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Abstract
Background: Insects constitute the vast majority of known species with their importance including
biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the
Insecta clade depends on specific components in its proteome that give rise to specialized features.
However, proteome determination is an intensive undertaking. Here we present results from a
computational method that uses genome analysis to characterize insect and eukaryote proteomes as an
approximation complementary to experimental approaches.

Results: Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium
castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes
(opisthokonts) Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded
154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were
determined to be common to eukaryotes (represented by three opisthokonts). ESTs from the
hemimetabolous insect Locust migratoria were also considered in order to approximate their
corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to
constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes.

Conclusion: The significant representation of stress response and stimulus response proteins in proteins
determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins,
suggest that communication and adaptation to environments may distinguish insect evolution relative to
other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying
selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate
adaptation to environment changes. Instances in our insect-specific protein set have been arrived at
through experiments reported in the literature, supporting the accuracy of our approach.
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Background
Insects constitute nearly 80% of species on earth and are
among the most diverse group of organisms in the history
of life, giving them considerable potential to provide
insight into evolutionary mechanisms. Insects, with their
large number of species, their biomass, diversity of adap-
tation, and ecological impact, support the structure and
function of ecosystem and biodiveristy on the lands of the
earth. Numerous crops rely on insects for pollination,
with the importance of insects extending into other agri-
cultural and human health concerns. Insects have been in
existence for at least 400 million years, making them
among the earliest land animals. Though nearly one mil-
lion insect species have been classified and named, their
actual number is believed to be between 2.5 and 10 mil-
lion. It is widely accepted that insects diverged as mem-
bers of one of the largest subphyla in arthropods more
than 390 million years ago. During this time, insects expe-
rienced rapid evolution and a radiation that is considered
faster than any other group [1], migrating into nearly all
available environmental niches except the benthic zone
[2]. Mitochondrial DNA strongly supports an insect-crus-
tacean clade as a sister group, which excludes the other
arthropod subphyla collectively known as the myriapods
[3]. The insects are a monophyletic group, a universally
held view supported by morphological and molecular fea-
tures.

The structure of an organism is an outgrowth of develop-
ment tailored to meet functional demands in an idiosyn-
cratic evolutionary history. Like other segmented animals,
insects are composed of a series of repeated units called
metameres. Extant arthropods share many taxonomical
characteristics, such as an exoskeleton, jointed append-
ages, and reduced coeloms and hemocoels. The segments
of the insect body are organized into three major tagmata
unique to this subclass: the head, thorax, and abdomen
[4]. The thorax has three pair of legs, and in pterygotes, the
wings. In the abdomen, we find the presence of an ovipos-
itor in females. In addition to the macro-scale features
mentioned above, other defining features of the Insecta
include: the loss of musculature and the presence of the
Johnsonton's organ in the antenna, loss of articulations
between the coxae and the sterna, sub-segmentation of
the tarsus into units called tarsomeres, articulation of the
pretarsal claws with the apical-most tarsomere [5], and
the presence, at least primitively, of a long terminal fila-
ment [6]. Insects are one of only four lineages of animals
with powered flight, the others being pterosaurs, birds,
and bats. Wings refine insect design, vastly improving
mobility, dispersal, and complex behaviors to adapt to
environmental challenges. It is widely held that insects
evolved flight just once, at least 100 million years before
pterosaurs, perhaps 170 million years ago [5]. Other note-
worthy features include the development of the posterior

tentorium into a tranverse bar, and metamorphism and
segmentation of metameres [7,8].

It is likely that the specialized features of the Insecta clade
are based on components specific to its proteome. Char-
acterization of this protein set should improve under-
standing of the molecular basis for the diversification of
insects and their extensive success in ecological niches.
Toward elucidating this molecular basis, we have charac-
terized the eukaryote and insect proteomes. The large
number of eukaryote genome sequences now available,
including various insect genomes, makes it possible to
characterize proteomes computationally. In this work, we
utilized the insect genome sequences of fruit fly, mos-
quito, silk worm, beetle, honeybee, locust ESTs, and the
non-insect eukaryote genomes of nematode, human, and
yeast. (The insect-species in our study cover holometabolous
and hemimetabolous development.) Since our approach
utilizes genome sequence for approximating the pro-
teome, the resolution of the proteome characterization
improves as more genomes become available. This rapid
characterization of proteomes through computation facil-
itates rational hypothesis generation and experiment
design in applied research in many areas, such as biodiver-
sity, agriculture and human health.

Results
Insect and Eukaryote protein sets
We modeled the insect proteome by selecting the subset
of Drosophila protein sequences with homology to pre-
dicted genes in all insect-species studied here. Similarly,
we defined the subset in Drosophila common to the
eukaryote species studied here: mosquito, silkworm, bee-
tle, honeybee, human, nematode and yeast. Because at
this time it is not possible to definitively determine the
eukaryote and insect proteomes, estimates are useful for
comparative assessments. Our protein sets were derived
from a collection of 13,525 protein sequences established
for Drosophila melanogaster, which we reduced to 10,018
orthologous groups; proteins with significant similarity
were considered as singletons in our processing, since par-
alogs may have arisen after speciation.

To determine the proteins in the Drosophila orthologous
groups common to all insects studied here, called the
insect core set, we used predicted proteins from insect
genome sequences and EST sequences. We obtained 1346
orthologous groups from the intersection of the whole
genomes of five holometabolous insects (see Methods). One
aspect of our approximation is to use homologs to Dro-
sophila proteins to characterize proteomes, implicitly
assuming that function follows structure. This could con-
tribute to differences in our characterization from the
actual proteome, but it does not significantly detract from
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our use of the characterizations. We discuss further impli-
cations of our approximation in more detail below.

Using the insect-core protein set, we removed proteins
with significant similarity to any genome sequence in
yeast, human, and nematode (see Methods). The remain-
ing 154 orthologous groups (with 360 proteins) form the
insect-specific set, and 73 of these groups are represented in
the hemimetabolous insect locust ESTs [see Additional file
1]. The insect-specific set contains proteins with homol-
ogy evidence to all insects studied here; in addition, these
sequences are without significant similarity to the non-
insect species. Since we are interested in genes and pro-
teins in insects which developed in insects after their
divergence from other eukaryotes, we searched entire
non-insect eukaryotic genomes in alignments with the
insect-core proteins in order to exclude remnants of com-
mon ancestral genes. To refine the insect-specific proteins,
we removed proteins with similarity to non-insect pro-
teins in the NCBI protein database as described in Meth-
ods (Figure 1). This reduced the 360 candidate insect-
specific proteins to the final insect-specific set consisting
of 51 proteins [see Additional file 2].

We found 466 proteins with homology to all eukaryotes
considered in this study using methods similar to those
above [see Additional file 3].

As the eukaryotes used in this study are all opisthokont,
this set of proteins should be properly considered
opisthokont core proteins. Many of these eukaryotic core
proteins – the opisthokont core proteins – are involved in
housekeeping or general metabolic processes. We also
defined 1850 proteins as Drosophila specific by eliminat-
ing proteins homologous to other insect proteins as dis-
cussed in Methods (Figure 2).

GO annotations and functional categories
We categorized proteins in the eukaryote (466 groups in
opisthokont) and insect-specific sets (154 groups) using
high-level gene ontology categories with results shown in
Figure 2. In both the eukaryote and insect-specific sets,
metabolic proteins constituted the highest fraction, 25%
and 20%, respectively. Disproportionately represented
categories are interesting to consider for candidate pro-
teins that confer distinguishing characteristics. In the
eukaryote/opisthokont set, genes responsible for proc-
esses such as cell division, cell motility, cell cycle, repro-
duction and cellular process are more highly represented
by factors from about two to twenty. These proteins and
their respective functional categories may distinguish
insects less from eukaryotes/opisthokont than those pro-
teins in categories that have a significant representation in
the insect-specific set and are underrepresented in the
eukaryotic/opisthokont set. These more highly repre-

sented categories in the insect-specific set are: larval devel-
opment (2% in opisthokont, 4% in insect); defense
response (0 in opisthokont, 6% in insect); and stress
respone (0.2% in opisthokont, 6% in insect). What's
more, a significant number of the insect-specific proteins
were found to be related to pheromone/odorant binding
proteins (OBP), insect cuticle proteins, and proline-rich
proteins [see Aditional file 2].

Discussion
Biological process categories
Our analysis of the eukaryote/opisthokont core and insect-spe-
cific protein sets was based on functional categories repre-
sentative of high-level GO designations. Metabolism is
the largest category of our eukaryotic/opisthokont core
and of the insect-specific proteins. Significantly larger cat-
egories for the insect-specific proteins relative to the
eukaryote core are stimulus and defense response (Figure
3.). A representative insect-specific gene in the stimulus
response category is PedIII/CG11390 which has been
reported to function in sensory perception [9]. In the
eukaryote/opisthokont core proteins, the more highly
represented insect-specific categories are not pronounced
fractions thereby highlighting the insect-specific proteins
as candidates for specialized roles. In the eukaryote/
opisthokont core, other housekeeping processes such as
cellular division, cell cycle and cellular organization proc-
esses constitute a larger fraction of the total protein set.
The disproportionate distribution of the eukaryote/
opisthokont core and insect-specific sets may be at the
very foundation of insect evolution. It is important to
note that the disproportionate distributions of functional
types of proteins between insects and eukaryotes/
opisthokont may be caused to some degree by the meth-
odology; the small number of proteins in the insect-spe-
cific core may be caused by the limited number of insect
genomes used, artificially underrepresenting the insect
proteome. However, assuming an approximately repre-
sentative distribution of unrepresented proteins makes it
unlikely that the overrepresented categories are invalid.

The five insects with whole genomes are all holometabo-
lous and might not be representative of all insects. At
present, a complete genome sequence for hemimetabo-
lous has not been sequenced, most likely because hemi-
metabolous insects often have large genomes (more than
2 gigabases) [10]. Fortunately, 45,474 high quality EST
sequences from the hemimetabolous insect migratory
locust permit us to perform analysis with all insects [11].
We determined the insect-specific orthologs in the locust
ESTs to arrive at a collection of six sets of insect-spectific
proteins. Our analysis found the functional distribution
of the orthologous proteins in of the six insects to be sim-
ilar with the functional distribution of the largest set from
the five holometabolous insects [see Additional file 2].
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We have noted above, the computed insect-specific pro-
tein dataset is an approximatation dependent on available
genome sequence. Inclusion of additional genomic data
could alter the protein set. The lack of many representative
outgroups might causes false positives, i.e. some proteins
might be inaccurately included in our list. For example,
the gene CG6895 related to immune function is identified
as an insect-specific gene in this study, but its homolog
was recently reported in the sea urchin [12]. Improved
quality of genome sequences and gene annotations for the
insects used in this study will improve the accuracy of our
computed proteins sets [13,14].

Molecular function categories
A considerable number of the 51 insect-specific proteins
were found to be related to insect cuticle proteins and
pheromone/odorant binding proteins (OBP) [see Addi-

tional file 2]. Molting and metamorphosis are crucial
processes in the developmental history of the insects
involving cuticular proteins. Cuticular proteins are
involved in important composite structural materials for
insect cuticles, which provide protection, support, and
locomotion; these prevent water loss via a wax layer, pro-
vide sites for waste product deposition, and protect from
ultraviolet radiation [15]. Olfaction is essential to insect
survival and reproduction, such as in location of food
sources and mate selection. These olfactory driven behav-
iors contribute significantly to the ability of insects to
adapt to the environment. The odorant-binding proteins,
which compose the insect olfactory system, are involved
in the recognition of odorants of plants by insects [16,17].
The pheromone binding proteins (PBP), abundantly
present in the sensillum lymph of pheromone-responsive
antennal hairs, are thought to be important in the recog-

Flowchart of computational analysisFigure 1
Flowchart of computational analysis. The pipeline was based primarily on genome comparisons; insect core proteins 
were distilled from four insects putative protein sets, and were searched against non-insect genomes to arrive at the insect-
specific proteins and eukaryote/opisthokont core proteins. Also see Figure 2.
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nition and discrimination of species-specific pheromones
[18,19]. The olfactory system in insects evolved as a
remarkably selective and sensitive system, approaching
the theoretical limit for a detector. Even a single pherom-
one molecule is enough to elicit impulses at the olfactory
neuron [20,21]. The large number of odorant and olfac-
tory proteins in the insect-specific set suggests that in the
evolution and diversification of insects, communication
and adaptation with the environment played key roles in
shaping their morphological and physiological character-
istics.

Other insect-specific proteins in our insect-specific set
have been found essential to development through exper-
imental procedures [22-25], supporting our insect-spe-
cific proteome characterization. Moreover, these have
been found to be active in insects and are of interest for
evolutionary reasons including their suspected roles in

diversification. For example, the gene sinuous (CG10624),
which is active in tracheal system development, can par-
tially rescue the tracheal defects of sinuous mutants [22].
The Exuperantia (Exu) protein in our insect-specific set is
the earliest factor known to be required for the localiza-
tion of bicoid mRNA to the anterior pole of the Drosophila
oocyte. Exu is highly enriched in the sponge bodies; muta-
tion of exu in Drosophila may result in defection of embry-
onic development [23]. Larval serum proteins (Lsp),
another type of protein in the insect-specific set, belong-
ing to the hemocyanin superfamily. This family is thought
to function as storage proteins that provide amino acids
and energy during non-feeding periods of immature and
adult development [24,25].

Low mutation rate of insect-specific proteins
It is widely accepted that all insects have arisen from a
common ancestor that diverged from an aquatic arthro-

Clustering Drosophila proteinsFigure 2
Clustering Drosophila proteins. Drosophila proteins were clustered into paralogous groups based on their sequence similar-
ity. Using methods described in the text, 1850 groups of Drosophila specific proteins make up 18% of fruitfly paralogous groups, 
and 1346 (13%) insect core proteins were identified. In the insect core set, 466 groups (5%) can be found in other eukaryotes, 
and 154 groups (1%) are insect specific.
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Gene Ontology classificationsFigure 3
Gene Ontology classifications. Classification of insect specific proteins and eukaryote/opisthokont core proteins according 
to the biological process characterizations of the Gene Ontology System. Eukaryote/opisthokont core proteins are graphed with 
green bars and insect-specific proteins are shown with red bars. Plots show percentage differences for each category.
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pod more than 390 million years ago, and that they coe-
volved with a specific plant group [26]. Homologs to the
insect-specific proteins should be present in the ancestor
and be conserved by natural selection. To test this, we ana-
lyzed the ratio of the number of nonsynonymous substi-
tutions per nonsynonymous site (Ka) to the number of
synonymous substitutions per synonymous site (Ks) for
the insect-specific proteins in Drosophila; in this analysis
eukaryote/opisthokont core proteins and Drosophila spe-
cific proteins were used as controls. The high percentage
of insect-specific proteins have a Ka/Ks ratio lower than
0.5 (Figure 4) suggesting negative selection in these pro-
teins [27]. As non-synonymous changes are more likely to
be deleterious, under negative or purifying selection pres-
sure, these substitutions were eliminated in functionally
active proteins, which may have provided a steady protein
complement for insects [28]. Furthermore, the higher Ka/
Ks ratio of insect-specific proteins is on average greater
than that of the eukaryote/opisthokont core proteins. This
may reflect the later appearance of insect-specific set,rela-
tive to proteins in the common eukaryote ancestor.

To determine whether these conserved genes appeared
with low redundancy, we ascertained the number of para-
logs in the insect-specific genes with the number of para-
logs in the eukaryote/opisthokont core genes. Gene
duplication is considered one of the principal mecha-
nisms in generating new genes and redundant sequences
of genes with the same function [28]. Duplicated
sequences of established genes often degrade to pseudo-
genes because purifying selection preserves essential cod-
ing sequence, while non-essential duplicates may lose
function through random mutations favorable to natural
selection. The relationship between duplicates and their
functional ancestor is not fully understood. Some authors
suggest that the stronger selective constraints on house-
keeping genes relative to tissue specific genes is not due to
their lower genetic redundancy [29]. However, our results
agree with the observation of constrained duplication
since most of the eukaryote/opisthokont core and insect-
specific proteins are without paralogs (Figure 5). This sug-
gests that genes with established function may tend to
avoid duplication, thereby tolerating fewer genetic pertur-
bations. However, the insect-specific proteins are inclined
to arise from genes producing a greater number of para-
logs, which is in contrast to proteins in the eukaryote/
opisthokont core. This may confer insect adaptation to
changes in the environment. For example, CG16799 and
CG6421 have been found to function in defense response;
both arise from paralogous groups in Drosophila with ten
and four members, respectively.

Our analysis suggests that our working set of insect-spe-
cific proteins had been shaped by strong natural selection,
with environment as one of the selective influences.

Conclusion
An analysis of the genetic basis of evolution and develop-
ment in insects was performed by characterizing the
eukaryote/opisthokont core and insect-specific proteomes
through genome analysis. Studies of the conservation and
divergence between different organisms can provide clues
to the molecular basis of species diversity and adaptation.
The characterization of proteomes based on genome
sequences provides a rapid method to approximate and
update putative proteomes as genome sequences become
available. Using this approach, we isolated fifty insect-spe-
cific proteins, many supported by experimental studies.

Proteins related to stress and immune responses consti-
tute a significantly larger fraction of the proteins in our
characterization of the insect-specific proteome, in con-
trast to our characterization of the eukaryote/opisthokont
core proteome. The large component of olfaction and
cuticle development proteins specific to the insect sug-
gests the significance of communication and adaptation
to the environment in insect evolution. Purifying selec-
tions in the evolution of insects were indicated in the
analysis of nonsynonymous-to-synonymous substitution
ratios, with a larger fraction of multi-paralog proteins pos-
sibly providing insects with an adaptive advantage over
other eukaryotes. Due to the nature of our computata-
tional method, our insect-specific proteins can increase or
decrease with the inclusion of additional genome data
from insects and non-insect species.

Methods
Sequence data
The protein sets in this work were founded on 18,282 pro-
tein sequences of Drosophila melanogaster [30] obtained
from Ensembl [31]. Genes were predicted in genome
sequences for Anopheles gambiae (mosquito) [32] and
Bombyx mori (silkworm) [33,34]. Proteins of Tribolium cas-
taneum and Apis mellifera [35] were obtained from
HGSC[36]. Homologs to the insect protein sequences
were isolated in annotated genomes of human [37], yeast
[38] and nematode [39]. We obtained the Anopheles gam-
biae (mosquito) genome annotated with 16112 proteins
(anopheles-21.2b) from Ensembl. The annotated human
genome sequence draft (hg17) was obtained from UCSC
[40], the worm genome (celegans-21.116a) from
Ensembl, and the yeast genome from Saccharomyces
Genome Database SGD [41]. Proteins where obtained for
D. yakuba from FlyBase for use in Ka/Ks analysis. The
locust (Locusta migratoria) UniGene collection with
12,161 ESTs and cDNA sequences was obtained from
LocustDB [11,42].

Sequence analysis
Sequence alignment was performed with BLAST [43]
using the BLOSUM62 scoring matrix and default parame-
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Ka/Ks distributionFigure 4
Ka/Ks distribution. Nonsynonymous and synonymous substitution rates (Ka and Ks) were estimated for Drosophila specific, 
insect-specific, and eukaryote/opisthokont core proteins. Drosophila specific proteins are shown in black, insect-specific pro-
teins in red and eukaryote/opisthokont core proteins in green. (a) Cumulative percentage of Ka/Ks ratios; (b) Ka/Ks versus Ks 
ratios.
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ters. Gene prediction was performed using the gene-finder
algorithm BGF used in BGI GeneFinder [44] based on
GenScan [45] and FgeneSH [46].

Paralog definitions
We grouped homologous protein sequences into paralo-
gous groups. Protein sequences were considered paralogous
if their alignment had an E-value less than or equal to 1e-
5 and the alignment covered 70% or more of one of the
aligned proteins. We represented paralogous groups by
the longest member in the group, with the size of the
group determined by the number of unique sequences in
it.

Proteome characterizations using genomic based pipeline
We defined protein sets based on Drosophila proteins in
our processing pipeline to characterize proteomes. Simi-
larity with genome sequences, predicted proteins, and
ESTs was used to cull sets determined in the processing
pipeline as described below. Thus, it is important to note
that the various protein sets we computationally arrive at
characterize insect and eukaryote proteomes through
homology.

The insect core set was arrived at by selecting proteins in
the Drosophila protein data set with similarity to mosquito
and silkworm protein sequences predicted by genome
analysis, and with similarity to the locust EST sequence
data. Protein sequences for predicted genes in silkworm
and mosquito were aligned against fruit fly using blastp
[43] and considered homologous with an E-value cutoff
of 1e-5 or less; in addition, we required that the length of
the aligned sequences be within 70% of each other (Figure
5).

The insect-specific protein set was derived from the insect
core set, where proteins without significant alignment to
the genome sequences of human, nematode, or yeast were
included (E-values of 1e-5 or less). In addition, sequences
in the insect core set were retained for the insect-specific
set if any alignment covered less than 30% of the insect
protein sequence. The insect-specific proteins were further
assessed against the NCBI protein database, retaining
sequences without significant similarity and less than
30% alignment coverage with all non-insect proteins (Fig-
ure 5).

Proteins in the insect core set with an E-value cutoff of 1e-
5 or less in alignments with each of the non-insect eukary-
otes, and involving 50% or more of the insect protein in
the alignments, were included in the eukaryote core pro-
tein set.

Interpro annotation of insect proteins
Functional annotations for proteins in each of the work-
ing insect proteomes were determined using the annota-
tion tool Interproscan [47] and Gene Ontology
nomenclature [48]. GO terms were downloaded from
Gene Ontology Consortium.

Ka/Ks ratio calculation
We selected the most similar orthologs to Drosophila mel-
anogaster in the Drosophila yakuba proteome, YN00 [49], to
calculate Ka/Ks ratios.
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Copy numbers of insect-specific proteins and eukaryote/opisthokont core proteinsFigure 5
Copy numbers of insect-specific proteins and eukary-
ote/opisthokont core proteins. This plot shows the dis-
tribution of proteins by copy numbers of insect-specific 
proteins and eukaryote/opisthokont core proteins, insect-
specific proteins in red and eukaryote/opisthokont core pro-
teins in green.
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