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Abstract. Explaining and predicting animal movement in heterogeneous landscapes
remains challenging. This is in part because movement paths often include a series of short,
localized displacements separated by longer-distance forays. This multiphasic movement
behavior reflects the complex response of an animal to present environmental conditions and
to its internal behavioral state. This state is an autocorrelated process influenced by preceding
behaviors and habitats visited. Movement patterns depending on the behavioral state of an
animal represent the broad-scale response of that animal to the environment. Quantifying how
animals respond both to local conditions and to their internal state reveals how animals
respond to spatial heterogeneity at different spatial scales. We used a state–space statistical
approach to model the internal behavioral state and the proximate movement response of elk
(Cervus elaphus) to available forage biomass, landscape composition, topography, and wolf
(Canis lupus) density during summer in Yellowstone National Park, USA. We analyzed
movement paths of 16 female elk fitted with global positioning system (GPS) radio collars that
recorded locations at 5-h intervals. Habitat variables were quantified within 175 m radii (one-
half of the median 5-h displacement) centered on the beginning location of each interval.
Stepwise model selection identified models that best explained the movement distances of each
animal. The behavioral state changed very slowly for most animals (median autocorrelation r
¼ 0.93), and all animals responded strongly to time of day (with more movement in the
crepuscular hours). However, the spatial variables included in the best-fitting models varied
substantially among individual elk. These results suggest that strong patterns of habitat
selection observed in other studies may result from frequent visits to preferred areas rather
than a reduction of movement in those areas.

Key words: animal movement; Cervus elaphus; elk; heterogeneous landscapes; Kalman filter; landscape
ecology; multiphasic movement path analyses; state–space; ungulate; wapiti; Yellowstone National Park,
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INTRODUCTION

Understanding how animals interact with heteroge-

neous landscapes remains a central goal of ecological

research (Wiens et al. 1993, Turchin 1998, Ellner et al.

2001). The characteristics of an animal’s movement

reflect its relationship with numerous biotic and abiotic

factors that influence energy intake and expenditure,

predation risk, and social interactions. These relation-

ships have implications for the spatial structure of

populations and metapopulation dynamics (Pulliam and

Danielson 1991, Stapp and vanHorne 1997, Hanski

1998, Revilla et al. 2004, Armsworth and Roughgarden

2005), spread of exotic species (Dean 1998), disease

ecology (Gudelj and White 2004), and trophic cascades

(Ripple et al. 2001, Ripple and Beschta 2004, Fortin et

al. 2005a). However, extracting biologically meaningful

information from animal paths is difficult because

movement is a multi-scale, stochastic process (Lima

and Zollner 1996, Turchin 1996, Morales and Ellner

2002).

A substantial body of theory has been developed to

describe animal movement patterns. The most general

models are correlated random walks (CRW) in which

the straight-line distances moved between time periods

(step lengths) are either fixed or independently drawn

from the same distribution; ‘‘random’’ turning angles are

assumed to be autocorrelated and, in the case of biased

random walks, weighted toward one location or

direction (Turchin 1998). Correlated random walk

models often fail to predict empirical patterns over long

time periods, but represent reasonable null models for

short series of movements. Other methods explicitly

model certain characteristics of a path, such as the
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distribution of step lengths (e.g., Lévy flights; Viswana-

than et al. 1996, 2002) or the fractal dimension (Nams

2005), but these methods usually relate path character-

istics to the landscape surrounding the entire path,

rather than relating changes in path characteristics to

the local environment (but see Nams and Bourgeois

2004, Fortin et al. 2005b).

Of major interest to ecologists is how movement

trajectories change in response to various stimuli,

because these changes provide insight to the behavioral

mechanisms mediating movement. For example, in

spatially heterogeneous landscapes, animals may exhibit

‘‘preytaxis’’ and congregate around concentrations of

food resources simply by conditioning their movement

rate or turning frequency on patch quality or prey

capture rates (Kareiva and Odell 1987, Bovet and

Benhamou 1988, Walsh 1996). Similarly, responses of

animals to the boundaries of suitable habitat patches

may influence the distribution both of animals within

patches and of animals among patches (Sisk et al. 1997,

Morales 2002). However, even in the absence of animal

behavioral responses to resources and habitat, appar-

ently nonrandom distribution patterns such as density-

independent aggregation may arise (Olson et al. 2000),

and this argues for caution when inferring patterns of

animal movement based on static patterns of animal

distributions.

The interaction between behavior and landscape

pattern may produce unexpected distributions of ani-

mals and is therefore of current concern to ecologists

and wildlife managers studying animals that have the

potential to affect ecosystems across broad spatial

scales. In North America, for example, native ungulates

can exert a strong influence on community structure

(Waller and Alverson 1997, Opperman and Merenlender

2000, Ripple et al. 2001, Rooney et al. 2002, Beschta

2005) and ecosystem processes (Pastor et al. 1993, 1998,

Frank and Groffman 1998, Ritchie et al. 1998).

Therefore, understanding how ungulates respond to

and create landscape pattern is key for effective

landscape-level management (Adler et al. 2001, Man-

ning et al. 2004).

Two broad questions that ecologists have asked about

ungulate habitat use are how and at what spatial scales

ungulates respond to their environment. These questions

have been explored theoretically (e.g., Turner et al.

1994b, Adler et al. 2001) and empirically, especially in

the context of resource use (e.g., Kie et al. 2002, Boyce et

al. 2003, Anderson et al. 2005a, b). One disadvantage of

these empirical analyses is that information associated

with movement behavior is not considered (but see

Preisler et al. 2004, Fortin et al. 2005a). However, global

positioning system (GPS) technology has become more

accessible and has thus made quantitative analyses of

detailed movement a tractable option (Johnson et al.

2002, Morales et al. 2004, Fortin et al. 2005a, Frair et al.

2005).

One pattern observed in movement paths is an

apparent ‘‘switching’’ between behaviors that produce

fine- or broad-scale movement (e.g., foraging within or

relocating between habitat patches). Because animals

may respond to different factors while exhibiting each of

these behaviors, analysis of such multiphasic paths is

difficult. One way to consider these different behaviors is

to identify the states statistically and to separately

analyze those groups of path segments (Turchin 1998).

Yet, very often interest lies in understanding the entire

movement path. Characteristics of the path, such as

fractal dimension or first passage time, can be consid-

ered in relation to characteristics of the home range

(Frair et al. 2005, Nams 2005). Or, the switching

between states can be explicitly modeled (Morales et

al. 2004, Jonsen et al. 2005).

As an alternative to the switching models, we propose

a conceptual framework that considers the length of

each step as a function of two stochastic behavioral

processes. One describes an animal’s response to the

landscape immediately surrounding it at a given time

and the other describes the behavioral state of the

animal at that time; the latter we describe by a

temporally autocorrelated process that governs the

animal’s propensity to move. To model this system we

chose a state–space approach, which has been used to

track satellite and missile paths, community stability,

and, recently, animal movement (Harvey 1989, Ives et

al. 2003, Jonsen et al. 2003, 2005, Royer et al. 2005).

This class of models can use time series of observed data

to infer unobservable states by simultaneously modeling

time-independent and time-dependent stochastic pro-

cesses. One advantage of this framework is that it can

include responses to the environment at both fine and

broad scales while modeling the latent behavioral state

in a continuous fashion.

Our goals in this paper are threefold. First we

generate movement paths based on simple simulation

models and demonstrate that linear state–space models

can efficiently estimate the behavioral coefficients

underlying animal movement paths. Second, we move

into an empirical system and examine elk (Cervus

elaphus L.) movement paths in Yellowstone National

Park (USA) to uncover what landscape covariates affect

short- and long-term movement rates. Finally, we

determine if elk respond in a consistent fashion to

landscape covariates and if variation in the strength of

autocorrelation can be explained by variation in animal

(e.g., age) and home range characteristics (e.g., mean

patch size of grassland). Specifically, we were interested

in how individual elk alter their movement in response

to time of day, wolf (Canis lupus L.) density, landscape

composition, forage availability, and topography, all

factors found to be important in habitat selection by elk

in previous research (Boyce et al. 2003, Forester 2005,

Fortin et al. 2005a, Mao et al. 2005). We expected to see

a strong crepuscular activity pattern, with more

movement around dawn and dusk (Green and Bear
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1990, Ager et al. 2003). Because of vigilance behavior

and foraging requirements, we expected that the animals

would move less in areas of high wolf density or plentiful

forage (Zollner and Lima 2005, Moorcroft et al. 2006).

Likewise, we expected the elk to move less in areas

dominated by regenerating coniferous forest due to the

combination of moderate forage abundance and plenti-

ful cover in which to escape from predators (Bergman et

al. 2006). Finally, the elk were expected to have high

movement rates at high elevations and steeper slopes,

because most ideal elk habitat is in lower elevation valley

bottoms.

METHODS

State–space model formulation

We propose an approach to the state–space model

that involves two components to describe how far an

animal moves in a fixed period of time: (1) an immediate

response to the local environment, and (2) an unmea-

surable, or ‘‘hidden,’’ behavioral state of movement

propensity that is autocorrelated and also affected by

previously experienced environmental conditions. The

behavioral state represents a reduction of many internal

states that might interact to affect movement, such as a

quality assessment of recently visited areas (Dukas and

Real 1993), gut fullness or satiation (Kareiva and Odell

1987, Wallin and Ekbom 1994, Jeschke and Tollrian

2005), or predation risk (Mitchell and Lima 2002,

Zollner and Lima 2005). This formulation allows the

behavior to be represented by a continuum, rather than

a step function.

Although additional complexity can be added to this

class of models by using the extended Kalman filter or

Bayesian filters (Jonsen et al. 2003, 2005, Morales et al.

2004, Royer et al. 2005), many dynamics of interest can

be approximated in the simple, linear case (Ives et al.

2003). We are interested primarily in how animals adjust

their movement rates within seasonal home ranges in

response to covariates, so we focus only on the step

length within a given period of time. This step length

represents an integration of all step lengths and turning

angles realized at finer temporal scales. Coarser scale

analyses can be accommodated by using subsets of the

data.

The path of each individual elk is described by the

linear distance between sequential, discrete locations

collected at 5-h intervals and considered as a time series

where t¼ 1, 2, . . . , T. We assume that these time series

can be approximated by a first-order, autocorrelated

process (AR(1)) that is independent from turning angle

(this assumption is tested in the empirical data). We

further assume that observation error is small relative to

the stochasticity in the data (this is justified by an

estimated location error of ,10 m, described in the

Empirical analyses section). The observed data are

described by a measurement equation:

yt ¼ xt þ bAt þ et

where yt is the realized step length (natural log-

transformed) at time t; xt is the autocorrelated

behavioral state; b is a 1 3 p vector of coefficients that

describe the linear relationship of y to the p3nmatrix of

covariates, A; and e represents a Gaussian error term

with mean 0 and variance r2. The behavioral state is

modeled as an AR(1) process that is also influenced by

covariates and is described by the following process (or

transition) equation:

xt ¼ rxt�1 þ cUt�1 þ dt

where r represents the autocorrelation coefficient; c

represents the process equation coefficients for the

matrix of covariates (U) associated with the autocorre-

lated process; and d represents the Gaussian process

error term that has mean 0 and variance q2.
These two equations can be combined and expanded

out for s time steps:

yt ¼
Xs

i¼1

ricUt�1 þ
Xs�1

i¼0

ridt�1 þ rsxt�s þ bAt þ et:

The first term on the right-hand side of this equation

contains the environments experienced by the animal for

the preceding s time steps, with r serving as a ‘‘discount

rate.’’ When r is close to zero, the role of past

environments in dictating the current movement of the

animal diminishes rapidly with time; in effect, the animal

has little memory of past behavioral states. In contrast,

when r is large, the behavioral state changes slowly and

past experiences are integrated into current movement

patterns. The unexplained variability, dt, is similarly

discounted by r. In general, the lower the variance in dt,
the greater the importance of covariates in the process

equation in explaining the movement pattern of the

animal.

This model structure is powerful because it allows an

interpretation of the approximate spatial scale at which

an animal is responding to a particular covariate.

Covariates in the process equation represent broad-scale

effects contributing to the behavioral state, whereas

those in the measurement equation represent fine-scale

effects influencing immediate responses. The associated

strength of autocorrelation for that animal determines

how broad the scale of response is for all parameters in

the process equation. Because covariates can simulta-

neously occur in both equations, multi-scale dynamics in

the movement process can be detected.

We computed likelihood functions recursively using a

Kalman filter (Harvey 1989, Künsch 2001), and

parameters were estimated by minimizing the negative

log-likelihood for a given model. Confidence intervals

were developed via bootstrapping, using the fitted model

to simulate 1000 response vectors (bootstrap data sets)

based on the original covariate matrix. New maximum-

likelihood estimates for the parameters were then

calculated for each of the bootstrap data sets and 95%

confidence intervals for model parameters were obtained
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from the simulated values. For the following analyses,

only main effects are considered; however, interaction

terms can be included in the model structure. All model

selection used AIC-based stepwise selection. Covariates,

when present in a model, were allowed to appear in the

process equation, measurement equation, or both.

Linearity and homoscedasticity assumptions were

checked by visual inspection of residual plots. All

state–space analyses were carried out in MATLAB

(MathWorks 2004).

Simulation analyses

To confirm that the state–space model was capable of

detecting patterns of animal movement, we simulated

animal paths on artificial landscapes. We used a mixture

of sine waves to generate three landscapes that

represented resource variation at fine (sin(x)�sin(y)),
b r o ad ( s i n (x / 1 0 ) �s i n (y / 1 0 ) ) , a nd mu l t i p l e

((sin(x/10)�sin(y/10) þ sin(x)�sin(y))/2) spatial scales.

Elk movement paths were simulated on these landscapes

according to each of six state–space movement models

based on a wide range of parameter values (Table 1).

Each model was used to generate 1000 paths of 350 log-

normally distributed step lengths with random, uniform

turning angles in each of the three landscapes. The

starting location was fixed for all simulations and the

initial random number seed was identical for each case

within an iteration. The mean and standard deviation of

experienced habitat quality as well as the maximum and

final net displacement were calculated to demonstrate

the scale-specific ‘‘payoff’’ of each model strategy.

To demonstrate the ability of the state–space model to

detect movement parameters, we randomly selected one

simulated path in the multi-scale landscape from each of

the six parameter sets, and we then fit four state–space

models to these data to determine the maximum-

likelihood estimates of all parameter values. These

models represent: null (no covariate), covariate in

process equation, covariate in measurement equation,

and covariate in both process and measurement

equations. The model with the lowest AIC value was

chosen for each set of simulated data, and 95%

confidence intervals were calculated for the model

parameters.

Empirical analyses

Study area.—The study was conducted during 2001–

2004 in Yellowstone National Park (YNP). The park

was established in 1872 and encompasses ; 9000 km2 in

the northwest corner of Wyoming and adjacent parts of

Montana and Idaho (USA). Elevations in the park

range from 1500 m to .3000 m (Houston 1982). The elk

we studied were from the Northern Range herd, a

population of ;12 000 animals, during the three years of

this study, that migrates seasonally between a low-

elevation winter range in the northern portion of YNP

and a high-elevation summer range (Craighead et al.

1972, Houston 1982). The summer range of the northern

herd extends onto the subalpine plateaus that cover

much of Yellowstone and also into the higher elevations

of the Lamar River drainage (Houston 1982). Vegeta-

tion on the subalpine plateaus is dominated by lodge-

pole pine (Pinus contorta Loudon var. latifolia Engelm.)

forests of varying age, including extensive areas that

burned in 1988 (Despain 1990, Turner et al. 1994a).

Subalpine fir (Abies lasiocarpa [Hook.] Nutt.), Engel-

mann spruce (Picea engelmannii Parry ex Engelm.),

whitebark pine (Pinus albicaulis Engelm.), and sage-

brush (Artemisia spp.) grasslands are less common cover

types, but are locally abundant (Despain 1990). At lower

elevations, sagebrush grasslands are more common and

are interspersed with coniferous forest, primarily lodge-

pole pine and Douglas fir (Pseudotsuga menziesii

[Mirbel] Franco), aspen groves (Populus tremuloides

Michx.), and riparian willow communities (Salix spp.).

Movement path analyses.—Sixteen cow elk were

captured by helicopter net-gunning in the Northern

Range of YNP during the winters of 2001, 2002, and

2003 (Cook et al. 2004b). Each animal was fitted with a

Telonics GPS radio collar that collected locations at 5-h

intervals. To estimate location error, we left three collars

in fixed locations and found that the average mean and

standard deviation of location errors were 6.15 m and

5.24 m, respectively (sample frequency¼5 h, 5 h, 2 h; n¼
125, 112, 814 samples; pooled SD¼ 6.46 m). Pregnancy

TABLE 1. The original parameters of the six models used to simulate movement paths.

Model

Original parameters Mean site quality Maximum displacement
Null : best

DAICr b c Multi Broad Fine Multi Broad Fine

1 0.95 �2 0 0.29* 0.48* 0.45 81.55* 59.06* 133.069* 72
2 0.95 0 �0.2 0.21 0.42 0.23 65.88 56.76* 69.94 23
3 0.2 �2 0 0.28* 0.37 0.52* 34.90 29.35 41.40 122
4 0.2 0 �0.2 0.021 0.071 0.021 38.41 38.23 38.61 12
5 0 �2 0 0.28* 0.37 0.51* 34.91 29.15 40.011 122
6 0 0 �0.2 0.017 0.057 0.020 38.45 38.26 38.51 7

Notes: All models had the same process error, measurement error, and intercept (0.3, 0.7, and 0, respectively). Measurement and
process coefficients for response to the landscape quality are represented by b and c, respectively. Mean site quality and maximum
displacement represent the mean of these statistics calculated from 1000 simulated paths (350 time steps each) generated for each
parameter set in each of the three landscapes (multi-, broad-, and fine-scale). Numbers followed by an asterisk (*) represent the
highest values for that landscape (significant at a¼ 0.05). The DAIC from the null model to the lowest AIC model is also reported.
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and condition data for each animal were analyzed by

Cook et al. (2004b). The elk were located by air every

12–14 d using Very High Frequency (VHF) beacons on
the collars and approximate group size and presence of

calves were recorded. The collars were recovered up to a

year later after falling off in concordance with their

program or following animal mortality. For this study,
only the summer locations (15 June to 15 September)

were used (Fig. 1).

To test our assumption that step lengths were

independent from turning angle, the relationship be-
tween step length and turning angle was calculated using

linear-angular versions of both correlation and regres-

sion techniques (Fisher 1993, Zar 1996). Several elk
home ranges overlapped, but of those that overlapped

during the same year, only three elk pairs had locations

within 350 m. Because the number of close locations was

relatively small (20%, 9%, and 0.07% of the temporally
paired locations), these animals were assumed to be

independent for the purposes of this analysis.

We examined histograms of movement distances to

identify within-day movement patterns, and found that
a wave function with a 12-h period would approximate

the observed data. Thus we included time of day (t) as

two covariates in the measurement equation:

SINt ¼ sinð2pt=12Þ

and

COSt ¼ cosð2pt=12Þ:

We then simulated 95% confidence intervals for all
parameters. Because we expected a strong time-of-day

effect on movement, we used ‘‘null-with-time’’ models as

an additional null case for model comparisons to detect
if there were also strong responses to landscape

covariates.

In addition to the two temporal covariates, spatial

covariates obtained from several sources were added to

the analysis. Elevation was derived from a U.S.
Geological Service (USGS) 10 3 10 m digital elevation

model (DEM), from which slope and aspect were also

calculated. The grain size of these three layers was
coarsened to match the 28-m resolution of other data

layers. Road and water feature polygons were supplied

by the National Park Service (Yellowstone Center for

Resources).

Landscape cover type was based on a classified
Landsat image from August 2003. The image was

classified using the iterative decision tree approach

(Franklin et al. 2001) and was validated using .200
ground truth points, near infrared aerial photography

(Kashian et al. 2004, Turner et al. 2004), and high-

resolution aerial videography. The overall classification

accuracy was greater than 80%. This classification
yielded 12 vegetation classes that described canopy

density for mature coniferous forest and moisture

gradients for the open vegetation classes in addition to
isolating an aspen/shrub complex and regenerating

coniferous forest. For purposes of landscape analysis,

we grouped these 12 cover types into six functional

classes based on forage availability: (1) barren (rock,

geothermal features, developed areas), (2) mature

coniferous forest, (3) regenerating coniferous forest

(sparse and dense regeneration), (4) low-forage grass-

land (dry grassland), (5) high-forage grassland (mesic,

wet and alpine grasslands), and (6) high-forage shrub-

land (aspen/shrub complex and wet shrubland).

To estimate herbaceous forage biomass, we estab-

lished 83 60-m transects at random locations within 3

km of a road and stratified by cover type. Of these

transects, 34 were in the five original forest cover classes

(3–10 transects per class) and 49 in the three open classes

(3–24 transects per class). We sampled each transect four

times from mid-June to late August in 2003 (two

transects were not sampled during the last session due

to fire closures). During each visit, we recorded the

resting height of a calibrated 0.25-m2 plastic disc on six

plots along each transect. At each plot, we also used a

double-sided wire frame to identify 40 point intercepts at

which the functional group (nonvegetated, forb, grass,

sedge, rush, woody vegetation) was identified to provide

an estimate of percent cover. The biomass calibration

was based on 214 plots that were clipped to ground level,

separated by functional group, dried to constant mass at

FIG. 1. The boundary of Yellowstone National Park
Wyoming, USA, showing the summer minimum convex
polygon (MCP) home ranges for each of the 16 elk studied.
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408C for 48 h, and then weighed (R2
adj¼0.83, P , 0.0001,

N¼214; see Vartha and Matches [1977] for a description

of methods). Biomass peaked in mid-July, and there was

no significant difference in biomass between the last two

visits, based on a likelihood ratio test of repeated-

measures linear mixed-effects models with and without

visit (P ¼ 0.65). Thus, the last two data points were

pooled to estimate the mean peak forage biomass at

each transect. There was no significant difference among

the peak forage biomass estimates of coniferous forest

cover types, nor was there an effect of topography, so

the mean was used. In open areas and in the aspen–

shrub complex, we found that the best model included

only the normalized difference vegetative index (NDVI)

and the compound topographic index (CTI, Gessler et

al. 1995), which respectively represent the greenness of

the vegetation and the relative wetness of the soil (R2
adj ¼

0.54, P , 0.001, N¼52). For a more detailed description

of these methods, see Forester (2005).

The relative density of wolves was calculated for each

summer (June to October) using VHF location data

collected by scientists from the Yellowstone Center for

Resources (Smith et al. 2002, 2003, 2004). Abode

software (Laver 2005) was used to calculate the least

squares cross validation (LSCV), fixed smoothing factor

(H ) for the biweight kernel home ranges of each pack

with at least 25 locations. This nonparametric method

for estimating home-range utilization is described in

detail by Seaman and Powell (1996) and Worton (1989).

The mean H (5 km) was then used to calculate biweight

kernel densities for each summer with all nonredundant

locations, weighted by pack size. The resulting map

represents a relative estimate of wolf density on the

landscape.

Relative wolf density and distances to roads and

forest/open edges were calculated at the beginning

location of each move. Mean forage biomass and

proportions of aspen/shrub complex, mature forest,

and regenerating forest were calculated within a 175 m

radius buffer around each point. This radius is one-half

of the median 5-h step length and was chosen to

represent local conditions while minimizing overlap

among temporally adjacent locations. All covariates

were examined prior to analysis, and all showed low

pairwise correlations (jPearson’s rj , 0.5). Proportion

data were square-root transformed and all other

covariates were (natural log þ 1)-transformed to

improve the linearity of the relationship to step length.

A global model containing all covariates hypothesized

to affect movement was fit to each animal’s path.

Variables were included in both the measurement and

process equations, with the exception of time and

distance covariates, which are implicitly correlated

between steps and were thus included only in the

measurement equation. The best model for each animal

was identified using AIC-based stepwise selection and,

for all cases, 95% confidence intervals were bootstrapped

for each parameter estimate using the same method

described in the State–space model formulation section.

Finally, to determine the generality of each of the best
models, 15 additional models were estimated for each

animal using only the variables included in each of the
other animals’ best models. The increase in AIC from

the best-model AIC (i.e., the lowest AIC) to other
models is reported as DAIC. When considering these
differences, we use the basic rules of thumb described by

Burnham and Anderson (2002:70) where a difference of
DAIC ¼ 2 units is small, 4–7 is moderate, and .10 is

extreme.
The area-weighted mean patch size, contagion (a

measure of aggregation), and proportion of landscape
were calculated for each functional class of cover type

within the 100% minimum convex polygon (MCP) home
range of each elk using FRAGSTATS (McGarigal et al.

2002). In post hoc analyses, differences in landscape
metrics and other home range and animal characteristics

(MCP area, mean wolf density, mean forage abundance,
mean group size, and winter body fat percentage; see

Tables 2 and 3) were compared among groups of
animals (split by whether the 95% CI of r included zero),

using permutation t tests in R (R Development Core
Team 2005).

RESULTS

Simulation analyses

The simulated elk from both high-autocorrelation

models, on average, used a larger area in all three
landscapes (Table 1, Fig. 2). This difference in move-

ment was associated with the highest mean site quality
visited in the broad-scale landscape. However, the lower

autocorrelation cases performed better in the fine-scale
landscape, and there was no difference of mean site

quality in the multi-scale landscape (Table 1). When the
data from a randomly chosen set of simulations from the

multi-scale landscape were fit using the state–space
model, the ‘‘correct’’ model form was chosen by AIC for

all six cases. The full model (i.e., the model with the
landscape covariate in both the process and measure-
ment equation) was consistently chosen second.

The state–space model was able to detect high
autocorrelation well, with tight confidence intervals

around the estimates (Fig. 3). For one of the low-
autocorrelation cases, the confidence interval for r

included zero, but both cases showed narrower confi-
dence intervals than seen for the zero-autocorrelation

models. When autocorrelation was low, the error
estimates were less precise than in the high-autocorre-

lation cases. This was caused by the model attempting to
fit the very flat likelihood space associated with data

showing weak to no autocorrelation. In these cases, the
absolute value of r could be large when nearly all of the

variance was pushed to the measurement error, and
small when process error was larger. In low-autocorre-

lation cases, the process and measurement errors enter
the model in structurally the same way and consequently

are impossible to separate; therefore, the total error
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estimate is of more interest. In all cases, the confidence

interval around total error (qþ r) was within the range

expected from the values used in the simulations. This

leads to a caution and a useful diagnostic. For the case

in which the true value of r is close to zero, the estimate

of r may nonetheless be large due to the uncertainty of

the estimate and a low estimate of the variance of the

process error. However, a bootstrap simulation of the

data will reveal large confidence limits for r and, hence,

correctly identify a lack of significant difference from

zero.

The landscape coefficients were estimated with tight

confidence intervals. The very weak signal from the

process-only model was estimated to be stronger than

the actual value; however, the true value was included in

the confidence intervals. The stronger signal associated

with the measurement-only model was slightly underes-

timated, but was likewise included in the confidence

intervals. The intercept was better fit as autocorrelation

decreased and the mean became more predictable.

Overall, this analysis indicates that the state–space

model can extract movement parameters from a limited

number of data points accurately.

Empirical analyses

The 5-h step lengths for all 16 elk followed an

approximate negative exponential distribution (Appen-

dix A: Fig. A1) and were thus natural log-transformed

for all analyses. The set of turning angles for each

animal deviated significantly from a uniform distribu-

tion (Kuiper’s one-sample test of uniformity, P , 0.01),

with the average circular mean by animal very close to

zero (h ¼�1.28, var(h) ¼ 0.548; Appendix A: Fig. A2).

The linear-angular correlation between ln(step length)

TABLE 3. Home range statistics, calculated within the summer minimum convex polygon (MCP) for each animal.

Elk
indiv.

MCP area
(km2) CV elev.

Mean wolf
density

Mean forage
(g/m2)

Prop.
forest

Prop.
regen.

Prop.
open

Prop.
mesic-wet

AWMPS
mesic-wet

Clumpy index
mesic-wet

1 140 0.074 40 45.69 0.24 0.45 0.26 0.21 93.3 0.72
2 20 0.056 22 34.76 0.40 0.34 0.21 0.11 21.7 0.72
3 110 0.050 0 32.93 0.16 0.60 0.19 0.03 7.8 0.59
4 40 0.020 141 54.60 0.44 0.13 0.31 0.25 608.8 0.82
5 60 0.083 0 30.32 0.55 0.13 0.24 0.07 76.5 0.70
6 31 0.016 121 49.27 0.41 0.12 0.26 0.22 214.8 0.80
7 88 0.049 339 48.24 0.23 0.44 0.29 0.24 108.7 0.73
8 74 0.101 2 38.70 0.29 0.38 0.28 0.16 75.9 0.72
9 83 0.055 0 32.76 0.20 0.56 0.20 0.02 7.8 0.60
10 88 0.062 68 38.46 0.26 0.45 0.24 0.14 119.7 0.74
11 251 0.121 241 53.42 0.19 0.24 0.53 0.21 344.4 0.72
12 48 0.072 460 46.59 0.22 0.45 0.29 0.25 137.7 0.77
13 93 0.038 0 28.19 0.17 0.61 0.07 0.04 8.0 0.58
14 65 0.108 38 64.81 0.17 0.30 0.48 0.35 721.3 0.70
15 52 0.060 2 33.00 0.59 0.22 0.13 0.08 54.9 0.73
16 37 0.063 7 31.10 0.41 0.34 0.21 0.07 13.2 0.65

Notes: The area of the home range polygon (MCP), the coefficient of variation for elevation (CV elev.), the mean value of
relative wolf density (unitless), the mean predicted forage biomass, and the proportions (Prop.) of mature forest, regenerating
forest, open areas, and mesic-wet meadows. The configuration of the mesic-wet meadows is described by both the area-weighted
mean patch size (AWMPS) and the clumpy index (McGarigal et al. 2002).

TABLE 2. Summary data on the condition of each elk during the winter of capture.

Elk
individual

No.
locations� Year Age (yr)

Mean
group size Pregnant�

Body
fat (%)

1 366 2002 6 28.4 1 15.03
2 270 2002 7 14.4 0 5.87
3 390 2002 3 4.9 1 13.64
4 350 2002 1 25.5 0 8.82
5 265 2002 11 2.0 1 5.87
6 310 2002 11 43.0 1 13.23
7 380 2001 14 23.4 1 4.97
8 380 2001 7 44.1 1 7.89
9 354 2001 8 7.8 1 3.99

10 339 2001 5 22.6 1 11.98
11 363 2001 11 12.6 1 10.6
12 344 2001 10 13.5 1 8.43
13 368 2001 7 8.6 0 6.21
14 378 2001 8 48.2 1 16.55
15 294 2001 11 10.8 1 12.66
16 342 2003 12 20.7 0 9.716

� The number of times that an animal was located.
� Status is designated as: 1, pregnant; 0, not pregnant.
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and turning angle was weakly significant for two elk

(circular correlation coefficient¼ 0.16, 0.22; P , 0.05 by

permutation correlation test, N ¼ 337, 225 step-length–

turning angle pairs for each individual). However, when

ln(step length) was regressed against the cosine of

turning angle (to indicate whether longer steps were

associated with more forward movement), no relation-

ship was found for any of the animals (P . 0.05, R2
adj,

0.001, N¼ 202–369).

In the time-only analysis, 12 of the animals had r

values that were significantly greater than zero (based on

simulated 95% CI; Fig. 4). Estimates for the two error

terms varied by animal, except those with very tight

confidence intervals around r (N¼5). However, the total

error estimates were much more stable and indicate that

the distribution of error between the two terms is less

reliable when r cannot be precisely estimated. Very good

estimates of both time variables show a clear and

consistent crepuscular activity pattern, with longer

moves beginning at 05:30 hours and 17:30 hours

(Appendix B: Fig. B1). This model fit the data better

than the null, intercept-only model for all animals

(DAIC ¼ 21–124; Table 4).

The best models, based on stepwise selection, fit the

data moderately to extremely well compared to the

corresponding time-only models (15 time-only models

have DAIC . 4; Table 4). The magnitudes of the

autocorrelation values were again mostly consistent with

the time-only model; however, the confidence intervals

of some of these estimates increased with the addition of

covariates because the spatial autocorrelation in those

variables accounted for some of the temporal autocor-

relation between steps. The best model for 13 animals

included elevation and/or slope in the process or

measurement equations. Although the response to

elevation was slightly mixed, the behavioral state (step

distance) of six animals increased with greater elevation.

Shorter movements were associated with steeper slopes

in seven animals (Table 5). Nine of the 12 elk with

established wolf packs present in their home ranges

showed a response to wolf density in their best model.

Of these, seven animals reduced movement in areas of

high wolf density and two increased movement,

although one animal in each group had a confidence

interval that included zero. Six elk decreased their

movement in areas of high forage availability, and

another set of six decreased their movement in

landscapes dominated by mature coniferous forest.

The behavioral state of three animals increased with

greater proportions of regenerating forest; however,

another three animals responded by decreasing their

immediate movement. Several animals increased their

movement with distance to roads or forested edge. The

FIG. 2. Simulated elk paths (each consisting of 350 five-hour movements) based on three values of r (representing the strength
of temporal autocorrelation in movement distance) and two sets of coefficients that determine how the landscape ‘‘quality’’ (ranging
from �1 to 1) affects movement. The coefficients for the landscape variable in the measurement and process equations are
represented by b and c, respectively. Turning angles were randomly generated from a circular uniform distribution. The spatial scale
is defined in terms of arbitrarily sized pixels; each pixel can be thought of as having 100-m sides.
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response to the proportion of the landscape in the

aspen/shrub complex was mixed.

In general, the covariates that best fit one animal’s

movement poorly explained the movement patterns of

most of the other 15 animals. On average, for any given

model, only two of the 15 elk had DAIC values less than

7 (Table 6). When we attempted to relate differences in

estimated r to home range characteristics, we found that

the areas of the MCP home ranges for animals with

strong autocorrelation in behavioral state were larger

than those with weak autocorrelation (106 km2 vs. 54

km2; permutation t test of ln(area), P ¼ 0.04, N ¼16
individual elk). The other home range and elk-specific

factors did not show a strong relationship to r (P .

0.05).

DISCUSSION

We demonstrated that the linear state–space model is

an effective tool for describing animal movement paths

and used it to gain insight into how elk respond to

complex landscapes. Separating the response coefficients

into process and measurement equations affords an

intuitive, ecological interpretation of the final model.

Overall, this method provides an accessible framework

in which to approach the challenges of multi-scale

analysis of animal movements, and can easily be

implemented in MATLAB or other software such as

Octave or R. Our results highlight the importance of

considering individual variation, especially when ani-

mals are exposed to home ranges with very different

compositions and arrangements of covariates.

In our simulation analyses, the simulated animals had

no spatially explicit knowledge of the landscape.

Turning angles were random, and move distances were

affected only by the current landscape and the behav-

ioral state (which, when r . 0, included information

about previously visited landscapes). However, in both

the simulation and empirical analyses, the landscape

area used was directly related to the autocorrelation

coefficient (Fig. 2, Tables 1–3) and no other home range

metrics were found to explain this relationship in the

empirical data. The result from the simulated data

suggests that intraspecific variation in home range size

may be related not only to local, exogenous landscape

FIG. 3. Parameter estimates based on one 350-step path for each set of simulation parameters (represented by simulated elk 1–
6; see Table 1); the parameter r is as defined in Fig. 2. The standard deviations for measurement and process error are represented
by r and q, respectively. Open circles show the parameter MLE (maximum-likelihood estimate); X symbols indicate the simulated
mean estimate. The 95% confidence intervals shown (error bars) were simulated from the fitted values.
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FIG. 4. The parameter estimates (open circles, parameter MLE [maximum-likelihood estimate]; X symbols represent simulated
mean estimates) for the time-only model with simulated 95% confidence intervals (error bars). The coefficients for the sine and
cosine of time (bSINt, bCOSt) correspond to Universal Time and represent activity peaks at approximately 05:30 and 17:30 hours,
local time. Other parameters are as defined in Fig. 3.

TABLE 4. Best-model estimates of r, process error, measurement error, and intercept for each elk (individuals 1–16).

Elk

DAIC, by model type

r Process error Measurement error InterceptNull Time-only Full

1 60 19 20 0.99* 9.3 3 10�5 0.89 5.4*
2 33 11 22 0.84 0.14 0.79 5.4*
3 68 13 21 0.73* 0.32 0.82 6.6*
4 119 9 20 �0.81 0.16 0.77 5.3*
5 40 4 16 0.05 0.94 6.8 3 10�7 �5.8
6 109 13 17 �0.63 0.23 0.74 6.2*
7 80 24 7 0.92* 0.08 0.85 3.9*
8 95 7 24 0.65* 0.27 0.82 6.7*
9 32 5 18 0.90 0.13 0.96 4.8*
10 46 24 10 0.90 0.10 0.89 51.75*
11 44 15 17 0.79* 0.26 0.98 9.52*
12 45 24 25 1.00 3.7 3 10�6 0.84 �5.52*
13 143 19 7 1.01* 6.6 3 10�8 0.84 6.1*
14 76 15 22 0.95 7.5 3 10�4 1.00 22.1
15 64 10 28 0.99* 4.9 3 10�8 0.97 5.6*
16 24 1 32 1.00* 0.16 0.96 6.3*

Notes: The DAIC values compare the full, null with time, and null models to the corresponding best model. The r and intercept
values with an asterisk (*) have 95% CIs that do not overlap zero. A ‘‘significant’’ r associated with a low process error indicates
that the autocorrelation is well described by the covariates in the process equation.
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factors (e.g., Kie et al. 2002, Anderson et al. 2005a), but

also to the endogenous tendency of animals to move in

an autocorrelated fashion. All simulation cases pro-

duced movement paths that, on average, stayed in areas

that were above the mean quality level of the landscape.

This indicates that strong autocorrelation in behavior

may not inherently confer a benefit in terms of site

quality visited, but it allows an animal to visit more

patches distributed across a larger area.

The long-term implications of the composition and

use of home range resources by elk are difficult to

quantify. Elk do make foraging decisions based on

available energy content (Wilmshurst et al. 1995), and

relatively small reductions in the quality of summer and

autumn diet will decrease the probability of harsh winter

survival of cows and calves in addition to decreasing

conception rates (Cook et al. 2004a). Because even small

energetic demands from travel are predicted to influence

foraging decisions (WallisDeVries 1996, Moen et al.

1998), the composition and use of the summer home

range is a critical factor affecting both individual

survival and population-level dynamics. However, one

of our most surprising results was that, despite strong

evidence of summer habitat selection by elk in YNP

(Boyce et al. 2003, Forester 2005), there was not a

consistent movement response by elk to the important

habitats and other covariates (Table 5). The fact that

habitat selection occurs without animals reducing their

five-hour movement rates in preferred areas suggests

that animals may respond individually to immediate

TABLE 5. Summary of the best-model fits showing the distribution of coefficient signs, across 16 individual elk, for each variable in
the process (broad-scale) and measurement (fine-scale) equations (the number of fits with 95% confidence intervals that do not
overlap zero are in parentheses).

Sign Elevation Slope
Wolf
density

Mean
forage

Prop.
forest

Prop.
regen.

Prop.
aspen

Distance

SINt COSt

To
edge

To
road

Process equation

þ 6 (3) 0 1 (0) 1 (1) 0 3 (2) 0
0 7 12 11 11 11 13 15
� 3 (0) 4 (2) 4 (3) 4 (1) 5 (3) 0 1 (0)

Measurement equation

þ 1 (0) 0 2 (1) 1 (0) 2 (0) 0 2 (1) 4 (2) 2 (2) 0 16 (16)
0 13 12 10 12 13 13 12 11 13 0 0
� 2 (1) 4 (2) 4 (3) 3 (1) 1 (0) 3 (3) 2 (0) 1 (1) 1 (1) 16 (8) 0

Total no. elk

11 7 9 8 8 6 5 5 3 16 16

Notes: The total number of elk represents the number of individual models that include a variable in at least one equation.
Entries show the number of elk for which correlations are positive, negative, or nonexistent; in parentheses are the number of elk
showing significant correlations. SINt and COSt refer to the sine and cosine transformations of (2pt/12), where t represents the time
of day in decimal hours. Collectively, these variables describe within-day cyclic activity patterns. Distance and time variables are
omitted from the process equation because they are implicitly correlated between steps. For more detailed information, including
coefficient estimates and 95% confidence intervals, see Appendix C.

TABLE 6. Each row represents the increase in AIC from the best-model fit for that elk when those data are fit to a model selected
for another individual; the final row is the number of data sets for which a given animal’s model produced DAIC values , 7.

Elk

Proposed model for individual elk
DAIC
, 71 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 17.5 22.6 15.0 16.5 26.7 13.0 23.3 18.7 22.5 25.4 26.9 19.3 18.5 20.1 14.3 0
2 10.6 0 13.2 10.5 10.9 18.1 14.7 19.0 7.2 12.7 8.5 13.6 10.4 13.7 10.4 9.5 0
3 18.5 6.7 0 16.9 6.3 15.3 6.3 15.6 17.2 14.1 11.6 20.0 11.8 18.6 17.5 17.2 3
4 8.8 15.5 13.9 0 12.4 14.2 10.5 7.5 10.8 14.1 14.6 12.2 14.7 17.2 2.9 9.4 1
5 2.2 9.8 7.1 6.1 0 6.5 5.2 7.1 7.5 6.4 9.5 8.2 9.6 6.5 3.8 6.1 8
6 16.2 32.6 7.7 14.5 28.1 0 21.4 14.0 12.6 20.3 19.3 14.8 9.6 23.6 10.6 14.7 0
7 6.6 13.7 20.2 27.0 20.8 20.3 0 26.0 23.6 23.1 23.6 14.0 18.9 23.6 18.8 24.1 1
8 12.1 13.9 10.4 11.4 9.4 7.4 7.9 0 8.2 9.6 13.6 11.6 13.2 9.7 9.5 8.1 0
9 5.6 5.3 5.9 9.5 5.9 6.4 7.0 4.3 0 5.7 6.2 7.8 2.4 3.1 2.4 5.9 12
10 25.6 16.8 21.5 27.5 12.5 16.5 25.1 30.0 26.0 0 19.5 12.3 25.1 8.7 27.3 25.7 0
11 17.8 11.8 6.8 16.0 18.8 13.2 19.3 19.1 16.1 16.5 0 21.2 4.2 18.2 17.8 14.2 2
12 22.5 20.5 28.1 26.3 27.9 25.9 30.0 27.3 23.5 12.8 21.2 0 26.7 23.3 25.2 25.9 0
13 10.6 36.1 10.4 11.5 35.1 41.9 39.6 16.7 19.4 30.3 18.4 17.4 0 37.2 21.9 12.7 0
14 14.5 16.9 20.5 17.2 21.8 24.4 20.0 16.7 18.1 17.8 13.7 20.4 19.2 0 18.0 15.2 0
15 13.2 12.3 15.8 12.2 8.8 19.1 7.2 10.4 12.6 11.1 9.5 8.0 16.4 28.7 0 13.2 0
16 13.8 5.4 4.7 4.3 7.5 14.2 11.4 5.5 4.7 5.0 11.9 8.8 7.1 15.5 4.0 0 7

DAIC , 7 3 3 3 2 2 2 2 2 1 3 1 0 2 2 4 2
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landscapes, but frequently move between preferred areas

within their home range.

In Yellowstone, most of the preferred grassland

habitat is concentrated in a few large patches, with

many small patches distributed throughout a matrix of

coniferous forest with relatively little forage biomass.

Elk face the decision of frequently traveling among

patches or foraging extensively in a relatively small area

and accepting increased predation risk from wolves and

other predators. In heterogeneous landscapes, this trade-

off can represent a ‘‘shell game’’ (sensu Mitchell and

Lima 2002) between predators and prey, with the

efficacy of the predator strongly affecting the optimal

movement strategy of the prey.

Dispersing animals should slow down in high-risk

areas or in low-risk areas with plentiful food in order to

maintain vigilance and maximize energy reserves (Zoll-

ner and Lima 2005). Ten of our animals demonstrated

this behavior, although they were not dispersing, by

slowing down (i.e., shorter step lengths) in areas of high

wolf density and/or high forage biomass. Still, the

strongest influence on movement for all animals was

time of day, with long moves during the crepuscular

hours and much shorter moves during the ruminating/-

resting times (12:00, 23:00 hours). In a study of elk

movement in the Starkey Experimental Forest and

Range, Oregon, Kie et al. (2005) also found that hourly

movement distance was strongly affected by time of day,

although they found only weak relationships between

movement and landscape characteristics. This strong

effect of daily movement patterns, independent of

spatial covariates, illustrates the importance of using a

null-with-time model as the baseline for comparisons

with models that are more parameter rich.

Ungulates have been shown to respond to landscapes

in a hierarchical fashion (Senft et al. 1987, Rettie and

Messier 2000, Johnson et al. 2002, Boyce et al. 2003,

Anderson et al. 2005b). In this study we were not

examining the extreme scales of response (large-scale

home range location or micro-scale bite selection), but

rather the broad-to-fine scales of movement within

home ranges. We found that while some patterns in

response to landscape covariates appeared, the spatial

scale at which individual animals responded to those

covariates differed.

Rettie and Messier (2000) suggested that caribou

make broad-scale habitat selection decisions based on

factors such as predation risk that have a high

probability of affecting individual survival, and then

fine-scale decisions on more long-term problems such as

optimizing energy balance. If elk were responding in this

fashion, those with home ranges established in areas of

highest wolf density would be expected to respond to

that density in the process equation (i.e., a broad-scale

response). The 16 elk that we studied established home

ranges across a wide gradient of wolf density; however,

there was no clear distinction of model structure

between elk in areas of low vs. high wolf density. This

lack of a consistent response to wolf density may simply

be a result of transient or fine-scale behavioral responses

to recent wolf presence (Creel et al. 2005, Creel and

Winnie 2005) instead of consistent responses to broad-

scale wolf density. Likewise, the inter-animal variation

in responses to other covariates may be partially due to

the five-hour time step missing important, fine-scale

behaviors that do not scale up effectively. These

hypotheses may be tested as higher resolution GPS

and GIS data become available.

We have demonstrated that using the process

equation of a linear state–space model to describe the

behavioral state of an animal is a useful technique for

decomposing animal movement paths into immediate

and broad-scale responses. Our simulation models

estimated expected parameters with high precision and

accuracy, and the time-only models were consistent

across animals (Appendix A: Fig. A2, Table 5). When

other covariates were added to the elk model, we

discovered inconsistent responses to landscape features.

This variation was not explained by characteristics of

individual home ranges, so the large amount of

unexplained dissimilarity in model fits indicates that

elk have highly individual responses to the landscape.

The observed individuality is probably composed of

inter-animal behavioral differences as well as undetected

variation in the distribution and relative quality of

resources (Bélisle 2005). The best models for half of our

animals included strong autocorrelation terms for the

behavioral state, which suggests that some elk may

respond more strongly to internal rather than external

drivers. The modeling of the behavioral state helped to

explain some of the complex individual behavior of elk,

as it has in other organisms (Morales and Ellner 2002).

These insights may be particularly relevant to the

application of other, more mechanistic and spatially

explicit methods such as two-dimensional movement

models and mechanistic home range models (Turner et

al. 1993, Moorcroft et al. 1999, 2006, Lewis and

Moorcroft 2001, Zollner and Lima 2005). Furthermore,

this study suggests that the strong patterns of habitat

selection described in other studies are not created by a

reduction of movement in those habitats, but by

frequent visits to preferred areas.
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APPENDIX A

Two figures displaying the empirical distributions, pooled from all elk, of five-hour step lengths and turning angles (Ecological
Archives M077-009-A1).

APPENDIX B

A figure showing the fitted effect of time on the five-hour step length of individual elk (Ecological Archives M077-009-A2).

APPENDIX C

Tables showing the model coefficients, with simulated 95% confidence intervals, for individual elk (Ecological Archives M077-
009-A3).
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