created by J. E. Losby using

nanolithography and was then transferred to a Hitachi NB5000 focused ion/electron

beam (FIB) microscope system. Here, the YIG disks were milled by M. Belov from

the YIG thin film layer deposited on a gadolinium-gallium-garnet (GGG) substrate.

The disks are approximately 2.2 µm in diameter and 0.6 µm in height. Such small

dimensions are well within the size constraints conducive to a micromagnetic vortex

ground state as discussed in Section 1.4. The sides of the disk are not perfectly or-

thogonal to the z axis because of the angle of incidence of the gallium (Ga) ions used

for milling of disks. The process of Ga ion bombardment leaves behind Ga implan-

tation and lattice damage to a depth of order 50 nm, which creates a magnetically

inactive region about the disk’s perimeter [36]. This leads us to an important step in

our analysis whereby conventional cross-product torque hysteresis loops can serve as

a sensitive indicator of active magnetic volume (see Section 2.3 for a more complete
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discussion of this method).

2.2.2 Optical Interferometry

The motion of our micromachined mechanical resonator was detected by a Fabry-

Perot interferometer. We chose an interferometer detection method since it is highly

sensitive to exceptionally small displacements of the silicon resonator paddle. The

mechanical torques that are produced in our RF EdH experiment, while of compar-

atively large magnitude due to the high frequency of the driving field, nevertheless

generate extremely small deviations in position of the resonator paddle.

Figure 2.2 shows the optical block diagram, and a visual guide for how interfero-

metric detection of resonator displacement was detected. In panel a) we can see that

Figure 2.1: Fundamental torsion mode simulated with COMSOL Multiphysics soft-
ware [35]. The asymmetry of the displacement magnitude is indicative of an admix-
ture of torsional and out-of-plane translational eigenmodes. This admixture arises
from the proximity of these two deformational modes in frequency and from asym-
metries of mass distribution about the torsion axis the sensor. Figure used with
permission from [33].
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Figure 2.2: Schematic displaying the optical circuit and principle of how optical
interferometry is used to detect small displacements of the resonator paddle. Panel
a) displays the path of the laser from the HeNe laser, to the sample chamber. Panel
b) shows the beam emerging from the objective lens as it illuminates the paddle.
Several rays are drawn showing portion of the beam that is transmitted through, and
reflected o↵ the paddle. Panel c) shows the case where the paddle has been displaced
by some torque. The transmitted beam has approximately the same path length as
in panel b), however the reflected beam travels a significantly shorter distance.

A helium-neon (HeNe) laser beam with wavelength 632.8 nm was directed through

an optical attenuator. The laser was attenuated before it encountered the device to

negate significant e↵ects of laser heating that can a↵ect mechanics and magnetic prop-
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erties of the device. A focusing lens is used to overfill the back of the objective lens.

The beamsplitter was used to reflect the return beam with signal information into

the photoreciever. The section of the beam pre-interferometer that was reflected o↵

the beamsplitter was terminated in a beam block. The photoreciever was connected

to a Zurich Instruments UHF lock-in amplifier where the signal was demodulated at

the drive frequency.

Panel b) and c) serve as visual aids in understanding the principle of interferometry.

As shown in panel b) and c), part of the incoming laser beam will be reflected o↵

of the silicon paddle, and part of the beam was transmitted. The reflected part of

the beam is similar to the signal arm of a standard interferometer since the position

of the reflective surface changes as the magnetic sample imparts a torque on the

resonator. The reference arm of this interferometer is the part of the laser beam that

was transmitted since the light reflects o↵ of the substrate below, and any motion

of the substrate will a↵ect both reference and signal arms equally. The undercut of

the resonator was judiciously designed such that its depth was close to an integer

number of HeNe laser wavelengths. This means that the space between the resonator

paddle and substrate behaves like a low-finesse Fabry-Perot cavity, further enhancing

mechanical displacement sensitivity.

2.2.3 Electronics

In order to drive the RF coils, the setup shown in figure 2.3 was used. The multichan-

nel capability of the Zurich amplifier allowed us to maintain a constant separation

between the two driving frequencies, detuning them from the mechanical resonance

by 200 Hz. The photoreceiver output was plugged into the Zurich amplifier input

and the signal containing both the torque signals was demodulated. In measure-

ments of frequency sweeps, like those shown later in figure 2.11, the two frequencies

were stepped while maintaining a constant static field and driving field amplitude.

To perform hysteresis measurements like those found in section 2.3.3, the frequency
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Figure 2.3: Electrical diagram of apparatus. We take advantage of two channels of
a Zurich UHF lock-in amplifier. The two channels are output at frequencies that
are detuned from the mechanical resonance frequency by ±200 Hz. The two outputs
are each sent through a Minicircuits LZY-22+ amplifier, and then to their respective
coils. The photoreceiver signal is sent to the input of the lock-in amplifier.

was held constant while the DC field was changed.

2.2.4 Static and Driving Field Geometry

Static Fields

The application of a static field is essential for generation of cross-product torque as

mentioned in Section 1.2. Our apparatus features two ways to apply DC magnetic

fields. For high field measurements, a 2”⇥ 2”⇥ 2” neodymium iron boron (NdFeB)

permanent magnet is supported on a stepper motor controlled translation stage. Ad-

ditionally, the NdFeB permanent magnet could be rotated to minimize the influence

of stray fields. The permanent magnet was used for high field hysteresis studies of

YIG. The low field measurements that will be described in Section 2.3.3 required care-

ful control of DC magnetic field, to achieve this, we implemented two hand-wound
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Figure 2.4: Cartoon schematic of the side and top view of the experimental apparatus.
The NdFeB magnet is used for high field hysteresis studies of the YIG disk. This
magnet was mounted on a digitally controlled linear translation stage. For finer DC
field sweeps, we implement hand-wound electromagnetic coils.

air-core electromagnet coils. An Agilent current supply was used to control the cur-

rent passing through the coils, and a 3-axis Hall probe was used to monitor DC field

strengths at a location close to the sample chip.

Driving Fields

Einstein-de Haas and cross-product torques in this experiment were applied along

the same axis, but have distinctly di↵erent origins. The EdH torque is generated by

a field along the torsion axis while cross product torques are generated by a driving

field that is out of the plane of the magnetic disk. A significant challenge that we had

to overcome was measuring both torques simultaneously. In order to avoid admixture

of torsional components, the driving field geometry is of great importance. To drive

both torques along the y axis, the EdH torque was created by a driving field along the

y axis; while the cross-product torque driving field was applied along the z direction.
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c) 

b) 

e) 

d) a) 

Figure 2.5: Panel a) shows the PEEK assembly on the vacuum stage. Panel b) and c)
show sni↵er coil orientations for measurement of relative inductive field strengths for
y and z respectively. d) and e) show COMSOL simulated field angle deviations from
the y and z directions. The white cube at the centre of the field deviation surface
plot is roughly representative of the sample size; thus confirming the uniformity of
the field over the volume of the sample. Figure used with permission from [33].

To prevent the combination of cross-product and EdH torques we must take care to

not produce an admixture of driving field, which has historically been di�cult [10].

The fields should also be highly uniform at the location of the sample to reduce e↵ects

of magnetic field gradients that could drive magnetic forces and to prevent Lorentz

forces due to stray charge on the paddle structure. In addition, the drive field ratio,

H
RF
y

HRF
z

is required for calculation of the magnetomechanical ratio, g0. For this reason, a

coil form is designed that will ensure that there are highly uniform magnetic fields at

the sample location.

The coil form was designed in Autodesk Inventor, and cut out with a CNC wood-

working mill. The material chosen for this coil form is polyether ether ketone (PEEK),

which is ideal for this application since it is vacuum compatible and electrically insu-
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lating. PEEK is also reasonably soft so it can be cut easily in a woodworking mill;

PEEK is still structurally strong enough to rigidly hold the sample chip. The coil

form (fully assembled: Figure 2.5 panels a)-c)) consists of sections that form a rectan-

gular Helmholtz-like coil, which introduces an alternating field along the y direction.

A current loop that is placed directly below the sample chip introduces the RF z field.

Both y and z RF driving coils were wound with 30-gauge insulated magnet wire. The

H
RF

y
coils are 4.7 mm wide and 4.9 mm in height, the innermost turns are 3 mm from

the sample location, and the coil stack is about 2 mm in width. The HRF

z
consists of

two turns of 3.2 mm diameter, the sample is about 0.8 mm above the top of the coils.

The ratio of the field can be found in two ways, the first is through an inductive

coupling to a coil that can be positioned in three dimensions and rotated 90� to switch

between sensing H
RF

y
and H

RF

y
. This process is shown in panels b) and c) of figure

2.5. The second method used to find the field ratio is with measurement of current

through the coils. This measurement is performed with a Tektronix CT-6 current

probe and the signal is monitored on an oscilloscope. In this case, the current is read

and the ratio of y to z currents is
I
RF
y

IRF
z

= 1.12± 0.05. The currents that are measured

here can be used as input parameters in COMSOL’s AC/DC module to calculate

H
RF

y
and H

RF

z
via finite element solution of Ampere’s law. At the sample location

the field ratio yields
H

RF

y

HRF
z

= 1.41± 0.05. (2.3)

COMSOL simulations yield field strengths across a defined simulation volume, so we

can map the uniformity of the field over the sample location. Panels d) and e) show

the angular deviation from a pure y and z field respectively; the small white cube

represents the sample location. Clearly, the region the sample inhabits is very small

compared to the gradient area and we can assume that over the torsional resonator,

the magnetic field is uniform.

Subsequent extensions of EdH experiments to smaller scales and even higher fre-

quencies (described in more detail in Chapter 3) will need to rely on magneto-optical
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measurement of current [37], a method that is accurate for driving currents at fre-

quencies in excess of tens of GHz. I would like to mention here that the ratio of field

strengths is likely the most significant contribution to uncertainty in the calculation

for g0 and can be vastly improved by magneto-optical RF field measurement.

Field Phase Measurements

We will now direct our attention to another crucially important matter, the mea-

surement of field phase. We wish to obtain a field handedness that is required for

determination of drive and field phases of the torque signals. This measurement

determines whether the Einstein-de Haas torque phase is in advance, or lags the

cross-product torque phase. This measurement can be performed through the pre-

viously described inductive measurement of relative field strength via Hall probe. A

positive DC current was passed through each field and we measured the current in-

duced by the magnetostatic field. The probe was rotated at such an angle to sense

Hz to a position where Hy was measured. The pick-up coil was rotated clockwise

and the field magnitude was measured through a Hall probe. An overall sign change

of the detected field magnitude indicates that the the field geometry is left handed.

In the case of no phase shift, then the field geometry is right handed. In the case of

this experiment the field was found to be right handed. This result has bearing on

whether or not a torque should be negative or not, an important distinction to be

made since phases play a central role in distinguishing EdH torques from conventional

cross product torques.

2.2.5 Mechanical resonances of torsional resonators and de-
gree of torsionality (DoT) calculation

COMSOL Multiphysics [35] simulations yield deformational eigenmodes and associ-

ated frequencies of nanomechanical resonators; the result of one such simulation is

shown in figure 2.1 where an admixture of in-plane rotational and out-of-plane trans-

lational behvaiour is observed. This combination of twist and flex is related to the
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Figure 2.6: A torsional eigenmode that is rotating about an axis that is not the centre
of the paddle can be thought of as an addition of a pure translational displacement,
and a purely torsional displacement.

proximity of a translational mode to the torsional mode in frequency space and the

asymmetric distribution of mass about the torsion axis generated by the mesoscopic

YIG disk. To characterize the e↵ectiveness of a mechanical eigenmode’s e↵ective sen-

sitivity to torque about a particular axis, we define the degree of torsionality (DoT,

0  DoT  1) figure of merit. A perfectly torsional motion results in DoT=1, while

a perfectly translational motion yields DoT=0. Figure 2.6 shows how one may con-

sider a rotation about an axis that is displaced from the centre of the torsion paddle,

as an admixture of purely translational and torsional modes. By using this linear

admixture, we can write the energy equation in the following way where the total

velocity v is given by the addition of torsional (rotational) velocity component, vR,

and translational velocity, vT:

ETotal =

ZZZ
⇢v

2

Total
dV =

ZZZ
⇢v

2

R
dV +

ZZZ
⇢v

2

T
dV + 2

ZZZ
⇢vRvTdV (2.4)

The above equation can be solved within COMSOL Multiphysics for rotations about

various axes, and the ratio of the calculated rotational energy to the total energy

gives the DoT (DoT= ER
Etotal

). The cross term that contains both velocity terms is

generally small compared to the other terms and can be neglected. There are several

important steps to consider when calculating the DoT for three axes of torque. For a
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f (MHz) DoTx DoTy DoTz

3.577 0.12 0.705 0.0098

Table 2.1: DoT values indicating relative susceptibility to torque drives about each
axis for the resonator shown in Figure 2.1

torque along the y direction, torsional motion will be about this axis, so vy,R = 0 at

any time. In the case of no admixture, we would expect the axis of rotation to pass

directly through the centre of the paddle as in the second term on the left hand side

of the visual equation in Figure 2.6. Therefore, to decouple translational motion from

torsional motion, a subtraction is made along the y axis that shifts the axis of rotation

from the centre of mass to the centre of the paddle. Similarly, we can perform the

same action for other axes of torque (x and z) wherein the degree of torsionality can

tell us about mechanical susceptibility to torque in any three dimensions by adjusting

the axis of rotation accordingly. The results for the DoT calculation for each axis

of torsional drive are displayed in Table 2.1. Clearly, since DoTy is the largest, the

mechanical eigenmode displayed in Figure 2.1 is most susceptible to torque applied

along the y direction. However, due to significant translational motion, DoTy 6= 1.

2.2.6 Toy Model of Coupled Torsional and Translational Modes

Experimental evidence and COMSOL simulations corroborate the frequency propin-

quity of torsional and translational resonance modes, which could lead to a coupled

mechanical motion. This coupling can be recognized as two separate mechanical mo-

tions that are simultaneously excited by a torsional drive. It is useful in this case to

consider a toy model of two coupled spring systems. A schematic of the spring system

is shown in panel a) of Figure 2.7. The system includes a driven torsion spring with

torsional spring constant , moment of inertia, I, damping constant �T, and driving

torque ⌧D. The torsion spring is coupled to a linear spring that has spring constant

k, e↵ective mass m and damping constant �L. The torsion and linear springs are
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Figure 2.7: A toy model of coupled resonances is illustrated in panel a) where a
torsional spring with spring constant  is coupled to a linear spring with spring
constant k through a third spring with spring constant K = ✏k. The displacement
from equilibrium position is represented by x1 ⇡ Re↵✓ and x2. Panel b) and c)
represent solutions to Equation 2.6 for various driven frequencies. Measurements of
displacements represent deflections of each spring due to some stimulus of a driving
torque. Figure used with permission from [33].

coupled by a third spring with spring constant K = ✏k. By utilizing similar methods

found above for DoT calculation, COMSOL simulations also may yield values for 

and I for the torsional resonator since for small angular deviations from equilibrium,

 = (2⇡fmech)
2
I = (2⇡fmech)

2

ZZZ
⇢(x, y, z)||r~||2dV (2.5)

where ⇢(x, y, z) is the mass density of the resonator and r~ is a vector in the plane of

rotation. The moment of inertia for the device shown in Figure 2.1 is I = 4.78⇥10�26

kg m2 and the torsion spring constant is  = 1.7⇥ 10�13 Nm.

We can reframe the nanomechanical torsional resonator’s motion as a system of

coupled di↵erential equations that represent the motion of our toy model spring sys-

tem
I

Re↵

d
2
x1

dt2
= �

⇣


Re↵

+KRe↵

⌘
x1 +KRe↵x2 �

�T

Re↵

dx1

dt
+ ⌧D cos(!t)

m
d
2
x2

dt2
= �(k +K)x2 � �L

dx2

dt
Kx1.

(2.6)

38



The solution to this system of coupled di↵erential equations will tell us the displace-

ment response of the resonator as a result of applying a sinusoidally varying, purely

torsional drive at a frequency !. We represent the displacement from the equilibrium

position of the torsion spring as x1, and by the small angle approximation we may

write x1 ⇡ Re↵✓; the displacement from equilibrium of the linear spring is given by x2.

The above system of second order di↵erential equations can be reduced to a system of

first order coupled di↵erential equations by a judicious change of variable wherein the

initial conditions are encoded. Here we introduce variables y1 and y2 where y1 =
dx1
dt
,

and y2 = dx2
dt
. The above system of equations becomes a system of four first order

di↵erential equations

y1 =
dx1

dt

I

Re↵

dy1

dt
= �

⇣


Re↵

+KRe↵

⌘
x1 +KRe↵x2 �

�T

Re↵

y1 + ⌧D cos(!t)

y2 =
dx2

dt

m
dy2

dt
= �(k +K)x2 � �Ly2Kx1

(2.7)

Equation 2.7 can be solved using numerical integration in python (details of this code

are presented in Appendix B). The solution finds the magnitude of displacement of

the torsional spring, x1, and coupled linear spring, x2. Reflecting experimental data,

the driving frequency is swept and solutions for each applied frequency were compiled.

The magnitude of the displacements are recorded and plotted in figure 2.7 panels b)

and c) for various coupling strengths. The case of ✏ = 0 yielded no coupling between

the driven torsion spring and linear responding spring. As the coupling increases, a

second resonance displacement emerged in x2. This mode grows in relative magnitude

until, at ✏ = 0.04, the torsional and translational motion are equivalent.

We found that a coupling parameter ✏ = 0.025 reflected the experiment well since

the torsional mode was found about 5% higher in frequency than the translational

mode. Additionally, displacement profiles found in raster scan data reflect similar

relative amplitudes of displacement when acted on by a torsional drive.
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2.2.7 Thermomechanical Torque Calibration

Figure 2.8: A squared fit to the response of an undriven thermomechanical frequency
sweep measured with a 46 Hz noise equivalent power bandwidth. The resonant fre-
quency is f0 = 2.79092± 0.00007 MHz, and the mechanical resonance quality factor
is Q = 1300± 300. Figure used with permission from [33].

So far we have used an external driving field to excite torsional mechanical reso-

nances, however measurement of driven signals does not provide a sense of the true

mechanical torque exerted on the resonator by EdH or cross-product torques. This

is a consequence of our detection technique which, converts optical power into an

AC electrical signal at the photoreceiver location, and is then input to a lock-in

amplifier. Therefore, the signal magnitude is represented in units of V. In reality,

the interferrometric modulation is a measurement of the resonator paddle displace-

ment. Conversion of the electrical signal to a value of torque in Nm can be performed

through thermomechanical calibration.

For a su�ciently low experimental background noise floor we may drive mechanical

resonances of our devices with Brownian motion. The fluctuation-dissipation theorem
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permits study of a system at its equilibrium state without imposing an external force

on the system that would otherwise drive the system out of thermal equilibrium.

When no torque is imparted upon the mechanical resonator by the magnetic specimen,

equilibrium fluctuations couple to the mechanical resonator. In other words: the

Brownian motion of atoms in the resonator acts as a broadband, phase-independent

source of mechanical excitation. Thermal excitation yields a calibration constant that

may convert a lock-in amplifier or spectrum analyzer signal into units of mechanical

torque. Thermomechanical calibration techniques have been studied in a variety of

systems from torsional resonators [38], to nanobeams [39], and a general process for

thermally driven mechanical displacements has been reported [40].

We will begin our calculation of the thermomechanical calibration constant by

writing the energy of a torsional spring. We approximate that the energy of a torsion

spring is equivalent to the energy of our torsional eigenmode

Ei,rot =
1

2

e↵

i
h✓2

i
i. (2.8)


e↵

i
is the e↵ective torsional spring constant for torsion axis i (kept arbitrary for the

purposes of this discussion), and h✓2
i
i is the average angle squared for an induced

torque along the axis i = (x, y, z). Utilizing the harmonic relation between angular

frequency, moment of inertia and the e↵ective spring constant, we can use finite

element analysis software (COMSOL) once again to obtain the parameters Ii and i

as described in 2.2.5.

The equipartition of energy is set equal to the rotational energy for some temper-

ature, T , since the broadband thermal drive favours no particular system axis,

h✓2
i
i = kbT


e↵

i

(2.9)

where kb is Boltzmann’s constant. The above yields h✓2
i
i = 23.95⇥ 10�9 rad2. Under

the assumption of small angles, we may modify the above equation to give the mean

displacement by utilizing the distance from the axis of torque to the location of inter-

ferometric detection hx2

i
i ⇠ R

2

i
h✓2

i
i. For our device Ri = 5.17 ⇥ 10�7 m which gives
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an average square displacement of hx2

i
i = 6.402⇥10�21 m2. The mechanical response

of such a thermal drive is described by a Lorentzian, from which the frequency-

dependent angular spectral density, S✓i(f), can be obtained in units of rad2/Hz for a

mechanical device with torsional eigenfrequency fi and resonance quality factor Qi

S✓i✓i(f) =
2kbTf 3

i

⇡
e↵

i
Qi

1

(f 2

i
� f

2

0
)2 + (f0fi

Qi
)2
. (2.10)

By taking the peak spectral density (Sxi is maximized for fi = f0) and multiplying

by R
2

i
we find

Sxixi =
2Qihx2

i
i

⇡f0
. (2.11)

The displacement square spectral density is Sxixi = (1.9± 0.4)⇥ 1024 m2/Hz. Using

this equation we can find the torque spectral density where a factor of Q�1

i
is included

to reflect the enhancement of the torque at mechanical resonance

S⌧i =

e↵

i

p
Sxixi

RiQi

. (2.12)

With the equations that have been presented so far, we find a torque spectral density

value of S⌧i = 0.11± 0.02 zNm/
p
Hz.

Now that the mechanical spectral density has been obtained, we must perform an

analysis to find the voltage spectral density due to our detection equipment SViVi .

This can simply be found from the square of the peak height, Vi,peak, subtracted from

the height of the noise floor, Vi,background, divided by the bandwidth of the lock-in

measurement, fBW

SViVi =
V

2

i,peak
� V

2

i,background

fBW

. (2.13)

From the peak and background of the fit shown in Figure 2.8 we find SVi = 0.110

µV/
p
Hz.

To obtain the calibration factor, C⌧i , we divide the torque spectral density by the

voltage spectral density, resulting in a conversion factor in units of Nm/V. For the

device used in the present work, we find C⌧i = 1.0±0.2 aNm/mV. A driven, calibrated

resonance is displayed in figure 2.9.
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Figure 2.9: Calibrated fit to a driven cross product torque signal. The resonant fre-
quency is 2.793452±0.000008 MHz, the quality factor, Q, of the resonance is 1930±20.
Just two standard deviations di↵erent from the value obtained in the thermomechan-
ically driven signal.

2.3 Experimental Results and Calculation of the
Magnetomechanical Ratio g

0

Now that a description of the experimental apparatus and calibration methods is

complete, we will study the results of our simultaneous measurements of EdH and

cross-product torques generated by mesoscopic YIG disks. Keeping with the historical

tradition of Einstein-de Haas torque experiments, the magnetomechanical ratio g0 was

calculated. This calculation marks the first measurement of its kind for YIG. A key

feature of this experiment is the ability to observe similar magnitudes of cross-product

and EdH torques simultaneously; this feature enables the calculation of g0 as discussed

in 2.3.3.

To calculate the magnetomechanical ratio we will take advantage of the field where

the ratio of EdH and cross-product torques is unity. Let us briefly dive into the

derivation for the calculation of g0. As we know from Section 1.3 conventional cross
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product torques are magnetic torques generated by a field, H~ , acting on a magnetic

moment, m~ . We find ⌧~m⇥B = µ0m~ ⇥H~ . Based on our mechanical geometry we are

interested in torque about the y axis. By writing the y component of torque we find

⌧
m⇥B

y
= µ0(mzH

DC

x
�mxH

RF

z
sin(!t)). (2.14)

We make substitutions for the magnetic moment terms by relating magnetic mo-

ment to magnetization and to the field using the magnetic susceptibility � (m~ =

VM~ = V �H~ ). Expanding the field term, we find H~ = H~ external + H~ demag. For a

particular coordinate of field, Hi,demag = NiHi,external, where Ni is the demagnetiza-

tion factor such that
P

i
Ni = 1. In the case of our three-dimensional mesoscopic

YIG disks, we assume two demagnetization factor terms: the radial factor, Nr, which

represents demagnetization for all directions in-plane due to cylindrical symmetry,

and the out-of-plane factor, Nz. Nr can be rewritten in terms of Nz: Nr =
1�Nz

2
. We

arrive at the following equation for the cross product torque along the y axis

⌧y =
�
�V (1�Nz)H

RF

z
sin(!t)

�
µ0H

DC

x
�

�
�V (1�Nr)H

DC

x

��
µ0H

RF

z
sin(!t)

�
, (2.15)

which is further simplified to

⌧
m⇥B

z
= �µ0(Nz �Nr)�V H

DC

x
H

RF

z
sin(!t). (2.16)

We may use a similar substitution for m to obtain the RF EdH torque. The angular

momentum along y, Jy is given in the following way

Jy =
2me

eg0
my =

2me

eg0
�V (1�Nr)H

RF

y
sin(!t). (2.17)

To find the EdH torque, we calculate the time rate of change of the angular momentum

(Equation 2.1)

⌧
EdH

y
= �dJy

dt
= �2me

eg0
�V (1�Nr)!H

RF

y
cos(!t). (2.18)

Conveniently, simultaneous measurement of EdH and cross-product torques allow

us to take the ratio of the two torques at a precise static field strength and drive
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frequency. By substituting �
0 = g

0
e

2me
and c⌧ = 1�3Nr

1�Nr
we obtain the ratio of the

torques as determined in Equations 2.16 and 2.18

⌧
m⇥B

y

⌧EdH
y

=
µ0c⌧�

0

2⇡

H
DC

x

f

H
RF

z

HRF
y

. (2.19)

As a consequence of the frequency scaling of EdH torques, we suspect that EdH

torques will be of similar magnitude to cross-product torques. It follows that in a

simultaneous measurement where the DC field was swept while the frequency was held

constant, we will find a point where the cross-product and EdH torque signals are

equivalent. At this static field strength, the ratio of EdH and cross-product torques

becomes unity, and we can recast HDC

x
as HCrossover

x

1 =
µ0c⌧�

0

2⇡

H
Crossover

x

f

H
RF

z

HRF
y

. (2.20)

By solving for g0 we arrive at

g
0 =

4⇡me

µ0ec⌧

f

HCrossover
x

H
RF

y

HRF
z

. (2.21)

The above equation contains all the necessary information required to find the mag-

netomechanical ratio g
0. In addition to the physical constants, we already have found

the relative field strength ratio in Section 2.2.4. We will see in Section 2.3.1 that c⌧

can be found by using micromagnetic simulation software and high field hysteresis

loops of cross-product torques as a sensitive probe of the magnetic volume aspect

ratio. Additionally, we will see in Section 2.3.3 that H
Crossover

x
and f are found by

way of simultaneous measurement of EdH and cross-product torque over a range of

low DC bias field.

2.3.1 Characterization of Mesoscopic YIG Disk Active Mag-
netic Volume

One of the consequences of miniaturizing Einstein-de Haas experiments on mesoscopic

YIG disks is the manifestation of a magnetically inactive layer that forms when ion

milling is used to cut disks to be mounted on torsional resonators, as described in
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Figure 2.10: Experimental (panel a) and simulated (panel b) hysteresis loops gener-
ated by the cross-product torque from the YIG disk. Two linear fits are applied to
the each hysteresis curve: one to the low field vortex regime, the other to the high
field quasi-static regime. The intersection of these curves (indicated by the dashed
line) is a sensitive probe of magnetic aspect ratio.

subsection 2.2.1. This introduces an uncertainty in the dimension of YIG disks. We

introduce a method for obtaining magnetic aspect ratios of a YIG disk through cross-

product torque hysteresis loops.

Micromagnetic demagnetizing factors are central to obtaining a value for c⌧ and,

in turn, the magnetomechanical ratio, g0. As described in Section 2.2.1, the Ga bom-

bardment of the YIG/GGG/YIG wafer, created a magnetically inactive layer due to

Ga implantation. The magnetically inactive layer introduces significant uncertainty

in the true magnetic volume and shape of the YIG, which is essential for our calcula-

tion of g0. While the shape of the disk is cylindrical, the magnetic volume geometry is
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unknown. We assumed two cases for the magnetic volume: cylindrical, or ellipsoidal.

The axial demagnetizing factor of an axially symmetric ferromagnet can be found in

the following two ways, the first, reported by Beleggia et al. [29] wherein the magnetic

specimen is approximated as an ellipsoid, the second solution by Joseph et al. [28] is

for a cylindrical ferromagnet. For the case of a prolate or oblate axially symmetric

ellipsoid of height h and diameter d in terms of the aspect ratio, ↵ = h

d
, Beleggia

writes

N
oblate

r
= 1� 2

✏2

⇣
1�

p
1� ✏2

✏
arcsin(✏)

⌘
, ✏ =

p
1� ↵2,

�
↵  1

�

N
prolate

r
= 1� 2(1� E

2)

E2

⇣ 1

2E
ln
⇣1 + E

1� E

⌘
� 1

⌘
, E =

r
1� 1

↵2
,
�
↵ � 1

�
.

(2.22)

The solution for the demagnetizing factor of a cylinder is given in terms of K(k)

and E(k), the complete elliptic integrals of first and second kind. The demagnetizing

factor is

Nr = 2
⇣
↵E(k)

⇡k
� ↵kK(k)

4⇡

�
4 + ↵

2
�
+

1

2

⌘
. (2.23)

The above equations grant us a crucial piece of intuition: as the aspect ratio of a

disk or ellipsoid decreases, Nr becomes large. This relationship indicates that it is

easier to magnetize a ferromagnetic ellipsoid along radial directions due to a weakened

demagnetizing field.

As a ferromagnet becomes easier to magnetize, it will more easily saturate in

the presence of an external field. Ferromagnetic saturation is indicated by the spin

texture transition out of the demagnetized ground state in low field, to the quasi-

uniform state in higher field. The quasi-uniform spin texture is clearly distinguished

from other possible spin textures due to its monotonic decrease in magnetic torque

magnitude. As a result we can use the vortex spin texture annihilation as a probe

of aspect ratio. In panel a) of Figure 2.10, a high field hysteresis loop is shown

where cross-product torque was measured. The YIG was in the vortex spin texture

in the low field, as indicated by the linear increase in signal and positive slope. Vortex

annihilation occurs in intermediate field before entering the quasi-uniform spin texture
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state beyond saturation, where the torque signal decreases as the field increases. In

these two regimes, the demagnetizing factors are intimately related to the torque

rate of change with DC bias field. The micromagnetic vortex is a significantly in-

plane demagnetized spin texture, so the disk will magnetize more easily for a larger

aspect ratio. This susceptibility results in a positive slope that was observed as DC

field increases. We can similarly consider the linear increase of torque in the vortex

state via the spin texture. The vortex core is less susceptible to movement in plane

for a smaller diameter (while maintaining a similar disk height) so the slope will be

greater. In the high-field quasi-uniform spin texture regime Nz is dominant since the

monotonic decrease in torque is due to the reduced e↵ect of dither field compared to

DC bias field. Equation 1.6 shows that the AC torque is directly proportional to the

angle created between H
DC and H

AC, as the bias field increases, this angle decreases.

The relationship between bias field strength and linear increase of torque at low

field and linear decrease of torque at high field act in concert to produce a sensitive

probe of magnetically active volume aspect ratio. We compared experimental results

to mumax3 [31] micromagnetic simulations of cross-product torque hysteresis loops.

By applying a linear fit to the low field, and high field regimes, an intersection point

of the two lines was found. Subsequent micromagnetic torque hysteresis loops were

run for comparison while the aspect ratio was adjusted. A simulated hysteresis loop

is displayed in Figure 2.10 panel b) where intersection points were found at an applied

field magnitude of 21 kA/m. The simulation in panel b) is the result of a cylinder

with a diameter of 2.0 µm and 0.46 µm thickness, which yielded an aspect ratio of

↵ = 0.23± 0.01. The uncertainty was bracketed by additional simulations where the

aspect ratio was adjusted slightly. Using equation 2.23 the result for the out-of-plane

demagnetization factor was found to be Nz = 0.72± 0.02, thus Nr = 0.14± 0.01, and

c⌧ = 0.88± 0.03.

The simulation-verified magnetic volume aspect ratio adds yet another crucial piece

of information to our calculation of g0, that is the demagnetizing factors Nr and Nz
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that in turn yield c⌧ . In the next Section we will discuss simultaneous measurements

of cross-product and EdH torques wherein the crossover field, HCrossover

x
, was found

and the magnetomechanical ratio for YIG is calculated.

2.3.2 Frequency Dependent Measurement of EdH and Cross
Product Torques

Figure 2.11: Polar plots of frequency sweeps. The frequency here was swept from 2.75
MHz to 2.84 MHz. The mechanical resonance due to a driving cross-product torque is
shown in panel a) and the mechanical resonance due to a driving EdH torque in panel
b). The two resonances are, when ! = !0, out of phase by 90� with one another. The
true torque phase is given by the orange and green rays for cross-product and EdH
torques respectively. The width of the rays represents the uncertainty in phase at the
resonance maximum.

To simultaneously measure cross-product and EdH torques, we ensure that each

torque is distinct in phase as outlined in Section 2.1. The phase of each torque is

the essential quality that allows us to distinguish EdH from cross-product torque.

Equation 2.18 indicates that EdH torques exhibit a 90� phase shift relative to the

driving field, while Equation 2.16 shows that cross-product torques are in-phase with

the driving field. Cross-product torques scale in magnitude linearly with increasing

DC bias field while EdH torques are bias field independent. Enabled by RF lock-in

detection, our measurements are sensitive to both amplitude and phase.

49



To draw a clear distinction between the phase of EdH and cross-product torque

signal, we present the resonance signature in polar coordinates along with expected

drive and torque phases. A driven, damped oscillator at resonance has the following

frequency dependent amplitude, A(!;!0, Q, a)

A(!;!0, Q, a) =
a
2

q
(!2

0
� !2)2 + !

2
0!

2

Q2

, (2.24)

with a scaling factor a, resonant frequency !0, driving frequency !, and resonant

quality factor Q. The resulting frequency dependent phase, �(!;!0, Q) is

�(!;!0, Q,�0) = arctan
⇣

!0!

Q(!2

0
� !2)

⌘
+ �0. (2.25)

�0 is a phase o↵set, which for the purposes of this discussion, includes components of

phase delay that are picked up through electronics and optics. We can see here that

the phase o↵set begins at �(0;!0, Q, 0) = 0, then at resonance �(!0;!0, Q, 0) = ⇡/2,

and in the high frequency limit �(! � !0;!0, Q, 0) = 0. It is convenient for visu-

alization sake, to present the above equations in polar coordinates. For some drive

frequency that is swept through a resonance, a Lorentzian peak emerges in amplitude

while there is a 180� phase shift. In polar coordinates, a Lorentzian resonance signa-

ture traces a circle with a circumferential terminus at the origin of the polar map. A

line that equally bisects this circle passes through the origin and the furthest point

on the circle from the origin can be used to determine the amplitude maxima, and if

referenced to the 0� ray, gives the phase at the peak amplitude. If we consider two

resonant responses separated by 90� of phase, the circles will be identical but will

have pivoted about the origin. This is precisely the case in Figure 2.11 for the mea-

sured cross-product torque in panel a), and EdH torque in panel b). The frequency

was swept through the mechanical resonance. The colourbar represents the lowest

frequency of 2.75 MHz (purple) to the highest frequency, 2.84 MHz (light blue). The

fit that was applied to this data simultaneously encapsulates the amplitude and phase

as a function of frequency. It is convenient to use the in-phase, X, and quadrature,
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Y , outputs of a lock-in amplifier to fit the frequency sweeps where

X(!;!0, Q, a) = A(!;!0, Q, a) cos
�
�(!;!0, Q)

�

Y (!;!0, Q, a) = A(!;!0, Q, a) sin
�
�(!;!0, Q)

�
.

(2.26)

As can be seen in Figure 2.11 a very distinct phase di↵erence was found between

the two signals. In both of these cases, the phase o↵set introduced by the apparatus

and field producing coil was zero (indicated by the beige ray). We anticipated there

would be a 90� phase lag at the resonance peak indicated by Equation 2.25 so the

true torque phases are indicated by the cross-product (pink) and EdH (green) torque

phase rays. The width of the ray indicates the uncertainty in phase at the amplitude

maximum. Despite the drastic phase di↵erence, the amplitude of the resonances

are of comparable magnitude. We now extend our measurements to simultaneously

measured minor hysteresis loops, where the driving frequency was held fixed, and the

bias DC field was swept.

2.3.3 Simultaneous Measurement of Cross-product and EdH
Torques

We have so far demonstrated the relative phase relationship between the cross-product

and EdH torques, which indicated the clear distinction between each torque’s origin.

We now will focus on results from simultaneous measurements of EdH and cross-

product torques that are made possible by the frequency scaling of EdH torques.

Simultaneous measurements allow us to exhibit the field-independent behaviour of

the EdH torque in stark contrast with the cross-product torque. Simultaneous torque

measurements also permit measurement of HCrossover

x
, which is the final parameter

required to calculate g0 for YIG. Both the EdH and cross-product torques are applied

along the y axis and the two driving magnetic fields were slightly detuned from the

resonant peak by ±100 Hz. This ensured there was no admixture of the signals and

each signal had a su�ciently large signal-to-noise ratio so any small changes in the

torques could be captured. To find the the crossover field, the static field was swept
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Figure 2.12: Simultaneous measurement of cross-product (driven by H
RF

z
) and EdH

(driven by H
RF

y
) torques over a range of small bias DC field. The solid lines represent

data measured while changing the DC field magnitude. The points represent fre-
quency sweep data at discrete DC field strengths. Discrete frequency sweep measure-
ments o↵er superior phase SNR than the continuously swept DC field measurement,
and therefore are exclusively included in panel b). Panel a) features two intersections
of the EdH and cross-product signal that are used to calculate the crossover field,
H

Crossover

x
.

from -0.4 kA/m to 0.4 kA/m. This static field range featured the zero crossing of

the cross-product torque and two crossover field points. Figure 2.12 panel a) shows

the amplitude of the torques over the field range of the measurement. Owing to the

high frequency of these driving fields, the EdH torque magnitude exceeds the cross-

product torque in low field. Panel b) of Figure 2.12 shows the phase, where once again

there is a 90� phase di↵erence between EdH and cross-product torques. In addition to

having a bias magnetic field sweep, several discrete points have been included where a
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frequency sweep was performed for an unchanging DC field. Each discrete point is the

product of a measurement of simultaneously detected cross-product and EdH torques.

The torques, again to avoid admixture of the signals, were driven with a relative

frequency separation of 200 Hz. The frequency sweeps were fit with a Lorentzian

function that gave resonant frequency fmech, resonant quality factor, Q, and peak

amplitude. The resulting magnitude at the appropriate drive frequency was plotted

as a point in figure 2.12 panel a), while the phase information was included in panel

b). The inclusion of discrete points from independent sweeps of frequency provides

a more consistent phase measurement than the field sweep was able to. The relative

phase di↵erence from one frequency sweep to the next is 5.7�, while the variation that

is observed for field sweeps can be much larger. Unfortunately a phase-locked-loop

(PLL) cannot be implemented to improve this measurement since the cross-product

torque goes through zero, and reverses phase; under these conditions the loop would

fail.

From the data presented in Figure 2.12 we obtained the crossover field, HCrossover

x
:

the static field strength where the cross-product torque signal intersects the EdH

signal. Since there are two points of intersection, the crossover field was taken to be

one half the bias field separation between the two crossover points in the negative

and positive bias field which gave a crossover field of HCrossover

x
= 170± 5 A/m. The

crossover field is the final measurement required to measure the magnetomechanical

ratio g
0. Using equation 2.21, the magnetomechanical ratio is

g
0 =

1

(1.3± 0.1)⇥ 104 m/C

2.7904 MHz

(170± 5 A/m)
(1.41± 0.05)

g
0 = 1.78± 0.16.

(2.27)

We anticipate that our value for g0 should follow the approximate relation 2 � g
0 ⇡

g� 2. The g-factor, g, for YIG has been reported by Dillon through measurements of

ferrimagnetic resonance [41]. Their results yield g = 2.005± 0.002. If this relation is

accurate, our result for the magnetomechanical ratio is 1.4 standard deviations from

our expectation for g0.
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Figure 2.12 reveals not only the striking magnitude similarities between the EdH

and cross-product torques, but indicates that the EdH torque is, as expected, inde-

pendent of applied DC field. The RF magnetic fields that drive the two torques are

highly uniform, so signal admixture does not limit us to studying torques at small DC

fields. In subsequent Sections, we will discuss results from simultaneous torque mea-

surements of EdH and cross-product torques at high fields where the micromagnetic

vortex state annihilates, giving way to the quasiuniform spin texture state.

2.3.4 Einstein-de Haas Torques at Larger DC Field Magni-
tudes and Beyond Vortex Annihilation

The highly uniform driving fields across the sample geometry enabled the extension

of EdH experiments into the higher field regime without significant admixture of

EdH and cross-product torques. As such, high-field extension will be the topic of

the remainder of this chapter. We introduced a 2”⇥2”⇥2” neodymium iron boron

(NdFeB) cube magnet mounted upon a stepper motor track that was able to translate

along the x-axis. A three-axis Hall probe was used to record the field as the cube

magnet was translated. The NdFeB magnet permitted extension to much higher

field strength capable of saturating the YIG disk. The extension to higher field also

allowed for the use of a PLL so high stability measurements of phase changes could

be performed.

Simultaneous Measurement of Cross-product and EdH Torques in Vortex
Spin Texture

As seen in Figure 2.13 panel a), the cross-product torque rapidly becomes much larger

than the EdH torque magnitude owing to the linear DC field dependence of the cross

product torque. The EdH torque magnitude, on the other hand, is very flat out to

approximately 5 kA/m but then begins to increase. The monotonic decrease in EdH

torque phase indicates that an admixture of HRF

z
driven signal was introduced to

the H
RF

y
driven signal. As we saw in the previous section, the EdH torque phase
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Figure 2.13: Extension of simultaneous (phase-locked) measurement of HRF

y
driven

EdH and H
RF

z
driven cross-product torques throughout the field range that encom-

passes the vortex state. The field is swept low (L) to high (H) and then H to L.
Panels a) and b) represent the unmodified ’raw’ magnitude and phase respectively.
The linear increase in EdH magnitude and decrease in phase are indicative of cross-
product admixture. Panels c) and d) represent the EdH signal where the admixture
of cross-product torque has been removed. The remaining features indicate that the
EdH torque and phase are sensitive probes of magnetic disorder and surface rough-
ness. The low field phase drift that appears in panel d) is indicative of the PLL losing
the reference phase as the signal-to-noise ratio of the cross-product torques becomes
too large.

lags behind the cross product torque. Admixture of driving field contributions also

explains the gradual increase in EdH signal magnitude. The admixture can be easily

removed from the H
RF

y
driven signal due to the quadrature phase sensitivity of the

lock-in measurements. Based on subtraction of quadrature component, we found that

the admixture of torques amounted to 1.2% of the slope of the raw H
RF

y
driven phase
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signal. An admixture constant was found by multiplying the slope of the decreas-

ing signal with the raw H
RF

z
driven signal, we subtracted this from the quadrature

component of the EdH. Panels c) and d) show the H
RF

y
driven signal following the

removal of the admixture from the EdH torque magnitude and phase. We also intro-

duced a rotation of the DC magnetic field by ±5� from the positive x axis. For ease

of visibility, a 1 µV o↵set was applied to each signal in panel c), and an o↵set of 0.15

rad was applied to each trace in panel d).

As seen in panel c) and d) of Figure 2.13, even after subtracting the admixture

of the cross-product torque signal, the EdH signal magnitude exhibited di↵erent be-

haviour that is highly sensitive to the angle of the DC magnet. This angular depen-

dence of applied field is due to the particular sensitivity of EdH signal to magnetic

disorder and sample surface roughness. Cross-product measurements indicate that

vortex core pinning is not a pronounced e↵ect for this sample due to the YIG disks

monocrystallinity and exceptional purity. Unlike the cross-product torque, however,

EdH torques should be much more sensitive to sample surface roughness in the vortex

state. Micromagnetic simulations of the vortex state in 0.23 aspect ratio ferromag-

netic cylinders indicate that the vortex core dilates in the centre of the sample (cor-

roborated by results of [42]), ergo the core has a narrower diameter at the surfaces

than found in the bulk of the YIG disk. To consider the e↵ect of the fields for a

cross-product torque measurement on the vortex structure, an in-plane DC bias is

introduced, and an out-of-plane AC field is applied. Since the in plane field is static,

the generation of the torque does not occur by way of vortex core translation, only

a dilation and contraction. This core dilation and contraction is a roughly negligible

e↵ect on the spin texture, however it may permit the core to hop between closely

spaced energy minima and cross-product torques will yield the time averaged posi-

tion of the core. The e↵ect of vortex pinning in a ferromagnetic thin film is described

at length by Burgess et al. [32].

The field applied to generate an EdH torque (unlike the cross-product torque)
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varies the core position since the alternating field is applied in-plane, one may think

of this as an alternating translation of the vortex core perpendicular to the AC field

direction. The core, in this way, can act as a very sensitive probe to magnetic disorder

and shape imperfections that are of similar size to the core.

Simultaneous Measurement of Cross-product and EdH Torques Beyond
Vortex Annihilation

Figure 2.14: High field hysteresis loops extend to field strengths greater than those
that permit vortex spin textures. The irreversible vortex annihilation occurs around
18 kA/m. This spin texture change is observed both in the EdH (as spikes in mag-
nitude and phase) and cross-product torque signals (as discontinuous jumps in mag-
nitude). The spikes that are cut o↵ in panels a) and c) extend to 150 µV. Two
magnet rotation positions are shown, 0�, and 1� indicating a striking dependence of
bias magnetic field angle on EdH torques.

The continued extension to the high-field regime results in the annihilation of the

vortex state, giving way to the quasi-uniform spin texture. This spin texture consists
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of a mostly uniformly oriented magnetization, with the emergence of closure domains

close to the edge of the magnet. The vortex nucleation can be clearly seen in panel a)

of Figure 2.14 where the cross-product torque signal irreversibly increased in magni-

tude close to 14 kA/m. The magnet was fully saturated at 20 kA/m, and beyond this

field the cross-product torque magnitude began to monotonically decrease. We have

already encountered a hysteresis loop of this kind in Section 2.3.1. In Figure 2.14

panel b), the cross-product torque phase is plotted and there was clearly no phase

deviation over the experimental field range. The EdH torque signal magnitude and

phase, panel b) and d), however are drastically altered in this quasi-static regime,

exhibiting large changes in magnitude and phase where no such behaviour was ob-

served in the cross-product torque. The most striking of these features is the large

reversible peaks that emerge for the 1� rotated DC bias field between 24 kA/m and

33 kA/m. These peaks are completely absent from the 0� rotated field, indicating a

strong dependence on bias field direction.

Previously, behaviour in the EdH signal magnitude and phase was attributed to the

RF translational motion of the vortex core. In the field region from 18 kA/m onward

of Figure 2.14, the vortex spin texture annihilates and enters the quasi-uniform state.

As we did for the vortex state, we once again consider the e↵ect of in-plane fields on

the magnetic spin texture. An alternating field in the plane of the quasi-uniformly

magnetized YIG cylinder modulates the position of closure domain walls. This, again

is not an e↵ect that the cross-product torque is sensitive to since the only applied

in-plane field is static and does not rapidly modulate the position of the domain walls.

Vortex state measurements of cross-product torques indicated that the sample interior

is extremely pure since no discernible vortex core pinning is observed, however EdH

signals yield information about surface roughness. In the high field regime closure

domains can interact with the edges of the sample, which, due to fabrication are rough.

In this case, a field that modulates the position of the closure domain walls about the

edge of the sample would, in fact, serve as a probe, sensitive to edge roughness of the
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cylinder wall.

The phase exhibited by the EdH signal in panel d) of Figure 2.14 elucidates the

relationship between the magnetic behaviour as it relates to the transfer of angular

momentum to the lattice. We hypothesize if the applied RF field, HRF

y
, is alternating

faster than the angular momentum transfer can occur, a phase delay is expected at

rates faster than the rate of angular momentum transfer. A more in-depth description

of future work studying EdH physics at ever higher frequencies is provided in Section

3.2. An e↵ect of phase lag certainly appears to have begun around 30 kA/m in both

bias field angle positions. The full picture of high field EdH torque phase, however

is more complicated than this. A very pronounced phase advance is observed in the

1� rotation trace. An ideal method for studying the e↵ect of edge roughness on EdH

experiments can be made through micromagnetic simulations that, in e↵ect, have

built-in edge roughness for simulations of cylindrical ferromagnets. This will be our

next point of discussion

2.3.5 Micromagnetic Simulations of Einstein-de Haas Exper-
iments

Earlier discussions of micromagnetic simulations served to give an accurate mea-

surement of magnetic aspect ratio. By revisiting micromagnetic simulations we will

calculate high field hysteresis behaviour in EdH torque signals where edge roughness

is present. Unlike previous discussions however, here we will discuss, in addition

to cross-product torques, micromagnetically simulated EdH torques. Mumax3 re-

turns volume averaged magnetization, field and energy terms. The EdH torque (as

described in Section 2.1) is given by

⌧~
EdH = �dJ~

dt
= �2me

eg0
dm~

dt
(2.28)

As described in Section 2.3.4, the present work was conducted at su�ciently low

frequency that we do not expect dynamics to play a role in experimental results and

the usual method for calculating the torque can be performed. In this case, as before,
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Figure 2.15: Simulation outputs for a high field hysteresis measurement wherein cross-
product torques are shown in panel a) and EdH torque simulation results are shown
in panel b). Bias field o↵sets of 0.1 kA/m in the y direction are also applied to
simulate an applied field at an o↵set angle. As in the experimental case, this o↵set
has little impact on cross-product torques, however panel b) represents some drastic
changes in behaviour between the bias field direction, such as, the large peak around
26 kA/m which is not only unique to the Hy = 0 kA/m trace, but is not present in
the cross-product torque signal.

the time is not exactly calculated since at each field step, the system relaxes to an

equilibrium configuration. In the language of the LLG equation, this is the timescale

when the damping term dominates the precession term. Our time-varying field, is

then replaced by a magnetic field along the dither directions (in this case, z and y, as

in the experiment). The dither field is varied between DC field steps in a hysteresis

loop from the quasiuniform state at 40 kA/m to the vortex spin texture at 0 kA/m

and back.

Micromagnetic simulations make excellent candidates for capturing e↵ects of edge
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roughness on magnetic torque signals since mumax3 builds its geometry on a grid of

rectangular prisms. This means that a cylinder has a built-in edge roughness that

is brought about simply by the approximation of a circle on a grid. We expect in

this case that the roughness will have some e↵ect on the EdH torque signal that is

calculated from simulation results due to the driving field modulating closure domain

wall positions.

The results of a high field hysteresis measurement can be found in Figure 2.15. To

represent a change in bias field direction, we introduced a 0.1 kA/m o↵set along the

y axis. This o↵set acts as an e↵ective rotation of the bias field direction which can

be compared with the case of no rotation. Panel a) represents the normal simulated

cross-product torque, and as can be seen, there is a di↵erence between the positions

of nucleation, where a transitional spin texture appears between 11 kA/m and 13

kA/m, otherwise the trends are quite similar. Panel b) shows the simulated EdH

torque. Here the EdH torque was calculated using the experimentally determined

ratio of f

g0 =
2.7904 MHz

1.8
. A striking feature is observed at the 26 kA/m bias field step

where a prominent peak appears in the Hy = 0 kA/m simulated hysteresis. This

peak is much smaller in the Hy = 0.1 kA/m hysteresis loop.

Here we have presented the usefulness of micromagnetic simulations to predict

results of EdH experiments. Built-in edge roughness makes the grid-layout of mumax3

simulations ideal for predicting EdH torques in ferromagnets. While the EdH torques

are modulated at frequencies that are low enough to not encounter dynamical e↵ects,

mumax3 is well suited to time dependent studies of such a situation. In the next

chapter, we will formulate the hypothesis that linear scaling of EdH torque magnitudes

with frequency must break down at a su�ciently high frequency, dictated by the

spin-lattice relaxation rate. Micromagnetic simulations, such as those presented here,

serve as an important jumping-o↵-point for predicting results of future work at high

frequency.
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Chapter 3

Conclusions & Future Work

3.1 Conclusions

In conclusion, this revisiting of the Einstein-de Haas (EdH) experiment has expanded

on modern trends of EdH experiment miniaturization, and increased the frequency

of applied EdH torque from the audio frequency range to the radio frequency range.

Linear scaling of EdH torque with frequency permits magnitudes of EdH torques,

that are of the same scale, or larger than cross-product torques. By simultaneously

demodulating EdH and cross-product torques, another important quality of EdH

torques was observed: the relative phase di↵erence between driving field and EdH

torque signal that is a consequence of the time rate of change of angular momentum.

Such a definition indicates that EdH torques has a 90� phase di↵erence when compared

to conventional cross-product torques. Our results confirmed that EdH torques are

larger than cross-product torques in some DC field regions for RF drive levels, and

verified the 90� phase shift, which confirmed the distinct origin of each torque signal.

The simultaneous measurement of EdH and cross-product torques was also used to

obtain the magnetomechanical factor, which was found to be g
0 = 1.78 ± 0.16, for

YIG. This is the first measurement of g0 in a YIG sample. Previous estimates for

g
0 suggest that, if the relation 2 � g

0 ⇡ g � 2 holds, our result is within 2 standard

deviations from the expected value for g0 based on results for g from Dillon [41].

Enabled by highly uniform driving field geometries, EdH torque measurements
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were brought to high field where the vortex core behaves like a sensitive probe of

magnetic surface defects in mesoscopic YIG disks. This sensitivity is evidenced by

EdH torque magnitude fluctuations that are altogether absent in cross-product torque

signals. One reason this occurs is due to the dither field required for creating an EdH

torque. The application of this field modulates the vortex cores position, unlike in

the case of the cross-product case where the vortex core diameter is modulated.

By extending the field beyond vortex annihilation, we observed EdH torques in

the quasi-uniform spin texture state. In this state, the EdH torque is sensitive to

edge roughness about the circumference of the YIG disk via modulation of closure

domain wall position. We can thus use the EdH torque as a sensitive probe of the

YIG cylinder surface, and control which surface we are probing by applying a larger

magnetic field. Mumax3 simulations of EdH and cross-product torques indicate a

significant dependence on field angle brought forth by edge roughness observed in the

experiment.

3.2 Future Work

The experiment detailed in this thesis is simply a jumping-o↵-point for an extensive

list of future projects. There is still a great deal to be understood about angular

momentum conservation in magnetic systems and EdH experiments are an invaluable

tool for the understanding of angular momentum conservation processes. The unique

way that EdH torques manifest compared to cross-product torques situates the e↵ect

as an ideal tool for study of interfacial e↵ects for magnetic sample characterization.

3.2.1 Spin-Lattice Relaxation from the Perspective of the
Lattice

We propose that extensions of EdH experiments to higher and higher frequencies will

eventually reach a limit wherein the linear relation between EdH torques and fre-

quency breaks down. This limit, we expect is mediated by the spin-lattice relaxation
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time. We might expect such a behaviour to be most obviously observed by a phase

lag in the EdH torque as the driving field begins to out-pace the transfer of angular

momentum. This would provide a direct measurement of T1 for ordered magnetic

systems. This method need not be confined to ferro-, or ferri- magnets, but antiferro-

magnets may also be measured this way. Theoretical studies of phonon spin e↵ects,

and their role in EdH experiments have separated rigid body motion from internal

angular momentum [43]. The onset of this separation is what we hope to observe in

experiments of UHF EdH experiments.

Beyond ordered magnets, there is the extremely promising avenue of EdH exper-

iments on nuclear paramagnets. Recently, the Barnett e↵ect of magnetization by

rotation was observed by M. Arabgol and T. Sleator [44] while the inverse e↵ect of

rotation by magnetization has yet to be observed. In keeping with the theme of mea-

suring spin lattice relaxation from the perspective of the lattice; judicious selection

of plastic crystals that permit rotation of molecules could be used to compare T1

with the spin-lattice relaxation in the rotating frame, T1,rot. Adamantane is an early

contender for such a study.

3.2.2 Time Rate of Change of Angular Momentum in Super-
conductors

Beyond conventional magnetic ordering, EdH experiments may also be used to study

superconductors. So far, EdH experiments have only been performed on conventional

Type-I superconductors [45]. No magnetomechanical experiments have been per-

formed on type-II, or unconventional superconductors. Aside from several (quite old)

examples, torque experiments on superconducting materials have exclusively featured

cross-product torques. There is also theoretical interest in the time rate of change of

angular momentum experiments in superconductors [46, 47].

Once again cross-product and EdH torques can be simultaneously studied in su-

perconductors opening the door to studies of superconductor RF susceptibilities,
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fixed magnetization contributions to cross-product torque, field dependencies, and

frequency dependencies. We predict that superconductor EdH torques should not

be dramatically smaller than those presented in this thesis based on the relatively

low magnetic susceptibility of YIG compared to the diamagnetic susceptibility of a

superconductor. All else being equal, the measured values of susceptibility of YIG

in the vortex state [48] yield EdH torques 4-5 times larger than that of a perfectly

diamagnetic superconductor. This susceptibility places measurements of EdH torques

on superconductors well within reach.

3.2.3 Six-‘axis’ AC Torque Magnetometry

Recent developments in AC torque magnetometry have shown that vector torque

magnetometry is an extremely exciting avenue of research [49–51]. I propose that

each mechanical axis of torque need not only measure one kind of torque, but a cross-

product, and EdH torque. This, in e↵ect, gives the experimenter a greater variety of

tools for investigation of magnetic materials. A recent study of permalloy / cobalt

oxide bilayers that display the exchange bias e↵ect below the CoO Neel temperature

used three axis AC torque magnetometry to study anisotropies within the magnetic

sample [52]. I have emphasized the influence of interfacial e↵ects on EdH torques

here; I suspect for monocrystalline exchange bias samples, EdH could lend insight

into interfacial features of bilayer FM/AFM systems.
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Appendix A: Equivalence of Cross
Product and Energy Di↵erential
Torque

Here we will draw the connection between the cross product torque, generated by the

relative orientations of magnetization m~ and e↵ective field H~

⌧~ = µ0m~ ⇥H~ , (A.1)

and the di↵erential representation of this same formula for torque along an axis i

⌧i = �V
d"

d✓
. (A.2)

We begin by rewriting the di↵erential form of the torque as a dot product relation,

choosing one axis i with unit vector n̂

n̂ · ⌧~ = �V
d"

d✓
. (A.3)

The chain rule is evoked to write

n̂ · ⌧~ = �V
d"

dm~

dm~

d✓
. (A.4)

The e↵ective field can be given by the functional derivative of energy with respect to

magnetization H~ e↵ = V
@"

@✓
, we find

n̂ · ⌧~ = µ0

dm~

d✓
·H~ e↵ (A.5)

We now consider the general form of the rotation of the magnetization vector m~ to

some new rotated vector m~ 0 by an angle ✓

m~
0 = m~ cos(✓) + n̂(n̂ ·m~ )(1� cos(✓)) + (n̂⇥m~ ). (A.6)
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For an infinitesimal rotation d✓: cos(d✓) ⇠ 1 and sin(d✓) ⇠. This gives us

m~
0 = m~ + (n̂⇥m~ )d✓ (A.7)

We can rearrange the above equation, recognizing that an infinitesimal rotation yields

m~
0 �m~ = dm~ so dm~

d✓
= n̂⇥m~ . Plugging this relation into equation A.5, we find

n̂ · ⌧~ = µ0(n̂⇥m~ ) ·H~ e↵ (A.8)

Finally we generalize the right and left hand side, using the scalar triple product

⌧~ = µ0m~ ⇥H~ e↵ (A.9)
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Appendix B: Sample Code for
Macrospin Simulation

As shown in Section 1.4, the LLG equation can be rearranged in the following way

d✓

dt
=

��
Ms(1 + ↵2)

⇣ 1

sin(✓)

@"

@�
+ ↵

@"

@✓

⌘

d�

dt
=

�

Ms(1 + ↵2)

⇣
↵

sin2(✓)

@"

@�
� 1

sin(✓)

@"

@✓

⌘
.

(B.1)

This form is particularly useful since we have converted from cartesian coordinates

(with three unknowns) to spherical coordinates (with two unknowns since dMr
dt

= 0

by definition. Below I have presented the code used to generate the simulation result

found in Figure 1.6.

Listing B.1: LLG equation for a single spin. The shape is dictated by demagnetizing
factors Nx,y,z. The equation used to solve the equation of motion is presented in
Equation B.1.
#!/usr/bin/env python3
# -*- coding: utf -8 -*-
"""
Created on Fri Dec 3 11:49:32 2021

@author: michaeldunsmore
"""

import numpy as np

from sc ipy . i n t e g r a t e import s o l v e i v p

import matp lo t l i b . pyplot as p l t

# physical constants
u0 = 4∗np . p i ∗1e�7 #N/A^2
#gamma = 0.176 #ps^-1 T^-1
#Note! If using value output via mumax 3, units are in rad/(ns*T)
gamma = 175 .95/( np . p i ∗2) #ns^-1 T^-1
alpha = 0.01

Kua = 1e3 #J/m^3
M = 763000 #A/m
f i e l d a n g=0∗np . p i /4

# bias field
d i th e r=100

Hx2=(10000)∗np . cos ( f i e l d an g )+d i th e r #A/m
Hy2=(10000)∗np . s i n ( f i e l d an g )+d i th e r #A/m
Hz2=d i th e r #*np.cos(np.pi/2) #A/m
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H = np . array ( [ Hx2 ,Hy2 , Hz2 ] ) #A/m
pr in t (np . arctan2 (Hy2 ,Hx2 ) )

# demag factors (for a sphere)
Nx = 1/3

Ny = 1/3

Nz = 1/3

#Energy density terms

de f WA( the , phi ) :

return �Kua∗(np . s i n ( the )∗np . cos ( phi ) )∗∗2

de f WD( the , phi ) :

return 0 .5∗ u0 ∗(M∗∗2)∗ (Nz∗(np . cos ( the )∗∗2) + Ny∗(np . cos ( phi )∗∗2)
+ Nx∗(np . s i n ( phi )∗∗2 ) )

de f WZ( the , phi , Hx1 ,Hy1 , Hz1 ) :

return �u0∗M∗(Hx1∗np . s i n ( the )∗np . cos ( phi)+Hy1∗np . s i n ( the )∗np . s i n ( phi )

+Hz1∗np . cos ( the ) )

de f Wtot( the , phi , Hx1 ,Hy1 , Hz1 ) :

return WA( the , phi)+WD( the , phi)+WZ( the , phi , Hx1 ,Hy1 , Hz1)

#Partial derivative of anisotropy terms with respect to azimuthal angle

de f dtheWA( the , phi ) :

return �2∗Kua∗np . s i n ( the )∗np . cos ( the )∗ ( np . cos ( phi )∗∗2)∗gamma/(M)

de f dtheWD( the , phi ) :

return �(gamma∗M∗u0 )∗Nz∗np . s i n ( the )∗np . cos ( the )

de f dtheWZ( the , phi , Hx1 ,Hy1 , Hz1 ) :

return �(gamma∗u0 )∗ (Hx1∗np . cos ( the )∗np . cos ( phi)+Hy1∗np . cos ( the )∗np . s i n ( phi )

�Hz1∗np . s i n ( the ) )

de f dtheW( the , phi , Hx1 ,Hy1 , Hz1 ) :

return dtheWA( the , phi)+dtheWD( the , phi)+dtheWZ( the , phi , Hx1 ,Hy1 , Hz1)

#Partial derivative of anisotropy terms with respect to polar angle

de f dphiWA( the , phi ) :

return 2∗gamma∗Kua∗(np . s i n ( the )∗∗2)∗np . s i n ( phi )∗np . cos ( phi )/ (M)

de f dphiWD( the , phi ) :

return (gamma∗M∗u0)∗(�Nx∗np . s i n ( phi )∗np . cos ( phi ) + Ny∗np . cos ( phi )∗np . s i n ( phi ) )

de f dphiWZ( the , phi , Hx1 ,Hy1 ) :

return �(gamma∗u0)∗(�Hx1∗np . s i n ( the )∗np . s i n ( phi)+Hy1∗np . s i n ( the )∗np . cos ( phi ) )

de f dphiW( the , phi , Hx1 ,Hy1 ) :

return dphiWA( the , phi ) + dphiWZ( the , phi , Hx1 ,Hy1) + dphiWD( the , phi )

N=10000

t v a l s=np . l i n s p a c e (0 ,200 ,N)

de f ode ( t , y ) :

#Hz=0*np.cos(omega*t)
Hz=Hz2#+50*np.sin(omega*t/0.01)
Hy=Hy2#+(1000/4.7462)* np.sin(omega*t)
Hx=Hx2#+(50/4.7462)* np.sin(omega*t)
the=y [ 0 ]

phi=y [ 1 ]

thetadot =(1/(np . s i n ( the )∗(1+ alpha ∗∗2)))∗((�1)∗dphiW( the , phi ,Hx ,Hy)

�alpha ∗np . s i n ( the )∗dtheW( the , phi ,Hx ,Hy ,Hz ) )

phidot =(1/((np . s i n ( the )∗∗2)∗(1+ alpha ∗∗2)))∗((� alpha )∗dphiW( the , phi ,Hx ,Hy)
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+np . s i n ( the )∗dtheW( the , phi ,Hx ,Hy ,Hz ) )

out = [ thetadot , phidot ]

return out

#t_vals=np.arange (0 ,0.01 ,0.01)

s o l = s o l v e i v p ( ode , [ 0 , 2 0 0 ] , [ np . p i /2 ,np . p i /2 ] , t e v a l=t va l s , method=’Radau’ )

mx = np . mul t ip ly (np . s i n ( s o l . y [ 0 ] ) , np . cos ( s o l . y [ 1 ] ) )

my = np . mul t ip ly (np . s i n ( s o l . y [ 0 ] ) , np . s i n ( s o l . y [ 1 ] ) )

mz = np . cos ( s o l . y [ 0 ] )

m = np . sq r t (np . mult ip ly (mx,mx)+np . mul t ip ly (my,my)+np . mult ip ly (mz ,mz) )

p l t . f i g u r e (1 , f i g s i z e =(8 ,5))

p l t . p l o t ( s o l . t ,mx, ’-’ , c o l o r=’deepskyblue ’ , l a b e l=’$M_{x}/M_{s}$’ )
p l t . p l o t ( s o l . t ,my, ’-’ , c o l o r=’slateblue ’ , l a b e l=’$M_{y}/M_{s}$’ )
p l t . p l o t ( s o l . t ,mz , ’-’ , c o l o r=’chocolate ’ , l a b e l=’$M_{z}/M_{s}$’ )
p l t . p l o t ( s o l . t ,m, ’-’ , c o l o r=’black’ , l a b e l=’$M/M_{s}$’ )
p l t . x l ab e l ( ’Time (ns)’ , f o n t s i z e =14)

p l t . l egend ( f o n t s i z e =12, frameon=False )

p l t . y l ab e l ( ’Magnetization component\nnormalized by $M_{S}$’ , f o n t s i z e =14)

tau=np . z e r o s ( ( np . s i z e (mx) , 3 ) )

p r i n t ( )

for i in range (np . s i z e (mx) ) :

tau [ i ]=np . c r o s s ( [mx[ i ] ,my[ i ] ,mz [ i ] ] , [ Hx2 ,Hy2 , Hz2 ] )

p l t . f i g u r e (2 , f i g s i z e =(8 ,5))

p l t . p l o t ( s o l . t , tau [ : , 0 ] / ( tau .max ( ) ) , ’-’ , c o l o r=’deepskyblue ’ , l a b e l=r ’$\tau_{x}$’ )
p l t . p l o t ( s o l . t , tau [ : , 1 ] / ( tau .max ( ) ) , ’-’ , c o l o r=’slateblue ’ , l a b e l=r ’$\tau_{y}$’ , )

p l t . p l o t ( s o l . t , tau [ : , 2 ] / ( tau .max ( ) ) , ’-’ , c o l o r=’chocolate ’ , l a b e l=r ’$\tau_{z}$’ , )

#plt.plot(sol.t,np.sqrt(tau [: ,0]**2+ tau [: ,1]**2+ tau [: ,2]**2)/( tau.max ()))
p l t . x l ab e l ( ’Time (ns)’ , f o n t s i z e =14)

p l t . l egend ( f o n t s i z e =12, frameon=False )

p l t . y l ab e l ( ’Normalized cross -product torque ’ , f o n t s i z e =14)
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Appendix C: Sample Code for Toy
Model Simulation

We will treat the problem of a torsion spring coupled to a linear spring. One can

think of such a system of springs as a toy model for torsional eigenmodes that exhibit

simultaneously torsional and translational behaviour. The toy model consists of a

torsion spring with e↵ective spring constant  and a linear spring of spring constant

k. These springs are coupled by a linear coupling spring of spring constant K. The

equations of motion for coupled oscillators (torsional and linear) can be described by

the following di↵erential equations for the torsion spring:

I
d
2
✓

dt2
= �(✓ +Kx1R) +KRx2 � �T

d✓

dt
+ ⌧D cos!t (C.1)

and the linear spring:

m
d
2
x2

dt2
= �(k +K)x2 � �L

dx2

dt
+Kx1 (C.2)

For small angle deviations ✓ = x1/R, so we may write the first equation in the

following way:

I

R

d
2
x1

dt2
= �

⇣

x1

R
+Kx1R

⌘
+KRx2 �

�T

R

dx1

dt
+ ⌧D cos!t (C.3)

For this solver to do it’s job we must represent the above equations as a system of

four first order di↵erential equations (this behaves also as a specification of boundary
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conditions):

y1 =
dx1

dt

dy1

dt
=
1

I

h
�

⇣
+KR

2

⌘
x1 +KR

2
x2 � �Ty1 +R⌧D cos!t

i

y2 =
dx2

dt

dy2

dt
=

1

m

h
� (k +K)x2 � �Ly2 +Kx1

i

(C.4)

Note: the coupling in this case is based on the size of KR

Listing C.1: Numerical solver for di↵erential equation presented above (C.4)
#!/usr/bin/env python3
# -*- coding: utf -8 -*-
"""
Created on Sat Nov 15 13:41:30 2019
Adapted from ipynb version
@author: michaeldunsmore
"""

import numpy as np

from sc ipy . i n t e g r a t e import ode int

from sc ipy . i n t e g r a t e import s o l v e i v p

from numpy import l oadtx t

import matp lo t l i b . pyplot as p l t

from matp lo t l i b . font manager import FontPropert i e s

de f v e c t o r f i e l d ( omega , t , p ) :

x1 , y1 , x2 , y2 = omega

k , kappa , K, R, gt , gl , taudr ive , omega , I , m = p

# Create f = (x1’,y1’,x2’,y2 ’):
f = [ y1 ,

(�(kappa+K∗(R∗∗2))∗ x1+K∗(R∗∗2)∗x2�gt ∗y1+R∗ taudr ive ∗np . cos ( omega∗ t ) ) / I ,

y2 ,

(�(k+K)∗x2�g l ∗y2+K∗x1 ) / m]

return f

# Parameter values
#Degree of Torsionality
DoT=0.8348

# Effective Mass and Moment of Area (Comsol)
m= 1.79 e�13 #kg
I= 4 .78 e�26 #kg m^2
# Spring Constant (Also Comsol)
kappa = 17e�12

k = kappa∗m/ I

ep s i l o n = 0 .1

K = ep s i l o n ∗k
# Torsional resonance frequency (Hz)
omega = (1 + 0.955∗ ep s i l o n )∗np . sq r t ( kappa/ I )

# Geometric Properties
# R=3.99e-6
R = 5.17 e�7 #to match assumption kappa = kR^2 (and hence also I = mR^2)
# Damping coefficients
gt = I ∗omega/2000

g l = m∗omega/2000

#Drive Nm
taudr ive=43e�17
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#taudrive =0 #for looking at free ringdowns

# Initial conditions
# x1 and x2 are the initial displacements; y1 and y2 are the initial velocities
#x1 = 1e-7 #handy to turn off the drive and look at the

#ringdown following an initial displacement
x1 = 0e�10

y1 = 0 .0

x2 = 0e�10

y2 = 0 .0

# ODE solver parameters
abse r r = 1 .0 e�8

r e l e r r = 1 .0 e�6

# output a point every half radian of oscillation
Nhalfrad = 60000

stopt ime = Nhalfrad /(2∗omega )

numpoints = Nhalfrad

# Create the time samples for the output of the odeint solver.
t = [ stopt ime ∗ float ( i ) / ( numpoints � 1) for i in range ( numpoints ) ]

t span = [ 0 , stopt ime ]

# Pack up the parameters and initial conditions:
p = [ k , kappa , K, R, gt , g l , taudr ive , omega , I , m]

omega0 = [ x1 , y1 , x2 , y2 ]

# Call the ODE solver.
wsol = ode int ( v e c t o r f i e l d , omega0 , t , a rgs=(p , ) , a t o l=abserr , r t o l=r e l e r r )

#wsol = solve_ivp(vectorfield , t_span , omega0 , args=(p,),atol=abserr , rtol=relerr)
pr in t ( wsol )

#with open(’two_springs.dat ’, ’w ’) as f:
# Print & save the solution.

# for t1, w1 in zip(t, wsol):
# print (f, t1 , w1[0], w1[1], w1[2], w1[3])

# Plot the solution that was generated

tout , x1out , y1out , x2out , y2out = [ t , wsol [ : , 0 ] , wsol [ : , 1 ] , wsol [ : , 2 ] , wsol [ : , 3 ] ]

p l t . f i g u r e (1 , f i g s i z e =(12 , 4 . 5 ) )

p l t . x l ab e l ( ’t’ )
p l t . g r i d (True )

lw = 0 .5

p l t . p l o t ( tout , x1out , ’b’ , l i n ew id th=lw , l a b e l=’$x_1$ ’ )
p l t . p l o t ( tout , x2out , ’g’ , l i n ew id th=lw , l a b e l=’$x_2$ ’ )
p l t . xl im ( [ 0 . 0 0 1 0 0 , 0 . 0 0 1 0 0 5 ] )

p l t . l egend ( prop=FontPropert i e s ( s i z e =16))

p l t . t i t l e ( ’Displacement 1 for the coupled spring -mass system ’ )
p l t . show ( )

p l t . f i g u r e (2 , f i g s i z e =(12 , 4 . 5 ) )

p l t . x l ab e l ( ’t’ )
p l t . g r i d (True )

lw = 0 .2

p l t . p l o t ( tout , x2out , ’g’ , l i n ew id th=lw , l a b e l=’$x_2$ ’ )
#plt.xlim ([0.00000 ,0.00005])
p l t . l egend ( prop=FontPropert i e s ( s i z e =16))

p l t . t i t l e ( ’Displacement 2 for the coupled spring -mass system ’ )
p l t . show ( )

#savefig(’two_springs.png ’, dpi =100)
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