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. ABSTRACT R
 Geophysical 'interpretationJ of seismic records 1nvolves‘
recogn1t1on of major coherent seismic events and translatxon
"of these major events to suosurface geologlcal structure. An
automated procedure for seismic tecdrd analysis has' been
developed for this process. The ptocedure involves three
steps. Initially, traces are represented as strings of;local
vpeaks with features. The first step involves trace- to tracel
correlation using a. str1ng to-string matchlng algorlthm in
which peaks are matched by a least cost criterion. Each
correlation paif;is assigned a correlation confidence. ih
the second step, pa*allel analysis corrects mis- matches by
con51der1ng the general tr end around the anomalous:‘palrs.
Matching pairs are then connected to form coherent events.
Each coherent,event is‘ also assigned fa confidence wh}ch
reflects its re11ab111ty and 1mp0rtance. In the last step;va
~ shot record 1s divided into zones characterlzed by ‘complex
' attrlbutes and other dlscrlmlnatlng propertles.

The scheme has been shown to be a promising tool for p1ck1ng
major events in a test using common shot gathers acqu1red
from a survey in Saskatchewan Canada. Most of. the majot,
coherent ‘events detected by. the scheme are con51stent w1th‘h

" those recognlzed v1sually Majogb_gfiectlons correspond to

events of - high conf1dence_and;the seismic zones show good

.correlation between shot.records.
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‘ 1. INTRODUCT ION
During the past ten_;years, substantial achievements

have beén made in the area of geophysical data acquisition,
data processing’?ndAseismic'invé}sf;n {Schultz, 1985). The

reliability and resolution of information aygiiable to

. interpreters have increased; géod quality control and.:high
multiple coverage in field recording have tfemendously'
increasedJsignal—to?noiée ratio. New schemes -in 'statics
correction and interval velocity estimation and
- consideration rof higher order térms in migration have
improved the  -image quality of seismic sections. Much
 computing power is available to do the mathgmaﬁical
transformations, thus yielding more ways to represént the

~same data set in terms of different groups of “pérameters.
For examble, a Fourier transform givés the poweg;

disfribution of the frequéncy components ‘and~:a"Hilbgft

/

‘transform wunveils the change of fréquency ahd’energy‘ﬁ&th
1 ;
time. These developments which .are - a combination o?” new
*~'ihsights and expanded»computér capabilities have led‘us to a
much better and ~clearer underst;naing of the Earth's

interior. ' % ‘
Despitékall the effort that has been spent in: producing
higher" duality seismic sections, the _ function of a
geophysicist remains at the same level as it’wa&yyears ago.
Simple' rbﬁtineé ‘like‘ picking §rayel_ tiﬁfs, examining a
velocity-ptofile and setting-vup a preliminary mode] fér ’
migration are done manually by human interp;eters. Since the

.

£



introduction of,digital p:océssing some: twenty years ago,

‘massive ‘vQIﬁmes of seismié data ' have been processed and
analyzed, bﬁt.in spité of such a large data base, computer
_softdare; is notjsophisticated enough to help geophysicists
‘make even simple‘judgement decision, or monitor - the data
'processing flow.* Even though computer wusage 1is more
péf&asiVe than ever, the ﬁature of the coﬁputer programs 1is
'virtuaiiy vnnchgnQed. They are numbe?-crﬁnching systgms, not
decisiqh%making aids. .

Among these number cruncﬁiﬁg procedure;iﬁ aﬁpii£ude
recovgry\fig extremely important for évalﬁégioﬁxjgf“thelﬂ
‘sediméntaﬁy environment and delineation o£ f1itﬁ§Iogi¢él
tra§§ ‘f;vouring the accumulation of hydrocarboh:* 'The
amplitude after processing should —fefl§;£ 'a segﬁencé of
reflection .c§efficien£s which 1is a rébresentétion ‘of
lithology. Fu}ther, the mapp&ng of a horizon .is based on the.“
consisténcy of amblitudés acro§§ a  seismic record.
"Therefore, amplitude is a very Empo;tant feature ana deﬁén&s %ﬁﬁ
special preservation;

In addition toﬂtﬁz—éffects_ofAnoise, the amplitude of
the seismic signal arriving at a géophone is affected by a

number of mechanisms such as the reflection and
o

transformatfoﬁ from each acoﬁstic discontinuity, and the
direct attenuation of signal amplitude due to frequency
loss, - and spherical divergence.

fechniques' for the design of inverse gain funétion;.to

preserve relative reflection amplitude variations within and

_ : ! L

<



between- traces fall. into statistical and ‘deterministic

categoriés (Lindseth, 1982)._ Both approaches attempt to

-

correct traces \Eor average attenuation rates while

preserving instantaneous variationsg capséﬁ by changes in.

4 ey

LI R
. . . B I
subsurface acoustic impedances. ‘DeterﬁWnlsﬁic approaches

. - ‘ ‘ N
define general models to describe many of the possible

factors affecting amplitudes. Statistical approaches such as
the sliding wrndow' gain equalization, on the other hand,
produce average;gain functions.

/ LI
The - traditional approaches to.gain compensation make

certain assumptions, principally that the deQay is smoothly

exponential and the .quality factor, Q, is constant within-

the signal's bandwidth. The model ignores the significant
drop of amplitude after each major reflection. ' The
statisfical approaéh is also based on the assumption that
the decay is smooth, though not necessarily exponentiai. In
this technique, it is difficult to choose a proper width 6f
the sliding window applied to the data.

Perhaps‘thé most féasible me;hoa of gain equalization
is to apply  a fixed curve to correct. for spherical
divergence on all traces of a record, then process to
eliminate some part of the noise. After this; we can
recognize the major feflqétions and set up a simple model.

The original gain compensation may then be reversed to

restore the trace to its original form. A more reliable

recovery of the signal's amplitude can then be made by using ,

different gain functions between major events.,
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Another example of processing comes from seismic
deconvolution. The ideal source signal would be a‘spike, but
due to the nonlinear effects about -Ehe shot point, the
sodree signal is a waiﬁlet of finite Breadth. This source
waQeléttis further modifieé by. multiple reflecEions and
absorption in the earth. Part of the wavelet's energy is
also reflected upward by a sequence of . reflection
coefficients of the interfaces. The reflected energy is
recorded by detectors and other recording instruments. All
these changes ,on the wavelet can be visualized as a
convolution. A seismi trace 1is thus considered "as the
result of conv&iut'on "of a source wavelet with absdfpggon
and multiple effgct; reflecéivity' seqguence and recording
response, }

The reflecti%ity sequence represents the desired result
og a seismidﬂ;experiment.f The other components which
characterize the properties of the experiment ‘aré usually
grouped together ang called' the seismié wavelet.
.Deconvolution is an 1inverse operation °‘to retrieve the
rgflec%ivity sequence'by remo%ing mg:t other effects.

‘Statistical deconvolution begins with the convolutidnal
model with nothing known aSout the system response, except
for a number df necessary assﬁmptions ‘regarding the
statistics of the time series. One process of this type is

Al

predictive deconvolution.

Predictive -deconvolution assumes that the sequence of

reflection coefficients is random. Rarely is this true.

’
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Depositional envirohéénts are. théJtreéult‘kofu a cdmﬁfex
‘interplay of sedihentéry‘prQCQsées; bdt‘alverfiéal SéQUenéeit
from such an enQironhent' ﬁ3qally‘ showé some cyclic{tyl"
Therefore, the assﬁﬁﬁfibn‘ié inQélid;in most areas. Indeed,
there has been a consiéerghle trend'ih_recént years to use !
whatever physical knowledge ofxthe system can be gainedsgo;
reduce the number of hninown parameteré;’df the puréiy
statistical model.- New effeqtive"apprbaéhesj in 'waqelet
estimation and model-based deéonvolutionA_cah be based onf .
known major reflections and geoldgiqéi and well log §a£a L‘
(Oldenburg et al., 1981). o
Migration is an 6pepatioh' to 'reconstructt phe'
eflector's surface from-éhe Séismic section. The process
lreﬁieé 'heavily on the local model of good subsﬁrface
velocities and the results from the operation {arg' oﬁly. as
good as the model provided. A preliminafy model_canybq;Set
up from an automated coherent event detection algorithm. An
it rative feedback of comparison between the moael and the
migration results céﬁ tﬁen be used to revise the initial
‘model. The co@puter, in this step, might act interattively
with the interpreter to monitor the operations. ‘

In summary, seismic data processing and analysis can be
thought ¢f as a two way interactive and iterative signal
processing - information extraction - model-building closed
loop system (see Figure 1). In order to make the loop

function more efficiently and increase the speed of

interpretation, the computer must take a partial role in



signal | » information
processing +——— extraction

\ model
building '

Figure 1.... Seismic processing and analysis is a two way
interactive and iterative closed loop system..



_dectsion-making.and result evaluation.

GeOphyaical interpreters very . quickly encounter data
that 1is notr‘easily*-eipressed in, numerical form, bnt is
nevertheless very Vaiidt They encounter the barrler ‘of
sharpening 'their understanding using empirical knowledde
which may,-be‘ﬁsqundly, ‘but  intuitively based. All . this
innerent difficulty comes frbm \the fact that 1nte§rated‘
induction, reasoning and- judgement of contrary evidence play

//;,/nmram essential role in gec;ogical or geophysical"

' interpretation. Most of the judgement decisions made by:

' interpreters fare based on rules of thumb‘and.integrated 1
‘reasoning from many disciplines, and this knowledge is hardu
to reducelito a set of‘equations. The areaiof‘study between )
geology and geophysics is. rife with examples ;that can be
cast into this form. ATthough each cf these crqblens can be
considered a numerical‘problem, they are better 'thought of
in the context. of non-numerical progranming‘in order to
aytomate the geological interpretation task.

It. is . commcn“ m1sconcept10n and a consideranle
obstacle to the advancement of geophy51cal theory to think

of a .computer asj'solely- a"tool for the man1pulation of

numer1ca1 1nformat10n Although all geophysical information;“J

can be forced 1nto thlS mould, it is better in many caees to
.con51der’the computer as a tool/‘for manipulating iogical
_patterns, Automating interpretation demands the computer go
beyond conventlonal numer1cal processing into ,a nonnumeric

problem-solving _domaln. In‘ these problems, the computers
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will 'deal with data sots in owhich the solution path is
unknown and justify theifﬂ~reasoning when the -available
information is incomplete. Troditional programming fail; to
provide such methodology because »completéo'information is
required . for a decison, but heuristic_programming developed
in  the field of artificial intel;igence and péttérn
recognition seems to éuggest; avcpromising tool for an
automated interpretation system.

A heuristic technique is a rule-of-thumb result which

can not be rigorously proven. It is aoconcept\which,»through

“experience, reliably guides action. For example, geological -

“#wrelationships are notoriously difficult to code as numerical:

’ﬁnformation. They Ashould not - be coded Jthat way if the
relationships arg,tokbe;hsed to reduce the 'ombiguity in
interpretation often associated wifh géOphysical data; they
should be coded as listsjin»the sense these ehtit{es are

perceived in'artificial intelligence.

1.1 Significance of Artificiai Intelligence Techniquos in’
Goophysics‘

The use of A.I; techoiques in geophysics -cah‘ never.
replacofinterpreters, but can aid”them in intefpretation andv
decision—makino process (Palai, 1986)} Techniques from this
area aim to simulate human decioion making process on
computers so they can solve complex problems ‘- problems

[

which-rgquife intelligence if done by humans.
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Some complex problems in geophysics may incikde

k1

Nof
53.

locating the best drilling sites, determining the nature
v : RAY
the earthqguakes or faults, and estimating the velq%ity ‘

distribution in an unexplored area. The complexity of
problems calls for an expert because expertise;
1s necessary to provide a solution: In thes o
experts deal wiéh fuzzy data which are masked Jpeyond
recognition by other factors such as noise. The data are
jncomplete and uncertain.

| The decisions made by experts age sometimes—T;uite
subjective and inconsistent, Even vworse, due to the
non-uniqueness of the solutions, several possibilities
occur, Heuristic,programming techniques can rank conclusions
by their.like}ihobd of being correct. The 1likelihood is
measured by a cértainty factor, which reflects the degree of
confidence about the wvalidity of a cohclusion;‘. The
introduction of certainty factor gives the expert a means to
check the algorithm's conclusion against his.

Mofeover, the new programming techniques can transfer
human expertise in given domains into effective form, so as
to enable computer systems to perform convincingly and
systematically as advisory consultants (Hoyle, 1986; Palaz,
1986). Knowledge representation is the heart of these A.I.
systems (Waterman, 1986) and one efficient way to represent
knowledge symbolically is in forms of IF-THEN production

rules. An example of such rules is the criterion to detect a_

bright. spot. As seen on a processed seismic section, a

——re
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bright spot is a reflection that is much stronger than usual
for a limited distance and may indicate gases directly. If a
gaS”feﬁervoir really exists, then the Eright spot is usually
characterized by high amplifude, very low frequency and
treversed polarity. 1In this case, a computer should be able
to cope with a rule 1like
IF the envelobe.is high and
theyinstantaneous'frequency is low and
the polarity is reversed,
THEN the feature is most likely a bright spot.

The‘ techniques also provide the‘expert with the 'ability to
communicate with the systems in terms of natural language.
It 1s true that the communication is presently limited to
technical jargon, but th1s is generally the way experts
communicate in such circumstances. Development of such
expert syétems - programs that operaterby,reésonigg ‘from a
set. of facts and rules. - yields knowledge of incrcased
reliability, consistency andAavailability. A typical expert
system, PROSPECTOR, (Waterman, 1986) developed in Stanford
~Research Institute, has successfully aided the geologlsts in
locating one of the b1ggest molybdenum ore deposits.

Existence of knowledge-based systems can relieve a
geophysicist from elementary routines lﬁ&e preparing the
information, setting up a preliminary model, evaluating
results, drawing conclusions and taking initial decision
steps. He can then search for ways to extract' better

parameters vital for data inversion; he can also incorporate
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into the results such highly significant decisions or

information as only our human mind has available.

'
/

1.2 An Automated Apprqech in Seismic Interpretation
Seismic interpretation could be done with an expert
system. It involves recognition of the major seismi¢c events

£

in seismic records and transformation of these events to
subsurface structure. The problem requires knowledge from
many fields including an interpreter's skill for‘ picking
events. Picking is marking an event on a seismic record and
involves deciding what wavelets from trace to trace are from
the same reflection event. The  proposed automated
interpretation task is best started by picking wavelets in a
common shot gather, since all the information is contained
in the raw data and any processing step reduces the
information content of the data. Results from the initial
step can then be used to construct a local model to guide
the ;ubsequent steps.

Figure 2a shows a typical geometry for recording
‘seismic reflection data. We létAs'represent the horizontal
coqrdinate of the source, r the horizontal coordinate of ghe
detector and g=r-s, the offset from source to receiver. Let
us suppose that the investigaéion 1s far from the source and
the planar wavefront approximation is justified. The arrival

time of a reflection from a given horizontal plane interface

is given by



a. 4

. b L S f N -

1 horizontal
time ‘ offset

Figure*2.... A common shot gather a. geometry and b. data
display. The dashed curve shows the locus of the reflections
from the given horizohtal reflecting plane (modified from
Robinson, 198S5). '



13

2.2
t=tet ()

g2
v

where tO 1s the zero-offset two-way travel time and v is the
(assumed) constant acoustic velocity. A reflection from a
horizon 1is characterized by signals of highvéﬁplitude. The
equation thus describes a hyperbolic trajectory of these
signals in a record which displays the resanSes of all
geophones placed side-by-side (see Figure 2b). Such a record
ls called a commdn shot gather.

Routine data processing attempts to transform such
seismic data into a gOOd\subsurface image of the Earth. The
performance of these techdiques is always judged by the
guality of the processed s;ismic record. The measure of this
quality is usually associated with the ease of detecting the
desired geological or geophysical signal in a clear
background.

A collection of such signals comprises a coherent event
on a recdrd. Therefore, a coherent event characterizes a
pattern_-énd represents a set or collection of coherent
signals which are associated with a geological or
geophysical object such as a reflector, a refractor or a
diffractor. These signals are wavelets having similar

properties on neigbouring.s

traces. Picking such coherent
events is an elemeftary and important step in
interpretation. Some examples of patterns of interest are
the waveshape of a seismic trace in the neighborhood of a

lithological imerface, the hyperbolic patterns exhibited by
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an ehtlre set’ of traces in a common shot gather and the

d1ffr§é€10n pattern due t'o a fault edge. R

—e

The search for an automatic plcklng algorithm started. -

in the early 60's, but so far results are not very 

AY

.fsatisfactory. Some of the ptobiems “of automatic schem.s\

(Schneider, 1971) are summarized in the followlng

‘a. A key mapping horizon may not be adequately \picked;“

because - of .complex' structure and/or poor

.~ signal-to-noise ratio.
L R . ' B . ..v ] -' .
«b,';Mapping reflectors-requlres both time and veloc1ty

Yet, autoplcklng the f1nal section prov1des only theih

former. ™

’a_c:. Autopicking schemes ~will tend to pick all

",reflectiohs dn’ thé record section, thus presentlng,,*

the 1nterpreter w1th ‘the addltlonal burden of having
to edit-the reflector segment collect1on.,:'

I descrlbe@below~ an automated procedure* of Seismic
record ana1y51s whlch will partially solve these problems..I
then apply the technique to selsmlchreflecthn_data.

"This thesi§ is divided into - five _ahabtérs. After
diScussihgld;;elobménts that may'occur in seismic processing
~ia - this chapter, chapter two presents the neceséary
backgrouna for the str1ng—+qkstr1ng matchlng algorlthm Same

dlscu591on of the Hllbert transform 1s also glven, since

complex attributes will be used as zonlng features. Chapter

e

three reviews application of both statistical and. syntactic

J

pattern recognition in geophysics. Chapter four describes
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the auﬁémated procedu?e and is f&i?owed by the‘.conélhsions
‘in chaptér five. “ i |

The automated procedure desqribéd id;%Chaptgt 4 'is
divided intq three steps. Initialf§: tracé§1;re represented
a§_strings of lo;al pggks with features. The first 'stép
deals with | trace-to-trace correlgiion'. eﬁﬁloying a
string—to—string» matching éigorithm ‘frequently used . in
syntactic pattern recognitionf ~ach corrélation .pair of
pgaksfis assiénedva correlation confidence. In the second
step, .fufthér processing' such as parallel analysis’,is
proposed to‘improve the matchihg‘ result. The co:relétion
pairs 'are " connected to form cohéfent events..Eéch'therent
eveht_is aléo»assigned{a coherence-confidence which reflects
its reliability and importance. Coﬁeqd;ces with high
confidence are reserved for further analysis. In the third
step, a record is divided into - zones characterized by
complex attributes and other discriﬁinating prop;}ties;

The idea 1is - demonstrated with common shot gathers '
‘acquired from a survey in Saskatchéwan, Canada.uMdst of the
major coherent events detected by the séheme‘are consistent
with those recognized visualiy. .Major refléctions_ are

indicated by -events of.-high confidence and the seismic zones’

show good correlation between shot records .~

™~



2. BACKGROUND KNOWLEDGE

3
2.1 Introduction

Pattern recognition involves the'clgssifiéation'of av‘
set of events characterized by patterns in terms . of
statistical features of the déta or syntéx information
ihhergnﬁ in the data (Fu, 1974). Figure 3 shows a 'simple
recognition system. The extractdé\_retrieves information
usefﬁl for classification, .thus reduéing the inpuﬁ.‘data
either to a set of statistically determined features or to a
set of simple subpatterns each of whichlhas featUres. These
elements ére‘ usually classified according to a_'pri5ri
~criteria which minimize some discrimfnant}functions..

Any pattern recognitior problem 'Ean be reduced to
feature éeledtion and classification. Feature selection is
deterhined by ‘. the contribution of the features  to Yhe
per formance of'a discriminatiogﬁahd recognition process. Tﬁe
objective of <classification 1is to properly assign each
pattern to a correct class. Many techniques of
glgésification, such as clustering aqalysis ‘(Diday and
Simbn, 4976; Aminzadeh and Chaterjee, 1981) and the ~nearest
neighbor . decision rule (Fu and Lu, 1977; Lu and Fu, -1978)
have been suggested. A / N

Different mathemétical approaches used to solve the
pattern recognition problems can be grouped into the
‘»Stétistical approach and the syntactic approach. Although 1

efiploy the latter approach in this thesis, the statistical °

4

16.. -
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approach deserves some discussion,

2.2 Statistical Pattern cognition

In statistical pattern recognition, patterns are

3

considered to possess random qualities. Characteristic

+

measuréments or  features denoted as X 1Ky oo X are
extracted to represent each pattern. In this sense, a
pattern is represented as a feature vector Ax=(x1,x2,...,xn)
in a N-dimensional feature space. Classification can then be
done b} partitioning the feature space in terms of some
similérity measuré in;o d;uéters or regions whefereach
region represents a pattern glass. The simila;ityv measure
quantifies the proximity or. the dissimilérjﬁy of the pattern

vectors and is often expressed“®é a metric in the feature

space.. The glustering results can then be used for future

ot

unknown'séﬁples.

Clearly, the selection of features and the metric’has a
strbng influéncefohvthe'réSults»of clugter' analysis.‘ Ideal
featurgs contain no redundancies’ and‘,ppﬁség; ‘great
diécriminatlngupower.;Measunement of an insufficient',nuﬁber
of features will nb} give satisfactory classification
results. The approach will become impractical and
inefficient for cdmplicated patterns with large feature sets
as in picture and scene analysis. The naturé of these
problems réquires pattern analysis and interpretation beyond

mere classification. 1f feature  sets overlap, the

statistical pattern recognition approach fails and analysis
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3 N
of the structural information is necessary for a more
accurate classification. As a consequence, syntactic pattern

recognition has been introduced (Fu, 1974; Pavlidis, 1977).

2.3 Synféctic Pattern Recognition

Unlike thg statistical approach, the syntactic approach
emphasizes the representation of patterns. The association
of each pattérn to a pattern class .is completed by a

description of a transformation path. The path describes how

one pattern can be derived from the othe;?in tefms of some"
predefined transformation rules.

In the representation, . a pattern is broken;dﬁwﬁﬁiﬁfd
its simplest subpétterns. These simplest sqbpatterns»are the
‘basic building blocks compoéing the pattéfn and are cgllg
the.pattern.primitives. Evidentlyr if thié appro§ph is to be
efficient, the \pattérn primitives should be much easier to
recognize than the pattern. Moreover, the primiti%es should
serve as basic pattern élementsq to provide a compact
description of the pattern being analyzed. Linguistically, a
pattern is represented as a string of pattern primitives
348,...3;. Each primitfve retains its own identity by >means 
of its own features. The string representation of-a pattern
is unique in the syntactic pagygph recognition approach“and
provides -a means of represénﬁihg the pattérn for adfomated
recognition systems. On a shdt record, a seismic trace can

> | _
be 1loosely considered as a pattern and an example of a

primitive is a peak with features su¢h as peak amplitude,
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location and duration of the waveform. A comparison between

syntactic patterns is then made on their corresponding

iy

pattern strings by using the pattern feature sets. One of
the classification 4téchniques often employed— is the

string—ko*string matching.

2.4 Basic Definitions’
After the patterns have ' been encdded as strings of

primitives, the derivation of one pattern from the other can

.

be described in.tetms'of gtep—by—step transformations. Some

formal definftions of ;he terms that will be‘uéed in the
discussion are necessary (WagneF and Fisher, 1974; Fu and
Lu, 1977; LU and Fu, 1978). o

In the correlation of two strings, the primitives of
one string are correlated to primitives of the other
strings. In this ¢ase; the evaluation of correlation between

two strings can be reduced to the correlation of their

sUbstriﬁgs. For two pattern strings, A=a,a,...a and

B=b1b2...bn where'ai and_b. are primitives and 1<is<m, 1£j<n,

‘ ]
three types of transformations are introduced to derive one

string from the other. With éac; ;ransforgation, there ‘is
associated a cost that measures the amount of deviation or
dissimilarity between two primitives. An exact mapping_ég
which two string§ are identical yields a null- cost. |
a. Substitution transformation
If substring Ay ¢ matches substring Bj—1' A, ﬁatches_

ij if
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ai———>bj. T .
The substitution transformation, TS ‘has a = cost
c(i,j;Ts).
b. Deletion transformation

If (substring A matches substring Bj, A, matches
B, if -
]

ta,——>A.
S j

where Aj is a null primitive between b. and bj+1'

The deletion transformation, Tg " has a cost
~c(i,j;Td).
c. Insertion transformation

If substring A matches substring B._

, B. matches
J-1 ]

A. if
1

>A

b.—
J

where Ay is a null primitive between a; and . a

i+1

The insertion transformation, T, has a cost
C(l,];Ti).

For azsequence of transformations T, which takes string

A to string B, T=T,T,,...,T,, where T € {Tg, Ty T4}y

1=1,2,...,k, the total cost of error transformations is

given as C($)=Z§=1c(.,.;Ti) wvhere .. represents the proper

pai; of matched primitives. There should be more than one
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such transformation sequence. Let T be the set of all such
sequences/that take A to B, then the distance between A and
B, D(m,), is defined as thé minimum “&ost of total
transfotmations

A

D(m,n)=min{C(T) [TC T}. o 2.n

Use of distance in correlation dllows the computation
‘0of the degree of mismatch between the correlated pairs,
sincé the pairs are seldom perfect matches with one another.
In reality, no two series will be identical. The distance is
then a measure of the natural variation due to noise or the
inherent characteristics of thecéystem.

If we denote D(i,j) (see Figure 4) as the distance

between the substring of A up to ith primitive,

Aizal,az,...;ai'and the substring of B up to jth primitive,

Bj=b1,b ""’bj' then
D(i,3)=min{D(i=1,3=1)+c(1,§;T )
D(i-1,3)*c(i,3;Ty), |
D(i,j=1)+c(i,§;T))) (2.2)

for all i,3j, 1sism, 1sjsn, wi;h initial condition
D(0,0)=0.- o - (2.3)

"It is seen that the choice of path is not arbitrary, but
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Figure 4.... D(i,j) is the distance between the substrings'
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depends on the cost associated with each transformation as
well as the accumulated cost of ‘the subpath. The-
accumulation of the matching cost, c(i,j;Tl) at each step
becomes the total cost of the proposed match. The candidate
path is then the one of least cost.

Figure 5 shows ﬁhree alternativs paths to derive D(i,J)
from 1its neighbors. The hordizont.ual direction denotes
deletion; the vertical, insertion; and the diagonal,
substitution, The distanceqp(i,j) corresponds to the minimum
of ‘the following:

a. the cost of transforming substring A to substring

"o:f

Bj_1.plus the cost of substituting a; to bj (Figure

L3

5a), and

1-1

b. the cost of transforming substring Ai_ to substring

1
B. plus the cost of deleting a; from A (Figure 5b),

J

and
.c. the kost of trahsforming substring A, to substring

Bj—1 plus the cost of 1inserting bj into A

immeaiately after a, (Figure 5c).

Figure 6 illustrates the path which transforms paﬁtern
F to E. Every point (i,j) of the grid is assigned a least
cost D(i,j) of transformation. The best path of
transformat@on is indicated in thick dark line. The optimal
transformation is |

T, T

STy 3
F=acadg| >abcadg| >abcdg |-
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-+ Three possible paths to derive D(i,j) from its
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’I‘i 'I‘i '
——-—>abcdeg| >abcdpfg=E.
N

If the cost of each transformation 1s 1, then the total

distance of the mapping is
D(F,E}=4.

The imposition of constraints is necessary to complete

the global sense of the 1least cost path, and will be

discussed in chapter 4+ The selection of the transformation :;

path according to the minimum distance criterion from its
neighboring points 1is often called the nearest neighbor
decision rule,

The string-to-string matching algorithm includes two
steps. The first step is the cost computation. The costs of
all three types of transformation are calculated at each
point (i,3j) and the distance between substrings is recorded
along with the appropriate neighboring coordinate of D. The
final step is just a matter of backtracking the optimal path
which gives ths)total distancé?D. The optimal path sheows the
best correlation between strings A and B. Cost measures the
degree of similari;y of two patterns by comparing their
features. In syntactic pattern recognition, features are not
used to represent a pattern class; instead, they are usedbto
discriminate one primitive from the other. Although feature

selection 1is not important in a syntactic recognition

scheme; a better recognition result may be obtained if
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features of high disqriminating po&er are employed in the
cost calculation. In a seismic signal, complex_ features are

useful discriminators.

2.5 éomplex Signal analysis

In complex signal.analysis (Bracewell, 1965; zieme;/’et
al., v1976;\AKanasewich,’ 1981), a signal whose amplitude
spectrum @of negative frequencies doegs noﬁ exist 1is termed

an analytic signal. The analytic signal representation of

v(t) of a real time function x(t) is a complex signal given

as. : . ' X v
wit)=x(t)+jR(t) . - (2.4)

where j2=-1 and X(t) is the Hilbert tran#form\ of the
original signal x(t) and is called t he guadrature coﬁpongnt
of the complex signa}Jw..In the time domain, the quadrétdre

v

~.gomponent is

or i(t)=!m—%igllydf' | | (2.5),

———

where * denotes gconvolution. From (2.4) or (2.5), the®
following compléx features of the signal can be extracted:

1. envelope
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E(t)=]w(t) (VX (EIFR (T) . (2.6

2. lnstantaneous frequency

1 x(t)tdﬁ(t)/dt]-iQt){dx(t)/at]

e R2(t)+x?(t)

(2.7)

I have made some experimental studies of the properties of
the éomplgx features using a pulse to simulate teleseismic

signals. The pulse is expreséed’mathematidally as
‘p(t)=0 . . t<0
=t%exp(2-8t)sin(127t) £20. . (2.8)

In the study, twé pulses of this form separated by time tg

are superimposed to give a composite pulse x(t) where

x(£)=p(t)+plt-ty). : o (2.9)
Figure 7, Figure 8 and Fiqure ‘9 show three dif ferent

versions of x(t), its Hilbert transform x(t), the envelope

and the 1instantaneous frequency. They correépond to,delay‘

times of 0.48s, 0.52s and 0.58s _ respectively. The arrow

indicates the time when the second signal arrives.
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From the computed results, two observations are méde.
a. Previous resulté (Robertson & Nogami, 1984; Taner et
al., 1977 & 1979) show that the instantaneous '
frequency corrégponding to the peak of a Ricker o;
zero-phase wavelet cloself represents the central
frequenéy of the wavelet. The concept can be relaxed
to t he case when the instantaneous frequency
u;orresponding to the peak of the envelope
.apgroximates‘the central frequency of the artificial
composite pulse, x(t). Also, within a certain
- interval centeriné at the peak of the envelopen the
_ instantaneous frequehcy i8 constant. The frequency
"in this example is 6 Hz and can be Obénged in b and
¢ of Figure 7, B'and 9.
b. Kicks or suddeh jumps in the instantaneous frequency
plot are uSuaily used aS indicator for arrivél time
of the incoming ehergy (Aboutajdine et al., 1981;
Farnbach, 1975). This obseryétion is not always
correct; however, if the signals join smoathly as
indicated in Figure 8a,.the kick does not exist (see
Figure 8c). Aléo the existing kicks can be negative
or positive (Figure 7c and Figure 9c).
Many technigues have been suggested to enhance the
| frequency of true evéhfs and suppress irregularities such as
“spikes (Kirlin, 1984). One of them is to weight the

instantaneous frequency. Integer powers of the instantaneous

envelope can be wused to reduce the variance of the
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instantaneous frequency and thus, reduce the amplitude of
spikes (Strom,1976). In our particular example, the weighted
frequency is given as

zizflé‘(t—i)f(t—i) '
E(t)= 3 owe . (2.10)
Li_ZqE*(t-1)

The Hilbert transform allows the separation of
amplitude information from phasg information of the signal.’
It permits ext;acting more parameters —from éeismic data.
These co' X parametegg might' contain significan;
information about the geological structure not easi}y
~detected by conventional analysis. Some applications of
camp{Fx%attributes can'pe‘found in Farnbach (1975); .Taner
and Sheriff (1§77;;' Robertson and Nogami (1984). It is
important to note that the éomplex attributes so derived
represent the structural content.of the signal and have true
physical meaning. Tﬁe instantaneous envelope <reflects the
strength of the acoustic impedance of the reflectors. The
- instantaneous frequency measdfed at the peak of the envelope

corresponds to the _central frequency of the signal

calculated from the zero crossings.



3. Sf:’iSMIC DISCRIMINATION ‘

This chapter is a review of the application of the
pattérn recognition techniques in seismology as well as_in
exploration geophysics. The papers discuSsgd below have
succeeded in demonstrating the- potential and merit of
pattern | recognition techniques to aid seismic
interpretation. The concepts or feature selecti¥n criteria
applied differ.vastly frgm.one paper to another. The review

is divided into two sections: statistical and syntactic.

3.1 Applications of Statistical Pattern Recognition

- Hagen (1981,1982) applied principal components analysis
and clustering to classify traces corféspbnaing to porous
and nonporous lithology. The ‘>statistical theory 'is
usummarized as follows. Consider a matrix X, whose N columns
represent discrete time series ‘vectors X

X ., X, of M

177200 N
samples each, drawn from the same population. The mean
vector and the covariance matrix estimates of the population *®

are

=1(x.k-xi)(xjk-xj) (3.2)
. . th : th

where X:p 18 the i1~ _component of the k sample vector. It

is assumed ‘that the mean and covariance contain all

statistical information about the data set. Since Sij is in

’

35
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general nonzero, the observed sample vectors are- considered
to be generated from a smaller set of underlYing factors
which give rise to the observed dependence. An orthogonal

transformation matrix A can be assumed,

<
It
-3
=
w
w

A
such that the variance of Y given by
p#a’sa o . (3.4)

results in statistical independence. The columns of A are

eigenvectors of S and gﬁi;

oy for i=j

=0 for i#j . (3.5)

where k; ‘are eigeﬁValueé of S and are\érfangéd such that
A12...2kN; |

The contribution of each eigenvector to the overall
varianZe is proportional to the correspoﬂding eigenvalue. So
if the first N<N eigenvalues, or principal components .-
provide a sufficient amount of variance measuré, then each
trace X. can be estimated as a linear combinétion of the N

eigenvectors,
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X., =X,
ik Tik
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Cluster analysis defines a distance °

(Yoa~Ynp)'. /s

e N nA ‘nB /

dAB'[Z\n=1“_—";_____] - (3.7)
S ]

as  the merging criterion between two traces A and B, If dAB
is below a threshold value, - then the 1lithologic properties
corresponding to traces A and B are considered to be in the

same claSS} otherwise, they are from two diffkrent classes.

The probability that the group Z is in the class A is given

a

by

1/4
P(ZE€ A)= (L ,
‘\1/d2“+1/d23

(3.8)

where B 1s anothervclass,

i II' stacked seismic section investigated by Hagen was
" shown. in Figure 195. The target was a porous zone which
appeared énd disappeared ~laterally at depths ?rom 1.66 to
1.68 seconds. The clustering used the traces 214 and 230 as
cluster/y centers. Using the instantaneous frequency as:
feature, Hagen cl;imed that the 5-component case showed the
best resemblance to the oriéinal instantaneous frequency. -
fhe classificatioh result was shown in Figure 10b in which a
dark background indicated ﬁ@at the lithology théré was
classified as porous and a light background  as nonporous.

The classification. of trace at 195 was less certain due to
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the bad data quality\in that area. In this example, data was
reduced to approximately 10% of the original data base size,

Sinvhal and Khattri (1983) established a correlation
between lithology and different features abstracted from the
synthetic as well as the field reflection seismograms.: They
.used first-order Markov chains to .model two different
hydrocarbon-bearing formations in a sedimentary basin. One
formation wq;fééndy and the other was éhaly, while both were
of sand-shale-coal alternation. They suggested that Markov
~chains could be conveniently used to model complex processes
thch were subjected to influences that could not bé exactly
evaluated and whose changes of state could only be
interpreted in terms of relative probability of occurrence.
508 synthetic seismograms and 387 real seismograms were used
as training patterns. Seventeen parameters from hnth time
and frequency domains were extracted from each seismogram
and were used as features:

1. A,/A,, where An denoted the autocorrelation

function at the subscripted lag,

2' AZ/AOI
30 A.’i/AOr
4. Amin/Aol

5. T,, time of the first zero crossing,
6. T., time of the second zero crossing,
7. T,, time of the third zero crossing,

8, T time of the first minimum,

amin’

9. fM' the frequency at which maximum energy
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occurs,

10, f,, the average power weighted frequency of the
power spectrum;

11. £,, the frequency at which the twenty-fifth
percentile  value of \frequency weighted power.
occurs, \

12. £,, the frequency at which the fiftieth
percentile value of frequency weighted power
occurs,

13. f., the frequency at which the seventy-fifth
percentile value of frequen;y weighted power
occhrs,

{4. fs, the frequency at which the twenty-fifth
percentile value’of power occurs,

15. f,, the  frequency at which the fiftieth
percentile value of power occurs,

16. £,, the frequency at which the seventy-fifth
percentile value of power occurs,

17. £5, the lowest frequency at which the*logarithm
of power decreases to half its value,;x

-Discriminant analysis was then applied to both

synthetic and real data. Each seismogram was represented as
a vector in the 17-dimensional space. The vectors were then
mappeé\{g\a discéiminant score, R by a lfnear discriminant
function.\ Ry and Ry (or Ry ;nd Ry) in Figure 11 were the
projécted discriminated scores of two mean vectors

representing two different kinds of lithology. Seismograms
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with the same value of discriminant score were plotted at

different heights to avoid overlapping of points. Their mean
R, served as 'a dividing line ‘between two clusters of
discriminant scores. Depending on whether the discriminant
score for a particular seismogram was greater or less than
RO’ it could be classified to area X or ﬂ¥,\ A 'set of 20
séisﬁograms from areas X apd Y were tested and 90% were
correctly classified.

The percentage contribution of each of the seventesn
variables;was given ip Figuré 12, Positive contributior
indicated that the variables were meaningful discriminators
and - large wvalues corresponded to strong discriminanta.
Variables which gave negative_contribution were detrimental
apd should have been discarded. 'This sexample ‘served to
demonstrate a -difficulty dn feature selection which vas
crucial in clustering_aaalyads. Seyehteén‘featdrestﬁere used
in this case; nevertheless, the great number of features did
not guarantee a good classification result.,” Some features
which were .thought to be.éood discriminators in synthetic
data resulted in negatlve contr1butlons on real data sets.
Matlock and A51makopoulos (1986) used a similar technlque to
determlne boundaries between different sand contents in a
sand- carbonate formation,

T3¢sthe1m (1977) proposed the use of the pregdj

. Pak
filter coeff1c1ents as features to discriminate seismic

, e p’- ' . . N . . )
events. A time series x(t) is stationary with zero mean and

MO discrete samples. By adapt1ng the time series to an Mth
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Figure Ié.... _
thé case of (c) synthetic data and (d) field data (Sinvhal

et al,,

1883).

a b < d
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3

order autoregreésive process,'an estimate ik of kk, which is
a linear combination of M values of x(t) prior to X, can be

obtained:
a.X,_ s, k=M,M¥1,..0 Moo (3.9h.

The estimated value of the ° épwer ‘spectrum iof. the
autoregressive process is given by
“20§At

B(e)- ‘ - O (3.a0)

|a1—2?=2ajexp(-i2nfjAt)|?

where of is the variance?“"§incé the  autoregessive
coeffic%eqfs aj coqputed from the_seismic't:aces complete}y
determiﬁe the shape of the power spectrum, the‘ coefficients
L :
can then be used as features for seismic events, if they are
stable enough with réspect to the estimation _procegs. By
assuming weak st?tionarity of the signal, the coeffiéients
can be calculated by"adaptingfihe time sefies- to an kMth
order autoregressive~»process wfth a- minimum meaﬁ—square
error cr1ter1on or by uszng the maximum entropy principlé.
For short 51gnals, #@ rough approxfmatlon about the power

b‘)
spectrum of the daégvcan be obtained u51ng the - second- or

«

third- Qrde; model.

‘kaﬁch.coeffiéients were used as features to discriﬂate
coda of shallow eartﬁquakes from the nuclear "losi;ns.
Figuré 13a showed theltraces_of 12 seismic eveh;é ‘recorded

by the Seismdlogical Observatory Norwegian Seismic Array
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(NORSAR). Six of the traces (1,5,7,9,10,12) were from

underground nuclear explosions, while the remaining six came

from shallow earthqﬁakes. All the events had their

Ll

epicente;é\in Eurasia. Figure 13b sho&ed the estimated
third-o;der autoregressiQe feature extractors Q31 and Q32 of
the 12 events. The figure showed a clear separation of two
clusters representing earthquakes and explosions, However,
ﬁhfs well-defined ciustering did not 4hold in casg' where
earthquakes behaved as explosion-like events as indicated in

. , o
Figure 13c where 45 earthquakes and 40 ‘explosions were

studied. The difficulty could be partially resolved by the
syntactic method described by Liu and Fu (1982a & b).
Bois (1980) applied the same techniques to study the

lateral facies variation and the boundaries of hydrocarben
- Y

reservoirs. The autoregressive coefficients for the portion

"of seismic traces between the top and bottom boundaries of

the reservo&r are calculated. For'a third-order process,
each trace is specified by a dot in the cartesian feature
space charaéterized by the coefficients a*32 and a*33. When
these trace sectors belong to homogeneous formations, the
éots form elongated ellipses having their principal ax}s

quite close to the main diagonal of the graph (see Figure

14a). The decision rule which formulates a criterion for

cluster separation defines a pseudo-distance between two
dots p;, and Piyqe ~The distance is given by the Euclidean
distance between them multiplied by the distance d

separating p.

j+1 from the main axis of the ellipse formed by

%
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~the . dots wunder study. A dot cluster is made up of dots
having approximateiy_ equal pseudb—distance. A . separation

\ .
between two clusters occurs whenever ‘a discontinuity appears

2

in _the successive pseudo-distance values. The- boundary

P
£
Y

between élusters, theh serves as indicator for the boundary
”of the rese; oir.

The example (see Figgre 14b) consisted of a seismic
section 3.5 km long in an sandy series containing a bright
spot in its middle. Two reservoirs~Were located at a_debfh
of 1.25s and cover about 3 km. The, study was to determine
the boundaries of the bigger .reservoir. Figure 15a
correéponds to_the forty traces making the sector S2. The
sector belonged to the gas reservoir and extended from the
88th fo the 127th traces. The excellent homogeneity. of the
pseudo-distances betWeen the dots took on the form of the
ellipsoid cluster. In this case, ;hg automation indicated
that | thefetwas ﬁo facies variation.”figure,15b corresponded

o

to the sector S3. The non-homogeneity of the cluster

indicated that the boundary had been met. The location of
the boundary could'be obtained from the trace at whicﬁ the
pseuao-distance had a discfete jump in value.

Bois (1981a,b,198€) used the;éame clustering approach
to determine the nature of an unknown reservoir using the
natﬁre of a known reservoir as monitor. The process involved
the analysis of 20 traces from each reservoir. If they were

of the same nature, a  homogeneous, éllipfical cluster

ocurred; If they were different, ¢two clusters were
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ngurg 14.... 3. Cartesian cluster graph, b. migrated
seismic section (modified from Bois, 1980),

N
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generated. However, the approach still had difficulty as
stated by Bois(1982). The problem was that a clear-cut
clustering between the dots rarely ocurred and some dots

were poorly located as could be seen in Figure 15b.

3.2 Applications of. Syntactic Pattern Recognition

One of the earliest attempts to wuse simple features
such as peak location to do automatic seismic reflection
picking»was given in the paper of Paulson -and Merdler
(1968). The picking scheme had two main steps. The first
step was to detect peaks within a trace . The second step
was to correlate laterally the peaks with the peaks'in the
neighboring traces, SupposeVPn’to, the peak of the nth trace
at time t;, was tested for lateral continuity. In trace n+1,
thejtime(interval (to-d,t0+d)'was examined to detect the
peak whqse time position was closest to ty. The
pre—de§ermined parameter, d, defined the maximum &ip within

—

the section. Suppose P was the matched peak with the

n+1,t1

'Correlating peak P then a straight line through the two

nrtO’
‘peaks. was extended to define a time £2 in trace n+2. The
time interval (£,-4,£,+A) was again examined for matched

peak, P . A was chosen to be smaller than d. A minimum

n+2,t,
of three peaks was necessary to define a reflection segment,
Once three peaks were established, _.a least-square-fit
“straight lline .might be calculatéd ahd this line was
éxtrapolated to next trace té fiha the matched peakl If such

a peak existed, the procedure was-repéated. If a peak could
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‘not be found, the search was terminated and a new peak was
chosen ’fof a lateral continuity test. Output from this step
could be displayed as . a section of reflection segments,
However, in order t% pick out the significant segments for
further analysis, each segment was assigned a grade which
was the sum of the peak amplitudes in that segment. Then a
threshold value was ﬁsed’£o discriminate segments.

The scheme ‘wés apéiied to a seismic section of a salt
dome which had beeﬁ‘processed to give a high signal-to-noise
ratio. The section showed good cohérence of the flanks‘of
the dome, but after the detection scheme, there was some
loss of coherence because a,serieé of short segments shcwed
at thosé places. The scheme ignored local peaks within the
‘negative parts of the trace énd some of the termination of
the lateral continuity searc§t was certainly due to this
féctor. The other was thé{matched peaktpicking criterion
which was based only on location. An inherent assumption 1in
the scheme was that the best location was along the best fit
straight line through< three consecutive points. The
correlating peak was matched with the peak which had the
closest time poéition to this line.‘A problem of“mis—match
might arise when two peaks were on opposite sides of and
close to the correlating peak. One was correct, while the
other was ﬁot: However, since thg correct one was a little

‘bit farther away, it was excluded due. to the matching

criterion.
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Liu and Fu (1982a & b) applied the syntactic technique
to discriminaté eartﬂéuakes from nuclear gxplosions. Each
time series was segmented into N equal parts. The selection
of the parameter, N was case dependent and was chosen as a
compromise between representatioh accuracy and computational
efficiency. Two features, namely zero <c¢rossing count, Xy
and ldé energy, x, were extracted frbm each segment. Zero
crossing count roughly represented the ﬁéjor frequency
component of the signal in that segment; 1log energy
indicated tﬁe magnitude of the signal., Each.segment was then
represented by a vector x=(x1,x2) in the orthogonal feéture
space and classified into one o§ the clusters. Within ‘each
cluster, the distance between vectors and the vector of the
cluster center was less than a threshold‘distance. The total
number of clusters cot;esponded to the total number -of
primitives used in répresenting the signals. After all the

: , .

signals were'  reduced to strings of primitives,
classification used the string-to-string matching methéd.
N \ String-to-string matching involved cost calculation.
';inée all the signals had the same number of segments, only
substitution cost was calculated for each string: The test
string was matched against the reference strings and then
assigned to where the closest mgtch ocurred using the
nearest-neighbour decision rule, | '

Liu and Fu (1982a & b) used seismic data recorded at

LASA in Montana. Among them, 111 records  were nuclear

explosions and 210 records were earthquakes. 41 earthquake



53

and 59 explosion records were selected as the training or
reference samples. Each record contained 1200 points. The
sampling frequency was 10 points per second. Each record was
divided into 20 equal segments with 60 points 1in each
segment and 13 optimal clusters were used as primitives.
Weights of substitution were the normalized distances
bethen corresponding clusters. The énalysis was done 1in
VAX11/780 using Pgscal lanquage and 201 out of 221 events
were correctly classified ~with an average time of 7
second for each rec§rd.

In this example, the assignment of weights to
transformations was very impoftant to the classification
results. A constraint to the problem was that the records
were segmented into the same number of portions to simplify
the cost computation. It was suggested by the authors that
the insertion or deletion transformations could be included
by wusing the distances of the cluster centers from the
origin as weights. However, -the insertion and .deletion
transformations were not covered due to the complexity of
their inclusion.

In 1982, Lu published a study of pi:king seismic
reflectors using the string-to-string matching approach. Lu
greatly reduced the'déta by ignoring the negative portion of
the waveforms. In order ts représent a trace as a string of
peaks, each ‘trace was séanned to detect peaks. During the
detection process, a trace was—aecomposeﬁ into half "cycles”

¥

separated by zeros. A half "cycle" might contain one or more



LY

peaks. A peak was regarded as an upslope followed by a
downslope. In this way; peaks were gﬂetected and their
features such as the location of the peak, LP, the duration
of the peak, DU, the amplitude of the peak, AP, the average
amplitude, AV, were extracted.

The detection procedure correlated the series of peaks
on a trace with those on neighboring trace by comparing

their feature set. The similarity between peaks a and b was

measured by the cost or distance function

c(a,b)=w1x|Lpa—Lpb|+w2*|DUa—DUb|*w3*1og}kpa—Ap

bl*
‘ .A
*W,+10g|AV_~AV, [+(MDU-OVL) - (3.11) -

o o N

where w1,w2,w3,w4=0.5 were weights. More'discussion of ‘éacﬁ
individual term ‘will be given in section’ 4% 2.  Thew.;
string-to-string matching algorithm determined tha, best.

g ;
match between the two traces as measured by the . mlnlmgm:f
B %

of the sequence of transformations,

The scheme was applied to a stacked section @?th ghe ;
result shown in Figure 16. Although the

mis-matches were not mentioned, the result was appeali

automate the picking of 'seismic events.
example had a similar drawback to that in

Merdler s paper. The reductlon of the redundancy of t

4-‘~'

segkby ignoring the negat1ve portlons of the trace ;Q:

“'\::(!7 [-'\
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‘»justified. Ggophysicélly,speaking, a trough was as important
as a‘peak. Morédver, the logarithmic.tefms‘used in the cost
function’ might" possibly contribute to the total cost a
negatiée partiai ébs£ which was harmfuf to the scheme. Also,

the assignment of weights was not discussed.

’

VFrom'thevanalysis of the zero-phase Ricker wavelet,.

Huang and Fu (1983, 1984) proposed a tree classification
fméthod to detéct'briéht spots{in saismic Signals. The major
_ physic;l indicators asso;iatéd with brigbt spots are high
amplitude due to high reflect;on coeffigzenté, low frequency

. due to high frequency attenuation, and polarity reversal due

to a :negative reflection coefficient at the gas-sand

.-

interfacé. Tﬁerefore, envelope, inétahtaneous frequency and
polarity were used as:ﬁ%;tures.~Thrée kinds of hypotheses of

bright spots were pfesénted..

a. The bright spot has high amplitude, low frequenéyh

\

énd polarity. reversal. ‘
b;‘ The bright spot ha; h{gh amplitp@e and low frequency
content. | . ‘_‘ _
c. The bright spot has high' émpiitudé and polaritf
reversal. . a
. In the scheme, bright  spots were détectéd if one of the
th:ee'ﬁypofheses was satisfied. The bright spot sétiszing
Ehe first hypcchesis was the most reétrictive one. |
‘Fér’each input seismogram, some testing traces were

selected to equally cover the reflection'charactéfigtics of

every kind of layers. From these traces, a threshold of.

@

A
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envelope was first used to discriminate signal frommepoise,

Instantaneous frequeney could be applied to S{falﬁk,
frequency =zone from a. normal zone. The th;eSHold of
‘instanteneous frequency was‘determined by an‘fnspection of
good separability of the data in the scattering diagram. A
scattering diagram was a display of the signal's enveiope
versus instantaneous frequency. If poseible, polarity could
be used instead of instantaneous frequency, to detect the
reflectlon in a gas and oil sand zone. >

Real data was shown in Figure 17a in thCh the dominant
wavelets were the zero-phase wavelets. From -the scattering
diagram‘ (see Figure 17b5, the loﬁ’frequency was found to be
notfsignificadt. A classifier of the third hypothesis was
fdesigned. The classification'resule was shown in Figure 17c.
The brlght spot at 1.7 sec most probably contained gas. . At
the mlddle‘ part of the layer of 1.7 sec, the reflection of
positiy@ipolerity indicated the probability‘ of oil/water.
withbnt using the class;flcatlon technlqng a bright spot
mlght be detected at the mlddle part of the layer at 1.7 sec
by v1sual 1nspect10n , : R ’ _

Gaby and Anderson (1984) employed affinity. to. anaiyze
the onset of P- and S- waves as part of a syntactic'pattern
recognition system to automate the interpretation of seismic
~signals. Affinify is ‘a hierarchical clusterlng technlque
- which bu1lds a tree- llke descrlptlonklf theb?waveform,_ thus
prpv;dlng‘ a powerful tool fo; 1ngee;i§eting the '

morphological structure of the data. =
L] E o
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‘

Affinity requires three main components. The first |is

the initial segmentation of the seismic signal with each

segment described by a feature vector. Seéond, a linking'

function 1links similar adjac?nt segments. A similarity or
djstance fdnction, F, compares the feature vector x(i) with
its - - ne&ghbors x{i-1) and xti+1). If
F[k(ﬁ),x(i—1)]<F[x(i),x(i+1)], thehbseghenﬁ i1is linkéd to
segment 1i-1; otherwise, it vis ligked Eo segment i+1, The

“L 2 , st N
- last is the -merging function which merges the two linked

‘ éégments to férﬁ a higher node. In this stud{, the me;ging
criterion requires that two segments A ;kd B be 4mepgéd if
and ¢hly if segment A is linked to B and segment B is linked
to A. This is the so-called "doublé links" criterion.

Amplitude and slope are used as features since a rapid

[

increase of these features is usually associated with fghe

onset of ‘P~ and S— wave.
A. Average Amplitude Criterion

[

Each segment is represented by a feature ‘vector

@

x(1)=[L(3) A1) (3.12)

9

2 e s
FEe

where L(i) 1is the length and Ang.iﬁg the average
. .{;‘\' E 4 ki

amplitude of the ith segment. Theylinking function for

x(i) and x(i+1) is

&

. . }\('.{)I.-(].)‘A(]_-;»1)L(l.ﬁtﬁ)7 !
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" The merging -of these segments broduces a new segment M.

1%hose’1ength is’

L

. ]
3

L(new segment)=L(i)+L(i+1) (3.14)

and average amplitude is
P o

A(IDL(1)+A(i+1)L(i+1)

~A t)= 3.15
| (new sigwen ) ATSAETTD) ( )
»‘vtm };" ’ -
e
Slope Criterion
_ Each segment is represented'by a feature vector
3 ' ’ o
x(1)={[T(1),A(1) ], [T(i+1),A(i+1)]} : (3.16)
b .
where A(i) and A(i+1) are the average amplitude of the
ith and the (i+1)§kﬁsegments and T(i) and T(i+1) are the
start and. end point of the ith segment. The criterion

.compares the two slopes, and links to adjacent segment

with the smallest change in slope. The linking function

for x(i) and x(i+1) is

T(i+1)-T(i+2)
T(i+2)-T(i)

Flx(i),x(i+1)]=A(i)

{

+A(i+1)

T(i)-T(i+1)
T(i+2)-T(i) "

+A(i+2) (3.17)
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The merging of these segments produces a new segment M,

where
M[x(i),x(i+1)]=x(new segment)

={IT(1),a(1) ], [T(i+2) ,A(i*2)]}. (3.18)
A‘depth 16 tree structure of one waveform derlved‘

from the average amplitude cr1ter10n was shown in Figure
f?Ba. Regions with high 51m11ar1ty'were correctly mefged
to form larger segments. Thefgeneration of‘horphplogies
from a tree structure'cduld be.detined by (1) ch56s1595354
maximum depth in the tfeé)“ana,(z) choosing a maximumph:

segment length

-—

o

The first method of’morphology extractlon was. shown

in F1gure 19A In each the orlglnal 51gnal was shown 1nf“*

dashed 11nes and the result1ng s1gnal was 1n bold 11nesﬁg
" At high levels of the tree, the = resultlng morphoiogy,
‘missed the P-wave onset’ " As the maxi mum depth was~_
increased, more deta1l was revealed .The second methOd
was- 'demonstrated in Figure 19B. The seqpence of
structure was determlned by trac1nd down the tree until
~the segment length was: less than a-threshold- value or‘
the bottom of the tree was revealed

A depth 16 tree structure of @yﬁ wgvef‘

ré\l"” “"
«Figure

. from the" slope crlterlon was shown in.

first extract;onﬂ method was shown in F1gure ZOA. it

Ve
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*} o ‘
“first levels ' of }the tree, the resulting morphology
. picked out the S-w%ve but missed the P-wave onset. As
the maximum depth was increased, more detail was
revealed. The second method was demonstrated in Figure

20B. The resﬁlting morpholbgies, picked out the true

i :
location of the P- and S-wave onsets.
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4. An Automated Seismic Event Picking Protedure

4.1 Primitives and features extraction

Primitive extraction isu the first step in syntactic
pattern recognition., Let M be an Sx7 matrix in which each
element L is an amplitude of trace s at time t. This
matrix is input for primitive détedtion. In the procedure, I

consider each trace as a series of cycles (see Figure 21).

Each cycle is a waveform bounded by two consecutive local

Y

minima. Peaks of cycles are primitives in the experiment. A
" peak is defined as an upslopé follo!ed by a downslope and
its occurrence time tp, is a feature and is recorded. Unlike
Lu's scheme (1982) which only used the positive peaks, I
consider all local peaks as candidates for correlation.

In order to extract /features of all the primitive

-
t

peaks, including the local peaks within the negative portion
of a tréce, the original zero-crossing base line has to be.
transformed. In Figure 21, each data point of the waveform
is represented by coordinates (t,y) where t denotes time and
Y amplgtude. AB is a segment linking two local minima, each
point along’ AB f; represented by (t,y*), where y* values are
interpolated lineafly.'The transformed peak amplitude, 9(tp)

is defined as

-

yit )-y¥(t )
§le )e—P P

D — (4.1)
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mid-point \La_nsformed base line L

B zero-crossing base line

A
+—— ACYCLE

?igure 21.... A cycle within a trace.
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The transformed zero-crossing line A*B*, is parallel to
AB at [tp,y(tp)-ﬁ(tp)] vhere A* and B* are the interceéts of
L with the waveform.‘The duration of the peak is the time
difference between ‘A* and B*. If each waveform 1is
sinusoidal, then A*s* overlaps the original =zero-crossing
. line and our definition 1is consistent wjith the classical
one, Output from this part isva 3xNxS array P cqntaining all
the peaks of S traces with their three features..The

elements P

and p3,n,s denote amplitude, yn,s’

th

po/
t,n,s’ “2,n,s

arrival time, t_ _ and duration, D of the n"" peak of the

¢S n,s
th )
s trace.

4.2 Record analysis

Seismic record analysis 1involves recognition of the
major coherent events, extraction of these events' features
and the anal}sis of record structure in terms of these
events. Following the logic of human visual interpretatiom,—
the procedure can be divided into three steps. The first
step deals with tracé-tp-trace correlation in which peaks of
one‘trace are matched with those in the-—néighboring trace.
In the next step,~the.matchiﬁg pairs are connected to form
'seté of events. Coherent events aré‘picked from this step
and assigned confidence values. The third step is zonation,
Zéning is a partition of record and divides a record into

groups or zones of coherences.
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4.2.1 T}ace—to—frace Correlation

In a geological environment where the stratigraphy is
extremely qsimp%e and all interfaces are paraliel,
cross-correlation is a good technique for correlation
between seismic traces. It has general applicability and

requires no more subjective judgements than the decision on

3

. . L B : :
the window length. In normal geology, the technique fails
‘s:nce it does not"acgbbnt%for gaps, missing intervals, or

brupt thickness variations of strata. Modifications have

A ¥ N

been suggested to ‘tmprove the correlation  quality in such

situatidns; but,ﬂp:oblems still exist, since the nature of

d

the variation is sometimes unidentifipble.

Shaw | aﬁd Cubytf (E9f9) proposed stretching the shorter

zones of strata

due,: to differing rates of sedimentation. This stretching is
' PO Y C o Lo

done before cross correlation and after each log has been

Lo'account for the variation of thickness

segmenfe@ iﬁtﬁjtzones. Crbss-correlation yithout stretghing
provides matéhéﬁ in thelpfegence of faulting. The larger
value df‘tbewtwo correlation results indicates the nature of
the variation.,qugeﬁeht:made from these values 1s usually
not wvalid, becéu;e the correlation values also depend upon
the number of data points which are in phase within _£he
Qindow.. Tﬁerefore, -Robinson (1978) commented that the
_ . —
approach could lead to errors when points of correlation
were unknown,

The choice of window length is also an inherent

difficulty in the design of the cross-correlation scheme.
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The‘dnumber‘ of possible correlatlons 1s a funct1on of the

» B . \

s _w1ndow len th Therefore, the 051tlon of the best.
| g ere p ~

cpﬂkelatlon' changes with ther»length ~and- position of the
o - . A‘ . . [‘ :
correlation window. Thefdominant peak ' in the window also.

affects the correlatron result. Indeed cross-correlation is-
unable to resolve/short 1ntervals con51stently because the
’statlst1cal 51gn1f1cance of “the\ correlation toefficients

depends on the number of 1ndependent observationsf‘ Another

-

problem w1th- the_ scheme is the p0551b111ty of cr0551ng of
correlation/wevents. ‘Such a resultv ls ' pecullar'_351nce«
‘lithologic sequence seldom’ everses.over short\distancé.

In a’ knowledge4based.vsystemf the crosSfcorrelatlon
techn1que which only uses.the statistical measures of the.
{'data wlthout us1ng‘§ny a pr10r1 1nformat10n in the analy51s.

- must g1ve way to strlng to- str1ng matchlng The latter - t-
'approach is' also called dynam1c waveform matching and allows

*

'dlstortnon“"f two match1ng sequences due, to 1nsert10n,

@

,deletlonﬂind subst1tut1on transformat1ons. Thea scheme uses

the. whole sequence ‘as 1nput éhus ellmlnat1ng the d1ff1culty

°F

A "wlth wlndow length The matchlng 1s made’ sequent1ally S1nce

% the cost is a measure of d1551m11ar1ty between two sequences

ie and is derlved at any p01nt from the prev1ous ‘total ,cost
che correlatldn. events never cxoss. ‘WU %nd Nyland (n986)
used the strlng to- strlng matching algoé1thm to do well log
1nterpretat1on and descrlbed the techn1que as a framework

A.for automated borehole to - borehole co;relatlon- and-,.

stratx@r@Bhic 1nterpretat10n, beﬁgsse much geologlcal and

\ ~ &

v : . e

/

7

4
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geophysical knowledge of theigrea.under study and ‘the data

.

relevant to the borehole being éQQ51dered could be

‘incorporated into the cost function.

In my analysis procedure, the-array P from the primary

4

-step 1is wused - for correlation. Any two adjacent traces are
: ‘ ' ‘

~correlated by string-to-string matching. Four types of
. : ' , : i A
‘constraints discussed by Anderson and Gaby (1983) are

imposed on the algorithm.

- A, Endpoint constraint

path beglns at i=j=0 where null prim&tiVes exist.

The last matchlng p01nt 1s w1th1n 0.1 sec after the

end of the shorter sequence.

E X

B, Local cont1nu1tx‘;onstra1nt ,, ‘. N

.For each, gr@d poxﬁ* W{'Js ﬁﬂ'

thfee possible pathe (see. Flgure 5) are used"

‘derive its. associated distahte D(i,j) from those of
I3 . . T

/ ‘ optimal "path ‘is- nondecrea51ng ~and - has the least
.“.// . et ‘v' ',‘, 1 . : .
= ‘cost o /; » \ ; ' S
~Ca 'Global path’ éqnstra;nt R ﬁ.'% S
. N , ’ B . .

A - w . oo, o ‘
ﬁ4:match1ng _peak " to .a peak of ‘one trace is..soughg

jfﬂﬂ?jﬁ'ratchmg grldw onlya

Jits neighbors. ‘This constralnt énsures that the.

For any two matchlng sequences, the transformaticn

within.a 0.2 sec window of the other trace ~for -a’

3

matching peak. The window is centered at. the
"N ' - AR i

locatiéh; 6ff the peak  in: the' first etraéé. The

Vo .
».> . X s ! < . @ . . \ ¢
limitation " of  the search range eliminates some of

the mis-matching errors and reduces computing . time,

y T | . _
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2

The constraint is also justified here. in - that

éxfaulting is not expected in the area under study.

Local cost measure

M o

. s . . ’ .
Anderson .and Gaby (1983) required the distance

calculated to - satisfy the classical distance

definition:

1) d(x,yizo,A

2) dlx,y)=0 : -i‘f x¥y,
3) alx,y)=aly,x) and -

4) d(x,y)+d(y,z)2d(x,z)

where «x, y and =z were three sequences. Since the

- distance is derived from the summation of individual

ﬂggpransﬁormation cost, I define the local cost

measure:

5). c(i,j;Tl)ZO,

6) c(1,1;Ts)=c(j,j;Ts)éQ, |

7) c(i,j;T£)=c(j,i;Td) and vice versa, and
8) cli-1,3;Ty)*+c(i, §;Ty)2c(i,§;Ty) i

' or c(i(j-1;Td)+c(i,j;Ti)2c(i,j;Ts)

L I

- . v 57 ) ‘ 5‘}
wherg TlC {Ti;Td,Ts} and i and’/d;sdenotg' Eﬁy “two

matching primitives. The requirement D.8. is most
difficult to satisfy ‘in  this algorithm. The

fulfillment of this criterion .requires a careful

Q.



®

73

B

design of the cost function and assignment“of

weights. Nevertheless, the result of matching is not

very sensitive to this érfor.‘Mismatches due to this

factor can be amended by ‘subsequent refining
‘analysis. |

The crucial Earty'bf ﬁhé string—tOfstriﬁg matching

algorithm 1lies in‘the evaluation of the cost function. All

features that are useful in the cpomparison are considered in

the funct1on The cost function embod1es the knowledge about
L?D 1
the physical characteristics ofid

@iobjects bq1ng° compared,
in this case, waveforms and an in'yrpreter s crlterla of the
event correlation when .the corre tlon is done manually. In

this particular example_/tﬁi cost funct1on used is

c(1 m;j,m+1)=wW *|t1 n” 3 m+1|

W *IDl m j m+1|

~

yi,m__yj,m+1 |
y/2

Wk |
3
(yi 3 m+1

+w4*(MDU—OVL)_‘ ' o (4.2)

for substitutionfand \

c(i,m;j, m+1) =W *It1 n” J m+1'

y
.Vz* D1 m ] m+1I



: where 1, is the total number of, peaks of trace 11
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Yi,m Y5, m+1
=

+w3*|

© +W4*(MDUfOVL) (4.3)

El

for insertion or deletion. In the functions, dsagwé, LY and

’

W, are wei

4
n K 1 sl .
i : + PR . SR
T ‘ B
T * = (4.4)
™, ¥,
1=m 1 .’,{.‘3 , y | \
o . O~
kY ’%v

5
. », . ¥
In equations 4.2 and)4.3, the first term accbunts ?mr

the location difference; the second term, the duratioh.

diffefgnce; the third-term, the peak amplitude difference

with respect to mean of the two correlating peaks in case of

B “)

substitution or meaﬁ'of-all the peaks of the two correlating
traces in case of inseftion"or'deletion. The fourth term
accounts for mthe non- overlapplng part of the. two

correspond1ng positive parts of the transformed waveform

J.mtl]

(see Figure 22). MDU=mfn(Di meu‘. ), and OVL is the
ek e . , :

~

overlap between them. For insertion and deletion, a peak it.

matdhed with a null primitive. A null pr1m1t1ve 'has zero

J

ampl1tude and nonzero locat&bn and durat1on terms. Thus one.

of the amplitudes in (4.3) is zero.

There 1is a reason for the simplicity in ch0051ng these-

‘dost functions. Human interpreters, even experts, freguently
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Figure 22.... The non-overlapping part of two waveforms. .-,
n '5)-
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compare two yaveforms by nbting their physical and temporal
% LR

difference. :The ' cost gohctions attempt to encode: the human

experience “in comparison.' Sophisticated iogarithmrc and .
expopeotﬁal functions coold ,be dosigned if more preciSe '
discrimination is needed, but the example illustrated io
this thesis‘excfudes‘this°possibiiity;

Since the terms in the cost functlon are not

normalized, the distribution of weights sho 'dkbe such that

.

thewavesqﬁg‘values of the terms indicate -theit importance%
" The mean term of Lu's cost function (see eq. 3.#%) has been
incorporaﬁed.into my amplitude term by adﬁino a constant

-

2/n. The constant is os&alned by averaglng a sine. wave ng

by siné over a period of 21. The welghts are a551gne8 to
0.3, 0.2, (1+2/r) and.O. , respectlvely.'The werghts areA
chosen in such a way that the third term is empha51zed

)| for’the thlrd termﬂa :
«.# N

Lu (1982) used W *logl(y m-yj,m+1

in both cost functions. This is harmful to the scheme “since

two peaks of very similar amplltudes w1ll y181d a negat1ve

B
" infinite cost.»The negative partlal cost”’ m1ght cause the
;total dxstance of . the opt1ma1 path to . violate the local

v dxstance constralnt D»1. Moreover, for the® same dxfference*

peak amp11tude, pa:r of strong peaks should 1mply less

;.f,cost than the weak palr does, this criterzon is reflected in

‘3,\3‘3‘} .

tmy cost funct1on by onrma11z1ng_ the amplitudes in the

'thxrd term.

~

. For ‘each air of correlated peaks in two consecutxve

'tra;esfin P, the atrxng to strlng matchxng algorxthm is

1
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applied to compute the 'cost of all three tyﬁes' of
F;ransformations ‘and  to pick the éorrelatiqn'which has the

least cost. A correlation array C gf dimension 2xVxM is

. ' 1 th .
defxned The elements CJvm and C2vm form the v ma;chlng
pair- of. the m h correlatlon in which the former 1is peak

B ifh Rk

leocatlon W£rom the'm “trace and the latter from the (m+1)th

EAY

'trace Only SUbStltUthﬂ pairs are recorded ig C Dé$€%ion

kil

- T

and insertion are con51deredF%dlscontlnultles ‘and are

ignored. _ T : - ”
It is beneficial, at this'stagé, to associate with each
match1ng palr, a confidence of tHe correlatlon results. The

confldence matrix F 1‘.hef1ned as:

. Vy. _*9. '
e . 1,m M+ :
F m(i,m;j,m41)= J Co (4.5)
Cli,m;j,m+1) ' ' :

wheré Fymgﬁs'tﬁé correlatsion confidenée of the vth m#tching
pair of the"r‘nth correlation. The greater the peak amplitude
gndvthelsmailég the gos; of matching are, theﬂéreater is the
confidence $alue.
. )
;;2.2 Coherence dnalyéig— T |
The output‘of the trace-to-trace correla;ion . is then
used to detect the coherent events., An operatio; of p:acihé
correlated peéks brom. trace to trace is run and all Tfhe,

correlated . peaks are connected at their location to

i

designate a coherent event,” thus defining a 2xYxZ array R in

vhich elements Riyz and RZyz

2 . ch "’,v . " ot
-,

.denote the trace number and the,
. e
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th th

correiponding peak location of the y componenttof the z
coherent event. Useful information-'such as the extent and
the average amplltude of each event are recorded as
properties for f@%ther ana1y51s.

A coherence cpndeence vector:F of dimension Z is also

g
%

‘ attached to each c@hﬁnght event in array R. Each &lement Fz

is~ @h aum of the correla§1on confldence of the ¢orrelation
th

»segments in C- maklnqagp th z°'" event:

O
f .Z Fym o - (4.6)
. “s N N .
Both the coré}fatibn confidence and eohereﬂés confidence

o

measure und Salnty about the decision /made. by the-

;. f ‘;'

’e reflects the

rel1ab111ty and 1mportance "of a cohere\t event. Coherent

ﬁ’}‘

‘events consist1ng of corrqlatlon segments of high conf1dence

are relxable.,The‘lmportance of a coherent event 11es in its”
%

continuity and its 'possession..éf hxgh peak amplltude.’

*

*Coherent events wigh h1gh confzdence, in our case, should be

the major reflection events which are our - main objects of

T

~investigation. Many coherent events result from. such

-

string-to-st;ihg matching; The introduction of the coherence

confidence as  a - measure of importance discriminates the

‘major events from the rest in the record. This eliminates

some. of ‘the wvorries that human interpreters have about the

‘autopicking result discussed in seftion 1.3. The coherent

events are  sorted according to their confidence level gnd

¥
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coherent events with high confidence are selected to form a

v

“

set of elemels for zonation. = -

It is insufficient at this stage to pick coherent

events based on trace-to-trace correlation only for at this

“Stdge some mismatches of peaks are unavoidable. Refining the

cost function might help to reduce the mismjtches but it is

impossible to eliminate them all. The oblem comes from:
’ traces in the
first step. The expert's visu#l correlati is superior to
the machine trace correlation mostly because - 7isual

correlation is. based - on* the whéle record instead of two

neighboring traces. 1 intgéduée‘an operation to examine and’:
refine - the _validity of trace correlation geherated to thisw‘
stage. , \*

- The operation i parallel analysis, based on the slope
of.other cofrelation egments within a window. Essentialiy,
the analysis takes into gbnsideration the‘informaeion beyond
~thegﬁeatufes of thé twoxmatching peéks. By taking aévantage
of the, surrouﬁding slopé, the - algorithm's threshoid of
correlation judgeménp 1s made wider. The aSSUmétion‘is also
Jestified sincé_ any sudden cbangé'in geology or topégfaphy
sﬁouldthave its effect reflected generally.

In the “analysis, an oyerlapEing window m traces Q@de

and t seconds long is moved across the record to search for

"mismatches. Within the window, Jthe veiéhted mean and the

veighted standard deviation, STD of the - slope of the

correlation segments are calcuiated. The weighted parameters

« P
LR
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cvalue resﬁéctively and i' anc ', the new peak of the m

80

are obtained by weighting the slope and STD with the
corresponding correlation confidence, Fome ID this manner,
the average slope within the.ﬁind¢Q‘is mostly determined by
the correlation segmenﬁs“of high confidence. A correlation
segment is chosen as a'pbssible mismatcﬁ if
| S -
1. ]slope slope |>B *STD, and

e (1 m;j, m+1) T1. ' '

If these cond;‘tlons are satlsfled I seek a new'ng

rpaxr. This requ1res that ‘a peak in the Qfﬁ matching pair has

to be matched with a new peak of the other trace within an

e
bounded interval. The new matching pair is accepted if three'

4

morie criteria are satisfied simultaneously: = ‘ﬁ

= al

3. |slopen—s}opeml<|slopeo—slopem[ and
4. Cn(i,m:j',m+1)<Co(i,m;j;m+1) or

c tit,mij,me1)<c (i, h;j,me1) and
| 2 : '
5. Cn#|slopen-sl?pem|<82*CO#|slo§ko-slopeml

where subscripts'm, n, and = de..te average, new and old
‘ | th

and (m*l)thfbrace. B, and B, are predetermined constants.

The criteria can be made strxngent by ch0051ng small values

A
for the constants. The threshold, T, is chosen to be in the
lovest‘ correlation confidence level, because most of the

- * .' ..A
mismatches have lowvw correlation confidence. The values used

* ’ - ) /\
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for T,, B, and B, are 0.45, 1.0 and 0.5 respectivelyf

Crossing of correlated events is prohibited. A new match is

also added if the slope of the pair of wuncorrelating peaks
i

satisfies the criterion:

6. slopesmin{(B,*STD),T
i
;

5}

where B3 and T, are 2.0 and 0.008 respectively. The value of
T, is determined by considering that two peaks must be close

together if they are to be joined.

4.2.3 Zoning 3 :
’For,fgrther study and data redutt{on,‘a seismic récord
can be divided 1into zones. Zones are characzgrized by
homogeneous . featurés ~ within zones and  significant
‘differences between zones. Coherence confidence is taken as

the major feature of zones. An event of high confidence and

~a, group of adjoining coherent events with high confidence

are likely to be the seismic responses arising from “similar:

¥

"~ strafa. 1 take ' these as zones and the regions of a-record

etween them are also taken as. zones. In . this manner, a

- 7

ismic record is represegged:”égbgé’ét%ing gf zones witﬁ
eatures. All» thesé ' zonesdwwhighf“ 'ﬁ#be stratigraphic
significance and can be traced froﬁ record to r;cord.

The partition of zones described below is a éimplé
clustering procedure. All  coherent events with hi?hest

oy

confidence level are collected into a set to form cluster
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centers. Zoning 1is 'begun at the event of the highest
egngidence in the set. It is the 'seed' or clustering center
of;the first zone and then eliminatgd from ;he set. An event
‘will , join this zohe if and only if the follpwing criteria

- -
i

are>5atisfiedg

a. It is a member of the set, and

3
. A
c. No more th#n N coherent events with a  total length

b. It lies within T, seconds close to the zone, and

less than L lie between it and‘th%_'seed' of the

zone. -

~ Here T, is given a wider threshola which is 0.1. Each
3 corelation segment is considered to have unit length. The
maximum length of a continuéus event is 48 ‘units in length
(there are 48 traces for each shot). therefore, N and'L are
chosen to be 4 and 50% of the maximum iehgth of the zone. If
the event meets the criteria, 1t'1s then déieted ffom.’the

 candi8é§eW,set. The. zone keeps growlng untll no coherent

Yoin tﬁ% .zone;” Another

, . .

ehhergnt 'evehtgﬁpfz the o

\ . ) -
Y

. : W _
: mfxdenc@ in’ the candidate set .1s chosen as the

~

’“‘SGed' of a new zone.'If the Se: 15 not empty, the .process

reggats.' If no other events satisfy the criteria, the seed

—

15 then. con51dered as a zone by itself,

-

The region betveen two zones with high confidence

+ «’ B
coherence is also defxned as a- zone, 1n spztedno&, he . fact

¢‘ 1

that it may consxst of a cbl@@étaon of low coﬁeront events

I
tg;;d -
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Zone features such as average length, average confidence,

average peak amplitude, average correlation confidence, and’

average complex attributes of the coherent éedhtnts within

3

zones are extracted.

‘4.3 An illustrative example

Common shot gathers have béen used as ill%strative
examples to clarify these ideas. In 1984, .the Geophysics 528
class of the University of Alberta conducted a magnetic,
‘gravity and seismic survey near the town of Allan, 50 km
south-east of Saskatoon, Saskatchewan (see Figure 23). Two
‘seismic lines (sa; Figure 24) were shot and the survey
acquited approximately 6 miles of 400%™ coverage seismic
data. The -equipment used was a DFSV recording instrument
with 48 channels using dynamite as source. Each trace was
recordéd for. 2.04 sec Qith'a sampling-interval of 2 msec.
Geophone 25 éppfoximately /corresponééd «to the uphole

+ geophone. The parameters‘ of the survey were 110 feet for

geobhpne-grqdp'interQal,and 660 feet for shot interval. The

g N . L : ' s o
.~ data «processing; progedufe jnvolved a raw muting of the first
TN ST - A : . : : e

pagt of each- tradé, variable géin equalization with  a

'foverlapping sliding window of 300 data poipts and band-pass

fjlterihg with an eight-pole Butterworth filter.

H

Three shot gathers shown in Figure 25, Figure 26 and

Figure 27 are taken from the north-south seismic lines, B in-

!
Figure 24. The field records are studied thoroughly in an

?at&empt to identify and follow certain réflection events
. : : p

¥

&
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from shot to shét. There are five fairly consistent
reflection events (1,2, 3, 4 and 5) wh1ch are 1dent1f1ed to
come from the approximate location of thé tops of the
Blairmore Formation, the Souris River'Formation, the Prairie
Evaporite Salts, -ghe Winqiéegosis Formation and the
Cambrian. A sixth reflection event (6), which is not as
ég;;istent ~as the other, is speculated to represent the top
of the Precambrlan. The correlation of the events to the
named formatlons has been crudely‘ég;;\through the use of
the well logs and cross sections (Gerdawill, 1978) It is
noticed.. that there ,is  often a good event just before the
Winnipegosis. This mayvborrespond to the anhydrite bed or
the Shéli Lake Member referred to by Gendzwill. There are
several cycles 05  high amplitude between the Prairie
Evaporite -event and the Winnipegosis event. Due to this
factor, the reébgniéion of Winnipegosis by string-to-string

matchlng is difficult.

The matchlng procedure were applied to all 48 traces in
the" records., Figure 28 shows an example of the matching
.result of two adjacéntvtraces repfesented by{ a series of
peaks with their features. The thick liné is the optiﬁal
co;relation path. VFigure 29 shows the. trace-to-trace
correlation result “in record 45 as drawn in line segments
(onty the subst}tution pairs are shown); Most of‘ the
cqherent events are detected. Part of the result_using Lu's’
scheme is given in Figure 30 for comparison. My result shows

fewer mismatches. Especially in places (A, B, C agd D vhere .
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the local peaks in the negative portions of theé trace
appear, Some of my correlations continue through and Lu's
fail. The grand mean of the four terms of the cost functions
are respectively, 0,55 for location, 0.34 for duration, 0.95
for amplitude and 0.11 for overlap. The sensitivity of the
matching results has been studied by varying the weights. A
variation of 10e2 of each weight does not affect the results
significantly.

It is not difficult to pinpoint the mismatches in
Figure 29. Figure 31, which is the output of the array R,
shows the locaﬁion of mismatches (say A, B, C, D and G) more
clearly. Each line segment represents a~-deﬁ¢ctéd event.
Segments of highést confidence are sthn in thick solid
lines, while those of least confidence are in dotted lineg.
The misma£ches do not follow the general‘ trend of the
surrounding segments. The problem is not one of statics,
whose correction has not been applied to these data. They
might be the correct matches in case of faulting. However,
faulting 1is not expected in this particular record. Figure
32 is the output of the matrix, C. It indicetes that the
mismatches have small correlation confidence.

| Figure 33 and Figure 34 are the correlation results
after parallel analysis. The window applied is 5 traces wide
and 0.2 seconds long. The matches at A, B and C (see Figure
34) have been improved correctly while the mismatch at G
remains unchanged. Correction at D has been” erroneously made

AN

since the 'improved' result does not conform to _the
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Figure 33....

Correlation result of record 45 after barallel

analysis has been applied.
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_surfounding events. Since the event is short and of low
confidence, the error does not ,ﬁestroy the general

-performance of the scheme and thus can be igno:ed. Also, new

_ pairs have been added at E and F. Joining at E has nicely-

'Tcompleted the tracing of the major event. Joining at F is

detrimenta)l Since the event indiqated by‘ the thiék solid
line fs not a éonsistent coherenﬁ event as it appears to be.,
.The joining has mistakggiy raised the confidence,ibf that
eyent to phe highest configence bracket. It was ekpected
that the mismafch at G coulé have Dbeen corrédtéd, but
criteria were not sét%sfied. The -correction; dehénds a
. further refining operation such as hyperbolarfiﬁtipg;“ln the
simp;e geology uof the area under study, the"évents in a

commom shot Jather are expected to follo; hyperbolic

. trajectories. The trajectory fitting operation enlarges the

|

correlation threshold to a segment. Breaking of segments

will  happen @t points where the segments deviate from their

corresponding hyperbola. It is also recommended that human
interaction Such, as editing is profitable at this gfage to ,
do theicorrectiOn. Figure 35, Figure 36, Figdre 37 aﬁ?/
FigUrel 38 show tﬁe correlation results of fécords 46 and/ﬁ7
afterwpgrallel anaiysis. . : R _/

‘ Moét of the major events identified in Figure/és, 26

and 27 have been recognized with high confidence. In’ record

—

45 (see Figure 34), events 2, 3, 4, 5 and 6 are all

A}

-recognized as events of highest confidence, Event 1 s,

recognized AS an event in the second highest confidence

y 5
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level. This 1is due to the fact that there are some very
small ﬁeak amplitudes associated with that event., Between

trace 37 to 40, the costs of correlation are high. These two

factors and another reason which will be discussed below '

contribute to the overall lower confidence of the whole

segment. Nevertheless, extracting the event 1 is not a major

problem due to the distribution of confidence values,vFiguke;

39 shows the cumulative distribution of coherence confidence

versus percentage of .the segments detected in record 45. The

segments'have been sorted from low confidence to High
vconfidence before plotting. It can be seen that the
confidénce values of‘the ﬁajor events are quite discrete.
This indicates that a decent adjustment of the confidence
threshold level will pick up event 1 easily. 1In record 46
(see Figure 36), events 1, 2, 3 and 5 are recognized as
'eveqts of highest confiéence. Event 6 is nicely picked but

classified to be in the second highest level of confidence.

However, picking event 4 in this record has a bit of

difficulty; indeed, some places in the segment have been

incorrectly correlated. This is due to the fact that in some
places, a waveform of single peak becomes one of double

local peaks. In this case, ~the scheme traces the eyeht

inconsistently. In record 47 (see Figure 38), events 1, 2,

3, 5 and 6 are nicely picked. Because of some termination of
‘the peaks along the event, event 4 has been recognized as a
series of short segments; nevertheless, the event has been

consistently traced. ' L
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Another problem can be seen obviously when the record

45 (see Figure 34) is analyzed. Some of the shallow

reflectiéns are good coherent events, but have lower
coherence confidence values than those in the deep part of
the record. This 1is due to the implicit aésumption~of the
mai;hing scheme. The location terms of the coé%/”functions
imply .that the coherent events 1lie horizontally, thus
attaching a high cost ﬁb those pairs which do not meet the
requirement. ~ This assumption works fine for a migrated
section; however, 1in a common shot gather, the -e&enés
display hyperbolic .shape. Due to the greater moveout time,
the shallow reflections have higher correlation costs than
the deep ones. The higher correlation costs reduces the
coherence confidence of the early events.

For 'record—to:record comparison, the recofd is divided
into zones in terms of the coherent events which.lie within
the interval of highest confidence. Each record is then

represented at location of trace 25 as a “string of zones

with features. Table 1, 2 and 3 are results of zonation in

" which record 45 is divided into 13 zones; record 46, 9

zones: record 47, 11 zones. Figure 40, Figure 41 and Figure
42 display the relative feature curves.

The =zones are cleérly divided into two groups with
striking properties which can easily distinguish one from
the other. Within each group, the properties are less
distinguishable. There is a general trend of decreasing

instantaneous frequency with arrival time. Based on this
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Figure 40.... Curves of zone features of record 45:
1-1eggth;‘2-coberence confidence; 3=amplitude; 4=correlation
confidence; S=instantaneous frequency: 6=envelope,.
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Figure 41..,. Curves of zone features of record 46:
1=length; 2=coherence confidence; 3=amplitude; 4=correlation
confidence; 5=instantaneous frequency; 6=envelope.
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background trend, zone 9 of record 45 has a lower frequency
than the deeper partﬁﬁ%hfs character can be/fraced to zone 7
in record 46 and zone 7 in record 47. This property is

‘helpful to fix the reference in zone 1dent1f1cat1on

The =zones 1in three records show good correlatlon 1n,

ione ~Zones 2, 4, 6 and 8 in record 46: can' be easily
. . o R il N

1dent1f1ed as zones\2' 4 6 and 8 1n record 47. Correlation

has some dlfflculty in record 45 because some events have

I
/

been"erroneonsly recognlzed as.majorreven$5§~neverthefess,
zones 2, 8, 10 and 12 correlate w1thpzdneSd4; 6, 8 and- 10 in
record 47. The  correlation is bfst suited to the
‘string—to-string natching approach in which .zones can be
absorbed into others or deleted if they are mlsleadlng |

_The qual1ty of zonatlon grez 'y depends upon the result
of the major event detection. Up to this point, it can be
said that some zones are the approximate representatjon' of
the formation;;bounded b§‘.tw0\ major reflection - events.

. \
Without more information, no further conclusion can be made.’

o
i



5. DISCUSSION AND CONCLUSION

There is no doubt that the lo¥al model drlven algorithm
will bg the dominant algorlthm of seismic proce551ng Local
geology and external information other than seismic data are
‘crucial to the construction of the modgls which guide the
processing and interprétation; ”however, seismic records
themselves ssould be a major contribution. Also, iterative .
processing 'wouldly) be the most common routine, . sir}c':e
modification of ghe modéls based on previoﬁs results is
mandatory to better and more precise modelsg correspondingxgo‘
the real Earth's structure. Building up thosev modeis
requires the picking of the major reflection events from the
seismic resords. fherefore, event -recognition and\record ‘
analysis based on the recognized events are two of the most
fundamental operatlons in seismic 1nterpretat10n.

J The automated seismic record analys1s described in this
thesis attempts to emulate the procedure of wvisudal analysiss
The application has demonstrated Al's potential to bringnthe

__picﬁing r0utise to automation once thought' beyond computer
capacity. Although the algorithm described is not typicslly
knowledge-based it can be used as a framework upon which’
more knowledge and rules can be accumulated. The success of
such a computerized analy51s can not only raise the level
and productivity of data processing and interpretation, but
also aid explorationists in decision-making. Such an

automated system can be made even more efficient with the

editing mode or interaction of human interpreters. The
. ‘ 4
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conclusions in this thesis can be summarized as follows:

al

recognition,

Pgttern recognition technigues are a promising tool
in seismic record analysis and interpretation. The
task can be profitably approached by three subtasks:
trace-to-trace 'correlatiop, coherence analysis and
zone analysis.
In such an automated correlatién pfocedﬁre, dynamic
matching such as a String-to-string matching
alge 'm has more agvantages than the .conventional
Cros correlation. Primitive selection - is an
important step. Ignoring the local negative peak  has
no wéeophysical justification; in féct, including
them has yielded much better results, The cost
functions | uséd ‘sasfisfy the classical distance
defiﬁition ‘and embody human experiénce in
Yy
Confidence measure is an indication of the
uncertainty of automated decision. Their
;ntroduction is necessary to understand the
judgement made by the algdfithm. With the confidence
attached to the recognized events, the maaor events.
can be easily extracted for further analysis.
Refining and iterative operations such as parallel
analysis can iﬁprove the algorithm's performance.
These operations usually consider more -external
- e : ;
information for decision. . ﬁ@i'is also recommended

that the fitting of hyperbolae to the segments in a
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shot gather can break the segments at points where
they deviate far from the hyperbolic trajectories.
The hyperbolae thus derived yie}d the image of the
reflectors and the velocity profiles of the record.
Record-to-record correlation can be made~by feducing
each record into a string of zones witQh featurés,
thus yielding a new way to do the formation
identification. Zone correlation can be done ﬁsing
the string-to-string matching algorithm. Six zone
features have been extracted from each record. Two
distinguishable groups have been obtained: one is of
high confidence and the other is of low confidence.
The two groups have striking difference in‘every
aspect. From the analysis of the three records,
cémplex attributes}ﬁ coherénce confidence,
correlation confidence and amplitude have been

identified as good discriminating features.
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