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Abstract

Synchronization is a very important part of every digitatrgounication receiver. While in bandpass
coherent transmission, frequency and phase synchramizpliy a very important role in reliable
transmission, symbol timing recovery is a necessary pavefy baseband and bandpass coherent
receiver. This dissertation deals with the problem of syoization in the presence of fading and
interference.

First, the performance of an automatic frequency contrap I investigated using two param-
eters of average switching rate and mean time to loss of Iddlese parameters are derived in
closed-form or as integral-form formulas for differentsagos of modulated and unmodulated sig-
nals in different fading channels when there is one interfee signal present at the input of the
AFC. Then, the results are generalized to the noisy fadiegaio and it is shown that in Rayleigh
fading case, the performance of AFC becomes better wheresieed signal is noisier.

In the second part, the problem of symbol timing recovenniestigated in systems that are
subject to intersymbol interference and non-data-aidedmuam likelihood synchronizer is derived
in these channels. Then, a new simple bound on the perfoeraraynchronizers is derived and
compared to the previously known lower bounds. It is shovat tthile this lower bound solves
the shortcomings of the well known modified Cramer-Rao batrainall values of signal-to-noise-
ratio, it is much easier to compute compared to another wedida bound, the detection theory

bound.
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Chapter 1

Introduction

In a digital link, data is transmitted using a sequence af@aisent from the transmitter and received
at the receiver. The ultimate task of a receiver is to find dicewf the data that is conveyed by
the received pulses. In order to extract data from the rededignal, the receiver needs to know the
time base of the signal also referred to as reference pagasijé}. Synchronization is the process of
finding the reference parameters of the received signahdiptocess of detection, three reference
parameters play a very important role. These parametefes@ngency, timing, and phase.

In coherent bandpass digital communications, the first stefetecting the transmitted data is
to extract the baseband data signal using a local refer@jcd his local reference should regen-
erate the frequency and phase of the received signal. Ttwitsithat perform this task are called
carrier synchronizers. One of the most important circlits is used to recover the phase of the
received signals in coherent receivers is the phase-lodagd(PLL). A PLL is a control system
that automatically adjusts the phase of a locally genersitgthl to track the phase of the received
signal. This circuit has two modes of operation [3, Ch. 4]tHa tracking mode, the state variables
of the PLL have values close to the steady state values. Hawthe initial values of these state
variables might be very different from their steady statei®s. In the acquisition mode, the initial
values of the loop are brought to the tracking mode. Althoad?LL is a near optimum tracking
device [3], it has a poor performance in the acquisition mdderder to overcome this problem, in
many coherent receivers, an automatic frequency contfeCjAoop is used as an acquisition aid to
the PLL. An AFC loop is used to control the frequency of a reegisignal. The usage of the AFC is
not limited to coherent detection. Since an AFC is more rbtmubnk disturbances than a PLL [4],
in noncoherent receivers, it is used as a necessary parg digftal link to control the frequency of
the received signals.

In addition to carrier synchronization, every basebandamdpass receiver should also perform



timing synchronization. In the receiver, the output of tleenddulator should be sampled periodi-
cally, once in every symbol interval, in order to recovertitamsmitted data. The optimum sampling
times correspond to the widest opening of the eye diagrangjfe the propagation delay from the
transmitter to the receiver is generally unknown, symboirig recovery is needed in every receiver
in order to determine the optimum sampling location to aghreliable detection.

Symbol timing recovery can be accomplished in several w&yse way is to synchronize the
transmitter and receiver clocks to a precise master clatkhis scenario, the receiver should con-
sider the time delay between the transmitter and receiveecampensate for this relative time delay.
This method can be used in radio transmission systems th&tiwahe very low frequency band
(below 30 kHz) [2].

Another method is to transmit the clock frequency along i data. The receiver can use a
narrowband filter to extract the clock frequency and thugtbek signal for sampling. Although this
method is very simple, it consumes some of the transmittesepto transmit the clock signal and
also a fraction of the frequency bandwidth should be allet&br transmitting the clock signal. This
method is used in telephone transmission systems whichange bandwidths to transmit signals
from different users [2].

Another method is to extract the clock signal from the reg@igignal. This is the method that
is used in many wireless communication systems to achiawehsgnization.

In wireless communications, synchronization is a chaileggask as a result of many factors
such as multipath fading, interference, and noise. Muhigading occurs as a result of construc-
tive and destructive addition of multipath signal compdseand not only affects the power of the
received signal, but also adds a random delay to the sigmad.adDthe most important types of in-
terference is cochannel interference (CCI). CCl occursrasalt of interrupting signals from other
users operating in the same frequency channel. Interferggnt also occurs as a result of signals in
adjacent channels interfering with the desired signals type of interference is called the adjacent
channelinterference (ACI). Another important type of iféeence is intersymbol interference (ISI).
The ISI occurs when symbols of a signal interfere with otlyentsols of the same signal. Moreover,
the presence of additive white Gaussian noise in the systémevitable. Consequently, in address-
ing the problem of synchronization, it is very important tookv the effect of these factors on the

performance of the synchronizers in order to design an gpiate and realistic synchronizer.



1.1 Motivations and Contributions

In a wireless channel, usually there is more than one usetremdfore the presence of more than
one signal at the input of a receiver is highly expected. Mdghese signals are filtered at the
input of the receiver, however, some of these signals migks ghrough the filter as a result of
inadequate filtering. The signals that have passed thrdugfilter can be signals sent with the
same carrier frequency as the desired signal (CCl), or thaybe signals sent in adjacent channels
(ACI). One should note that the carrier frequency of therfietence signals that are sent through
the same channel as the desired signal changes from itearigilue before reaching the receiver.
This change in the carrier frequency of the signals can berasuit of the effects of the wireless
channel such as Doppler frequency shift [5] or it can be assaltref the frequency drift of the
local carrier oscillators in the transmitters. Note tha kbcal oscillators of the transmitters of the
interference signals and the desired signal are differadtadso the paths they take to reach to
receiver are different. As a result, either the CCI signathe ACI signals that have passed through
the bandpass filter of the receiver and the desired signailddave different frequencies.

Itis known that if there are two signals at the input of an AE® AFC locks on the signal with
larger amplitude [6, Ch. 19]. The amplitude of the receivigthals depend on several factors such
as the modulation, fading, and noise. Since these fact@sgehwith time, the relative amplitudes
of the interference signal and the desired signal also ahavitly time. This change in the relative
amplitudes of the received signals causes AFC jumps at teviex. Every jump from the received
signal to the interference signal and vice versa, geneeatesnsient in the filters of the receiver
which corrupts the performance of the filters and producemmnally generated outage in the
receiver. In addition, these jumps consume energy in thelits of the receiver and therefore the
power consumption of the receiver increases. One measatregth quantify this effect is the average
switching rate (ASR). The ASR shows how often a jump occuemiAFC from the desired signal
to the interferer and vice versa. By having this measure hedilter characteristics of a specific
receiver, one can find the average time that the receiverasiage as a result of these transients.
Another way that an outage may occur in a receiver is if the AgtRs on the interferer instead of
the desired signal. Therefore, for this period of time, thigpat of the AFC is not reliable. One
parameter that can be used to characterize this behaviemrAFC is the mean time to loss of lock
(MTLL). This parameter gives the average time that an AFCaieslocked on the desired signal
and can be considered as a measure of the reliability timeecAEC’s output.

Although the outage generated by the channel is well inyatgd in the literature, there is a



lack of reported results on the internally generated outHgihe receiver. In reference [7], the
ASR and the MTLL of an AFC loop have been derived when the ddsiignal and the interferer
are unmodulated and are subject to Rayleigh fading. Medawhireless systems often operate
in fading that is not Rayleigh distributed. For instancengneeal world fading channels are better
modeled by the Rician and Nakagamidistributions. Furthermore, in many scenarios, the ddsire
signal and the interferer pass through different trandgomssnvironments and therefore they can
have different fading statistics [8]—-[11]. For instanddhere is a line-of-sight (LOS) path between
the transmitter of the desired signal and the receiver, tanweel of the desired signal is better
modeled by Rician fading. Meanwhile, there may not be a danmtimultipath reflection in the
interferer’s channel. In this case, the fading affectingititerferer is better modeled by a Rayleigh
(pure scattering) or a Nakagami distribution. Other dilsinchannel scenarios may appear as
well when there is not a LOS path between the transmitter ®fdibsired signal and the receiver.
Furthermore, practical signals are modulated and the tish@viour of the modulating signals can
affect the AFC performance significantly.

In this thesis, the result in [7] for the ASR of an AFC in RagleiRayeligh scenario is gener-
alized to include the case of modulated carriers. Moreaséng a different method from that em-
ployed in [7], the ASR and the MTLL of an AFC in Rician/RiciandaNakagami/Nakagami fading
are derived and several cases regarding the modulatioarafrhitted signals are considered. More-
over, the performance of an AFC in dissimilar fading chasnBician/Rayleigh, Rayleigh/Rician,
Rician/Nakagami, Nakagami/Rician, Nakagami/Rayleigid, Rayleigh/Nakagami are investigated.
And finally, the performance of an AFC in the presence of naisRayleigh/Rayleigh and Ri-
cian/Rician channels are considered and closed-form sgjoes and integral form formulas are
derived for the ASR and the MTLL of an AFC.

Symbol timing recovery has been widely investigated dutirglast decades and different bit-
synchronizers have been introduced in the literature (feveew see [12] and [1]). One of the well
known methods that is widely used to estimate the timingedft§ a received signal is the max-
imum likelihood (ML) method [13]. The application of this thed in most scenarios leads to a
rather complicated solution; however, its optimality mskieis method an appropriate benchmark
to which other synchronizers can be compared. The ML bitkyonizers are derived for an inter-
symbol interference (ISI)-free channel in [14]-[16]; hawg the application of this method in the
practical scenario in which symbols are subject to ISI, seadre clarification. In several papers,
the ML synchronizers derived in [14]-[16] for an ISI-freeartmel, have been applied to ISI channels

without any modifications, because of their simplicity, athhas lead to some misunderstandings.



For example in [17], the authors investigated the perfolmearsf some zero-crossing (ZC)-based
synchronizers in ISI channels and instead of comparingehalis with the ISI ML synchronizer,
they compared the results to the 1SI-free ML synchronizensequently, they concluded that the
ZC-based methods perform better than the ML synchronizewrany practical cases. In order to
clarify this matter, the true ISI ML synchronizer is deriviedthe last chapter of this thesis and its
performance is compared to the performance of an ML synéheoderived for an ISI-free channel
and the ZC-based synchronizer introduced in [17].

Finding bounds on the performance of a synchronizer hasyahlvaen an interesting subject,
since these bounds can be used as benchmarks to which tbenpente of practical synchronizers
can be compared. A fundamental lower bound is the CramerbRand (CRB) [13], [18]; how-
ever,the computation of a true CRB is a challenging task inyr@actical cases. An alternative
lower bound that is widely used in the literature is the medifCramer-Rao bound [1], [19]. Al-
though the CRB and MCRB provide useful bounds for moderatégb values of signal-to-noise
ratio (SNR), they are known to have some shortcomings péatily at small values of SNR [13],
[20], [21]. Another lower bound on the MSE of parameter eations which has its origins in detec-
tion theory was introduced in [22]—-[24]. This bound has besed to estimate the random delay of
a single deterministic signal [22]-[24]. Moreover, in [3tljvas used in the symbol timing recovery
problem for a received signal consisting of a random seqgiehpulses in an ISI-free channel. It
was shown that this lower bound does not suffer from the shoring of the MCRB at small values
of SNR. While the detection theory bound (DB the ISI-free scenario can in some instances be
solved in closed-form [25], its application to the symbaiitig recovery problem in an ISI channel
requires computing a double integral numerically plus greetation over all the possible sequences
of the received signals [21], which can sometimes only beedming the Monte Carlo method. In
this thesis, a lower bound on the DTB is derived for an ISI ctemhich only requires computing
a single definite numerical integral on the interj{@ll]. This lower bound on the DTB (LDTB) is
compared to both the DTB and the MCRB and it is shown that nigtawes this bound preserve the
appropriate behaviour of the DTB at small values of SNR, tigtalso almost as tight as the MCRB
for moderate values of SNR.

In the last chapter of this thesis, the true ISI ML synchrenig derived and its performance is
compared to the ISI-free ML synchronizer. It is shown thattise of the ISI-free ML synchronizer

as a lower bound in an ISI channel, as has been done in [173t isomrect. Moreover, the DTB is

1The term detection theory bound (DTB) was introduced in [aIoncisely denotate this bound. We use this nomencla-
ture here.



applied to timing estimation in I1SI-channels and it is shdhet it is a very tight lower bound to the
ML synchronizer. In addition, a lower bound is derived foe thTB, which is much simpler than
the DTB, does not suffer from the shortcomings of the MCRBadlfvalues of SNR, and is almost

as tight as the MCRB at moderate values of SNR.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 reviews tlekdraund of this study. In the first
part of this chapter, the automatic frequency control loasdescribed and previous works on the
performance of these devices are reviewed. Then, the charotels are reviewed and different
channels that are used in this thesis are introduced. Irettand part, the problem of symbol timing
recovery is presented and maximum likelihood synchrosizee explained in detail. Then, the
bounds on the performance of symbol timing synchronizersariewed.

In Chapter 3, the mean time to loss of lock and the averageslsing rate of an automatic
frequency control loop operating in fading in the preserfaesingle interferer are derived. Closed-
form expressions and integral form formulas are derivedtierASR of an AFC for the general
case of modulated carriers as well as important speciabaafssimilar modulations and unmodu-
lated carriers. The MTLL is also derived in closed-from foe tase of unmodulated carriers. The
general results include, as special cases, some previowsresiricted results. Fading channels are
assumed to be independent non-identically distributedi()} with Rayleigh, Rician and Nakagami-
m distributions while the special case of independent idatiti distributed (i.i.d.) channels is also
considered. Corresponding numerical examples are proade discussed to illustrate the results.

In Chapter 5, the mean time to loss of lock and the averageslsing rate of an automatic
frequency control (AFC) loop are derived for the case of teeived signals in dissimilar fading
channels. The channels are assumed to have Rayleigh, RitthNakagamin distributions. Nu-
merical examples are provided to illustrate the effect ebthfading scenarios on the performance
of an AFC in the presence of cochannel interference.

In Chapter 6, the performance of an automatic frequencyrab@FC) loop in a noisy fad-
ing channel when an interference signal is present at the miithe AFC is studied. Independent
non-identically distributed (i.n.d.) channels with Ragle and Rician fading are considered. The
received signals are assumed to be narrowband and lineadylated while the analysis is appli-
cable to the unmodulated scenario as well. Closed-formessimns and integral form formulas are

derived for the mean time to loss of lock (MTLL) and the averawitching rate (ASR) of an AFC.



Numerical examples are provided to illustrate the effeftsaise and slow fading on the perfor-
mance of an AFC in the presence of an interferer. It is shoahithsome scenarios, an AFC has a
better performance if the desired signal is corrupted byemnoise.

In Chapter 7, the maximum likelihood (ML) criterion for sywiltiming estimation is derived
for a sequence of pulse amplitude modulated pulses in tleepcee of intersymbol interference (1SI)
and Gaussian noise. The performance of this synchronizexed as a benchmark to evaluate the
performance of other synchronizers in a practical scen#ris shown that a previous lower bound
based on the ISI-free ML synchronizer cannot be used to lbwend the mean square error (MSE)
of bit-synchronizers. A detection theory bound (DTB) is kb to the symbol timing recovery
problem in an ISI channel and it is shown that this bound ighttiower bound on the MSE of
the ML synchronizer. A simple lower bound on this DTB is dedwand it is shown that the simple
bound is almost as tight as the well known modified Cramerf#itamd (MCRB) at moderate values

of SNR while it does not suffer from the shortcomings of the RECat small values of SNR.



Chapter 2

Background

2.1 Automatic Frequency Control

Automatic frequency control loops are used in digital reees to control the frequency of the mod-
ulated received signals. In its simplest form, the bloclgdian of an AFC loop is shown in Fig.
2.1. As can be seen in this block diagram, the basic compsmé@in AFC consist of a frequency
difference detector (FDD), a loop filter, and a voltage coligd oscillator (VCO). When the input
signal enters the AFC, the frequency difference detectoegdes an error voltage which is propor-
tional to the difference between the carrier frequency efréceived signal and the local frequency
which is provided by the VCO. Then, the output of the FDD isfi#id by the loop filter and then
is applied to the VCO to drive the local frequency of the VC@aads the carrier frequency of the
received signal. When the local frequency of the VCO equedscarrier frequency of the received
signal, the error voltage is equal to zero and the systeminsnirasteady state. In practice, these
steps may be implemented digitally, since digital impletagan of AFC is often more stable and
reliable; however, one should note that if the sampling iaseifficiently high to avoid aliasing, the
analog and digital models will be similar [26].
In [27], two FDDs are introduced that can work in small loomthaidths and large initial fre-

guency offsets. Reference [28] deals with application oDEDn the systems that the carrier fre-

Input Frequency Loo
——* Difference 2P
Signal Detector Filter
Voltage
Controlled
Oscillator

Figure 2.1. The block diagram of an automatic frequencyrobidop.



guency offsets are limited to a fraction of the data rate 4ln[R9]-[32] quadricorrelator FDDs are
described that can work with frequency offsets as large@asddta rate and digital implementations
of these FDDs are presented in [33]. In [34] a FDD based on-iltexl detectors is described. In
references [3], [26] FDDs derived from maximum likelihoddL() principles are discussed.

The performance of an AFC in an interference-free noisyrenmnent has been previously in-
vestigated in the literature. In references [4], [26], [33B], the variance of the frequency error has
been used to evaluate the tracking performance of an AFiprasence of additive noise. In [26]
and [36], the effect of additive noise on the S-curve of sotasscof FDDs in automatic frequency
control loops is discussed. Moreover, some formulas areeatefor the variance of the frequency
error in these AFCs to evaluate their performance in thegmress of additive Gaussian noise. In [4]
and [35], the AFC loop tracking performance is studied faesal AFC loops and the variance of
the frequency error is derived for these loops. In [37] ar8],[Bhe probability of loss of lock caused
as a result of noise has been used to investigate the perioed an AFC. Moreover, in [39], a
probability density function is derived for the frequenontrol loops.

However, noise is not the only disturbance that can affextprformance of an AFC. Since
there are several users in a wireless channel, the presérmm® than one signal at the input of a
receiver is commonplace. In many cases, the signals thatame frequency channels, reach the
receiver with different carrier frequencies as a resulttidrmel effects such as Doppler frequency
shift or local oscillator drift at the transmitter. If thefidirence between the carrier frequencies
of these signals is small enough such that they cannot beefili@ the input of the receiver, they
can produce some difficulties for the process of frequencgvery. This issue has been addressed
and investigated in [6] for a single interference signal.hds been shown that if the difference
between the carrier frequencies of the desired signal aedénence signal is much smaller than
the carrier frequencies and also the modulation is slowAfH€ will lock on the signal with larger
amplitude. In this thesis, this problem is addressed iredéffit fading and noise scenarios to evaluate
the performance of an AFC in the presence of interferencéjpath fading, and additive Gaussian

noise.

2.1.1 Channel Model

When a signal is transmitted through a wireless channethhanel affect the signal characteristics
and therefore the signal received at the receiver is diftefrom the transmitted signal. Several
models are introduced in the literature to describe thedfit effects of wireless channels. One of

the most important models that is widely used to charaaehie wireless channels is the multipath



fading. Multipath fading is a result of the constructive alegdtructive addition of different multipath
components of the signal. Multipath fading is a frequenayffiding [40], i.e., all the spectral com-
ponents of the signal are affected similarly by the charBieice a deterministic model for multipath
fading channels is not available most of the time, thesemélarare characterized statistically.

In multipath fading channels, if a single pulse is transmittthe received signal will appear
as a pulse train [5]. The pulses in this train correspond éolitie-of-sight (LOS) component or
scatter components associated with an individual scatveecluster of scatterers. Fig. (2.2) shows
a multipath fading channel when there is not an LOS componéhé transmitted signal can be

modeled as
x(t) = Re{u(t) exp(j2m f.t)} (2.1)

whereu(t) is the equivalent lowpass signal foft) and f. is the carrier frequency. In the absence

of noise, the received signal has a model equal to

N(t)

r(t) = Re{ D an(tyult — (1)) exp [ (27 felt — Ta(t)) + ¢Dn)]} (2.2)
n=0

whereN () is the number of multipath components(t) is the delay of each component, (¢) is

the path gain, andp, is the Doppler phase shift associated with #ile component.

One should note that this channel has a time-varying nafiris. arises as a result of a moving
transmitter or receiver. This movement causes the locatidhe reflectors to change in the trans-
mission path and therefore changes the characteristi¢tgeafttannel. However, these changes are
very slow compared to the constructive and destructivetimhddf multipath components. Consider-
ing these two classes of changes caused by the channel gitaetdristics of the multipath channels
are described using random processes.

The detailed derivation of these characteristics are pteden [2], [5], [41]. If the spread of the
time delay associated with the LOS component and multipattponents is small compared to the
inverse signal bandwidth, then these components are nolvaéde and cause narrowband fading.

In this scenario, (2.2) can be rewritten as

T’(t) = Re{u(t) eXp(j27rfct) (Z an(t) eXp(*j(bn (t))> } . (2.3)

In order to characterize the channel, we assume the traesisignal:(¢) to be unmodulated with
a random phase offset. Therefore,

N(#)
r(t) = Re {Z an(t)ej‘b"(t)] 2Tt b — (1) cos 27 fut — 1o (t) sin 27 fot (2.4a)

n=0

10



Figure 2.2. A multipath fading channel model.

where the in-phase and quadrature component&fre given by

N
ri(t) = an(t)cos du(t), (2.4b)
n=1
N
ro(t) = Z o, (t) sin ¢y, (t) (2.4c)
n=1
and
®n (t) =21 feTy (t) — ¢p,, — Po- (2.4d)

It has been shown thati¥ (¢) is large, then; () andrg (t) can be approximated as jointly Gaussian
random procességs]. If we assume that the channel parameters change sloify@gspect to time,
there is not a dominant LOS component in the received sigmal,for each component, the term
27 f.1, changes rapidly relative to all other phase terms in theasgion of¢,, (¢), then¢, (¢) is
uniformly distributed in[—=, 7] and alscE[r;(t)] = E[rg(t)] = 0. Consequently;;(¢) andrg(t)
are zero-mean Gaussian random processes. Moreover, itecahown thaE[r; (t)rq(t)] = 0

and therefore;(t) andrg(t) are uncorrelated and since Gaussian, they are also indepierid

1A rigorous derivation might use normalized quantities héié recall the derivation in [5] where normalization is not
used.

11
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Figure 2.3. The power of fading in a Rayleigh fading channelB.

we assume a variance of for both in-phase and quadrature components, the signaiaye/

A(t) = |r(t)] = /r1(t)? + ro(t)? is Rayleigh distributed [42],

2
fala) = % exp <§7) a>0. (2.5)

This multipath fading model is called Rayleigh fading. Timepditude of a Rayleigh fading channel
modeled using Jakes model [41] is shown in Fig. (2.3).

If the channel has a fixed LOS component, then the receivethkig the superposition of a
complex Gaussian random component and a LOS componentigites envelope can be shown to

be Rician distributed [43]

fA(a):%exp (_042+M2)IO (a,u) az0 (2.6)

202 =
whereu? is the power in the LOS componeniz? is the power in the non-LOS component, and
the functionly(-) is the modified Bessel function of the first kind and zerotheod4]. Fig. (2.4)
shows the probability density function (PDF) of Rician faglifor different Rice factors defined as,
K= _2% ando? = 1.

Another model that is widely used in the literature is the &tgdmimfading [40]. The PDF of

the envelope of fading in this model is

2mma2m—1 ma?
R il G v I
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Figure 2.4. Probability density function of Rician fadiray fifferent Rice factors.

wherem is the Nakagamin fading parameter which ranges frognto oo. Fig. (2.5) shows the

probability density function (PDF) of Nakagamifading for different values of» ando? = 1.

2.2 Symbol Timing Recovery

The problem of symbol synchronization is to find the optim@ampling instances in order to extract
the data from the received signal. For a pulse sequence wpititsa rate ofl /7", the sampling rate
would bel/T. However, the problem of symbol timing recovery includeslifiy the timing offset
of the received signal in order to sample at the maximum opeoi the eye diagram. The model of
the received signal for a sequence of PAM modulated pulsebea&xpressed as
z(t,7) = Z cig(t —iT — 1) (2.8)

whereg(t) is the received pulse shagg,is the inverse of the sampling ratejs the timing offset
which can be modeled as an uniformly distributed randonabéeiin [0, 7'), andc; is theith trans-
mitted data symbol. We can defip&) such that the best sampling instances would be-akT+ 7
fork = 0,+1,+2,---. The objective is to estimate the timing offset of the reedigignal;7. Then
this estimate is used to sample the received signakatkT + 7 to obtain a sequence of samples
{é}. Fig. 2.6 shows the block diagram for a baseband receiver.

If we consider a normalized pulse shape, iggt,= 0) = 1, then the difference betwe€i; }

and{¢;} is only due to the intersymbol interference (ISl). If we haeefect timing recovery, = 7,
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Figure 2.6. The block diagram of a baseband receiver (dftd¥i§. 2.1]).
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then

& —ci =Y cig(kT —iT). (2.9)
ik
If the pulses satisfy the Nyquist criterion for zero intergyol interference [2]y(i7") = 0 for i # 0,

then this term vanishes aidg = ¢;. For bandlimited Nyquist pulses even for very small values o
timing error, the ISI term could be significant. In order thiwe better performance in recovering
the data samples, we should first find an accurate estimalte ¢ifting offset.

Most of the existing algorithms for symbol timing synchrzation are derived either through
heuristic arguments or by using maximum likelihood (ML)imsttions [1]. Examples for the former
are early-late detectors (ELD) [45], zero-crossing detesatZCD) proposed by Gardner [1], Mueller
and Mueller detectors (MMD) [46], the Gardner detector (GAMY], and etc.. For a review on the
heuristically derived algorithms one can see [12] and [1hc& the focus of this thesis is on ML-

derived synchronizers, we review the previous works doretive ML synchronizers.

2.2.1 Maximum Likelihood Timing Recovery in I1SI-free Systans

One of the well known methods that is widely used to estintagdiming offset of a received signal
is the maximum likelihood (ML) method [13]. In [14]-[16] tHdL estimator of the timing offset
for one symbol interval observation has been derived foatyipulse amplitude modulation (PAM)
in the case that the symbol duration is equal to the inversawipling rate. The model considered

for the received signal in this case is
r(t) = z(t,7) + n(t) (2.10a)

xz(t,7) = Z cig(t —iT — 1) (2.10b)

wheren(t) is the additive white Gaussian noise (AWGN) with two-sideéctral density equal to
No/2, g(t) is the received pulse shape (a pulse that has a length edlial Tois the inverse of the
sampling rate and is the timing offset which can be modeled as an uniformlyriigted random
variable in[0, T"); in this equationg; is theith transmitted data symbol.

In order to derive an ML estimation far, one can consider two classes of methods, decision-
directed (DD) or data-aided (DA) timing estimators and mata-aided (NDA) estimators. In the
former, the data symbolg:; } are known and can be used to find the timing phase of the reteive
signal. In the latter, the data symbols are not known, howeyean be modeled as a zero-mean
random variable such that for any two transmitted data systiic,c;] = Cé(i — j), whereE[]
denotes the expectation operatiéf) is the Kronecker delta function an@ is the energy of each

bit.

15



When the the binary modulated process is characterizedawmveract bit intervall’, z(t, 7) is
either equal t@ (¢, 7) = g(t) orga(t, 7) = —g(t). Using the Karhunen-Loéve (KL) expansion [13],

and considering a complete orthonormal bdsig(¢) }, one has

gk(t,7) =D gri(T)i(t) (2.11a)
=1
T+(G+1)T
o) = [ sty (2.11b)

Similarly, r(t) andn(t) can be represented using the KL expansion during the idtervia; T, 7 +
(j + 1)T), conditioned onr. If the kth signal waveform is received during the one observation

period, by denoting the truncated vector representatidhesfe signals by a prime, one has
r'=g,+n'. (2.12)
The maximum likelihood synchronizer criterion is
7= arg max P(r'|7) (2.13)

where P(r’|7) is the JPDF of vector’ givenr and can be found by finding the expectation of

P(r’|T,9,) over all possible values @f,.
Non-Data-Aided Maximum Likelihood Synchronization

In this case, the data symbols are unknown and are modelequiz@bable random variables.

Since the elements of are independent Gaussian random variables, one has

A Iri — guil 1 1 &
P(r'|T,g;,) = ———exp ( . b > = exp | —— i — gril?
( | gk) 11;[1 /—ﬂ'NO Ny (WNQ)N/2 No ;| k |

whereN is the length of the truncated vectors. Having this condélgrobability density function

(PDF) and considering the fact that the two possible sigraalefiorms are equiprobable, one can
find
2 1 N
’ o L 12
P(r'|r) = A};exp <Fo ; 7 — gni ) (2.14)

whereA is a constant and therefore has no impact on the locatioreahtximum ofP(r’|7). After

some manipulations, one can find the likelihood functidr’|7) to be

2 N N
1 2
A(r’|7') = E exp < Ny E |gki|2 + F@ E Tigki> . (215)
k=1 i=1 i—1

After tending/ to infinity, one has

2 1 T+G+)T 9 T+G+)T
%:argmeXZexp f—/ |gk(t,7)|2dt+ﬁ/ r(t)gr(t, 7)dt | .

+iT 0 Jr+5T
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Figure 2.7. The block diagram of NDA ML synchronizer (aftr Fig. 5.3-2]).

Since|g1 (¢, 7)) = |g2(t, 7)I, g1(t, 7) = g(t), g2(t,7) = —g(t), and also for any value of the

No Jr+5T

2 T+(j+1)T 2 T+(j+1)T
7 = argmax |exp —/ r(t)g(t)dt | + exp ——/ r(t)g(t)dt || .
T No Jryjr No Jryjr

Consequently, the NDA ML synchronizer in ISI-free chanrfeilsone symbol observation time is

termexp ( — = f”(jH)T |g(t)|2dt) is a constant,

equal to

92 T+(G+1)T
7 = arg max cosh —/ r(t)g(t)dt | . (2.16)
T 0 Jr445T

If we consider an observation time equalt®’, the NDA ML synchronizer can be found directly
from (2.16) to be
L 9 T+G+D)T
7= argmaleogcosh —/ r(t)g(t)dt | . (2.17)
T j=1 0 T+5T
Using some approximations, one can simplify the NDA ML synoctizer. Sincdog(cosh z) ~
%xQ for small values ofr, after some manipulations one can approximate the ML symiher
with [2]
7 = arg max Z y2 (1) (2.18a)
where
Yn(T) = / r(t)g(t —nT — 7)dt. (2.18b)
T

This approximation can be used for small values of signaldise ratio (SNR).

Finding the maximum in 2.18 can be done using the derivatamce forr = 7, we have

N 2 ) =23 () W) _y, (2.19)

An implementation of a tracking loop based on the NDA ML symetizer is shown in Fig. 2.7.
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Figure 2.8. The block diagram of DA ML synchronizer (aftey fg. 5.3-1]).

Data-Aided Maximum Likelihood Synchronization

In this case, the transmitted data is known at the tranamifer instance, a training might be
transmitted to achieve DA ML synchronization. As a resulewli¢; } is transmitted,
1 1 &
P(rlr) = ——m exp == DI —al? |
(mNo)? No ; C

Consequently, after some manipulations the DA ML synclmemnis

7 =argmax Apa(7) (2.20a)
where
Apalr) =) a / r(t)g(t —iT — 7)dt. (2.20b)
f T
A necessary condition fat is
dADA (T) - d -
dr |‘r* ;Cn dr [yn(T)] =0. (221)

This result suggests an implementation as shown in Fig. 2.8.
2.2.2 Performance Limits in Symbol Timing Synchronization

A very important question that arises in every estimatiasbfegm is, what is the ultimate accuracy
that is achievable in the estimation problem. To answerghéstion, it is needed to establish bounds
to the achievable accuracy to provide benchmarks againshwie performance of practical syn-
chronizers can be compared. Several bounds have beenuogih the literature. A fundamental
lower bound is the Cramer-Rao bound (CRB) [13], [18] whicbvides a lower bound on the mini-
mum mean square error (MSE) in estimating a random paramsitey an unbiased estimator and is

widely used in problems of symbol timing synchronizatiar ome examples see [48] and [49, Ch.

8)]).
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If \isthe random variable for which we want to find an estimaterdathe vector representation

of the observed waveform, then)f be an unbiased estimate far E[A — A] = 0,
-1
E [(} - )\)2} > {Er } (2.22)

{Er {a?m;grm”‘l

where P(r|\) is the probability density function of for a given\ and E[-] is the expectation

<8logalj\(r|)\)>2

operation. The conditional probabilify(r |X) can be found using
P(r|)\) = / P(r|w, \)P(w)dw (2.23)

wherew is a vector that contains all the unwanted parameters suttteatata, the phase, and the
frequency of the received signal. However, the computatfcamtrue CRB is a challenging task in
many practical cases. An alternative lower bound that ilyidsed in the literature is the modified

Cramer-Rao bound (MCRB) [1], [19]. The MCRB is defined as

1

AR
Er { {8103; Jggr\w,x)] }

Although the CRB and MCRB provide useful bounds for modetathigh values of signal-

MCRB(A) =

(2.24)

to-noise ratio (SNR), they are known to have some shortcgsnparticularly at small values of
SNR [13], [20], [21]. When the SNR of the received signal @ases, the performance of the
synchronizer deteriorates and its MSE increases. Howageminimum MSE cannot become larger
than the variance of a uniform distribution, since this is MSE of a synchronizer that simply
picks random values for the timing offset. Therefore, thearece of a uniform distribution is an
upper bound on the minimum MSE. However, the MCRB increastéswt limit as the SNR of the
received signal decreases and therefore is not a lower bofutheé MSE at small values of SNR.
Another lower bound on the MSE of parameter estimators isiétection theory bound (sometimes
called Ziv-Zakai bound) was introduced in [22]-[24]. Thisund has been used to estimate the
random delay of a single deterministic signal [22], [24]. idover, in [21] it was used in the symbol
timing recovery problem for a received signal consistecaafiom sequence of pulses in an ISI-free
channel. It was shown that this lower bound does not suféenfthe shortcoming of the MCRB at

small values of SNR, tending to the variance of a unifornritistion.
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Chapter 3

Performance of an AFC Loop in the
Presence of a Single Interferer in
Similar Fading Channels

In a wireless link, multipath fading channels can be mod#ietifferent ways. For instance, if there
is not a line-of-sight (LOS) between the transmitter an@near, the channel is better modeled by a
Rayleigh or a Nakagammdistribution. On the other hand, in the case that a LOS ekétiseen the
transmitter and receiver, the channel is better modeledRigian distribution. In this chapter, the
performance of an AFC is investigated in independent nentidally distributed similar channels,
i.e., the desired channel and the interference channebagdered to be either Rayleigh/Rayleigh,

Rician/Rician, or Nakagami/Nakagami distributed.

3.1 System and Channel Models

The system considered in this chapter consists of two basdgeived signals at the input of an

AFC. These signals are modeled as
x;(t) = 5;(t)Ai(¢) cos (wit + 0;(t) + P;(¢)) i=1,2 (3.1)

wherez (t) is the desired received signak(t) is the interferers;(t) > 0 andd;(t) are the base-
band transmitted signal and its phase, respectively, wihégiend on the pulse shape, modulation
scheme, and transmitted data; in this modgl(¢) is a random amplitude process which depends on
the channel statistics and represents the effect of mthitigaling while®;(¢) is the random phase
of the channel modeled in each time instant as an unifornglyiduted random variable i, 27).
Note thatw; denotes the carrier angular frequency.

The branches are assumed to be independent at each tim# ssth thatd; and A, are inde-

pendent as well as their time derivativel, and A,. The joint statistics ofd; and A; depend on
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the power spectral density (PSD) and the moments of thevextsignals [41]. These moments are

defined as

fi“"fmi
cn=tny [© g prwna, i=12 (32)

wheref; is the carrier frequency,,,, is the maximum Doppler frequency amid; (f) is the PSD of
theith unmodulated received signal. Ti¥; () is symmetric around the carrier frequengy;, and
A; are independent at each time instant [41], [50], [51]. In gl&gh fading channel, the joint
probability density function (JPDF) of; and A, is

. o a? 1 df
T aoni=Groo(-5) — s eo(-55) ¢

i 2m i 7
wheres? = ¢;o ands? = ¢;5. In the case thal; is corrupted by Rician fading,

2 2 <2
. (o7} o+ g o g 1 (o
Faia @ 6i) = 25 exp < 120? l > fo < o2 > one? L (ﬁ) 34

K2 K2 2

wherely(+) is the zero-order modified Bessel function of the first kind][4.? is the power in the
line-of-sight (LOS) component angf = c;o ands? = ¢;» for i = 1,2. In the case thatl; is
Nakagami distributed with Nakagami fading parameteyr, wherem; is an integer or half integer,
one has [52]

f ( ) Qm?”a?mf’_l mia? 1 a2 (3.5)
i QG O) = ————— 5 €X — ——=€X — .
Ay A I(m;)(202)m: P 2n5; P &7

[

wheres? = ¢; andé? = %2,

3.2 Average Switching Rate

In reference [6, Ch. 19], it has been shown that if the difieeebetween the carrier frequencies
of the desired signal and the interfergh, — f2|, is much smaller than the carrier frequencies and
also, the modulations of the received signals are slow comtp@a|f; — f2|, the AFC will lock on
the signal with the larger amplitude. These conditions atdléd in the case of adjacent-channel
interference (ACI), most of the time in the case of abuttahgnnel interferenéeand sometimes in
the case of cochannel interference [6, Ch. 19]. Considehiege conditions, one can find the ASR

and the MTLL of an AFC using the relative statistics of thesiged signals.

3.2.1 Method of Analysis

In [7], the average switching rate of an AFC has been foundifsnodulated received signals in

Rayleigh fading by evaluating the level crossing rate ofrtit® of the signals’ envelopes;,. This

1In [6], the signals sent in the immediate neighbour chanhtiedesired signal are called the abutting-channel iaterf
ence while the signals sent in other adjacent channels afabieed signal are called the adjacent-channel interderen
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method can also be used for Rayleigh fading with modulatedeca, however, our investigations
indicate that this method does not yield tractable solstimn many cases of Rician and Nakagami
fading. This method can be described as follows. If the amnbdi of the desired signad; A1, is
larger than the amplitude of the interferesA-, a jump occurs ifs; A> becomes larger than A,
which is equivalent td” = % becomes smaller than On the other hand, §;4; < s2A45, a
jump occurs ifs; A; becomes larger thasy As or equivalentlyY” becomes larger than Therefore,
the ASR is equal to the level crossing rate (positive goings piegative going) o¥” throughl,
Ny (1). One has [43]

ge.°]

N =Nr() = [ lilfy g 1)ds (3.6)

Wherefyy(y, y) is the JPDF o and its time derivativey .

The average switching rate can also be found using the ramaooess”Z = s;A; — s2A,.
If the AFC is locked on the desired signal,(¢), a jump occurs if the amplitude of the interferer,
becomes larger than the amplitudewgft), i.e., Z becomes smaller than zero. Similarly, if the AFC
is locked onzy(t), a jump occurs ifs; A; becomes larger thasp Ao, i.e., Z becomes larger than
zero. Therefore, the ASRY, is equivalent to the zero level crossing rateZofV, (0). One has [43]

OO

N = N2 = [ 1308, 500, (3.7)
wheref, ,(z, ) is the JPDF of and its time derivativeZ.

Application to modulated carriers

In the first method, we need to firfq,y(y, y). To do that, we first find the JPDF &; andB; which

are the amplitude of thah received signal and its time derivative, respectively,
Bi = SiAi
wherei = 1,2. The Jacobian of this transformation is equad?coThus,fBini (i, B;) can be found

with respect tof 4, 4, (e, &;) as shown in the following equation,

S; Sy

. 1 s 5B — 50
I, 5,(Bi:Bi) = s_zfAivAi <£, M) (3.8)

WherefAi,Ai (cu, ;) is expressed in (3.3-3.5) for different fading scenariosteNhatB; and B;

are not independent in general, however, since the bramchésdependent,
I8, B, B3, (P15 B, B2, B2) = fs, B, (61, Bl)f32732 (B2, B2).
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Now, we can use the transformation

By = ByY

By = BY + ByY

By = By
o= B
to find
oo By v (B2, B2,9,9) = 5 f, 5, 5y 5, (B2, B2, Boy, Bog) + Pay). (3.9)
Then,
Fos i) = [ [ Sy On )52 (3.10)

Having this JPDF, one can use (3.6) to obtain the averagelswi rate. This method is used to
obtain the ASR of an AFC in Rayleigh/Rayleigh scenario.

In the second method, we first need to fifid,; (z, 2). Since in the modulated carriers scenario
Z = SlAl — SQAQ + 51141 — SQAQ, (311)

Z not only depends on the time-derivatives of the fading indhannels, but also depends on the

fadings through; ands,. In order to further simplify (3.7), one can use the defimtad conditional

probability,
f2.2(2,2) = f37(2|2) fz(2),
to obtain
N = 120) [ [0 (3.12)

The conditional probability density functiofy ,(|0) in (3.12) can be found using the theorem of
total probability [42],

F217(:10) = / F 1m0 7 (2102,0) fay 2 (0220)da. (3.13)

The conditional PDFs in (3.13) can be found using the definitiof Z andZ. By substituting4;

from the definition ofZ into (3.11), one has

Z = SlAl — SQAQ + AQ <5152 — 82) + Zs—l (314)
S1 S1

wheres; is the derivative ofs; with respect to time. It can be seen in Egs. (3.3)-(3.5) thahas

a Gaussian distribution and is independentigf Therefore ifZ and A, are given in (3.14)Z
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is equal to the summation of two scaled independent Gausaiadom processes and a constant.

Consequently,

- - (Z_OQ (— - 52))2 (3.15)

leAz,Z(Z|0<27 ) o) exp 20

whereQ) = s767+s553. UsingA, = 2L A; — -7 and the fundamental transformation theorem [42],

one can derive
Fagiz(azl0) = 2 1, (S—2a2) : (3.16)
S1 S1

In order to find the average switching rate, one still needstbf~(0). fz(z) can be found using

the transformation

Z = 51A1 — 52A2

A= 81A1.

The Jacobian of this transformation is equaie.; hence

fa,z(6,2) = SllsQfAl (%) fa, (55_2z)

<1 0 1)
fz(0) = /5_0 EfAl <§> fas (5) dy. (3.17)

Then, the ASR can be found using (3.12)-(3.17). This metlsodsied to find the ASR in Ri-

and consequently

cian/Rician and Nakagami/Nakagami scenarios in this @rapt

Previous work has considered exclusively unmodulatedezarr An interesting result that ob-
tains for modulated carriers is the following. Considerifgy (3.15), it can be seen that in general,
f214,,7(%la2,0) and consequently, ,(z,0) are not even functions of.  As a result, the short-
term positive-going zero-crossing rate (PZCR) and negaiiving zero-crossing rate (NZCR) &f

are not equal, i.e.,
%) 0
| atas00a 2 [ s, 0,00 (318)
0 —00

in contrast to the case of unmodulated carriers. Howevetresive deal with practical scenarios in
which the sign o, s5 — $551 changes with respect to time, in some time periods N2ZBRCR and
in others NZCRCPZCR and therefore this behaviour does not cause any prablére long term.
In the special case that the baseband transmitted sigreatgpglicas of each othes; (t) = ksa(t)

wherek is a constant, one has

) 22
N=rz0) [ 1 V;T_Qexp@g)dz 2.0 (3.19)
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wherefz(0) can be obtained using (3.17). Note that Eq. (3.19) is alsticgiybe to the scenario of

unmodulated received signals, i.e.,= sy = 1.

3.3 Mean Time to Loss of Lock

The MTLL is a measure that shows the average time that an A& lon the desired signal before
jumping to the interferer. The MTLL for unmodulated signaisfading channels can be found

using [53]
2F
N

T (3.20)

where N is the ASR of the AFC and" is the probability that the amplitude of the desired signal
is larger than the amplitude of the interferer, i.B.,= Pr[s;A1 > s2A4s]. In order to find this

probability, we can use the transformation

Yy — 81A1
SQAQ
T = SQAQ.

The Jacobian of this transformation is equaftg, consequently

frr(y,t) = éfAl,Az (y—t i) : (3.21)

81782

SinceA; and A, are independent (for a fixed time), integrating (3.21) awgelds

= [ i (y—t) f (i)dt (3.22)
0o S152 S1 52

and thereford” = Pr{s1 A1 > s2As] = Pr[Y > 1] can be obtained using

= L (t—y) fa (i) dtdy. (3.23)
y=1.Jt=0 51852 S1 S92

3.4 Derivation of the Results

In this part we apply the methods described in the previoasmses to different channels to derive

the ASR and MTLL of an AFC.

3.4.1 ASR and MTLL in Rayleigh/Rayleigh scenario

Rayleigh/Rayleigh scenario represents the case in whate ils not a line-of-sight (LOS) between
the transmitter and receiver in both channels, i.e., iaterfce channel and desired channel, and the

fading in these channels can be modeled using a Rayleigibdison. In this scenario, we use (3.6)
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to find the ASR. By integrating (3.9) ovek from — oo to oo,

. 1 y 4 ( ﬁ%C(y,z)))
. YY) = exp | ———22~ 3.24a
fB27Y_’Y(ﬁ2 Y y) \/%S%S%O‘%O‘% \/Wﬁ2 p 2 ( )
where
1 52 1 2 92 2519y
C a2 1 2 o
)= (o7 + 5107) * o3 + sz ot o0
_ (S1S§yy0’§ - 518%y2d’§ - 328?{7%)2 ] (324b)
51075503 (ys503 + s767)
By integrating (3.24) ovefs using [54, (3.381.11)],
0o T 5
/ zhe dy = (f> (3.25a)
0 c?2
wherec is a constant, one can find the JPDFroindY’,
Fros (9:9) = 5s T (3.26)
Since we only neegfy_y(l, ) to find the ASR,
3 Vs
. (1,7) = 3.27a
Py (13) 252520302 (d3y? + 2day) + dq)5/2 ( )
where
1 1 (3281 — 3182)2
dy = 3.27b
= (o * 32 Tr LD (3.275)
<§281 — 5182
dy = 3.27c
2 (303 + 500) (3:279)
1
dz3 = ———-— (3.27d)

s363 + s367
Note that in these equations, andss are time-dependent. Now, we can use (3.6) to find the ASR.

The result is
Vdz(dids + d3)

N=Nyv(1l) = M————F—=-
v = M, — &)

(3.28a)

|d2| < \/d1d3 (3.28b)

where

1
M=—5=5. 3.28c
s2s30%03 ( )

In order to find this result, [54, (3.252.7)] has been used,

/Oo T " (3.29)
o (az?+42bz+c)"ts (2n+ DI/e(Vac + b)ntL .
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Table 3.1. The average switching rate of an AFC in Rayleighl&gh fading channels.

System
Fading Model Average Switching Rate
ode
ii.d.
Rayleigh Z
§1 = S = 1
i.n.d.
Rayleigh ) 7%
S§1 = SS9 =
i.n.d.
. k20'20'2(o"2+k20'2)
Rayleigh v 12 g 1
Sl(t) = kSQ(t) (Ungk g%)d/
i.n.d.
; V3 (dids+d3)
Rayleigh modulated M\/d_l(dld3_d3)2

wherea, b, andc are constants such that> 0, ¢ > 0, andb > —/ac. Evaluating the condition
in (3.28b) requires knowledge 6f (t) ands2(t), however, in the special case that the data in the
interferer is a replica of the data in the desired signal wifferent power, i.e.s1(t) = ksa(t), da

equals zero and therefore the condition in (3.28b) is ofesatisfied. In this case,

N = Vk20202(63 + k263)
(@ + Ko

(3.30)

Note that the ASR in the unmodulated carrier scenario is aiagpease of this equation in which
k = 1. In this case that signals experience i.n.d. Rayleigh fadimds; = s, = 1, the ASR equals
N = 7% which is the same as the result previously reported in [7gxaected. Final
expressions for the ASR in this scenarios are summarizedbteB.1 for different cases.

In order to find the MTLL in the Rayleigh/Rayleigh scenario immodulated signals, we still

need to findF'. Using (3.23) and [54, (3.461.3)],

o0 |
2n+1 71)12 _ n:
/0 x e dr = ot (3.31)
for p > 0, one can find
< 2y y? 1 \2 s20?
F= dy=———"—— 3.32
[ s (ot 1) = o (3:32)

wheres; andss only represent the power of the transmitted signals and etréunctions of time.
As aresults; = kss, and
o1 (03 + k?0?)

T=2y —%——=~.
02(62 + k26%)

(3.33)
Note that in the special case of Rayleigh fading and unmaeedlearriers with same power, the
MTLL equalsT = 2 oi(73+91) \which agrees with the result reported in [7].

o3(63+67)

27



Table 3.2. The average switching rate of an AFC in Rician&Ri¢ading channels.

System
Fading Average Switching Rate
Model
i.i.d
Rician Lo (-4).m (3 HLLE)
S1 = S = 1
H oo L9 _42? 2k2+ 2 2 2
ind. | eew (5 () - 4 - 3]

Rician -
Sl(t) _ I{?Sg(ﬁ) ~ \/2(‘7§+k ‘7%)[0 ( pat )IO (#2_2t) dt

312,252 p)
Vrs3k2o?o3 o3ksa 032

0 9 2 42uds] 2 4udsd
Jo t?exp 20752 20253
- 1 (mt ot
i.n.d. x stotol Io (U%SI) To (0552) dt
Rician (zmoz ("2 —52))"
0o oo 2\ sy %2 a3 s
modulated | x [Z0 ) [)7 exp | = rasrimsr o — sao

||z 10(52042,;1) dagdé’
1

X
V2 (s363+s767) 517

3.4.2 ASR and MTLL in Rician/Rician scenario

In this case, one can find the ASR using (3.12)-(3.17),

, 2
2 oo oo Z—ao (222 — 3§ 2.2 ,,2.2
5 0 Sa0 ( 2( 2)) ass s
N=-% /2 )/ / |2|04210(72 le)exp - 2.251 3 - =2 2—21—;121 L dandz
5701 V21 oo 81071 2(s303 + s101) 2s707

(3.34a)

where using (3.17)

1 o] t2 2.2 ﬁ2 2.2 t t
f2(0) = m/ 2 exp [_ s +“252] 10( H )10( e )dt. (3.34b)
0 g

2.2 2.2
87550105 2071 s 20555 0181 582

The average switching rate in (3.34) can be evaluated neailti however, further simplifi-
cations can be utilized to find a closed-form expressions; l&nd s, are replicas of each other
with different powers, i.e.s1(t) = ksa(t), the ASR is equal t %QfZ(O) where fz(0) is given
in (3.34b). A closed-form expression can be found fgf0) and consequently foN, when the
branches experience independent, identically distrib(ited.) Rician fading and: = 1, i.e., the

transmitted data in the branches are equal. In this caseammese [54, (6.633.5)] and [54, (9.14.1)]

to obtain
. 2 2
o " 13 o
N=— I Y Y T W e .
QUexp( 0_2)2 2(2;27 ) 702> (335)
where, F, (91,92, -+, gp; h1, ha, -+ , hg; -) is the hypergeometric function [44}? = o7 = o3,

6% = 62 = 65 andu = p1 = po. The results are summarized in Table (3.2).

28



In order to findF" and consequently the MTLL, one can employ (3.23),

/ /eXp £ U L\ m ] tr o 1 (22 grar
r=1Jt=0 0'181 O’%S% 20% 20% 5%5%0%03 O’%Sl 0'352 '

(3.36)

The MTLL can be found using (3.36) and the ASR previously fbimthis section. In the case of

i.n.d. channels and unmodulated carriers with differemtgrs,s; = ks-, one has
x? r2 1 V2 Io arpn \ oo TH2 o
_ep 22 2k2+—2 1/2 2/{3 0 ) xrar
r=1Jz=0 52 53 \01 03/ 1 (63 + k26?) O1RS2 0352
t2(k%*0? + 03) pit ugt -t
t2 - Lo 220 ) I dt| . 3.37

x {/0 <P ( 2s3k20%03 ) 0 o2ksy 0 0259 ( )

In the special case that the channels arei.i.d.and s = 1,

mﬂ (L2 W _lexp LQJDIO ey dtdr-.
A A e I =l I C KA )

(3.38)

3.4.3 ASR and MTLL in Nakagami/Nakagami scenario

In this scenario, using (3.12)-(3.17) one obtains

2m _ .
'T(2 S B e 20y —n?
N = £4(0 )() Gmy)mi”_ 2 |z|exp(——” ! ) Do, (——”z )dz

51 [(m1)(207)™ /27Q 402 05
(3.39a)
where

£2(0) = V2D(my +ms — %) mi \" [ ma " ma + mo —(mitma—g (3.39)

2 T D (m)T(ma) ofst 0383 oisi 0383 '

2 omy (s
=4 (= 3.39
770 * o2 <51> ( ©)
n=24 4 (3.39d)
S1

and whereD,,(-) is the parabolic cylinder function [44]. To obtain theseuteswe have used [54,

(3.462.1)],
/OO P le—ax®—bz g, _ (2a)_p/2l—‘(p) exp (E) D_, (L) , (3.40)
0 8a V2a
and [54, (3.381.11)],
2/ g?me=am™" gp = —F(l:), (3.41)
0 a

wherev = 225 " |n the special case that(t) = ks»(t), the ASR is equal t 2%zfz(o) where
fz(0) is given in (3.39b). ASR of an AFC in Nakagami/Nakagami fgdihannels are presented in
Table (3.3).
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Table 3.3. The average switching rate of an AFC in Nakagaaki#dami fading channels.

_ System o
Fading Model Average Switching Rate
. i.i.d. m_ o'F(Qm——
Nakagaml s1 =8y =1 \/ mco 220n=1DT2(m)
. 2F(m1+m2 mao
_ i.n.d. 7\/_F(m1)F(m2) ( ) ( 2)
Nakagami g —mat L
2
Sl(t) = I{JSQ(ﬁ) X ( 2k2 + mz) V U% + kQU%
. 20(2m1)T(m1+ma—3) ( moy )m2 ( sym3 )ml
i.n.d. T2(m1)[(m2)Vnt  \ 0353 25351y
i —(mi+ma—3
Nakagami X (07?51% %)
modulated | ffooo 15| exp <ﬂmgng) Do, (Qj_\/,%) dz

By employing (3.23) and after some manipulations, one carjas, (3.194.2)],

o] M—ld H—v 1
/ (f+ ﬂza)jv - @fl(LI/*M) 21 (MV_M;V_M—F 1;_5) (3:42)

to obtain

F =

'(my + ms) s2mao?\ " 52mao?
X o F; ; 1;— . 3.43
m2F(m1)F(m2) S%mlo_g 2r1 (M1 + ma,mM2; M2 + ) S%mlgg ( )

Consequently, the MTLL can be found using (3.20). If the cteds are i.n.d. and the received

signals are unmodulated with different powess= kso,

g VTL(mi+ms) (ofk? e LM ke
a )

mol'(my +ma — 3) \ my ok? o3
kQ 2
x (62 4+ K*62) "Lk <m1 + mag, mo;mg + 1; — mnfzgl) . (3.44)
3

In the special case of i.i.d. channels and unmodulated lsigvith the same power,

V7o T(2m)22m—1

= milzg r'(2m — 5)

o1 2m,m;m+1;—-1). (3.45)

3.5 Numerical Examples and Discussion

Inthe numerical examples, we focus on the important speags of two-dimensional (2-D) isotropic
scattering and an omnidirectional receiving antenna. idaseg; = 2n° f2, o7 wheref,,, is the
maximum Doppler frequency [50]. The signals are assumed tmmodulated wherg = s, = 1.
Moreover, it is assumed thdt,, = fin, = fm.

Fig. 3.1 shows the ASR of an AFC (normalized fg) versus the signal-to-interference ra-

tio (SIR) in a Rician fading channel for different Rice factpk; = Qﬁ; The SIR is the ratio
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of the desired signal’'s average power to the interferingalig average power given as SIR
101ogyg (Z—g (%)) for Rician fading. Note that the special case whién= K> = 0 is equiv-
alent to the Rayleigh fading scenario. As can be seen in thisdj if the desired signal and the
interferer have equal Rice factors, the worst case (maxifA8R) happens when the signals have
equal powers. The reason is that in this case, the channelsaxompletely similar and therefore
an AFC does not have any tendency to choose either signalevoyif the power in one branch is
larger, the AFC locks on that branch for a longer period oétand therefore the ASR decreases. By
increasing the Rice factor in both branches (for instanceparek; = Ko = 0to K; = Ko = 5),
the performance improves in the sense that the ASR decrédseseason for this behaviour is that
for a specific value of SIR, increasing the Rice factor is eglent to increasing the power in the
deterministic part of the fading (LOS component) compaceithe random part of the fading (scat-
tering component) which decreases the ASR. Note that in dediary case that the Rice factors
tend to infinity, the amplitudes of both branches are deteistic (constant amplitudes in the case
of unmodulated carriers) and the AFC locks on the signal withre power and there will be no
switching. In addition, this figure shows that for a constaite factor in the interference branch,
increasing the Rice factor of the desired branch causes$teta decrease (i.e., an improvementin
the performance) for larger values of SIR, while it does rasteha significant effect on the ASR for
small values of SIR. The reason for this behaviour is thaleiayer values of SIR, the characteristics
of the desired branch determine the behaviour of the ASRecwhile in the region where the power
of the interferer is larger, the Rice factor of the interfeze branch is the dominant factor.

Fig. 3.2 shows similar results for Nakagami fading and défe values ofn; andms. In this
case, SIR=101log;, (j—g) Note thatm; = mo = 1 is equivalent to the Rayleigh fading scenario.
Comparing the ASR curves for a similar Nakagami fading patamin the interference branch,
mo = 1, shows that at small values of SIR where the power of thefarer dominates the power
of the desired signal, the performance of AFC for differesities ofm; is almost the same. This
is because in this regioms has the greatest effect on the behaviour of the ASR curve.eMery
when the power of the desired signal increases comparecttpaiver of the interferer, AFC has
better performance for larger valuesrof.

By considering a specific curve in these figures, for instakice= K, = 0, it can be seen that
decreasing the SIR in the small SIR region, improves theopexdince of the AFC which might seem
surprising. However, one should keep in mind that althohghASR decreases as the SIR decreases
in this region, the AFC is locked on the interferer rathenttize desired signal for most of the time

and therefore the output of the AFC is not very reliable.
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Figure 3.1. The average switching rates of an AFC (normdliagf,,,) in a Rician fading scenario
for different values of; and K.
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Figure 3.2. The average switching rates of an AFC (normaliaef,,,) in a Nakagami fading sce-
nario for different values of; andms.

32



10° ¢ ;

TRWYRH
[Nl _Nele]

=

T
gowkE o
RAXRAR

Mean Time to Loss of Lock

—2 I I I I I I I I I

-25 -20 -15 -10 -5 0 5 10 15 20 25
SIR (dB)

Figure 3.3. The mean time to loss of lock of an AFC, multipligdhe maximum Doppler frequency,
in a Rician fading scenario for different valuesiof and K.

Fig. 3.3 shows the MTLL multiplied by, of an AFC for Rician fading. It can be seen that if
the channel of the desired signal is modeled by larger valtiés,, i.e., stronger LOS component,
the performance of the AFC improves in the sense that the Maflthe AFC increases for the same
values of SIR. The same conclusion holds for larger valuespin Fig. 3.4, where the MTLL
(multiplied by f,,,) in Nakagami fading is shown. Moreover, considering a dfgecurve in these
figures, one can observe that the MTLL does not suffer fronsiioetcoming of the ASR in the sense
that increasing the SIR, increases the MTLL of an AFC. Counsatly, we can see that although we
need to find the ASR to capture the impact of the transienthemérformance of a receiver, we
also need to find the MTLL to fully characterize AFC perforroan

Note that the results in Figs. 3.1 and 3.2 are normalizedaataximum Doppler frequency and
increasingf,, increases the value of the ASR and therefore deterioragepdtformance. This is
also true for the MTLL which is multiplied by th¢,, and therefore an increase in the valuefgf
is equivalent to a decrease in MTLL. Howeverfif, # fm.,, the ASR normalized tg,,, increases
whenf,,, increases compared f0,, . This can be seen in Fig. 3.5 in which the normalized ASR vs
fma/ fm, 1S sShown in Rician/Rician scenario and Rayleigh/Rayleicgnsirio. This is also true for

the MTLL where the AFC has a better performance for smallkregoff,,,, whenf,,, is constant.
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Figure 3.4. The mean time to loss of lock of an AFC, multipligdhe maximum Doppler frequency,
in a Nakagami fading scenario for different valuesiof andms.

10>

10

ml

ASR normalized to f
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Figure 3.5. The normalized ASR of an AFC in Rician/Rician &ayleigh/Rayleigh scenario.
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3.6 Conclusion

In this chapter, the average switching rate and the meanttinoss of lock of an AFC were derived
for fading channels. Both modulated and unmodulated carviere investigated. In the case of
Rayleigh/Rayleigh fading channels, a closed-form exjpoassas derived for the ASR in the gen-
eral case of modulated carriers and independent non-addigtdistributed (i.n.d.) channels which
depends on the time behaviour of the baseband transmitiedlsiMoreover, special cases were
investigated for both the ASR and MTLL and compared to previesults in the literature when
applicable. A new analytical approach was employed to déntegral form formulas for the ASR
and the MTLL of an AFC in Rician/Rician and Nakagami/Nakgdading channels and closed-
form expressions were derived for important special calkesnerical examples were provided to
demonstrate the effect of interference and the channel hwodéhe performances of an AFC in

different scenarios.

35



Chapter 4

Performance of an AFC Loop
Corrupted by Interference and
Fading in Dual Dissimilar Channels

In many practical scenarios, the desired signal and theféménce signal pass through different
transmission environments and therefore they can haverdiff fading statistics. For instance, if
there is a line-of-sight (LOS) path between the transmdtéhe desired signal and the receiver, the
channel of the desired signal is better modeled by RiciamfadMeanwhile, there may not be a
dominant multipath reflection in the interferer's channelthis case, the fading affecting the inter-
ference signal is better modeled by a Rayleigh (pure s@agdeor a Nakagami distribution. Other
dissimilar channel scenarios may appear as well when tharetia LOS path between the trans-
mitter of the desired signal and the receiver. In this chrapte study the performance of an AFC
in such fading channels. Rician/Rayleigh, Rayleigh/RiciRician/Nakagami, Nakagami/Rician,
Nakagami/Rayleigh and Rayleigh/Nakagami scenarios aesiigated separately and closed-form
expressions and simple single integral form formulas arivel@é for the ASR and the MTLL of an

AFC.

4.1 System and Channel Models

In this chapter, we use the model described in Section 3.th#oreceived signals. However, one
should note that in the scenarios considered in this chapieonly the interference channel and the

desired channel are independent, but also have dissinmslzibditions.
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4.2 Average Switching Rate

Considering the same assumptions as previous chapterddliffierence between the carrier fre-
guency of the received signals and the modulation, an AF&sloa the signal with larger ampli-
tude [6, Ch. 19].

In order to find the average switching rate, we can use theoraqocessl = s; A; —s24,, the
difference between the amplitude of the desired signallamihterferer. Consequently, as described

in Section 3.2.1, the average switching rate is equal to

N = N2 = [ 318,50, (4.2)
wheref, ,(z, ) is the JPDF of and its time derivativeZ.
If the signals are unmodulated,and Z are independent and consequently (4.1) will be simpli-

fied to
N = N(0) = fz(O)/ 121 5(2)d2. 4.2)

Moreover, one should note thdt andA, are independent and Gaussian distributed (see (3.3-3.5)).
As aresultZ = A, — A, is also Gaussian distributed with a variance equébfo+ ¢3) wheres?
and¢2 are the variance of the time-derivative of fading in desiseahch and interference branch,
respectively. Thus,

o] 52

_ NEE SR G SR DO b C )
N_fZ(O)/_OJZ' 2ﬁ<d§+a§>ep( 2(d%+d%))dz_ 0 63

andfz(0) can be found using

£2(0) = /0 a0 s () dy. (4.4)

However, if the signals are modulated, one can use the defirgf the conditional probability

density function [42]f,, ,(z, ¢) = fZlZ(z':|z)fZ(z), to find

N = N2(0) = £200) [ 1oy (2100 (4.52)
where
_ [T Y Y
o) = [~ (L) (L) (4.50)

The method used to findl; ,(%|0) depends on the distribution of the fading in channels. To find
this conditional PDF, we consider two cases where in thedase the PDF of fading in the desired
branch is mathematically simpler than the PDF of fading @ititerference branch and in the second

case the PDF of fading in the interference branch is matheatlgtsimpler.
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4.2.1 Case |: The PDF of fading in the desired branch is matheatically sim-
pler than the PDF of fading in the interference branch.

In this case, after differentiating with respect to time and using the definitionto find A; as a

function of Z and A5, one has

5182

2281141 —82A2+ (

- 3'2) Ay + j—lz. (4.6)
1

S1
We know thatd; and A, are both zero-mean normally distributed random processiss, recall
that A; and A, are assumed to be independent. As a resulf,ahd A, are givenZ is equal to the

summation of two scaled zero-mean independent randomgses@nd a constant. Consequently,

R 2
)
f2140,2 (2|2, 0) = Nore] €xp |— 20 (4.78)
where
Q = 5167 + s555. (4.7b)

Moreover, using the fundamental transformation theore?, jican be shown that
S S
Fazloald) = 2 fa, (Zan). 4.8)
51 51
Consequently, one can use the theorem of total probabiitjtp show
F212(Ez=0) = / Fa, 2(2l02,0) £ 4, (010 day (4.9)
0
and then, the ASR can be found using Egs. (4.5)-(4.9).

4.2.2 Case ll: The PDF of fading in the interference branch isnathematically
simpler than the PDF of fading in the desired branch.

Similar to the previous case, we can use the time-derivafivé One has,
Z = SlAl — SQAQ + 51141 — SQAQ. (410)

If we substituted, = =1 A; — 512 Z into (4.10),

Z = 81141 — SQAQ + (81 — 5281) Al + 8—22 (411)
S

52 2
Since A; and A, are both zero-mean Gaussian distributed random procesde$;aand A, are
independent, iZ and A, are given,Z is equal to the summation of two scaled zero-mean random

processes and a constant. Consequently,

exp l_ (2—0a1($1 — %))2] (4.12a)

P 2 (Flon,z = 0) = —
Aaz 2= TG 20
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where

Q = 5167 + 5555, (4.12b)

We can also findf 4, z(a1|z = 0) usingA; = $2As + iZ. By employing the fundamental

transformation theorem [42], one has

Fayzlanlz=0) = 24, <5—1a1) : (4.13)
S92 S92

One can use (4.12) and (4.13) to fifig , (<]~ = 0) by employing the theorem of total probability

[42],

fz'lz(z'|z:0) /0 fZ-|A17Z(,é|a1,z:O)fAl‘Z(aﬂz:O)dal. (4.14)

It is worth mentioning that both of these methods can be useither cases, however, in order
to obtain simpler expressions, we considered two cases sedldifferent methods in each case to
find the average switching rate.

One should note that in the special case that the transnsigea@l in the desired branch is a
replica of the transmitted signal in the interference bhane.,s; (t) = ks2(t) wherek is a constant,

$1(t)s2(t) = $2(t)s1(¢) and therefore

. 1 22
f212(210) = Nk (_E) : (4.15)
Consequently, the average switching rate in both casesid &m
< 1 22 . 2Q)
N=120) [ s enn (- 55) di= | 21200 (@16)

wherefz(0) can be found using (4.5b) aftlis defined in (4.12b).

4.3 Mean Time to Loss of Lock

In order to find the MTLL of unmodulated signals using (3.20¢ need to find the probability that
the amplitude of the desired signal is larger than the aogiof the interference signdl,. To find
this probability we consider the two cases described in theipus section based on the simplicity

of the distribution of fading in channels.

4.3.1 Case |: The PDF of fading in the desired branch is matheatically sim-
pler than the PDF of fading in the interference branch.

In this case, we can use the method described in Section 8®ité6'. As a result,

=L <t—y> fa (i) ddy. (4.17)
y=1Jt=0 S1892 S1 S92
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4.3.2 Case ll: The PDF of fading in the interference branch isnathematically
simpler than the PDF of fading in the desired branch.

Since we want to find” = Pr[s; A; > s2As] and this probability is equal tb— Prs; A; < soAs],

we can first findPr[s; A; < s2As]. One can easily show that

Prisi A, §52A2]:/ / t ( )fA2< )dtdv (4.18)
v=1 Jt=0 5152 S9

Consequently,
F=1 —/ / ! fa, (i) fa, (t—v) dtdv. (4.19)
v=1Jt=0 5152 51 52

4.4 Application to Dissimilar Fading Channels

In this section, the ASR and MTLL are derived for differerdgimilar fading channels.

4.4.1 Rician/Rayleigh

In this scenario, there is an LOS path between the desiredl&dransmitter and receiver while the
interferer’s channel is modeled by pure scattering. Udiregnhethod described in Subsection 4.2.2,

the ASR of an AFC for modulated carriers is

N = / [1 + dg[zexp ( chl%) erfc (—\Z/%)] M fz(0)|Z] exp (—%) dz

where
T dy 3 K
0)=4/=—>5—5—5 —K)1Fi(=;1; —— 4.20a
f2(0) \/;5%530%03 exp(—K1) 1 Fy 2’ ’S%J%dg ( )
1 S1 2
M —_— = 4.20b
L 2d10’2\/27TQ < 2> ( )
§2
di = o 2 = + 2Qd3 (4.20c)
5182 — $251
do — °1 4.20d
2 25,0 ( )
s202 4 s202
ds = (715 215202522) (4.20¢)
1520103

and whera F (p; ¢; ) is the confluent hypergeometric function [44]. In order talfihe MTLL, one

can use the method in subsection 4.3.2. Consequently Usingd.631.4)],

/OO g/ tle—ae’ J (Bx)dx = b exp (—ﬁ—2> (4.21)
0 v (2av+1) da )’ '

one can find?,

1 K )
F=1———-—c¢x 4.22
S%U%dB P ( 2‘72d3 ( )

The ASR of an AFC in this scenario are summarized in Tableat. $dveral cases.
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Table 4.1. The average switching rate of an AFC in Ricianl&igh fading channels.

| System Model

Average Switching Rate

i.i.d.

51182:1

35 exp(—K1)1F1 (31 75)

i.n.d.

S1 (t) = k/’Sg (ﬁ)

_3/2
dy ~¥Q 2\/:6Xp( K,) 1F1(2, ;

SSO’O’

K,
Zo'%dg

)

i.n.d.

modulated

ffo {1 + dg\/>zexp ( 2d3

—3/2

) e ()| He (5

22
2

) az

4.4.2 Rayleigh/Rician

In this scenario, the desired signal is subject to Raylegghing while the interferer is subject to

Rician fading. Using the method described in Subsectiori4.2

[e%e} 22 72 2d 22
N = /_OO {1+d5,/d142exp (Zdjs) erfc (\Z/—d%)] x Mafz(0)|2 |exp( QZQ) dz
where

f2(0)= \/?d3/2 exp(-K) 1 Fy (2315 (4.232)

—5 55 €X —; .

Z 2 s2s30%03 P S 2’ 202d3

My=— 1 (5—2)2 (4.23b)

27 2d401 V21 \ s1 '

53

di = o 2 = + 2Qd? (4.23c)
ds = M (4.23d)

2981
where in these equations, the signals are modulated arefdhes; and s, are both functions of

time. Table 4.2 shows the ASR of an AFC in Rayleigh/Ricianrfgd&hannels. In this scenario and
for unmodulated signald; is equal to

I 1 K2
= 55— ex
s302d3 P  $202ds

This equation can be used to find the MTLL of an AFC in this scena

(4.24)

4.4.3 Rician/Nakagami

In the case that; (t) andx2(t) have Rician and Nakagami fading, respectively, the ASR @n b

found using the method in Subsection 4.2.2

2r T2 2ma gama—2
N = 2L (m2 + 5) TQ@ma)ma™m2sy Py (m2+ = K; ) (4.25a)
I2(my)(s202)*? 2(2d6)dem2+ VTQ 2" sjoldy
oo Z 1\, 2y
2 )2 K| Do, [~ 2222 ds
[ el (G- gm) oo ()

41



Table 4.2. The average switching rate of an AFC in Rayleigti#R fading channels

| System Model| Average Switching Rate
ii.d.
35 exp(—K2)1 71 (315 752)
S1 = S9 = 1
i.n.d.
—3/2
?25;02\5 exp(—K») (2,  rods )
S1 = k’Sg 303d
V3 iy exp(K) 1F1(2a oty Mo
i.n.d. 0 22
I {1+d5,/ zexp( )erfc( \ﬁ)} |Z] exp (—%) dz

Table 4.3. The average switching rate of an AFC in RicianAdmni fading channels

| System Model| Average Switching Rate
i.i.d.
Q\fl"(mz—ﬁ- )mm2 exp(—K1)o
51 =8y =1 fF(m2)(mz+1)’"2+%g
i.n.d.
- 1) ex
P n e RO 90 Fy (g + 41 )
s1 = kso I'(me2)(s302)m2s20%d,
20 (ma+5 )T (2ma)m2 msfmj: 154 (mz + %; 1; ,2K21d )
. T2 (m2)(s303)*"20% (2d)"2d; > 2 V) e
i.n.d.
x [% |3 |exp[<—729)z —KJD 2m2( Qd\/;—:) dz

where
s 2
dg = 40d2 <—1) (4.25b)
2 \52
do— L (4.25¢)
T 5307 sko3 '

In this scenarig,can be found using

and whereD,,(-) is the parabolic cylinder function [44]

)10 (‘/W )dt (4.26)

(4.19),

ot Do, 235) g2
F:l—/ o) 22exp(22—
o sio7(mg) 25107 $101

whereI'(q, z) is the incomplete gamma function defined in [54, (6.5.3)].tdhle 4.3, different

o) i
expressions for the ASR of an AFC in Rician/Nakagami fadirggsbhown
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Table 4.4. The average switching rate of an AFC in NakagaiciéR fading channels.

| System Model| Average Switching Rate |
ii.d.
2v2T (m1+31)m7"! exp(—K2)&
s1=s52=1 fr(ml)(m1+1)’"1+§g
i.n.d.
- 1) ex
2m1 F(m1+ )e p( Il(j) %1F1 <m1+ 2717 2 2d9)
s1 = ks ) oty gl
1 Ty 2m1 =2

QF(m1+2)F(2m1)m1 fj - B (ml + %; 1; %)
ind 2(m1)(s303)° 103 (2ds)™1dg 2 V/7Q 272100
i.n.d.

><f |,z|eXpKd8 _ m)z —ngD 2m, (— Qd\/g—:)dé

4.4.4 Nakagami/Rician

In this scenario, the desired signal experiences Nakagatirig while the interference signal expe-

riences Rician fading. Using Eqs. (4.5)-(4.9) one has

2I" +1 2 2my (2m1—2 1 K
N — (m1 22) m1 ma 82+ N <m1 L1 5 )
Fz(ml)( o) " o3 (2dg)mrdy 2/ 7O 2 3a3do
dz 9ds %
5 -2 5 .
B 22Ky Do (22 )a
< oG 31 P (-2 )
where
m S 2
ds = 4Qd3 + — <—2) (4.27a)
o7 S1
dy = g + 22 (4.27b)
° T 302 slo? :
and ( 2)
Ootr m17£n21—t2 t2 \/ﬁf
F= - — K> 2 ) dt. 4.28
/0 303 T(ma) eXp(2 30 ) ( 5202 ) (4.28)

Table 4.4 shows expressions for the ASR of an AFC in this stefar different cases.

4.4.5 Nakagami/Rayleigh

In this scenario, the desired signal experiences Nakagatitid and the interference signal experi-

ences Rayleigh fading. One, using the method in Subsectb®,has

W [ [t o (28 e (-22)]

\/_mTll—‘(ml—l— )Ml 2':2 .
|Zlexp | —== ) d2
2d mi+3 20)

(4.29)
L(m)(siof)™ s303
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Table 4.5. The average switching rate of an AFC in Nakagaayiétgh fading channels.

| System Model| Average Switching Rate |

i.i.d.
zif‘(ml-ﬁ—%) 2mi"!
wo TI'(m1) (m1+1)7n1+%

81282:1

i.n.d.
1
QF(m1+%) 2m71n1 mi + 1 —miTy
m T(m1) (s202)m1s203 \ s20? s2o2
S1 = kSQ
2 2
fe'e) E z°d5 _ Zdo
fioo {1 +da/F-Zexp ( T ) erfc ( \/E)J
i.n.d.

V2m " T (my+ 1) M,y . 32 .
2 |Z]exp ( —35q ) d2

T'(my)(s202 mlsZUngmlJr%
107 202

whereM3, d; andd; are defined in (4.20). In this case,

mi

F=1- (4.30)

2
sio
191
mi 252
202

The results are provided in table 4.5 for several cases.

4.4.6 Rayleigh/Nakagami

In this scenario, one has

o0 T 22d2 zds
N = 1+ds, |2 2 erfe | — ==
[y (G0 o (-]
\/imgwl—‘(mg + %)Mg

22
X — - 2| exp <—> dz (4.31)
T(my)(s303)" siofd, ™" 2 20

whereMs, ds andds are defined in (4.23). Moreover, it can be shown using (41at) t

(4.32)

In table 4.6, different expressions for ASR of an AFC cab hmtbfor this scenario.

4.5 Numerical Examples and Discussion

In the numerical examples, the special case of two dimeakisotropic scattering and an omnidi-
rectional receiving antenna is considered. In this cases 27r2f3”ci0 fori = 1,2 wheref,,, is the
maximum Doppler frequency [50]. Moreover, we assume that f,,, = fm, ands; = s = 1.

In Fig. 4.1, the ASR of an AFC (normalized 0,) versus SIR is shown in a Rician/Nakagami
scenario where SIR= 10log;, (M) Note thatK; = 0 andm; = 1 are equivalent to

C20

Rayleigh fading. It can be seen that for small values of $#R,is the parameter that determines
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Table 4.6. The average switching rate of an AFC in Rayleighké&¢gjami fading channels.

| System Model| Average Switching Rate |

ii.d.
245 F(mg-ﬁ—%) 2m72n2
7o TI'(m2) (m2+1)7n2+%

81282:1

i.n.d.
1
QF(m2+%) 2m;712 mo + 1 —m2—3
m  T(m2) (s202)™2s20? \ s2o03 s202
S1 = kSQ
D 2
fe'e) [ - 24d; _ Zds
ffoo \‘1+d5 d—42’€Xp (T) erfc( \/E)J
i.n.d.

ﬁm;nzF(ngr.l)Mg . 32 .
2 |Z]exp ( —35q ) d2

T
I'(m2)(s202)™2 s?a%d7m2+ 2

the shape of the ASR curve, while for large values of SIR, shigpe is determined bif;. This
behavior can be better observed by considering the casas whds constant whiles; increases.
It can be seen that the ASR curve is almost the same when #réeirdr is stronger than the desired
signal; however, when the desired signal is stronger tharirterferer, the ASR decreases more
significantly for larger values ok;.

A similar behavior can be seen in Fig. 4.2 where the ASR of a A¢-shown in a Nak-
agami/Rician scenario. In this case, the SIR is defined as=SIRlog (m(‘fﬁ)

Figs. 4.3 and 4.4 show the MTLL of an AFC (multiplied iy, in Rician/Nakagami and Nak-
agami/Rician scenarios, respectively, for different fadparameters. Comparing these figures, one
can see that for large values of SIR (more than 10 dB), theestdgthe MTLL curve in a Ri-

cian/Nakagami scenario decreases as the SIR increasds,invhiNakagami/Rician scenario, the

MTLL increases with an approximately constant slope in dlézpplot.

4.6 Conclusion

In this chapter, closed-form expressions and simple simgggral form formulas were derived for
the average switching rate and the mean time to loss of loak éf~C in dissimilar fading channels.
Rayleigh, Rician and Nakagami-fading channels were considered. Numerical examples were
provided to investigate the effect of a single interfereand multipath fading on the performance

of an AFC.
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Average Switching Rate

Average Switching Rate

Figure 4.2. The ASR of an AFC (normalizedfg,) in Nakagami/Rician fading scenario.
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Figure 4.1. The ASR of an AFC (normalized fg,) in Rician/Nakagami fading.
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Figure 4.3. The MTLL of an AFC (multiplied by,,,) in Rician/Nakagami fading scenario.
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Figure 4.4. The MTLL of an AFC (multiplied by,,) in Nakagami/Rician fading scenario.

47



Chapter 5

Performance of an AFC Loop in the
Presence of a Single Interferer in
Noisy Fading Channels

In this chapter, we investigate the performance of an AFCigaR and Rayleigh fading channels
in the presence of an interference signal where both of tireats are subject to additive Gaussian

noise.

5.1 System and Channel Models
The modulated received signals considered in this chaptebe modeled as
l’l(t) = Sl(t)Al(t) COS(wﬂf + Q‘(ﬁ) + (I)i(f)) + Nl(ﬁ) 1=1,2 (51)

wheres;(t) is the amplitude of the transmitted data(t) is its phasew; is the carrier angular
frequency,A;(t) is a random process representing the effect of multipatm@adnd ®;(¢) is a
random process uniformly distributed o, 27); N;(¢) denotes the Gaussian noise in the system.
Note that the noise is not white, since it has passed througgndpass filter in the intermediate-

frequency (IF) portion of the receiver. As a result, it camiiedeled as
N;(t) = N, (t) cos(w;t) — N, (t) sin(w;t) 1=1,2 (5.2)

whereN,, and N;, are the in-phase and quadrature components of the pragedse joint prob-
ability density function (JPDF) aN,, andN,, and their time derivativesy,. andN,, depend on
the power spectral density (PSD) of the noiéy, (f). If this PSD is symmetric around the carrier

frequency of the received signal, one has [55]

1 n2 +n? n2 +n?
N Y Ne s Mg s T 3 Mg, ) = ————— €X ———— ] ex - 533
fNCi7NSi’NCi7NSi( cir TS e Sl) 47T2bi0bi2 P < Qbio P Qbig ( )
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where

b = (2" [0 = W) (5.30)
and f; is the carrier frequency. One case satisfying these camdiiis when the bandpass filter is
symmetric around its center frequency and the IF mixer isdalasuch that the carrier frequency and
the center frequency of the filter coincide.

In this study, we consider independent Rician channels, RR2F

fa,(a;) = & exp <M> Iy <aiui) (5.4)

Cio 2¢;0 Cio

where2¢;y is the power in the scatter component arfds the power in the LOS component. Note
that Rayleigh fading is a special case of Rician when= 0. In (5.1), since¥; = ¢(; + ®; has a
uniform distribution in[0, 27), A; cos(¥;) and A; sin(¥;) are normally distributed with expected

values equal tqi., andu,, respectively [42]. These expected values are related by
Wi =/ p2, +p3, (5.5)
Consequently, (5.1) can be rewritten as
2i(8) = [Ney (8) + s0(8) (A, () + pe,)] cos (wit) — [N, (8) + i ()(As, (8) + pis, )] sin (wit) (5.6)

whereA., andA;, are i.i.d and have normal distributions with expected vsilegual to zero. If the

PSD of the received signals are symmetric around theiradreéquencies, then [55]

.. 1 a? +a? az +a?
fAcq-,vAswAci-,Asi (ac;, s, Ge; Gs;) = 747r20i0q2 exp (_7201-0 ) exp (_7201-2 ) (5.7a)
where
fitfm,
o=y [ = W n=0.2 (5.70)
i_fTrLi

and wheref,,, is the maximum Doppler frequency andl;(f) is the PSD of the unmodulated

received signal.

5.2 Average Switching Rate and Mean Time to Loss of Lock

Similar to the previous chapters, one can find the averagelswg rate and the mean time to loss

of lock by studying the relative statistics of the receivigghals’ amplitudes.
5.2.1 ASR and MTLL in Rician fading channels

AssigningR; andR; to the amplitudes of the noisy desired signal and the notgyference signal
respectively, one can defirie = R; — R, to be the difference between the received signals’ am-

plitudes. SinceR; > R, is equivalenttaZ > 0 and R, > R; is equivalent taZ < 0, the ASR

49



of an AFC, N, is equivalent to the zero-crossing rate (both positivegaind negative going) df,

Nz(0). One has [43]

oo

N = N2 = [ 1318, 400, (5.8)

wheref, ;(z, 2) is the JPDF oz and its time derivativeZ. This equation can be used to find the
ASR of an AFC in the case of modulated and unmodulated redsigmals.
The MTLL of an AFC for unmodulated signal§, can be found using [53]

_2F
N

T (5.9a)

where
- dtd 5.9b
/IZl /t_o tle (t:r)fRz (t) t €T ( )

is the probability thaf?; > R andfg, (r1) and fr,(r2) are the PDF oR; andR,, respectively.

Since the received signals and noise are narrowband, orrewaite (5.6) as

x;(t) = R;i(t) cos(w;t + O;(t)) i=1,2 (5.10a)
where
R, = /U? + V? (5.10b)
tan(0;) = 4 (5.10c)
U;
Vi = Ng, + si(As, + ps;)- (5.10e)

By differentiating (5.10d) and (5.10e) with respect to time
Ui = N, + siAe, + $:(Ae, + pic;) (5.11)

Vi = Nsi + 51A51 + 51(A51 + usi) (5.12)

It can be shown that

. 1 W — Sifie;): 20;(wi— Sifhe, (Ui — Sifhe, Ui — Sifle;)?
fui,Ui(“ia“i)Zkiexp[—Q(l52)(( Sitle)” 20 (i s Wit —ine,) | all ))]

00 040042 052

(5.13a)

and

. 1 (itsips,)®  20i(vitsips,)(Vit8ips;) | (0itdipts,)?
7 (Vi 0) =k - - y ] 1
ARACHR) eXP{ 2(1—6%)( o2 7002 " Tl
(5.13b)
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where

1
ki = ; 5.13c
2m0i00i2/1 — 02 ( )

oj = s7cio + bio, (5.13d)

Ol = $7cio + sicia + bia, (5.13¢)

5; = Cio%isi (5.13f)

\/(S?Cio + bio) ($2¢io + s2cio + bio) -
Considering the definition df’;, U;, V;, andV;, one can see thaf; andU; are independent df;
andV;. Thus,

fvii, v, v, (Wi iy v 00) = frr g (wi @) fy, (03, 0).
The Jacobian of the transformation from tH& (U;, Vi, V;)-space to theR;, R;, ©;, ©,)-space is

equal toR; >. Therefore,

: ; 1 girn  20igi2 | Yi3
: o (1,74, 0:,0;) = r2k? _— | & - = 5.14a
fRiyRiy@iq@i(T 174> Ui ) il eXp [ 2(1 — 512) (0'1-20 030042 * 0'1-22 ( )
where
gi1 = 17 — 21185 cos(0; + &) + pls? (5.14b)
Gio = TiTi + p2sisi — pi(ris; + 1i8i) cos (0; + &) + rifipuis; sin(0; 4 &) (5.14c)
iz = 72+ 1207 + p287 + 20:8i[ri0; sin(0; + &) — 75 cos(0; + &)] (5.14d)
_ Hes
cos(&;) = — (5.14e)
i
. _ ,Ufsi
sin(§;) = . (5.14f)
i

Then, integrating,. . o. . (vi,7:,0:,0;) overd; andd; yields

2
. T
IRz, (14, 74) = (2n)3/2 WJZQJ?O /v:o explki1 + 2K42 cos(v) + k43 cos(2v)]dv  (5.15a)

where
2 . .2
R Tr ! 7 <;—% - 35022 + ;—22) +7i1 (5.15b)
Kiz = Ti%i2 + 13%i3 (5.15¢)
. 2
Kis = 4(%—252) ((f—Q - ‘j:;) (5.15d)
Vi1 = —4(%12512) (;—50(2 —0%) — % + 5—1522) (5.15e)
Yie = 72(1Lii 53) (Us—é - Uf;j;) (5.15f)

i S5 disi
%3“—<5— . ) (5.150)

2(1 — 612) 0’?2 B 0,002
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Since the desired channel and the interference channeidgpéndenti; andR; are indepen-

dent of R, andR,. Thus,

TRy By ity (T15 71,72, T2) = [ g (11, 71) fr, 12, (T2, 72).

The Jacobian of the transformation from,( R, R, R2)-space to ¥, Z, Ry, R,)-space is] = 1.
One has

f2.2 R0y (2 2,72,72) = fp g (212,24 72) fp, g, (r2,72). (5.16)

Then integrating (5.16) oves andr, using [54, (3.462.7)],

9] 2 2
2 —uw2—2uw _ v i 2v + Hoov |: _ ( v ):|
e der = —— + er [1—erf| — (5.17)
/0 202 "\ 54 NG

for u > 0, yields

27 27 2
\/_ ‘ZQ +aq 43 —aq2
fZ ;(0,2) / / l 5/2 exp 2—ql erfc Toa T exp(A)dvyduog
(5.18a)
where
1
T = > ~ > 5 (5.18b)
(2m)5/24/(1 = 07)(1 — 03)01207,02205p1
'2 ':2
A = 22713 cos(v1) + K13 cos(2v1) + Kaz cos(2v2) + Y11 + Y21 — m — (5.18¢c)
1 1 3
= + - = (5.18d)
0%0(1_5%) 030(1_55) pi
Epg 251
=2 2 — _ A
g2 Y12 cos(v1) + 2722 cos(va) + o P ey (5.18e)
1 1
P = + (5.18f)
\/0%2(15%) 035(1 = 03)
01 0o
- n 5.18
0’120’10(1 —6%) 0’220‘20(1—5%) ( g)
L 2713 cos(v1) + 2723 cos(vz). (5.18h)

ofa(1 —67)
Using (5.8) and (5.18), one can evaluate the ASR of AFC nuwallyi However, if the carriers are

unmodulated, i.e§; = 0 fori = 1, 2, (5.15) simplifies to

1 72 T 7+ pifs] PiSiTi
. L) = e — X — @ — I . 5.19
T (1o ) V27os P ( 207 ) 7% » 20% 0 i ( )

It can be seen thak; and R; are independent. Thereforg, and Z are independent as well and

f2.2(0,2) = f2(0)f;(2). Moreover,R; and R, are independent Gaussian random processes and
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thereforeZ = R, — R, is also Gaussian. Consequently, it can be shown that

N \/ 012 + ‘722 27 lelt H2sat t? U%o‘*'ago N%S% N%S%
z(0)= t Iy 5 exp |—— |~ 75 — 55 |dt.
\/_‘710‘720 T30 2\ 019039 207, 203

(5.20)

‘710

The final results for the ASR of an AFC are shown in Table 5.1.
In order to findF' in (5.9b), we should find the PDF dt;. Considering (5.10d) and (5.10e),
one can see thaf; andV; are independent Gaussian random processes with commane@siand

nonzero means equal $gu., ands; us,, respectively. After some manipulations, one has

T r2 + 52/ﬁ T3S i
() = — B T A W A R i 521
Tri(r3) bio + s2cio P ( 2(bio + Sfcio)) 0 <bi0 + Sfcio) ( )

ThenF can be found using (5.9b),

oo oo 43 202 12,2 424 62,2 ' .
F:/ / 2—$2exp < r +251“1 _ +Z2H2) Io< $S;M1) I ( 82H2> did.
e=1Jt=0 710720 2019 2039 T1o 720

(5.22)

Then the mean time to loss of lock can be evaluated numerigsihg (5.9a). In the case of i.n.d.

channels and unmodulated signals,
0o 0o 2,..2 2
T:/ / Y exp (y -~ - L )10 (WSQ”“) I <y52“2> dyda (5.23)
z=1Jy=0 207 20 O10 020
2 o £ £ t AR
i T i [/ tQGXP(— - Q)Io(ﬂljl)lo(,u2§2)dt:| -
01 T 033 LJo 201y 203 010 020
If the signals have equal power and the channels are i.i.d.,

13 * 43y t2(2? +1 t
T = 2F2 5 ) ) 7 lu_ / / L;_) IO :CM IO dtdz.
272 o3 2=1Jt=0 0002 20¢ o3 O’O

(5.24)

It is worth mentioning that if the power of noise is negligitdompared to the power of signal

in both branches, i.e., large SNR approximation, the ASR MiitlL of the AFC in the case of
i.n.d. Rayleigh fading and unmodulated carrierd/is= Y.51020(121¢22) g _ o /%

(610+620)3/2

respectively, which agrees with the results previouslyregal in [7].

5.2.2 ASR and MTLL in Rayleigh fading channels

In this case, one can use the random protess g—; to find the ASR and MTLL. Sinc&; > R» is
equivalenttoY” > 1 andR, > R; is equivalenttdY” < 1, the ASR of an AFC)]V, is equivalent to

the level crossing rate (both positive going and negativieg®f Y throughl, Ny (1). One has [43]

N (5.25)

— 00
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Table 5.1. The average switching rate of an AFC in RiciarifRi¢ading noisy channels.

| System Model|

Average Switching Rate

ii.d.
QUOexp( )2F2(2’27171’00)

§1 = S2 = 1

i 2, 2.2 2, ,.2.2

i.n.d. foo t? exp [ft ;r:ltsl L ;U‘%isz}
S e \/ 2(0%5+03,) (;nnt) (uzszt)
s1=52=0 N I IO 730 dt

i.n.d. T |2 |f " exp(A)dvy dvadz

wheref,. . (y,v) is the JPDF oft” and its time derivativd”. In order to find the ASR, one should
first find £,y (v,9). Since Rayleigh distribution is a special case of Riciarrittistion in which
ws; = 0, (5.15) simplifies to

Hi = fhe; =

ri

1
exX — 5
27(1 — 62) p[ 2(1-67) ( o Oi0iz O

Since the channels are independent and also the receiveassaye independent, the envelopes of

Fr i, (i) = (5.26)

2
0,002

the signals are also independent. As a result,

TRy By ity (T15T1,72,T2) = [ g (11, 71) fr, 12, (T2, 72).

One can use the fundamental transformation theorem toroftai . 7. (y, ¥, r2,72) with respect

0 fr, 2, R 2 (r1,71,72,72). After some manipulations,

Iy ¥ Ry oy (U5 0,72, 72) = Mryyexp [—(Dir3 + 2Darots + Dsi3)] (5.27a)
where
M = 1 , (5.27b)
2103505001202/ (1 — 07) (1 — 03)
1 y? 1 261y y° }
Dy == + , 5.27¢c
=5 T e T e T A (527
1 51y? P vy }
Dy == |— + , 5.27d
2 2 |: (1 — 5 )0'100'12 (1 — 5 )0'200'22 (1 — 5%)0’%2 ( )
1 y? 1
D3 == 5.27e
=3 e T (527¢)
The JPDF of” andY can be determined by integrating (5.27a) oxeandr-, i.e.,
by = [ [ by a0 e da)dradia (5.28)
TQZO 7'“2:700
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Note that we only neegﬁA,A(l, )\) to find the average switching rate. Using [54, (3.461.2)],

o0 o2 2n—I! [w
e Py = (7\/j 5.29
| 220" \ (5.29)

for n being an integer angl > 0, one has

m

(1.7)) = 5.30a
fY,Y( 5y) (y2+2d2y+d1)5/2 ( )
where
1— 52 2 1— 52 212
= 3[( 1)‘7122Jr (2 3)05] (5.30b)
2070030
dy= T2 T 955 01202 g 5200 (g 200 (5.30¢)
' oo 03 ! 2010020 ? 730 ' 730 .
dy = 02022 . 51012. (5.30d)
020 J10
As a result, the average switching rate of an AFC can be addaising 3.29 as
2m(dy + d3

N = Ny(1) = —2ldL+ do) (5.31)

3V (d - )2
if |d2| < v/d;. The final results for the ASR of an AFC in Rayleigh fading yaibannels are shown
in Table 5.2.

In order to find the MTLL, we also need to finfd. SinceU; is equal to the summation of two
independent Gaussian random processes (see (5.10d)gadusssian as well. The same discussion
holds forV; and it can be easily seen thidt andV; are i.i.d. and have zero means. By some

manipulations, the distribution d@¢; can be found to be Rayleigh where

T r
P Y U S 5.32
Tri(ri) bio + s?cio P ( 2(bio + S?Cio)) %

Using (5.9b) and after some manipulations, it can be shoatVhis equal to

2

- b1o + sicio

= 2 P
bio + bao + s7c10 + s5¢20

(5.33)

The MTLL in the case of unmodulated received signals in i.oteannels will be equal to

2 2
T2<59) Tio %% (5.34)
020 01y + 039

If the signals have equal power,

T_o (€10 + b10)(c10 + c20 + b1o + b2o) ' (5.35)
(c20 + b2o)(c12 + c22 + b1 + ba2)
In the special case of i.i.d. channels and= sy =1,
co + bo
T=2 ) 5.36
p— (5.36)
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Table 5.2. The average switching rate of an AFC in Rayleighl&gh fading noisy channels.

| System Model| Average Switching Rate |

i.i.d.
n=n ez
§1=8=0

i.n.d.

v/ (c10+b10)(c20+b20) (c12-+c22+b12+b22)
(c10+c20+b1o+b20)3/2

p p
0210028 / ‘7§2+‘7%2
(0%0+030) Ti0tT30

81282:1
$1=82=0

i.n.d.

$1=582=0

i.n.d.
2m(di+d2)
modulated 3V/d1(d1—d3)?

5.3 Numerical Examples

In the numerical examples, we consider the special casecsfitmensional (2-D) isotropic scatter-
ing and an omnidirectional receiving antenna. It is assuthatthe bandpass filter of the IF portion
of the receiver is an ideal flat filter such that it does notciftee shape of the PSD of the received
signals. In this scenariay, = 27r2f§”ci0 fori = 1,2 wheref,,, is the maximum Doppler fre-
guency [50]. The carriers are assumed to be unmodulatedisath = s, = 1 and the maximum
Doppler frequencies of the received signals are assumeslégqual f,,,, = fm, = fm. Moreover,
the bandpass filter is assumed to have a bandwidth eq@d),t@nd thereforé;, = %wQ f2bio. In
Fig. 5.1, the ASR of an AFC (normalized f,) versus the signal-to-noise ratio (SNR) of the desired
signal is shown for different signal-to-interferenceoat{SIRs) for Rayleigh fading channels. The

SNR and SIR are defined as SNR 101log; (g—g) and SIR= 10log;, (%3) for Rayleigh fading.
The SNR of the interference is assumed to be equal to 10 dBnlbe seen that for large values of
SIR, increasing the SNR of the desired signal increases 8f which means the performance of
the AFC deteriorates. For smaller values of SIR (for instan20 dB), the AFC is locked on the
desired signal for small values of SNRnd increasing SNRcauses the AFC to lock on the inter-
ferer which is also equivalent to loss of performance. Thkisdvior can be observed more clearly in
Fig. 5.2 where the MTLL of an AFC (multiplied by},,) is shown versus SNR The reason for this
behaviour is that when the SIR and SN&e constant, decreasing SNR equivalent to increasing
the amplitude of the noisy desired signal compared to thdiardp of the noisy interferer. Observ-

ing these results, one can conclude that there is a traderdfie SNR of the desired signal; while
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Figure 5.1. The ASR of an AFC (normalizedfg,) in Rayleigh fading for SNR= 10 dB.
having a large SNR makes the AFC more robust to the loss ofdaeko the effect of noise, it also

makes the AFC more vulnerable to the loss of lock due to amfarence signal.

Fig. 5.3 shows the ASR of an AFC (normalized f@) in a Rician fading scenario for dif-

ferent Rice factors defined ds; = K n a Rician scenario, the SIR and SNR are defined as

2¢i0
SNR, = 10logy, (%) and SIR= 10log;, (%) respectively. The SIR and SNR
are assumed to be equal to 10 dB.

In Figs. 5.4 and 5.5, the ASR and MTLL of an AFC versus SIR amwshfor different values
of Rice factor. Two cases of noise-free desired signal an&;SN 0 dB are considered when
SNR; = 10 dB. It can be seen that at small values of SIR, the MTLL is iasegl when the signal
is noisier. This is because the desired signal is weak cozdptar the interference and noise is
the dominant part which determines the MTLL in branch 1. Hesveat large values of SIR, the
performance of the AFC is better for larger values of SNRen the desired signal has a large LOS
component (for exampl&’; = 3). This behavior can be explained by considering (5.19). €e
see that the JPDF dt; andR; is equivalent to the JPDF of a Rician random process anchits ti

derivative. Since decreasing the SNR in this case is eqnvéb decreasing the Rice factor of this

and since the level crossing rate of a Rician random process

, 2
new random process; = 54—,
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Figure 5.2. The MTLL of an AFC (multiplied by,,,) in Rayleigh fading for SNR = 10 dB.
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Figure 5.3. The ASR of an AFC (normalized fg,) in Rician fading for SNR = 10 dB and
SIR=10dB.
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Figure 5.4. The ASR of an AFC (normalized fg,) in Rician fading for SNBR = 10 dB. The
solid lines represent the case of a noise-free desiredlsigdahe dashed lines represent the case of
SNR; = 0 dB.

is very sensitive to its Rice factor [50], the AFC has a bgtformance at large values of SNR.

5.4 Conclusion

In this chapter, we have investigated the effect of a singlerierer on the performance of an AFC
in noisy fading channels. Closed-from expressions andjyiatform formulas were derived for
the ASR and the MTLL of an AFC when the channels are subjectaglé®yh and Rician fading
and Gaussian noise. Numerical examples were presentedniondérate the effect of noise on the
performance of an AFC in such scenarios. It was shown thairimesscenarios the performance of

an AFC improves when the tracked signal becomes noisier.
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Chapter 6

Lower Bounds to the Performance of
Bit Synchronizers in ISI Channels

Although many synchronizers have been introduced andftigetaed for ISI-free systems in the lit-
erature, practical cases in which ISl plays an importam apé not well investigated. In this chapter,
this problem is investigated and true NDA ML synchronizedésived in ISI channels. Moreover,

some bounds are introduced and applied to the performarsyamohronizers in ISI channels.

6.1 Maximum Likelihood Estimator for ISI Channels

In [14]-[16] the ML estimator of the timing offset for one syl interval observation has been
derived for binary pulse amplitude modulation (PAM) in ttese that the symbol duration is equal
to the inverse of sampling rate. The results have been atsa@sd to the case of several bit intervals

observation in an ISI-free channel. The non-data-aidedXNWL criterion is

7 =arg mgxz log [cosh <2qT(T))] (6.1)

0

whereq;(7) = r(t) * p(—t)|:=ir+7, 7 iS the estimated timing offsefy, /2 is the two-sided spec-
tral density of the additive white Gaussian noisg) is the received signal; is the inverse of the
sampling ratep(¢) is the pulse shape with a duration equal'taands« denotes the convolution oper-
ation. Note that the summation in (6.1) is over the symbais dine received during the observation
period,LT.

The purpose of this section is to derive the NDA ML criterion §ymbol timing recovery in an
ISI channel. In this study, we consider a binary PAM signdie baseband model of the received
signal,r(t), can be expressed as

r(t) = z(t,7) + n(t) (6.2a)

xz(t, ) = Z cig(t —iT — 1) (6.2b)

K2

61



0.8F

0.6F

0.4

Normalized Amplitude

0.2

2 3
Normalized Time

Figure 6.1. A sequence of 1s sent using triangular pulsésMit= 2 andL = 5.

wheren(t) is the additive white Gaussian noise (AWGN) with two-sidgecral density equal
to No/2, g(t) is the received pulse shape (a truncated pulse with a doratjoal to2MT), T is

the inverse of the sampling rate ands the timing offset which can be modeled as an uniformly
distributed random variable i, T'); in this equationg; is theith transmitted data symbol and is a
zero-mean random variable such that for any two transmétééd symbolsE|c;c;] = C(i — j),
where E[-] denotes the expectation operatiadif;) is the Kronecker delta function and is the
energy of each bit.

Conditioned onr, there are2?+L~1 equally probable signal waveforms fo(t, 7) during an
observation time equal tbT'. In Fig. 6.1, this is shown for a sequencelgfsent using a triangular
pulse with duration equal t¢1" and an observation time equali®'. As can be seen in this figure,
8 symbols are involved during this observation time. Sineeptobability of sending or —1 is
assumed to be 0.5 and the symbols are sent independently,ate2® equally probable signal
waveforms.

Conditioned onr, these signal waveformsy (¢, 7), can be represented using the Karhunen-

Loéve (KL) expansion [13]. Considering a complete orthomal basis{+;(¢)}, one has

se(t,T) =Y ski(T)Ui(t) (6.32)
=1
T+(j+L)T
s = [ st (6.3b)
T+7

Similarly, r(¢t) andn(t) can be represented using the KL expansion during the ifterva; T,  +

(j + L)T), conditioned orr. If the kth signal waveform is received during the observation Erio
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by denoting the truncated vector representation of thegeaks by a prime, one has
r'=g, +n'. (6.4)

Since the elements of are independent Gaussian random variables, one has

P(r'|1,s,) H exp ( i — Sk’i|2) _ ! Z 7: — skil?

whereN is the length of the truncated vectors. Having this condélgrobability density function
(PDF) and considering the fact that all th&"/+~~1 possible signal waveforms are equiprobable,

one can find

92M+L—1
Pr'lr)=A Z exp <—Z|TZ 5k1|> (6.5)

where A is a constant and therefore has no impact on the locationeofrtaximum of P(r’|7).

Moreover, one has

N

> fri = sl

i=1

N N N
=Dl ) lswil® =2 s (6.6)
i=1 i=1 i=1

and sincesxp (—NLO Zfil |ri|2) is a constant, instead of finding the maximumRi{f’|7), one can

equivalently find the maximum of(r’|7) where

22IVI+L 1
A(r'|T) = Z exp(——2|s;ﬂ|2+—2rzs;ﬂ> . (6.7)
Note that the timing offset found using the truncated vemtpresentation of signals is an approxi-
mation to the real timing offset. In order to find the true \abf this timing offset,V should tend

to infinity. Since [13]

N ) T+(j+L)T )
lim [skil :/ sk (t, 7)|"dt
N_'OOZ T+5T
T+(j+L)T
lim Zrzskl :/ r(t)sg (¢, T)dt
N—oco T+4§T
one has
22M+L-1 1 T+(G+L)T 9 T+(G+L)T
7= arg max exp ——/ sk (t, 7)|2dt + — / r(t)sg(t, 7)dt| .
N, +iT No Jryjr

(6.8)
Note that since for every signal waveform, there is a sigraaeform with an opposite sign, (6.8) can

be simplified by considering only the signal waveforms foichkte; = 1. After some manipulations,

one obtains
22MHL—2 T+(+L)T 9 [THGHL)T
7= arg max exp——/ |sk(t, 7)|?dt | cosh —/ r(t)sk(t, 7)dt]|.
Z [ <N 4T No Jrijr

(6.9)

63



6.2 A Lower Bound on the Detection Theory Bound (DTB)

The DTB (also known as the Ziv-Zakai bound) is a lower bounthermean square estimation error
AN 2
T—T
()
1 1-6
/ Gy / P.(v,v+0|c)dv | 6df (6.10b)
6=0 v=0

and where is a vector denoting the sequence of the transmitted @it/ (¢)) is a transform that

of the timing offsetj.e.

MSE = F

> DTB (6.10a)

where

DTB=E,

fills the valleys of f(#) with respect toY (see Fig. 6.2 as an example) aRd(v,v + 6|c) is the

minimum probability of error in deciding between signals
x1(t) = Z cig(t = nT —ouT) (6.11)

xao(t) = Z eng(t —nT — (v+0)T) (6.12)

n

when transmitted with equal probability. One has [16, Ch.4]

Pe(v,v+0lc) =Q (\ / ;—;VQO) (6.13a)

LT LT LT LT
d2, = / (z1(t) — 2o(t))%dt = / o1 (t)dt + / x3(t)dt — 2/ w1 (t) 2o (t)dt
0 0 0 0
= El + E2 — 2p12 (613b)

and whereQ)(+) is the Q-function defined at [44],T is the observation timef; and E» are the
energies of; (¢) andao(t) during LT, andp; 2 is the correlation o4 (¢) andxa(t).

For the sake of simplicity7,,(f(#)) in (6.10) can be replaced bf(6). Note that if f(0) is a
non-increasing function af in [0, 1), G.,(f(8)) = f(0); otherwise, this replacement weakens the

bound. Consequently, one has

1 1—0 \/@ 1 1-0 &2,
DTB > E, / 9/ Q —= | dvdf| = / 9/ E. |Q —= | | dvdf
“|Jo=0 Ju=o 2No 0=0 Jv=0 2No
(6.14)
where the equality is a result of the linearity of the intégmaoperation. Sinc&)(y) is a convex

function fory > 0, using Jensen’s inequality [56] one h&s[Q(y)] > Q (E.[y]). Moreover,,/y

is a concave function fog > 0. By employing Jensen’s inequality, one h@s[\/g] < VE[y
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Figure 6.2. An example functiod(e) and its transforng., (d(e)).

Considering these inequalities and sige) is monotonically decreasing,

di, di, E[di,]
AT o) o

In order to findE, [d3,], one can use (6.13b) to obtain
E. [d%ﬂ =E. [El] + E¢ [E2] —2E, [912] . (6.16)
Using the definition ofc; (¢) in (6.11) the first term in the right side is equal to

E [E1] = /0 Z Z Elenem)g(t —nT —oT)g(t — mT — oT)dt

LT LT
C_. m t—ouT
= Cqg*(t —nT —oT dt:/ —F(=)exp <j27rm< )>dt
f s = [ S FFC) .

(6.17)

where in the last equality, the Poisson summation formufd i used; in this equatiorf'(f) =
F [¢(t)], whereF[] is the Fourier transform operator. By changing the ordentgfgration and

summation in (6.17), one has
PDAAESY CLF(%) exp(—j2rmu)d(m) =CLF(0) (6.18)

whereF'(0) is equal to the energy of a single pulgg,,

F0)=E, = /Oo g (t)dt = /MT g*(t)dt. (6.19)
—00 —MT
Similarly, one obtains
E,[E;) = E,[F1] = CLF(0). (6.20)
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The third term in the right side of (6.16) can be found in a Emivay,
LT
E.[p12] = / ZZEQ[cncm]g(t—nT—UT)g(t—mT—(U+9)T)dt
0 n m
LT
= / ZC’g(t—anUT)g(t—an (v+0)T)dt
0 n

-/ U S e (s2mm () ) a (6.21)

where in the last equality, the Poisson summation formuleséd again; in this equatiof(f) =

F[g(t)g(t — 0T")]. By changing the order of integration and summation in (6.afe has
E, [p12] = ZCLH(%) exp(—j2rmv)3(m) = CLH(0) (6.22)
whereH (0) = [*°_ g(t)g(t — 0T)dt. One can use (6.22), (6.20) and (6.16) to obtain
EL[@3,] = 20L[F(0) — H(0)] = 2CLE, [p(0) — p(6)] = 2E,L(1 — p(9)) (6.23)

whereFE, is the energy of one bit ang() = Eig J75 g(t —0T)g(t)dt is the normalized autocorre-

lation function ofg(t). Substituting (6.23) and (6.15) into (6.14), yields

DTB > LDTB (6.24a)

LDTB = /O l@ (, /%L(l - p(e))ﬂ 0(1 — 6)do. (6.24b)

Note that when the SNR tends to ze@)( f,—ZL(l - p(e))) tends tol /2. As a result,

where

1 [t 1
lim LDTB=— / (1 —6)df = — (6.25)
Ey/No—0 2 Jo 12

which is equal to the variance of a uniform random variatdejesired.

6.3 Simulation and Discussion

The pulse used in this study is the well known square-rogerhacosine pulse [2] with a roll-off
factor 3 = 0.35. Fig. 6.3 shows the normalized square-root raised cosifsemith a duration
equal tol27 (M = 6). The MSE is used to measure the performance of the synaeisniwhere
MSE = FE {(%)2} In Fig. 6.4, the performance of the ML synchronizer in an d¢Bannel is

shown and is compared to the performances of the ISI-freeyitlsonizer and the zero-crossing-
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Figure 6.3. Normalized square-root raised cosine pulde @it 0.35 andM = 6.
based synchronizer (ZCBS) [17], defined as
. T ) . T
7= arg {Z exp [j27rt(z)/T]} +3 (6.26)

wheret(7) is the sequence of zero-crossings of the received sigral@dssing through the matched
filter. In addition, the DTB, LDTB, and MCRB are shown in thigdire. Note that the MCRB for
the MSE of a PAM modulated signal is equal to [1]

1 1

MCRB= ————
CR 812¢L Ey /Ny

(6.27)

122 PPIG(H1df
T2 1G(H)1Pdf

The square-root raised cosine pulse used in this figure hasatieh equal t&7" (M = 3) and

where¢ = T? andG(f) is the Fourier transform af(t).
the observation time is equal @". As can be seen in this figure, the performance of the ZCBS in an
ISI channel is better than the performance of the I1SI-freedyihchronizer, as was reported in [17].
However, the performance of the optimum synchronizer @l expressed in (6.9) is much better
than both of these methods. Moreover, it can be seen thatfiBegovides a very tight lower bound
for the MSE of the true ML synchronizer while the MCRB does paivide a tight lower bound.
Adding this shortcoming of the MCRB to its behaviour at svallues of SNR, one can conclude
that the MCRB is not a very appropriate candidate as a lowentdn ISI channels. However, as
mentioned before, the complexity of the DTB which requites Monte Carlo method to find an
expectation over all the possible waveforms, is a seriossddiantage for this lower bound.

In Fig. 6.5, the DTB, LDTB, and MCRB are shown for the squaretrraised cosine pulse with
£ = 0.35andM = 3 and wherel. = 5. It can be seen that the MSE of both the DTB and LDTB

1Since the timing offset in [17] is modeled as a uniform rand@mable in[—7/2,T/2) and in this letter it is modeled
as a uniform random variable i, T"), T'/2 is addedfrustrated to the ZCBS equation to make (6.26) stami with the
ZCBS equation in [17].

67



-1

10

-2

10 °F

-4

10 '
[l — 8- ZCBS
[| —k— ISI-free ML
H —©— True ML 1
[| - - DTB N
|-~ —LDTB 1
—— MCRB

T

10°

1 1 1 1
0 5 10 15 20 25 30
SNR (dB)

Figure 6.4. The performance of the ZCBS, ISI-free ML synciiwer, true ML synchronizer, DTB,
LDTB, and MCRB in an ISI channel. The truncated square-raised cosine pulses hage= 0.35,
M = 3, and the observation time is equalid.

tend to the variance of a uniform distribution at small valoé SNR, while the MSE of the MCRB

increases without limit at small values of SNR and therefbesMCRB is not a lower bound in this
region. Although the LDTB is a lower bound on the DTB, it does suffer from the complexity

problem of the DTB and since its computation only requiredating a single definite integral on
the intervall0, 1], it can be computed very fast.

Fig. 6.6 shows the MCRB and LDTB for two different values osebvation time. It can be seen
that the LDTB is a good match for the MCRB for moderate valuleSNMR for both of these obser-
vation times. Also, considering its appropriate behavetismall values of SNR and its simplicity
in computation, it is a good alternative for the MCRB in ISkadmels for small to moderate values
of SNR. At large values of SNR (e.g. larger than 30 dB), thelggtpreen the LDTB and the MCRB
increases. However, since in practical applications w@ieSNR more than 30 dB are uncommon,

the LDTB is a good alternative for MCRB in practice.

6.4 Conclusions

In this chapter, the ML criterion for timing recovery of a seqce of PAM signals in the presence

of ISI and noise was derived. It was shown that the ML criterdrived for an I1SI-free channel
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Figure 6.5. The DTB, LDTB, and MCRB for a sequence of trundatquare-root raised cosine
pulses withs = 0.35, M = 3, andL = 5.
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Figure 6.6. The LDTB and MCRB for a sequence of truncatedrgguzot raised cosine pulses with
6 = 0.35, M = 6, and two different observation times.
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underestimates the optimal performance significantly amhot be used as a proper lower bound
on the MSE of synchronizers operating in ISI. The detecti@oty bound was used as a lower bound
on the MSE of the timing offset and it was shown that this lob@und is a tight lower bound on the
MSE of the ML synchronizer. A lower bound was derived for thEEDwhich is much simpler to
compute than the DTB. This lower bound was compared to the Bl&&d DTB and it was shown
that at small values of SNR, the LDTB exhibits the correctasdbur of the DTB while at moderate

values of SNR, it is almost as tight as the MCRB.
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