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Abstract

Synchronization is a very important part of every digital communication receiver. While in bandpass

coherent transmission, frequency and phase synchronization play a very important role in reliable

transmission, symbol timing recovery is a necessary part ofevery baseband and bandpass coherent

receiver. This dissertation deals with the problem of synchronization in the presence of fading and

interference.

First, the performance of an automatic frequency control loop is investigated using two param-

eters of average switching rate and mean time to loss of lock.These parameters are derived in

closed-form or as integral-form formulas for different scenarios of modulated and unmodulated sig-

nals in different fading channels when there is one interference signal present at the input of the

AFC. Then, the results are generalized to the noisy fading scenario and it is shown that in Rayleigh

fading case, the performance of AFC becomes better when the desired signal is noisier.

In the second part, the problem of symbol timing recovery is investigated in systems that are

subject to intersymbol interference and non-data-aided maximum likelihood synchronizer is derived

in these channels. Then, a new simple bound on the performance of synchronizers is derived and

compared to the previously known lower bounds. It is shown that while this lower bound solves

the shortcomings of the well known modified Cramer-Rao boundat small values of signal-to-noise-

ratio, it is much easier to compute compared to another well known bound, the detection theory

bound.
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Chapter 1

Introduction

In a digital link, data is transmitted using a sequence of pulses sent from the transmitter and received

at the receiver. The ultimate task of a receiver is to find a replica of the data that is conveyed by

the received pulses. In order to extract data from the received signal, the receiver needs to know the

time base of the signal also referred to as reference parameters [1]. Synchronization is the process of

finding the reference parameters of the received signal. In the process of detection, three reference

parameters play a very important role. These parameters arefrequency, timing, and phase.

In coherent bandpass digital communications, the first stepof detecting the transmitted data is

to extract the baseband data signal using a local reference [2]. This local reference should regen-

erate the frequency and phase of the received signal. The circuits that perform this task are called

carrier synchronizers. One of the most important circuits that is used to recover the phase of the

received signals in coherent receivers is the phase-lockedloop (PLL). A PLL is a control system

that automatically adjusts the phase of a locally generatedsignal to track the phase of the received

signal. This circuit has two modes of operation [3, Ch. 4]. Inthe tracking mode, the state variables

of the PLL have values close to the steady state values. However, the initial values of these state

variables might be very different from their steady state values. In the acquisition mode, the initial

values of the loop are brought to the tracking mode. Althougha PLL is a near optimum tracking

device [3], it has a poor performance in the acquisition mode. In order to overcome this problem, in

many coherent receivers, an automatic frequency control (AFC) loop is used as an acquisition aid to

the PLL. An AFC loop is used to control the frequency of a received signal. The usage of the AFC is

not limited to coherent detection. Since an AFC is more robust to link disturbances than a PLL [4],

in noncoherent receivers, it is used as a necessary part of the digital link to control the frequency of

the received signals.

In addition to carrier synchronization, every baseband or bandpass receiver should also perform
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timing synchronization. In the receiver, the output of the demodulator should be sampled periodi-

cally, once in every symbol interval, in order to recover thetransmitted data. The optimum sampling

times correspond to the widest opening of the eye diagram [2]. Since the propagation delay from the

transmitter to the receiver is generally unknown, symbol timing recovery is needed in every receiver

in order to determine the optimum sampling location to achieve reliable detection.

Symbol timing recovery can be accomplished in several ways.One way is to synchronize the

transmitter and receiver clocks to a precise master clock. In this scenario, the receiver should con-

sider the time delay between the transmitter and receiver and compensate for this relative time delay.

This method can be used in radio transmission systems that work in the very low frequency band

(below 30 kHz) [2].

Another method is to transmit the clock frequency along withthe data. The receiver can use a

narrowband filter to extract the clock frequency and thus theclock signal for sampling. Although this

method is very simple, it consumes some of the transmitter power to transmit the clock signal and

also a fraction of the frequency bandwidth should be allocated for transmitting the clock signal. This

method is used in telephone transmission systems which use large bandwidths to transmit signals

from different users [2].

Another method is to extract the clock signal from the received signal. This is the method that

is used in many wireless communication systems to achieve synchronization.

In wireless communications, synchronization is a challenging task as a result of many factors

such as multipath fading, interference, and noise. Multipath fading occurs as a result of construc-

tive and destructive addition of multipath signal components and not only affects the power of the

received signal, but also adds a random delay to the signal. One of the most important types of in-

terference is cochannel interference (CCI). CCI occurs as aresult of interrupting signals from other

users operating in the same frequency channel. Interference can also occurs as a result of signals in

adjacent channels interfering with the desired signal. This type of interference is called the adjacent

channel interference (ACI). Another important type of interference is intersymbol interference (ISI).

The ISI occurs when symbols of a signal interfere with other symbols of the same signal. Moreover,

the presence of additive white Gaussian noise in the system is inevitable. Consequently, in address-

ing the problem of synchronization, it is very important to know the effect of these factors on the

performance of the synchronizers in order to design an appropriate and realistic synchronizer.
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1.1 Motivations and Contributions

In a wireless channel, usually there is more than one user andtherefore the presence of more than

one signal at the input of a receiver is highly expected. Mostof these signals are filtered at the

input of the receiver, however, some of these signals might pass through the filter as a result of

inadequate filtering. The signals that have passed through the filter can be signals sent with the

same carrier frequency as the desired signal (CCI), or they can be signals sent in adjacent channels

(ACI). One should note that the carrier frequency of the interference signals that are sent through

the same channel as the desired signal changes from its original value before reaching the receiver.

This change in the carrier frequency of the signals can be as aresult of the effects of the wireless

channel such as Doppler frequency shift [5] or it can be as a result of the frequency drift of the

local carrier oscillators in the transmitters. Note that the local oscillators of the transmitters of the

interference signals and the desired signal are different and also the paths they take to reach to

receiver are different. As a result, either the CCI signals or the ACI signals that have passed through

the bandpass filter of the receiver and the desired signal, would have different frequencies.

It is known that if there are two signals at the input of an AFC,the AFC locks on the signal with

larger amplitude [6, Ch. 19]. The amplitude of the received signals depend on several factors such

as the modulation, fading, and noise. Since these factors change with time, the relative amplitudes

of the interference signal and the desired signal also change with time. This change in the relative

amplitudes of the received signals causes AFC jumps at the receiver. Every jump from the received

signal to the interference signal and vice versa, generatesa transient in the filters of the receiver

which corrupts the performance of the filters and produces aninternally generated outage in the

receiver. In addition, these jumps consume energy in the circuits of the receiver and therefore the

power consumption of the receiver increases. One measure that can quantify this effect is the average

switching rate (ASR). The ASR shows how often a jump occurs inan AFC from the desired signal

to the interferer and vice versa. By having this measure and the filter characteristics of a specific

receiver, one can find the average time that the receiver is inoutage as a result of these transients.

Another way that an outage may occur in a receiver is if the AFClocks on the interferer instead of

the desired signal. Therefore, for this period of time, the output of the AFC is not reliable. One

parameter that can be used to characterize this behaviour ofan AFC is the mean time to loss of lock

(MTLL). This parameter gives the average time that an AFC remains locked on the desired signal

and can be considered as a measure of the reliability time of the AFC’s output.

Although the outage generated by the channel is well investigated in the literature, there is a
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lack of reported results on the internally generated outageof the receiver. In reference [7], the

ASR and the MTLL of an AFC loop have been derived when the desired signal and the interferer

are unmodulated and are subject to Rayleigh fading. Meanwhile, wireless systems often operate

in fading that is not Rayleigh distributed. For instance, many real world fading channels are better

modeled by the Rician and Nakagami-m distributions. Furthermore, in many scenarios, the desired

signal and the interferer pass through different transmission environments and therefore they can

have different fading statistics [8]–[11]. For instance, if there is a line-of-sight (LOS) path between

the transmitter of the desired signal and the receiver, the channel of the desired signal is better

modeled by Rician fading. Meanwhile, there may not be a dominant multipath reflection in the

interferer’s channel. In this case, the fading affecting the interferer is better modeled by a Rayleigh

(pure scattering) or a Nakagami distribution. Other dissimilar channel scenarios may appear as

well when there is not a LOS path between the transmitter of the desired signal and the receiver.

Furthermore, practical signals are modulated and the time behaviour of the modulating signals can

affect the AFC performance significantly.

In this thesis, the result in [7] for the ASR of an AFC in Rayleigh/Rayeligh scenario is gener-

alized to include the case of modulated carriers. Moreover,using a different method from that em-

ployed in [7], the ASR and the MTLL of an AFC in Rician/Rician and Nakagami/Nakagami fading

are derived and several cases regarding the modulation of transmitted signals are considered. More-

over, the performance of an AFC in dissimilar fading channels, Rician/Rayleigh, Rayleigh/Rician,

Rician/Nakagami, Nakagami/Rician, Nakagami/Rayleigh, and Rayleigh/Nakagami are investigated.

And finally, the performance of an AFC in the presence of noisein Rayleigh/Rayleigh and Ri-

cian/Rician channels are considered and closed-form expressions and integral form formulas are

derived for the ASR and the MTLL of an AFC.

Symbol timing recovery has been widely investigated duringthe last decades and different bit-

synchronizers have been introduced in the literature (for areview see [12] and [1]). One of the well

known methods that is widely used to estimate the timing offset of a received signal is the max-

imum likelihood (ML) method [13]. The application of this method in most scenarios leads to a

rather complicated solution; however, its optimality makes this method an appropriate benchmark

to which other synchronizers can be compared. The ML bit-synchronizers are derived for an inter-

symbol interference (ISI)-free channel in [14]–[16]; however, the application of this method in the

practical scenario in which symbols are subject to ISI, needs more clarification. In several papers,

the ML synchronizers derived in [14]–[16] for an ISI-free channel, have been applied to ISI channels

without any modifications, because of their simplicity, which has lead to some misunderstandings.
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For example in [17], the authors investigated the performance of some zero-crossing (ZC)-based

synchronizers in ISI channels and instead of comparing the results with the ISI ML synchronizer,

they compared the results to the ISI-free ML synchronizer; consequently, they concluded that the

ZC-based methods perform better than the ML synchronizer inmany practical cases. In order to

clarify this matter, the true ISI ML synchronizer is derivedin the last chapter of this thesis and its

performance is compared to the performance of an ML synchronizer derived for an ISI-free channel

and the ZC-based synchronizer introduced in [17].

Finding bounds on the performance of a synchronizer has always been an interesting subject,

since these bounds can be used as benchmarks to which the performance of practical synchronizers

can be compared. A fundamental lower bound is the Cramer-Raobound (CRB) [13], [18]; how-

ever,the computation of a true CRB is a challenging task in many practical cases. An alternative

lower bound that is widely used in the literature is the modified Cramer-Rao bound [1], [19]. Al-

though the CRB and MCRB provide useful bounds for moderate tohigh values of signal-to-noise

ratio (SNR), they are known to have some shortcomings particularly at small values of SNR [13],

[20], [21]. Another lower bound on the MSE of parameter estimators which has its origins in detec-

tion theory was introduced in [22]–[24]. This bound has beenused to estimate the random delay of

a single deterministic signal [22]–[24]. Moreover, in [21]it was used in the symbol timing recovery

problem for a received signal consisting of a random sequence of pulses in an ISI-free channel. It

was shown that this lower bound does not suffer from the shortcoming of the MCRB at small values

of SNR. While the detection theory bound (DTB)1 in the ISI-free scenario can in some instances be

solved in closed-form [25], its application to the symbol timing recovery problem in an ISI channel

requires computing a double integral numerically plus an expectation over all the possible sequences

of the received signals [21], which can sometimes only be done using the Monte Carlo method. In

this thesis, a lower bound on the DTB is derived for an ISI channel which only requires computing

a single definite numerical integral on the interval[0, 1]. This lower bound on the DTB (LDTB) is

compared to both the DTB and the MCRB and it is shown that not only does this bound preserve the

appropriate behaviour of the DTB at small values of SNR, but it is also almost as tight as the MCRB

for moderate values of SNR.

In the last chapter of this thesis, the true ISI ML synchronizer is derived and its performance is

compared to the ISI-free ML synchronizer. It is shown that the use of the ISI-free ML synchronizer

as a lower bound in an ISI channel, as has been done in [17], is not correct. Moreover, the DTB is

1The term detection theory bound (DTB) was introduced in [21]to concisely denotate this bound. We use this nomencla-
ture here.
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applied to timing estimation in ISI-channels and it is shownthat it is a very tight lower bound to the

ML synchronizer. In addition, a lower bound is derived for the DTB, which is much simpler than

the DTB, does not suffer from the shortcomings of the MCRB at small values of SNR, and is almost

as tight as the MCRB at moderate values of SNR.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 reviews the background of this study. In the first

part of this chapter, the automatic frequency control loopsare described and previous works on the

performance of these devices are reviewed. Then, the channel models are reviewed and different

channels that are used in this thesis are introduced. In the second part, the problem of symbol timing

recovery is presented and maximum likelihood synchronizers are explained in detail. Then, the

bounds on the performance of symbol timing synchronizers are reviewed.

In Chapter 3, the mean time to loss of lock and the average switching rate of an automatic

frequency control loop operating in fading in the presence of a single interferer are derived. Closed-

form expressions and integral form formulas are derived forthe ASR of an AFC for the general

case of modulated carriers as well as important special cases of similar modulations and unmodu-

lated carriers. The MTLL is also derived in closed-from for the case of unmodulated carriers. The

general results include, as special cases, some previous more restricted results. Fading channels are

assumed to be independent non-identically distributed (i.n.d.) with Rayleigh, Rician and Nakagami-

m distributions while the special case of independent identically distributed (i.i.d.) channels is also

considered. Corresponding numerical examples are provided and discussed to illustrate the results.

In Chapter 5, the mean time to loss of lock and the average switching rate of an automatic

frequency control (AFC) loop are derived for the case of two received signals in dissimilar fading

channels. The channels are assumed to have Rayleigh, Ricianand Nakagami-m distributions. Nu-

merical examples are provided to illustrate the effect of these fading scenarios on the performance

of an AFC in the presence of cochannel interference.

In Chapter 6, the performance of an automatic frequency control (AFC) loop in a noisy fad-

ing channel when an interference signal is present at the input of the AFC is studied. Independent

non-identically distributed (i.n.d.) channels with Rayleigh and Rician fading are considered. The

received signals are assumed to be narrowband and linearly modulated while the analysis is appli-

cable to the unmodulated scenario as well. Closed-form expressions and integral form formulas are

derived for the mean time to loss of lock (MTLL) and the average switching rate (ASR) of an AFC.
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Numerical examples are provided to illustrate the effects of noise and slow fading on the perfor-

mance of an AFC in the presence of an interferer. It is shown that in some scenarios, an AFC has a

better performance if the desired signal is corrupted by more noise.

In Chapter 7, the maximum likelihood (ML) criterion for symbol timing estimation is derived

for a sequence of pulse amplitude modulated pulses in the presence of intersymbol interference (ISI)

and Gaussian noise. The performance of this synchronizer isused as a benchmark to evaluate the

performance of other synchronizers in a practical scenario. It is shown that a previous lower bound

based on the ISI-free ML synchronizer cannot be used to lowerbound the mean square error (MSE)

of bit-synchronizers. A detection theory bound (DTB) is applied to the symbol timing recovery

problem in an ISI channel and it is shown that this bound is a tight lower bound on the MSE of

the ML synchronizer. A simple lower bound on this DTB is derived and it is shown that the simple

bound is almost as tight as the well known modified Cramer-Raobound (MCRB) at moderate values

of SNR while it does not suffer from the shortcomings of the MCRB at small values of SNR.
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Chapter 2

Background

2.1 Automatic Frequency Control

Automatic frequency control loops are used in digital receivers to control the frequency of the mod-

ulated received signals. In its simplest form, the block diagram of an AFC loop is shown in Fig.

2.1. As can be seen in this block diagram, the basic components of an AFC consist of a frequency

difference detector (FDD), a loop filter, and a voltage controlled oscillator (VCO). When the input

signal enters the AFC, the frequency difference detector generates an error voltage which is propor-

tional to the difference between the carrier frequency of the received signal and the local frequency

which is provided by the VCO. Then, the output of the FDD is filtered by the loop filter and then

is applied to the VCO to drive the local frequency of the VCO towards the carrier frequency of the

received signal. When the local frequency of the VCO equals the carrier frequency of the received

signal, the error voltage is equal to zero and the system remains in steady state. In practice, these

steps may be implemented digitally, since digital implementation of AFC is often more stable and

reliable; however, one should note that if the sampling rateis sufficiently high to avoid aliasing, the

analog and digital models will be similar [26].

In [27], two FDDs are introduced that can work in small loop bandwidths and large initial fre-

quency offsets. Reference [28] deals with application of FDDs in the systems that the carrier fre-

Frequency

Difference

Detector

Loop

Filter

Voltage

Controlled

Oscillator

Input

Signal

Figure 2.1. The block diagram of an automatic frequency control loop.
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quency offsets are limited to a fraction of the data rate. In [4], [29]–[32] quadricorrelator FDDs are

described that can work with frequency offsets as large as the data rate and digital implementations

of these FDDs are presented in [33]. In [34] a FDD based on dual-filter detectors is described. In

references [3], [26] FDDs derived from maximum likelihood (ML) principles are discussed.

The performance of an AFC in an interference-free noisy environment has been previously in-

vestigated in the literature. In references [4], [26], [35], [36], the variance of the frequency error has

been used to evaluate the tracking performance of an AFC in the presence of additive noise. In [26]

and [36], the effect of additive noise on the S-curve of some class of FDDs in automatic frequency

control loops is discussed. Moreover, some formulas are derived for the variance of the frequency

error in these AFCs to evaluate their performance in the presence of additive Gaussian noise. In [4]

and [35], the AFC loop tracking performance is studied for several AFC loops and the variance of

the frequency error is derived for these loops. In [37] and [38], the probability of loss of lock caused

as a result of noise has been used to investigate the performance of an AFC. Moreover, in [39], a

probability density function is derived for the frequency control loops.

However, noise is not the only disturbance that can affect the performance of an AFC. Since

there are several users in a wireless channel, the presence of more than one signal at the input of a

receiver is commonplace. In many cases, the signals that usesame frequency channels, reach the

receiver with different carrier frequencies as a result of channel effects such as Doppler frequency

shift or local oscillator drift at the transmitter. If the difference between the carrier frequencies

of these signals is small enough such that they cannot be filtered at the input of the receiver, they

can produce some difficulties for the process of frequency recovery. This issue has been addressed

and investigated in [6] for a single interference signal. Ithas been shown that if the difference

between the carrier frequencies of the desired signal and interference signal is much smaller than

the carrier frequencies and also the modulation is slow, theAFC will lock on the signal with larger

amplitude. In this thesis, this problem is addressed in different fading and noise scenarios to evaluate

the performance of an AFC in the presence of interference, multipath fading, and additive Gaussian

noise.

2.1.1 Channel Model

When a signal is transmitted through a wireless channel, thechannel affect the signal characteristics

and therefore the signal received at the receiver is different from the transmitted signal. Several

models are introduced in the literature to describe the different effects of wireless channels. One of

the most important models that is widely used to characterize the wireless channels is the multipath
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fading. Multipath fading is a result of the constructive anddestructive addition of different multipath

components of the signal. Multipath fading is a frequency-flat fading [40], i.e., all the spectral com-

ponents of the signal are affected similarly by the channel.Since a deterministic model for multipath

fading channels is not available most of the time, these channels are characterized statistically.

In multipath fading channels, if a single pulse is transmitted, the received signal will appear

as a pulse train [5]. The pulses in this train correspond to the line-of-sight (LOS) component or

scatter components associated with an individual scatterer or a cluster of scatterers. Fig. (2.2) shows

a multipath fading channel when there is not an LOS component. The transmitted signal can be

modeled as

x(t) = Re{u(t) exp(j2πfct)} (2.1)

whereu(t) is the equivalent lowpass signal forx(t) andfc is the carrier frequency. In the absence

of noise, the received signal has a model equal to

r(t) = Re







N(t)
∑

n=0

αn(t)u(t− τn(t)) exp [j(2πfc(t− τn(t)) + φDn)]







(2.2)

whereN(t) is the number of multipath components,τn(t) is the delay of each component,αn(t) is

the path gain, andφDn is the Doppler phase shift associated with thenth component.

One should note that this channel has a time-varying nature.This arises as a result of a moving

transmitter or receiver. This movement causes the locationof the reflectors to change in the trans-

mission path and therefore changes the characteristics of the channel. However, these changes are

very slow compared to the constructive and destructive addition of multipath components. Consider-

ing these two classes of changes caused by the channel, the characteristics of the multipath channels

are described using random processes.

The detailed derivation of these characteristics are presented in [2], [5], [41]. If the spread of the

time delay associated with the LOS component and multipath components is small compared to the

inverse signal bandwidth, then these components are non resolvable and cause narrowband fading.

In this scenario, (2.2) can be rewritten as

r(t) = Re

{

u(t) exp(j2πfct)

(

∑

n

αn(t) exp(−jφn(t))

)}

. (2.3)

In order to characterize the channel, we assume the transmitted signalx(t) to be unmodulated with

a random phase offsetφ0. Therefore,

r(t) = Re











N(t)
∑

n=0

αn(t)e−jφn(t)



 ej2πfct







= rI(t) cos 2πfct− rQ(t) sin 2πfct (2.4a)
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Figure 2.2. A multipath fading channel model.

where the in-phase and quadrature components ofr(t) are given by

rI(t) =
N
∑

n=1

αn(t) cosφn(t), (2.4b)

rQ(t) =

N
∑

n=1

αn(t) sinφn(t) (2.4c)

and

φn(t) = 2πfcτn(t) − φDn − φ0. (2.4d)

It has been shown that ifN(t) is large, thenrI(t) andrQ(t) can be approximated as jointly Gaussian

random processes1 [5]. If we assume that the channel parameters change slowly with respect to time,

there is not a dominant LOS component in the received signal,and for each component, the term

2πfcτn changes rapidly relative to all other phase terms in the expression ofφn(t), thenφn(t) is

uniformly distributed in[−π, π] and alsoE[rI(t)] = E[rQ(t)] = 0. Consequently,rI(t) andrQ(t)

are zero-mean Gaussian random processes. Moreover, it can be shown thatE[rI(t)rQ(t)] = 0

and thereforerI(t) andrQ(t) are uncorrelated and since Gaussian, they are also independent. If

1A rigorous derivation might use normalized quantities here. We recall the derivation in [5] where normalization is not
used.
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Figure 2.3. The power of fading in a Rayleigh fading channel in dB.

we assume a variance ofσ2 for both in-phase and quadrature components, the signal envelope

A(t) = |r(t)| =
√

rI(t)2 + rQ(t)2 is Rayleigh distributed [42],

fA(α) =
α

σ2
exp

(

− α2

2σ2

)

α > 0. (2.5)

This multipath fading model is called Rayleigh fading. The amplitude of a Rayleigh fading channel

modeled using Jakes model [41] is shown in Fig. (2.3).

If the channel has a fixed LOS component, then the received signal is the superposition of a

complex Gaussian random component and a LOS component. The signal envelope can be shown to

be Rician distributed [43]

fA(α) =
α

σ2
exp

(

−α
2 + µ2

2σ2

)

I0

(αµ

σ2

)

α > 0 (2.6)

whereµ2 is the power in the LOS component,2σ2 is the power in the non-LOS component, and

the functionI0(·) is the modified Bessel function of the first kind and zeroth order [44]. Fig. (2.4)

shows the probability density function (PDF) of Rician fading for different Rice factors defined as,

K = µ2

2σ2 , andσ2 = 1.

Another model that is widely used in the literature is the Nakagami-m fading [40]. The PDF of

the envelope of fading in this model is

fA(α) =
2mmα2m−1

Γ(m)(2σ2)m
exp

(

−mα
2

2σ2

)

α > 0 (2.7)
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Figure 2.4. Probability density function of Rician fading for different Rice factors.

wherem is the Nakagami-m fading parameter which ranges from12 to ∞. Fig. (2.5) shows the

probability density function (PDF) of Nakagami-m fading for different values ofm andσ2 = 1.

2.2 Symbol Timing Recovery

The problem of symbol synchronization is to find the optimum sampling instances in order to extract

the data from the received signal. For a pulse sequence with apulse rate of1/T , the sampling rate

would be1/T . However, the problem of symbol timing recovery includes finding the timing offset

of the received signal in order to sample at the maximum opening of the eye diagram. The model of

the received signal for a sequence of PAM modulated pulses can be expressed as

x(t, τ) =
∑

i

cig(t− iT − τ) (2.8)

whereg(t) is the received pulse shape,T is the inverse of the sampling rate,τ is the timing offset

which can be modeled as an uniformly distributed random variable in[0, T ), andci is theith trans-

mitted data symbol. We can defineg(t) such that the best sampling instances would be att = kT+τ

for k = 0,±1,±2, · · · . The objective is to estimate the timing offset of the received signal,̂τ . Then

this estimate is used to sample the received signal att = kT + τ̂ to obtain a sequence of samples

{ĉi}. Fig. 2.6 shows the block diagram for a baseband receiver.

If we consider a normalized pulse shape, i.e.,g(t = 0) = 1, then the difference between{ĉi}

and{ci} is only due to the intersymbol interference (ISI). If we haveperfect timing recovery,̂τ = τ ,
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Figure 2.6. The block diagram of a baseband receiver (after [1, Fig. 2.1]).
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then

ĉi − ci =
∑

i6=k

cig(kT − iT ). (2.9)

If the pulses satisfy the Nyquist criterion for zero intersymbol interference [2],g(iT ) = 0 for i 6= 0,

then this term vanishes and̂ci = ci. For bandlimited Nyquist pulses even for very small values of

timing error, the ISI term could be significant. In order to achieve better performance in recovering

the data samples, we should first find an accurate estimate of the timing offset.

Most of the existing algorithms for symbol timing synchronization are derived either through

heuristic arguments or by using maximum likelihood (ML) estimations [1]. Examples for the former

are early-late detectors (ELD) [45], zero-crossing detectors (ZCD) proposed by Gardner [1], Mueller

and Mueller detectors (MMD) [46], the Gardner detector (GAD) [47], and etc.. For a review on the

heuristically derived algorithms one can see [12] and [1]. Since the focus of this thesis is on ML-

derived synchronizers, we review the previous works done toderive ML synchronizers.

2.2.1 Maximum Likelihood Timing Recovery in ISI-free Systems

One of the well known methods that is widely used to estimate the timing offset of a received signal

is the maximum likelihood (ML) method [13]. In [14]–[16] theML estimator of the timing offset

for one symbol interval observation has been derived for binary pulse amplitude modulation (PAM)

in the case that the symbol duration is equal to the inverse ofsampling rate. The model considered

for the received signal in this case is

r(t) = x(t, τ) + n(t) (2.10a)

x(t, τ) =
∑

i

cig(t− iT − τ) (2.10b)

wheren(t) is the additive white Gaussian noise (AWGN) with two-sided spectral density equal to

N0/2, g(t) is the received pulse shape (a pulse that has a length equal toT ), T is the inverse of the

sampling rate andτ is the timing offset which can be modeled as an uniformly distributed random

variable in[0, T ); in this equation,ci is theith transmitted data symbol.

In order to derive an ML estimation forτ , one can consider two classes of methods, decision-

directed (DD) or data-aided (DA) timing estimators and non-data-aided (NDA) estimators. In the

former, the data symbols{ci} are known and can be used to find the timing phase of the received

signal. In the latter, the data symbols are not known, however ci can be modeled as a zero-mean

random variable such that for any two transmitted data symbols,E[cicj ] = Cδ(i − j), whereE[·]

denotes the expectation operation,δ(·) is the Kronecker delta function andC is the energy of each

bit.

15



When the the binary modulated process is characterized overan exact bit interval,T , x(t, τ) is

either equal tog1(t, τ) = g(t) org2(t, τ) = −g(t). Using the Karhunen-Loéve (KL) expansion [13],

and considering a complete orthonormal basis{ψi(t)}, one has

gk(t, τ) =
∞
∑

i=1

gki(τ)ψi(t) (2.11a)

gki(τ) =

∫ τ+(j+1)T

τ+jT

gk(t, τ)ψi(t)dt. (2.11b)

Similarly, r(t) andn(t) can be represented using the KL expansion during the interval [τ + jT, τ +

(j + 1)T ), conditioned onτ . If the kth signal waveform is received during the one observation

period, by denoting the truncated vector representation ofthese signals by a prime, one has

r ′ = g′k + n′. (2.12)

The maximum likelihood synchronizer criterion is

τ̂ = argmax
τ̃

P (r ′|τ) (2.13)

whereP (r ′|τ) is the JPDF of vectorr ′ given τ and can be found by finding the expectation of

P (r ′|τ, g′k) over all possible values ofg′k.

Non-Data-Aided Maximum Likelihood Synchronization

In this case, the data symbols are unknown and are modeled as equiprobable random variables.

Since the elements ofn′ are independent Gaussian random variables, one has

P (r ′|τ, g′k) =

N
∏

i=1

1√
πN0

exp

(

−|ri − gki|2
N0

)

=
1

(πN0)
N/2

exp

(

− 1

N0

N
∑

i=1

|ri − gki|2
)

whereN is the length of the truncated vectors. Having this conditional probability density function

(PDF) and considering the fact that the two possible signal waveforms are equiprobable, one can

find

P (r ′|τ) = A

2
∑

k=1

exp

(

− 1

N0

N
∑

i=1

|ri − gki|2
)

(2.14)

whereA is a constant and therefore has no impact on the location of the maximum ofP (r ′|τ). After

some manipulations, one can find the likelihood functionΛ(r ′|τ) to be

Λ(r ′|τ) =

2
∑

k=1

exp

(

− 1

N0

N
∑

i=1

|gki|2 +
2

N0

N
∑

i=1

rigki

)

. (2.15)

After tendingN to infinity, one has

τ̂ = arg max
τ

2
∑

k=1

exp

(

− 1

N0

∫ τ+(j+1)T

τ+jT

|gk(t, τ)|2dt+ 2

N0

∫ τ+(j+1)T

τ+jT

r(t)gk(t, τ)dt

)

.
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Figure 2.7. The block diagram of NDA ML synchronizer (after [2, Fig. 5.3-2]).

Since|g1(t, τ)|2 = |g2(t, τ)|2, g1(t, τ) = g(t), g2(t, τ) = −g(t), and also for any value ofτ the

termexp
(

− 1
N0

∫ τ+(j+1)T

τ+jT
|g(t)|2dt

)

is a constant,

τ̂ = arg max
τ

[

exp

(

2

N0

∫ τ+(j+1)T

τ+jT

r(t)g(t)dt

)

+ exp

(

− 2

N0

∫ τ+(j+1)T

τ+jT

r(t)g(t)dt

)]

.

Consequently, the NDA ML synchronizer in ISI-free channelsfor one symbol observation time is

equal to

τ̂ = argmax
τ

cosh

(

2

N0

∫ τ+(j+1)T

τ+jT

r(t)g(t)dt

)

. (2.16)

If we consider an observation time equal toLT , the NDA ML synchronizer can be found directly

from (2.16) to be

τ̂ = arg max
τ

L
∑

j=1

log cosh

(

2

N0

∫ τ+(j+1)T

τ+jT

r(t)g(t)dt

)

. (2.17)

Using some approximations, one can simplify the NDA ML synchronizer. Sincelog(coshx) ≈

1
2x

2 for small values ofx, after some manipulations one can approximate the ML synchronizer

with [2]

τ̂ = argmax
τ

∑

n

y2
n(τ) (2.18a)

where

yn(τ) =

∫

T

r(t)g(t − nT − τ)dt. (2.18b)

This approximation can be used for small values of signal-to-noise ratio (SNR).

Finding the maximum in 2.18 can be done using the derivation.Since forτ = τ̂ , we have

d

dτ

∑

n

y2
n(τ) = 2

∑

n

yn(τ)
dyn(τ)

dτ
= 0. (2.19)

An implementation of a tracking loop based on the NDA ML synchronizer is shown in Fig. 2.7.
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Figure 2.8. The block diagram of DA ML synchronizer (after [2, Fig. 5.3-1]).

Data-Aided Maximum Likelihood Synchronization

In this case, the transmitted data is known at the transmitter. For instance, a training might be

transmitted to achieve DA ML synchronization. As a result when{ĉi} is transmitted,

P (r ′|τ) =
1

(πN0)
N/2

exp

(

− 1

N0

N
∑

i=1

|ri − ĝi|2
)

.

Consequently, after some manipulations the DA ML synchronizer is

τ̂ = argmax
τ

ΛDA(τ) (2.20a)

where

ΛDA(τ) =
∑

i

ci

∫

T

r(t)g(t− iT − τ)dt. (2.20b)

A necessary condition for̂τ is

dΛDA(τ)

dτ
|τ̂=

∑

n

cn
d

dτ
[yn(τ)] = 0. (2.21)

This result suggests an implementation as shown in Fig. 2.8.

2.2.2 Performance Limits in Symbol Timing Synchronization

A very important question that arises in every estimation problem is, what is the ultimate accuracy

that is achievable in the estimation problem. To answer thisquestion, it is needed to establish bounds

to the achievable accuracy to provide benchmarks against which the performance of practical syn-

chronizers can be compared. Several bounds have been introduced in the literature. A fundamental

lower bound is the Cramer-Rao bound (CRB) [13], [18] which provides a lower bound on the mini-

mum mean square error (MSE) in estimating a random parameterusing an unbiased estimator and is

widely used in problems of symbol timing synchronization (for some examples see [48] and [49, Ch.

8]).
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If λ is the random variable for which we want to find an estimate andr is the vector representation

of the observed waveform, then ifλ̂, be an unbiased estimate forλ, E[λ̂− λ] = 0,

E
[

(λ̂ − λ)2
]

>

{

Er

[

(

∂ logP (r |λ)
∂λ

)2
]}−1

(2.22)

=

{

−Er

[

∂2 logP (r |λ)
∂λ2

]}−1

whereP (r |λ) is the probability density function ofr for a givenλ andE[·] is the expectation

operation. The conditional probabilityP (r |λ) can be found using

P (r |λ) =

∫ ∞

−∞
P (r |w, λ)P (w)dw (2.23)

wherew is a vector that contains all the unwanted parameters such asthe data, the phase, and the

frequency of the received signal. However, the computationof a true CRB is a challenging task in

many practical cases. An alternative lower bound that is widely used in the literature is the modified

Cramer-Rao bound (MCRB) [1], [19]. The MCRB is defined as

MCRB(λ) =
1

Er ,w

{

[

∂ log P (r |w,λ)
∂λ

]2
} . (2.24)

Although the CRB and MCRB provide useful bounds for moderateto high values of signal-

to-noise ratio (SNR), they are known to have some shortcomings particularly at small values of

SNR [13], [20], [21]. When the SNR of the received signal decreases, the performance of the

synchronizer deteriorates and its MSE increases. However,the minimum MSE cannot become larger

than the variance of a uniform distribution, since this is the MSE of a synchronizer that simply

picks random values for the timing offset. Therefore, the variance of a uniform distribution is an

upper bound on the minimum MSE. However, the MCRB increases without limit as the SNR of the

received signal decreases and therefore is not a lower boundof the MSE at small values of SNR.

Another lower bound on the MSE of parameter estimators is thedetection theory bound (sometimes

called Ziv-Zakai bound) was introduced in [22]–[24]. This bound has been used to estimate the

random delay of a single deterministic signal [22], [24]. Moreover, in [21] it was used in the symbol

timing recovery problem for a received signal consisted of random sequence of pulses in an ISI-free

channel. It was shown that this lower bound does not suffer from the shortcoming of the MCRB at

small values of SNR, tending to the variance of a uniform distribution.
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Chapter 3

Performance of an AFC Loop in the
Presence of a Single Interferer in
Similar Fading Channels

In a wireless link, multipath fading channels can be modeledin different ways. For instance, if there

is not a line-of-sight (LOS) between the transmitter and receiver, the channel is better modeled by a

Rayleigh or a Nakagami-m distribution. On the other hand, in the case that a LOS existsbetween the

transmitter and receiver, the channel is better modeled by aRician distribution. In this chapter, the

performance of an AFC is investigated in independent non-identically distributed similar channels,

i.e., the desired channel and the interference channel are considered to be either Rayleigh/Rayleigh,

Rician/Rician, or Nakagami/Nakagami distributed.

3.1 System and Channel Models

The system considered in this chapter consists of two bandpass received signals at the input of an

AFC. These signals are modeled as

xi(t) = si(t)Ai(t) cos (ωit+ θi(t) + Φi(t)) i = 1, 2 (3.1)

wherex1(t) is the desired received signal,x2(t) is the interferer;si(t) ≥ 0 andθi(t) are the base-

band transmitted signal and its phase, respectively, whichdepend on the pulse shape, modulation

scheme, and transmitted data; in this model,Ai(t) is a random amplitude process which depends on

the channel statistics and represents the effect of multipath fading whileΦi(t) is the random phase

of the channel modeled in each time instant as an uniformly distributed random variable in[0, 2π).

Note thatωi denotes the carrier angular frequency.

The branches are assumed to be independent at each time instant such thatA1 andA2 are inde-

pendent as well as their time derivatives,Ȧ1 andȦ2. The joint statistics ofAi andȦi depend on
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the power spectral density (PSD) and the moments of the received signals [41]. These moments are

defined as

cin = (2π)n

∫ fi+fmi

fi−fmi

(f − fi)
nWi(f)df, i = 1, 2 (3.2)

wherefi is the carrier frequency,fmi is the maximum Doppler frequency andWi(f) is the PSD of

the ith unmodulated received signal. IfWi(f) is symmetric around the carrier frequency,Ai and

Ȧi are independent at each time instant [41], [50], [51]. In a Rayleigh fading channel, the joint

probability density function (JPDF) ofAi andȦi is

fAi,Ȧi
(αi, α̇i)=

αi

σ2
i

exp

(

− α2
i

2σ2
i

)

1
√

2πσ̇2
i

exp

(

− α̇2
i

2σ̇2
i

)

(3.3)

whereσ2
i = ci0 andσ̇2

i = ci2. In the case thatAi is corrupted by Rician fading,

fAi,Ȧi
(αi, α̇i) =

αi

σ2
i

exp

(

−α
2
i + µ2

i

2σ2
i

)

I0

(

αiµi

σ2
i

)

1
√

2πσ̇2
i

exp

(

− α̇2
i

2σ̇2
i

)

(3.4)

whereI0(·) is the zero-order modified Bessel function of the first kind [44], µ2
i is the power in the

line-of-sight (LOS) component andσ2
i = ci0 and σ̇2

i = ci2 for i = 1, 2. In the case thatAi is

Nakagami distributed with Nakagami fading parameter,mi, wheremi is an integer or half integer,

one has [52]

fAi,Ȧi
(αi, α̇i) =

2mmi

i α2mi−1
i

Γ(mi)(2σ2
i )mi

exp

(

−miα
2
i

2σ2
i

)

1
√

2πσ̇2
i

exp

(

− α̇2
i

2σ̇2
i

)

(3.5)

whereσ2
i = ci0 andσ̇2

i = ci2

mi
.

3.2 Average Switching Rate

In reference [6, Ch. 19], it has been shown that if the difference between the carrier frequencies

of the desired signal and the interferer,|f1 − f2|, is much smaller than the carrier frequencies and

also, the modulations of the received signals are slow compared to|f1 − f2|, the AFC will lock on

the signal with the larger amplitude. These conditions are fulfilled in the case of adjacent-channel

interference (ACI), most of the time in the case of abutting-channel interference1, and sometimes in

the case of cochannel interference [6, Ch. 19]. Consideringthese conditions, one can find the ASR

and the MTLL of an AFC using the relative statistics of the received signals.

3.2.1 Method of Analysis

In [7], the average switching rate of an AFC has been found forunmodulated received signals in

Rayleigh fading by evaluating the level crossing rate of theratio of the signals’ envelopes,Y . This

1In [6], the signals sent in the immediate neighbour channel of the desired signal are called the abutting-channel interfer-
ence while the signals sent in other adjacent channels of thedesired signal are called the adjacent-channel interference
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method can also be used for Rayleigh fading with modulated carriers, however, our investigations

indicate that this method does not yield tractable solutions for many cases of Rician and Nakagami

fading. This method can be described as follows. If the amplitude of the desired signal,s1A1, is

larger than the amplitude of the interferer,s2A2, a jump occurs ifs2A2 becomes larger thans1A1

which is equivalent toY = s1A1

s2A2
becomes smaller than1. On the other hand, ifs1A1 < s2A2, a

jump occurs ifs1A1 becomes larger thans2A2 or equivalentlyY becomes larger than1. Therefore,

the ASR is equal to the level crossing rate (positive going plus negative going) ofY through1,

NY (1). One has [43]

N = NY (1) =

∫ ∞

−∞
|ẏ| fY,Ẏ (1, ẏ)dẏ (3.6)

wherefY,Ẏ (y, ẏ) is the JPDF ofY and its time derivative,̇Y .

The average switching rate can also be found using the randomprocessZ = s1A1 − s2A2.

If the AFC is locked on the desired signal,x1(t), a jump occurs if the amplitude of the interferer,

becomes larger than the amplitude ofx1(t), i.e.,Z becomes smaller than zero. Similarly, if the AFC

is locked onx2(t), a jump occurs ifs1A1 becomes larger thans2A2, i.e.,Z becomes larger than

zero. Therefore, the ASR,N , is equivalent to the zero level crossing rate ofZ,NZ(0). One has [43]

N = NZ(0) =

∫ ∞

−∞
|ż| fZ,Ż(0, ż)dż (3.7)

wherefZ,Ż(z, ż) is the JPDF ofZ and its time derivative,̇Z.

Application to modulated carriers

In the first method, we need to findfY,Ẏ (y, ẏ). To do that, we first find the JPDF ofBi andḂi which

are the amplitude of theith received signal and its time derivative, respectively,

Bi = siAi

Ḃi = siȦi + ṡiAi

wherei = 1, 2. The Jacobian of this transformation is equal tos2i . Thus,fBi,Ḃi
(βi, β̇i) can be found

with respect tofAi,Ȧi
(αi, α̇i) as shown in the following equation,

fBi,Ḃi
(βi, β̇i) =

1

s2i
fAi,Ȧi

(

βi

si
,
siβ̇i − ṡiβi

s2i

)

(3.8)

wherefAi,Ȧi
(αi, α̇i) is expressed in (3.3-3.5) for different fading scenarios. Note thatBi andḂi

are not independent in general, however, since the branchesare independent,

fB1,Ḃ1,B2,Ḃ2
(β1, β̇1, β2, β̇2) = fB1,Ḃ1

(β1, β̇1)fB2,Ḃ2
(β2, β̇2).
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Now, we can use the transformation

B1 = B2Y

Ḃ1 = B2Ẏ + Ḃ2Y

B2 = B2

Ḃ2 = Ḃ2

to find

fB2,Ḃ2,Y,Ẏ (β2, β̇2, y, ẏ) = β2
2fB2,Ḃ2,B1,Ḃ1

(β2, β̇2, β2y, β2ẏ + β̇2y). (3.9)

Then,

fY,Ẏ (y, ẏ) =

∫ ∞

0

∫ ∞

−∞
fB2,Ḃ2,Y,Ẏ (β2, β̇2, y, ẏ)dβ2dβ̇2. (3.10)

Having this JPDF, one can use (3.6) to obtain the average switching rate. This method is used to

obtain the ASR of an AFC in Rayleigh/Rayleigh scenario.

In the second method, we first need to findfZ,Ż(z, ż). Since in the modulated carriers scenario

Ż = s1Ȧ1 − s2Ȧ2 + ṡ1A1 − ṡ2A2, (3.11)

Ż not only depends on the time-derivatives of the fading in thechannels, but also depends on the

fadings througḣs1 andṡ2. In order to further simplify (3.7), one can use the definition of conditional

probability,

fZ,Ż(z, ż) = fŻ|Z(ż|z)fZ(z),

to obtain

N = fZ(0)

∫ ∞

−∞
|ż|fŻ|Z(ż|0)dż. (3.12)

The conditional probability density functionfŻ|Z(ż|0) in (3.12) can be found using the theorem of

total probability [42],

fŻ|Z(ż|0) =

∫ ∞

0

fŻ|A2,Z(ż|α2, 0)fA2|Z(α2|0)dα2. (3.13)

The conditional PDFs in (3.13) can be found using the definitions ofZ andŻ. By substitutingA1

from the definition ofZ into (3.11), one has

Ż = s1Ȧ1 − s2Ȧ2 +A2

(

ṡ1s2
s1

− ṡ2

)

+ Z
ṡ1
s1

(3.14)

whereṡi is the derivative ofsi with respect to time. It can be seen in Eqs. (3.3)-(3.5) thatȦi has

a Gaussian distribution and is independent ofAi. Therefore ifZ andA2 are given in (3.14),Ż
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is equal to the summation of two scaled independent Gaussianrandom processes and a constant.

Consequently,

fŻ|A2,Z(ż|α2,0)=
1√
2πΩ

exp







−
(

ż−α2

(

ṡ1s2

s1
−ṡ2
))2

2Ω






(3.15)

whereΩ = s21σ̇
2
1+s22σ̇

2
2 . UsingA2 = s1

s2
A1− 1

s2
Z and the fundamental transformation theorem [42],

one can derive

fA2|Z(α2|0) =
s2
s1
fA1

(

s2
s1
α2

)

. (3.16)

In order to find the average switching rate, one still needs tofind fZ(0). fZ(z) can be found using

the transformation

Z = s1A1 − s2A2

∆ = s1A1.

The Jacobian of this transformation is equal tos1s2; hence

f∆,Z(δ, z) =
1

s1s2
fA1

(

δ

s1

)

fA2

(

δ − z

s2

)

and consequently

fZ(0) =

∫ ∞

δ=0

1

s1s2
fA1

(

δ

s1

)

fA2

(

δ

s2

)

dy. (3.17)

Then, the ASR can be found using (3.12)-(3.17). This method is used to find the ASR in Ri-

cian/Rician and Nakagami/Nakagami scenarios in this chapter.

Previous work has considered exclusively unmodulated carriers. An interesting result that ob-

tains for modulated carriers is the following. ConsideringEq. (3.15), it can be seen that in general,

fŻ|A2,Z(ż|α2, 0) and consequentlyfŻ,Z(ż, 0) are not even functions oḟz. As a result, the short-

term positive-going zero-crossing rate (PZCR) and negative-going zero-crossing rate (NZCR) ofZ

are not equal, i.e.,
∫ ∞

0

żfZ,Ż(0, ż)dż 6=
∫ 0

−∞
|ż| fZ,Ż(0, ż)dż (3.18)

in contrast to the case of unmodulated carriers. However, since we deal with practical scenarios in

which the sign oḟs1s2− ṡ2s1 changes with respect to time, in some time periods NZCR>PZCR and

in others NZCR≤PZCR and therefore this behaviour does not cause any problemin the long term.

In the special case that the baseband transmitted signals are replicas of each other,s1(t) = ks2(t)

wherek is a constant, one has

N=fZ(0)

∫ ∞

−∞
|ż| 1√

2πΩ
exp

(

− ż2

2Ω

)

dż=

√

2Ω

π
fZ(0) (3.19)
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wherefZ(0) can be obtained using (3.17). Note that Eq. (3.19) is also applicable to the scenario of

unmodulated received signals, i.e.,s1 = s2 = 1.

3.3 Mean Time to Loss of Lock

The MTLL is a measure that shows the average time that an AFC locks on the desired signal before

jumping to the interferer. The MTLL for unmodulated signalsin fading channels can be found

using [53]

T =
2F

N
(3.20)

whereN is the ASR of the AFC andF is the probability that the amplitude of the desired signal

is larger than the amplitude of the interferer, i.e.,F = Pr[s1A1 > s2A2]. In order to find this

probability, we can use the transformation

Y =
s1A1

s2A2

T = s2A2.

The Jacobian of this transformation is equal tos1s2

t , consequently

fY,T (y, t) =
t

s1s2
fA1,A2

(

yt

s1
,
t

s2

)

. (3.21)

SinceA1 andA2 are independent (for a fixed time), integrating (3.21) overt yields

fY (y) =

∫ ∞

0

t

s1s2
fA1

(

yt

s1

)

fA2

(

t

s2

)

dt (3.22)

and thereforeF = Pr[s1A1 > s2A2] = Pr[Y > 1] can be obtained using

F =

∫ ∞

y=1

∫ ∞

t=0

t

s1s2
fA1

(

ty

s1

)

fA2

(

t

s2

)

dtdy. (3.23)

3.4 Derivation of the Results

In this part we apply the methods described in the previous sections to different channels to derive

the ASR and MTLL of an AFC.

3.4.1 ASR and MTLL in Rayleigh/Rayleigh scenario

Rayleigh/Rayleigh scenario represents the case in which there is not a line-of-sight (LOS) between

the transmitter and receiver in both channels, i.e., interference channel and desired channel, and the

fading in these channels can be modeled using a Rayleigh distribution. In this scenario, we use (3.6)
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to find the ASR. By integrating (3.9) overβ̇2 from−∞ to ∞,

fB2,Y,Ẏ (β2, y, ẏ) =
1√

2πs21s
2
2σ

2
1σ

2
2

y
√

y2s22σ̇
2
2 + s21σ̇

2
1

β4
2 exp

(

−β
2
2C(y, ẏ)

2

)

(3.24a)

where

C(y, ẏ) = y2

(

1

s21σ
2
1

+
ṡ21
s41σ̇

2
1

)

+
1

s22σ
2
2

+
ṡ22
s42σ̇

2
2

+
ẏ2

s21σ̇
2
1

− 2ṡ1yẏ

s31σ̇
2
1

− (s1s
3
2yẏσ̇

2
2 − ṡ1s

3
2y

2σ̇2
2 − ṡ2s

3
1σ̇

2
1)

2

s41σ̇
2
1s

4
2σ̇

2
2(y2s22σ̇

2
2 + s21σ̇

2
1)

. (3.24b)

By integrating (3.24) overβ2 using [54, (3.381.11)],

∫ ∞

0

x4e−cx2

dx =
Γ(5

2 )

c
5
2

(3.25a)

wherec is a constant, one can find the JPDF ofY andẎ ,

fY,Ẏ (y, ẏ) =
3

2s21s
2
2σ

2
1σ

2
2

y
√

y2s22σ̇
2
2 + s21σ̇

2
1

C(y, ẏ)−5/2. (3.26)

Since we only needfY,Ẏ (1, ẏ) to find the ASR,

fY,Ẏ (1, ẏ) =
3

2s21s
2
2σ

2
1σ

2
2

√
d3

(d3ẏ2 + 2d2ẏ + d1)5/2
(3.27a)

where

d1 =

(

1

σ2
1s

2
1

+
1

σ2
2s

2
2

+
(ṡ2s1 − ṡ1s2)

2

s21s
2
2(s

2
2σ̇

2
2 + s21σ̇

2
1)

)

(3.27b)

d2 =
ṡ2s1 − ṡ1s2

s1s2(s22σ̇
2
2 + s21σ̇

2
1)

(3.27c)

d3 =
1

s22σ̇
2
2 + s21σ̇

2
1

. (3.27d)

Note that in these equations,s1 ands2 are time-dependent. Now, we can use (3.6) to find the ASR.

The result is

N = NY (1) = M

√
d3(d1d3 + d2

2)√
d1(d1d3 − d2

2)
2

(3.28a)

if

|d2| <
√

d1d3 (3.28b)

where

M =
1

s21s
2
2σ

2
1σ

2
2

. (3.28c)

In order to find this result, [54, (3.252.7)] has been used,

∫ ∞

0

xndx

(ax2 + 2bx+ c)n+ 3
2

=
n!

(2n+ 1)!!
√
c(
√
ac+ b)n+1

, (3.29)
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Table 3.1. The average switching rate of an AFC in Rayleigh/Rayleigh fading channels.

System
Fading

Model
Average Switching Rate

i.i.d.
Rayleigh

s1 = s2 = 1

σ̇
2σ

i.n.d.

Rayleigh
s1 = s2 = 1

√
σ2
1σ2

2(σ̇2
2+σ̇2

1)

(σ2
2+σ2

1)3/2

i.n.d.

Rayleigh
s1(t) = ks2(t)

√
k2σ2

1σ2
2(σ̇2

2+k2σ̇2
1)

(σ2
2+k2σ2

1)3/2

i.n.d.

Rayleigh
modulated

M
√

d3(d1d3+d2
2)√

d1(d1d3−d2
2)

2

wherea, b, andc are constants such thata ≥ 0, c > 0, andb > −√
ac. Evaluating the condition

in (3.28b) requires knowledge ofs1(t) ands2(t), however, in the special case that the data in the

interferer is a replica of the data in the desired signal withdifferent power, i.e.,s1(t) = ks2(t), d2

equals zero and therefore the condition in (3.28b) is clearly satisfied. In this case,

N =

√

k2σ2
1σ

2
2(σ̇

2
2 + k2σ̇2

1)

(σ2
2 + k2σ2

1)
3/2

. (3.30)

Note that the ASR in the unmodulated carrier scenario is a special case of this equation in which

k = 1. In this case that signals experience i.n.d. Rayleigh fading ands1 = s2 = 1, the ASR equals

N =

√
σ2
1σ2

2(σ̇2
2+σ̇2

1)

(σ2
2+σ2

1)3/2 which is the same as the result previously reported in [7], asexpected. Final

expressions for the ASR in this scenarios are summarized in Table 3.1 for different cases.

In order to find the MTLL in the Rayleigh/Rayleigh scenario for unmodulated signals, we still

need to findF . Using (3.23) and [54, (3.461.3)],
∫ ∞

0

x2n+1e−px2

dx =
n!

2pn+1
(3.31)

for p > 0, one can find

F =

∫ ∞

1

2y

s21s
2
2σ

2
1σ

2
2

(

y2

s21σ
2
1

+
1

s22σ
2
2

)−2

dy=
s21σ

2
1

s21σ
2
1 + s22σ

2
2

(3.32)

wheres1 ands2 only represent the power of the transmitted signals and are not functions of time.

As a result,s1 = ks2, and

T = 2

√

σ2
1(σ2

2 + k2σ2
1)

σ2
2(σ̇2

2 + k2σ̇2
1)
. (3.33)

Note that in the special case of Rayleigh fading and unmodulated carriers with same power, the

MTLL equalsT = 2
√

σ2
1(σ2

2+σ2
1)

σ2
2(σ̇2

2+σ̇2
1)

which agrees with the result reported in [7].
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Table 3.2. The average switching rate of an AFC in Rician/Rician fading channels.

System
Fading

Model
Average Switching Rate

i.i.d

Rician
s1 = s2 = 1

σ̇
2σ exp

(

−µ2

σ2

)

2F2

(

1
2 ,

3
2 ; 1, 1; µ2

σ2

)

i.n.d.
∫∞
0
t2 exp

[

−t2

2s2
2

(

σ2
1k2+σ2

2

k2σ2
1σ2

2

)

− µ2
1

2σ2
1
− µ2

2

2σ2
2

]

Rician
s1(t) = ks2(t) ×

√
2(σ̇2

2+k2σ̇2
1)√

πs3
2k2σ2

1σ2
2
I0

(

µ1t
σ2
1ks2

)

I0

(

µ2t
σ2
2s2

)

dt

∫∞
0
t2 exp

[

− t2+2µ2
1s2

1

2σ2
1s2

1
− t2+µ2

2s2
2

2σ2
2s2

2

]

i.n.d. × 1
s4
1σ4

1σ2
2
I0

(

µ1t
σ2
1s1

)

I0

(

µ2t
σ2
2s2

)

dt

Rician
modulated ×

∫∞
−∞

∫∞
0 exp

[

−
“

ż−α2

“

ṡ1s2
s1

−ṡ2

””2

2(s2
2σ̇2

2+s2
1σ̇2

1)
− α2

2s2
2

2s2
1σ2

1

]

× |ż|α2√
2π(s2

2σ̇2
2+s2

1σ̇2
1)
I0

(

s2α2µ1

s1σ2
1

)

dα2dż

3.4.2 ASR and MTLL in Rician/Rician scenario

In this case, one can find the ASR using (3.12)-(3.17),

N=
s22
s21σ

2
1

fZ(0)√
2πΩ

∫ ∞

−∞

∫ ∞

0

|ż|α2I0

(

s2α2µ1

s1σ2
1

)

exp






−

(

ż − α2

(

ṡ1s2

s1
− ṡ2

))2

2(s22σ̇
2
2 + s21σ̇

2
1)

− α2
2s

2
2+µ2

1s
2
1

2s21σ
2
1






dα2dż

(3.34a)

where using (3.17)

fZ(0) =
1

s21s
2
2σ

2
1σ

2
2

∫ ∞

0

t2 exp

[

− t
2 + µ2

1s
2
1

2σ2
1s

2
1

− t2 + µ2
2s

2
2

2σ2
2s

2
2

]

I0

(

µ1t

σ2
1s1

)

I0

(

µ2t

σ2
2s2

)

dt. (3.34b)

The average switching rate in (3.34) can be evaluated numerically, however, further simplifi-

cations can be utilized to find a closed-form expression. Ifs1 and s2 are replicas of each other

with different powers, i.e.,s1(t) = ks2(t), the ASR is equal to
√

2Ω
π fZ(0) wherefZ(0) is given

in (3.34b). A closed-form expression can be found forfZ(0) and consequently forN , when the

branches experience independent, identically distributed (i.i.d.) Rician fading andk = 1, i.e., the

transmitted data in the branches are equal. In this case, onecan use [54, (6.633.5)] and [54, (9.14.1)]

to obtain

N =
σ̇

2σ
exp

(

−µ
2

σ2

)

2F2

(

1

2
,
3

2
; 1, 1;

µ2

σ2

)

(3.35)

wherepFq(g1, g2, · · · , gp;h1, h2, · · · , hq; ·) is the hypergeometric function [44],σ2 = σ2
1 = σ2

2 ,

σ̇2 = σ̇2
1 = σ̇2

2 andµ = µ1 = µ2. The results are summarized in Table (3.2).
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In order to findF and consequently the MTLL, one can employ (3.23),

F =

∫ ∞

r=1

∫ ∞

t=0

exp

[

− t
2

2

(

r2

σ2
1s

2
1

+
1

σ2
2s

2
2

)

− µ2
1

2σ2
1

− µ2
2

2σ2
2

]

t3r

s21s
2
2σ

2
1σ

2
2

I0

(

trµ1

σ2
1s1

)

I0

(

tµ2

σ2
2s2

)

dtdr.

(3.36)

The MTLL can be found using (3.36) and the ASR previously found in this section. In the case of

i.n.d. channels and unmodulated carriers with different powers,s1 = ks2, one has

T =

∫ ∞

r=1

∫ ∞

x=0

x3r

s2
exp

[

− x2

2s22

(

r2

σ2
1k

2
+

1

σ2
2

)]
√

2π

(σ̇2
2 + k2σ̇2

1)
1/2

I0

(

xrµ1

σ2
1ks2

)

I0

(

xµ2

σ2
2s2

)

dxdr

×
[∫ ∞

0

t2 exp

(

− t
2(k2σ2

1 + σ2
2)

2s22k
2σ2

1σ
2
2

)

I0

(

µ1t

σ2
1ks2

)

I0

(

µ2t

σ2
2s2

)

dt

]−1

. (3.37)

In the special case that the channels are i.i.d. ands1 = s2 = 1,

T =

∫ ∞

1

∫ ∞

0

4t3r

σ3σ̇

[

2F2

(

1

2
,
3

2
; 1, 1;

µ2

σ2

)]−1

exp

[−t2(r2 + 1)

2σ2

]

I0

(

trµ

σ2

)

I0

(

tµ

σ2

)

dtdr.

(3.38)

3.4.3 ASR and MTLL in Nakagami/Nakagami scenario

In this scenario, using (3.12)-(3.17) one obtains

N = fZ(0)

(

s2
s1

)2m1 Γ(2m1)m
m1
1

Γ(m1)(2σ2
1)m1

2γ−m1

√
2πΩ

∫ ∞

−∞
|ż| exp

(

−2Ωγ − η2

4Ω2γ
ż2

)

D−2m1

(

− ηż

Ω
√
γ

)

dż

(3.39a)

where

fZ(0) =

√
2Γ(m1 +m2 − 1

2 )

Γ(m1)Γ(m2)

(

m1

σ2
1s

2
1

)m1
(

m2

σ2
2s

2
2

)m2
(

m1

σ2
1s

2
1

+
m2

σ2
2s

2
2

)−(m1+m2− 1
2 )

(3.39b)

γ =
η2

Ω
+
m1

σ2
1

(

s2
s1

)2

(3.39c)

η =
s2
s1
ṡ1 − ṡ2 (3.39d)

and whereDp(·) is the parabolic cylinder function [44]. To obtain these results we have used [54,

(3.462.1)],
∫ ∞

0

xp−1e−ax2−bxdx = (2a)−p/2Γ(p) exp

(

b2

8a

)

D−p

(

b√
2a

)

, (3.40)

and [54, (3.381.11)],

2

∫ ∞

0

x2me−ax2n

dx =
Γ(ν)

naν
, (3.41)

whereν = 2m+1
2n . In the special case thats1(t) = ks2(t), the ASR is equal to

√

2Ω
π fZ(0) where

fZ(0) is given in (3.39b). ASR of an AFC in Nakagami/Nakagami fading channels are presented in

Table (3.3).
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Table 3.3. The average switching rate of an AFC in Nakagami/Nakagami fading channels.

System
Fading

Model
Average Switching Rate

i.i.d.
Nakagami s1 = s2 = 1

√

m
πc0

σ̇Γ(2m− 1
2 )

22(m−1)Γ2(m)

i.n.d. 2Γ(m1+m2− 1
2 )√

πΓ(m1)Γ(m2)

(

m1

σ2
1k2

)m1
(

m2

σ2
2

)m2

Nakagami
s1(t) = ks2(t) ×

(

m1

σ2
1k2 + m2

σ2
2

)−m1−m2+
1
2 √

σ̇2
2 + k2σ̇2

1

i.n.d.
2Γ(2m1)Γ(m1+m2− 1

2 )

Γ2(m1)Γ(m2)
√

πΩ

(

m2

σ2
2s2

2

)m2
(

s2
2m2

1

2s4
1σ4

1γ

)m1

Nakagami ×
(

m1

σ2
1s2

1
+ m2

σ2
2s2

2

)−(m1+m2− 1
2 )

modulated ×
∫∞
−∞ |ż| exp

(

η2−2Ωγ
4Ω2γ ż2

)

D−2m1

(

−ηż
Ω
√

γ

)

dż

By employing (3.23) and after some manipulations, one can use [54, (3.194.2)],

∫ ∞

u

xµ−1dx

(1 + βx)ν
=

uµ−ν

βν(ν − µ)
2F1

(

ν, ν − µ; ν − µ+ 1;− 1

βu

)

(3.42)

to obtain

F =
Γ(m1 +m2)

m2Γ(m1)Γ(m2)

(

s21m2σ
2
1

s22m1σ2
2

)m2

× 2F1

(

m1 +m2,m2;m2 + 1;−s
2
1m2σ

2
1

s22m1σ2
2

)

. (3.43)

Consequently, the MTLL can be found using (3.20). If the channels are i.n.d. and the received

signals are unmodulated with different powers,s1 = ks2,

T =

√
π Γ(m1 +m2)

m2Γ(m1 +m2 − 1
2 )

(

σ2
1k

2

m1

)m1+m2
(

m1

σ2
1k

2
+
m2

σ2
2

)m1+m2− 1
2

× (σ̇2
2 + k2σ̇2

1)−1
2F1

(

m1 +m2,m2;m2 + 1;−k
2m2σ

2
1

m1σ2
2

)

. (3.44)

In the special case of i.i.d. channels and unmodulated signals with the same power,

T =

√
πσ

m3/2σ̇

Γ(2m)22m−1

Γ(2m− 1
2 )

2F1 (2m,m;m+ 1;−1) . (3.45)

3.5 Numerical Examples and Discussion

In the numerical examples, we focus on the important specialcase of two-dimensional (2-D) isotropic

scattering and an omnidirectional receiving antenna. In this case,̇σ2
i = 2π2f2

mi
σ2

i wherefmi is the

maximum Doppler frequency [50]. The signals are assumed to be unmodulated wheres1 = s2 = 1.

Moreover, it is assumed thatfm1 = fm2 = fm.

Fig. 3.1 shows the ASR of an AFC (normalized tofm) versus the signal-to-interference ra-

tio (SIR) in a Rician fading channel for different Rice factors, Ki =
µ2

i

2σ2
i
. The SIR is the ratio
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of the desired signal’s average power to the interfering signal’s average power given as SIR=

10 log10

(

σ2
1

σ2
2

(

1+K1

1+K2

))

for Rician fading. Note that the special case whenK1 = K2 = 0 is equiv-

alent to the Rayleigh fading scenario. As can be seen in this figure, if the desired signal and the

interferer have equal Rice factors, the worst case (maximumASR) happens when the signals have

equal powers. The reason is that in this case, the channels will be completely similar and therefore

an AFC does not have any tendency to choose either signal. However, if the power in one branch is

larger, the AFC locks on that branch for a longer period of time and therefore the ASR decreases. By

increasing the Rice factor in both branches (for instance compareK1 = K2 = 0 toK1 = K2 = 5),

the performance improves in the sense that the ASR decreases. The reason for this behaviour is that

for a specific value of SIR, increasing the Rice factor is equivalent to increasing the power in the

deterministic part of the fading (LOS component) compared to the random part of the fading (scat-

tering component) which decreases the ASR. Note that in the boundary case that the Rice factors

tend to infinity, the amplitudes of both branches are deterministic (constant amplitudes in the case

of unmodulated carriers) and the AFC locks on the signal withmore power and there will be no

switching. In addition, this figure shows that for a constantRice factor in the interference branch,

increasing the Rice factor of the desired branch causes the ASR to decrease (i.e., an improvement in

the performance) for larger values of SIR, while it does not have a significant effect on the ASR for

small values of SIR. The reason for this behaviour is that forlarger values of SIR, the characteristics

of the desired branch determine the behaviour of the ASR curve while in the region where the power

of the interferer is larger, the Rice factor of the interference branch is the dominant factor.

Fig. 3.2 shows similar results for Nakagami fading and different values ofm1 andm2. In this

case, SIR=10 log10

(

σ2
1

σ2
2

)

. Note thatm1 = m2 = 1 is equivalent to the Rayleigh fading scenario.

Comparing the ASR curves for a similar Nakagami fading parameter in the interference branch,

m2 = 1, shows that at small values of SIR where the power of the interferer dominates the power

of the desired signal, the performance of AFC for different values ofm1 is almost the same. This

is because in this region,m2 has the greatest effect on the behaviour of the ASR curve. However,

when the power of the desired signal increases compared to the power of the interferer, AFC has

better performance for larger values ofm1.

By considering a specific curve in these figures, for instanceK1 = K2 = 0, it can be seen that

decreasing the SIR in the small SIR region, improves the performance of the AFC which might seem

surprising. However, one should keep in mind that although the ASR decreases as the SIR decreases

in this region, the AFC is locked on the interferer rather than the desired signal for most of the time

and therefore the output of the AFC is not very reliable.
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Figure 3.1. The average switching rates of an AFC (normalized to fm) in a Rician fading scenario
for different values ofK1 andK2.
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Figure 3.2. The average switching rates of an AFC (normalized to fm) in a Nakagami fading sce-
nario for different values ofm1 andm2.
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Figure 3.3. The mean time to loss of lock of an AFC, multipliedby the maximum Doppler frequency,
in a Rician fading scenario for different values ofK1 andK2.

Fig. 3.3 shows the MTLL multiplied byfm of an AFC for Rician fading. It can be seen that if

the channel of the desired signal is modeled by larger valuesof K1, i.e., stronger LOS component,

the performance of the AFC improves in the sense that the MTLLof the AFC increases for the same

values of SIR. The same conclusion holds for larger values ofm1 in Fig. 3.4, where the MTLL

(multiplied byfm) in Nakagami fading is shown. Moreover, considering a specific curve in these

figures, one can observe that the MTLL does not suffer from theshortcoming of the ASR in the sense

that increasing the SIR, increases the MTLL of an AFC. Consequently, we can see that although we

need to find the ASR to capture the impact of the transients on the performance of a receiver, we

also need to find the MTLL to fully characterize AFC performance.

Note that the results in Figs. 3.1 and 3.2 are normalized to the maximum Doppler frequency and

increasingfm increases the value of the ASR and therefore deteriorates the performance. This is

also true for the MTLL which is multiplied by thefm and therefore an increase in the value offm

is equivalent to a decrease in MTLL. However iffm1 6= fm2 , the ASR normalized tofm1 increases

whenfm2 increases compared tofm1 . This can be seen in Fig. 3.5 in which the normalized ASR vs

fm2/fm1 is shown in Rician/Rician scenario and Rayleigh/Rayleigh scenario. This is also true for

the MTLL where the AFC has a better performance for smaller values offm2 , whenfm1 is constant.
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Figure 3.4. The mean time to loss of lock of an AFC, multipliedby the maximum Doppler frequency,
in a Nakagami fading scenario for different values ofm1 andm2.
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Figure 3.5. The normalized ASR of an AFC in Rician/Rician andRayleigh/Rayleigh scenario.
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3.6 Conclusion

In this chapter, the average switching rate and the mean timeto loss of lock of an AFC were derived

for fading channels. Both modulated and unmodulated carriers were investigated. In the case of

Rayleigh/Rayleigh fading channels, a closed-form expression was derived for the ASR in the gen-

eral case of modulated carriers and independent non-identically distributed (i.n.d.) channels which

depends on the time behaviour of the baseband transmitted signal. Moreover, special cases were

investigated for both the ASR and MTLL and compared to previous results in the literature when

applicable. A new analytical approach was employed to derive integral form formulas for the ASR

and the MTLL of an AFC in Rician/Rician and Nakagami/Nakgamifading channels and closed-

form expressions were derived for important special cases.Numerical examples were provided to

demonstrate the effect of interference and the channel model on the performances of an AFC in

different scenarios.
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Chapter 4

Performance of an AFC Loop
Corrupted by Interference and
Fading in Dual Dissimilar Channels

In many practical scenarios, the desired signal and the interference signal pass through different

transmission environments and therefore they can have different fading statistics. For instance, if

there is a line-of-sight (LOS) path between the transmitterof the desired signal and the receiver, the

channel of the desired signal is better modeled by Rician fading. Meanwhile, there may not be a

dominant multipath reflection in the interferer’s channel.In this case, the fading affecting the inter-

ference signal is better modeled by a Rayleigh (pure scattering) or a Nakagami distribution. Other

dissimilar channel scenarios may appear as well when there is not a LOS path between the trans-

mitter of the desired signal and the receiver. In this chapter, we study the performance of an AFC

in such fading channels. Rician/Rayleigh, Rayleigh/Rician, Rician/Nakagami, Nakagami/Rician,

Nakagami/Rayleigh and Rayleigh/Nakagami scenarios are investigated separately and closed-form

expressions and simple single integral form formulas are derived for the ASR and the MTLL of an

AFC.

4.1 System and Channel Models

In this chapter, we use the model described in Section 3.1 forthe received signals. However, one

should note that in the scenarios considered in this chapter, not only the interference channel and the

desired channel are independent, but also have dissimilar distributions.
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4.2 Average Switching Rate

Considering the same assumptions as previous chapter for the difference between the carrier fre-

quency of the received signals and the modulation, an AFC locks on the signal with larger ampli-

tude [6, Ch. 19].

In order to find the average switching rate, we can use the random processZ = s1A1−s2A2, the

difference between the amplitude of the desired signal and the interferer. Consequently, as described

in Section 3.2.1, the average switching rate is equal to

N = NZ(0) =

∫ ∞

−∞
|ż| fZ,Ż(0, ż)dż. (4.1)

wherefZ,Ż(z, ż) is the JPDF ofZ and its time derivative,̇Z.

If the signals are unmodulated,Z andŻ are independent and consequently (4.1) will be simpli-

fied to

N = NZ(0) = fZ(0)

∫ ∞

−∞
|ż|fŻ(ż)dż. (4.2)

Moreover, one should note thatȦ1 andȦ2 are independent and Gaussian distributed (see (3.3-3.5)).

As a result,Ż = Ȧ1 − Ȧ2 is also Gaussian distributed with a variance equal to(σ̇2
1 + σ̇2

2) whereσ̇2
1

andσ̇2
2 are the variance of the time-derivative of fading in desiredbranch and interference branch,

respectively. Thus,

N = fZ(0)

∫ ∞

−∞
|ż| 1
√

2π(σ̇2
1 + σ̇2

2)
exp

(

− ż2

2(σ̇2
1 + σ̇2

2)

)

dż =

√

2(σ̇2
1 + σ̇2

2)

π
fZ(0) (4.3)

andfZ(0) can be found using

fZ(0) =

∫ ∞

0

fA1(y)fA2(y)dy. (4.4)

However, if the signals are modulated, one can use the definition of the conditional probability

density function [42],fZ,Ż(z, ż) = fŻ|Z(ż|z)fZ(z), to find

N = NZ(0) = fZ(0)

∫ ∞

−∞
|ż|fŻ|Z(ż|0)dż (4.5a)

where

fZ(0) =

∫ ∞

y=0

1

s1s2
fA1

(

y

s1

)

fA2

(

y

s2

)

dy. (4.5b)

The method used to findfŻ|Z(ż|0) depends on the distribution of the fading in channels. To find

this conditional PDF, we consider two cases where in the firstcase the PDF of fading in the desired

branch is mathematically simpler than the PDF of fading in the interference branch and in the second

case the PDF of fading in the interference branch is mathematically simpler.
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4.2.1 Case I: The PDF of fading in the desired branch is mathematically sim-
pler than the PDF of fading in the interference branch.

In this case, after differentiatingZ with respect to time and using the definition ofZ to findA1 as a

function ofZ andA2, one has

Ż = s1Ȧ1 − s2Ȧ2 +

(

ṡ1s2
s1

− ṡ2

)

A2 +
ṡ1
s1
Z. (4.6)

We know thatȦ1 andȦ2 are both zero-mean normally distributed random processes.Also, recall

thatȦ1 andȦ2 are assumed to be independent. As a result, ifZ andA2 are given,Ż is equal to the

summation of two scaled zero-mean independent random processes and a constant. Consequently,

fŻ|A2,Z(ż|α2, 0)=
1√
2πΩ

exp






−

(

ż−α2

(

ṡ1s2

s1
−ṡ2
))2

2Ω






(4.7a)

where

Ω = s21σ̇
2
1 + s22σ̇

2
2 . (4.7b)

Moreover, using the fundamental transformation theorem [42], it can be shown that

fA2|Z(α2|0) =
s2
s1
fA1

(

s2
s1
α2

)

. (4.8)

Consequently, one can use the theorem of total probability [42] to show

fŻ|Z(ż|z = 0) =

∫ ∞

0

fŻ|A2,Z(ż|α2, 0)fA2|Z(α2|0)dα2 (4.9)

and then, the ASR can be found using Eqs. (4.5)-(4.9).

4.2.2 Case II: The PDF of fading in the interference branch ismathematically
simpler than the PDF of fading in the desired branch.

Similar to the previous case, we can use the time-derivativeof Z. One has,

Ż = s1Ȧ1 − s2Ȧ2 + ṡ1A1 − ṡ2A2. (4.10)

If we substituteA2 = s1

s2
A1 − 1

s2
Z into (4.10),

Ż = s1Ȧ1 − s2Ȧ2 +

(

ṡ1 −
ṡ2s1
s2

)

A1 +
ṡ2
s2
Z. (4.11)

SinceȦ1 andȦ2 are both zero-mean Gaussian distributed random processes and Ȧ1 and Ȧ2 are

independent, ifZ andA2 are given,Ż is equal to the summation of two scaled zero-mean random

processes and a constant. Consequently,

fŻ|A1,Z(ż|α1, z = 0) =
1√
2πΩ

exp

[

−
(ż − α1(ṡ1 − ṡ2s1

s2
))2

2Ω

]

(4.12a)
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where

Ω = s21σ̇
2
1 + s22σ̇

2
2 . (4.12b)

We can also findfA1|Z(α1|z = 0) usingA1 = s2

s1
A2 + 1

s1
Z. By employing the fundamental

transformation theorem [42], one has

fA1|Z(α1|z = 0) =
s1
s2
fA2

(

s1
s2
α1

)

. (4.13)

One can use (4.12) and (4.13) to findfŻ|Z(ż|z = 0) by employing the theorem of total probability

[42],

fŻ|Z(ż|z = 0) =

∫ ∞

0

fŻ|A1,Z(ż|α1, z = 0)fA1|Z(α1|z = 0)dα1. (4.14)

It is worth mentioning that both of these methods can be used in either cases, however, in order

to obtain simpler expressions, we considered two cases and used different methods in each case to

find the average switching rate.

One should note that in the special case that the transmittedsignal in the desired branch is a

replica of the transmitted signal in the interference branch, i.e.,s1(t) = ks2(t) wherek is a constant,

ṡ1(t)s2(t) = ṡ2(t)s1(t) and therefore

fŻ|Z(ż|0) =
1√
2πΩ

exp

(

− ż2

2Ω

)

. (4.15)

Consequently, the average switching rate in both cases is equal to

N=fZ(0)

∫ ∞

−∞
|ż| 1√

2πΩ
exp

(

− ż2

2Ω

)

dż=

√

2Ω

π
fZ(0) (4.16)

wherefZ(0) can be found using (4.5b) andΩ is defined in (4.12b).

4.3 Mean Time to Loss of Lock

In order to find the MTLL of unmodulated signals using (3.20),we need to find the probability that

the amplitude of the desired signal is larger than the amplitude of the interference signal,F . To find

this probability we consider the two cases described in the previous section based on the simplicity

of the distribution of fading in channels.

4.3.1 Case I: The PDF of fading in the desired branch is mathematically sim-
pler than the PDF of fading in the interference branch.

In this case, we can use the method described in Section 3.3 tofindF . As a result,

F =

∫ ∞

y=1

∫ ∞

t=0

t

s1s2
fA1

(

ty

s1

)

fA2

(

t

s2

)

dtdy. (4.17)
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4.3.2 Case II: The PDF of fading in the interference branch ismathematically
simpler than the PDF of fading in the desired branch.

Since we want to findF = Pr[s1A1 > s2A2] and this probability is equal to1−Pr[s1A1 ≤ s2A2],

we can first findPr[s1A1 ≤ s2A2]. One can easily show that

Pr[s1A1 ≤ s2A2] =

∫ ∞

v=1

∫ ∞

t=0

t

s1s2
fA1

(

t

s1

)

fA2

(

tv

s2

)

dtdv. (4.18)

Consequently,

F = 1 −
∫ ∞

v=1

∫ ∞

t=0

t

s1s2
fA1

(

t

s1

)

fA2

(

tv

s2

)

dtdv. (4.19)

4.4 Application to Dissimilar Fading Channels

In this section, the ASR and MTLL are derived for different dissimilar fading channels.

4.4.1 Rician/Rayleigh

In this scenario, there is an LOS path between the desired signal’s transmitter and receiver while the

interferer’s channel is modeled by pure scattering. Using the method described in Subsection 4.2.2,

the ASR of an AFC for modulated carriers is

N =

∫ ∞

−∞

[

1 + d2

√

π

d1
ż exp

(

ż2d2
2

d1

)

erfc

(

− żd2√
d1

)]

M1fZ(0)|ż| exp

(

− ż2

2Ω

)

dż

where

fZ(0)=

√

π

2

d3
−3/2

s21s
2
2σ

2
1σ

2
2

exp(−K1) 1F1

(

3

2
; 1;

K1

s21σ
2
1d3

)

(4.20a)

M1 =
1

2d1σ2
2

√
2πΩ

(

s1
s2

)2

(4.20b)

d1 =
s21

2s22σ
2
2

+ 2Ωd2
2 (4.20c)

d2 =
ṡ1s2 − ṡ2s1

2s2Ω
(4.20d)

d3 =

(

s21σ
2
1 + s22σ

2
2

s21s
2
2σ

2
1σ

2
2

)

(4.20e)

and where1F1(p; q; ·) is the confluent hypergeometric function [44]. In order to find the MTLL, one

can use the method in subsection 4.3.2. Consequently using [54, (6.631.4)],

∫ ∞

0

xν+1e−ax2

Jν(βx)dx =
βν

(2aν+1)
exp

(

−β
2

4a

)

, (4.21)

one can findF ,

F = 1 − 1

s21σ
2
1d3

exp

(

− K1

s22σ
2
2d3

)

. (4.22)

The ASR of an AFC in this scenario are summarized in Table 4.1 for several cases.
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Table 4.1. The average switching rate of an AFC in Rician/Rayleigh fading channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1

σ̇
2σ exp(−K1)1F1

(

3
2 ; 1; K1

2

)

i.n.d.

s1(t) = ks2(t)

d3
−3/2

√
Ω

s2
1s2

2σ2
1σ2

2
exp(−K1) 1F1

(

3
2 ; 1; K1

s2
1σ2

1d3

)

i.n.d.
√

π
2

d3
−3/2

s2
1s2

2σ2
1σ2

2
exp(−K1) 1F1

(

3
2 ; 1; K1

s2
1σ2

1d3

)

M1

modulated
∫∞
−∞

[

1 + d2

√

π
d1
ż exp

(

ż2d2
2

d1

)

erfc
(

− żd2√
d1

)]

|ż| exp
(

− ż2

2Ω

)

dż

4.4.2 Rayleigh/Rician

In this scenario, the desired signal is subject to Rayleigh fading while the interferer is subject to

Rician fading. Using the method described in Subsection 4.2.1,

N =

∫ ∞

−∞

[

1 + d5

√

π

d4
ż exp

(

ż2d2
5

d4

)

erfc

(

− żd5√
d4

)]

×M2fZ(0)|ż| exp

(

− ż2

2Ω

)

dż

where

fZ(0)=

√

π

2

d3
−3/2

s21s
2
2σ

2
1σ

2
2

exp(−K2) 1F1

(

3

2
; 1;

K2

s22σ
2
2d3

)

(4.23a)

M2 =
1

2d4σ2
1

√
2πΩ

(

s2
s1

)2

(4.23b)

d4 =
s22

2s21σ
2
1

+ 2Ωd2
5 (4.23c)

d5 =
(ṡ2s1 − ṡ1s2)

2Ωs1
(4.23d)

where in these equations, the signals are modulated and therefores1 ands2 are both functions of

time. Table 4.2 shows the ASR of an AFC in Rayleigh/Rician fading channels. In this scenario and

for unmodulated signals,F is equal to

F =
1

s22σ
2
2d3

exp

(

− K2

s21σ
2
1d3

)

. (4.24)

This equation can be used to find the MTLL of an AFC in this scenario.

4.4.3 Rician/Nakagami

In the case thatx1(t) andx2(t) have Rician and Nakagami fading, respectively, the ASR can be

found using the method in Subsection 4.2.2

N =
2Γ
(

m2 + 1
2

)

Γ(2m2)m2
2m2s2m2−2

1

Γ2(m2)(s22σ
2
2)

2m2σ2
1(2d6)

m2d
m2+ 1

2
7

√
πΩ

1F1

(

m2 +
1

2
; 1;

K1

s21σ
2
1d7

)

(4.25a)

×
∫ ∞

−∞
|ż| exp

[(

d2
2

d6
− 1

2Ω

)

ż2−K1

]

D−2m2

(

−2d2ż√
d6

)

dż
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Table 4.2. The average switching rate of an AFC in Rayleigh/Rician fading channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1

σ̇
2σ exp(−K2)1F1

(

3
2 ; 1; K2

2

)

i.n.d.

s1 = ks2

d3
−3/2

√
Ω

s2
1s2

2σ2
1σ2

2
exp(−K2) 1F1

(

3
2 ; 1; K2

s2
2σ2

2d3

)

√

π
2

d3
−3/2

s2
1s2

2σ2
1σ2

2
exp(−K2) 1F1

(

3
2 ; 1; K2

s2
2σ2

2d3

)

M2

i.n.d.
∫∞
−∞

[

1 + d5

√

π
d4
ż exp

(

ż2d2
5

d4

)

erfc
(

− żd5√
d4

)]

|ż| exp
(

− ż2

2Ω

)

dż

Table 4.3. The average switching rate of an AFC in Rician/Nakagami fading channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1

2
√

2Γ(m2+
1
2 )m

m2
2 exp(−K1)σ̇

√
πΓ(m2)(m2+1)m2+1

2 σ

i.n.d.

s1 = ks2

2m
m2
2 Γ(m2+

1
2 ) exp(−K1)

Γ(m2)(s2
2σ2

2)m2s2
1σ2

1d
m2+1

2
7

√

Ω
π 1F1

(

m2 + 1
2 ; 1; K1

s2
1σ2

1d7

)

2Γ(m2+ 1
2 )Γ(2m2)m2

2m2s
2m2−2
1

Γ2(m2)(s2
2σ2

2)2m2σ2
1(2d6)

m2d
m2+1

2
7

√
πΩ

1F1

(

m2 + 1
2 ; 1; K1

s2
1σ2

1d7

)

i.n.d.
×
∫∞
−∞|ż| exp

[(

d2
2

d6
− 1

2Ω

)

ż2−K1

]

D−2m2

(

− 2d2ż√
d6

)

dż

where

d6 = 4Ωd2
2 +

m2

σ2
2

(

s1
s2

)2

(4.25b)

d7 =
1

s21σ
2
1

+
m2

s22σ
2
2

(4.25c)

and whereDp(·) is the parabolic cylinder function [44]. In this scenario,F can be found using

(4.19),

F =1 −
∫ ∞

0

t Γ
(

m2,
m2t2

2s2
2σ2

2

)

s21σ
2
1 Γ(m2)

exp

(−t2
2s21σ

2
1

−K1

)

I0

(√
2K1

s1σ1
t

)

dt, (4.26)

whereΓ(q, x) is the incomplete gamma function defined in [54, (6.5.3)]. Intable 4.3, different

expressions for the ASR of an AFC in Rician/Nakagami fading are shown.

42



Table 4.4. The average switching rate of an AFC in Nakagami/Rician fading channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1

2
√

2Γ(m1+
1
2 )m

m1
1 exp(−K2)σ̇

√
πΓ(m1)(m1+1)m1+1

2 σ

i.n.d.

s1 = ks2

2m
m1
1 Γ(m1+

1
2 ) exp(−K2)

Γ(m1)(s2
1σ2

1)m1s2
2σ2

2d
m1+1

2
9

√

Ω
π 1F1

(

m1 + 1
2 ; 1; K2

s2
2σ2

2d9

)

2Γ(m1+ 1
2 )Γ(2m1)m1

2m1s
2m1−2
2

Γ2(m1)(s2
1σ2

1)2m1σ2
2(2d8)m1d

m1+1
2

9

√
πΩ

1F1

(

m1 + 1
2 ; 1; K2

s2
2σ2

2d9

)

i.n.d.
×
∫∞
−∞ |ż| exp

[(

d2
5

d8
− 1

2Ω

)

ż2−K2

]

D−2m1

(

− 2d5ż√
d8

)

dż

4.4.4 Nakagami/Rician

In this scenario, the desired signal experiences Nakagami fading while the interference signal expe-

riences Rician fading. Using Eqs. (4.5)-(4.9) one has

N =
2Γ
(

m1 + 1
2

)

Γ(2m1)m1
2m1s2m1−2

2

Γ2(m1)(s21σ
2
1)

2m1σ2
2(2d8)m1d

m1+ 1
2

9

√
πΩ

1F1

(

m1 +
1

2
; 1;

K2

s22σ
2
2d9

)

×
∫ ∞

−∞
|ż| exp

[(

d2
5

d8
− 1

2Ω

)

ż2−K2

]

D−2m1

(

−2d5ż√
d8

)

dż

where

d8 = 4Ωd2
5 +

m1

σ2
1

(

s2
s1

)2

(4.27a)

d9 =
1

s22σ
2
2

+
m1

s21σ
2
1

(4.27b)

and

F =

∫ ∞

0

tΓ
(

m1,
m1t2

2s2
1σ2

1

)

s22σ
2
2 Γ(m1)

exp

( −t2
2s22σ

2
2

−K2

)

I0

(√
2K2t

s2σ2

)

dt. (4.28)

Table 4.4 shows expressions for the ASR of an AFC in this scenario for different cases.

4.4.5 Nakagami/Rayleigh

In this scenario, the desired signal experiences Nakagami fading and the interference signal experi-

ences Rayleigh fading. One, using the method in Subsection 4.2.2, has

N =

∫ ∞

−∞

[

1 + d2

√

π

d1
ż exp

(

ż2d2
2

d1

)

erfc

(

− żd2√
d1

)]

×
√

2mm1
1 Γ(m1 + 1

2 )M1

Γ(m1)(s21σ
2
1)

m1s22σ
2
2d9

m1+
1
2

|ż| exp

(

− ż2

2Ω

)

dż (4.29)
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Table 4.5. The average switching rate of an AFC in Nakagami/Rayleigh fading channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1

√

2
π

σ̇
σ

Γ(m1+
1
2 )

Γ(m1)
2m

m1
1

(m1+1)m1+1
2

i.n.d.

s1 = ks2

√

Ω
π

Γ(m1+
1
2 )

Γ(m1)
2m

m1
1

(s2
1σ2

1)m1s2
2σ2

2

(

m1

s2
1σ2

1
+ 1

s2
2σ2

2

)−m1− 1
2

∫∞
−∞

[

1 + d2

√

π
d1
ż exp

(

ż2d2
2

d1

)

erfc
(

− żd2√
d1

)]

i.n.d.
×

√
2m

m1
1 Γ(m1+

1
2 )M1

Γ(m1)(s2
1σ2

1)m1s2
2σ2

2d9
m1+ 1

2
|ż| exp

(

− ż2

2Ω

)

dż

whereM1, d1 andd2 are defined in (4.20). In this case,

F = 1 −





m1

m1 +
s2
1σ2

1

s2
2σ2

2





m1

. (4.30)

The results are provided in table 4.5 for several cases.

4.4.6 Rayleigh/Nakagami

In this scenario, one has

N =

∫ ∞

−∞

[

1 + d5

√

π

d4
ż exp

(

ż2d2
5

d4

)

erfc

(

− żd5√
d4

)]

×
√

2mm2
2 Γ(m2 + 1

2 )M2

Γ(m2)(s22σ
2
2)

m2s21σ
2
1d7

m2+
1
2

|ż| exp

(

− ż2

2Ω

)

dż (4.31)

whereM2, d4 andd5 are defined in (4.23). Moreover, it can be shown using (4.17) that

F =
mm2

2
(

s2
2σ2

2

s2
1σ2

1
+m2

)m2
. (4.32)

In table 4.6, different expressions for ASR of an AFC cab be found for this scenario.

4.5 Numerical Examples and Discussion

In the numerical examples, the special case of two dimensional isotropic scattering and an omnidi-

rectional receiving antenna is considered. In this case,ci2 = 2π2f2
mi
ci0 for i = 1, 2 wherefmi is the

maximum Doppler frequency [50]. Moreover, we assume thatfm = fm1 = fm2 ands1 = s2 = 1.

In Fig. 4.1, the ASR of an AFC (normalized tofm) versus SIR is shown in a Rician/Nakagami

scenario where SIR= 10 log10

(

c10(1+K1)
c20

)

. Note thatKi = 0 andmi = 1 are equivalent to

Rayleigh fading. It can be seen that for small values of SIR,m2 is the parameter that determines
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Table 4.6. The average switching rate of an AFC in Rayleigh/Nakagami fading channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1

√

2
π

σ̇
σ

Γ(m2+
1
2 )

Γ(m2)
2m

m2
2

(m2+1)m2+1
2

i.n.d.

s1 = ks2

√

Ω
π

Γ(m2+
1
2 )

Γ(m2)
2m

m2
2

(s2
2σ2

2)m2s2
1σ2

1

(

m2

s2
2σ2

2
+ 1

s2
1σ2

1

)−m2− 1
2

∫∞
−∞

[

1 + d5

√

π
d4
ż exp

(

ż2d2
5

d4

)

erfc
(

− żd5√
d4

)]

i.n.d.
×

√
2m

m2
2 Γ(m2+

1
2 )M2

Γ(m2)(s2
2σ2

2)m2s2
1σ2

1d7
m2+ 1

2
|ż| exp

(

− ż2

2Ω

)

dż

the shape of the ASR curve, while for large values of SIR, thisshape is determined byK1. This

behavior can be better observed by considering the cases wherem2 is constant whileK1 increases.

It can be seen that the ASR curve is almost the same when the interferer is stronger than the desired

signal; however, when the desired signal is stronger than the interferer, the ASR decreases more

significantly for larger values ofK1.

A similar behavior can be seen in Fig. 4.2 where the ASR of an AFC is shown in a Nak-

agami/Rician scenario. In this case, the SIR is defined as SIR= 10 log10

(

c10

c20(1+K2)

)

.

Figs. 4.3 and 4.4 show the MTLL of an AFC (multiplied byfm) in Rician/Nakagami and Nak-

agami/Rician scenarios, respectively, for different fading parameters. Comparing these figures, one

can see that for large values of SIR (more than 10 dB), the slope of the MTLL curve in a Ri-

cian/Nakagami scenario decreases as the SIR increases, while in a Nakagami/Rician scenario, the

MTLL increases with an approximately constant slope in a log/log plot.

4.6 Conclusion

In this chapter, closed-form expressions and simple singleintegral form formulas were derived for

the average switching rate and the mean time to loss of lock ofan AFC in dissimilar fading channels.

Rayleigh, Rician and Nakagami-m fading channels were considered. Numerical examples were

provided to investigate the effect of a single interferenceand multipath fading on the performance

of an AFC.
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Figure 4.1. The ASR of an AFC (normalized tofm) in Rician/Nakagami fading.
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Figure 4.2. The ASR of an AFC (normalized tofm) in Nakagami/Rician fading scenario.
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Figure 4.3. The MTLL of an AFC (multiplied byfm) in Rician/Nakagami fading scenario.
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Figure 4.4. The MTLL of an AFC (multiplied byfm) in Nakagami/Rician fading scenario.
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Chapter 5

Performance of an AFC Loop in the
Presence of a Single Interferer in
Noisy Fading Channels

In this chapter, we investigate the performance of an AFC in Rician and Rayleigh fading channels

in the presence of an interference signal where both of the signals are subject to additive Gaussian

noise.

5.1 System and Channel Models

The modulated received signals considered in this chapter can be modeled as

xi(t) = si(t)Ai(t) cos(ωit+ ζi(t) + Φi(t)) +Ni(t) i = 1, 2 (5.1)

wheresi(t) is the amplitude of the transmitted data,ζi(t) is its phase,ωi is the carrier angular

frequency,Ai(t) is a random process representing the effect of multipath fading andΦi(t) is a

random process uniformly distributed in[0, 2π); Ni(t) denotes the Gaussian noise in the system.

Note that the noise is not white, since it has passed through abandpass filter in the intermediate-

frequency (IF) portion of the receiver. As a result, it can bemodeled as

Ni(t) = Nci(t) cos(ωit) −Nsi(t) sin(ωit) i = 1, 2 (5.2)

whereNci andNsi are the in-phase and quadrature components of the processNi. The joint prob-

ability density function (JPDF) ofNci andNsi and their time derivatives,̇Nci andṄsi , depend on

the power spectral density (PSD) of the noise,WNi(f). If this PSD is symmetric around the carrier

frequency of the received signal, one has [55]

fNci
,Nsi

,Ṅci
,Ṅsi

(nci , nsi , ṅci , ṅsi) =
1

4π2bi0bi2
exp

(

−n
2
ci

+ n2
si

2bi0

)

exp

(

− ṅ
2
ci

+ ṅ2
si

2bi2

)

(5.3a)
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where

bin = (2π)n

∫ ∞

0

(f − fi)
nWNi(f)df (5.3b)

andfi is the carrier frequency. One case satisfying these conditions is when the bandpass filter is

symmetric around its center frequency and the IF mixer is biased such that the carrier frequency and

the center frequency of the filter coincide.

In this study, we consider independent Rician channels, with PDF

fAi(ai) =
ai

ci0
exp

(

−a
2
i + µ2

i

2ci0

)

I0

(

aiµi

ci0

)

(5.4)

where2ci0 is the power in the scatter component andµ2
i is the power in the LOS component. Note

that Rayleigh fading is a special case of Rician whenµi = 0. In (5.1), sinceΨi = ζi + Φi has a

uniform distribution in[0, 2π), Ai cos(Ψi) andAi sin(Ψi) are normally distributed with expected

values equal toµci andµsi respectively [42]. These expected values are related toµi by

µi =
√

µ2
ci

+ µ2
si
. (5.5)

Consequently, (5.1) can be rewritten as

xi(t) = [Nci(t) + si(t)(Aci(t) + µci)] cos (ωit) − [Nsi(t) + si(t)(Asi (t) + µsi)] sin (ωit) (5.6)

whereAci andAsi are i.i.d and have normal distributions with expected values equal to zero. If the

PSD of the received signals are symmetric around their carrier frequencies, then [55]

fAci
,Asi

,Ȧci
,Ȧsi

(aci , asi , ȧci , ȧsi) =
1

4π2ci0ci2
exp

(

−a
2
ci

+ a2
si

2ci0

)

exp

(

− ȧ
2
ci

+ ȧ2
si

2ci2

)

(5.7a)

where

cin = (2π)n

∫ fi+fmi

fi−fmi

(f − fi)
nWi(f)df n = 0, 2, (5.7b)

and wherefmi is the maximum Doppler frequency andWi(f) is the PSD of the unmodulated

received signal.

5.2 Average Switching Rate and Mean Time to Loss of Lock

Similar to the previous chapters, one can find the average switching rate and the mean time to loss

of lock by studying the relative statistics of the received signals’ amplitudes.

5.2.1 ASR and MTLL in Rician fading channels

AssigningR1 andR2 to the amplitudes of the noisy desired signal and the noisy interference signal

respectively, one can defineZ = R1 − R2 to be the difference between the received signals’ am-

plitudes. SinceR1 > R2 is equivalent toZ > 0 andR2 > R1 is equivalent toZ < 0, the ASR
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of an AFC,N , is equivalent to the zero-crossing rate (both positive going and negative going) ofZ,

NZ(0). One has [43]

N = NZ(0) =

∫ ∞

−∞
|ż| fZ,Ż(0, ż)dż (5.8)

wherefZ,Ż(z, ż) is the JPDF ofZ and its time derivative,̇Z. This equation can be used to find the

ASR of an AFC in the case of modulated and unmodulated received signals.

The MTLL of an AFC for unmodulated signals,T , can be found using [53]

T =
2F

N
(5.9a)

where

F =

∫ ∞

x=1

∫ ∞

t=0

tfR1(tx)fR2(t)dtdx (5.9b)

is the probability thatR1 > R2 andfR1(r1) andfR2(r2) are the PDF ofR1 andR2, respectively.

Since the received signals and noise are narrowband, one canrewrite (5.6) as

xi(t) = Ri(t) cos(ωit+ Θi(t)) i = 1, 2 (5.10a)

where

Ri =
√

U2
i + V 2

i (5.10b)

tan(Θi) =
Vi

Ui
(5.10c)

Ui = Nci + si(Aci + µci) (5.10d)

Vi = Nsi + si(Asi + µsi). (5.10e)

By differentiating (5.10d) and (5.10e) with respect to time,

U̇i = Ṅci + siȦci + ṡi(Aci + µci) (5.11)

V̇i = Ṅsi + siȦsi + ṡi(Asi + µsi) (5.12)

It can be shown that

fUi,U̇i
(ui, u̇i)=kiexp

[

− 1

2(1 − δ2i )

(

(ui − siµci)
2

σ2
i0

− 2δi(ui−siµci)(u̇i−ṡiµci)

σi0σi2
+

(u̇i − ṡiµci)
2

σ2
i2

)]

(5.13a)

and

fVi,V̇i
(vi, v̇i)=kiexp

[

− 1

2(1−δ2i )

(

(vi+siµsi)
2

σ2
i0

− 2δi(vi+siµsi)(v̇i+ṡiµsi)

σi0σi2
+

(v̇i+ṡiµsi)
2

σ2
i2

)]

(5.13b)
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where

ki =
1

2πσi0σi2

√

1 − δ2i
, (5.13c)

σ2
i0 = s2i ci0 + bi0, (5.13d)

σ2
i2 = ṡ2i ci0 + s2i ci2 + bi2, (5.13e)

δi =
ci0siṡi

√

(s2i ci0 + bi0)(ṡ2i ci0 + s2i ci2 + bi2)
. (5.13f)

Considering the definition ofUi, U̇i, Vi, andV̇i, one can see thatUi andU̇i are independent ofVi

andV̇i. Thus,

fUi,U̇i,Vi,V̇i
(ui, u̇i, vi, v̇i) = fUi,U̇i

(ui, u̇i)fVi,V̇i
(vi, v̇i).

The Jacobian of the transformation from the (Ui, U̇i, Vi, V̇i)-space to the (Ri, Ṙi,Θi, Θ̇i)-space is

equal toR−2
i . Therefore,

fRi,Ṙi,Θi,Θ̇i
(ri, ṙi, θi, θ̇i) = r2i k

2
i exp

[

− 1

2(1 − δ2i )

(

gi1

σ2
i0

− 2δigi2

σi0σi2
+
gi3

σ2
i2

)]

(5.14a)

where

gi1 = r2i − 2riµisi cos(θi + ξi) + µ2
i s

2
i (5.14b)

gi2 = riṙi + µ2
i siṡi − µi(riṡi + ṙisi) cos (θi + ξi) + riθ̇iµisi sin(θi + ξi) (5.14c)

gi3 = ṙ2i + r2i θ̇
2
i + µ2

i ṡ
2
i + 2µiṡi[riθ̇i sin(θi + ξi) − ṙi cos(θi + ξi)] (5.14d)

cos(ξi) =
µci

µi
(5.14e)

sin(ξi) =
µsi

µi
. (5.14f)

Then, integratingfRi,Ṙi,Θi,Θ̇i
(ri, ṙi, θi, θ̇i) overθi andθ̇i yields

fRi,Ṙi
(ri, ṙi) =

ri

(2π)3/2
√

1 − δ2i σi2σ2
i0

∫ 2π

υ=0

exp[κi1 + 2κi2 cos(υ) + κi3 cos(2υ)]dυ (5.15a)

where

κi1 = − 1

2(1 − δ2i )

(

r2i
σ2

i0

− 2δiriṙi
σi0σi2

+
ṙ2i
σ2

i2

)

+ γi1 (5.15b)

κi2 = riγi2 + ṙiγi3 (5.15c)

κi3 = − µ2
i

4(1 − δ2i )

(

ṡi

σi2
− δisi

σi0

)2

(5.15d)

γi1 = − µ2
i

4(1 − δ2i )

(

s2i
σ2

i0

(2 − δ2i ) − 2δisiṡi

σi0σi2
+

ṡ2i
σ2

i2

)

(5.15e)

γi2 =
µi

2(1 − δ2i )

(

si

σ2
i0

− δiṡi

σi0σi2

)

(5.15f)

γi3 =
µi

2(1 − δ2i )

(

ṡi

σ2
i2

− δisi

σi0σi2

)

. (5.15g)
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Since the desired channel and the interference channel are independent,R1 andṘ1 are indepen-

dent ofR2 andṘ2. Thus,

fR1,Ṙ1,R2,Ṙ2
(r1, ṙ1, r2, ṙ2) = fR1,Ṙ1

(r1, ṙ1)fR2,Ṙ2
(r2, ṙ2).

The Jacobian of the transformation from (R1, Ṙ1, R2, Ṙ2)-space to (Z, Ż, R2, Ṙ2)-space isJ = 1.

One has

fZ,Ż,R2,Ṙ2
(z, ż, r2, ṙ2) = fR1,Ṙ1

(z + r2, ż + ṙ2)fR2,Ṙ2
(r2, ṙ2). (5.16)

Then integrating (5.16) overr2 andṙ2 using [54, (3.462.7)],

∫ ∞

0

x2e−µx2−2νxdx = − ν

2µ2
+

√

π

µ5

2ν2 + µ

4
e

ν2

µ

[

1 − erf

(

ν√
µ

)]

(5.17)

for µ > 0, yields

fZ,Ż(0, ż) =

∫ 2π

0

∫ 2π

0

[

q2
q21

+

√
π√
2

q22 + q1

q
5/2
1

exp

(

q22
2q1

)

erfc

( −q2√
2q1

)

]

Υ exp(∆)dυ1dυ2

(5.18a)

where

Υ =
1

(2π)5/2
√

(1 − δ21)(1 − δ22)σ12σ2
10σ22σ2

20p1

(5.18b)

∆ = 2żγ13 cos(υ1) + κ13 cos(2υ1) + κ23 cos(2υ2) + γ11 + γ21 −
ż2

2σ2
12(1 − δ21)

+
Ξ2

2p2
1

(5.18c)

q1 =
1

σ2
10(1 − δ21)

+
1

σ2
20(1 − δ22)

− p2
2

p2
1

(5.18d)

q2 = 2γ12 cos(υ1) + 2γ22 cos(υ2) +
Ξp2

p2
1

+
żδ1

σ12σ10(1 − δ21)
(5.18e)

p1 =

√

1

σ2
12(1 − δ21)

+
1

σ2
22(1 − δ22)

(5.18f)

p2 =
δ1

σ12σ10(1 − δ21)
+

δ2
σ22σ20(1 − δ22)

(5.18g)

Ξ = − ż

σ2
12(1 − δ21)

+ 2γ13 cos(υ1) + 2γ23 cos(υ2). (5.18h)

Using (5.8) and (5.18), one can evaluate the ASR of AFC numerically. However, if the carriers are

unmodulated, i.e.,̇si = 0 for i = 1, 2, (5.15) simplifies to

fRi,Ṙi
(ri, ṙi) =

1√
2πσi2

exp

(

− ṙ2i
2σ2

i2

)

× ri
σ2

i0

exp

(

−r
2
i + µ2

i s
2
i

2σ2
i0

)

I0

(

µisiri
σ2

i0

)

. (5.19)

It can be seen thatRi andṘi are independent. Therefore,Z and Ż are independent as well and

fZ,Ż(0, ż) = fZ(0)fŻ(ż). Moreover,Ṙ1 andṘ2 are independent Gaussian random processes and
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thereforeŻ = Ṙ1 − Ṙ2 is also Gaussian. Consequently, it can be shown that

NZ(0)=

√

2(σ2
12 + σ2

22)√
πσ2

10σ
2
20

∫ ∞

0

t2I0

(

µ1s1t

σ2
10

)

I0

(

µ2s2t

σ2
20

)

exp

[

− t
2

2

(

σ2
10+σ2

20

σ2
10σ

2
20

)

− µ2
1s

2
1

2σ2
10

− µ2
2s

2
2

2σ2
20

]

dt.

(5.20)

The final results for the ASR of an AFC are shown in Table 5.1.

In order to findF in (5.9b), we should find the PDF ofRi. Considering (5.10d) and (5.10e),

one can see thatUi andVi are independent Gaussian random processes with common variances and

nonzero means equal tosiµci andsiµsi , respectively. After some manipulations, one has

fRi(ri) =
ri

bi0 + s2i ci0
exp

(

− r2i + s2iµ
2
i

2(bi0 + s2i ci0)

)

I0

(

risiµi

bi0 + s2i ci0

)

(5.21)

ThenF can be found using (5.9b),

F =

∫ ∞

x=1

∫ ∞

t=0

t3x

σ2
10σ

2
20

exp

(

− t
2x2 + s21µ

2
1

2σ2
10

− t2 + s22µ
2
2

2σ2
20

)

I0

(

txs1µ1

σ2
10

)

I0

(

ts2µ2

σ2
20

)

dtdx.

(5.22)

Then the mean time to loss of lock can be evaluated numerically using (5.9a). In the case of i.n.d.

channels and unmodulated signals,

T =

∫ ∞

x=1

∫ ∞

y=0

y3x exp

(

−y
2x2

2σ2
10

− y2

2σ2
20

)

I0

(

yxs1µ1

σ2
10

)

I0

(

ys2µ2

σ2
20

)

dydx (5.23)

×
√

2π

σ2
12 + σ2

22

[∫ ∞

0

t2 exp

(

− t2

2σ2
10

− t2

2σ2
20

)

I0

(

µ1s1t

σ2
10

)

I0

(

µ2s2t

σ2
20

)

dt

]−1

.

If the signals have equal power and the channels are i.i.d.,

T =

[

2F2

(

1

2
,
3

2
; 1, 1;

µ2

σ2
0

)]−1 ∫ ∞

x=1

∫ ∞

t=0

4t3x

σ3
0σ2

exp

[

− t
2(x2 + 1)

2σ2
0

]

I0

(

txµ

σ2
0

)

I0

(

tµ

σ2
0

)

dtdx.

(5.24)

It is worth mentioning that if the power of noise is negligible compared to the power of signal

in both branches, i.e., large SNR approximation, the ASR andMTLL of the AFC in the case of

i.n.d. Rayleigh fading and unmodulated carriers isN =

√
c10c20(c12+c22)

(c10+c20)3/2 andT = 2
√

c10(c10+c20)
c20(c12+c22)

,

respectively, which agrees with the results previously reported in [7].

5.2.2 ASR and MTLL in Rayleigh fading channels

In this case, one can use the random processY = R1

R2
to find the ASR and MTLL. SinceR1 > R2 is

equivalent toY > 1 andR2 > R1 is equivalent toY < 1, the ASR of an AFC,N , is equivalent to

the level crossing rate (both positive going and negative going) ofY through1,NY (1). One has [43]

N = NY (1) =

∫ ∞

−∞
|ẏ| fY,Ẏ (1, ẏ)dẏ (5.25)
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Table 5.1. The average switching rate of an AFC in Rician/Rician fading noisy channels.

System Model Average Switching Rate

i.i.d.
σ2

2σ0
exp

(

−µ2

σ2
0

)

2F2

(

1
2 ,

3
2 ; 1, 1, µ2

σ2
0

)

s1 = s2 = 1

i.n.d.
∫∞
0
t2 exp

[

− t2+µ2
1s2

1

2σ2
10

− t2+µ2
2s2

2

2σ2
20

]

ṡ1 = ṡ2 = 0 ×
√

2(σ2
12+σ2

22)√
πσ2

10σ2
20

I0

(

µ1s1t
σ2
10

)

I0

(

µ2s2t
σ2
20

)

dt

i.n.d. Υ
∫∞
−∞ |ż|

∫ 2π

0

∫ 2π

0 exp(∆)dυ1dυ2dż

modulated ×
[

q2

q2
1

+
√

π√
2q1

q2
2+q1

q2
1

exp
(

q2
2

2q1

)

erfc
(

−q2√
2q1

)]

wherefY,Ẏ (y, ẏ) is the JPDF ofY and its time derivativėY . In order to find the ASR, one should

first find fY,Ẏ (y, ẏ). Since Rayleigh distribution is a special case of Rician distribution in which

µi = µci = µsi = 0, (5.15) simplifies to

fRi,Ṙi
(ri, ṙi) =

ri

σ2
i0σi2

√

2π(1 − δ2i )
exp

[

− 1

2(1 − δ2i )

(

r2i
σ2

i0

− 2δiriṙi
σi0σi2

+
ṙ2i
σ2

i2

)]

. (5.26)

Since the channels are independent and also the received signals are independent, the envelopes of

the signals are also independent. As a result,

fR1,Ṙ1,R2,Ṙ2
(r1, ṙ1, r2, ṙ2) = fR1,Ṙ1

(r1, ṙ1)fR2,Ṙ2
(r2, ṙ2).

One can use the fundamental transformation theorem to obtain fY,Ẏ ,R2,Ṙ2
(y, ẏ, r2, ṙ2) with respect

to fR1,Ṙ1,R2,Ṙ2
(r1, ṙ1, r2, ṙ2). After some manipulations,

fY,Ẏ ,R2,Ṙ2
(y, ẏ, r2, ṙ2) = Mr42y exp

[

−(D1r
2
2 + 2D2r2ṙ2 +D3ṙ

2
2)
]

(5.27a)

where

M =
1

2πσ2
10σ

2
20σ12σ22

√

(1 − δ21)(1 − δ22)
, (5.27b)

D1 =
1

2

[

y2

(1 − δ21)σ
2
10

+
1

(1 − δ22)σ
2
20

− 2δ1yẏ

(1 − δ21)σ10σ12
+

ẏ2

(1 − δ21)σ
2
12

]

, (5.27c)

D2 =
1

2

[

− δ1y
2

(1 − δ21)σ10σ12
− δ2

(1 − δ22)σ20σ22
+

yẏ

(1 − δ21)σ
2
12

]

, (5.27d)

D3 =
1

2

[

y2

(1 − δ21)σ2
12

+
1

(1 − δ22)σ2
22

]

. (5.27e)

The JPDF ofY andẎ can be determined by integrating (5.27a) overr2 andṙ2, i.e.,

fY,Ẏ (y, ẏ) =

∫ ∞

r2=0

∫ ∞

ṙ2=−∞
fY,Ẏ ,R2,Ṙ2

(y, ẏ, r2, ṙ2)dr2dṙ2. (5.28)
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Note that we only needfΛ,Λ̇(1, λ̇) to find the average switching rate. Using [54, (3.461.2)],

∫ ∞

0

x2ne−px2

dx =
(2n− 1)!!

2(2p)n

√

π

p
(5.29)

for n being an integer andp > 0, one has

fY,Ẏ (1, ẏ) =
m

(ẏ2 + 2d2ẏ + d1)5/2
(5.30a)

where

m =
3[(1 − δ21)σ

2
12 + (1 − δ22)σ

2
22]

2

2σ2
10σ

2
20

(5.30b)

d1 =
σ2

12

σ2
10

+
σ2

22

σ2
20

− 2δ1δ2
σ12σ22

σ10σ20
+ (1 − δ22)

σ2
22

σ2
10

+ (1 − δ21)
σ2

12

σ2
20

(5.30c)

d2 =
δ2σ22

σ20
− δ1σ12

σ10
. (5.30d)

As a result, the average switching rate of an AFC can be obtained using 3.29 as

N = NY (1) =
2m(d1 + d2

2)

3
√
d1(d1 − d2

2)
2

(5.31)

if |d2| <
√
d1. The final results for the ASR of an AFC in Rayleigh fading noisy channels are shown

in Table 5.2.

In order to find the MTLL, we also need to findF . SinceUi is equal to the summation of two

independent Gaussian random processes (see (5.10d)), it isGaussian as well. The same discussion

holds forVi and it can be easily seen thatUi andVi are i.i.d. and have zero means. By some

manipulations, the distribution ofRi can be found to be Rayleigh where

fRi(ri) =
ri

bi0 + s2i ci0
exp

(

− r2i
2(bi0 + s2i ci0)

)

. (5.32)

Using (5.9b) and after some manipulations, it can be shown thatF is equal to

F =
b10 + s21c10

b10 + b20 + s21c10 + s22c20
. (5.33)

The MTLL in the case of unmodulated received signals in i.n.d. channels will be equal to

T = 2

(

σ10

σ20

)

√

σ2
10 + σ2

20

σ2
12 + σ2

22

. (5.34)

If the signals have equal power,

T = 2

√

(c10 + b10)(c10 + c20 + b10 + b20)

(c20 + b20)(c12 + c22 + b12 + b22)
. (5.35)

In the special case of i.i.d. channels ands1 = s2 = 1,

T = 2

√

c0 + b0
c2 + b2

. (5.36)
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Table 5.2. The average switching rate of an AFC in Rayleigh/Rayleigh fading noisy channels.

System Model Average Switching Rate

i.i.d.

s1 = s2 = 1 1
2

√

c2+b2
c0+b0

ṡ1 = ṡ2 = 0
i.n.d.

s1 = s2 = 1

√
(c10+b10)(c20+b20)(c12+c22+b12+b22)

(c10+c20+b10+b20)3/2

ṡ1 = ṡ2 = 0
i.n.d.

ṡ1 = ṡ2 = 0

σ10σ20

(σ2
10+σ2

20)

√

σ2
12+σ2

22

σ2
10+σ2

20

i.n.d.

modulated
2m(d1+d2

2)

3
√

d1(d1−d2
2)

2

5.3 Numerical Examples

In the numerical examples, we consider the special case of two-dimensional (2-D) isotropic scatter-

ing and an omnidirectional receiving antenna. It is assumedthat the bandpass filter of the IF portion

of the receiver is an ideal flat filter such that it does not affect the shape of the PSD of the received

signals. In this scenario,ci2 = 2π2f2
mi
ci0 for i = 1, 2 wherefmi is the maximum Doppler fre-

quency [50]. The carriers are assumed to be unmodulated suchthats1 = s2 = 1 and the maximum

Doppler frequencies of the received signals are assumed to be equal,fm1 = fm2 = fm. Moreover,

the bandpass filter is assumed to have a bandwidth equal to2fm and thereforebi2 = 4
3π

2f2
mbi0. In

Fig. 5.1, the ASR of an AFC (normalized tofm) versus the signal-to-noise ratio (SNR) of the desired

signal is shown for different signal-to-interference ratios (SIRs) for Rayleigh fading channels. The

SNR and SIR are defined as SNRi = 10 log10

(

ci0

bi0

)

and SIR= 10 log10

(

c10

c20

)

for Rayleigh fading.

The SNR of the interference is assumed to be equal to 10 dB. It can be seen that for large values of

SIR, increasing the SNR of the desired signal increases the ASR which means the performance of

the AFC deteriorates. For smaller values of SIR (for instance, -20 dB), the AFC is locked on the

desired signal for small values of SNR1 and increasing SNR1 causes the AFC to lock on the inter-

ferer which is also equivalent to loss of performance. This behavior can be observed more clearly in

Fig. 5.2 where the MTLL of an AFC (multiplied byfm) is shown versus SNR1. The reason for this

behaviour is that when the SIR and SNR2 are constant, decreasing SNR1 is equivalent to increasing

the amplitude of the noisy desired signal compared to the amplitude of the noisy interferer. Observ-

ing these results, one can conclude that there is a trade-offfor the SNR of the desired signal; while
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Figure 5.1. The ASR of an AFC (normalized tofm) in Rayleigh fading for SNR2 = 10 dB.

having a large SNR makes the AFC more robust to the loss of lockdue to the effect of noise, it also

makes the AFC more vulnerable to the loss of lock due to an interference signal.

Fig. 5.3 shows the ASR of an AFC (normalized tofm) in a Rician fading scenario for dif-

ferent Rice factors defined asKi =
µ2

i

2ci0
. In a Rician scenario, the SIR and SNR are defined as

SNRi = 10 log10

(

ci0(1+Ki)
bi0

)

and SIR= 10 log10

(

c10(1+K1)
c20(1+K2)

)

, respectively. The SIR and SNR2

are assumed to be equal to 10 dB.

In Figs. 5.4 and 5.5, the ASR and MTLL of an AFC versus SIR are shown for different values

of Rice factor. Two cases of noise-free desired signal and SNR1 = 0 dB are considered when

SNR2 = 10 dB. It can be seen that at small values of SIR, the MTLL is increased when the signal

is noisier. This is because the desired signal is weak compared to the interference and noise is

the dominant part which determines the MTLL in branch 1. However at large values of SIR, the

performance of the AFC is better for larger values of SNR1 when the desired signal has a large LOS

component (for exampleK1 = 3). This behavior can be explained by considering (5.19). Onecan

see that the JPDF ofRi andṘi is equivalent to the JPDF of a Rician random process and its time

derivative. Since decreasing the SNR in this case is equivalent to decreasing the Rice factor of this

new random process,́Ki =
µ2

i

2(ci0+bi0)
, and since the level crossing rate of a Rician random process
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Figure 5.2. The MTLL of an AFC (multiplied byfm) in Rayleigh fading for SNR2 = 10 dB.
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Figure 5.3. The ASR of an AFC (normalized tofm) in Rician fading for SNR2 = 10 dB and
SIR = 10 dB.
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Figure 5.4. The ASR of an AFC (normalized tofm) in Rician fading for SNR2 = 10 dB. The
solid lines represent the case of a noise-free desired signal and the dashed lines represent the case of
SNR1 = 0 dB.

is very sensitive to its Rice factor [50], the AFC has a betterperformance at large values of SNR.

5.4 Conclusion

In this chapter, we have investigated the effect of a single interferer on the performance of an AFC

in noisy fading channels. Closed-from expressions and integral form formulas were derived for

the ASR and the MTLL of an AFC when the channels are subject to Rayleigh and Rician fading

and Gaussian noise. Numerical examples were presented to demonstrate the effect of noise on the

performance of an AFC in such scenarios. It was shown that in some scenarios the performance of

an AFC improves when the tracked signal becomes noisier.
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Chapter 6

Lower Bounds to the Performance of
Bit Synchronizers in ISI Channels

Although many synchronizers have been introduced and investigated for ISI-free systems in the lit-

erature, practical cases in which ISI plays an important role are not well investigated. In this chapter,

this problem is investigated and true NDA ML synchronizer isderived in ISI channels. Moreover,

some bounds are introduced and applied to the performance ofsynchronizers in ISI channels.

6.1 Maximum Likelihood Estimator for ISI Channels

In [14]–[16] the ML estimator of the timing offset for one symbol interval observation has been

derived for binary pulse amplitude modulation (PAM) in the case that the symbol duration is equal

to the inverse of sampling rate. The results have been also extended to the case of several bit intervals

observation in an ISI-free channel. The non-data-aided (NDA) ML criterion is

τ̂ = argmax
τ̃

∑

i

log

[

cosh

(

2qi(τ̃ )

N0

)]

(6.1)

whereqi(τ̃ ) = r(t) ∗ p(−t)|t=iT+τ̃ , τ̂ is the estimated timing offset,N0/2 is the two-sided spec-

tral density of the additive white Gaussian noise,r(t) is the received signal,T is the inverse of the

sampling rate,p(t) is the pulse shape with a duration equal toT , and∗ denotes the convolution oper-

ation. Note that the summation in (6.1) is over the symbols that are received during the observation

period,LT .

The purpose of this section is to derive the NDA ML criterion for symbol timing recovery in an

ISI channel. In this study, we consider a binary PAM signal. The baseband model of the received

signal,r(t), can be expressed as

r(t) = x(t, τ) + n(t) (6.2a)

x(t, τ) =
∑

i

cig(t− iT − τ) (6.2b)
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Figure 6.1. A sequence of 1s sent using triangular pulses withM = 2 andL = 5.

wheren(t) is the additive white Gaussian noise (AWGN) with two-sided spectral density equal

to N0/2, g(t) is the received pulse shape (a truncated pulse with a duration equal to2MT ), T is

the inverse of the sampling rate andτ is the timing offset which can be modeled as an uniformly

distributed random variable in[0, T ); in this equation,ci is theith transmitted data symbol and is a

zero-mean random variable such that for any two transmitteddata symbols,E[cicj ] = Cδ(i − j),

whereE[·] denotes the expectation operation,δ(·) is the Kronecker delta function andC is the

energy of each bit.

Conditioned onτ , there are22M+L−1 equally probable signal waveforms forx(t, τ) during an

observation time equal toLT . In Fig. 6.1, this is shown for a sequence of1s sent using a triangular

pulse with duration equal to4T and an observation time equal to5T . As can be seen in this figure,

8 symbols are involved during this observation time. Since the probability of sending1 or −1 is

assumed to be 0.5 and the symbols are sent independently, there are28 equally probable signal

waveforms.

Conditioned onτ , these signal waveforms,sk(t, τ), can be represented using the Karhunen-

Loéve (KL) expansion [13]. Considering a complete orthonormal basis{ψi(t)}, one has

sk(t, τ) =

∞
∑

i=1

ski(τ)ψi(t) (6.3a)

ski(τ) =

∫ τ+(j+L)T

τ+jT

sk(t, τ)ψi(t)dt. (6.3b)

Similarly, r(t) andn(t) can be represented using the KL expansion during the interval [τ + jT, τ +

(j + L)T ), conditioned onτ . If the kth signal waveform is received during the observation period,
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by denoting the truncated vector representation of these signals by a prime, one has

r ′ = s′k + n′. (6.4)

Since the elements ofn′ are independent Gaussian random variables, one has

P (r ′|τ, s′k) =
N
∏

i=1

1√
πN0

exp

(

−|ri − ski|2
N0

)

=
1

(πN0)
N/2

exp

(

− 1

N0

N
∑

i=1

|ri − ski|2
)

whereN is the length of the truncated vectors. Having this conditional probability density function

(PDF) and considering the fact that all the22M+L−1 possible signal waveforms are equiprobable,

one can find

P (r ′|τ) = A

22M+L−1
∑

k=1

exp

(

− 1

N0

N
∑

i=1

|ri − ski|2
)

(6.5)

whereA is a constant and therefore has no impact on the location of the maximum ofP (r ′|τ).

Moreover, one has

N
∑

i=1

|ri − ski|2 =

N
∑

i=1

|ri|2 +

N
∑

i=1

|ski|2 − 2

N
∑

i=1

riski (6.6)

and sinceexp
(

− 1
N0

∑N
i=1 |ri|2

)

is a constant, instead of finding the maximum ofP (r ′|τ), one can

equivalently find the maximum ofΛ(r ′|τ) where

Λ(r ′|τ) =

22M+L−1
∑

k=1

exp

(

− 1

N0

N
∑

i=1

|ski|2+
2

N0

N
∑

i=1

riski

)

. (6.7)

Note that the timing offset found using the truncated vectorrepresentation of signals is an approxi-

mation to the real timing offset. In order to find the true value of this timing offset,N should tend

to infinity. Since [13]

lim
N→∞

N
∑

i=1

|ski|2 =

∫ τ+(j+L)T

τ+jT

|sk(t, τ)|2dt

lim
N→∞

N
∑

i=1

riski =

∫ τ+(j+L)T

τ+jT

r(t)sk(t, τ)dt

one has

τ̂=arg max
τ

22M+L−1
∑

k=1

exp

(

− 1

N0

∫ τ+(j+L)T

τ+jT

|sk(t, τ)|2dt+
2

N0

∫ τ+(j+L)T

τ+jT

r(t)sk(t, τ)dt

)

.

(6.8)

Note that since for every signal waveform, there is a signal waveform with an opposite sign, (6.8) can

be simplified by considering only the signal waveforms for which c1 = 1. After some manipulations,

one obtains

τ̂=argmax
τ

22M+L−2
∑

k=1

[

exp

(

− 1

N0

∫ τ+(j+L)T

τ+jT

|sk(t, τ)|2dt
)

cosh

(

2

N0

∫ τ+(j+L)T

τ+jT

r(t)sk(t, τ)dt

)]

.

(6.9)
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6.2 A Lower Bound on the Detection Theory Bound (DTB)

The DTB (also known as the Ziv-Zakai bound) is a lower bound onthe mean square estimation error

of the timing offset,i.e.

MSE = E

[

(

τ − τ̂

T

)2
]

≥ DTB (6.10a)

where

DTB=Ec

[

∫ 1

θ=0

Gw

(

∫ 1−θ

υ=0

Pe(υ, υ + θ|c)dυ
)

θdθ

]

(6.10b)

and wherec is a vector denoting the sequence of the transmitted bits,Gw(f(θ)) is a transform that

fills the valleys off(θ) with respect toθ (see Fig. 6.2 as an example) andPe(υ, υ + θ|c) is the

minimum probability of error in deciding between signals

x1(t) =
∑

n

cig(t− nT − υT ) (6.11)

x2(t) =
∑

n

cng(t− nT − (υ + θ)T ) (6.12)

when transmitted with equal probability. One has [16, Ch.4]

Pe(υ, υ + θ|c) = Q





√

d2
12

2N0



 (6.13a)

where

d2
12 =

∫ LT

0

(x1(t) − x2(t))
2dt =

∫ LT

0

x2
1(t)dt +

∫ LT

0

x2
2(t)dt− 2

∫ LT

0

x1(t)x2(t)dt

= E1 + E2 − 2ρ12 (6.13b)

and whereQ(·) is the Q-function defined at [44],LT is the observation time,E1 andE2 are the

energies ofx1(t) andx2(t) duringLT , andρ12 is the correlation ofx1(t) andx2(t).

For the sake of simplicity,Gw(f(θ)) in (6.10) can be replaced byf(θ). Note that iff(θ) is a

non-increasing function ofθ in [0, 1), Gw(f(θ)) = f(θ); otherwise, this replacement weakens the

bound. Consequently, one has

DTB ≥ Ec





∫ 1

θ=0

θ

∫ 1−θ

υ=0

Q





√

d2
12

2N0



 dυdθ



 =

∫ 1

θ=0

θ

∫ 1−θ

υ=0

Ec



Q





√

d2
12

2N0







 dυdθ

(6.14)

where the equality is a result of the linearity of the integration operation. SinceQ(y) is a convex

function fory ≥ 0, using Jensen’s inequality [56] one hasEc [Q(y)] ≥ Q
(

Ec [y]
)

. Moreover,
√
y

is a concave function fory ≥ 0. By employing Jensen’s inequality, one hasEc

[√
y
]

≤
√

Ec [y].
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Figure 6.2. An example functiond(ǫ) and its transformGw(d(ǫ)).

Considering these inequalities and sinceQ(·) is monotonically decreasing,

Ec



Q





√

d2
12

2N0







≥Q



Ec





√

d2
12

2N0







≥Q





√

Ec[d2
12]

2N0



 . (6.15)

In order to findEc

[

d2
12

]

, one can use (6.13b) to obtain

Ec

[

d2
12

]

= Ec [E1] + Ec [E2] − 2Ec [ρ12] . (6.16)

Using the definition ofx1(t) in (6.11) the first term in the right side is equal to

Ec [E1] =

∫ LT

0

∑

n

∑

m

Ec[cncm]g(t− nT − υT )g(t−mT − υT )dt

=

∫ LT

0

∑

n

Cg2(t− nT − υT )dt =

∫ LT

0

∑

m

C

T
F (
m

T
) exp

(

j2πm

(

t− υT

T

))

dt

(6.17)

where in the last equality, the Poisson summation formula [57] is used; in this equation,F (f) =

F
[

g2(t)
]

, whereF [·] is the Fourier transform operator. By changing the order of integration and

summation in (6.17), one has

Ec [E1]=
∑

m

CLF (
m

T
) exp(−j2πmυ)δ(m)=CLF (0) (6.18)

whereF (0) is equal to the energy of a single pulse,Eg,

F (0) = Eg =

∫ ∞

−∞
g2(t)dt =

∫ MT

−MT

g2(t)dt. (6.19)

Similarly, one obtains

Ec [E2] = Ec [E1] = CLF (0). (6.20)
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The third term in the right side of (6.16) can be found in a similar way,

Ec [ρ12] =

∫ LT

0

∑

n

∑

m

Ec[cncm]g(t−nT−υT )g(t−mT−(υ+θ)T )dt

=

∫ LT

0

∑

n

Cg(t− nT − υT )g(t− nT − (υ + θ)T )dt

=

∫ LT

0

∑

m

C

T
H(

m

T
) exp

(

j2πm

(

t− υT

T

))

dt (6.21)

where in the last equality, the Poisson summation formula isused again; in this equation,H(f) =

F [g(t)g(t− θT )]. By changing the order of integration and summation in (6.21), one has

Ec [ρ12] =
∑

m

CLH(
m

T
) exp(−j2πmυ)δ(m) = CLH(0) (6.22)

whereH(0) =
∫∞
−∞ g(t)g(t− θT )dt. One can use (6.22), (6.20) and (6.16) to obtain

Ec[d
2
12] = 2CL[F (0) −H(0)] = 2CLEg[ρ(0) − ρ(θ)] = 2EbL(1 − ρ(θ)) (6.23)

whereEb is the energy of one bit andρ(θ) = 1
Eg

∫∞
−∞ g(t− θT )g(t)dt is the normalized autocorre-

lation function ofg(t). Substituting (6.23) and (6.15) into (6.14), yields

DTB ≥ LDTB (6.24a)

where

LDTB =

∫ 1

0

[

Q

(

√

Eb

N0
L(1 − ρ(θ))

)]

θ(1 − θ)dθ. (6.24b)

Note that when the SNR tends to zero,Q
(√

Eb

N0
L(1 − ρ(θ))

)

tends to1/2. As a result,

lim
Eb/N0→0

LDTB =
1

2

∫ 1

0

θ(1 − θ)dθ =
1

12
(6.25)

which is equal to the variance of a uniform random variable, as desired.

6.3 Simulation and Discussion

The pulse used in this study is the well known square-root raised cosine pulse [2] with a roll-off

factor β = 0.35. Fig. 6.3 shows the normalized square-root raised cosine pulse with a duration

equal to12T (M = 6). The MSE is used to measure the performance of the synchronizers, where

MSE = E
[

(

τ−τ̂
T

)2
]

. In Fig. 6.4, the performance of the ML synchronizer in an ISIchannel is

shown and is compared to the performances of the ISI-free ML synchronizer and the zero-crossing-
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Figure 6.3. Normalized square-root raised cosine pulse with β = 0.35 andM = 6.

based synchronizer (ZCBS) [17], defined as1

τ̂ =
T

2π
arg

{

∑

i

exp [j2πt(i)/T ]

}

+
T

2
(6.26)

wheret(i) is the sequence of zero-crossings of the received signal after passing through the matched

filter. In addition, the DTB, LDTB, and MCRB are shown in this figure. Note that the MCRB for

the MSE of a PAM modulated signal is equal to [1]

MCRB =
1

8π2ξL

1

Eb/N0
(6.27)

whereξ = T 2
R

∞

−∞
f2|G(f)|2df

R

∞

−∞
|G(f)|2df

andG(f) is the Fourier transform ofg(t).

The square-root raised cosine pulse used in this figure has a duration equal to6T (M = 3) and

the observation time is equal to5T . As can be seen in this figure, the performance of the ZCBS in an

ISI channel is better than the performance of the ISI-free MLsynchronizer, as was reported in [17].

However, the performance of the optimum synchronizer (trueML) expressed in (6.9) is much better

than both of these methods. Moreover, it can be seen that the DTB provides a very tight lower bound

for the MSE of the true ML synchronizer while the MCRB does notprovide a tight lower bound.

Adding this shortcoming of the MCRB to its behaviour at smallvalues of SNR, one can conclude

that the MCRB is not a very appropriate candidate as a lower bound in ISI channels. However, as

mentioned before, the complexity of the DTB which requires the Monte Carlo method to find an

expectation over all the possible waveforms, is a serious disadvantage for this lower bound.

In Fig. 6.5, the DTB, LDTB, and MCRB are shown for the square-root raised cosine pulse with

β = 0.35 andM = 3 and whereL = 5. It can be seen that the MSE of both the DTB and LDTB

1Since the timing offset in [17] is modeled as a uniform randomvariable in[−T/2, T/2) and in this letter it is modeled
as a uniform random variable in[0, T ), T/2 is addedfrustrated to the ZCBS equation to make (6.26) consistent with the
ZCBS equation in [17].
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Figure 6.4. The performance of the ZCBS, ISI-free ML synchronizer, true ML synchronizer, DTB,
LDTB, and MCRB in an ISI channel. The truncated square-root raised cosine pulses haveβ = 0.35,
M = 3, and the observation time is equal to5T .

tend to the variance of a uniform distribution at small values of SNR, while the MSE of the MCRB

increases without limit at small values of SNR and thereforethe MCRB is not a lower bound in this

region. Although the LDTB is a lower bound on the DTB, it does not suffer from the complexity

problem of the DTB and since its computation only requires evaluating a single definite integral on

the interval[0, 1], it can be computed very fast.

Fig. 6.6 shows the MCRB and LDTB for two different values of observation time. It can be seen

that the LDTB is a good match for the MCRB for moderate values of SNR for both of these obser-

vation times. Also, considering its appropriate behaviourat small values of SNR and its simplicity

in computation, it is a good alternative for the MCRB in ISI channels for small to moderate values

of SNR. At large values of SNR (e.g. larger than 30 dB), the gapbetween the LDTB and the MCRB

increases. However, since in practical applications values of SNR more than 30 dB are uncommon,

the LDTB is a good alternative for MCRB in practice.

6.4 Conclusions

In this chapter, the ML criterion for timing recovery of a sequence of PAM signals in the presence

of ISI and noise was derived. It was shown that the ML criterion derived for an ISI-free channel
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Figure 6.5. The DTB, LDTB, and MCRB for a sequence of truncated square-root raised cosine
pulses withβ = 0.35,M = 3, andL = 5.
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Figure 6.6. The LDTB and MCRB for a sequence of truncated square-root raised cosine pulses with
β = 0.35,M = 6, and two different observation times.
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underestimates the optimal performance significantly and cannot be used as a proper lower bound

on the MSE of synchronizers operating in ISI. The detection theory bound was used as a lower bound

on the MSE of the timing offset and it was shown that this lowerbound is a tight lower bound on the

MSE of the ML synchronizer. A lower bound was derived for the DTB which is much simpler to

compute than the DTB. This lower bound was compared to the MCRB and DTB and it was shown

that at small values of SNR, the LDTB exhibits the correct behaviour of the DTB while at moderate

values of SNR, it is almost as tight as the MCRB.
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