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A

- ABSTRACT

%

»

We study thé descrlptlon ofk the motion of"
A A

‘relativistic particles in both time dependent and

time independent poten£ials. The differential
equations of motion consrdered are the standard
linear spin zero and one half equations. They ara :
always'meaningful in the sense that, at all tlmesy—w

unique well defined oberator velued distributlons in
the three space varlebles are determined. &
We dlscuss the problem of determlnlng Wthh
set,of creation and annihilation;bperators, among
4 ", y
the infinite possible number of such sets, is rele-
vant in a given problem. :We examine the implenen—

tatlbn of certain simple requlrements which seem to

PR

be obviously neces¥ary in order for the mathematlcal
formallsm to be able to descrlbe satisfactorily a
physrcal system. (The present study can’ thus be
cpn51dered as belng ‘done from a p01nt 6f view somewhat
51mllar to the one of the SO called "ax1omatlsts in

completely.quantlzed fleld theqry.) We show that .

Y R
whenever the equatlon of motion is homogeneous, (Whlch

a

is the case in most problems of interest),. the study

of all phy91cal requlrements reduces to studylng

Bogollubov transformatlons between creatlon and annl-

hllatlon operators. e f '
_ T LA -

ivo

/

. .‘\’
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We study such transformations in the third
chapter where we obtain some new important géeults
concerning their general properties. We also dlSCUSS
the p0951b111ty of non-conservation of the total
charge.

We examine 1n detalls the following partlcular
problems a quantlzed fleld in pre;ence of an exter-
nal‘source, electrons and positrons acted upch by a
plane electromagnetic wa ; Dirac fields-acted upon.
by potentials of the fdrm A(x)§(t) and A(x)0(t-t ).

We study also Dlrac fields 1n presence of poten-

tials which have time dependences which can be repre-

sented by, sequences of step functions. !We then dis-"

cuss the IiMitin§ case where the time dependepee is

continuous.
We prove that the requirements that there exists
a uritary evolution operator or that phy51cal partlcles

can<Be described are exactly equlvalent We show that
N 8 o V
a satisfactoryvphysicalllnterpretatiqn can,he obtained

N

vwith~potentials of quite general time dependences if

4 - \

and”only if at.all times these potentials are such

that the necessary and sufflclent condltlons obtalned

Ay

v \

on A(x) in’ the problem A(x)e(t t ) are satlsfled We 3

derive some new estimates on potentléis for whlch these

‘ condltlons pre satlsfled.

/ . ! ’ >
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PRELIMINARIES AND NOTATION

Iy

The theory of ordinary gquantum mechaniocs
is already firmly established as giving a good
description of physical phenomena at the atomic '
.level. " The eseéhtlal difference between thls and
cla551cal mechanlcs is that now the observable
"quantities are elgenvalues of self adjoint operators

~UYUGRieh-aré such that canonically conjugate variables

do not commuté (for example: the momentom p and

~

/

T 9051tlon.x‘are such that [p.,xj] —1h6 i5 where
h/Zn, h belng Piﬁnck s constant).
1A;'the subatomic level i.e. in elementary

particles physics,.it.is clear that processes occur
where particles are destroyed or created. 'Such
progesses are'ih accoroance with’ the theory of
raaativity'in‘whioh mass, xé a form of energy so that

// ;t becomes pOSSlble to create or absorb partlcles
“lehenever the 1nteract1ons g1ve rlse to changes in

/ﬁ energy greater or equal to the rest enerqy (l e. mass)

, of the partlcles in questlon. -7ﬂﬁ;v

Slncelh: f:ntary partlcles have propertles :

-

: of both- relat;vistlc sYStems and quantum mechanical

©

systems, one must try to make a theory lpcorporatlng

the fundamental hypotheses of both,of these theorles.

R
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The theory so obtained however is so compllcated
that up to now nobody has even been able to prove that
rt is copsistent and non-trivial (in the sense that -
not only free particles could be describeé). The
main reason for trying to keep‘this:fnamewcrk is that
perturbation calculations (in_power bf the coupling
constants) in certain cases gave very good agreemenf
with experiments.. |

There is a class of simple problems which can r
help us -gain some understandlng of the situation.
These deal with idealized systems where\ghe particles ‘.
do not 1nteract between themselves but are only acted ¢
upon by an external force. This lsﬁphe type of‘systems
'that we will be con51der1ng 1n the present work.

Such systems have the advantage of belng
descrlbed by a 51mp1er mathematlcal formallsm that

1s‘used for those where the 1nfl&ence of- the particles“ ’
on one another is takeh.into décount;- They‘heverthezéssl
have the prcperty.that particles can be creatéﬂ or/'
'destroyed when the energy of the system is changed

| ' The flndlng of a relathlstlc wave equatlon

B for elementary partlcles is compllcated by the eklstencef',

- of the spln.' For a splnless partlcle, such an equatlon

is obtained ‘by using the same rule as for the Schr&dlnger;f
;lequatlon- the ene!gy Operator is E = Lﬂ %ﬁ and the e
. » : ‘ "'"'»""e - t S .

2




[
* momentum operator p = -if V. The classical relation

give®ng the eneréy of a free particle:

e~ £ = pzég + m2c R

2

Whefe m is the mass of the particle, thus leg;s to the

(Klein-Gorkon) -wave equation : ‘ ii.
12 a2 etex) = (-#2e% vP 4 mPch) ot
atz B . ~ . : -~

As customary, we shall use the natural units
3,

where = 1 and ¢ = 1: We shall use the f0110w1ng

relativistic notation: . ot :
' 0 +—2 3 ., 0 s :
M o=tx,x,x%,x%) = (x ' X)
’ € ’ '
0 _° ; . 1 2 _
where x .= t, the time parameter and x~ = x, x* =Y,

X3, = z, the ‘space coordinates. The metric tensor @QU

. . e -, R
Sy - RO LS 4 . .

is such that

fho =1, 911 .7 922i~ 933 = <l g, =0 (u# ).

N w : )
‘The product of two 4-Vectors is then
TXey = xoyo - X-y =‘x9yo,--xlyl ;;x?yzt— x3y .
j — The Klein-Gorden,eqﬁétiehlcan then be written,és‘
Y c@end) s =0 *
: ' . » .
where [] 2% - Vz ‘
i o ati g ,
,%- For Spln % partlcles, as electrons for example,
AR

the qave eduation 13 the Dlrac equatlon.l

. -
) . . L o 5, AR . . .
. . . : .y . . e
H

k3



U

(-iy+d + m) ¢v(x) =0
o 0 \\
where y-3 =Yy 3 _ - vy V;
) ot T
YW= yo,yl,yz,y3 are 4x4 constant matrices, such that
v v v v ‘
My = vty Pty v" = 29", -

" Spin 0 and % particles are the onlyitwo types of
particles whrch will be considered explicitly in the
present work: The ‘equations used are essentially the
above free eqhations, except for an additional term
representing the potential energyﬁaf‘the éarticles
‘(as thesecw1ll be acted upon by a given force) The
example wthh will be most discusse&d rs that of electrons
in presence of an electromagnetic potential. Systecms
of electrons are those for which the comsiete theory

is most succesful.

The qupntum mechanical states of Such systems
]

~must now obv1ously inelude states in which there is

- any arbitrary number of partlcles present, as the
-ndmbgr of these particles'csn change. Oﬁeratqrs are
. then needed to describe the ‘creation and.annihilation

of parricles. These are_defihed,simply as the oéeratdrs.

\ . - ' . :
which when applied onlgfstate of n particles will give

éither a state "of n+1\partic1es or n-1 particles.

The space of such-states is called FocK—Hilbert space.

’



Although we recalled the main properties of such a
formalism in ‘the text, a more detailed discussion of it

can be found in the, chapters six to ten of S.S. Schweber

[1961].

:&\\;//-~ - xiv ’ ) ‘ ~
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CHAPTER I : 4
TIME INDEPENDENT EXTERNAL FIELD 'PROBLEM

In the first part of this chapter, we present
the formalism used to describe a system consisting
of relativistic parficles acted upon by a time inde-
pendent potential.

Our main purpose in doing so is to intxoduce
the notat{Pns and concepts which will be needed in
the o?her chapters. We will also stress the fact
‘that time independent external field systems can be
guite rigorously;treated, exactly as is the case for
free field systems. ‘ )

In the second part, we show that there are
indeed many different ways to associate particles
with such systems. A commonly used ;uéntizatiqn
method will be studied in more detai;;(”’We will
then discuss the physical c0nsidera£ions which lead

one to regard the operators used in the first section

as giving the proper description.

a



1) Quantizedzéiéld Interacting with Time Indépendent
Y ‘ |

potentials °

o

Iﬂtroductlon L.
N L .,

In thls 8ect10n, we present a quantum field

theoretical treg&ment of the time independent external
.&, .

.
e - AR I

field interaction. ¢ ) .
The figid:Will be quantized in the manner des- |
cfﬁbed by, for example,_A.I. Akhiezer ;nd V.B. Berestetsky
[1953]‘and §.S. Schweber [(1961]. Our presentetion differs .
m9wever in that we make explicit use of wave packets.
Tnxs is done in order‘to understand clearly what happens
irr 1lght of the formalism for the c-number scattering
ﬂ1eory aS‘presented by J.M. Jauch [1958];_S.Tt Kuroda
\'[L959] (also by T. Kato [1966], RfG. Nepton [1966]).
' In this formalism, it is‘eiear that problems
with time jndependent potentials can be,preated rigo-
roWgly without recourse to the procedure df agiabatic
switching on and off of the potential. 4 (According to
tﬁis proceduré, a factor e"Eltl is,inprdduced in the /
.potentiailto facilitate the evaluation of ceréain qqén-
tities by increasing their convergence. At the end of‘
all celculations, the limit € »+0 is taken ) Thls,
obvlously, is Justlfled only when a system has a certain
stahility (or continulty) of pr0pert1es under varlatlon

x
of‘tpe'tlme dependence of the potentlal. Although this

;“‘ »

T
A
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might be desiréble for most physical situatiohs, it
has not yet been proven true in the description of

relativistic particles in extetnal fieldsf This is
why we avoid this procedure here.

We will examine in detail th roperties of

the creation and annihilation opdrators introduced
< .

in the quantization of the field. We will prove that

these are ih fact the operators asspciated with the

observable particles either initia ly or flnally.

L3

We will see that the total Hllbert space can

(n,m)

be separated in a sum of subspaces denoted 7 in whlch .

are the spaces contalnlng all possible states where

there are n bound particles and m bound antlpartlcles

L]

(when bound states are pofisible). e

“
~
f N

Similar scattering experiments can be done in

any one of these particular subspaces}géglm)

and will
yield exaetly the same answers to the scattering'prq-
&lem. The presence of bound particles has no.influence
whatsoever on a ecattering experiment.

;The only'effect takingtplagg’igiordinafy elasticﬂ
- scattering with many particlee; Such a situatioh is
expected here since there is no interaction hetween the
partléles. Their cha:ge\allows them only to be acted
upon by the external field; they are not themselves.the.w
causg of ahyhe;ect;omagnetlc ‘field. |

4
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. B ' i . i !
Although the bound particles never appear in a
scattering experiment when the external field is time

' :

independent, it is useful to have the necessary for-
ARt _ ‘ .

ma}ismlﬁo describe them. This is used in calculating
the energy levels of atoms for example.; o
InvsubSquent sections, we will study cases
where the external field depenggjéh ﬁime._ We will
:theg be able 'to descfibé, among otherﬁ;hings, the
freeing of bound parfiples.(and the bindiﬁg of fre¢' b
tparticles)-in an external field. Thi;rsﬁoﬁld happen .
Qﬁen, for example, the external field gbes'éfom A(§)— “
(which allows bound states) to A = 0 (;r vice versa).
.Let us)éonsider lor the moment the Di:acwelectron—
positronifield in interaction wifh a time independent |
electromagnetic potential‘A(§). The differential é@ua-

tion of motion is

{=iy.3 +'mIy(x) = ey .A(X)¥(x) (1.1)

’

ie. i y(t,x) = hyle,x)

where s

h = YQ[iy.a +.m]‘-,ey9y.A(§i .

‘Solution

The quantized'field Qpératox SOiutioh is

piex = Py . .2)
- : S o S

W

’

E\ .



where \
x
$00,x) = ) bfo(x) +) a1 ()
~’—— N 1: s . ) E' L‘."' -
E I .
o
+ + .
. g {bgf, o (x) def_(x)) . (/1 3)
. . ¢ ' )
The coeff1c1ents" in the expanslon (1.3): bg"dg;’bé

and dglare here operators. They will be defined pro-
perly in a moment. we first explain what are the
functions f(x) in (1.3) and what their labels mean. ; i

i)  The. functlons f (x) and f ,(x) are elgenfunctlonS‘
of h correSpondlng to the dlscrete eigenvalues +E> 0,
-L'< 0. They are square 1ntegrable and orthonormal.

A single index E or E' is used to characterize these
functions but it imp&icitly means rathe;‘a set of indices
containing also any other good éuantum number which would
come from a conserved quantity due to a symmetry in the

L4
system (llke the spin index s in the present case)

,
| The functlons f B(X) are square 1ntegrable func—
tions whlch contaln only elgenmodes bf h w1th the same
51gn ; of energy:’ (B denotes also implicitly the spin
‘index 's). Such functlons can be obtalned s1mply through

- the actlon of Q: (the M¢ller wave operator) on the cor~

’responging free functions.‘,'



Let us then define free wave packets as

\ ) : % -ip.x
fot(x)~=,fd b (p) 1 (B WS (<pre E%
A+B'~ E B' X (2n)3/2 w(g) ~
fé'() fdh() l__ (m )1 (e EX (1.4)
-g\¥) = j1dph , (p) V pie .

where fhe functions hB'(E) for B' =1,2,3,... form-an
\

‘grbitrary basis in L2. The other terms
2 L .

i

1 om % s ' —ig'-?f 1 m s -ip.
| ) w“(-p)e and ( ) vZ(p)e

.are the eigenmodes of‘h. correspondlng respectlvely to

elgenValues w(p) and -w(p) where w(p) = Jp2+ m2 . They

arg\ln the contlnuous spectrum of h So that.sthey are

normallzable only. to Dirag. delta functions. ‘
/

B cau e of the intertwining propertlus of Q,

the functlons deflned as. , %
A , :
# - o ,
) = Q£ S o
fopl® = Bfego 0k |
Wlll have the Same eigenvalue comp081tlon as f B(§)¢n ﬁy
thls we mean the follow1ng,V51nce v t “a
* o : 1 o L ip X S

R



b)

‘when @, is applied on each side of this equatjion dnd
L

h@2, is used, we obtain the similar expression

i

2,0,

. - L
hf+8(§) = fdghe.(g)w(g)[ﬂi (217)3&(“’(2))“” (-ple .
‘The same obv1ously holds for f kx).

"If we were not using wave packets, we could have
said 31mply'that from each eigenfunction of ho with
eigenvalue tw(g), we obtain a corresponding eigenfunc-
tion of h also with eigenvalue tw(g). These would be

O
f(~€,p~>,s) (x) N Q1“f(€,13,s) ()

where f
(e,p,s

The set of functlons/j+8(x) and £ B(x) form a

)(x) is the term in bracket in (1.5).

| 4
»basls in (L))", Slmllarly, I B(x') together
w1th all the eigenfunctions corresponding to the dis-

5

- crete spectrum of h form a complete orthonormal seg in
w?)?. | | |
ﬁereafter, we will use the set of functions
"(x) obtained through Q, from'fo‘(x).' One could
1nd1fferently use those obtalned through @_ or in fact
any complete set of such functlons with dlfferent
asymptotlc boundary condltlons. The phy51cal resqlts

would be the same,,the above ch01ce is made arbltrarily,

’for the moment



~

ii) ‘We now ceme back to the definition of the opera-
‘tors (b,a). These operators akd their adjoints have
the following anticommutation relations.

All the ‘operators b and'bJr anticommdte with all
the operators d and dT.

Tﬁe "d" type operators and the "b" type operators

.

" have the same anticommutation relatioys. éﬁb
These are N &
t, ‘ :
b b_} = 6§ _ b b.} =0, .
t E’ E} EE t E’ E} P -
b, b} =0 b, b} =0 ' *
B’ Pg | g’ Pg

Tyo
{bBI bBl}— 6

discrete. | - ' ;,igf

s

They operate on the Hllbert space (JJ) “With the

. Fock space structure for which the vacuum state |0> is

deflned .as ' SR . \ . v

: bE]o> 0 dg|0> =0~ E and E'
and R R g - |
bglo> = 0 ~'dB|Q>'-é.0‘¥ B« .. a (1.7)



»

The other states pf_this space are obtained (as in the
free field

tors bf a d

ase) by the action of the creation opera-

. [
T on the vacuum state. The general state

-
is then a/normalizable linear combination with different

values of k, £, n and m of states of.the type

"D

y E'> = b(a1)+b(a2)+... b(al)f\ x

|2 gy i BrE,

a

. «bien’ @t amtam)’ <
xaEpt.aEh o> .

< ’

The relation between the creation and ann;hila@ion ‘
operators discussed here and those used in the treatments

which do not Ege wave packets is simﬁly
. - *
bt 1at - - |
&, = [dghg.(g)ds(g) . (1.8)

,thé operatoﬁs‘bE and d;; being the same. The qperaths '

fbs(g) and ds(g) batisfyvthe énticommutation relatiéns

~.L~_'.imi;l'.r'znv:-1:o those of bg and dﬁ except tﬁgzwﬁné Kroneckgr
. déi;a'gunqtichs GBB.ﬂare now replaced by Dirac delta

functions §(p-p')..



,““

.;ime variatlon of operators.' ‘

10

We q?te also that, similarly to the definition

(1.8), on%f;ould define more general operators as ' ' )
/:{/ . )
o 2
bfg) = fdp I 95(p)b (p)
. ,.\I! ~ s:l ~ ~
~
iyt o (a8 t |
d{g) =*Jdp I gi(p)d_(p) (1.9)
I T o s=1 - :
L/ .

~ -

wherefés(p) is a completely arbitrary Lz function of p
and s~ | |

In what follows, we will on occasions use any

one '6f the above mentiffgd/fg;;; for the creation and
N

annlhllatlon Qperators (whenever we flnd that the mean-

flng of certa{n expre551ons 1s made clearer by using it).

iii) \ The quantum field theoretlcal energy, operator

“1

for this system is simply

4.

A'\
HI ] Ebib + J E'al,d_,+ [a f s (p) (b (p)b_(p) +al (p1a_ () )
L PPppT L, T TEr T R L WIRIIRSIETPS IV IRT g IR 2
. Vo . '
. R © . (1.10)

It“canveasﬁly'beHChecked ‘using‘the antiCOmmutatiOn-

trelatléns, that the fleld operator w(x) has its trme

N y ,
development ruled by the Helsenberg equatlon for the

IS

A = (be,x, H . .-ff’/(:;.11)§ "“;




s

H can formally be written in terms of the field (’

¥
operator as -

Q'
w(p)} . (1.12)
1 F

H= de w*(t,x)hw(t,x)+—[£ E'+Jdp ®

3

S

The term in bracket.in this expression Fs the equiva-

i

lent here of o . \J

\!

2

[[dp ;I ow | . .
| ~ s -~ ) . ’ ' 1

=1

for the free field case where . s

2

} t | ey
ree de wfree(t'f)honree(F’§)+ [Id? SZ “(8)]

this sort of additive infinite constant is usually taken

into-account by introducing the simplifyihg notation;

. : - f . _f i “ . ‘ 4 . )

“H = :ldx ¢ (t,x)h y »(t,?):~ .
“free J 2 Yfree' 'l o"free

T . -

This is reFerred to as normal orderlng of the expres-

_,/
31on. It corresponds to reorderlng it such that all

‘the annlhllatlon operators are to the rlght of the

creatlon operators. In the case of empression (1 12),

'we can deflne a 31m11ar normal orderi g symboi Wthh

refers to ordering w1th resgect to thé operators b bf
-

-d,.df We can’ denote this simply by adéxng a subscr1pt7,ﬁ_
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A to the usual symbol as follows:

/ | i

H = :Id§ w*(t,g)hw(t,gy:A i (1,13)

‘e, The Hamiltonian H on the previously defined
Fock—Hiibert spaée acts~jﬁst like é free fiéld
Hamiltonian in the cofrésponding free field space.
It is then self adjoint and has a dense domaln in H
so that the operator e th is unltary for all t

This is the time translation Operator for the proHlem;

we have
'irf(t—to) ~iH(t-t ) -
y(t,x) =e Vit ,x)e - . o {1.14)
\ v 7

. The following operators
1 . "'

Q=e ] b;;b e J a;;.d,..+efdp z (b] (p)b_ (p)* d () ()

E E* : T os=1
, co L (1.15)
’ | ::. - ’ . 'Té
t 4t
N=) b_ b, Z d Jdp 2 {b (p)h (p)+d (p)d (p)} o
E E E CE'. E' E’ 1T os=l , .

o (1.16)

 ¢ommute w1th the energy opefhtor H. They‘aregthen left
‘1nvar1ant by the tlme translatlon operator é‘lHtg i.e.'
e ® . .

: they are constants of the motxon. As we w111 see later,

.
P




<
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they can be identified respectively [as total charge

relations, it can be

T + ‘
qE, and ds(g) each

From their anticommutatio

seen that the operators bg, b;(p)
‘ v ~

E' w(p)l

then create one particle of respect¥
E' and Q(g) and charge e, e, -e,"-ei. Similarly, their
respective adjoints by, b_(p), dh;\, and d_'(p)/annihilate
these:parti¢1es.' |

We w1ll just;fy in’the s ,sequent séction the v

1dent1f1cat10n of the ob39cté.created “and annlhllated

LE

. by the operators b,ubJr d, dT as’ the phy51cal particles.’
. . ) .
Physicai Interpretation : : -
: i v
///’// . ‘In this section we want to show how the previous

4

formalism is used to describe tﬁeiscattering parti&les
and the bound particles. | ;” ° ,

~— .
fWe will be working within the Héifenberg repre-
;h.

! . +
sentation of guantum mechanics. ngly, a vector

ain M whlch represents the phy81cal state of the system
will not change in time. The dynamlcal evolution 1s-
: i)

descriped by the‘operators”%oggﬁsponQ1ng to physical

rquantities which evolve acEdfding to the‘ﬁeisenberg

y
equation of motion (1.11).
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Let us start by examining the properties of the
field Sperator for large times. We will see that in
the far past and far futuye,’it can describe some freely
moving particles.

We recall that free particles ane associated
with?freg‘f;elds as follows. An arbitrary quéntized
free fiéid is (we will use the index "o" to characterize
free gield operators)

—ihot
v (t,x) = e Vo (0,%)

where

0, —§{b +d°+ } © (1.17
b (0,%) g +B( x) +dg (x) - aan

The creation and annihilation operators for the free

particles and antiparticles are gotten as

-ih t .
o _ o" .0
PB = Id§[e fstf?] ewo'(t,i() (1.18)
. ] N
of Co-iht gt T, | :
ag = Jd)f[? £,@1 b (t,x) . (1.19)

They are defined on the Fock-Hilbert space where

e
the vacuum state is the'state.|0> such that

o A Q _ 2,
bf|0>o.— 0 and dg|0> =0 ¥ f ¢ L ; (1.20)



A i
cles and antlpgrtlcles whlch have a momentum and spin

dlstrlbuthp given by the wave packet fs(p).

Their total energy,” charge and-number'Operators
v

are

’ 2
.f. .
H) = fdg szl‘w(g){bg(g) bg(g)-+d§(g)+d§(g)} (1.21)

2 0 ,
_ : o] t,0 _ 40 t .0 /
Q. = efdg sgl {b_(p) bg(p) -d_(p) ds(g)} (1.22)

- -

Z
]

2 .
o, t, o o, ,t 0
o Jdg szl {bg(p) bo(p) +d_(p) d_(p)} . (1.23)‘

The energy operator H, rules the time evolution

of the system through the Heisenberg equation:
>

2

i 3t Vo (tox) = [y (t,x), H]

or equivalently

iH_(t-t*) C -iH_(t-t')
v (t,x) = e © b (e, x)e  ° .

7

Given-the relations (1.18) and (1.19), we can
say that we will have here asymptotically freely moving
\
particles if creation aAnibilation operators defined

through
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-ih t

1im [d{f[C £0, 001 e, x) (1.24)

trFo
vexist., The limit t » -« will give us the initial opera-
tors (those in the far past) and the limit t + +« the
final operators (those in the far future).

These definitgons, we remark, are the samé ones
as used in the Lehmann Symanzik ‘Zimmermann formulation
of field theoretical scattering theory (Ff' for example,
P. Roman (1969]).

The limits (1.24) are easily calculaﬁed here.
Since the meaning of (1.2) is that
iht

x * 2.4
[dglg(g)] w(t,§)-fd§[e g(x)] $(0,x) ¥ ge (L7)

we have

’ihét * * .
[dele £(x)] y(t,x) - [dg[ﬂtf(f)] w<o,§)J|¢>

*

EN

. -ih t '
=[Jd§[e}hte © f(x)- Q+fc§)]*w(OJ§)J|¢> ¥ (o> € .

; | - (1.25)

From the anticommutator
Co 73

, ¥ , - o
{wu(olf)l w\)(or?f )} : 61]\)6(?-{ i()

(3

which follows from the anticommutation relations of the

creation and annihilation op%igtors, we have that
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) ' . ‘ v 4 -
H{Id§ 9(§)*w(0,§)Jl¢> 1° < (g.q) <¢]6> v g e (L7)  and

. v o> ¢ N .
(1.26)
Combining equations (1.25) and5(1.26)y'we obtain
that

-ih_t x : o
lim || [jdx[e f(x)] w(t,x)—fdx[9+f(x)] w(o,x)J|¢>[|
t+Fo - ~ . ~ ‘p~ = ~ ~

: ‘iht -ih_t

lim |le e © f(x)- Q. f£(x) ]

t+Fow t ~ - -

1A

A———

k\ggd this by the definition of @, is zero. We then ob-

*

tain T
--iﬁét fo) * (o] *
lim Jd§[e feB(f)] w(t’§)=:fd§[91fé6(§)] v (0,x)

‘t+Foo

(this being a strong operator limit).
The ihitiél operators are therefore
in a.fo *
bB = [dx[q, +B()f)] ¥ (0,x)
’ *
= Id§lf+6(§)] v (0,x)

¢

and . ) ‘
"din+;o ax|[f (x)]* (O'
B e - _8 ~ "" l?f) L

Using_equation (l.3),nw¢'see that

Coein in. _ . - . '
‘bB“—ij7: and" dB ) .dB :-,v _ (;f27)



+ Similarly, for the final operators, we obtain

4

{b BY; £ )-FdB.(Q £°

°“t de[Q £2, (x)] *0 (0, x)
=] -

o o
B'Q+f‘8f)}

and by the definition of S = (4_)" &, this is

o g {b B,(f +g" s£° sgr)t dB,(f+B, sg_B,)} E

We recall that-[S,HO]'= 0 so that [S, HO/IHOI] = 0.

It is then easy to éee that this implies

b

18

o _.© : ‘ .
(£1g0 SEge) =0 (1.28)
We then.get
out _ Z b (2 :s £0.7y - b ‘
B - g Bl( +8’ +’B|) = g' g S"‘B:*‘B' (1.29)

/
and similarly, .
g, ;,E
dgi (Egs S 6" L g S_g,g o

@

' By .using the unitéxity prbpe;ty.df S, we ‘can
.o . I :

-t
out’
=

- d
B v B'

.

ihve;tithese relations tQJobtain

e

>

S

(1.30)

n‘ o |

out+ SRR 3 ;“}'@l L
2' dgy . (s ) _g,- . R ¢ T 3 § I
3 . S |
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‘b, ¥s and d,.

kpectrum. .
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We thus have the important result that the three

sets of operators

in _in 2 2 out _out 2
be™,ap": £e L)}, {bg,dp: £ L) and {by ",dp @ £ L%}
] (1.32)
'areAidentical. This is obvious for the first swo sets

and comes from the fact that S is unitary in L2 for the
third.

Physically, this means that if we idehrify the
set of rnitial operators {b%n, d%n : fe L%} 4nd their
adjoints as annihilation and Creation operators for
physical particles and antiparticles of a certain type,
it follows that the other two sets must also be associa-

]

ted with exactly these same objects. -
- . L

It is also evident that all these operators are

.-

wellgdefined in the Fock-Hilbert space H .
We.remark that the operators'bE, bgf dE,uand df,
which were associated with the discrete eigenvalues +E,

-E' of h do'hot appear at all in phe_aSYmptotie forms

- which are used to identify what is created and annihi-

lated by the bB' bé,‘dg and dB' Their meaningfis then

knot directly determined but we know however that they N

were really deflned 1n exactly the same manner as the

g B S. They should therefore have the same nature )

'_except that. they are a53001ated w1th the dlscrete spectrum»

o
] whlle the latters are a55001ated w1th 1ts cont1nUous o

5



_f.

We will then admit that the operators bh’ bE'

d and dg, also create and annihilate % ysical par-

El
ticles but that these are bound in the exffernal poten-

tial whereas the bB's and dB's are associated with

20

scattering particles. ‘ -

*It is interesting to look at the form of the
$o- " Lo .
epefgy, charge and number operators. For the asympto-

tically free particles, we have -

Hin out ~

w(p) (b] (pYb_(p) + a] (p)d_ (p)}
NEL AL LN p)dg (p

.2
=H = Jdp ,z
.~ s=

. : N
_ _ + _ 4t
Q. -Qoqt-ejdg zl{bsig)bs(g) ds(g)ds(g)}

in s
N, =N___=|d %{b*( )b»()+d*< ya_ (p) )
in~ Yout~ |°F g2y s PI0g R s \B/9g 'R}

" ‘whereas the,pﬁerators for the coppfete system are, as

given in equations (1.21), (1.2p) and (1.23):

o SR + '

H=H + gEbEbE + %‘lz'flE,dE, & (1.33)
out _

Q=20 +eZb+b—eZd+d (134’)
in " “EE . E'"E' A

E E 3

out

N=N,_ + ) bTb + ) al ¢ L g -.}’(1.35)

7 Tin T £ "EE E,<E'dE"' -

N out - N ’ ’ . Co K

We can seeﬁfhat these'aré‘naturaliy separated into a

’scattering_particles.part and a bound particles part.

P
P
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Let us call respectively Hb' Qb and Nb the last
terms of the sums appearing in (1.33), (1.34) and
(1.35).. These operators commute with the total
Hamiltonian H so that they represent constaﬁts cf the
motion. lThe energy, cherge and number of the corres-
ponding bound particleewand those of the 5cattering

\ . 4 . .
particles are then separately conserved 1in time.

'Ccrresponding to this, there is a degenerAcy
v

of the asymptotic free particles vacuum state

According to the equations- (1.20), these are

€ o v

respectively by the equetions,

~

in o out _
br lo>, =0 | and b2 [0>_ . =0

in o« _ 2 out _ 2
df |0>in = 0 f,fe L de [0>out =0 v fel™.

4 ‘ (1.36)
These states can be any normalizable linear combination

of &states

| (0 scattering particles)E_; (0 scattering antiparticle9§$>
- (1.37)

with all possible values of E and E'.; They are not,
_ N -n. ’
-therefore, unlque whenever h has a~dlscrete spectrum

There is’ in fact a whole subspace of asymptotlc free
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particles vacuum states. We will denote by M this sub-
space which contains |[0> and all vectors of the form
(1.37) as a basis. ’

"Accordingly, every vector in Mwill generate a
Fock-Hilbert subspace through b + and dinT in the
usual way. We denote by Qén' the Fock-Hilb b~

space sO gotten from the basis vector (1.37) of M.

Fock-Hilbert subspaces Géﬁém) can similarly be

) t
defined with the final creation operators bout and

£

outT

. 2
d and from the identity ,  w

(b}", ah s %) = (b dout. £ L4},

t
h
Hh

we have

(n,m) _ g(n,m) -
:;Ollt ’ g;in ‘

The total Hilbert space H can then be written. as

-

(n,m) 3‘ ; . (1.38)

Descrlptlon of Scatterlng

The questlon asked in the fleld theoretical‘des—
crlptlon <>f a scattering experlment is the same one, .
as asked in the c~-number scatterlng theory except for g
the,neeessaryvmodificatlon due to the p0551b1e change’

in the number of particles..
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If the system is in a state where initially
there were n freely moving paTticles characterized

by the indices Ayr Gpy eoes@y and m free anti-

particles labelled Bl, 82"""6m' we, want to know

——————

what is the probability that in the far future there

are, in this state, n' freely moving particles and m'

" antiparticles characterized respectively by.

ai,.aé, ooy a;, and Bi, 82 cees B

o' R
Let us then suppose that the system is in the

gbate (we u§e the notation &y = O3 az,...,an)

/ L

|a E, ;8 E§.> = (-1) mjb(al)fb(az)f..;b(an)T x

~

x a(g) .. ace ) |oE 0By, > . (1.39)

We recall that aécordipg'to.the Heisenberg<repref
sentation, the description of'tQé motiqn of the system
is»given by the change'in time of the operators reére—
senting the,ggysical quangities wheréas the state
Vector’hoes not‘chénge. Thergfore, td see wha£ are'
the propef;ies of the system for lérge\times;\we have
hefe-tO'find what are the propertieg of “the statéf(i;39)
in terms of abymptotic operators. . This is easily done

by using the equation (1.27), i.e.

. 3
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& .
.

: Obviously, the system is then in a state where in the
far past there were n freely movihg particles and m
antiparticles characterized exactly as we wanted. The
vacuum,state lo}in’ for the scattering experiment where

the numbers of initial particles n and m.would be varied

' .
Eg; 0 Egl>'
To see what .is happening in the system in the
- .

N

is here |0

far future, we use the equatioh (1.31) which implies

\ ]

- T out’' ot . .
;B'I+B and' dB - %' dBP ~(S )-BI"B'

~.

> statevbf the system (1.39) in terms of
+ T
t . "It is evident that in the far future
~ '°’ﬁ” \
_a1n n free particles and m free antfbartlcles.

de of the probability that these be charac-

. L “ NG
' the indices 9; and B' is easily seen to be
" —m ‘ ‘
S(+a1,+01)5(+a2.+a2)...S(+a oy )(s’f)( ~Byr=By)eee
ST h x(s ") (-84-8p).  (1.40)
@& T N
. The - express1on (l 40) for all values of n, n', m, L

' and the 1nd1ces glves the complete answer to the

.'qu.stxon of scatter1ng. The set of all these elements,

\

\as'in_d:d ”  scatterlng theory, forms the scatterlng

~ Y )
S
=
v
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matrix. This will be denoted-by S and, iréanow on,

the c-number scattering matrix will be denoted by S_.

S can also be defined through the equations:
‘ .

in _ out .t o qin _ out .+
b6 S b8 S ‘ dB. S dB S
- te \ _ t
bE =9 bE S o dE' = S dE"S
and st =gt - (1.41)

The field theorétical scattering matrix can be
Qtfaightforwardly written in terms of the creation and
annihilation operators; Itbhas then‘a more concise arfd
useful form. This form is- easily fghnd as it is a trivial
case of 'dkneralized Bogoliubov transformation (dis-

. cussed in Cﬁapte: II1). It is siﬁply

_ . + ' - 1. QY - |
S = exp i g g_{bs(ln Sg) (+8,+8' )by, dB(l_“ S,) (=8, ‘B’de'}_'

. _ (1.42)
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2) Possibility of Different Pield Quantizations
In this .section, we show that with a given field
operator it is possible to associate as many sets of

creation and annihilation operators as there are bases

in (L2)4. We give the general relation betweém different

such sets of operators, this is a generallzed Bogollubov ;

transformation. We then discuss some propertles t@/;\\»

such operators must have in order for them to'be able

to represent physical particles.
i) We saw in the preceding section that the fikld .
operator was a linear superposition~of'creatioh and

annihjlation opératdrsl(cf.‘equatiohs.ﬂl.Z)'and (1.3))

, ST
" where the functions S ; -
{ . . ' 2y
-iht ~ -jiht _ _
e ng§): e ff?B‘f) p
-iht -iht . ’
e fE.(§), f_B(E) v‘f .

¢
o

formed a:basis in tﬁe space.£L2)4l(i.e. the 4-compdnent

L?"space) . As we will see later,f§this will also be_thei/

e o » "_._ N . .
case in~most external fleldrproglems;,even when the

potentlél is tzme dependept. The fleld operator can %

JUNRSES

‘theh generally be. wrltten“as N

%

v = T L vy fe® o 0 2

k p=l

B ” v A
LA o3 . . . e LT
Lo~ - . . an

<
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where fuk(x) for w =1,2,3,4 and k = 1,...» form a
. basis in (L9, - That is f
£ £ )= a | i 2.
( uk’ \)2) - f X fpk(}f) \)il()f) - 611\)6}(2 ,( +2)
and
4 . - :
f _ (x) £ ' = x-x"') . 2.3
‘ é zl uk X uk(f ) 6(~.~ ) ( )
p ) h .
The wuk's satisfy the anticommutation relations of
creation and annihilation operators:
. | o~
{yuk,wvl} 0 | {wuk,wvz} ,_éuvdkg (2.4)

and are well defined bounded operators on some Hilbert

space A .
“Since the operators wuk are well defined bounded
operators, any operator ’ ¢
. ‘;’:” ‘&@&
* : 2.4 -
p(f) = |dx £ (x)y'(x) where f ¢ (L7) (2.5)

is also a well deflned\bounded operator in .k as is

evident from the following argudfent.

| ) : 4 . ‘G L]
: 2 _ 2
M@ ™= Lt pnglell® oy
. ¢ — 1- g
'S . - E u-.z:l E. u'-_z-_-l(f’fuk) (fll_fu'kl)<¢wu'k'w'“kl¢>
-~ I-L | c ' -‘.:f
: ' r

5y

- :
W LR
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and upon using (2.4), this 1is

: 4
3 L e 1% = rE vl e M
k pu=1 :

The‘adjoint w+(f) is also well defined and wé'alwayg

have

{o(£),v(g)} = 0 (wit),0T(g)) = (£,9) v £ and g D).

. ‘ | (2.6)

.~

Such a field operatdr Y (x) having the property

that v(f) is well defined on M for all £ ¢ (LY)* will

>

be, said_ to be .an operator valued distribution on the

test function space (L2)4.

~To any basis ka e(L2)4, it is then possible to

associate a set of well defined operators 5

' e :
N fdg £ ¥ v () @

. . -

having the anticommutation relations of creation and

annihilation operators in H: ‘
‘ * . Lo
{ ' o . | ' !f . .8

- -
i

With a given field operator y(x) ore can then

associate as many such sets as thére are bases in (L2)4.
. ’ . ‘ ' 3

4



29

We note that because of the symmetry in (2.8)

.

Lk for a given u and k, any

or (2.4) between wuk and vy

.oqe of these could be called a creation (or annihilation)

operator, ,Considerations on_thé'non—negativeness of the
energy operator will help decide which one should create
or annihilate physical/ particles. We will then consider
(as this will be the usual case) that wpk fdf p=1,2
and w:k’for u = 3,4 are thé annihilation operators.

fn ordér to be able to identify more clearly which
are the creation operators or the arnihilation operators,

the following notation is used.

t \

Uk=wu+2rk for y = 1,2 .

Buk= wuk for u = 1,2‘ and D
ii) It is easy to find the relations between two -
different sets of creation and annihilation operators

associated with a field % (x). By definition;, we have

- '
— +
v =) u-z-l Bk £ ) * Dy Bl k(2N (2.9)
. : ' N
and also )
2 , . '+ L :
v (%) ”){ LB )+ Dy £pg 0] (2.10)

)

where {fuk(xoi and {f;k(x)} are two different bases ih

(L2)4. From comparing (2.9) and (2.10), one can see that
. . . M N

» ‘ . ~
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we must have o .

2
' ' + ' . .
Blp=0 [ (B (£ E 0 +DT (£ LE L)) (2.11)
2 v=1
oy =1 T, (€, e, +0], (e £ 2.12
Uk_% V’Z‘l{ v U+2,k' \)Z) Vi U+2lk, \)+2,R)}.( - “)

This sort of linear transformation between two sets
of creation and annihilation operators is called a
generalized Bogoliubqv ﬁraﬁsformation by analogy with
the éase where the index k runs only over a finite

set of numbers.

iii) - We will say that a set ofvcreation and annihi-
lation operators {Buk’Duk} can represent physical par;
ticles if, in the Hilbert space considéred, there is
a vectgftwhich can represent the ph}Sically possible
.state éfathere being none of these particles in the
system. That is there exists a vector |0; «H such
that Buk[03 = 0 and Duk,0> =0 for y = 1,2 and ~ k.
Furtherﬁore, once a given set of éuch opera-
tors is chosgn to représent’phyqigal parﬁicles, the
‘whqle relevang‘Hi}bert space for the system is deter-

4

mined. \
If a field operator y(t,x) is the only field .
operator variable for a given“pfoblem, it (with ‘the

external field) must give.a complete'descripﬁion'of
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the system. If then at some time say "to", W(to;fj
describes cértain bartiqles, all the possibié spétes., 
of the system at this time will cons?;t of‘ﬁero,fone,‘
two ;.? etc. particles states. That is states of the
Fock—Hilbeft space :Fto associated to the vacuum fo>
through the particles crgation_operators'in the usual
way. If(Fto describes all physicall§ possible‘staﬁes

at some tﬂ@if"to"’ it must,aléo descri?e all~possible
states at all times. This‘is necessary, for example,‘
in‘brder toﬂbé\ablé to use the Heisenberg représentation
formalism in which the motion is described by.a state
vector which‘aaés not change in time while éhe operatcrs
representing the dynamical variables evolve‘accofding to
the Heisenberg equation of motion. We must therefore -
consider :;to as the total relevaﬁtAHilbert:q?éce»Il.

We remark that for any other'a;b%trarﬁ gset of

4operators\{B;k,D;k} there will not always be ‘such a

.

state in 4 (as we will see later) even if _states( | o> =

‘ L%i' .
| Buk}¢>c= 0.

~

'

puk]¢>;= 0 for y = 1,2 | ‘(2,l3)vf

and a given fixed value of k can always be fouhd'iﬁ;d&.
This last fact is easily shown by constructing

states



|¢> = B! B' D' D' l(5> where If&)>( H
k7 2k "1k 2k’ :\

These cannot be zero ¥ [¢>¢ H since this would imply
] 1. ' |} _ . . . . . .
BlkBZlekDZk = 0. This is inconsistent with the anti-

commutation relations since we must have

v T 1t "f v 1 ' ' ' ' » o
Dy r [Py r (B s [B)y +ByyBoyDy Do 1113 = 1720
All such states |[¢> are easily seen to satisfy (2.12)
. L} ' ] L _
since ¢ ¥, =0 ¥ u, k follows from wuk,wuk} = 0.
The necessary and sufficient conditions for two
sets of creation and annihilation operators to define
each a vacuum state in the same space together with
the general propertiés of Bogoliubov transformations
‘will be discussed at length in Chapter III.
QY . .

Physical Reguireménts}

As is now evident from the preceding section a

: ¥,
. ) . . .Y .
well-defined operator valued distribution y(t,x) is

Y

determined at all times t by
vit,x) = e yo,x) (2.14)

whenever y(0,x) is itself an operator valued distribu-
tion. This follows from the fabt that e 1P% v t is
a unitary operator on (Lz_»)‘l.W

- BN | ,

\v

32
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Since the operator ¥ (0,x) can be - defined on meny
differe;t Fock-Hilbert spaces, one must have certain
geqeral criteria which will help determine which one
among these spaces should be chosen. This is what we
discuss in this section. N

We will examine in particular the possibility

of quantlzatlaw/éhrough the free field @unctlons feB( x)

since this is the most frquently encouﬂ%éred one (for

‘example: H.E. Moses [1954], K.O. Friedrichs [1953],

P.J.M. Bongaarts [1970F, M} seiler [1972]).

The decompositioh of the field operator.¢(0,§)

P

would then be

“ ,
N )

. ot .
Y (0,x) = Z {b3 f+B(x) + dB £2,00} . (2.15)

and the Fock-Hilbert space A defined by the action of

ot

,i. - . ' .“
b° and d° on the vacuum .|0>° defined by

bgl0>® =0, dg[o>® =0 » B . (2.16)

i)  In order to have a meaningful physical theory,

felther one of the folloW1ng requlrements are usually

expected to be satisfied in any quantum fleld theory.

These requlrements aré“in fact what should f1x ‘the

quantization.
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a) A well defined non-negative energy operator H
exists on J§ such that the solution of the differential
equation of motion‘satisfiesfﬁhe Heisenberg equation

. 4

A

ige w(t,x) = vt

This méan§ that Planck's relation that energy is pro-
poriional éo{the frequency of vibration of the field
modes is satisfié‘d'(Y. Takahashi [1969]).

b) There is a unitary operator U(t,t.) relating the

fields at times t and tO such that

vit,x) = dB)v,0uE) .

c) We do not care about giving a physical interpre-
tation to the'fieldé for finite times. We only ask that
they always be well defined operator valued distributions
on a Hilbert space M and that they describe freely-

_moving particles for very large times. .

~ These last two alternativeé are those presented

Hby A.S. Wightmah aﬁ'the Coral Gables Cbnfergnce [1971]
for systems where the. c-number- problem is well defined,
as is the case here.

&

ii) We now examine the implications of the pretious
. . . - . “ .

freqdirements._ We start with b);vletkus suppose tpatg;

the Hilbert space chosen islﬂb,“'W§ require that.there
S . - . . ) :

K
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N

exists a unitary operator U(t) on M 'such that

vt,x) = uTerpo,0u(e) . (2.17)

From the decomposition (2.15) for y(0,x) and the rela-

tion (2.14), one can see that the above equation is

. ot —int .
O -iht -iht
b
] (B ¢ fog(x) + d7 e £2,00)
: t : -
- z{u*(t)bEU(t)fSB(x)+ u*(t)dg U(e)£2, (0 ). (2.18)
g ‘ ~ . ~ _

° Upon 1ntegrat1ng each side of this equatléh with
[f (x)] » one obtains that the above requirement

implles that there must exist a unitary operator U(t)

such that
o - © 0o _~iht.o . 1ht o
O, .t _ o) o 1ht -iht £°
dg(t) = g.{bﬂ'(f-ﬁ , B.)+ dB.(f B.)}
(2.19)
where
by (t) = u*(t)bEU(t) and d2(t) = b*(t)dguct) .

3
That is: the Bogoliubov transformation on the right
hand side of equat{dn (2.19) must be unitarilf_imple-

-mehtable.



We will prove in Chapter IV that this is in
fact possible if and only if the Hilbert space lio
coincide exactly with the Fock-Hilbert space H de-

fined in the previous section 1). That ish if and
‘”3

only if the set of operators {bg,dg) is unitarily ¢

A,

equivalent to the set {bE’bB’dE”d%} introduced in
section 1). We are then brought back to considering
the Hilbert space H as the physically relevant one.

In this space,’ the time translation operator is already

known to exist; according to equation (1.14), it is

U(t) = e‘lHt

*

where the energy operator H is given by equation (1.10).
In the case of time independent potentials, it is

trivial that the two requirements a) and b) are exactly
" .\ . .-

equivalent. We have just seen that when there exists

A -
P

a U(t), it is in/ fact e MY 5o that a well defined ©
energy operator H exists., Conversely, whenever there .
exists a well defined energy wperator H, e At 5 4

unitary operétor having the prepérty (2.17).

v
!
G

two (or more) sets

iv) It can however happen £hat
of particle crgation and annihilation operators both
have a yacuum in the same épace 13.;,It is then easy
to seé thabsdifférent phénomena.are predictedflaccording’

- 3
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§

. to which set we interpret as representing the physical
particles. For example, we have seen that the number

of particlés operator is here

o

N=7Jbgbg+ | al,a., + Z(b 5

atq -
d;)
E E" g

g

and is time independent. . This mé§ from the fact that
it commutes with H so that ‘the number of these particles

is conserved.

-

The number operator for the other partjcles at

. . X . .
tlme Zero is e . : :

f

.i..
o _ o} o) o .0
=3 {bB bB + dB d3}

TR g

At time t, .this becomes

e+th e e—th
which in general will be different from N, . The use of
the operators {bg,dg} in the case of’time independent’
poteﬁtials is responsible for such inﬁerpretations'as
t *:a;e-given in the references mentionéd at theibeginning

| of‘this section. oﬁg finds, for examplé, in the article
-by Bongaarts [1970]:4 Pairs of particles and antiparticles
are created and annihilated conﬁindously'...; . However,
fo:»the limit‘t+-tm; the theory“reduces to a Ohe—particle -

' situation ..... . This is an asymptotlc result, for o

.t > o and comes from a dynam1cal 81tuatlon for flnite



consideration can help us decide

betweel 3 : ts of operators. This will be rela-

' requirement. ‘

\
to-examine the third requirement, let
fcomﬁlétely general operator Qalued dis-

tribution | ). ' .

" We t require anything for finite times.

In particul Ithis meéns that we do not know at the

beginning of ‘”1treatmént on what space'W(0,§) is

s .Y

pory S
. b o

defined.

:

We adl fver, that the asymptotic creation

and‘aﬁﬁ{hil  on operaggts correpond to the observable

physical particles.
The. relevant physical particles operators must

then’ be those defined as
lin [axte £a01% T w(0® -
t+Fo ~ ST .

v *

They“‘must then be related to%(o,x) ‘as follows: ‘When
; ; ~ . !

't + -o, the operators are ’ -l

v

it - a3 001" b0

'd;“ = jd§(9+ff 17 v,x) - (2,20)
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and when t ¥@4e,

Y

W
> |
bgu = jd_fm;fis(f)]*;ww,g)
. outt ~ ' '
: b= axia_£2, 01" v (2.21)

In order for these to represent physical parti-
cles, we need that ‘the physical space contains vacuum

/
>, > .
states |0 in and |o out for them

We recall that w&en there are eigenfunctions of
h associated with discretq eigeﬁveiues, the operators
\

Q+ and {_ are not ﬁnitarya \The equatlon (2.20) (or

d? (2. 21)) will not then be 1nvert1ble in the sense. that

the operator valued dlstrlbutlon w(O x‘ cannot be

written completely in terms of the operakors bln' qtn
\ \ .,

(or bOUt, dOUt).* That i's: these oeerators do not form

[ 8
anairreducible set, 1In thls case, ox§&must define other

L L SN
Creation and annihilation operators aéﬂ s

L. - . . * . ) \\‘ »

by = [ax £200% 4 00,x) y
L fo ‘

af, = fdg £ (0)" v o, gf* o (2.22)

_ A set of functions Q'fQé togeﬁher w1th £ 'and }

\

form a h&éisin'(Lz')‘-4 so that we can 1nVert the éhpations v

. (2.20) and obtaim:

Ty
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_ ~ ot e
VOO0 = T bpfioo & g af g i

. ‘ . b .
+Jb2 0, £2 (x)] +alh '[Q+f88(§)]}" o (2.23)

3& from (2.21):

1.

v(0,x) = % byfp (x) + 7 al £, (x)
-~ . ~ E' ' ~
+Zfb°“t[ (x>1+d°“t+ 02 011 d (250
g (2050 B -- Teote |

| , & |

The proper Hilbert space for the problem is then

L

the Fock- Hllbert space defined through the set of opera-

<

tors by, bgn A, dB and the vacuum |0> sudh that
. bgl0>=0v%E . dEdO>‘= 0 v E'
N ’ i
K . . . )
b:"|0>=-0 . alo>=0wp . - (2.25) .
g I° 9 L= |
‘a e . % é’/ S —
Equations (2.23) and »(2.25') a\'re easily g ogr&;’éd” -

/ i .
as belng., exactly those ‘used in the 181tia1\treatme £

\L o 3
thJ.s problem. As was shown, t“here is always a’ um.tary \\

ouﬁ \

| operator on. & relatlng the set of operators :

to pin =in,
B' ’ dB \v . . o . N
. ItP, however, e, had started w1th a gaven dlffe—
' rent Hllbert space, say .Zi as before, we woﬁld agaln

N evidently have obta.med ¢that 1t is necessary :
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) N . ’
¢ )
or the operators'{bg, dg} to be unitarily related to
. f
d

(b, b,

b db}. ) . ’

EI El "

/
iv) In the t1me independent problem all three re-
S
K4
quirements ag and c) are equ1Valent in favorlng the
G [
Hllbert space initially considered. 1In this space,
: i .
we have a well defined self adjoint energy operator H;
. —iH(t—to)
a unitary time tran§lation operator U(t,to)::e \

3) SRR
exists ¥ t and to and the operators representing. the

asymptotic free particles have a wacuum state.
: {

Furthermore, in this spage, .the creation and

anndhilation “operators defined by
bt(t)= fd§ fE(§)* W(tqf)j dgdt) [dx f. (x)*¢(t,x)

bB(t)szﬂf f+6(§)*¢(t,§) "d;(t)é{dg f_b(§)*¢(t,§)

-
-

have a vacuum state at all tlmes.élt is simply [0>).
_The’ partlcles a55001ated W1th them areothe phy51ca1

partlcles i.e. those observable as asymptotlc free

particleL.

T L Y]
.

When the necessary conditions are satisfied for.

" a ‘different set of creatlon and annlhllatlon operators

[ 4 »

to also have a vacuum in 14, we will sdy, that these re-

present pseudo-particles since they aré not observable.
B . Iy ‘ . X "

~
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f : R ¥
It 1s interesting and it can hdlp much in

*

understanding the concept of these psecudo-particles

to look at an "inverse" situation. Let us consider

the free' field system described by the dlfferentlal

v(t,x) =e .° J{b

3

equatlon

‘ -

{-iv.3 + ml}y (x) 0.

There is no doubt in this case about which
Fock-Hilbert space should be taken as the physically
relevant one. It can be found-in aﬁy textboek on
quantum field theory\ahd indeed agreee with the dis-
cuseion of this section that the broper creation and

annihilation oherators are those defined, in
-ih 't o o
£ g (x)]

-t-
gfeg(X) +d

g .B

&helparticles'always behave as free particles
and there is never any creation nor annihilation of
perticles. |

Hewever,'here also,lone can_define other crea-
tion an@ annihilation operators and it can happen hat
these have a vacuum state 1n‘fre Hllbert space con51*
"dered.’ (In fact, this will happen for the Qperators‘

defined through the ba51s associated with the operator

-

h con51dered before whenever the tqinsformatlon (2. 19) °

is unrtarlly 1mplementable ) The other partlcles SO

[ |
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defined will obviousiy behave differently from free
‘particles.

.No importance is nevertheless given to these
since they will'nat be observable in the system

considered. A - .



CHAPTER 1II

TIME DEPENDENT PROBLEM

Introduction

We study in this chapter some general properties

. of s&stems with time dependent external fields. We

will start by recalling an important result shown by

A.Z. Capri [1969] ma%g%y that the linear differential

equations of motion féf'sucﬁrexternal fieldyéysﬁems

are meaningful in the sense Lhat tﬁey determine unique,
. . A

well defined, causal operator valued distributions in

the four space—timé variabléé oﬁ some Hilbert space.

We will then prove that it follows from these
results that all times, the fields are well defined
operator valued distributions in the three spaée
variables. This’is‘done by shoﬁing that the field
‘operator-distributions at df%ferent times can be rela-
ted through a'c—number unitary operafor u{t,t') (which

we give explicitly in terms of the fundamental solutions

of Capri) as

Wtﬁf) = u(t,t')w(t'ﬂf) .

-

This, together with all the properties derived by Capri,
establishes the properties of'the operatorwu(t,t')

which are more or less assumed in other treatmeﬁps as

/0

.-

oot 44
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for example those by B. Schroer) R. Seiler and J.A.
Swieca [1570] and R. Seiler [1972] where one starts
directly ftom the above equation. | .
We then examine the requirements which need
be imposed because of physical considerations like ’
those discussed in the fifst chapter. We show that
this reduces to examining certain Bogoliubév trans-
formations between creation and annihi;ation 5perators.
The guestion as to whether or not the "inter-
polating" (i.e. at finite times) quantized field in
external field systems shoﬁld have éhysical intefest
is discussed as in the brevious article by G. Labonté
and A.Z. Capri [1972]. This is resolved by considéring
that at any given time it is poséible to kee§ the

external field constant to the value reached and.that

then one can examine the system and observe what par- |

®

ticles are present.. From this, it follows that it is
"necessary that physical particles be associated with
the system at any given time.

We explain how these are asséciated with the
field operator. The method used to do this also éppeérs

very useful in defihing directly the energy operator

simply as the sum of'the energy of all particles (without

recourse to the Lagrangian formalism). The operator S0

obtained will evidentl}x be self-adjoint, boupdéd below -
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Q

and have a dense domain whenever therc cxists a zero
particle state. This method can also be used to find
on which coefficients of the genefal c-number solution
Tof a problém one should impose the (anti-) commutation
félationé of creation ‘and annihilafion operatots (i.e.
as a method of quantization of time dependent systems).'
",This general formalism will then be applied to
a first simple model deScribing a boson field in the
xpresence of an~ekternal sougce:}ield. The proper
dgfinition of the operators to be associa£ed with
physicalbparticles will be" seen to shed much‘light

on the natUre.oﬁwtbis system.’

: - A second ﬁodel is, studied whéfe charged parti-
cles Lnterabt with an external electromagnetic wave.

.

We exaniine, in particular, a qpmmonly used quantization

»

préceduré-fbf this model. and show that it is not satis-

factory. We finally sngest how this problem could be

treated within the present formalism.

@&
.
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1) Reduction to a c-number Problem

We recall some of the results of A.zZ. Capri [1969]
-Tﬁpyhich show that the Dirac equation for qﬁaﬁtized fields
" acted upon by smooth time dependent external fields

determines well-defined operator valued distributions

in the four variables (t,x). This ¥ illustrated by the
study of the equation .

(=iy.d +m)y (t,x) =ey.Alt,x)y(t,x) . (1.1)

Let the external field Au(t,§) be a smooth func-
tion of't'and X: 1in particular, let‘it be in the space
A!. This is the space of infinitely differentiable
functions which go to zero at infinity, in ell direc-
tions of space time, faster than any inverse polynomial.
We also suppose that A(t,x) has é bounded Subport (tgrtye)
in time i.e. A(t,x) =0 for all times which are not in
the interval (t_,t.). This here_simplifies3the analysis
since we c;n talk of times at which there is no external
field in action.

Instead of working directly with the differential
equation (1.1), one studies_the'folloying equivalent |

integfal equation:
p(x) = wo(x)4 IG(x-y)ey;A(y)W(y)dy (1.2)
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where wo(x) is a free solution of the Dirac equatiyn
and G(x-y) is a fundamental solution of the free

eéquation i.e. satisfies
q-inax + m}C(x—y) = S{x~-y) . (1.3)

Since the external field A(t,x) = 0 ~ t ¢ (tS,tf),
the solution y(x) should be a free solution for these
times. One incorporates'the corresponding initial or

final condition in the integral equation (1.2) by

writing

Y (x) = ¥, (x) +fSr(x-y)ey.A(y)wgy)dy (1.4)
or

¥ (x) =-wout(x) + fsa(§-y)eY-A(y)w(y)dy (1.5)

where S.(x-y) and S,{(x-y) satisfy equation (1.3) and

]

Sr(%jy) 0 when (xo-yo)< 0 or ('x—y)2 <0 (1.6)

Sa(x-y)

0 when (xoryo)>'o or *(x—y)2<”0 . (1.7)

The equations (1.4) and (1.5) are the Kdllen-Yang-
Feldman equations. ¥in(x) and wout(x) are the free

fields to which ¥ (x) reduces fBr t <t , and t> te.
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It is to be noted I1€re that, for these time de-
pendent problems, one must always consider that the
Hilbert space of physical states is the Fock-Hilbert
space of the initial free particles states. T2§se
are in fact the only physical states p0551ble up to
time t since it is only then that the external fleld
starts to act on the particles. The Hilbert space
will thus be here the Fock-Hilbert space associated in
the usual manner with the free field w. (x).

In order to show that the equations (1.4) gnd
(1.5) establlsh meanlngful relations between field
operator valued distributions, one smears these equa-

tions with an arbitrary function f ¢ . Then, equation

(1.4), for example, can be written as
?(Trf) = ¥, (£) ‘ (1.8)

where Yy (f) = fdx f* (x)y(x) and Trf is defiﬁgd'és

/
(T_£) (x) =_f(x)-—é[y.A(x)]Tde sHiy-x)E(y) . (1.9)

Capr1 showed that the operator T maps any function

’

of ,J into a functlon of )J and has an inverse (in ,J)

such that

v (£) =.¢in(T; £) . (1.10)
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This shows that the field wkx) is a well defined operator

A

valued distribution on the space,J of functions since

the free field win(x) is known to have this property.
From t;e properties of Tr and those of the opera-

tor Ta similarlg defined through equation (1.5) instead

of (1.4), one can show that there are fundamental solu-

tions defined by

A _ -1

Sr(frg) = Sr(Tr f, g9)

a B -1

Sa(flg) - Sa(Ta fr g) .

These both satisfy the two equations:

(~iy" = tm-ey.A(x)}sP(x,y) = &(x-y)
X '

i =2 s (x,y)v" +msPux,y) - SP(x,y)ey.Aly) = & (x-y)

(1.11)

As the free fundamental solutions, they have the pro-

»

perties

A, ' 2
Sr(x,yg =,0 then; (xo—yo)< 0 or (x-y) < O'

A, ‘ A2 '
Sa(x,y) = 0 when (xo-yo)affxag (x-y)“ <0 . d(l.th
. - 4 d .‘i;’ N " ‘q. 1 B
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In terms of these, it is easy to show that the

operators T;l and T;l are just

' . : \\\\,

-1 ~ t A T

(T, f) (x) = f(x) + [ey.A(x)] deLSr(y,X)] f(y) (1.13)
2 . /

-1 t A e :
(T~ £) (x)=£(x) + [ey.A(x)] de[sa(y,X)] f(y) . (1J14) ’
Upon replacing (1.13) in equation (1.10), we then / \\ ‘
obtain
. ; C(a |
Y(x) = win(x)+jsf(x,y)eY-A(y)win(y)dy y :(1.15)

and similarly,

(y)dy . (1.16)

A
y(x) = wout(z? + fsa(&,y)eY.A(y)wout

R .

' 4
The Fields as Operator Valued Distributions on [LZ(E3)]

Using the. form (1.15) and the properties of the
distribution Sﬁ, we shall now show that the f%sld opera-

tor ¢ (t,x) can be meaningfully written as

pie,x) = ult,t)p(t',x)

\ ) .
~ 4
where u(t,t') is a c-number unitary operator on {LZ(E3)],

and that y satisfies thévcanonicél equal time anti-

commutation relations iv . \\k‘

. .+ y ) ot
{wu(t.r§) ’ ‘p\) (Itv?f )} = 6]-1\) 6(1( X )

q;-&ll times.

» | | ' ;‘ ) - <f%\\

\
s
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qi) From equ@tlon (L.15) and the following relation

for a free fleld -

y . o
inYorY) = ?JS(YO z, rY~2)Y win(zo,g)dg o (1.17)

bV
i

(where -iS(y —zo,y z) is the integral kernel for the

B! Lh (yo zo)
T operator e 40 in .3-space variables), one has

1 »&(xo,g)=J{6(x~y)+S§(x,y)eYA(y)}(ti)S(yo-zd,g-g)Yody %

-

LA x gtz ,2)dz . (1.18)

* + . where z_ is arbitrary. Let us consider here z_ <t  and
v+ define u(xo,zo) as the c-number operator corresponding -

. { to the integral kernel |
| qf S
g [ 3

cf (x_,2 )(x,y)=‘-iJ{ka-y)+si(x,yYey.A(y)}S(yo;zo,y-z)yody.
l)- " ! O’ - - ’ . . - N ’ - -

A};ﬁ v . | (1.19)

' ";.. _ - :
i;} The equation (1.18) can éggh\sé written as

‘ J ‘ _ o A ‘ . .
,}.ﬂ » W(x rh) = U(x 'Z )w ( o' X) . ,

B | | | | .
e © . 'We now'prove that ulx_,z,) "is unitary on [LZ(E3)]
I : . { 4

T . _ S . |

g i loeo - ’ A\

T : /

(u(xy,2,) £ 0ix,,2,)9) = (£,9) ¥ £ and g ¢ (L2t
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¢

.Let us consider an arbitrary function f(x) a,J(E3)
which has bounded support. From the results of the

previous section, it follows that
u(xo,zo}f(f) = fK(x ,z )(x z)f(z)dz (1.20)

is a distribution in thé:four variables (x,,X) on ..
(This is easily checked, by integrating (1.20) with an
arbitrary function of s ). It satisfies the DBirac

equation

i 5;— u(x X1 2, )f(x) Y [(1y 3y +m) - ey A(x)]u(x 12y )f(x)

-~

‘ ' (1.21)

with initial condition at X, = zo:

N

u(zo,zo)f(§_) = f(xk.. | f . (1.22)

With the help of equation (1.21), one gets

<

i -5)-3(;- (ulxy,z,) £,u(x,,2,)g) = i[dic ﬁﬁ {[u(xo,zo)fggfl*x

x y Yk[u(x 2z )g(x)]} a2

L4 1

Because of the causal propagatlon of the solutlon
u(x ' Zg )f(x), 1ts support in space-tlme is the llght :

cone subtended by the bounded support of f(x) Eor_aﬂy;
B : ' A
Q

" a . -



given "surface" xéf constant, this is then a bounded!

region of space. We apply Green's theorem:

to evaluate.(1.23),¢witﬁ‘v\;\all space so that Sv is
a surface at spatial infinity. Bépagseloffthe pre-

viously mentioned property of the sUppofE"oﬁ uf,

Q(§) ?‘0 on"Sv.so that (1.23) is R oo ST o

-~

. 98 R ) ‘ . _
1 b—x—(;‘ (U(}_‘{O’zo)f' u()ﬂ{o,zo)g) = 0 ¥ . f“, and g

v
3 : » I3 : ) ' - ‘ . .‘ N ’
i.e. (uf, ug) is independent of x_. Using- then x_ = z,
we obtaiﬁ from 11.22):

o ' !

o
\ o . -

(ulxg i), ulxg,z)g) = (£,9) .

| o ' 3.4 . . -
since L(E?) is dense in (L2(E%)1", this shows that =~ ¥

u(xo,zo) is unitary on the space [32(83)14. . .-

We now .define a unitary operator
'u(t ﬁ')‘= u(t,z )uf(t' z ). :
b 4 L . f 4 -d ; ’ o .‘ . . N )

-

anﬁ using ;hé‘fact that., o L ~
2 u(t,z) -;-iu(t z )h_ -, PR
. dz ' '7o A XL L o

N ‘

It is easily_chéckq@,’by differentiating u(t,zolpf(t',zdf

>



that it is independent of the arbitrar}ly chosen 2, < ts.
It also relates the field operators at different times

as .,

lp(t,i() = uft,t")yp(t',x)
ii) The anticommutator {wu(t,x), wi(t,x')} can now

be easily evaluated. For t'« ts’ we had
vit,x) = g(t,t')win(t",f) .

When smeared with a [LZ(EB)]4_function, this 1is

-

(' ' X)

fd§ £%(x)y (t,%) = jdg[u*(t,t'>f(§>1* Vi

-

so that : ~

(vee, 0 9T ee) )= UaxtaTee,ene o1y, @0,

jd’f'wzn(t'.)f') [qu(t,t')g(}f')]}.

Using the free field anticommutation relation

) St ‘

in,, ., in ' ' - Lt i

{wu (t ,{c),:Lv (,.t ' x')} 6uv §(x x )/}
] ) //

and the unitarity of the c-number operator u(t;t'), we
obtain

coee,B) wTe, 91 = (£,9) ¥ fnd g4 L2 (E3))?

-~

or equivalerntly



©

{p (t,x),p (t,x")} = ¢  s(x-x")
i ~ v - ' UV Lo

At

, 4

1ii) . These results establishing the relation

glt,x) = u(t,t")y(t',x)
=

could have been obtained also by studying dir'tly the

c-number operator u(t,t') defined by

i - u(t,t') = h(t)u(t,t")

It
F 4 ‘

_as is done by B. Schroer, R. Seiler apd J.A. Swieca

{1970] and by R. Seiler [1972].. One then shows that

the c-number operator u.(t,t') is unitary on the space

L2 €314 so that

2
| =~ 9 4! ' ' v
v {t,x) u(t,t")y, (t',x) for "t'< tg

~

is meaningful in theﬁsenae that [d§ f*(x)w(t,g) ;s .
a well defined operqior on the Fock-Hilbert space of
the ﬁree‘iield"win.j

The above mqhtioned authors give the result that
there exists suchvé—number operatofs for the Dirac fgua-
tion with external potential§ A(t,§) having the same
properties as those considereq here and for a sbinlzero
field jnteracting with a potential V(t,f) of the same
type.? In this last casé, the’equétion of éotion is

v
. 3
\. ‘1\



x ,
;1 motion of free particles by 1ntroduc1ng the smooth \

(L + M%) o (t,%) = Vit x)0(t,x)

Although up to now, are mentioned only cases
‘where the external fields are in thé space of smooth
functions g{, the results can certa;nly be extended to
more general external fields. 1In fact, in later se;—
tions, we will treat explicitly certain cases where
A(t,f) is far from being a smooth function of time.

We remark that if instead of perturbing the

time dependent external field, one con51dered particles

moving in a time independent potential (as we treated in
the first chapter) and perturb their motion with the
smooth externai field, one could very pr:jggz; use the
same proofs withulittle modifications to obtain similar
re'sults. One would simply replace the distribution

-is(x-x")y° (from which are defined

2 Sp(x=x') =6 (t-t')S(x-x") and S_(x-x') =-6 (t'~£)S(x-x'))

-iho(t-t')
which is the 3-space kernel of the operator e ‘

by the correspondlng kernel for the operator e ~ih (t- t'),
h = h - ey y[A(x). Now, A(x) would be the initial and
final time 1ndependent potentlal The field y(t, X) would
thus always(be a well deflned operator valued distribu-
tion on [L E )] actlng in 'the Fock-Hilbert space asso-

ciated with |the particles in the. constant potential. A (xJ.
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y
2) The Particles and the Energy Operator

We now examine the pﬁysical reqﬁirement conéq;ning
the exis£enge of an energy operator. This operator
needs to be bounded Lelow i.e. have a lowest energy
state and must govern the time development of the s;gtém
through the Heisenberg equation of motion. Since here
the strength and (or) shape of the external field acting

: .

on the quantum system change in time, the energy of this
system and .thus its lerst eigenstate will also change
in time. The energy operator then depends on time; we.

will denote it by H(t) and we must have for the field

variable W(t,g):

i VIEX) = [p(e,x),H(E)] . (2.1

i) It 1s to be remarked that the independent field
variables for external field problems are y(t,x) and
A(t,x) and that in faect the Heisenberg equation of
motion for a general operator O(t) which is a function
of ¢y and A is: t \\
. 9 _ . ¢ 0 _
i35 0(t)=1[0(t),H(t)) +ilsF o(8))
explicit

« ’ - (2.2)

where 30(t)/ot is the total variation in time of the
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t

operator O(t) and [90(t)/9t] is the partial

explicit

variation in time of O(t) due to its explicit time
dependence. For example, the Hamilfonian operator
H(t) itself will be a function of both ¥ (t,x) and

A(t,x) so that .

s
Y u(t) = i

i —’H(t) = 0 + 1[3t H(t)]

it explicit

For the external field A(t,x), which is the
operator A(t,x)I, I being the identity operator in
* the Hilbert space considered, one has

N
. 3 ., 0
= A(t, I =105 A(t, .. 1
tat (‘ % [&t ( 5)]expllclt

/

sipde (A (t,x)I,H(t)] = A(t,x)[I,H(t)] = 0.

®
t

.

i1i) We recall that a time independent external field
does not create or annihilate physical particles and
that_the total quantum energy gf the system’ is conserved.
If then the éxter:al field A(t,f) were to be kept to.

its value A(to’f) for all times after toe there shqulg'

.

i .o
be no more creation or annihilation of particles nor -

change in the energy of the system after to. That is: ”

~ - r

the number of particles and the energy associated with

the field » t> io and in particular for asymptotic times

A

A



O

N

will be the same as at time to. This fact, as we dis-
cussed in the reference by G. Labonté and A.Z. Capri
(1972], can be used to define the physical particles,
the energy operator and the vacuum state at any time

t_ for time dependent systems. e

Let us then consider an auxiliary field y (t,x)
Y t
. o ~

defined such that it satisfies

(-iy.5+ m)ylt,x) = ey At ,x)y, (t,x) (2.3)
o - o) -

&

and

e (toax) = plt ,x) Lo 2.4
(o )

1 This auxiliary field is uniqﬁeiy defined since
(2.3) and (2.4) éombinéd form a well defined (initial
Qaluéx Cauchy problem. ;Manifestly, it would be the
solution of the trué‘equation of motion if A(t,f).were
to be kept constant after time to.

As we ha§e seen previously, the solution of -

equation (2,.,3) can be written as

€ ince)re-t)
be (£,x) = e v, (t',x)
O O

)

where h(t ) = yO(iy.s + m) - éyoy.A(to,x) is self .adjoint

for quite general t-inaependent potentials A(to,xJ.mUs—e

ing the initial condition (2.4), we then_have



S

we have : ////

| -ih(t_) [t-t ]
_ o o
be (£00) = e it %) . (2.5)

Since

w(t,§)=f1(t,tF)¢in(t“§) with t' < ty o

_—ih(to)[t—tol 2
wto(t,f)?=e ult_, ")y, Te',x). t'<ty

(2.6)

A\

This shows that for all times fhe auxiliary field
is a well defined operator valued 9istrihution on

2.3 .4 -ih(t ) [t-t ]
[L°(E”) ] since .the c-number operator e > u(to,tﬂ
is unitary on this space. It will satisfy, for all

times t, the canonical ahticommutation relations since -

»w(to,x) was previously shown to satisfy them.

For field motion in a time indepéndent<potential,
we know how to extract from the field operator the
creation and annihilation opefators for physicai pér-' K

. : a {
ticles. The particles so defined are animated of indi-
vidual motion; after a long fime,‘if their energy is
sufficieht, they will be outside the region where the

external field is and move as free particles while, if

_they do rot have enough energy to escape its attraction,
v . - .7 , / :

" they.will remain bound in the potential.

We recall that for the field y, (t,x) moving in’
the potential A(x), these operators can be obtained as

PO

fqllowsi
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af,(t) = af, Bt = Taxte,, 01 g, (£,%)

E' E' J
et *
bo(t) = [dp hi, (@b lple = [axte, 001 w0
y * + iu) (p)t *
at(t) = [dp bt prafple = [dx[f_r(ﬁ)] op ()

(2.7)

whefe fE(x)’ (fE'(X)) are eigenfunctions of energy +k,
-, _ _ ..o _ o

(-E') of h = h_-ey y-A(x). ’B(f) m_fiB(f), where

here (_, instead of ¢, is used such that hs,(p) will

be the momentum distribution of the scattered freely

moving partlcles
1]
v The particles creation ‘and annlhllatlon opera-
tors for the auxiliary field at any time t are ‘thus

obtained by taking A(t_,Xx) as A(x)yénd b, (t,x) as
i N o 'z

¢A(t,xy._ ‘They are
t‘o. =
by (£, t) = de[fE GOl g (60
. !
af, (¢_,t fdx[f..<x>1 b (0x) .
JE
b = A -
B(t ,t) fdx[f+8(§)] wFo(t'f) | |
af (t.t) = Idx[f 1"y, (6% NEN

— (0]
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where the functions f are d;jined as before and carry

: ‘ _ o
the 1index t, of the operator h(t )—-ho— Cy Y-A(tolf)-

o]

The energy, charge and number of §Articles operators
for the auxiliary field are known to be independent of
t so thaﬁ if we define b(to) - b(to,to) and d(Fo) .
d(to,to), these can be written as

Poud . .
Hto::[dp 2 Uw(g){bé(g’to?bs(?’to)ﬁ'ds(?’to)ds(?'to)}

~ g=

T - . t

' %(t )h(to)bE(to)bE(t°)+_%v(t )E (£ )dp (8)dp . (tg)
o o .

(2.9)

Q..
. + ; + ) f §
A Qt - eJdg X {bs(?'to)bsgg’to)— ds‘?'tOst(?’tﬁ)j

d.. (to)dE;(to)

‘f— - -~
+ e bt (t )b.(t ) -e | L
. E%t ) I (0] L O o (t ) b

o’ , 0 ‘ .
’ (2.10)

- W . '
e

2 . . :
g = i + co
Ne T {dp ; {bs(?'to)bs(g’to)+'ds(g'to)dsjg’to'}

" by ()b (tg) 1,y (Eo) g (5] -
O

(2.11)

Since y, (t,x) at t = t_ is.equal to plt_,X),
to ' o) v o’%
these operators will also correspond to the energy charge

. and number of particles assbciated with y(t,x) at time

-
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t

H = H(to) r Q = Qito) and N = N(to)
o o o

The physical particles creation and, annihilation

operators at time t, can be defined directly from the

field W(t,§) as

t
_ - o *
bY(to) = Jdg[f+Y(§)J u(to,§)
\+ to x
‘ dx‘to) = Jd§[f-x(§)] vt ,x) . (2.12)

The less explicit but more succinct notation where

{y} = {E}u{B} and {(x} = {E"}U{B]

{

has been used since now it is clear what the meaning

of the indices and the properties of the corresponding

functions are.

We remark that this result is essentially the

<

same as the one obtained by M.I. Shirkov [1968] .,

' [1968]'. However, his method to btain these opera-

tors is based on the fequiremen that the creation
and annihilation operators diagonalize the Hamiltonian
at time t_. Ours .Stresses Qe fact that if one does

not change the external field after time t (such that

@
~a stable 51tuatlon lS obtalned) no more part cle? are

e 1
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created nor annihilated and the particles then obser-
vable are the'physical particles which were in thé
system at time to- This justifies more clear;y why
the operators (2.12) should be associated with the
physical particles and specifies which set of positive
- and negatilve energy functions one should use in smear-

‘. ing the field operator to obtain them.

1i1) Since

3

(t',x) for t' <t_ ,

p(t ,x) = ult ,t")y, s

(0] in

upon using the decomposition of Yin in terms of initial
creation and annihilation operators, one obtains that

(2.12) is the following Bogbliubov transformation

t . t
_ vy o e in,, , o} " O in +
bY(to)—-é{(f+Y,u(to,t VE )by (e (E, Chult e E o) dy (t')}
al (e ) = §i (£, u e, e £ )bi“<c'>+:’<ft° aie ) 2 yath (e
)\ O. - ’ ol +L: l; . i _)\‘-I ol _b, B

283

- .

These operators will satisfactorily describe -the

’ ..

physicar particles, of which the system is composed at

\\:}me toe when the ‘Bogoliubov transformation (2.13) is

unitarily implementable or,equivalently} when there

,exists a vector |0> ¢ i, ~such that
"0 ’ ’

/ A §
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bE(tO)|o>t =0 «~E dE,(to)]0>t =0 ~ k'
o ‘ - o
bs(g,to)lo>t =0 ¥~ p,s ds(E'to)'0>t =0 % p,s
o o
(2.14)s
]0>t will represent the zero particle -(there- d
o

tore the lowest energy and zero charge) state. When
it exists the operators H%tol, Q(to) and N(to) will
be well defined on dense domains in Hine

—
iv) We now prove that the operétor H(to) as defined
above gives the proper (i.e. according to the Heisenberg
‘equation) rate of change of thg field aperator v (t,x)

at time to- Having

. v

.93 o,.
1 ome by (t,x)y= vy [iy.9 + m - ey.A(t_,x)]y_ (tx)
7t Ve 0o | Y-¢rmo ot toﬁel

and
Lgg e = ¥Oliy.g 4 m - ey ALE,X) Iy (E,X)
h 1 4 -

since the ﬂ’gld operators coincide at time t_, one has

3, . ' e
- ’ t::to

T _
1'5-E\pt = 1

(t,§)‘
o t=t_

Since, furthermore, the auxiliary field is known to

satisfy the/Heisenberg equation:

R .. _‘



h\y

.9 ‘
1 =t Wto(t;§) = [wto(t,§), Hto]

for all times t, one has at t = tO D
"y o t=t e ~ o

7

From equation *2.15) and wt (to,x) = w(to,x), it then
o

follows that

.9
isg v vit, X) = [w(to,g), ﬁ(to)]
t= t \
! N .
i.e. the. Heisenberg equation is satisfied.
v) When the potential is time indépendent, the par-

F\Kifles annlhllatlon operators appear in the expansion
for th& field v (t,x) and vit, x) as "coefflclents in
front of the positive-frequency (or equlvalently: ‘
"pbsitive energy" since then the Heisenberg équa£ion
cleariy means w = E) c-number solutions of the‘field
equation. The annihilation operator part‘of.tﬁé fieldv

LI ’

v ~qqp’then be obtained by extracting the .positive frequency'

- ‘ ikt .
o e,x) = walTT J dk, e ° ‘Idt' e ° . vit,x)
R L © T (2.16)

ﬁ!@

~
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and correspondingly, the vacuum state. .can be defined

by

s e, 005 = 0 P 05 =0 W x L (2.17)

Although this method could be formally applied
-+ - : . -
also to time dependent external field problems, it

would be difficult to interpret the physicai.meaning

of the "vacuum" ‘¢O(t)> so defined. “This difficulty

(+).

comes from the definition of by equation (2.16).

Using the Yang-Feldman equation, oge can see that.
. A h's

5

") (tmy ix-yley.Ay) v (y)dy

r

($) L () .
ll) (tlf') - wln ' (tli{) +JS

(2.18)
>

For times t <ty the field is k'nowé_ to be Lpi"n'(t,x) and
s - . v -~ [
there are only free particles in the system since the
external field has not been "switched™n" yet. However,
3 (+) : » ~ . . i ’ ' K ' .
since S_°7, u‘Bike $ .+ does not have support only in
the forward light. cone, the second term in (2718) is

_not null for tc«< tsfso that .

v

L (+) () |
p (t,§);# Yin (t,f). for §<‘ts .
ST .

This shows that}w(+)(t;x) éannot,béithe.part of the
field w(t,x)>c6rresponding to physical particles anni-

. hilationﬂbpérators.-



" where

The method of decomposition into positive and

negative frequencies can however be used to obtain

. >

the creation and annihilation operators parts from the

-

auiiliary field since this field is the solution of

an equation with a time independent potentiél. Thus ,

f

at ‘an arbitrary time t, the pax$ of the field w(t,f)
‘containing only annihilation opsrators is

D v g Kot ikot":
-0

b (t',x) is the auxiliary field.

-

-

Il
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3) Time Translation Operator

-~

One could consider as more basic the requirement
that there exists a unitary time translation operator

U(t,t"') such that !
~

v(t,x) = U'r(t,t')w(t'x)uu,t') ¥ t and. t' . (3.1)

[
We will prove MAter the more ot less expected result

that this is exactly equivalent to the previous require-
ment concefning the existence of a well defined'%ﬁergy
operator at all times. For the moment, we just show
again how-this problem reduces fo the study of a
Bogoliubov transformation.

When A(t,x) is initially zéro, it isg easy to
see that the above u(t,t') wili exist 1f and only if

u(t,t") for t! < tS exists such that

* : .
y(t,x) = QT’(t.i')win(t',{c)U('t,tr) . (3.2)
‘Since ¢ '
.w(t,§i #wu%t.gf?wfhéx:,§r‘, | | .
" (3.2) can be writteniag ‘fi\ f;-{:> . R
NSW“;:~~w+ﬂr . » !
UT(t,t'?w.i‘n(t',g%uﬁ(lt,.tf“)’= u('t,’t')wi“ (e, x) . (3.3)

: i
. B . T

Cat
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-

Upon integrating each side of this equation with

’f+ (x)* and then £° (x)*, one obtain§ that U(t,t')
X ~ - -

must be such that

ut (e, en)pt™ (enyuct, ey = TS Lule, e ED b +
Q - ta o
o) ) " in .
w9 sule, )2 d e
N in .t - i '
vl et @t e e, ) = e Ludt, e f] db et
u ‘% - +“ {5 ;
1N . /
+ (f:{l,u(t,t'>f<_>6>d;“<t-/m.
' . (3.4)

1

There will therefore exist a unitary time tran-
slation operater U(t,t') if and only if the Bogoliubov

transformation defined by the right hand side terms of

\

(3.4) is unitarily implementable. We note that the

operators on the left hand side of .(3.4) are generally
: \

not the same as the'!physical particles’ creation and

rd

annihilation operators; they coincide only when A(bo,x)=0;

. The s-Mat;%§
?hek£hird poéslblé requirement, ag ment}oned in
. a
Chapter I, is that one would not -care about giving a .
bgisicalvinterprétation to the theory for finite times
but ask oéiy'thaﬁﬁéf.ﬁhe field always be a well defined

operator valued distribution on a Hilbert spacé[ b) it

.vr\" | el ° A . | \"\

N 2

’
’ .



describes freely moving particles for very large times

{i.e. only the S-matrix should exist).

1) T'he condition a) has already been shown to be

satisfied.

The condition b) ébviously can be satisfied only
if the external field remains constant to a cértain
value A(tf,%) after some timc te. Otherwise, parﬁicles
would keep on beiﬁg created and annihilated in the
region of thc potential and these would still be non
freely moving scattering particles. One must‘then‘suppose

that

¢

. — /

A(t,g) = A(tf,§) ¥ t - tf

As we saw in Chapter I, éﬁﬁiiflﬂfhould be ¢« good scat-
tering potential, if ¢he system is to describe freely

. .
moving particles for very large times.

The creation and annihilation operators for

.~
»

these particles, as is obvious from the discussion of
section 2), will in fact be the operators for physical

partlcles aSSOC1ated'wlth the auxiliary fleld wtf(t x)

-

(whlch is here the actual fleld ¥ t >t ) At any tlme

rtQ 2 tg, these are given by the equatlon (2. 13) w1th

: ' -he(t-tg)

u(t,t") = e £ £ u(tf,t') where pf h - ey y A(tfzx)
_ .

. . i o

-
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There will exlist a vacuum ]O,T defined by the
A

operators b (T - Lf) and d (T 2 tf) at one arbitrary

time T > tf if - and only 1f there exists av.‘:acuvn |0'>t

for all t > t This 1is sO since |0>t is in fact

£
time independent for 411 t » tf duc to the time

independence of A(t,x) during this time.° The present
condition will then be satisfied if and only 1if the
Bogoliubov transformaticen (2.13) with ty = te (or

equivalently » t > tf) is unitarily implementable.

There will then exist also an energy operator

“H(t 2 tf) = H(tf) v t > tf such that : .
CiH(t.) [t-t o) ~iH(t.) [t-t.]
: f
plt,x) = e £ t w(tf,x)e £ . (3.5)
~ ¢ ~ » N .
ii) As above, for the vacuum state, the properties

~ .

of the time independent problem imply that t%ere will
exist, at an arbitrary time T >tf; a unitary operator

u{(r,t') such that

Y, \ z

p(T,x) = UT (T, e )y (£ p0u(r,et) o T s by, sty
L4 . ' 4 ,
if-and only if U(tf,t') exists. As 1is oRQvious from

the previously mentioned property: ‘ ‘

PRUSRSI

| ' iH(t,) [T-tg)
U(tflt\) = U(T,t')e . §

A a . ot
Therefore, whenever U(T,t') exists, we have

- . )
. N . ¢
4 .



‘ . . ) _,.._S .
. here that the conditions under which this will be so

~are completely indepénAent of how the external figld

it ) [t-t ] > —iu(t\_)[t—tfj
N i ' ' ' L
o U tf,t )Lln(t ,x)U(tf,t )e ;B
(
= ¢ (t,x)

—ih_(t-t.) |

f f + ' : '
, = e 8] (tg,t )win(t ,¥)U(tf,t')

y .

Upon multiblying each side of this equation by U}tf,t')
from the. left and [ (tf,t'Y from the right, one obtains
. ~ihg (t-ty) - R

Vi (BRI = e Sy LD, (800 cBe
\ '_ ‘\ . . .+ . 8 “'( »
where , - o ' 'CR
. ~iH(tg) (E-tg) '
vV = U(tf,t')e~ U (tf,t')

This show® that it is always a necessary condition that ¢
' - —lhf(t‘-tf) M . .

the transformation e on the free field ¢, (t',x)

be unitarily implementable. ‘

l This means that the Bogoliubov transformation
" ‘ . )
defined by the right hand side of equatidh (3.4)
-ihf(t—tf) ' . ‘
where u(t,t') is replaced by e must be . .

unitarily simplementable. It lgwimgb%tant:to remark

-~

A(t;,x) was obtained}(i.e. "switched on"). The dif

ferences in switching on A(tf,x) are taken into ac

. o ) 1

completely in U(tf,tf). S - .

o e T ,_//

N N C » |
¢ o . : “

»n
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.one discussed in section 2).

75

such a transformation of a free field as
lha , : : " " Y 3
e Yin with an arbitrary "a" will be studied
in detail whepn we solve the problem where the .

extérnal field is A(t,x) = U(t—ts)A(g).

-~ 111) The requirement that only the final creation

and annihilation operators represent physical par-

ticles seems to be weaker ﬁhan.the others mentioned

up’te& now since the Bogoliubov transformation (2.13)

then needs to be unitarily implementable only for:

toﬂz tf. | ' . N
However, 1t 'seems very reasonable to accept

that, during an experiment in whlch ‘an external fleld
A(t,x) is "sw1tcheF’ n rom At S,~x) = O; one could

decide to keep the potentlai—eengtant at any time

4

\
tot>té»and'that then physical partlcles should be

observable in the system. If this is accepted, the.
. Q . .

'‘present requirement becomes exactly equivalent to the

e -
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4) Example: The Scalar Field with a c-number Source

The modei we wild now study does not describe a
scattering system fn the usual sense but is uwseful as
an example .to illuetrate how the metﬁod previously
discussed can be genefally applied to obtain the phy-
sical particles creation and ennihilation operators.
Thekfiele operator solution to this model ie well kepwn
(see for example P. Roman [1969]). Although it was also
treated es an -example by Shirkov [1968]; our t;gatment
with the auki%iary field method can b? seen to be much
more direct. In his case, one starfs with the Hamiltonian

as given.from the Lagrangian formalikm and, more or

L3

less gueﬁses‘which creation and annihilation operators

will-be such that the Hamiltohian is.diagonalﬁ%-lnxour

case, the creation and annihilatipn operators for the

physiCal*particles are direttly thermined from the

J
. fleld operator solutlon. The energy operator is then

defined such that tﬁe energy is 51mply the sum of the-

energies of all the particles. \ v
r ;
’ . ] f
. We also find the unitary operator relating the

-

creatfon and annihilation operators at diffefen;ﬁ"

[N .

£ thls was not obtained by shirkov.

Our a@dltlonal flnal dlscu531oq of tbe case

4

1’; wheq the sourcge is- kept constant after a certa;p tlme
| N

i;

quﬁ. so descr;bed.



i) In this section, we give the solution to the

equation of motion. We will be considering a system

77

of bosons; the corresponding problem with fermions can

be treated in much the same way.

rhe differential equation of motion for the

d
-

-field oﬁegator 1s:

(4 m)a(t,x) = p(t,x) (4.1)

where the e;ternal source p(t,x) 1s real and taken such

[}
that

p(t,x) = 0 =~ t < ts

Under this condition the system at times t < tg is des- -

cribed by a free boson flel& ¢ ( ). It can be in any

iR Y -~ }

state where there is any: numﬂbr of free partlcles
%

present. For ¢inj we use the standard decomposition

o -

p : (ik . A ) ’ . . ; ,
N (x(:Tr'~I;;2 J $ - lagoe R 4 at o etk

!1n~ ©(2m) iBTET; -

(4.2)

U ' N

where k.= w(k)t - k.x;'w(E) = /k2+‘g2 . The opera-

@&

-

e'tlons for bosons creatlon and annlhllatlon operators;

l

T
inltlal qpndltlon is easily seen to be - ‘

. tors "a" and natr satisfy the usual commutation rela-

The solutlon of equatlon (4. 1T°wlth the above
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p(x) = @in(x) + JAr(X~y)u(y)dy ‘ \ (4.3)

/

‘e

where Ar(x) i1s the fgndamental solution of the Klein-
. .

3 } ’

Gordon equation defined as

\

S, ' Q
Ar(x) = U(xO)A(x) (4.4)
" with : ‘ .
, I
. [ 9k ik.x -
A(x) = - LTy © sin wi(k)t . --(4.5)
. (271) J (K - :

-ii) . e no

This 'is done by using.the
- N I3 .

at amarbitrary time t

v
auxllldry (1eld method Yiscussed in section 2).

of the cquation _ ﬁﬁ; 2
(1 m2)4 (L.x) - (1 %) . (4.6)
o t I ()I . .

with, here, the

vt
R

R - B N :
g9y ) (Egi%) = S%“’{‘%%" i 4.7

.
e

| s
. This fleld is ea31ly gotten for tlmes t 2

‘.

51mply be g1Ven by (4. 3) where o(t x) is kept at the

< e ,

A ;("' .
i i ,
w Py

R Yied g : .
. o4 L ¢ v .
I % AR

i » : .
.

RSN

> £, i£ will -
(0]

4

L4



value p(to,x) for all t to' It is then

-

_ t
O L]
¢ (x) = @in(x)+-J dyOIQX Ar(x-y)p(y)
+w@ o
. +-f dyo[dg AI(X-y)o(to,g) . (4.8)
o £ « '
- O .

For t z_to,‘ﬁsing equation‘(i;i), one can rewrite this as
| b T ¢ |

! S . o
T (X)) =0y (x) —f dyo[dg 8 (x=y)p (y) —,f d—yofdg,A(x-yJo (tyry).
/ \ ‘*,- -® ) 4 t . .
Y .. O
: e L ‘ (4.9)
i ¥, ‘- L ; :

- .

-
.

- By generalizing;this time dependence tﬁgall values of
&

t, one obtafns the*field which satisfi (4.6) and

(4.7) ive,/the auxiliary field ¢, x). Its Fou%igr
‘ . [e] .

!

. . . . . : . "
wsition is easily obtained and one can then see

it cansbe written simply as
L f :
1 dk @ ile(K)t-k.x]
{At=(§) e N o7

o v '(217)3/2 J 2w (k) o

~ -

~ -

ilw(k)t-k.x]

+ A (k) 'e } o
to - . . E
?
b 1 ' ‘J dk o . ik.x -
. = Bt k) e " (4.10)
2032 ) GFag TR R
R - d . s (:" , ’

S

'7whe5e the pariiCIes creation and annhihilation operators
', -are.defined by

. : o s H
t ) . : . : ] .
L
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4
: g Loy
A, cf;g):a(k)«‘—l—f dyg e © oy k) '
: o} - 2w(k) 2= o
" .
. ' iwto :
o - . ~ :
- = —— p(t k) - ‘ (4.11)
I R
and
'y ~) - B 1  nikex
. p(t_,k) = ——~—-—-[dx ex T oo(t_,x) . ’
\ o' (2n)3/2 i o'~
From the time dependence of the auxiliary field

(4.10), it is obvious that the generator ‘of time.tran-

slationéii.e: theé eneréy operator is simply ’ <
Ve \ : . . 1 . .
I“' . - T ‘ - : °
o . th = [dg w(%) A (k) A (5)_, (4.12)
) % 0 e} ) "
and the Heisenberg equations:
: "2 g (6,x) = (6, (t,x),H_ ]
. ot Tt T t S
o o o
1‘—’tiup }(tx)=[{a¢"}(tx-)‘H ]
Jtotot Tt ! 0t "t VA ’
© . .°
_ are satisfied.
Ia,tgrms of the-ﬁié;d»dperator(variableg,'the'
. ‘energy, operator éangbe formally written as ,
a 'f ‘ ! o _ o . \
1 1 w32, 2 ~ '
H =5 {dax{{3 ¢(x)]17+m7¢(x)| - jdx p(x)¢(x) -c .
t 2 ~ u . . S~ Tt
‘ 0 ) : : .\\ N . O,
‘o | . A , L
=y . \ ,
" whére .
0 R » . I
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P .2
(ot k)]

o R wik)?

The—first term: %Jd% w (k) of.cto is the nérmai'infinite
term which has to be subtracted ip the expression cor--
responding to (4.13) in the case of a free'bosog field .
(i.e. when~p(%) = 0}).

4 ' ‘ - I ,
111) e above res;lts hold for apy ér?itra£§}zzgg/;;/.

so that one can write in ggneral the following d compo-
| _ LA 5

sition for the field ¢ (x) into particlé cY¥eation and

, F oot
‘annihilation operators:
L dk ~ilwt-k.x]
o (t,x) = 3/2 [ ——{A(k,t)e ST
T (2n) 2w (k) <5
; ilwt-k.x]
+ A (k,t)e T T
. . l\ . .
1 ‘[ ak ik .x ' B
+ — p(t,k)re "7 . (4.14)
(&n)3/2 m(k)z . '
wherg ‘ ‘
t iwy Co
A(k,t) - B (k) =a(k) + i j dy e O Bly i) - ’
T ~ T V2w(k) 2 o
\‘, ) 2. . .
e ‘ eiwtw L L o
o C ————— p{t,k) . (4.15)
‘\\. ‘ V2 w(k)3/2 T T .
| . Noa

| The operaﬁors A and Krsatisfy:\

\\ . ,\‘ - . B .



”~
e

C ey

/

(Ak,t), A (k',t)] =
.. B ‘ q
[A(k,t), A(k',t)]

\

It
o
«

%

The energy operator 1is

H(t) = Jdg Qkk)A%(g,t)A(g,t)

-

)
s

game :as for the initial free particles.
- ’ ’

(4.16)

(4.17)

+

The energy spectrum at any time is-exactly the

The 1owest

non-zero eigenvalue is m which isjﬁhe lower 'bound of

{
the continuousASpectrumZ

‘ PR
(A(k t)) create (annlhllate) guanta of energy of

i,

The operators AT(k,t)

mass m (and spin 0) so that ‘these quanta are artlcles
Q P

f the same mature as those whlch can $e lnltlaliy

p}gsent in the system. C b v
The vacuum- state at time .t 1is deflned by f
w . . . v '
) I o /
Ak, t) [0 = ¥, k . (f.le),
| P - e
Since this st&fe must he in thé Tnitial Hilbert %pqce,

’ - N,
I > =‘a°(t)jq>in'+ ,l“*{ ~1
4.( ) nr-l -V/—i-
PR - f 1” ’t/ ‘.
e Ky ) Gp)onealeyjog,

A )

}l'

A
LA
TR

o



Replacing this and the definition (4.15) of A(k,t) in
(4.18), ong can equate .the coefficients of‘O—particie,
l-particle, etc..... states‘separately and obtain‘that

.o - . _ a n ) . 1
a“(kl,.,.;k gy =20 V2o (k;)S (k. ,t)u®(t)  (4.19)
- e mT i=1 Tl :
where * - . -
i . N V ’ 5 ¢
. . N . .
. T . 1wyo N 1wt
S (Kvt) = —2— f dy e * Q(y k) —373 5(t, k)
o™ V2w(k) L _ , VZ w
- - .o P s ,
"
" k' - . .
'.f, ¥., One ‘now can determlne a (E’ By demandlng that
s g Y’
" ~|O> e pormalized ‘to 1 and with the golution. (4 199, .
t B
one can write |0>£ simply as R < L
e » b ~ v . .
1] ‘q',? ) i N s’ ) L4 . ' .
oL ¥4 , N -
A t }‘t =_exp[——]2'-Idk’-‘lS(k,t)Iz]_exp[‘Idk S(k,t)af(k)]]0>.
PO 7 ~ ; - B R~ ~ ~7 in
3 )’ , . (‘v.
s - ‘ ﬁ: - 7 (4.20)

“o o ’

* L ]

Since the two éets of creationm and annf&ilat&on
‘ operators A(k,t), Ai(k,ﬁ? and a(k), aT(k) have both a
' vacuum state in U, associated with themand are irre-

ducible, the%'must be related by a uqi{ary transforma-

~

‘tioqg This can be gotteﬁ here .simply by symmetrizing

the operator on the left hand side of the above equation.

ot} . .
One obtains*'the unitary operator ' .

- -



-

T(t) = eXPIdK[S(E,t)af(E) - S*(%,p)a(%)] . (4.21)

[N N

N\

With the help of the formula

- .

n

B B o (=1)
z Qn(B,A)

n!

where

\
Qn+l(B,A) = [B,&Zn(B,A)]. and gzo(B,A) = A ,
one can .check that
T (t)ak)T(t) = Ak, t) . ‘**\. (4.22)

»

One has also
H(tf = Tf(t)‘ﬂ- T(t) :
. , i in ' '

where Hin is the initial énergy operator:

Hip = Ok wa’ 000

.. 4
s

. Similarly thc number of particles operator is

-~

N(t) = T (t) N, T(t)

]

x
= Nin

ax afaoaw -

, \! A T(t) is the unitary timé/ivélution operator for

-,

”fpe particles creation and annihilation operators

~
-

.\ . : . -

\‘ _ . . | .{.’
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.

SR
_describing the system. It is not however -the-time
evolution operator for the field variables; this ig

due to the fact that the creation and annihilation "
operators have an.explicit time dependence and satisfy /

the Heisenberg equation.’ (2.2).

iv) The following remark sheds much light on the
phybsical nature of the systems described by the eQUaf .

tion considered. <

& N -
As soon as the external source is kept constant

in time, say after a certain time t., a stable situa-

tion is obtained, as it should. The particles creation

and annihilation Operétons are giVenlby

Ly TEtdwyg
Alk,t) = at(k) + — J dy e oy ,k)
~ ~ /2“"(u o ) ' . (o RN
-0 o N
eiwtf'

BT CAR I

These are time independent; no pérticles‘a:e~therefore'

\bxggted nor annihilated after tee Moreovérh the field

ot

=9Perator becomes , SR
) | 1 dk ; -id{ut-k.x] ' '
o(t, %) = —373 J ~—= {A(k,tg)e T |
B G N " S
\ 4 ilwt-k.x] 1 dk _ ‘ ik.X
o j 2.D(tf:E)e e

k,t + —
+ A ("j.' f) e ' \“ } Wz—‘w
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,\ R . ' . ’ .
The first tefm containing the operatofs A(E,tf), ‘E
Affﬁ,tf) is simpl§ a quantized free boson field.

Since it describes s:% ti:i. particles which could be'
present in the s;stem at‘time t, it is clear';hatvthe
system will contain only free particles; this. will *

so for all times t > tf. Thé second term of (4.23{

~is5 the stable constant c-number field established around

the scurce p(te,X); it is such that

a - _p ]
sg Blegx) =0

and satisfies the eqt tion

@+ mBle,x( = pleg,x)

A long time after t., the particles in the sys-

tem will ‘all have drifted away from the region of the

1]

source whére only the classical field due to the c-
‘number source will remain. )'

The particleé are here'moying freely in the .

-

field of the source because the two fields, quantized,

‘and classical, are of the same nature and the two do -
b _ o S :

- . not interact. N o s

.



5) Example: The Volkov Problem ) 4 " et
- A . .

P

The problem of -describing charged particlag

)
.

interacting with a mongchromatic wave has aroused

.

considerable 1nterest as can be‘;udged from the partlal

list (16) of references on thlS sub]ect mentioned by

%

T.W.B. Kibble [1966]: g -

The Kleln Gordon and Dlrac equatlons are

exactly soluble with such an external electromagqgtlc , “,

fLeld8 Their solutlons were flrst obtalned by D.M,
Volkov [1935]. Since then, there has been a contro—

£ .
versy over whether or not the formalism which we wjl1
¥ ) ' L ’ h.&
describe below -should be valid and what is the Proper

P
)f  n /F
‘I

use ofy the Volkov solutions. ‘ e

_ : » :
i) Let us,.consider the system consisting of a N
] . R :
- charged boson field interacting with-a classical

eﬁeqtfohagnetic wéve. Thé'égfernal potential'ié A(n.x)
whbre = (n_,n) is a llght—llke d-vector il e. ‘n.n = 0.
The orlentatlon of the space axes.is here chosen such

that the x1 axis is parallel to n *so that n = (1, 1,0, O)

and n.x = (t-x l)" A(n. x) sat1 i‘es the equatlon

&
. 3
L]

UA“(h;x),='Q‘.;' N o . o B

td%Fther with the‘Lorentgggénditipn

. . ‘
. \‘, \’;....‘ / 2 . X . 4 - . o
T Lo : . - : . N . ,
P o . o L g
P N o . ; . . . N

N



oy

5 AM{
u

which reduce
N

n.A(ﬁ
It is also t
that o

lim
|n.x|

this implies

;x) z)O - ‘ - <

n.A(n

1-(* 88
n.x) =0 - o,
s to
.X) = constant .
aken to be a "wé?é packef” in the sense i

aY(n.x) = 0 ;

=00
. * )

in particular that

q.e. Alln.X)\= Ao(n.x) .

spin #4erq bo

{[aH - ie M (n

Upon using’

[

.'!“ v d >
3 . H

-

éhis becomes

'}m+m 1¢(x)

r »:." “ R &
» B

and the flql

N

son field in this potemtial is

,X)][au-*ieAu(n.x)]§+m2}¢ft;§) =0 .

K
n.xy = 0, | . . . ‘.'.’ .“ | ..
.
E2ieA (n. x)3“+-e A (n. x)ﬁg(n x)]¢(x)
@'m  [ S I . o (5l1)

L]

d ¢ (x) satisfles the cdmplex éonjugate oﬂ

o thlS equagéon.

S _.\’ .

The differgntia} equatioh of‘motion‘fbr a chaféed

13
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< I N a »
The c- number equatlon (5.1) is easily solved by

e

finding an operator T(n.x) such that if f(x) is a s&lu—-
tion of the free KleinfGordon equatlon, Tf(x).will be
a solution of (5.1). 4 . -

" Let us suppose that f(x) is such that

b '2'$'-
Of (x) = -m“f (x) .

?
e

-

When this equation is transformed by T, it°becomes

CTOf(x) = -mPTE(X) . -
i

This will,correspond to equationNKS.l) when

TOE (x) = (0 -2ieA.d -e®A.A) T £ (x)
for all f(x). One must therefo;e.havg ‘
coe ) -/ C o
[r,01 =-(2"3 T) - 23"y :

.

- =(-2ieA.3 - &°A.A)T .- .. O (5.2)

The coefficients of this differential equation depend
only on (n x), ceffeSpondIngly, there QXLStS a solutlon
&
T dependlng only on (n x) Upon using . i
3 T(n ). =1, n.x

'ln?becomes.\_' EE : , ;



90

= . \

\

. d . ’ . ) '
2(373$§T)(n'3)? [ZleA(n.x).af—ezA(n.x).A(n.x)]T
) (5.3)

¥
-~

The operators (n.d), A(n.x).3 and A(n.x).A(n.x) all
intercommute. (n.3) has an inverse on the space of
solutidns of the Klein-Gordon.equation so that (5.3)

© can be written as
- * “

aT 1. S |
dn.x) =~ 7(n.3) (2iea. 9 f e“A.A)T

The solution-with the condition T* 1 as (n.x) » ~® is

sifmply
: : n.x n.x -
T= exp 7%%757[216[ ia dy A(y)].aq-e2! J \dy A(y)'A(y)Jl~’“\

¢ (5.4)

and this operator h?S an inpverse.
1f we con§lder for example the particular solu-.

—1[w(k)t k x]
t10n of the free equation e ; . the corres-

- ponding soluticn of (5.1) is-simﬁﬁy

- - . ’
¢ emikex _ omikex _-iJ(k,n.x) (5:5)
where J(k,n.x) is. defined as
: ‘.".‘._ N R ‘n.x - : n.x
- k n, = - - 2 ﬁ . ] : A . b -
-Jf ’ ;x) T IR _kl_[.e[ f, A(Y)VYJ k4-§ ['J (y) A(Y)dg{l L
: i : N B -0 R -0 _ _ :
n.x , - :
J\x;(k,y)dy R R - (5.8) ,
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The differential operators i(n.d), iaz, ia3
all cqﬁmute with the erernal field A(n.x) so that
gthe‘Volkov solutjons can be chargcterized by their
4 . - [}
X ‘
_eigenvalues. The solution (5.5), for example, is an
‘eigenfunction of (n.3) with eigenvalue [w(k)-k;] and
of 182 and ia3 with eigenvalue k2’ k3.

¢

ii) To obtain an operator valued distribution which
would satisfy equation (7.1), eymetﬁod commonly used
(see, for example. L.S. Brown and T.W.B. Kibble [1964],

Jik Meyer (1970}, R. A. Neville and F Rohrlich [1971])

4

. is essentially the following.
. One knows that the solutions of (5.1) cean be
related in a one to one fashion to free Klein-Gordon

solutions. A quantlzed field satlsfylng (5. l) will

N\,

then be obtained through the action of.’/yn a quantized
free field distribution ¢_(x). This is '
. g . #
Co(x) = T(n.x)o (x) _ . (5.7)
, O , , . | :

-

where the free charged boson field has the usual decom-
p051t10n in creatlon and annlhllatlon operators‘
S o Ak
9, (x)-elw J {at)e e p (k)elk *}. (5.8)
: (2ﬂ) V2 (K) : .

The two sets of operators {a(k), a (k)} and {b(k) b (k)} S

1ntercommute and both SAxlsfy 51m11ar commutatlon rela-“

';tlons._ ‘.ﬁ;V"



_:;fftained frOm the o' s as.
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[atk), aT(k")] = s(k-k*) [a(k),ak)] =0 . (5.9)
These are defined on the usual Fock-Hilbert space for
free bosons systems.
Upon replacing (5.8) in (5.7), the field ¢ (x)
is obtained as: |
) , S
| dk . . ‘
(2m) V2w (k) )
+ b (o) etk X 1T (K. x)} ~ ~ (5.10)
"and its adjoint is ‘ , .. oy
‘ : dk .
+ 1l . ~ T ik.x iJ(k,n.x)
¢ (X) = ——g7m J~——H——{a (k)e e "
(2m) 372 1 /3% K ”

In the work of Neville ahd Rohrlich [19%11'a

different, however equiValent, set of variables 'is

| used, we shall describe 1t brlefly.' InStead of using .~

g
the Varlables k, one can use varlables whlch we shall

_call g.def;gedwas

¥,
s

‘ql’;a

-

=wl) =k (>0) ,_g.,__f_*_‘a_2='J;éf,-.,~a3,=.f'.k“3'-. o s

.;gThe notatlonkﬁ’is used for (“2' a3) | The k's are ob- '

.

i_?7.';
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(5.13)

-i[wt-k.x] N

The free Klein-Gordon solution e can be

written as

-i[wt-k.x]- 5,/ ' . oy

- e T Y o= gﬁp i[zéf(ﬁzﬁfmz)(t—xl)+ jr(t+xi)4'g.§]‘;

TRis solution when multipiied by the factor -1/(2m)3/2/Zg]
for‘fhe‘prdpér nbrmalizatiqnflwill be denoted by f(é,x).
I(k,n.x)/caq be written, in terms of these variables as

: _I(k,pux)= - 5%; 2e[Ao(n.x;a1-¢§(n.x).g]+-e%A(n.x).A(n.x)}.
& 1t oL Tt N

| y . - o | , o
- and the Volkov.solution (545) as ) - e
: c . o N . : |

N . | L S Cr
; N . . N PR S AT
/ . . . < L s

/ - ’ : Lo A iJ (g 'n . X) . . ’ . . ':;:'.,.:-';;"‘i"‘_:" f;;lfl ' ' u\\

/ s
/

o Y SR SR
//_, The fre¢ field dperator (5.8) becgpes =~

N
}

-

"43.3§ﬁ%(é’f(9f*£‘*.bfiéif&ig;f)}'v»;‘5514’L’

A

» A‘\\
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The field ¢(x) defined in equation (5,10) is equiva-

t -

" lently written as ¢
]

-iJ(o,n.x)

d(x) = Jda(a(a)f(a~§)e ~ 4—h+(g)f(4a,x)e
\ ' - . - (5.16)
1ii) What leads to the controversy'oﬁer this problem

is that certain authors (for example, I.I. Goldman .
[1964],'A I. Nikishov ahd-v I. Ritus [1964], and the
prev1oasly mentloned authors) effectively 1nterpret
the Volkov solutions as the wave functionS-Of the
electron in. tge sense of ordinary quahtum mechanics.
This is con51oered explicitly by the two flrst authors
- mentioned whlle 1n the treatment of the otﬁﬁrs,vthls
-comes about’when the physical particles creatlon and
annlhllatlon operators are taken to be those appearlng
in the decomposrtlon (5 10) or (5 16) of the field. ’
Joperator. . .

TWe-want.to‘show,explicitly in thesanext sections’

‘that this formalism (i.e. the quantization procedure

e describEd'AbOVe) does-not*in factfagree with the usuaIT

'Ways of.quantlzatxon. mhat 15- the fleld operatOrs dovw
enot satlsfy the canonlcal equal t;me commutatlon rela— _
:tlons and, what 1s more.difflcult to accept from our

"f}point of vxew, the Hézse?berg equat;ol”'

ﬂtnot SatISfiEd

. ‘ A 2
-1J(—g,n.x)



L

»

hl

iv) ° In the fbllbwing calculations of éommutators,r
e, . . »
either expressions for the' #ield (5.10) or. (5.1€6)

- can be ysed. If one uses (5?16), the commutators can

be calculated using the commutation relations (3.15) .

A .
and then the variables of integration a in the inte- . ’,

grals can be changed to k according to equation (5.12).

" Exact]y the same results, are obtained as when using

e, . 1IN
. 4

’
v

The commutator [¢ (x) ,qb (x )1 has already been

~(5.10).
’ %

calculated in cloged form by L.S. Brown ahd T o

v

K1bble [1964]. The follow1ng result ~has been %btalned. ‘
- o “
»

' “ _— ARG >
| o A R _
S dex) 0T x 1= ede o) A(x-x'; M%) L {5.17)
where ‘ - , ‘ '. L :
\ ‘é nNn.x Lt ' " £ b R
| L
{'n{ A (n. x-n.x') ; - A(YZ dy
‘an@  + R .
| | _, . - |
M2 = M¥ (nux,n.x",m) =m? - ez A'.A ﬂ-ez"ﬂ.‘:ﬁ 'z‘tﬁz . (5.18) ]

o
L

‘_" The - di *aptrlbutlon A(x- ';m2) ~(has the same; form as
A(x-x)nn ) whn.ch is the . correspondxng result of this

commutator for free flelds. (The mass m is replaced

H.jhere by M) In_ia_éﬁlcu;ar, 1f x,o ‘_'), the-r commuf:atqr.'..“;v,




™~

The Lagrangian density corresponding to the

equation (5.1) is

L (x) =(BU¢T+-ieAubt).jau¢ - iea¥y) —m2¢ff¢
where'B;C = %(BC+~CB). The canonically Conjugate‘fields
are %hen
- _ 8L _ to, o,
. o H¢> (x) W -T' _(_ao(I) + 1eAO¢>)
. B . - O \
T oL _ o
My (X)) = ———p— = (3¢ - ieA_¢) - (5.19)
(@) 3(3,9") )
and the Hamiltonian density is ' ) - .

a

Hx) = (0,00 (3,00 + (veT + iens)r. (v - jeas)

2, F .. 2 gepe S . "
+, m"9 i¢ - & Aa%}.¢ . - . | (5.20)
‘We now calculate the equal'fime canoni‘cal commu- (
e . )
. i . R A .
tator , ‘ ' "
[0(x) M (x)]_ - 4 -. . . g
¢,’ X'QFXO : ' : a ) /f’
° 4 ) ‘

Since we know that

o), et ey, o o=to,
o ‘o
aL%,wevhave to calculaté_is - K
' ". - » e 7 . . ° * . ) ’.
- . + . " U e - _(n . |
. kB (x), QQT (x*)] i g ‘
. . . ax’O‘ . X =x' . i .
R "0 "o



97

'
-

A

From the expression (5.17), one obtains:

\
B C P L e Y )
. axO X =X Xo U ’ X =x'
\ o (o] ~ o o]
< N (5.21)

(’ The right hand side of this equation is

! .
3 — LI A . \": -
o ‘ ) ‘“Xofxo~ .
N - ' - R -
v |etelxxD) A g, iA(x—x‘;Mz)]
| ©lM? fixed ' X=X
L]
| ie (x-x') .A 3 ‘ 2 8M2 ’
+ [e : —3 iAdx-x";M )]§§T] . . K
oM . o/’ o
other : , xo—xO
variables ,
fixed
(5.22)
A’ ) . ‘
Upon using for A(x) the representation: .
B 2 ,
2 1 dk ik. (x-x"') W .
Alx-x"';M7) =+~ 3 J - e~ T 7 sinfk“+M (x_-x_),
’ (2m) 77 .. oo
k“+M
¢ (5.23)
one obtains:
| ‘ : L ikl (x-x")
3 , . 2 1 e N
. © A (x-Xx*;M7) = Idk'e xe
I \ (2m)3) -

M~ fixed

Ky\ | « cos/k7 e (o)) (5.24)

h

(o]



1

. 2 dk ik.(x-x")
A(x=X"; M) = - f .

“?2 3| ——= ¢ )
oM other ; 2(2n? vk2+M2
variables y
fixed
o s )
X [(xo—xo)cos & +M (xo—xo)— —
k™+M
(5.25)
The following identity will also be useful:
n.x
9 = _ 3 1
5x” © T 3" (n.x - n.x) f Cly) dy
O O N « n x|
' L]
L 1 . , ‘

The terms (5.23), (5.24), (5.25) are egsily evaluated :

when x = x! ; (5.23) and (5.25) are null and (5.24) is

6(x-x"'). The terms (5.23) and (5.25) appear in (5.22)

multiplied respectiv%}y by

)

ie(x—x')!ﬁ
% .

e
o . - »

/ . ~ -

L4

2 gt . o, T
and IM /on_whlch are finite when X,= XS and X3 # X4

and can be infinite when x, = x., as can be seen from
1 1 >
! < 14

eQuation (5.26). We thus obtain that.

[0(x), yor 97 (x')] =0 when x, # x|
B o R |
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Y - .
To obtain what this commutator is for x, = x;, one

)

could use L' Hoépital‘s rule but it is simpler here
to calculate it expllditly.

From equatgpn (5.11) for ¢ (x) and upon using

‘_\;. \.
Lo

s ' : 1y ’ —_—
{E%T + ieAO(n.xf)]‘elk'x elJ(k'n'x ) T
o ' "° «

ik.x!' eiJ(k,n.x')

¢ -

= iWIkl, k, A(n.x")] e

wheré ‘
’ ' [w(k)+kll 2.2

w[kl,g,A(n.x')]= [w(k)4———-%———E—IZeE.é(n.x')+e;5 (n.x')]],
, i - 2{k“+m”}" - .

we obtain .

N
i dk
0 (x') = . {W[kl,i,A(n.x')]e

¢\ (2m3/2 J/i_m(—k)ﬁ

3 '3 . ye?
1k.xe1J(k,n.x)a1'“5)

~
Py

-ik.x'eiJ(—k,n.x')b(k)}”.

- Wik,,-k,A(n.x")]e

-

N ; I's

One then has “ - “ﬁ, Y : -
dk - o .
(6 () 1T, (" )1-————J (WK, koA (Rx")] X
2(2m) (k) 1 -/
. : )
} e-iij—x')‘ -103) (%) =3y (n.x*)] S
ik. (x-x" )e _k(n;x{rq;k(n.x')];.

+ W[kl,-k A(n x')]e”

~When X, = x ‘and xl = xl, this becomes, upon changlng ‘the .

variables of 1ntegration k to -k in the second term,

—
ToTa
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i dg 15.(§—§')
= (2n)3 Jw(k) w[kl,k ﬁ(n .X)]e
i j dk ( [w (k)"’k ]
= w(k) + ——=—>=—[2ek.A(n. x) +e? A(n x)]} x
(2m) 3 atky (@ (& 2 (k% +m?]
x olik:(x-x') AN . (5.27)

v

The term contalnlng kl as factor does not contrlbute

to the 1ntegral 31nce it is an odd)functlon of kl and
+o
/ dk, odd function (ky)'=.0. (5.27) is therefore

-0 B . oy
L4 .

i 1 1
’ [-—jdk ]jdk{l+ [2ek.A(n. x)+e A (n.x)]} x
(2m)2 2710 2 (x%+m?)
| X eiE' (3.(.5') . .
',~.§. - ‘ R ’ -

The first term of the remaining integral is

ik. (x-x') 2
jd§~e .= (27m) Gzﬁ—i')

The jfcond term

‘ZeE.QXn x) ik;(§-§') e
jdk _ 27 ¢, Ao
2(k +m7) " .

tcan be evaluated w;th the - help of standard mathematical

. tables;and one; obtalns/

2.

o tmnx-x-m
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é
. 5 A
where | |x]|| = [x§+x§]2 and K, (y) is a modified Bessel
function the behaviour of which Ft small y is
| ‘ .
K, (y) = = 0<y<<1 .
1Y) = y Yy i s
. ! "
K
and which for y >> 1, decreases exponentially. e
The third term RN
2 iE'(E'E') e
> € a%(n.x) Jdk - : ‘
2 . = : : }
T2 P | .
~can also be evaluated exactly from standard tables and
one obtains for it ‘ ! : ; !t
‘ »

2,2,
me"A%(n.x) K_[m||x-x']]]
Ké]y) is again a modified Bessel function which for
small y is as. o o o o
0 < y<<1

» KQ(Y) z.kn ;/

and for large y decreases exponentially.

We then obtain that

[¢(x),I (x‘)]x = 0  when X, # xi

o x o
and - —%i;j {§£~]dkl}fk2n)2 §(x-x') +
& 5 (2‘") ar . | ’ - —

X, [n] |x-x* ] |1

HiEDen@-x)\AMX) M
_+.ue?§2(gix}Kotm]]§-§'||]}.VEv" wﬁen>x1 = xiL. f.h

P
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This can be written as o
[¢(xg.H¢(x')]x__xé = 16 (x-x"')

. 2 . 8 o ) ]
+ 1 2%??7 6(xl—xi)§2(n;x)KQ!ml[ﬁ}i'nl]‘

Ky [m |x=x"] ]
== %]

- %%'d(xl—xi)(i—i').éﬁn.x)
' (5.28)

. N

= i6(§—§') +,F(xo,§,§') . / (5.29)

Since F is non-zero this is obv1ously different from .
the equal time canonlcal commutatlon relatlon.
.-

v) We now show that the Helsenberg equatnon of
motion is not Satlsfled ' )

It is _generally admltted and has been verlf}ed
with all other models considered in the present work
that the energy operator can always be written formally

L

.as
A’H(t)'= ]dg H(x) fvcd

where C is some constant. (The knowledge pf c is not
1mportant here since we will only: be calculatlng com=

,mutators w1th H(t)) . The. t1me evolutlon of the fleld

lfop ators should then be governed by the equatlon
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i 5%—(; ¢ (x) = (¢ (X /%), Idg' H(x_,x")] . (5.30)

“ .
In order to obtain the commutator on the right

‘hand sade of thls equation, we still have to evaluate

lo(x),30T (x")]), v -
o O

Y

% Upon uéing again the expression (5.17) for the
: o ] _
comfﬁtator~[¢,¢*] and the representation (5.23) for A,

it is easily seen that for i = 2,3

1 *6 %o

=X

ie (x-x").A ;3 o2y

(4
/

\ =0 . L | (5.31)

4

We now calculate [¢,31¢*1 L
X5"%o

%§[¢(x), g%; ¢T(x'f] ' =é[[§%7 eie(x—x')‘A].iA(waf;Mz)

*o"%o e, ‘1
V'q_+ eielX*x')fA [5%7 v A iA(x;x'aﬂ?)] : "., | '
- : - T llu?fixea L | h
_+‘ele(¥ xt)ibﬁﬂ*ii‘ - “;‘1A1x—x"M23 Q%TJ )
o - 3M“|all othér - 1'% =x
% .. - _ . variables - - ‘ - 0
- o fhmé = | SRR
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‘_;"h

b
We now show that the first and third terms of this are

the sameAas those in equation (5.22) except for the

sign which is ‘the opposite. We have

. - 1 - : - - R - ' -
-2 glelx-x').A _ [ieA )_aA ]ele(x x').A

, + ie (x-x' :
.axl 1l axl

since —AT C = " —QT C and A, = A this is

, 9%y EE 1 o’

“ X . eyt -
lieA + je (x-x'). 2B il (X=x") A

T
X
) _ : {
. ! -
- - ai e1e(x x').A \{ )
o

so that the first term of (5.32) 1s the same as for

' (5.22) with a minus sign. The same holds for the thlrd

terms because aMz/axi ='—3M2/9x'.

The second term of  (5.32) is easily evaluated

w1th the help of (5.23);

—éf iA(x-x;;MZ) =0 .
%) 2
M fixed ' o "o

.

Slnce in (5. 22), it was the second texm whlch gave

_ \5(x-x ) in (¢(x) H¢(x )] <! and’ the flrst and thlrdw
o X6"%0
-terms contrlbuted to. F(x X4 x ) he second term being

“ﬁabiint hére (1 e. 1n (5. 32)), we obtaln.

- y.:’

e, '3—%{ ¢(x )lx - CoRaga) . (5233
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It is now easy with Hix) as given in equation
(5.20) and the commutators that we have calculated to

obtain that

| "l L = 1 a .
[¢>(xo,§),jd§ H(x,,x")] —»175—}(—; ¢ (x) +

v

+ Jd§'F(xo,x,x')[5i--§-i—r+ ieAl(n.g)an(xo,g'). (5.34)

Xo .Al o ‘é?

By coﬁparing with the Heisenbeérg equation (5.30), it

-

is obvious that it is not the same. ,

’ - [
4

vi) We haveﬁxhns proved that the quantization of
¥
the . Volkov problem accordlng to equations (5.10) and

L 4

(5.16) is not in agreement with the present general
theory of exter$al fields. Until further study,_ye_f
therefore agree°with Z. Fried and.J.H. Eberly [ﬁ‘@ﬁ], 3 -

Ly
B Baker, D. Korff ,H"Gf]. M.I. Sh“’k& . \3“
¢ K4

3 ', 1n that the Volkov solutlons, even thougﬁ?g“ e
- . ’*"”’"’ .
they are exact c—number zflutlons to the time depenv 5

P ‘Q. e
in

@ent equatlons, mlght noty be so useful in treatlng SO

thenquantizedvfieldjproblem»(at least.not in the way
Whlch has been exam;ned here) ' o o
A dlfficulty wlth thls problem lles ln that‘
}xthe quantlzation is not fLXed by an 1n1tidﬁ condltlon
: ulike when the external fleld 1s null at sode 1nit1a1
a%txzatlon

',tlme. In order to obtaln a. satisfactory qu

»
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of the field, one could start from the most general
c~-number solution of the equation of motion and find,.
with the help of the auxiliary field method, on which r#&
coefficients of the general solhtion the commutation |
relatlons of creation and annlhllatlon operators
should be 1mposed. Thls should give the proper phy— ,
~ sical particles creatrpn and annlhllatlon operators
and the Helsenberh equation would be satlsfled
S .~ . . With regard to the use of the Volkov solutlons
’as the wave fuhctlons of electrons 1n the sense of
' nenerelatlvistlc quantum mechahlcs, we mhke the )
‘.followihg rehark. The use orih_c-number solution
of the time dependent Klein-Gcrdon;or Dirac equation
to calculate transf!ion probabllltles between two
ustates is justlfled only When $he creatlon and anni-
L hllatlon of partlcles in these states can be neglected.;
(Thls w111 be seen ln‘more details in the part on the
s-matrxx in- section 2) of Chapter IV) In. the present o
' case of a sustazned radlatxon fleld,.lt is: far from: |
'A;obV1ous that partlcles w1ll not be continually created
',and annlhilated along the path of the wave sd”ﬂhat
T%Vl"'lv:.t:.his would give a more and more 1mportant contrlbut10n<g

| t° a“Y ’trmSitim mplitude- R E M TE I
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~

EIﬁ:hanY'intefesting p5¢ where a quantized

l

. cfleld 1n£eracts w1th an external fleld, the dlfferentlal
";equation of motlon for the quantized field operator- =~ .
valued"dlstrlbutlons are linear and homogeneous., ‘Thlsu

was the case, for example in the previously discussed,'

X

problems where charged particles are acted upon by a

-

! classical electromagnetlc field.

wAs Ve have seen, examlnlng the phy51ca1 require-

! ~ ments thﬁt there exlsts a. unltary time evolutlon Opera-

'\'ul‘
tor or that new ‘ereation and annlhllatlon operators are

related to ghysxcal objects, reduces in both cases to

_studylng Bogollubov transformatlons. Iﬁ other words,

. w

v when apprOpriately wrltten in terms of<partlcle crea— . Y

\~.'t10n and aﬁblhilatlon operator variables
‘w‘x

ﬁ” of m0tzon ﬂecome generallzed Bngllubpv {

\L:

R The present chapter, where we dlscuss the generall_'v,Q-

the‘quatlonsf

ansformations.*”'

t

)
propertleg of such transformatxons, isftherefore very

important elnce it 1s really a study of the general
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‘\" . 1]

'Particular attention wild be given to the .
¥

question: when, is there ;ﬁvacuum (zero particle)

state associated with the \trans d creation and
. AY
. . . Q N
annihilation operators in the Fock-Hilbert space

determined by the initial creation and annilvlation
. B . R

. . |
operators? This question, as we will see, iq i=

valent to asking: when is there a unitary ogerato

A . , ¢

‘relating the two sets of creation and annihilation

W

¢
4 . . A

- operators in the initial Fock7ﬁilbert space?

In the case -of boson fields, the conditions

- under which this is SQ, together with the explicit

" formation were 'derixfed":by K'oi Friedrichs [1953].

TR

L]

»or with two dlfferent operator variableq .as- (l 1)

ﬁfOr elther a traﬁgﬁormatlon llke

» B )

form of the unitary operator implementing the trans-

These conditlons are also ment1oned by B. Schroer, . =«

\

R. Seiler and A. Swieca [1970], who refer to a dif-

r

. ferent proof in the work of D. Shale {1962] **The main

%

result 1s that the Bogollubov transformatlon w1ll be

unltarily'lmplementable if and only\if 1‘ S
Sttt e A
jdadBlean £, u)M (Y B)] < w:f

| 5 A(Y) = fddni.(yz}a)é-(a)f"‘*" IdBMz(Y:3)3+ (Q) |

s
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in the case of fermion fields, when Ml'has an o
inverse, the above condftiqn (whieh is equivalent to
| dedBle(y,B)I2 <‘w) is also negessary and—sufficient:
for the existence of a unitary operator implementing
-th‘a;ﬁtrans'forlmation. This was studied - together with .
boson systems by Friedrichs. A-pecu}iar;ty of fermions
. howeéver is that the relations, (1.7) and (1.9) below,between
the M 's are not suff1c1ent to guarantee the exlstence “
of an ‘inverse to Ml (or M ), contrary to the boson case
where a minus 51gn would appear.ln front of M2M2 and‘.
M3M; in the carresponding relations. An additional .
physical rgstriction on the external field would then
probably be inposed by requiring Mil,to exist. : o
| ‘This is why more caution seems to be required o
when éealing.with,fermiens, as alreadyfn;markeé'by o  @
' -B. Schroer, Rﬂ*Seiler"and‘A. Swieca.c'However,»in‘the_ ;‘
article by R. Seller [1972], the following result 1s |

: mentloned w1th reference to a theorem by Shale and

Stinespr:.ng [1965] it J.s sufficient for a unltary ‘ %
operator to exlst that Mz is such that IdeB[Mz(T,B)I < mﬂ\¢_.
(gnd M, such that Idadxiu3 (A, a)|2 .‘;' o |
R ‘ Thls reSult is nevertheless 1ncom;lete.1n that'
‘the nature of the new vacuum states obtalned and oﬁ '

the unitary operators xmplementlng the "strqng

Bogoliubov txansformationd’(i e, those where MJ3 or ;¢~.P.Z
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-

- do not exist) were not know

or (M% remark at

4! :
the end of the talk given by R. Seilpr [1972]'). It

- ' ' \k
is pne of .our major results to have fdund the explicit

* -

the equatlons whlch mustﬁbe satl

-

ried by the compdnents

of the new vacuum state whén it, lS expanded in terms

. EN
s

..of initial Fock-basig states.’ Necessary condltlons for

: K L e
the existence of solutions are then found and in the
subsequent seetions-3)—7) we solve the“equations'

expliciély.

: //J-V/VWhile ﬁhe main result of these seqtions is the

K]

<

A
<

7

%ﬁormal solutlon.“

flnding of the exact form of the new vacuum state;

/

anotheér important result is obtained. .Th’s consists
of a simple proof, using only elemehé!gy m

mathematical

concepts, of the necessity and sufficience of the"above

Q A\ ] -

mentloned condltlons fop the ex1stence of the new
,W .

,"‘Y . g/ ; ‘i"

vaguum. s
. - e oy

[
T

Thé'}esulﬁs obtained'iﬂ‘section»3)nconcerning

the solutions of the. one—varlable 1ntegral equations

are more complete, even in the‘;ase of Weék" trans-

formatlons, than previous treatm 3 that a serles

"-”t:s . i‘;
& 3 p

solutlon is: obtalned 1nsteadwsf s h_y'E“symbolic‘or

‘\

<o

. ) . . i o ) ) o
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‘
-

in section 4), we prove a theorem about a

2

general property of linear equations' for antisymme-
tric functions. This theérem is used later mainly
to prove the uniqueness of the solutions found but
it is undoubtabiy of more general interest.
As we discuss in section 8), énce the form
of the new vacuum is obtéined, it-is easy to see
what ig the general effecgt of the Bogoliubov trans-
formation. We will éhow that it can be decomposed
in a product of simplér transformations and from this
we-.obtain the unitary éperator implementing it. ,
This also proves straightforwardly that the
conditions obtained are necessary and sufficient fo}
the existence of a unitary operator implementing the
Bogoliubov transformation. . )
Fiﬁally, in section 9),\we discuss some of the

-

implications of having "strong" Bogoliubov transforma-
. N ‘ ’
tions with particular attention given to the Aon-

conservation of the charge.

. \
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1)
k |
‘he type
A
B(y) = JdaM (y,a)hiai + IdBM (Y,B)GT(B)
p" () = fdaM3(x,a)bea> +-[dem4(x,s)d*(s> (1.1)

where the four infinite sets of indices {a}, {8}, {y} and
‘{x} are not necessarily the same and each one can be dis-”
crete or continuous or have both continuous and{discrete

’ : O

elements. Integrals, like

. Jda, mean fda + Z .
: a
(over continuous a's) (over discrete qo's)

In equation (1.1), b(a) and dT(B) are operators such
that with their adjoints they satisfy the anticommutation

- -
relations ~

1- ' = . 1. ' = e
{b(a), b (a.)} = 84" . {d(g), 4 (g")}- Sap
' (1.2)

with all other anticommutators vanishing. It is understood
that for continuous values of the indicés, these are opera-
btor-vaiued distributions i.e. they are well §efined Qpérators
only when smeared with a square iq}egrable'function'of the.
=index. | | | |
They are defined on the Hilbgrt space ﬁL consisting

of states ) : : , -

> = } .->'d ‘i(/ Iéa dg wnm( . :-) 1B > (1.3).



such that §j

Wl = 10T [de s v Meniey
and wﬁere by definition

I(X ;.B_m> = .Iallazl--~ran; 6118201-'-318'1“?
ot t toogt t
= b bty .t a 6 at )

Vd

...dt (s ) 0> L (1.5)

and the vacuum state |0> is such that

<

b(a)[0> =0 va  dA(B)[0>=0v g . (1.6)

. . a _
We y}llxuse the nptatlon ( §n ) "(al’“Z""“i-l'“i+l""“n)
cand (a, >%<) L VL YRR IO AT SFS URRRL AR . )

The anticommutation relations of the operators B, D

will be of the same type as for the‘'operators b, d when the

following relations hold between the M;'s :

¥
. <

Jdaml ('Y IQ)M; (Y. 10) + IdBMZ (YIB)M; (_Y' 18) = G_YY l. (1.7a)
e o P I | N
a0 ams 0t 0 + IdBM4(A,B)M4(A 8) = 8, + (L.7b)

‘Idaml(y,a)mg(llq) +;[deuz(y.q)M;&A,ef"= 0. :(l.70)

SR o IR e
- By demandind that the transformation (1.}) had an in-

- verse and us'ing the-.r'eblation_sf(1.7)t<':oge_ther wif '~-;1;he' simil'a‘r"
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Y
relations for the inverse transformation, we can see that the

inverse is the adjdint of the transformation (1,1), i.e.

-~

b(d) = deM;(Y,a)B(Y) +'[dAM§(X,a)D+(%)

dyf(8)= fdfM;(y,B)B(y) + fdAMZ(A,B).DJr(A) | (1.8)

with . . ‘ 3‘

[dyMl(Y,a)M;(y;a‘) + IdAM3(A,a)M§(A,a') = Saa' {l1.9a)
Idez‘(y,B)M;'(y,B'),#"Idm‘}(A,gmz(x,a"‘) = 644 | (1.9b)
deMl(Y,a)M;(y,B) + fdAM;’('A,a)MZ(X,B) =0 A(l.9.c)'

It is easily seen thaf the réquirements(lﬂ)‘andwlg)4
‘are meaningful if and only if the Mi's are all integral‘
kernels éf,fransformations of squaré integrable_functions
of the indices into other square inteérable functions.
This is also sufficient fox the B; BY, D, DT to be well de-

fined operator valued distributions on all H.

-
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2) Necessary Conditions for Existence of a New Vacuum

We want to examine under what conditions a state

|¢,> ¢ H will exist such that

B(y)|¢o> =0 vy and D(}\,)l(po) =0 % 2 . (2.1)

Writing

?

Yole> = 1 Ida g, "™ (a_;B_) i8> (2.2)
1% n£0nr£0—"_—r5rr—n—.-~—_n_m i) ¥

and using B(y) as given in equation (1.1),we obtain that
the following relations between the wnm's must exist in

order for B(Y)|¢o> to be null.

[}

E m d .
nm . -1 _qyDtit) : - .
Jdale(Y:aj)¢ (a,iB) — i£1 (-1) ‘MZ(Y"Bi) x
1 .

for n=1,2,..., m=1,2,..., aj'being‘any-one of the % and

C
Ida Ml(y,a )w ©(a a,i=) =0 fo: nN,2,... . - (2.4)

Similarly, D(A) [¢> = O 1ead5vto

o Cam, _.l
[aspiiniep (gn;gm}f—/:

(-1 i+ M3 ) x

unas

L |
m) _Qb' »(2.5)

~

) . _v; . wnfl'mfl (%n
’ . ' L - ' i

Q%yb

for n=1;2,...,,msl,2,;ﬁ;;fej being any one of the g’ and



‘required by relation (1.4)).

.fdvlfdaml(y.a)w(a)lz S Id“lw(a)lz - (2.7

116

IdB M4(A B )w ( ‘@m)‘= 0 | for m=1,2,... . '(2.6).

We can find immediately a necessary condition for the

equations (2.3) and (2.5) to have square integrable solutions
wnm. (Square integrability of wnm for each n and m being

-

From the equations (1.9), we have.

fari [asm, v omru 1% < [asjuer|? e

Equation (2.7) implies that wnm can be square integrable
I
only if the right hand side of (2.3) is square 1ntegrable,

i.e. we need y

|
da. - a1 n+i+j
dY —=n dg Z (-1) M,(y,B.) x
I i /mﬁ i=1 ‘ 277 )
x ph-1 Irl"1(%-n ; §m~) 2 (e .
30 .
. This is- |
L1 da, n- 1 m-1 q .2
m——ﬁfdy—,i—nc_iﬁm ZIMZ_(\rB)I v <§n;%nu__;

X ( JdBI-M (?{18 .)\Pn B HL‘I.(
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and Supposing that wn—l m-1 was non-zero and square inte-
. grable; because of equation (2.8), the second integral above
. .. i : ’

1s finite so that in fact we need the first teréﬁ}o be

finite, i.e.

v : K

' Repeating the“same'argumeqt witg equation(Z.S), we can see

that we need alSo

-[d)da]M3(A,a)|2 <o " (2.10)
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3) Properties of the Kernels of the Integral Equations

Obtained

In the usual treatments, it is assumed that the
integral operators M, and MZ haye inverses so that a
unique solution to the System of equations .(2.3)-(2.6)
is immediotely determined by the action of the inverse
operatoré. For example, if we consider the equation

type (2.3):
fdaMl(Y,a)w(a) = ¢(y) .with ¢(y) e L2 ' (3.

the solution is’written simply (formélly) as y = MI $.
In the present case however, we do not assume that MIl
nor (MZ)-l exist so that we need to study these equa-

tions more catrefully.
We will derive in, this section varjous general

properties of the integral operators involved in the . L

Itfaﬁsformation (1;1).‘The conditions under which there wili
exist solutions ‘to the one varlable 1ntggral equations

(as (3. 1)) Wlll be found. We‘w1ll g1ve also explicitly
these solutlons in the~forﬁ of series the properfies

of whlch w111 be discussed in detall Eveh when Mi and

M have 1nverses, thé ;olutlons 1n thls form are also

'fmore useful ‘than the symbollc Ml ¢, for example.

Let us start by examln;ng eqpatlon (3 1).

z;ge

A
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i) If IdYM;(Y,a)¢(Y) = 0, then

JlefdaM (v, a)w(u)l =Ida w#(%')IdYME(Y,a')[daml(y,a)w(a)

[da y* (o' )fdm (Y,a*)d(Y)

so that there could exist a solutlon to (3.1) only if
¢(y) = 0. ' ,
ii) Let us now consider the case where M;¢ # 0.

Equation (3.1) impliés

IdYM’i(Y,a})['daMl(Y,a).w(a) = [dYMI(Y:a'N’(Y)

Y

which by equation (1.9a) is

, Jda[»&a_,_.a- JdXMg(k,’a')M'3(>~,0t)]¢(a') = JdYMI(Y,G')CP(Y) .

J
We will write this simply as

(I - M )w = M ¢ . - (3.2)

This 1ntegra1 equatlon has a simple nature and.sfandard“
technlques can be used to deal with it (cf. fér,example ,
Smithiés [1962]) . The kernel (M3M3)(a' ,8) = |
[dXM3(X a’ )M (A, a) is a non—null hermltlan L2 kernel.

 It'therefore admits the spectral decomPOSthon

~

11; (@)X} CNEES (3:3)

Hhaé

(M )(G' 0)
3 <n1,_
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where ‘An’xn) is the characteristic system defined by

Jda (M3M3) (0 o)X, (a) = 3= XL(a') (3.4)
n

and the series (3.3) is relatively uniformly absoiutely

convergent. We have

dada | M. (o S UL
The equation (1.9a) implies /A, = HM || and -
equation (3.4): l/pA = |]M3Xn||2 so that
oS 21, (3.6)
n >
Because.
® 2
Z ('A_];') < @,
n=

where each characteristic value in the sequence is

*

included a humberlbf'times equal to its rank, there

is necessarily only aﬂfin;te number of X c;rfesponding‘
to the saﬁe'given An. In particular, wé shall call N
vthe number of éigenfunctipn§HWifﬁ éigenvalue i'and?f |
denote these by G (a) ' Xth))'n=1;2;5..ﬁ. ‘These sati?fy

-

the equation .
jdata " (M3M3) (a_.anG <a) =0

_orsequivalently,

P



: 4]/ 12)
[daﬂl(y,a)G&n) =0 ., . | (3.7)

iii) We shall now érove that the series

(M3Mp) T MY | (3.8)

<
0

!
He~1 8

" converges relatively uniformly absolutely. We have
) i . R

* x T 1l '  ~ * % .
(M3M3)Ml¢ = nzl K;_Xn(a )Jdaxn(a)fdyMl(Y,a)¢ﬂY)_(

using the property (3.7) for X , n=1,2,...N, this is

:ﬁ:-xn(d'?Jgax;(a)deM;(xig)¢(Y) .

« (3.9)

Upon de ’
| ~5
1 .
= — X (a )X (a) ' _ (3.10)
n—N+l M ‘? . . -
we can wi _5(3.9) as B l | 1‘ , ).
- = R M1¢
”ahd*- : T o
IM3M3 1? = R°Mj¢ T AT -(3'1;),‘

 ‘&&”>

- ‘ _ WéJthéxe£crevéxamine the‘SEfieéff ~'




: S22

s m——

)

e
. ’ _ - -
By definition, it will bq\:elgtively“uniformly
absolutely convergent if the sequ nce
n- r .
{a_(a)} = { } Ol ®R™Mp0) (@) | . .
r=0 - .

is relatively upiformly convkrgent. We have here
. ) _ .

| n+l *¢)()I

il

lan+l(a),-en(a)l

it

IIda'R(a ') (RPm? ¢)(a ) 1.

and using the inequality (;,H) 5:||f|| |in]], we

dbta%n d
< v tmin 1292 ] (al* g ] -
< [|da’|Rea,a) |[“) | RMP[] . (3.12)
Since for all £, i
lre[12 < L |1£l1? 31y
Ay . , _ - - |
whefe i/A is the biggest eigenvalue of R, we have
v. ! . ,‘* '
N * | - v
||RnM ol < (K-) I]Ml¢lj_ - )
. i . . ) . . . ’.'
,'.Equdtlon (3 12) therefore 1mp11es (def1n1ng r(a) |
o fda lea a xi e e | , |

: fJa lm; a(aH s(—4 ‘Hﬁﬁdh&a).fj,;/7(iiﬁj- ¥
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-«

For' any glven € >0, however small, we can find

.

n(e), malhly * ' '

_n'“(&:) = _&_n__%_ , i o .

R‘n _A_ A e -
o
. '.:. - . “ ;1 ~

such_that“for'all n 2 n(e) , ’

|an+l(a).— an(g)[ < e r'(a)
where r' (@) |1M1¢||r(a) is a 9051t1ve deflnlte L2

functlon.. ThlS shows the relatlve uniform convergence.

of {a -} and thus
00 r*. . o - r * i '
) ORMG = g (M3My)T Mo : -
N
o ¢ . SSE

cqnverges:relatiyely uniformlyxgbsolutelyl
iv) - The serles w satlsfies equatlon (3 2) and is:

o

;-’ orthogonal to all*G (a), 1*1 2""N®\ff:‘ [. :':,0’»7

a

If M l¢ =0, the _erles w reduqes to M1¢ - ?ﬁ;?fﬁ

which 13 then obviously a. ‘olut;bn of g3 2)

If M M1¢ # 9, the'”.gles wé is 1nf%n1te s;nce e LT

1f we suﬁbose (MéM ) Ml¢ — ' for ‘some r; then »jqi}ﬁﬁ]§f7:°
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; Zr—l * 2 Tk * 25 s
|1 (m3my) Mo |]T = (M]o, (M3M3) TMIG) =

'v
~ O

re N 2]:"1
. * =
l.e, (M3M3) Ml¢> =0
By repeating the argument startfng dt equation (3.15) -

(T times, we obtaln that we must have
{
MMM = 0 ile. MMy O f v

which is not the case here so that the series v, is

v

"infinite. We therefore have

°

(1-M3My) e, = f (M T mle - MM MY

i~

r=1

The series wé is then always a solution of equa-
tion (3.2). It is orthogonal to all G; (a), ifl,@b,&..'e.N

since because of the previously demonstrated relative

a

‘uniform absolute convergence of the series by

g

]

(.
- ' s ' r
| G]ivg) = 1 (G, (i) Tute)

r=0

N . .
o . ' ’
ol ’ « o r '

' r,* [ P
(Gi,.R M¢) =0 .

A
]
~

(3.16)
r=90 .
. The mos t general solution of equation (3%2)
. . e, }

is ,
/7‘

FRT
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-9 kT k. L ’
= r;0;(M3M3) MIo + o (3.17)

Vg

, . *
where ¢ is such that (I -M;Mj)¢ = O.
O
v) We now examine when wg will also satisfy equa-

tion {3.1). This is equivalent to yg satisfying

y :
JdaMl(y,d)ws(al = o (y) (3.18)
s;nce Mo, = 0.
If ¢ is such that M3MI¢ = 0, we know that y_ =
MI¢ $q that we must have
“ — -

JdaMl(y)a)Jdv'M;(Y',a)¢(Y') = ¢ (y)

. w
or equivalently .

"“‘P,

JdYM;(.YrB)(b(Y) L.
For the case where M3MI¢ = 0, we start by prov-
ing that thw’.deni:ity ’
L (MiMy) = )M, | (3.19
M, (M3M]) = (MMM, . - (3.19)
For all y, we have by equationv(l.7c)i. .
. . :
[ty (00 [ar} on,a [aary e dv ety =
’JdBMQ(YVB)IdAM:(A;B)Jda'M3(k,a')W(a‘)

o ) ‘ - ] ; i
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’

and by (1.9c) .v//

L
N

= deMZ(Y,B)[dY‘Mz(Y',B)de'Ml(y'}u')W(a“) ;
this shows that (3.19) is true.

We therefore have, because of the relative uni-
form absolute convergence of bt

* X x *f *
Ml(M3M3) Mo = rzO(Mgmz) MiMio . (3.20)

]

The kernel (MZM;)(Y,y') "JdBMz(y.@)M;(y',B) has

essentially the same properties as (M§M3). In par-

ticular, it has only a finite number M of characteristic
1y

functions Fn(yr, n=1,2,...M with eigenvalue 1. These .

satisfy
A:v 1 * LN ) - ] -

" or equivalently -

JdY'M;(Y'rG)F(Y') =0 .
' l \

M1M1¢ being orthogonal to all such homogeneous’ solutiohs,

‘the series (3.20)converges rélatively uniformly absol--

utelyi Using equation-(l.7a), we have
6

t ' —cc x I _ *
SO Mg = n£64(M2M2) (I MM, )¢ . - 3.2

" Using the -identity
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M - '
* _ _ x _ :
(I - MM5)¢ = (I M, Mo) [ n£l F(FL,0)] , (3.22)

the above series is equal to

. ‘ M
*
(M M2) (1 —‘M2M2][¢ - ﬁzl F (F ,¢)]

e~ 8

r=0

’ M
r . o
(MW)w— F (F_,¢)} - (MM)[— F(FAH
0 272 ngl n'"n ¢ z 272 ¢ 21

-

I
fte~1 8

r

These two series converge relativély uniformly absolutely
since '
o6 = § F (F ,¢)]

is orthogonal to all Fn' n=1,2,...M so that we finally
obtain

M (3.23)

1
-
]
t~1
e
!
-
S
—
.

lws
Evidently,\equaﬁion (3.18) is satisfied if and only if

(Fn,¢) =0 for all n=1,2,...M .

.‘f_\

vi)  In the{éése of equation. (2.3) where ¢ has the
T \ :

form \

¢(Y) = \¥ M 2y, By Yoi

we show that M Ml? = 0. can happeq only when M1¢
¢ . . °
‘Suppose . - \ g |
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* -1 '
JdaM3(A,a)deMl(Y,a) I Mrse; =0

. *
then, bw equation (1.9c),

m
* - ' 3 -
fdam3(x,a)fdx Mg (A ,a)\izl My(A',B ), =0

m
de'%;(x',a) ) My(\',B; )0 = 0

Using again equation (1.9c), this means

m
* :
d M ’ ” M ’ s . = 0
J Y.l({.az i£1 2(Y Bl

. *
i.e. M1¢ = 0.

vii) We have shown the follpwing results concerning
equation (2.3). Calling the term on its right hand side

‘¢(Y),'if’deMI(Y,a)¢(Y) = 0; there can exist a solution

only if ¢(y). = 0. If JdYM;(Y,a)¢(Y) # 0, there exists '

a soluﬁion'if‘and'only if ¢(y) is otthogonal to all
Fo¥), n=l,£}f..M (if these exist) such’phat .
JdBMz(y,B)Idy‘Mé(Y',B)F(yv) = F(Y) or equivalently

demi(y,a;F(y)l= 0. It then has the form (3.17). .

Cwiii) "The homogeneous solutions of the two equations

t
) I’ . .

JdBﬁZ(A,B)G(B)T= o . C3.24)

(2
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[dYM;(Y,a)F(Y) =0 . (3.25)
oA

are in one to one correspondence.

Suppose a non zero G(g) satisfies equation (3.24),

then :
¢ —
Jd)\M‘l()\.B')J.dBMZ()\,B)G(B) =0
.and using equation (1.9b), )
JdYMZ(YIB.)JdBM;(YIB)G(B) = G(B') ‘ \

_se that JdBM;(y,B)G(B) # 0.and by equation (1.9¢)

» ' : ‘
JdYM’l‘ (y,a) [JdBMz (y,B)G* (B)'] = -Jd)\M; (X ,o) JdBM,l (A,B)G*(B)

\whizgh is null by hypothesis. For each G(R) satisfying

the equation (3.24), the function IdBMZ(y,B)G*(B) is .

. non zeto and satisfies the equation (3.25). N
Similarly, 1f F(y) # 0 satisfies equatlon (3. 25),1

using (l.7a) we can see 6hat deM (Y,B)F(y) # 0 and, -

b&cause of ¢1.7c), this satisfies equation (3. 24)

Since there age M F, (y), n=1,2,...M satlsfylng

n-

0, there are M Gn(B), n=1,2,...M sat}sfylng

G- m
]

0.

A similar one'to oﬁe corresﬁondence can be
establlshed between the N solutions G (a), n=1,2,...N
of JdaMl(y,q)G (a) ‘0 and the solntlons F'(A) of

o,

Jdm‘,(z«,».m'(u, =0. . L
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ix) - The following results concerning egquation (2.5)
can be obtained in a similar manner as those for (2.3).
Writing the right hand side of (2.5) as x(X), if
JdAM4(A;8)x(A) = 0, there can exist a solution only
ilfx('i)\) = 0. If jd}\M‘l()\,B)x()\) # 0, the}:‘e"exists a
solution'if and only if x(}) is orthogonal to all NF'(A)

(if these exist) sgpﬁ/that T
JdaME(A,a)JdA‘MB(A',a)F'(A') = F'(})

]

or equivalently ‘
[dAM4(A,B)F'(A) =0

It then has the form

_ T *, I
where x  satisfies (I-Mzmg)xo =0, i.e.

a- fdyMz(y,B)[dB'M;(Y,B")xO(B.') = XO(B)

or equivalently .

[aeM; (A,BYXx,(B) =0
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4) A General Property of Antisymmetric Functions

L ]

We prove the following theorem. There exists an
antisymmetric function G" of n variables xl,xz,...,xn

satisfying the equation
d(xj)_cn(gn) =0  §=1,2,...,n (4.1)

where'O(xj)is a linear operator depending only on the jth
variable x. if and only ‘if there exist n linearly indepen-
dent functions 'of one variable: Gi(x), i=1,2,...,n satis-

fying

-

0(x) G, (x) = 0. L ‘ (4.2)

Trivially,; if there exist n Gi(X) satisfying equation

(4.2), the function
( Gl(xl)Gl‘xz)‘f .. GL(xn)

. Gz(xl)Gz(xz) . . . Gz(xn) |
'F(gn) = det . . o : (4.3)

| : : ' v J .0
Gn(xl)Gn(xz)'. . . Gﬁ(xn) )

X TN

is an antisymmetric function of the X, and satisfies equa-
tion (4.1).
{“' ‘ ‘
Létius now suppose that a function G" (x ) satlsfies

"(4 lh we want to show that we can generate from it n 1lin-

+

.early 1ndependent Gy (x)
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. Gn(gn) being non-zero, there always exists a square
integrable function f(xn) such that fdxnf*(xn)cn(ﬁn) #.0;

we call fn_l(xn) one such function and define

£ n _ .n-1
]dxnfn_l(xn)Gl(ﬁn) =G

(x, 1) #0 . (4.4)

We repeat the same argument with Gn_l, Gn-2 etc. and define

a sequence of non-zero functions

n-1"n-2 —n-1 -—-n-

* - -
fdx £ (xn_l)_Grl bix ) = 6" % (x 2),

C e : n-i+l - n-i
fdxn—i+1fn—i‘xn—i+1’G (Xpojer) = 6 Ty ) (4.3)
* 2 - 1

1.

All these functions are square_integkable, antisymmetric and
satisfy equation (4.1). ,
Gl(xl) is the first of the functiqns we wanted. We
: S | '
will use Gl(xl) = G (xl).

‘Another such functions is G, defined as o
valsl(§1) G™(x),x,) = Gy(x)) - :

It is non-zero since using.the definition of G;(x), we have’

v °

T g6y = fdxllcl(xl)l  # 0. o o

It isfalébiorthogOnal to,Gl since
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(G,,G,) = fdxldxzcl(xl)*Gl(xz)*Gz(xl,xz) .
By relabelling the variables of integration, this must be
equal to [dxldx G (xl) G (xz) G (x2,x ) but becausF of the
antisymmetry Of.GZL this is equal to —jdxldx G (xl) G (xgg
G2(xl,x2)-so that (Gl'GZ) = 0. We then have two llnearly
independeng solutions. |

Let us suppose that we have sucéessfully constructed
i such non-zero orthogonal functlons G (x), G (x),...G (x)

with the first G (x ) as

*

(G g =T [ il gy (4.7)
J J -
where e
( G (%1261 (%) wut 6y (x;_4)
i-1 _ -~ |
F© 7 (x,_q) = det Gz(xl)Gz(Fz) e Gylx ) (4.8)

{ | :

=,

Gipl(xl)Gi:l(xz)..G 1(%5.4)

\

- We shall prove that a non-zero independent G, i+1 can be deflned ,

in the samé way.
We define R , _ R

i+l . ‘4 or
3 X)) 3

> J

-

. V ~ * )
" it ek, i ox, -
Gi+l(xj) ( ;) o [ =M+l F~ (H+41) G

e

where Ei(gi)’is a determinant similar to (4.8),
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.Fi( _ i (-1)i+j G. ( Fi-l (

i) . (4.10)

> ™

We first prove that G, ., cannot! be zero sihce

]

i+ _ i
(x1+l) =0

implies o g

* 1 * i+l - .
J951+1 £ () FRixg) 0 67 7%y 5) =0

‘ l *
[dx. F(x.) G

which by definition of G'(x;) is

- v
1, adeal o
Jé_)ﬁi F (ggﬁg};G (x;) =0

+ Upon reélacing F' by its explicit expression (4.10), we obtain

-1 o x,* i _
11) G (gi)-o

i o .y
I, 0 faxg ot e

X

which by equation (4.7) is simply
i S N

i.e. i ||G 11 s
whlch we know does not hold. We theref-ore ‘have G +1 # 0.
. We now show 'th.at; Gi +1 is orthogonal to all GJL’ L= ,
. ' - 1+3+l 3
6,,65,0) deJGz(x ) Gi+1(x )=t-nt *axg,

i+1
6, ) PR 1+1) K (xiﬂ)
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We now use,

RortEisd) =0,
] 5

, left hand side of this is a deter-
4.8) where the two rows with G, are -

1

) =0 i.e. (Gl'Gi+1) = 0.

~ 3 b . )
We have thus beerM e to define a new function Gi+H§X)
which- satisfies equgkion (4.2). : ' 3

Since ;he‘u' L procedure can be repeated as' ‘many

‘times as we have’ ns Gl(gi), we can'obtaip n ortho-

gonal solutions f_>K4.2): Gi(x), i=1,2,...,n; one corres-
ponding to each Gl(ii). -
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5) Vaniéhing Vaéu ‘A@plltudes

[]

\

In thls\sectlon ‘'we show that the only possible non-

zero solutlons to the«system of equatlons (2.3)-(2.6) are.

the wnm generated from ¢NM = ¢ ¢(N(9N)¢M(§M) where c is

'N

an arbitrary constant. If N=0, ¢' = 1, otherwise

] ] ’ [} 3
Gl(al)szal) . e . §N(a1)

¢ V(o) = det Gplax)Gylay) « - - Gylog) I get gt (o)

. ' ' ‘.l . ‘ . . :
| G (ay)G, (o) w."._GN(‘QtN) J
1 Y '

wliere Gy (a, k=1,2,... N are the'N linearly independent

homogeneous solitions of N \
| ' 3 ’. .’ x\ (‘\.
Jda M, (y,a) G (a) =0 . \ A
L AR } \ '
‘ " . . o r \ L]
"If M=0, ¢ =1, otherWise,» ‘ Q§\
[ 6,(8,)6; (8,) c.. Gy (By) o
‘ . . . 1 M ) . \’
. \ ‘
M = det G, ( G(B) ' ='<;tG(B‘)
¢_(§M) = e» 2 Bl - z det By)
L GM(Bl) GM(82§. e » e ) ] . . , . ‘r“ )
(;a ?ﬂ;;r: ;-!," - .. : o ‘. | . L o) . ‘ ) ; 7 ‘ \ |
g s L : b e - T et

. ? where Gy (B), k=l 2, ..,Mi.are the;M;linearly indepeﬁﬁéﬁt spid551 ':

_ tlons of . 4';.0“ y 'ﬂ .

-

. IdB M4(A 8 G(ﬁ) —~o A B o




* N & v
i) Using the'theoreh proved in SeEtigﬁ 4); we Can
1mmed1ately deduce that w 0 is the only p0551b1e solu—t

" tion uhen (n-m):>N m—O 1, 2,... or (m—n)> M, n=0, l,... R
\V\ B s
In order to show thls, let us tonsxder w wgere; -

(n-= m) >N Because of the recursion t pe equatlons (2 3)
and(2 5) Whlch they must satlsfy, these are generated from

0

T Qv(a ';-)‘snch that“

IdaJ Ml(Y,a )wn o o(ﬁn—m;f):

W
R

_The only possxble solutlon to this equatlon howev

,wn-m,o =0, The next amplitude wn -m+1,1 must then, by
A N
_ ’equatlon (2.3) satlsfy o . _ \ °
'“?E;::;Ffwih © o= m+1 l . N Voi. R
T .[d_aj le, jw (cx ERATRE =
so that it alSO can cnly be nulL 'By repeatingithe'sam o
argument, we ea31ly obtaln by lnductlon that all w hete:l.J'V
ulnn >N m—O 1, 2,... must vanlsh.. ar
Y 9
: The proof for lP =0 when (ﬁr-n)> M n—-O &

' ~can be done 1n a SLmilar manner, uslng the equatnon'ﬂ_',s-‘ .
and’ (2 6) S S

T

e

MQ

. thh (m-n) s M and m> n,. i.e. n < m s M+n.1 0bv1ously, thls

kR

'h;ii) g Let us examlne the equatlons for . the amplltudes w

"nce otherWise,Tthere exlst no

N Y

"’jls necessary Only 1f M #507

'

m such that n <m.g n. v_f_ ' R
. . ol =

These amplltudes w are éenerated from w ; where ??ﬂﬁlf

+ m-n, which satisfies
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N

‘s
[ 4

x T or
. v -
(// IdBj M4(A¢Bj)% (=iB ) 0
- and must themselves satisfy the equations (2.3) and (2.5).

1, r+1 is

(5.1)

The equation (ZQﬂ.for P

: ‘ r+l . .
1l,r+l N 1 z (_l)l+1+l N

(a,:8 )
R A )

0~

..fddlMl(Y,al)w

M2<Y,si>w°r<—; gr+l) . (5.2)
“ \i
‘ . _ R .
We now use the results of section 3) to examine when.solu- .,
tions wl,r+l to (5.2) will exist. ! <\
" We first have to see whether ' - {
* T+l i ‘ or B
deM (y,a) [ Y o(-1)7 Mo(y,B. )¢ (=i Zr+l) | = 0 . (5.3)
1 . 2 i 2 .
o i=1 . - i
If this is so, then
y o tend j % N . or B .
IdB-M*(A,B.) ) (—lfIdYMl(Y,a)MZ(Y,B.)w (-; zr+l) = 0 » 3
340 0 S 1 i \

A Y

°, Y
all terms in‘ﬁhe sum with i # j vanish becduse of equation

€

(5.1) so that we must have

| .

. * ' o * .
[IdYMliy,a)Ié@igz%Y,Fj)M4(l,Bj) ¥

Or(_'

; Brel) =0 . @4
3 ’
; 4 '
It can easily be-seen from the equations-(l.7)_and (1.9) tHat

Ay

J

IdﬂMg(AlaiM3(A,a'f = da§' ' which-fs not possible if - S

" [IdyMI(y,goIdB.Mz(Y,Bj)M:(A,Bj)] = 0 -implies.either

JAtMg]| < =) or m300,0) =0 and My (Y,8) = 0, which is a
/ ’ . ’ Lo . )

o/
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«|¢O> z |O>.

"takerf to be null.

“to examine ‘equations of the type
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~

trivial case for which we know the unique solution will be

.

This is then not null for the general case

where M, and M, # 0, (5.3) holds then if dnd only if vOr is |

~

If thisyis the case, i.e. wor is taken zero, we must

2,142 These are (2.3) and (2.5)

examine the equation for ¥ .
with er+l satisfying
r+l _ 5.5)
Jda Ml(Y oy ) wle 1,Br+l) 0 \\ )
‘ /
. P
lr-hl 0 )(5.6) .

*
JdBjM4(A,Bj)w (@yiB 1)

We see that whether ¢or is taken null pr not, we still have

-

2+1,r4+2+1

‘ l
p[dale(Y,aj)w . (a g+1'6r+2+1) - )Fr+§

r+2+1 t
(- 1)£+1+1+3 M, (Y8, )w2 T+ “g¢13§r+n*1) (5.7

i=1

-

8 ,)=~'_ 1 X
2417 Eree+l SAFD(+2+1)

2+1 r+2+l(

.

| . |
dg.M /B
f B3Mg (ArB3)¥

o 2+i Coaias _ i
I DMl ona e T @ Brresn) .8) "
iZl i 3
where &?,r+£ satisfies \
| L,E+8 ’ ' S
o Ide M4(A B )w Sgﬂ; §r+2) = 0¥ 5579)
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and also, if wg,r+g are taken zero up to (2-1), (£>0):

)wglr+2(

; ) =0 %3 . (5.10)

\4 {dale (Y,a

We note that if for all 2=0,1, 2,--- M-r, WR'r+l

?

(5~ .are taken zero, the only pOSSlblllty for all subsequent

wl’r+2, ¢ > M-r is also zero since (5.9) does net have non
zero antisymmetric eolutions with more than M variables 8.
1f on-the other hand, for some 2 s M-r, wl'r+2
is taien non zero, deMI(Y'a) r.h.s.(5.7)l# 0 by the same
arqement used above starting at equation (5.3).
We now have to examine whether the r.h.s.(5.7) is
| orthogonal to all M Fk(y)'s such that JdYMI(Y'G)Fk(Y)'= 0
. (or equivalently stMz(y“,B)deM;(Y,B)Fk(Y) = Fk(y') )
_since we knew from sectionVB) that this is the necessary

and sufficient condition for the existence of a solution

w2+l,r+2+l.‘ That is, we need
r+e+l x .
L,r+8, B =
igl IdYka)MZ(Y’Bi)W (9_2, ir+IL+1) = 0 ¥ Fk (5.11)
N L

A

.
¢

. We have previously shown that IdyF;(y)Mz(y,Bi) = Gk(Bi)

is a solution of dB-M*(A,B-)G(B-),= 0 and if the F,_ are
iT4"' i k

taken orthonormal, so will be the Gk(si). Equatiqnv(S.ll)

4

is then ,

rt e+1 i
} (=17 G (B )V
i=1 .

Loxt l(a Sreg4l) = 0 ¥ G (5.12)

k

e d R~
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which written in matrix form (we get one row for each Gk) is

. Y, 1 8,48 )
Gy (B)G (By) + « « GylB )| (-1 (@, %r+£+l)
‘ . 2 1,040, . B
G, (B)G, (By) « - - Gylh o )| (=1)%y (o, %r+1+1)
d * * = O *o
) ‘ e+l p,rée
Gy (B)Gy(By) = v - Gy B yger? ] 1) Y (g iBryg
\ . /A . ’

(5.13)

Obviously, if M 2 r+2+l, we can extract a system of r+g+l
linear equations from (513) and singe the determinant of the

resulting (r+2+1l)x(r+2+l) matrix is not ‘null, the functions

L,r+2

G, being independent, there is no non-zero y satisfying

k
. s L,r+l
this condition. Such then .cannot generate other am-

LN . . '
plitudes satisfying (5.7)and (5.8). Thus, the only case for
which (5.11) can be satisfied is. when r+4+1> M. Since we

)
already had the restriction r+g < M, the.only possibility is

r+f% = M. The system of equations (513) in. this case beconmes

4 ‘ ‘ l . R,M . .B W 3

; 2 WM . N '
G, (81165 (850 -G (By) | | (-1 5 ey §M+1{ Gy (Byyy)

. - S = DM @, gy
1, MM, B
Gy (81) Gy (B -Gy (By) || (1™ gs 1] (G Bga)

| CT (5.14)
- X
We define as ¢M(§M):thé
M- B

e i S . A

?;&Sy¢¥ (=M) the subdeterminant of this same

7 G, J. o S .
: i

r

determinant of the matrix on the r.h.s.

(5.14) and denét

»
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matrix when the row Gi(B) and the column of functions of Bj
-are left out. Invetting equation (5.14) we obtain (since the

determinant ¢M #+0) the unique solution

_qyi+3 M
(1)o7 (MG, (By, )]

j=1 G. 1
¢ (By) 3 ;1

(-1) M (o s Bl =
1

MM
which by using the definition of ¢¥ is simply

\

o (Bmr1) ,
M ' oM -
Mg, Bl = — v (0 18y) (5.15)
i Mgy '
i1.€.
WMo, By g
. i = ——ﬁéiﬁéji— v i . (5.16)
¢M(2M+1) o (By)
l.
®
This is easily seen to imply' °
T M
VMo, By) = by lag)e By (5.17)

where v, (@) is a constant if % = 0 whereas, for ¢> 0, it
must be an antisymmetric function of the a's which satisfies
(5.10) . Because of this last property, % < N is needed in

_order to have 2# 0.

-

We have thus gotten the necessary and sufficient

+1,r+2+
conditlons for equation (5.7)to have solutlons‘f 1,r+d 1

g
. )
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iii) We now have to examine whether (5.8) can also be

satisfied.

We have JdAM4(A,B) r.h.s.(5.8) # 0 since

2+1 L, x

0P g GLpm) ey, Gl Euel) = o0
i=1 1 3
implies '

[fdakml(y,ak)(—1>Q+k+jfdxm (xr )M 3O 1y Gal)g "Ems1; =0
3

A

(where (5.10) is used when ¢ >0). Since the factor in
parenthesis is not zero when M3 and M # 0 and we know

¢ # 0, this equation holds if and only if v, is taken

zero. However, if this were the case, ¢2+l Mtl would have

L+1, M+l( =0~ 3 so

) ) *
that it also could only be null together with all other

WM M A hon-zero solution is then possible only if
we take wz ; 0 SO that IdAM4(A,B) r.h.s.(S.S) # 0. -
It is now necessary to examiné whether the'r.h.s.
(5.8) is orthogonal to all N Fé(x) such that JdAM4(A,B)F£(A)='“
0 since we know that this is a necessary and sufficient .
condition for an equation of the type (5.8) to ha&é a solu-

i

tion., We must have

TR+l

Y - 1)‘+l+3jdxF (0 *M3 (1,0, )q;2 +1)¢ Eur1) = 0 v
i=1 . J ‘
l1.e. ' ‘ ,

L+1 i o Lo -~ |
DT G leg)y, (A1) = 0¥ G (5.18)

i=1 ‘ ,r . i‘ . N
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where Gk(ai) = JdAFk(A) M3(A,ai), k=1,2,...N are linearly
3 L. ' ‘—
1ndgaindent solutions of jdaiMl(y,ai)G (ai) = (0. We note
that}ﬁﬁe system of equations (5.18) is of exactly the same
type‘aé the system (5.12) a discussion similar to the one

used in dealing with the previous equations is easily seen

to give the following results. If N > g+1, (5,28) can only

N,

be satisfied if wg = 0 which, as we saw, implies all

+ +r : . ‘
Q_I’M I also are zero. N < 2+l is therefore needed and

Y
since already 2 < N was necessary, we see that only & = ﬁ
is possible for a non zero wg to‘satisfy (5.18).

This togéther with £ < M (c.f. remark after equation
(5.10)) means that when N > M, 2 = N is not passible so that
the only solution will be wém = 0 whenm > n. If N <M,

(5.18)is satisfied if and only if

(G (216G (ap) -+ . G] (o)

c ¢'M(ay) = c det |Gy (a;)Gylay) -+ . Gylay)| (5.19)
< . .

by (ay)

’ Gy (o) Gy (an) o v e GN(“NLL

) we therefore have shown the following results concern-
t -

ing all y™ such that n < m. If M= 0, the only possible

solution is all y™ = 0

). If M # 0 and M < N,‘the ﬁniqde

s

possibility is again ail‘wnm = 0. If M # 0 and N < M, the

[

only possibly nonjzegg family of wgm consists of those gene-

rated from w““(ggfgm)'which is - s



if N # 0 and wOM(—;gM) = ¢ ¢M(§M) if N = 0.

iv) The results concerning the wnm with n > m can be

~deduced in the same manner. If N =0 or N # 0 and N < M,

the only solutions for’all wnm will be wnm 0. 1If

N # 0 and N > M, the only poSsibly non zero family of
~oonm . : . NM ‘

such ¢ will consist of those generated from y (EN;EM)

which is again

W ayiBy) = c 9T ()07 (By) Af M A0
. NO _ . -
and v (ayi=) c o' (o) if M=20.
v) . Similarly, élso, we obtain that a non-zero family

of amplitudes wnm\with n = m can exist only if N = M and

it is generated from YN = ¢ ¢' NN |
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6) The Solution of the Equatigns

A uﬁique non-zero set of amplitudes is‘always

determined by the system of equations (2.3)-(2.6).

It is the family of amplitudes generated from wNM w_

which, as determined in/the previous section-' is
) o

) = c det ' . (6.1)
0 G (B,,)

NM
’w (gN;EM

N+2 ,M+4%

The amplitudes y for £ >0 are

2{(2+1)
2

N+£L,M+2 a 8 ) = c(-1) N

( ; ;
SRR S R A

‘/f | ‘.
. R \

v

x{oy,8y) ﬂ r

v .
GTlayyg) . ' .
X det ) . | 3

XogygrBrIX Oy, g rBy) e e X (O g eByyg)

-

~>

’

: Y b . G('@M'HL) . : )

(6.2)

. .
’

where x(uj,Bi) is defined as . : ' -
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X . ,B.) =
]t r=0

e~ 8

Jda(M;M3)r(aj;a)deMI(YrG)MZ(Y:Bi)

(6.3)

.When N = O,)the left hand side upper matrix of

Gé is not there; when M = 0, the lower right hand side

matrix of Gk is not there and when' N = M = 0, WNM =

N+2 ,M+2

woo = constant and y = wgz is the determinant

of the upper right hand ;ide matrix of x's.

ML ML atisfies (2.3)-

(2.6) for any given j, we simply expand the determlnant

In order to see that y

for wN+R ML along the j th row and obtain
2(2+1) .
N+g ,M+2 c(-1) 2 v
Y ! (9N+£;§M+z) = ) Gi(aj)[its cofactor]
, VN+R) T (M+R) T i=1 :
M+
F T (e l)3+N+1 (ay.8y) [(N+2-1) I (M2~ 1)!] y
L (2-172
i=1 —
c(-1)
o TN s Ben)| L ‘ (6.4)

.J i

13 ' -— * .
Slnce fdale(y,gj)Gi(aj) =0 ¥ i, we have'

& . | M+4
. 1
[da M, by,a J)wNﬂ'MH’(a ; )=

S B oy -21
[jdd M (YIG )X(G IB )1 WN+Z-1 Mi}:r

X

N+£+i+jx

(-1)

LJ@?
. S
3 oo
£

b

a4

[ ]

-

S (6.5)
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k=1 /(N+2) M+tL) i=1

148

We have already shown in section 3) that

x*
Fk(Y)[dY'Fk(Y')MZ(Y':B

v M
My (v, By) - )

do.M, (y,a.)x(a.,B.
[ aJ 1(Y aJ)x(aJ 81)/ §

1

il

M -
£ F (Y)G (By) .y

M (YI'B-) -
2 i 1

k

The right hand side of (6.5) is then 4

1 M'Hl .

Y(N+L) (M+2) i=1

‘

(_l)N+E+1+j MZ(Y'Bi) x

. - - /
N ¢N+£ 1,M+2-1 (%N+2;§M+x)
J 1

M By (Y) Mep

_ N+ ’
(-1) G (B;) X

x gNHI=L MR-l oy, o Burg) (6.6)
E | 3 i S
For any given k,
Mta i N+L-1,M42-1 o .. B
I 17 6 (B ’ (SN+2;EM+2) = 0
s . 1 . ~ 2
i=1 ' J 1

' since this is proportional to a determinant like (6.2)

where one of the\first N+% is deleted and a row: .

[0,0...O,Gk(Bl):Gk(Bz),.Q.Gk(BM+22] is a@ded after

the last'one so that this row is repeated twice.

i)

We are theréforé leftvwith only the first term of \\\;

(6.6) and. (2.3) ls satisfied.

oy

)
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Equation (2.5) 'is similarly verified for any'j by

3

expanding the determinant (6.2) along the(N+j)th
N+ ,M+4,

"%olumn. v as giVen by (6.1) and (6.2) therefore

éatisfies the system oﬁ equations (2.3)-(2.6).

SR This set of amplitudes is furthermore the
! N - .
unique non-zero solut}on. In the preceding section,
: : \ v

we saw that a non-zero family of ™™ could only .be

‘Fenerated from wNM,‘aspgiVen by (6.1), which is unique

up to a multiplicative constant. Another family anm #

'-w“m for some or all n>N m>M, generated also from

inM , cannot exist since we know, from the section 4)
,that ¢N+l (M1 = ($N+1'M+l - wN*l'M+l) which would then

@satlsfy the homogeneous equatioqé

1
T N+1,M+1

e

‘da M (o), (Ane1iBuey) =0 ¥ 3 (8.7

g N+1,M+1 B o

JdB M (A, 8 AT (fN+lf§M+l) =0 ¥ 3j . (6.8)
can'only be = 0 i.e. $N+1’M+l QN+1’M+1.MhBy repeating’

‘the same argument, we show that we need ¢N+2 M2 -

: ¢N+2 M+2’ etc. .... The fact that there exists-no anti-

"o and to (6.8) with more than M variables B thus ensures.

»”
symmetric solutidn to (6.7) with morelthan-N variables

suniqueness of the nontze;o'amplitquB e which satisfy

(2.3)-(2.6).
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7) Proof that the New Vacuum has Finite Norm |

in the previous sections, we have éroved that
the equatlons {2.3)-(2.6) determine uniquely all am-

plitudes y™® of the expan51on (2 2) for |¢ >. We

2
now show that’<¢g |¢ > = 5 ||¢N+2 M+2|| < >,
2.—

N+2%, M+1||

In order to evaluate || , let us use

the expansion (6.4) for the ‘determinant (6.2) along

the first row (i.e. J = 1). Since x has been .shown,

" g

in section 3), to be: orthogonal to all G'(a), we have:

2
C

2 .
e uny) || = T

| /,n "
| ) G, (al)[lts cofactor]||
l::

ML
N . .
R CE (M+2)le (-1) " xlay.B;) x .'

f v

. _ . _ A 2 . L
x wN+£ l,M+£ 1 (%N+£, EM+2)|I_ . (7.1)
- ’ v 1 i . N
. N . ) ‘ i .
d) . The term 2 G.(ql)[its cofactor] can be seeny

- : SO
by examining the determlnant (6.2)_and always expand-

1ng cofactors along a column G , to consist of

N. (N+z—l)'/z* terms of the ﬁollow1ng type. each term L

contalns a product of N G' c’. w1th dlfferent variables o,

”omultlplled by a determ;nant of the type D 2; defihed -~

=_below, whlch depends on- the remainlng (N+z)-N varlables;

o " ) - .
. k) '_ . -
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Y

o and the M+% variables B. We can write symbolieblly o

each such term as -

. _v :
+( 1 )( ')D M”(;:NM,QM”) (7.2)
. k=1 o

where o, designates a set of N a's (among which, there

is. always al) and DM+£ is defihea‘as, o

P y
N e
.

x}al,Bl)x(al,Bi) _...x(al,Bm+2)
M+2 _ .
D (a7 By ) = et . ‘ .
. {x(ai,ﬁl)x(%,ﬂ'z) X (0prByyg)
.| GpBy) GlBy) L G TRy
[ . GZ(Bl)
C \ GM(ﬁl) QM(Bzr GM‘BM+£)‘
. \ | (7,3)
. We remark that two terms of the type 7. 2)

.w111 dlffer 1n hav1ng dlfferent sets g& or 1n hav1ng
)

’

‘the same sets gﬁ but ordered dlfferently in the pro—.-

aduct Gl,Gz,..sG (oxr. a mlxture of these two p0351b1-’f

}1t1es). The terms are: therefore orthogonal @s .:.-~‘2 '

» . R ' .'-
fengtlohe Of?9M+2' If they have the s%me sets EN'

~



Y

but glaced in a different order, there will be products

fdaij(u ) Gk,(a ) where k # k', which are null. If
they have. different sets g& and say aj is in one of the
sets and not in the other, the product will contain the

. * M+R ' Lo
integral Ida G, (a ) D (...aj...,gm+2)‘wh1ch is null

since daij oy

(@)™ x(aj,si) = 0. We;theréfore hawve
» N . N 5 . L ,
l ll-Z' Gi (O.l) [itS cofactor] I ' . ::Zl Ieach indiVidual term] l ;

»
-

the norm of all terms being equal, this 1is

v N )
N(N+g-1)! v MHR
= e R et
. k=1
and if the Gk's are taken'@ormalized to 1,
N(N+g-1)! M+2 2 4 o
= — 7 P , (7.4)
where
M+L, 2 _ ML 2 )
IID II - f__zi@.m.;.z' (92'-8-94‘*2)] . /j (7.5)

f vy
e

This term will now be dealt with together with

.ot
2

the second term of (7.1). We simply femark for the
 moment, that when deVelopea along its first row, DM+2
can be wriﬁten,aé

Mt 2 i+l M+g-1

M+ ' a,.B
D (a,:B ) = (-1) x(ogsBy )D (ZR:=M+L) .
o TR igl 1’ 1
. / . y";:‘ 7 . 6 )

b, . N Al
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O

ii) Let us then consider the general expression
M+42 . 2 .
i M+2-1 :
fgém+g I.X (-1) x(a.Bi)F : (§M+2)| (7.7)
i=1 i
: \ (0
where FM+1-1 is an antisymmetric function of AR+2-1),

variables. This is equal to

~.

M+ .
. - 2
] J§§M+2|x(a.81)lz 17 AR CTISY
i=1 v i

M+g M+g -
' J9§M+z 0P v, g )M Bueny *
1'#i=1 i'=1 i
x xla, 8y OFTET E gy L (7.8) .

ll
2 rd

We will show that the last term above is always

negative or null. Every integral of the sum can be
! .

/

written as

P ~
s y

f:gg-m+z (—1)i*f'[Jasix*;a,si)F“*“‘lxg-M+z)J x

11 / i?

- - M+2-1 8 S

x [TdBl.x (a 81')F (—M+£)] . (7.9)
:. . i

The éerm Idsi,x*(a,Bi.)FM+2 l(§M+2), upon relabelling

-

‘the vatiable of integration Biv: By 4 1s»equal to

——TT
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M+g2-1

JdBiX*(O:Bi)? (61'82""éi';BM+£>;<3
— i

- fdsix*'(a,si)(—l)“l P E ey,
. Ir'

so that (7.9) is equal to

_ J._d_LMm, ;[dgix*(d,ei)}*””‘l(f—mﬂ)]2 .

A i i

i .
',;”mhe last term of (7.8) is then always negative or

null and we have

M+ . 2
1 M+2-1 B
JdBM+1 'izl (-1) "x (o /B;)F (§M+2)| s

: .

first term of (7.8)

that is

s e fasixia,e) 121 1[dgy,, o 1P

2
By |71

17.10)

iii) We can use this result to evaluate 17.5) and
’ E

obtain . B _
/ T

' 2 M+2-1, 2
s +2) [x|] [P |

7 .-

M+2‘| I2 :

|

| Ip

. ’ -1, ,2 '
and repeating fo ]JDM+2 l|| , etc. ... we obtain
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q
M+2, 2 . 2% M, 2
D™ 7] (M) (Meg-1) ... (M+1) | | x| | | D7 |
M X M, 2 ' :
where D = det G(QM), so that ||D7|| = M! and
M+, | 2 21
FID 7] < (M+)t | x| | (7.11)

Similarly, for the second term on the right

hand side of (7.1), we obtain that it is always

2

1 2 N+g-1,M+2-1
LIx IS v [ (7.12)

RT3

We thus get the estimate

2 2% 2 Q 2
N+g ,M+y, 2 C™N N+g-1,M+4-1 ,
I 117 S e LY ST

(7.13)

N+z-l,M+g—1I'2 ot

By using the similar estimate on |y

NMll2= 2

... and ||y c® NI M! weAthain‘that the right

hand side of (7.13) is equal to

' 2-1
2 24 I
c NI[XII izo (N+2) (N+g-1) .. (N+2-1) (2-1)! *
N cZNlmulez2 : (7.14)

(N+2) (N+2-1) ... (NF1) :

-

" When N = 0, the first term vanishesand when N > 1,

(N+2-1) 2 (2+1-i) for all 2's so that the first sum
. 5 o

-
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is always smaller or equal to R/ (+1) ! < 1/21! ;

also (N+2) (N+2-1)...(N+1) > 2! so that
N+L,Mig 2 2 HXHZQ '
v 5 5 s e v+ Nim o . (7.15)

Since this holds for all %'s, we have that the

series for |¢Oa converges strongly to a state of 4

and |
S N+&,M+L, 2 2 o 22
<ogle> = T e g e (neNimy) ) LL%LL_
=0 < 2=0 :
i.e. )
I Ll -
<ogl4> < coneNM)e! IXTT w0 (7.16)

v

.
L

The arbitrary multiplicative constant ¢ can therefore

be chosen such that <¢O|¢O> =1,
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8) The Unitary Operator

In the.previous sections, we have proved that
the conditions |[M,|| < « and |IM5]] < = are necessary
and sufficient for the existence 5f a unique vacuum |
stat% [¢O> associated with the "new" creatioff and anni-
hilation‘operators (B,D) in the Fock-Hilbert space de-~
fined by the operators.(b,d).

In this section, we will prove that, under the

above conditions, there exists a unitary operator im-

plementing the transformation (1.1) and we will give

| - »
Y}

an explicit form for it.

1 ) .
i) _ In order to see more clearly what happens in the

transqumation (1.1), we decompose it in a product of
simpler‘p;qnsformations.

Before.doing this, we introduce the followirng
unlfled notation for 51mp11c1ty. We call Xg(a) and
x (A\), n=1,2,... the respective eigenfunctions (defined
as.in equations ‘3 3)-(3.4)) of (M M )(a',a) an
(M )(A',A) where the first N correspond to the
vvalue 1 (i.e. gor n=l(2,...N( JdaM (v, a)X (a) = 0 and
AJdAM (A, B)Xl(x).=‘0). Similarly, x (g) and X (Y),
n=1,2,... are the respectlve elgenfunctlons of

(M, M )(ﬁ ,B) and (MM )(Y cY) where the first M cor-

respongd to the elgenvalue 1 (1 e. for n=1, 2,.. .M,
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‘ [dBMZ(X,B)Xi(B) = 0 and deMI(Y,a)Xﬁ(Y) = 0).

We define the smeared operator variables:

. *
b = [daxi(a) b(a)' d; =4Jd8Xi(6)d+(8)
B 4 * t Lol +
B, = dexn(y) B(v) D = fdxxn(x)D (x) . (8.1)

[ 4
~

We recall that the functions X; for each i=1,2,3,4

form a basis in L2 so that

bla) = [ X2 (b, ate = 1 x2@®%al
n=1 n=1
0 \ o R
B(v) = | X2(NB, ptoy = I xt™f . (8.2)
‘ n=1 ' n=1

Because of the properties of the functions X;,

we see that the Bogoliubov transformation (1.1) is in

. fact

B = d~lL for n=1,2,..M «D;= bn for‘n=l,2,..N (8.3)

_ o 4 3 4 2. +
Pint” n21{(XMT“"MlxN+n)bN+n+(XM+n"MZXM+n)dM+n}
oY 3 1 2 . .F |
Dyin'™ nzl{(XN+n"M3XN+n)bN+n+(XN+n¢M4XM+n)dM+n}(8'4)

[ Py,
for n'=1,2,...® .



One can immediately notice that the equation

BN )
(8.4) itself is a Bogoliubov transformation between

the two sets of operators Sn = b

n=1,2,...» and ﬁn = B D =D ; n=1,2,...,o,

M+n’ "n N+n
4 3

~ . ~ x
The kernels Ml(n',n) = (X M. X ) and Mq(n',n) =

M+n' ‘* 1"N+n
2 *x_ 1

(XM+n

4" N+n

M. X ,) do not have any non-zero homogeneous

solutions associated with them as is easily deduced

159

from the properties of the»xi's‘ (8.4) is therefore a

"weak" Bogoliubov transformation and together with

equation (8.3), this gives a simple decomposition of

the transformation (1l.1).

ii) Let us now look more particularly at "%eak"

v

Bogoliubov transformations. Different forms for the

unitary operator implementing such transformations

are given by K.O. Friedrichs [1953]. One such forn

is easily obtained by making the following ansatz which

is syuggested by a close exam¢?ation of the

the new vacuum state:

-afF,b -d'F.a -b'F.p -b'F.a’
4™ 3 2 ; 1
T = e e e ‘e
| ‘ -pTF_at |
where expressions like e stand for

[+ <]

Tt it
- b' ' ' n)d .
exp { n'zl nzk‘ n.‘El(n ,n) n} |

(8.5)

nature of’
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The requirements that . ’
b B
n
b p! r - 8 ¥ n=1,2 . * (8.6)
n n ’ [2E B °
d D
n e

.1. .
dn ,ﬁ§ _ Dn
ensure that T is unitary and when using the expression

for the operators (B,D) in terms of (b,d) and the for-

muia
(o]
o n
c _ C (-1)
Ae” = e Z ~ Qn(C,A) '

n=0
where ‘ .
QO(C,A) = A, Q.,,(C,A) = [c, a (c,A)1 , (8.7)

’
(8.6) determines completely the functions Fi' i=1,2,3,4.

A straightforward calculation shows that these are

i
I

giveh_by

\\\\“\ -F,

* e ) (n,m

Ml(n,m)

e (M, (n,m) 1" .

1]

) (n,m)

'Fl(n,m)%is the solution of °

,; gl(n',n)Fl(n,m)‘= -Mz(ni,n)

-
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that is

1 11
Fl(n.m) = 55 ¢~ (n,m)

Y

where w and woo are the first two amplitudes in the

expansion of the.new vacuum in terms of or1g1nal Fock—

basis states. F4(n,m) is the solution of

E'Ml(n‘,n)F4(m,n') = —M3(m,n) .

There then exists a unitary operator T of the

form (8.5) implementing the "weak" Bogoliubov trans-

formation corresponding to a set of kernels M, (n, m),

i=1,2,3,4.

AN

é

iii) In the case of the general'trénsformation (8.3)—.

(8.4), we can then define a unitary operator Té such

that

-3
ol
=

]
o)

tog _ e e
TO dM""n TO - DN+n V n -— 1,/2,... . (8-8)
and e‘l '
t | . T o
o bi To_= bi for.i=1,2,...N, b
. o A ‘ » _'
TO di T =‘d' ! for i=l,2'oo:N ) ' (809)
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That is: T, implements the "weak" Bogoliubov transfor-
ma;ion (8.4) so that it exists as we saw in the previéus
section. It does not contain the operator variables

not entering in (8.4) beéause of the requirement (8.9).
It can be written in the form (8.5) for example, where
~the operators (b,d) are Bn’ an; n=1,2,... and the Mi's

are the ﬁi's.

1% , ) . .
It is easy to check that the unitary operator

i} . Y reth aqt 1
U= {exp-i (M+N)11T1£l [b b +d d ]} (dd,) ...

t_ t to ot t_ .
(d4378)) (d]=d)) (by-by) (b}-b,) (bI-b ) (8.10)

commutes with bN+n gnd dM+n for p=l,2....wﬂ and

Ufpi U==Di for ;=l,2,.,N, U+diti= Bi for i=1,2,...Mm .
T — ; | (8.11)
‘The unitary Sper;tor \
. \ <
T =T q =UT ¢

-

Will,then transform the creation-and annihilation

’
4

operators as

L 12 7 oty m o i

wnT el Dn "T/X—l'z,l..‘y T bnT - Bn ‘n N+1'.’.W
T+d T = B_  n=l,2 M . g T=\D—T/ n=M+1,.,
., n :‘ n ‘ - ’ 'ovo.. : n n ’ ! _'Ov‘. .
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The vacuum |¢O> (i.e. the new zero particle

- state) which we have calculated is then simply

log> = 17[0> =T wlo> . (8.12)
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9] Conclusion

a2
S

i) ' Let us consider a quantum mechanical system

t t

where the operators b, b, d, d are associated with

particles at some time t) and B, Bf, D, D* are

assoc%gted with the same particles at a later time

t aébording to an equation of motion like (1.1) in

2
the. Heisenberg representation.

' If the system is in the state {0>; indtially,
™ M

" there are no particles present. The state with zero

partiéles at the later time t2 is |¢6>. The state

TO|¢O> is one in which there is a non-zero probability

of finding pairs of particles and antiparticles created
S P, ' L

by BM+ and Dy, , n=1,2,...>. |0>, which is

o

B} _ st gfetot ot L
[0> = TL¢>O> = ...132 1DBy++-D3 To|¢o§ ,
is then a state in which M particles and N anti-
particles have certainly been created and in which
~there is a non-zero probability of finding also pairs

"particles and antiparticles.

t
I
-4

:#+""* " 1f, on the other hand, the system is in’the
state.|¢o>;'

it _-+ t gt otion
05> = byby.--by dl...dM o|0> ,
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initially‘there are at least N particles\and M anti=~
partiéles plus possibly séme.pairs of barticlés and
ahtipartiéles. After the in;eracfioq, there are ng
particles present. -

We see that there are states of the system in'
which pg}ticles and'éntipd;ticles will be creéted Qgi
annihilated separateiy wigh éertainéy. If these are

. assigned different charges, vaiousiy, the total
charge is not conserved unless N =, M.
This can also be seen by exam%g}ng'the charge

. >
operators; the initial charge operaé&i\is

% Tt gt
Q(tl) = e-n£1 {bnbn dndn}

and the'new charge operatbr is v
. o ‘ " o
© P =T
R T SR

By their action on one of the two corresponding Fock -

L’

\fbases, one can see that.thé~following,relatibn holds

,vbetween these two operators: -

e

,. . ; } . v . ’/" v . . ‘ , v " .
ety =l + MmN L

This gives therefore a rigorous adequate treat- -

/. ment. for the phenomenc. of isolated particles complete
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absorption or emission by the external field which 1is

discussed, for example, by A.I. Akhiezer and V.B.

Berestetsky [1953]. {
kY
ii) " It is easy to see that the results obtained
- apply also to the case of one operator yariable

transformations like

Py
B(y) :,JdaMl(y,u)b(a) + IdaMz(j,a)b+(u)

« )

In terms of smeared operators defined. similarly as

'in the ‘case discussed here, this transformation reduces

[

to

B8_ =D . n=1,2,.7..M

4. . . .
and an ordinary Bogoliubov -transformation b&tween the

. : T Sy ". ° .
other BM+n S and‘bM+n ?f . The unjtary operatori relating

them has the form T = T U where T, is the usual one

N »

for the "weak" transformation and

o ' '

o . t t T ow y(pl- N
U = {exp-imn ngl bob 3 (by=by) ... (Dy=b,y) (by=by) . .

N = 1
. N -
) , .
_ ' . ' . .
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~

111) We finally remark that the case of a system of
bosons is different since then N and M '‘are always zero.
The particles are always created and annihilated in

pairs (and thus tie total charge conserved for chargec

»

bosons). This is not so here, when N # M, even though

this could seem to hold in all cases due to the aspect
&8

of formal algebraic relations between the field opera-

s

tors.
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CHAPTER 1V

SOLUTION OF SOME TIME DEPENDENT EXTERNAL FIELD PROBLEMS

Introduction

In the first section of this chapter, we examine -

I

the simple problem where a free Dirac field is'disturbed
by a pulse of eiebtromagnetic field. The ﬁ%me depen-
dence of the potential will be considered to be a Dirac/
§-function., We'will}see that such a' system can be /

described by a free field which has a simple discontin-

K

uity at the time of the interaction. Such'a model has
not been studied before even though it leads one to

consider what. is probably the simplest form of Bogoliubov

transformation’on a field operator.

We obtain the necessary and sufficient conditions
. i . \
that the potential‘must satisfy in o}der for the final
field to. descrlbe Satlsfaétorlly ‘the partlcles. The
condltlon on the electrlc potential is hot too restrlc— /

tive but we find that no magnetic fleld,;s p0351ble. .
We‘will also prove tha;, {6r such a systeﬁ,,the*total

. ' '
‘““charge\is conserved. ‘ &
'( In;fhe gecond section, we examine a system‘wheie
ﬁhe externei field.fs suddénly "switched on" to A(x)

PN

at<rsome time and kept constant to th:s value after this

’

time. The potentlal w111 then have the form 0(t- t )A(x)

168
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.is an arbitrary parameter.
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This problem also has not been studied before.
We will see howgver that the Bogoliubov trans-

formations to be examined are the same as those obtained

in certain treatments of the time independent problem

(by H.E. Moses [1953], [1954], K.O. Friedrichs [1953],
P.J.M. Bongaarts [1970], for example). These transfor-
mations have already been mentioned in Chapter I; they
correspond to the. following requirements. (As Moses and
Friedrichs). One requires the unitary equivalence of
the two sets of creation and annihilation operatars

associated with/wA with the help of the two sexs of

functions defined respectively by the spectrum of h

L)

,and of ho. (As Bongaarts) One demands the existence

of a unitary evolution operator for the field Va in the

Fock-Hilbert space associ@;gg\zifh the creation and

annihilation operators defined by integrating Va with
LI .

\

tB°
These transfog@ations are given much importance

the "free" functioms f°

.
,

also by _the fact that their unitary’implementability

appears, in the gepneral time dependent problem; as a

necegsary condition for the satisfactory desctiiption
v : . \P - . \
of physical particles, This was mentioned in Chapter

.

II (part on the S-matrix of section' 2)) in connection

‘with the trénsfqrmation e”tha o a free\field where "a" -

-

2,

T v ’
N K . . .
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We will prove the following crucial results

¢

concerning the two transformations ment!gned above.
-
At any fixed time, any one of the two is unitarily .
implementable if and;only if the other.one is also
unitarily implementable. Ferthermore, if they are
unitarily implementable at any one given time, they
will be unitarily implementable at all times.
Some of the implications of this have been

discussed in the second seetion of ChapferfI where
this result has been mentioned already: Probabley

q ,
the most important one of them is that whenever a

unitary evolution operator for thS field exists, there
exists also a well defined generator of the time tran-
slations whlch always has the phy51cally expected form
of the sum over the energies of all 1nd1v1dd%l particles.
We then d;scuss the p0551b111ty of non- conser--
vation of the charge. Thls p0551b111ty of 1nd1vidua1
§mrt1cles Creation or annlhllatlon had been mentloned
prev1ously, for example, by A.I. Akhlezer and V.S.
Berestetsky [1953] in their d1§cuss1on of\the propertles
of the eigenvalues of h as functlons of ;he depth of
the potentlal. By usxng the results which we have
obtained (in Chapter III) ‘on the propertles Pf strong
Bogoliubov transfo;matlons, we qbtain here tte new
S . A :

result that such a "phenomenon" is gquite rigprously
< . - :

described within the external field formali .

L4 ' e - -
. w . . 4 »

Ve . , L T <
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We next show how all the information a?ept the
physical system is obtained from the formalism. We
will calculate ag an example the pfobabillty amplitude
that there be finally an electron in a given state
when initially ‘there was onlylf free electron in the
system. we also diéches the gossibility of defining
isometric operators relating th two energy opera%ors

Hy and H, 'which are defined on the same space.

®
In the final ﬁart of this section, we review
. B .(
briefly the known results concernlng the condltlons O

on A(x) for the relevant Bngl}ubov.transformatlons to
be unitarily implementable. We then derive a different: .,

condition than that of Bongaarts [1970}, which was the

y
best one up_ to now. Although our conditiong are some- '

what comparable to his in that they Stlll do not allow
for any magnetic field, they are more simply derived.

. \

We also obtain similar cdnditions in ‘the case

. ‘ ¥ .
of a Dirac field coupled to a pseudo-vector field. ? . 1
) . - °

There are, to our knowledge, no previeus results for
\ .
. .

this prpblem.

b . ~

In the third section, we-étudy‘a family of mor

'compllcated models for which the time dependence of

s

vv‘the potentlal“Tg ap;;ox1mated by flnlte series of

"functi?ns. We prove that the requ1rement that eith
: . B AR
there exists a-unita;y’évolutlon operator’7é that

3.

- R o
T . N L .
° N R . : T - ) ..
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physical particles are satisfactorily described ¢an
be satisfied,if and only if each potential of the

series satisfies the conditions of the previous

A
3

model. That is: if and only if each potential alloys

for a satisfactory treatment when used in the "one
N ’ .
step function" problem. '\\
! " We then discuss the limiting case of .the above

‘systéms when the number of steps becomes arbitrarily
latge over a finite time interval. We show that the
previous results can thus be generalized to include
arbitrary piecewise continuous time dependences. This
follows from the fact that in the many step functions
case, all our proﬁﬁs e independeﬁ& of the number of
stégs and of the léngths o ;ﬁge time iqtervais.

~ - .
. This is an importarnt result since it shows

\

clearly that the way the external field Varies'ip timg

J}Es not.really, so crucial but it is much more its
spatial properties'which will determine whether or.
'3

not the system can_ be satlsfactorlly described. -

- We finally note. that the condltlons we obtaln

on A(t,x)‘a:e'more general than{those of R. Seiler [
-~ ' . . . . ¢

(1972]. He gives the sufficient conditions: Ao(t;x)
. ‘ *
is a’ test functlon in J(t x) and A(t x) = 0. These,

<

we belleve, were the only prev1ous results concernlng
Such time @ependent‘probiems. :M//

+ .
e
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1) Electrons in a Potential A(t,x) = A(x)S(t)
‘. \
i) . The differential equation of motion 1is ‘
(-iy.0 + m)y (x) = ey.A(x)s(t)y(x) . (1.1)

\\ L
" For all t< O, }:’fme term on the right hand side
‘ : Pl

y
of this eguation is mull; y 1is therefore a free field.

By definition, i;/is b, () i.e.
\ } - (

~

.

Similarly,  for *1 t >0, the e‘xternal figld is

not acting ‘on the quantized field which again is free

and 15 lpout(x) i.e. | ' . ®o \

w(t,f) = wout(t’f) ¥ t.>P'. , (1.3)
“We note that at t = 0 the field is not defihed

A

yet; a*ll we know from (1.2) and (1. 3) 1s that there is
a dlscontlnulty~1n tﬁe fleld at this tlme. (Otherw1se
¢Out(0’x).= Yin (0 X) which'implles v

out ) = Vi)

. v

. and there is no 1nteract10n)

Fil

st _From the Kallen-Yang-Feldman equghaons corres-—
. < ( - ‘ T ‘
*’PQndlng to (1. l) ' One gets e Y i

\

e wmw.sx) * 1ev Y- A(x)w(o x) v

o~ ) .
; . X . < 3 e 2 .
* . . . , . .

\, -
Y, . . . . '

\13

- ~— .
w°h:£;'iﬁ'\ v, (0 X>*'JS(0 Y, ,x y)ey A(y)d(y )w(y ny)dydy

:\ . \ o ] K C ,‘ ‘ : .
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One can see that y depends very much on what is

out
taken for ¢ (0,x).

If $(0,x) is taken to be y. (0,x) (or oyt (00%))
one gets what could be called a late (or early) inter-

action since this means that at time zero the field is

. ! .l .
still ¢, (or already wout" For late interaction,

boye (00%) = 11+ iey®y 0014, (0,%) 11.5)

v#“
!

£ha for early interaction

®

(0,%) = : ! L (0,%) (1.6)

v v
out (1 - iey®y.a(x)] "

We w1ll show later that thgﬁe two solutlons have to be
-~ = E
re]ected if one wants thez%aferaotlon process to be

!

“unitary.

Let usbconsider thé‘field'
px) = Vi (x) 4 e(t)[Wgut(X) ol TP 35 I (1.7)
) L Y

-

1

It satisfies the prev1ously mentloned condltions (1.2)
N

and (1.3) qnd has a"s;mple jump at t = 0. Qne has

H "" ’. N . ’

G(t)Q(X) = G(t)W1n(X) f G(E)G(t)lwoﬁt(g) -’wiﬁix)] ;
.l,-" ; o0 & .
athe—term d(t)e(t) xs undetermlned 51nce the fuff®ion

e(t) is -not defined a; t = 0 - We then con51der for the
™ L]

moment the gene fogm _ C L
"',\ ; . ‘3{3‘; . . ; . - .
: -”~ 3+ o _

Y - "

- . A
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S(L)p(x) = 6 (t)yy (x) + aé(t)[wout(x) v, )Y (1.8)

where g is a completely arbitrary real number (i.e:.

o~

s,
12

we take 6 (t=0) = .a). One can see that -this solution
(1.8) contains (1.5) ard (1.6) as pgrticular cases.
Upen replacing the field (1.7) in equation

(1.1) (or equivalently {n equatlon (l 4)), one gets

J‘l ‘4

wout(O,f)zlpin(0,§)+ ieYOY,A(f)[Ll-a)win£9y§)+a@out(0,§)]
- o

so that for -

Lt///:e(l—a)y Y- A(})ﬂ’*&“J/ :
w\re,‘x\/ 0,x) , . (1.9
out <
. 1 - 18(17 Y. A(X) ;

the field (1.7) is a solution of the field eqqaﬁion.

¢ LT

We note that B ; . e <

1 =< [(I-ieah_(x)) -ie&yoy.A(x)-]

'[1;§e5Y0-Y,A(§)_1» [1- 2 '?apr A(x) Ax)]
«z i

y .
”, % 4

Y/ .
-and thls term is alwaxs well'ﬂefln'

"T‘.

-4 .
. . . . -
* . . ’

ii} - We w1ll show in this sectlon that reqnlrlng

wout(x) and V. n(x) to have the same antldmeutatlon

i .
relatlons, which is necessary for them to bé unltarlly'

feletéd; leads' to, a pdarticular value of a*which is

a:—-

2.°
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. d | . | 13 ;
VThe free 2181'5 wout(x) apd wln(x) satisfy the
same free Dirac equation so that they' will have the
same anticommutation relations for arbitrary space time
points if and only if they have the same anticommutation

relations 4at eqlial times. We then require that their

t = 0 anticommutation relations be the same. :

\/ ' . "For Vy._ (x), we have '
in ) o
QB ) ", \_/ /
in in Ty - K Y s . ) )
N’U, (0‘,{(). vy (0,x") } = éuvéc\()f x') . o (1.10) )
4

From th equati'o\n (1.5), one knows that ..

" - . ~ ‘. . - i
oo B ‘ - PR |
U0, %) & MOt (0, %) \ (1.11)
. ' [ . /
where M(’»f) is a p.x 4 matrix. Therefore,
N CIE I S CIPIPREIE 1M(§>M*(§)1w 5(x-x") - (1.12)
s, » M ‘ ' :
'so that Q ,
MXIM (x) = I =M ()M(x). - | (1.13)
! ~ T .7 3 o - ’
is needed in order for (1.12) to be equal to (1.10). .
| ., In the presént case, . | . .
[l'+‘ ie(l—a)yoy.A(x)] o -
- [1 - deay v.A(x)] S P
“ .j.' :’. * ) . Q . I" 1- —\ . ‘O‘V“----—- ,._. .‘ | c.'. '/l
using the property -[ey y.Ajg)] = [ey Y.A(g)], it is
" easy-to célculéfe;thatv * : i “ S "'“, .
‘ S ST * . : ; . . - »

3

9 . . . . . T . : R
LR - . - ., . 0 . N ;
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ss.
- + {1 + [e(l—a)yoo(.A(kf)]z}
MK§)M (f) =y

{1 + [eayoy.A(§)]2
.’.‘ \

This will be equal to 1 if and éhly if o = %

Therefore a .necessary condltlon to have wout

s unitarilyirelated to y, 1s.t‘:ha,t y(0,x) be ‘taken as
N ’ BN ~ ‘
‘l veo,x) = %- (lim tp. + lim v ] -7 (1.15)
£ - t++0 t+-0 '
so that -,
() = Zr Rl (1.16)
*‘ \p X ‘ y.. (0,x) . .16,
out (1 - i %YOY,-A(})] in > .
‘} A ' - 14
) For general times t, the free field Yout is given
by .
»\ —°lh0t N
CVout (X = e,.j WYout (0r%)
- . ! - O ‘ .
= -1JS(t,§—¥)y Yout (0-Y)dy
so that ’ !
SN _ O, ‘ - o
ll’out(t'}f); . lj's(t':'f X)Y fif.(%)win(o'z).dlf-\" ) ;,(l'r” _

iii) Let us use for ‘the free field np (x) .the‘st%ndard'f

decomposnlon -' -, o _ \ - .
N P 1 0. @m 22 Loog —1[w(P)t- -X]
by o) = ?;~_§7§jfdg(575T; J (b (p)wS(ple -
- - (2m) R ~S=1 ., \._, . . .
. ) - . -t.\r i ‘ .: T{w (p)t_ ] \» ,.._'..l_ | "‘ ." . .
- ot a (g)v (p)e-~ R S L H1.18)

. . ‘
- . oo R

[

)
-
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where w and v are such that

J

[Yow(g)—z.g—m]w(g) = 0 and [Yow(g)-z.gm]v(g) =0

We shall need also the Fourier transform of M(x)

v P
defined as
: ) . 1 -ik.x . .
o M) = —373 de e T M) . - (1.19)
N (pm) N - Lo -
The final free fieldehas a similar decompogition
as (1.18) in terms of the final creation and annlhlla—
#
glon operators for the particles. These can then be
obteined from wodt(o'f) as
out [ -ik.x ?oa
(k) = ( )) w® (k) —————77 dx e 7 W (0,%)
(2m) o . s
gout m . % s [ ik.x o
oo = G v —2";‘7’2’ jix e " doue(0ex) .
(1.20)"

Using the relatioen (i.ll) between wou£(0,§)“and win(0,§),?

. . - - ‘ : ) . * »
the decomposition (1.18) and the deﬁinition (1.19), one

‘ obtains'the following‘BogolidBov trénsformation: ' ‘.
. ’ % . . AR . ) ‘ .
t o i . l 1/2 L l 2 . —i- a . K
ou = m m ‘ S (k) M(k-p)wt' ©Xe
bg (k). (ZN)B/Z}dg(w(E)?'(wLE)) izl{[ﬁ,ﬁﬁ)«M‘E plw (p)I'=

' x.b(p) \ 1w 0 R Gerp) VT ()1 (p))
. LN A - :

i

Voo RS
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L1

t_ ) m. . »
(}E) —-(—2'———§7§Jd[3(w(i))) (w (k)) Z {[V (k ( E) 13 ]b (P)
(2m) ) = qr 1 ’ | ‘

Ld
e J

+ (vs(g)*ﬁ(-5+g)vr<g)Jdr(g)} Lo (1.2D)

As seen ih'Chapte: III on gogoliubov transforma-

tions, there will exist ah' S-matrix relating the "out"
* . “

Fock basis to the "in" Fock basis or, equivalently}'

. ¥ . . - .
(1.21) will, be unitarily implementable, if and only if

. . ’

[ap ax 3 ip)vE (p) |2 '
P ~ z z (jp)) [ (k‘) K+TP P s, < ™
r=1 s=1 ‘ .l | . 4\ (l.%ga) Pt

. 2 2 ~

. : \ S
dp dk (-2 ) v () Mok—p)w (p) . .
[ap ax rzl 1 w‘k) | 12 | .

. e (1 2b)

2

%, {

~,\L’In order to study (1 22ar, .we w1ll use!the 1den-

: : : el A _ | :

tity -, BN ' C L
. . _

2 Aﬂ

i (57-—>oi%74|w (3% i (k+p) vF (p)l / |

o r=1 s=1

roo ' » A :
N v ) ". et . '(\ !
~ . S . { ’

; -1 . T - M (k+p’ |
i 3 . . + - -
- foTyaTRy Trace N Uevp) [y o) TR (ep) [y pon)

*

v
>

. . N . “/. : ’
.and write M(x) as

Mix) = C._o(/’f) - YOI.§(§) RN}
whérg o 2 —
1 * A(x) A(x) L _
- c (§Q 4;w; 7? X < g
. Wy [l - 1ekgAx) —% A(x) A(x)] 4;; . ,
) - N e e H . . ' ." D



Sl St —ieA(x) v -
- c(x) = = - - 5 . Vs

1 - 1eA () = S Ax).A(x)]

" K} \
N 4 i : *

Y 4 s .
TH® Copdition (1.22a) can then be writtén as
3, AETRMpS o

~

1 L x ' '
Jdp d}fm 'Br‘ace[y.c‘(lEﬂ?)] [Y.k+m] X )

»

X [y.c(k+p)] [y.p-m] < @ |

. - The trace 1s easily calculated by u51ng the properties
., 3

\% of the y matrlces and one obtalns "
il ‘ .
¢ .

dpak ) . 2~ e
' (iiQTEFETgyi}pTC*)(k.C)+(k.C*?xp.c)—(k.p)(c*.c)—m.(c*.c)l<m
“{ " ; . ‘. X ' (1.25)

o7 o . . ' ‘

S _ ‘where we " have used ¢ for c(p+k)
T RS

hYs ¢

q .
«¥ - The 1ntegrand in (1. 25) is always p051t1ve, as e

« % . -
XN” 1s‘obv1ods ﬁrom the 1eft hand 51de of (1?23) It must

- fﬁg? .

. therefore "go to zero at 1nf1n1ty in any dlrectlon bf

¢

s, 4

the §£& d1m3n31onal space (p k) 1f (1. 25) 1s to be

’

sathfbed ,However,”’ upon evaluatlng its 11m1t for(

< .

\ aﬂy cbnstant (p+k) = a, as P> € (k; n-e); "¢ being
s ' +J . ..
"+" or "-", one obtains that it goes to’ 4
| . | . / s 4’. “
chz(a)L + ZIC (a)l
. ‘ H

The 1ntegral can then be finjte Only if c (a) and c (a)
r

are null for‘allg"a". Calculatlng similarly the l;mlt

. ¥

# B
N .
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\

of the integrand as Py > ¢ ©, one obtains that &l(a%

a

must also be null for %ll Since c(a) is the

Fourier transform of c(x), one must then have c{x) =0
. . .‘... ~ o~

- for all x. From the definition of c(x), one can see
_ . <%

that this is so.if and onl§ if A(x) = 0 for all x.

The only case to be considered now is then

-1.+35

e .
3 7 Ay (x) )
M(x) = c_(x) = — (1.26)
~ O~ 1 -iSa (%) '
2 o<
‘This>can be written as’
\
- cQ(>~() = 1+ F(x)
with
. iex (x) :
F(x) = /D(Oe~ . (1.27)
~ ;EE = A _(x)
1 7 B X ,
so that )

g = 2m ¥ sk + B . »

“ ~

‘Both conditjons (1.22) ih, this case can be seen to

reduce .to

»

1
'

.

§

~; ~dp dk . L, , -
,JQWE 343 lwk)w(p) + E:lf- m°] |F(p+k) |7 <%=, (},23_)
Uﬂon changing ‘the variables of integrdtioﬁ to
g7 ®p L= 3kep -t
condition (1.28) can be written as
}'~ 2 . m}2422_g2 " 9129)
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: ; ‘ |
The L 1nteqrat10n can be petformed exp1101tly; after some
manlpulatlons, with the help ‘of standard tables of inte-

grals, one obtains that‘$he above condltlon is_-

- | ' .2 %

-1 ™"~ 4q
qulF(2q)l lqlw )P (5—5) <> (1.30).
/4‘3.3 . 2 m<+ g ) .

' ~1 . L ‘
- Wwhere P, 7 is gn associate Legendre polynomial. It has

S

the following property:

. ‘ :
. . | - /

P:l<cos 0) < & sin® ¢
T 0=

vy
so that . ‘ ¢
22 . y
-l m -q 8 ' —_ ‘q, :
' m“+q /1 wig) :

~a ~ .
¥

p .
and (1.30) is certaﬁ?ly’satisfied if

»

jdgigj3/zl§(g)|2_< © . , (1.31)

This shows that (1.30) is not a. too strong condition on

F(g). Furthermore, since .

i v 4

1 1 ro R ¥ ~

eA_(x) ~ 2 o ‘ o
, ﬂ' R T

A (x) could have a very ‘bad behav1our as a functlon of

F(x) =

x while (1.30) could be satisfied. For examﬂ&e, if
at some point x A (x) is 1nf1n1te, F(x) -\\3 In

fact, F(x) 1s always bounéed' whatever A (x), we have

[F(x)l \/ -

\fvxr _ ‘ ‘ , S
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iv) We now prove.thét, for the systém cdonsidered,
no isolated particles can be created with ceréainty;;
’the Bogoliubov transformation (1.21) is a "weak“»oné

® and the total charge is éonseryed. &_f
This i;rghown by proving that.there are ho

non-trivial solutions y and ¢ to the equations

*

" 2 . ~
;3 dp~ ] (Frsy W k) e (k-p)w” (p)w(p,r) 0. ~ k,s
(2m) "~ T or=1""%0 ~

R TR o SRR GO IJ

1

| (2“)3/2[dp Z (w(p)) vt (P) C (p- k)v (k3¢(P ;7\3~J/AE;}&\\
| : ' (1.33)

-

Qne can see that ¥ is a solutlon of (1.32) 1f
and only if there exists a non-zero function a(k s) ‘ ’
,such that; - .

_ ) o | . . _
——7—Jdp' ] &, (k-p)wFip)y (p,r) = 2 (—-(—,—y v® (-K)a (k,s)
k(2n) ~‘r=1, T : : :

( ] 4 . «.. . . . ’ (l 34)

4 . ) e 7/

o sincé the~4—Vectors ws'and vs,-s =~1“2 form a ba51s in
f;E4. Let us denote as ), the {}ght hand side of (1. 34).5
S t(81nce 1t 1s a property of the 4-vectors ve that T
' .. Y (k)Y V (k) " 85 v 'r‘ ,W.e hava L ' | -~ bo_

Jdk W(k)+y°W(k) -{dk Z (_TET)Ia(k'S), ,‘   (1.35) .

3



\,( L " Is4
\ . :

Using now tﬁe left hand side of équatién (1.34)

(

together with the property,

i
(2n)

fdg c (k -p' )c (k- p) = §(p~-p"') (2.&5)

- k‘ - o | ‘ ‘ %‘

which follows from co(x)co(x) = 1, the following is"
. o ~ * <

. + 0 . . m * r t -
dk ¥(k) v°¥(x) = Jdp ) ) 57V (P, E)v(p,r')w (p)x
J” - - ~ p=1 pra1 @RYRT ~ s

L

[ obtained:’ .

. , P . T
X Y?Wr (E) . :; 
" 'Since the 4—vectors Wt have the property .
r, .t o r', - o : - g
W fg) 'P {p) = Grr",' | ) . &
RO T .
PYVEEPISING S IR . & ‘
ak ¥ ()" yO¥ (k) = jgg 7 (—Mp )lw(p,r)l (1.37)

4

¥

' Ciearly, (1. 37) is: compatlble w1th (1. 35) if and. only

if W(p,r), 0 = a(k s), since one is always negatlve -

- while tha ‘othey is always.p051t1ve; " The only'possible~ f
solution to equation (1'32)"is then y = o¢ L ',‘
We can show, in a 51m11ar mﬁnnei that the only
p0551ble solutlon to equatlon (1. 33) is ¢.5 0. Wé
"y o -
thus obtaln the announced result
. _‘ 'Q .
/] . . N : . - - . ‘_d"
_ o . ) SEE R
- viﬂalz .
3 _ﬂ}; L
N : (.
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2) Electrons 'in a Potential A(t,x) = A(x)8 (t-t )
[»] : . ~ ~ .0

A > —
. . et
T - N . . »

[ N . N N 'y ” .
Th® equation of motion is I ) _'} -

N o

(=iy.3 + m)p(t,x) = 0 (t-t )ey.AX)y(t,x) . (!r)

We~see thatvﬁ t < £‘, th solutlon of (2 l) ls the free
field Wiﬁ(X)‘ For times t >t , the field must satlsfy

the equation- R X - ' ' ,
1 . . - '., e

( lY 3+m)¢f(t x)—eY A(X)W(t X)/—« (2 2)
: . \ , . ’ Y
w (x) w111 denote the flelds satlsfylng thls equatlon  ;‘

a_iﬂ One can see. by 1ntegrat1ng (2 l) abouE t that
as a di‘Prlbutlon, ‘the, fleld must be contlnuous in t i. L

at time t, We then have,Ff’determlned by the‘}nlﬁialf i

condlt;onq /. o ' ‘ o : "!'
WA(to'i’() =¥ n(tol}f) ' ;T.i N ' ;\ s S N
N X . ! . [ e 'S
: ; N
and the dlﬁferentlar equatlon (2 1) is. equ1Valent to- Tl
o . . R S T CoT e
> the relatlons CoTRe T ST ' ‘ LR
. : e L R N - s
e = . : Jj - < ) ) : d ‘. N
Ve = pyplemn v e s LI R
& ‘ : '.“‘\:“;i.a R h s . .yr)-_'l v "J“ .\-.’ ’.‘.

u} = wA(trX) = e e O ‘\U (,t 'x)

¥ K -(1-2’.3.); i
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. e r e for t>t 7t' <t0.' The time
. .

~1n4€hapter II) is here to-

e o S R 186
a ‘:ln
P iha

'+ The c-number operator e. Vls“unftary on
B

'(L3Y4 for all "a", As we have seen in the Chapters
1 and 11, w(t X) 1s then at all tames a well deflned

opere}or valued dlstrlbutlon 1n (L ) actlng on the

Fock-Hilbert space rH " of the free field ¥in
'_:‘ All the prev1ous detalled general dlscu551on"

of Chapter 11 can be. applled here upon u51ng u(t,t’ )
“ih(t- —t,) -iho(t_O t')

1

_'at Wthh the potential \s _sw1tched on"‘(which was tS

N ,

'We recall that there will exist a state ]¢ >

DY

. COnSlStl of zero flnal partlcles 1f and only 1f the

E 4 .
followxng Bogollubov transformatlon is unltarlly

1mplementable.“ .

s

“ih(tt ) c © -ih(t-t )

L ' . 0 g0 . in _ o .

+8 B

RV -
x "arl e )i ) -

é{j L &

—1h(tt) | - -.l.h(tt)

¥ = o , o in
4,¥6) T{(fﬂ,e B)bB (t )+(f ©7E0 ) x
/:w ) = ; .;«“.1:‘ . ,
: ‘ 2 : ing, - R Lo (92 a4y
. | i x ?Bfgtb).}-<. &f o(2.4)

'This 13 the transformatlon correspondrng to. (2 13) lnaﬁ ks

1 ‘A‘

«chapter 16 A We remark that, after t the.vacuum W1llf1{

9

Ce [

Q

»be here tlme 1ndependent exactly as the lnltial Vacuum.f';'
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Voo Sy

. \, .
|8« was up to time t,- ThlS is due to the fact that the

external fxeld does not change after t
It is easy td see that examlnlng the existence

of a unitary operator uU{(t,t') reiatiné the field opera-
v : ") .
. ’ - ~ . \ 3 A .
tors at any two times t _.and t', reduces here to examin-

ing the existence of U(t't ) forfany time t>t ._»The

Bogollubov transformatlon to be" studled 1n thls case.

,;“ 4 !

1s the one corresponding to (3.4) of Chapter II, ; e

, —1h(t+¢ ). : " -ih{t-t_)

b (t)=){(f° e . -9 £© )blntt )+(f° e © £° )«
a A A . BB S B
, B . o

B . ‘ oo “» in 't' . “\\ | |

' D . g ?B (tog,}a L ' ._‘7*

o ~ih(t-t)
d (t) Z{(f ar® g f+8) 8 (t )

o T(< . iy <t Yy L s

adoe 4

. N . ‘, ,{:.A,
. As. we have seen in. Chapter III, the céhﬂit%eﬁg‘

a. NS

under which (2 4) 1s unltarhly lmplementable are

Tt
o’

,-i hy h-.; -ih( -t ) "" 'V;v R :
ZZ](f+ .r-e'. }LB)I - (2-6)

.

A

73r | -1n( -t ) -;f;ff;! LT s
. ZH(f(\é < ~f*B)l2 <‘°°__-. .4 (2,7). |

' For the transformatlon (2. 5), these are. " s i

'*f‘--xh(t-t ) o g ﬁ73;'.~Ag"?w P
Zflff e -r.fcg)f; <o @
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(2.5), with‘t‘i 0, is exactly .
_ P

same as (2,19) of Chapter 1> In this last case,

was the transformatlon Lo be studled if one required

there ex1st a umltary

svolution Operator on the

Hllbert space aSSOCLated with the solution. of the

&ndependent problem exactly as if 1t were a free’ ;

a. The'tondltlons (2
J .M. Bongaarts [1970]

The- condltlons (2.6

8) and (2.9) were examlned
in thls context. .

) and (2 7) are the same as

e, examlned by H E Moses [1953], [1954] and K.O.

drlchs 11953} . Iﬁ’the
pendent problem,

e studled if -one requi

ir treatment of the time

a transformatlog like (42.5) was

red the f0110w1ng The .two sets
e

reatlon and annthlatlon operators defined respec~ -

ly w1th {£, (§), f;ki§

f.oﬁ the Equivalence o

he same space. T

)} and {fes(f)) both have a -

y

We now Show that, a

'cond;tlons (2. 8) and (2 9)

--the

condltlons (2 6) and (

‘ morew 1f (2 6) and (2 7) o

L]

.;& dependent of the type of i

a
7

time't # t ' they w1ll

We remark that the

]

f all the Physlqal'Re&airements“
t any flxed tlme t # t the_~"
are sat;sfled if and orily. lft
2. 7) are- satlsfled Further—'
r (2 8) and 2. 9) hold at anyﬁ% .
also hold for all-t1me5 t.ﬁ,;th}

proof W111 be- completely 1n-'“f

e

n’j?actlon and 1s valld for 1%5ff
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+

The transformation (2;5),Lﬁitﬁ'to='0,’is exactly
the ‘same as (2.19) of Chapter I. ‘In this dast case,

thls was the transformation to be studled if one requlred

-~

that there exist a unitary evolutlon operator on the
' 3
'Fock-Hilbert spaqe associated with the solution of the

s

- ©

time independent problem exactly as if it were a free
field. The conditions (2;8) and (2.9) wer€ examined
by P.J.M. Bongaarts [1970] in this context.

_ The condltlons (2 6) and (2.7) are the same ‘as- F\‘
.those exam;ned by H.E. Moses [19531, [1954] and K 0.

Friedrichs [1953). In their treatment of the time

T ' - . ’ . .
'ndependent problem, a transformation like (2.5) was
o

to be studled if one requlred the follow1ng. The two sets

y »

-of creatlon and annlhllatlon operators defined resped—

: tlvely with (£, ), £_,(x)} and (£° 2, (x)} both have a

©

Vacpgp state in the Same space.
. .".: _.A '_ ’/ - . . J . '_ v- ! ) v ““

"'PfOOf'of"thevEguimaiehcevof'all the Physital Requirements

We now show that at any fixed tlme t # t .’ the

. jcondltidns (2. 8) and (2 9) are satlsfled if and only 1f

’vzdthe condltloD§ (2 6) and (2 7). are satlsfled Further’ BRI

”f (2:6) and (2.7) or (2. 8) and (2.9) hold at a”y

,"one tlme t ¢ t . they will also hold for all times t,

We remark that the paoot Wlll bé cempletely in--:
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. S
agy problem where a self-adjoint c-number energy opera-
tor'h exists. B . , ‘ : C,

~ ' ’ . '

i) We flrst show that for any given time t # t , the

condltlons (2.6) and (2.7) imply (2.8) and (2.9).

;wsince {f+Y} and {f_,} form a basis in (L%)%, we

have_ }
o, -ih(t-t_) o ~ih(t-t ) !
(f] e )= (f 'é wy) £y v £ g)
' -ih(t-t ) ‘
o (o]
e (f+a,§ f‘x) (£_, e “E2 (2.10)
.Deftining - > . o S -
. . "z' ) J L
3
Il¢ Bll {ZII¢QB| ¥

tand dSihggéhe iﬁequélity ) o ::'
Jl|¢de * ¢&s|1 s ||¢¢Bll.+‘}l¢;3|| . ”;;ﬂﬁ”ﬂ £

&

51de of (2 10) qre f1n1te, therrlght hand Slde of

10) w1ll have a fﬂnite norm. Y
L Upon uslng the‘general proper!x ; f-:f!
'i, f,"'
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whléh comes from -

' o} ‘ 2. | O 2 .
gf‘f+arf’l + £|<f_a,w>l_ = W, ,

"’-lh(tt )
e ‘ B)’ we obtaln

-=ih(t~t ) . | -ih(t-t ) <
o" 0O, [e] @)

y) (£ e f_3>ll Zzl<f+ e £2)1

. ' ' . J /

- . | - (2.12)

and this is finite by hypothesis: Similarlj,;upon using

o 2 . _ o -ih(t-t )
gl<w.f_3>lf S W) . with (y = (Frar] £ (e £

we ‘obtain
\D¢.

-lh(t t )

Aﬁ(f+ ,Z £ )(f o ,B>l|2 ; ZZI(f A.f )12

| (2.13)
. - 7 ' l i \
.We have

T lin(tet )
,zgl(f-l'e . ?'fga),
ak 0 LT

Y

“and because of the way the set of functlons {f } 15 B

deflned with respect to the spectrum of h, the unitary et
T :1h(t—t ) W R
operator e 2 mape it back 1nto~1tself 1n a one T

= to one fash;on. Therefore v# { ‘ i
jﬁ:fv' .E . fﬁ {
N ? L » :



"4USingy||A|| _.j]al|'511A_- n|1,'we abtain.*

v
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in(e-t)), 5 .z -
%[(e £ ) = gl(f__x,fm)l . . (2.15)
T . T

- A

since -the sums run over all vaLues of A. ‘Having (2.14)

f1n1te by hypothe51s, (2. 13) Wlll then alsb be finite.

o -ih(t- ~to). 0
Thls shows that ]I(f (é )lf
/’

by 51m11ar arguments, we can also show that

-ih(t- t ) o - , -
lll(f-a'e . £+B)l| < @ . pe [

' [
ii) We now prove that 1f at some time t # t ' the‘

f.condltlons (2.8) and (2 9) are satlsflqd the condltlons

13 1

(2.6) and (2. 7). are also satlsfled We have the
1dent1ty - - . .'a.is,.t

' ‘-1h(t —t) . ~h (t-t ) B
(f ,e ' o fO )_(f‘ - ‘Pp-e O f(—)B) '

NN

-1h(t-t )

where ' - : r o
¢ ‘ " L - ..‘; S q' 3 Leg ‘;‘

{‘f° )(f° .
a v

&
)

o}

: Il
QM
‘R
O

')
:‘J

% ll

£ : LT ' )
4

i}
T -\h : | (t-t ) .
O
H(f,+ . f || H(f ° | B)||<
.,‘ P ‘j'(f_’,y + e .' _B) 1 i T ~\(2' 17) =
Since : R ;

-,.,2 _(f;’.Y,POe . f?B) Co ,‘i. - /(2.16) .



¢

: R
v
.I+(f+Y,P?e;;ﬁfFﬁto)f?él|2 =|f‘f+;’fYa)112l
:ll(f+wéPfe-ih(t-£O)fSB)ll?r
o Tin(t-t )

if'(f+YqP e £° ) # 0, we can find a ¢ 1 such o

¢ - S +8
) that ‘ | ‘ ' ‘ | ’ )

- ~ih(t-¢ ) L, 0
RN RS TR c2||(f+Y,ffa)¢4 . (2.18)

- bl

By the same argument used to show that

h(t-t_) ( /
-ih(t-t r s
(o} (o]
[ (f-)\ '€ | fia) o= Iu(f-)\ ’fm)ll r
we obfafn,
ol o) o -iht _o
'Il(f+Y,fﬁ1)l] = |4(f+y,e CE_ ] T (2.19)
o R N
| 761that (2.18) implies -
T ~ih(t-t ) _ - . © Sih(t-t)
o o' .0 T o’ .o
éll(fw’gf L fﬁ)ll—-cll(ﬂwfe T e
o ;o ’ i » |
which when replaced in (2¥17) gives
: ' <ih(t-t) | . -ih(t-t )
- O O (o] ’ o 0
L L e I I
o (2.20). -
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Since
: 2 2
YL o0 [T = ) - JIE )] s e)
Y A
Yy - A ,
using \ »
\B\ -ih(t-t )
_ ¢ 4 O o’ _o
p o= § ETILES e £2,)
a RN
. N
we Obtain from (2.20):
) —ih(tifo) o o' '-ih(t—to) 5
(l—c)[l(f+Y,e f_B)II < ||(f+a,e ; f_B)|]
‘ ~
and since (l-e¢) > 0 and .
o “ihft-ty) o .
Il(f+are f_B)ll < ? L ;” }
this implies that ’ oL "
2 _ -th(t-t_ ) _ .
. [|(f+Y,e f_B)|| < .

* Let us now consider the case where

o ~ih(e-t)) T e . "
‘ (f+&,P_e f+8) =0 - ; | ‘2.2})
. +ih(t-t_ )
, . : o o’ .o. ,
We remark that if (f+Y/P_e f+8) was not also
, A !
null, we could asaapove prove that
ih (t-t ) ’
o’ .o
Il(f+ € f_B)ll'< ®© ’
» ' | ‘ }
using ' _ - . -
v o 'ih(.t-to) o ' . ¢
G o ) Il(f_'_a'e f"B) || < ‘w .



194

which holds by hypothesis. = Since

2

- -
‘,\‘)

ih(t-t ) -ih(t=t ) _ =
o’ .o _ o’ Lo
'l(f+Y’e f_B)ll_ 'I(f+ '€ f_B)II
| \ | f--ef?'m
by equation (2.19), this would imply thit C .
- ; e N "
Tih(t—to) o
+y’© T <

we therefore have to consider only the case where also
1h(t~to)

o) _ ..
(f+Ylp_re f+8) =0 .

Equation (2.21) implies  that

!
o o ih (t‘to) o 2
H(fts,g f+Y)(A+ o)t (f+8,e £2 211
' ih(t-t ) 2
O O O O (o]
,I(fre'g f+Y)(f+Y,f_6477§qu1|(f+8,e - £2 )]

In

Opon using | |A[|] - [|B]] 1|A + B|| , we should there-

fore have

. T s -ih(t-éo) o
||(fi8,§ o) g 20 - ||ff+8,e 5 £ )] <
2 .. . +ih (t"t ) 2
o o . o’ .o
_{||(f+8 Z £, f+Y )+ |[(f+8,e £ )1 J .
g o (2.22)
- ' . .
"Since h?+b§ < |a|] + |b] if {a||b| # 0 and ]a?+b§= laj+[b|
1f|a|]b| = 0 , supposing that (£° 2 f ,f° ) #0 and
h(t Fay
(fiB,e f° ) # 0 , we can then always find a c <1

4

el

‘spch that (2.22) implies
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h)t-t )
(o] O
ll(fig,g (£, £20 1] IlffSB- SR s
i ih (t-t )
U] £ ) (€ E20 11+ [1te7g e MESORTY
- so that ' . \
» ‘\‘ h( ) ~
o o (1+c) ;) e0 1h (- t £° -
ll(;is,g Eyy) (Eyy o F d)ll =y | £{g e o) <=
; i (2.23)
Since B i‘ )
e, 220 1P = 11,0 €, )2, €001 +
 +7"£—01. _ -f-B'Y +Y +y’' " ~a .
O .
+ 1] (f,_B,ng) (£, E ) (2.24)

equation (2,_23) implies H(f ,fc_) V|| < =

o
When one of the two terms (f° B Z f+Y)(f +y E_g)

is null, it is easy to see that the above conc&u51on

nevertheless holds,since the remaining term on the-

right hand side of (2,24) always‘saﬁisfies (2.23).
" ) ) ’. ] ) v . n

.Let Us now consider the case where

(£2, /e 2 f2) =0, | T (2.29)

[} -1h(t—to)

As before, if (foB,e £2

o) 0, we can shgw

. that Il(f+Y,ffa)]]~<w‘so that we only have to gonsider

\
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the case where also

, o -ih(t-t ) o\\
T (£7,0e £2)=0 . (2.26)

'

: ih(t_to) o a® é
Equation (2.25) implies that e . . £, = é L
. ih(t-tg) |
and since e- is uﬁltary, this is a one to
- ih(t-t,)

one mapping so that e " maps the whole set
{f?a}into itself. AS can be seen by (2.26), the same
{

holds for the set {fga}. It therefore follows that

1h(t-to) o o‘lh(tfto)

« e , P = P+e -
and g )
: . ih(t-t ) ih(t-t )
e O, P(_D_ = P e ° «
/\ . T .

"This can be seen to imply'

[h,Pf] =% and (h g"] ; 0 .

whlch holds .if and only if A(x) .\?iq\fhis'case}.

~

all conditions are tr1v1ally satlsfled., .

~..

.
In a similar manner, we can prove that

- h(t-to)

[[(£_, e | fig) "

< o . . L]
'fl .
We have then shown that for any glven tlme t# ty

the condltlons {2.6), (2.7) and (2 8), (2. 9) are exactly ;

equlvalent., Since L . '/

»

) %

BN



197

-ihT .0
ll(f+Y,e f;B)Jl

= . ¢£© ’
= 1(E 220 |
and i
e T | = e, 20l v
St +8 fig ~ o
we see that if at some time t .
o ' »
Gl sih(e-t)) | -ihlesty)
A [ (f.'.-y'e e \f_B) || and | l'(f_A '€ ! ’.,B,) s o
! S,
are finite, Ehéy will be finite at al;»timeé so that AJ
also s
D . o = ‘
-ih{t-t ) ( "t ) s o -
< O o’ .o : , o o R
RECSATIE S S T I Il(f,,a,e e B)H A
will be finite at all times. '
; ‘ “ e
The Enexgy Oggratbrb f.ng Ty | T e
It will be useful here for clarity not to use
the wave.ppck§; n6fation.;3We will call fg (x) and
. o : T
£5. (x) the eigenfuncyions of h defined by K .
‘ ¢ B . < : :; ' i ’ 7 . ) .
l?fEl (f) = ‘E'fE‘t.f\(Jf) E'>’ 0 . DRI ';? (2-_2;7) v
‘whire E and -E' can4pe in. elther the dlscrete .ot con-
spectrum of h; —E'é S( ), the negative e

£,
P v{ A -\‘\-\ T, ’t £
- L : el
. . ot
- :
- te .
T ot
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of the spectrum S of h and Ee Si 5 the complement of .

S(-). Correspondlng to these, creatlon and annihlla-v‘

tion operators are defined as
. \-' . LR

. _-. . ,- \\_-": .‘ L " _".;.4‘ .,' e V
b(E,t) = b(E)e *Ft = Idx 00yt %) S .
, L % '..l Y. '
dz*,t) = at(gr)eit't - fd§ £i(x)y, (6,x) , 7 (2.28)
{
so that the field'operator‘wA(t,x) pan be written as
Vp(E,x) = deb(Ege‘lEth(x)+-fds'd*(E')eiE'th,(x)

(2.29)

. , N ¢ .

where .
B

/ ) s
jdE = erE : and jdE' ='f de’ .
over all E over all*g’

aE'\

The operators b (t) and d (t) were just b(E)e F and

d(E')elE t smeared with L2 functions of E and E'. .The

. -hew vacuum [¢°> defined by’ the»bY and dA is consequent
. v : ' ‘
~also such that

<
P‘E”¢o? = 0, # E and d(E')|¢o> =.0 ¥ E' .’ (2530)’

s : :
7 When the condltlons (2.6) and (2. 7) are satis-

fled the vacuum |¢ > exlsts and the set ef states gen-.'
eerated from 1t by the action of the creatxon operators{;{. ’h{_
uf;bf(t), d;(t) forms a basis 1h Jlin - It is then clear N |

:that the energy operator

v‘ «
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H =_de pT(E)b(E) + de' a"EnaEn . (2.31)

- —

‘15 well defined with a deﬁse domaln rn ﬂ
Slnce (2.8) and (2. 9) are equlvalent to' (2. 6)
and. (2 7), there ex1sts a unltary evolutlon operato;}v
for the fleld 1f and only 1f H is well defrned It

T'_then always: has the form

L - 3

SR e Q”;a'ff*-lu(t -t ) SR D
- ” U«t,to) =e (23

where H is as glven by (2. 31)

'ﬁe remark that all the general results.of Bongaarts
(1970] have been obtalned here in a much slmpler fashlon. o
Furthermore whereas he demonstrated only the exlstence
_of H, we have gotten here its expllcit form., It always
A"_fhas the physically expected form of. the sum of 1nd1v1dual
_' ‘hpartrcles energxes whlch was proposed by K0 Frredrlchs
| {‘-[19531 el o _‘,' .] ">
Vd .t .W‘\flhally p01nt out that the domalns D(H) and  f”Lti
f f;D(H ) of H and H w111 be, in general, dlfferent..f;nb',f;};;{f

'partlcular, the xnltial vacuum |0> w1ll qot neCessarlly

ywrbéaln D(H)._ Thls can easily be seen as follows.fﬂiﬁd"ﬁgfﬁakffo

e B
[0>e D(H), then HIO> eJH and can be wrrtten,aj*ablinedr
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(2.31) and the'éxpressioﬂ (2.4) corresponding to b (E)

(2

‘anda’(£'), we find R
_<0|H|0> = jdE ) E|(fE,ffB)| JdE' Z E' [(fE,, +B)
o WP

&

12 .
Requiring that this be finite is therefore more res-

trlctlve than 51mply asking (2.6) and. (2.7) wh1ch are
. -

T equlvalent to

'

:u L0 2 .
de%‘! (fE'f—B)I,‘<w and IdE ZI(fE,, +B)

-

2
|

<o .

’ \ | L (2.33)

On Charge Conservation and Indlvidual.ParticlesCreation

i) | As we saw,.in th; éhapter on:general~pogoliubov
transformatibns,lthe total chafge is not hecessarily
conserved in transformatxons as (2. 4) ‘and (2 5). In
fact, after time t } the charge operator for phy81cal
partlcles is ‘
LR a3

" where N and M are. respectlvely the number and non-zero

solutlons to the ‘equation

I
(=]
<
<
5.
W
wm
S

el sih(t-t,) k o
s e o’ o - N\
'e“,2“5§+yje i  “£+8?¢8

A\

IS
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-ih(t-t ) - , - )
o’ .o _ :
}g (£_,,e Elglvg =0 »x . - (2.35{
+ih(t—t°) . ;‘
Since, ¥ t, e . maps the sets-{f+Y} and {f—A}

onto themselves in a one to one fashion, N and M are
time independent. The equations (2.35) and (2.36) are

always equivalent to

. ‘ o » _ - -
: g (£,yrfiglog = 0 vy (2.37)
and ) ,
o, F 2
g (f_A,f_B).wB =0 ¥\ . (2.38)
ii) Let us examine in particular a case where the

potential is purely "attractive" in the sense that

~

4 T L
(W, [-ey®y.AJy) <ov ¢ . - | o (2.39)
B ' : . . - .
In order’for eguation (2.38) to be satisfied, we need. .
thag there exists {aY}’# {0} such that , : .
“ I ./*’
(2 ) _
w’ :“ " e
Ty ﬁf&bif'
i T
o B Do o SR
andosince'wf’conﬁains bnly;negafiééﬂeigenvéidebebf'hé,
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==2, [h [v2) + 2, [-ev®y.Al¥D) . - (2.41)
Upon using (2.39) and ‘-
re . e
s w2 Ing[v2) < -aby®,u0)
" c / &
we see that : . . ' - ¥ ‘.
W2 h w2 < o" : - (2.42) ¢
\' s . |
However, from the rlght hand side of (2. 40), since by .
7 -
definition the f Y 's conﬂnn only non-hegatlve eigen-
values of h“ we/iaould have . PR _

Thls is in cont dlctlon w1th (2 42) 80 that equation

(2. 40) cannot hold and M must be null.v There can

however be solutlons to equatlon (2 35) in general.-- o
~ The number N of these solutionékts the number of .
'Jpositrons created W1th certalnty when the system is’
.. in the state |0> Slnce M= 0, there 1s however no

*;Hcertaln creatlon of electrons in thls state.u g,fh:er

. » x S a;(:ﬁ3;
':1;1) An example of thls 1s dlscussed by A I Akhiezer
fand V B Berestetsky [1953] They consider the follow-Tv?.tv
‘Qf}dng spherxcally symmetrlc potentlalz ;uj{{f'} ﬁu‘; :

LT
S : .-
. 1] oo L

Lty
(ST
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They s ::e for the c-number solutions £ (x) and

E.(x) and fr ? the fellowing. Wheh V is smdller
than a certayn value, there is no-bound state and the

'Energy spectrum is the same as for free partlcles.

o
As V 1s 1ncFeased, bound electron states i.e. levels

. w1th energles 0 < Ei <m ‘start appeazing and the enerqgy
'of any glven level decreases as ‘the depth of the poten-

tlal 1s 1ncreased Eventually, for V- greater than a

v

certaln value, the bound states energles will become

,'b

'negatlve.‘ If the potentlal strgngth is further 1ncreased,‘

there w1ll{be a.p01nt at Wthh the levels will reach the

S _ ‘ o
contlnuum of negative energies.’
‘ As s&‘m as an electron energy level becomes nega- I

*txve,,the staté must be consxdered a posltron state

just as all other negative energy levels since othst- :

A

,wise the total‘energy operator for the system would

R

v7not be. noq-negatlve deflnlte as it should.u If for
u'egample, we cowsider for simplicity only one such bound

s

_:elegtron stste of energy -E, we would have

._':.H= fdp le(p){b (p)b (p)+d tp)d (p)} Bb+bﬁ

DN
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\ ’ ‘ . .
‘\\he see that b;|¢oz is an eigenstate with energy -E< 0
so that H is not non-negative definite. -

N

A free electron energy lev@l is associated with

the wave function " , : N
\ : ! -
: -ih_t o
¥(t,x) =e ) agf g (x) .
. . R . B
We have seen that the c-numbe;feleution operator for
the system considered here is , N 6
) . ,,/. g & ¢ ) v . J
RN -ih(t=t ) -ik (£ _-t') S
Cu(t,t') = e e for t > to and t'g tb.

The above wave function for times t>t, then_becomes
L3 .

. e |
-ih(t-t ) -ih. t '
‘y(t,}f) = }e o e o0 z ange Q{)J ‘\_/

-

If equation (2.37) haer non-zeﬁmgéolutions {¢B},__
‘there will exist N nonezérol{aB} given by
_ -iht | - T
- e O. © Z angB (x) = g 4’6 ( )E :
s ... B :

" L a . . 7
.- . . ) .

such ﬁhat W(t,x) at tlmes‘t> t w111 contaln only nega-‘
s tive energy eigenfunctkpns of h (1 e. be a; lxneﬂt super~,3‘”
pos;txon~of the f sply). In this sense, we see that !” 1

’ .

N szmply correspond to the number/of free electron

energy levels which, undez the switching on" of the ;'_ ;;?‘Y'

potent;.ql V at tigne ta’ are transf}zrmed ?to purely

negative energy levels..  ffl;J €;g
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G

iv) Let us now examine what happens with "weak" |
‘external fields; by "weak", we mean fields which

satisfy thekondition .

| (Wreyyap) | < o dhglw) vy A0 (2.44)

L.

%

- where |h°1 = (hz) This condition, we note, can be
J/ - ¢

qsed'(se% for example the Chapters V and VI of T. Kato®
[1966]) to eneure that the o—number operator_h =‘ﬁb -
‘;¢Y°Y-A is eesentially self-adjoint with niee domain_
:ﬁgroperties with respect}to h, | It is shown in the
above reference that this conéltlon glves, for example,
the restriction % < 87 for tpe Coulomb potentlal'Ze/rt
nder this condltlon, equatlon (2. 40) could not

o

hold since from its left hand 51de a ) 3._ ‘

Ym0 = = ng 192 - (42,eOy.m0)

o e e , 4
02D - ) (’;w?"év"ﬂ”‘*’f? I

and by (2 44) thls is <0 Whlch, as before,ycontrad1cts

- the- 1nequa11ty (2.43) obtained from its. right hand

‘Fjeide. There are~then no nou—zero solutions to’ equa- N
»;it;on (2 38) In a similar manner as ab0ve, 1t is. easy
‘tto show also that there will not be any non-zero solu-}"\

K

'7tion to (2 37). The conditibn (2 44) therefore ensures

B 4
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@ :
Qr that the field is too weak to create with certalnty
E,l

" any 1nd1V1dual electron or positron. . There is only

RS . . v
“whormal pair creation:of electrons and positrons.

a, .
ﬂ%{v) ' The lepton Aumber (or pseudo-charge) operator

fgﬁsociated‘with‘ the pseudo-particles il

e ek
TR
©
o}
il
©
+
=
o
|
=
e}
&

. | . - (2.45)

N® and M® are, respectlvely the number ofonon -zero solu-

.fiops, at tlme t, to the equation '?é
- f‘ | .
-ib(t-t)) . T .
I =0 ~ (2.46
A A AL FO v _(2.46)
. . .- S _ 5
. and Yo e S T
.. ! ‘ :-lh (t t ) . . .‘.‘ .v " A
(9 e . OOy 2ig v o “(2.47)
sB e ) LR - RN
Al 5 ‘ A A \ -
" Since-here Y ‘ ..
-ih(t-t) . {H(t-t ) -iH(t=t )
& ' q’in(to').f)"= e win(to'f)e ) vt
°we}have ]
. Vo iHE-t) | -iH(t-t ) [
' . - bo(t) = e i 0 ln(t )e ' v - X
r A "fqp o
. ) B ' . "!.0 i
- iH(t-t ) ., - -iH}trt ) I .
a®(t) = e ©attt e % .7 (2.48)
n \ a R o . + .
, 50 that in fact '0‘
o, . ¢ AH(t=t)) - .
R (t)’ =e | %q,. . (2.49)
.\ - ) ®
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-

Using equation (2. 34) and the fact that [Q,H]==9", we

/
obtain [Qin' % so that

re

o _ .
Q7 (t) = Qin ¥ t . ) (2.50)

© and the pseudo-

This implies that we always ‘have M° = N
particles w1f{ then always be created or annlhllated by
pairs.

In the case of "weak" external fields, we will

. [
—

always have 0 = M° = N®, as is shown below. If there

exists.i¢8} # {0} satisfying equation (2.46), there

~exists {a } # {0} such that
—ih(t-to) o

e 2f+8)¢8 gf_a)aa . - (2.51)
Defining ¢$ = g f38)¢8, ahd ¢° = g £° )a, , we have
~ih(e-t)) o -ih(t-t ) y

(e ° 4% ne ° )’§\f¢$,h 49) -

\ 'O o (o) O

= (07, 1n 10D) - (03 ,ev%.202)

2 00,00 109) - | (02,ev%y.a00) |-

> 0 e
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by condition (2.44). * Upon using the right hand side of

equation (2.51) however, we must have

: g} 1(’(!

:“ .
©
\

~

It

‘ ‘-’%(@ﬁ.ey Y.2¢°) | ..
' '“‘" O ey .
fw ?“' - i L [
f','*+ @\L.ev Y. A¢> % |
/

~

In .

again by condition (2.44). We see that the equatioﬁ
(2.51) is then not ¢ ible ‘with the "weak" field
condition i.e. equation (2.§6) cannot have any non:zero
Ssolution.
S
Description of Scattering (S-matrix) \

Let us now go back to the more eéxplicit notation
where, when h defines a good scattering system, the

meaning of the general indices E and E' is

(£ (0} = (£ (0 JULE ,s)"‘” | n
(Ege ()= {Fg 0ule (0} (2.52)

_As we have seen iﬁ the Chapters I and'II,.the
operators bs(g) and ds(g) defined b§ equatioh (2.2§)f )
correspdnd to the particles in the externéi field which.
after a long fime will be moving freely, i.e. |

/ . . . V ‘ . B | ..‘ 4 ' h‘ ] \

-
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out, . _ .  out, . _
bS (g) = bs(g) ds (E) = ds(E) . (2.%3)

The operatorsb(E) and 4d(E') are the bound'particléé.
annihilation operators and the energy operatér cap be

written as

| 2
_ t t
H = Jdg sgl,“(?){bs(?)bs(g) + dg(p)dg(p) )
+ JEpTE)b(E) + ] B aTEnaEn . (2.54)
E . E!
i) Initially, we know that there are only free par-

t¥cles in the system; let us suppose then that the
system is in the state where there are m<particles and

m antiparticles respectively characferized by the wave
packgt indices (“1'02""°n)'and (81'62"'f8m) present
before time_tof This state of the system is represented

by

. t . ot U
. in in in in

. t ;
-dln(em) o> . ~ (2.55)
_ + LN _ e ‘
kWe\hqte,that the time used. for the operators pln(t)

. + . \ '
and d'"(t) does not matter since if different times

-

are used, the resultin§ difference in the above vector

B
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is only a phaee so that the same physical state is
represented. That is so because a bhysical:state is
{n fact represented by a ray in J{ and not by a vector.
We'will tﬁen use here t = 0.) . ‘

For all times before to, there\are these same
n freely moving particles and m free antiparticles
-in the system.

In order to see what tﬁe situation iseat times
t after time to' we simply rewrite the state (2.55)
in terms of the new particle variables. We use the
inverse of the traﬁsforma;}on (2.4). to write the
operators bin,"din in terms of b(t), d(t) and also
write |0> in terms of new Fock basis states for tpe,.
particles. Equiva;ently,nwe can calculate all proba-
bilit§ amplitudes that the system be in the configuration

represented by ‘any state of the type

{ -
‘ '
I_a_.nl .' -Eazi ﬁ'm' ’ §£'> t L : R R -

These are states where at time t;$tb.'there‘are:n‘

scatteriné’particles chéracteiized by'the Qave'pacget
indicesf(gjn,) moving inthe,poteptielua(ﬁg,“z’bound
particles occupyipg'the energ§"l‘vels El'Ez'-"Ez and
m' sgatte:ing'aﬁtiﬁafgicles_ahd 2! bound antlparticles.;e

This probability ampiituée is ply

el E;‘i P B B -la :gm>/r S a@se)
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" These amplttudes.for‘qll n, mand n', £, m', '
are in fact just the elements of the unitary tranefcr¥
mation relating the free particle Fock basis and the

"~ Fock basis obtained ffom the ‘application of bf(t)'and
dfkt) on |¢ >." This unitary operator is simply rela—
ted to the one implementing the Bogollubov transforma—
tion (2.4), the general form of which was glven in ¢
Chapter III. ‘Sirice b(t =»0) and dft = 0) are the final
operators for the particles, as seen 1n Chapter I, thls'
‘unitary operator with the parameter t = 0 is the field
theoretical S matrix (if this is defined as the .opera-
tor re;atihg’all finai states to‘a%l'initial statee}.

It is important to, remakathat even whén bound
‘states are posszble the unltary operator relating the
two sets of creatlon and annihilation operators bln, din
and b, d can exlst “In fect this operator would exist
even when the Spectra of h, ‘and h are not sxmllar
(in the sense that h deflnes;a_good scatteridg system;
this case is ccnsidered mofe'eXplicitly because of its
importance). Its existence 18 simply linked to that
of a well deflned second qgentLZed energy operator H
pand the fact that physlcbl particles (i.e. quanta of
) energy) can be appropriately descr‘d after time t
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ii) We.ca’eulete, as'an’example, the probability
amplitude‘fo the following interesting phenomenon.
There is finally in the system only a bound electron
w1th energy E when 1n1t1ally there was only one freely

moving electron. The state of the system is

|a;0> = pin lo>

a being the wave packet index of the initial free
~electron. The probability amplitude we want is given

by .
R | 1
e “E;0|a,0> = <ol (E)B " [o> | .

Using the inverse of the relation (2.4), we obtain
‘ 3

' iht -ih t "
kE;Oja,0> = (fE,e % - © ofi&)<¢o|0>
. iht_ -ih t ‘

- Z(f_A.e % ©° °f3a)'<E;A|0> .

AT : :

»~ g

\

This is generally ndn—zero if there is no Certain
' creatlon of Particles and antlparticles ( <¢ ]0> and;'
“<E; x]0> are non-zero) so that the' b1nd1ng of a free
electron can be rlgorously described
It 1s lnteresting to note that the flrst term
of thls expre531on glves the contr;butlon to the pro-

cess whlch would be obtalned from ordinary c-number

,Qudhtum mechanics 1 e. one particle theory where the.j'



' | - Ay
pos?ibilgty of creation and annihilation of particiesr""
would not be considered. It would be simply the pro- .
bability amplitude that the initial electron becomes
bound.

From this point of view, the gecond term would
be interpreted as giving the probability amplitude
that: an electron inéthe state E and a positron in an
- arbitrary‘state charecterizedfby A are created (<E, A0>);
the posrtnon annlhllates w1th the 1n1t1al electron whiggh

~

under (the 1nf1uence_of the ekternal field has "dropped” /<

to;;pe tate described by the wave function f—A (according

to th¥ probabllity amplitude
Sty e Ce 280 ),

' When there is' no certain creation nor annihila-

tion of particles,. there are generally two such contri-

butions to the single particle “scattering" probabilities

T

between any two states when the potential is time depen-

L 4

dent. The¢? ordinary quantum mechanical interpretation of

the Dlrac equation as a SLngle partlcle equatlon W1ll

7

then give correct results only lnsofar as there is no W,
certain creatlon or annihllation of partlcles and the

second "process" descr;bed above can be neglected.

’e
. ,

v iii) In c-number scatterlng theory, 1sometr1c (unltary
_when there are no bound states) operators 2 are defidéd
such that h is assogiated ‘with a good scattering system
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-+ when

| hq = Qho. .
|

This is what is meant by h is "similar" to ho. 'Here,

in the second quantized theory, as is obvious from the
equation (2.54) giving the form of the Hamiltonian H,
there is the same kind of similarity hetWeen the spec-
trum of H and that of the initial free field Hamiltonian

H. :
in

.t.

: 2 . L st ;
S . in in in in
fin = fe 1 @0 e) e+ altip aln )

The two operators have the same continuous spectrum
This 91m11ar1ty ‘can here also be expressed by
the existence of an lsometrlc operator which, whenever

|¢ > exists can be defined as

R

L2 a0

W= Z Z f l >' <
bl e -————. 2 57
n=0 m0 -E—n —ﬂ-m E_n S#m BS,; g_ml (2.57)
It has the properties: )
w1 wit =1-p (2.58)
where

o

A ———r

PB =.gmbf(E)b(E)%; é;”dt(ﬂ')d(E') A%

‘ 1s the pro;ectlon operator on the subspace of states in

‘whlch there are bound particles.‘ We have '
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bo(p) W=w b;n(g) e bZUt(g) W= W b;n(g)’
d (p) W=w di“gg) ad**(p) W =w al®(p) (2.59)
b(E) W =‘0 ) .
A(E') W=19 | " (2.60)
and consequently, it‘relates H and Hin as é&
HW=WH . ) o (2.61)

If therevare no bound states afterlto, W is
unitary and as we can see from (2.59f, it is then the
adjoint of the unitary operator implementing the
Bogoliubov transformation (2.4) (i.e. W= S+)

When bound states dre pOSSlble, W relates only
final scatterlng particles to the initial scatterlng
partlcles creatlon and annlhllatlon operator,so in this-
sense it also could be called a scatterlng operator.
We remark that there are many isometric operators'with :
~ the property (2.59); ~others than W can be obtalned for‘r'
uexample by using - states IE_ E ;g*m B! 2.>' where . therelf
are 2 bound- electrOns and EX positrons lnstead of only
scatter;ng particles as with’ IE_ ’9-m>~' However, re-@
quir1ng the property (2. 58) or: (2.60) or (2 61) def1nes~ o

W uniquely

. .
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Fields_Which Satisfy the’ Existence Conditions
We.now give examples of ‘external electromagnetic
fields which satisfy the conditions (2.6) and (2.7) or

(2.8) and (2.9).

i) Moses [1954] and'Friedricﬁs[[1953] have studied
in'partieular good scattering‘systems where there are
no'bqund etétesdf Usind a pe:tuibetioy expansion for
' the,fuﬁetiohs f a =va2a, they‘eXamined the conditions
%2 é)oand'(2 7) in the flrst approxlmatlon, they have
‘shovn that no external magnetlc field A(x) could satlsfy
.them and that for ]A (p) ] (where A (p) is the Fourier
transform of A, (x)) bounded and 1ntegrable they would -

be satlsfled From thls, they deduce that (2.6) and
”7(2 77 W111 be sat;sfled w1th all orders of the pertur-
'“1"bat;on‘se:1es,for §(§) ?;0 nd A_(x) SUfflCLERtly weak.

;v-;'.BOnéeefts [1970] giYgL"tﬁe following example of

,-external electromagnetlc fleld thCh satlsfles the con-,
' x”dltlons (@, a) and (2. 9) - B |
,A‘(k) is a bounded L function whose Fouriergtransform f
A (g) 1s contxnuous except p0331b1y at p = 0 and has

"the folloW1ng behaviou: at 0, b; there exlst positivg o

"1.

_ numbers cl, °2' el, ez, 6 N such that "

J = 3



_ |Ao(g)4 < cl]g| " _for 0 < |p| < $

R K f(5/2+s}) : ’ .
.le(g)I czlgl : for jg] >~Nf;.'

A

ii) . We will derive here the féllowing sufficient N
condltlons on externak electromagnetic flelds to en

that the condltions (2 6)’and (2 7) are sat1sf1ed'

A(x) =0

~ o~

has

| jdx e‘[Ao(x)]4,£ o -

hd

~

' 2 2 2 . .
Jdg|g|‘ e |Ao(g)| < ® o ‘ .

*r

230,017 < @) CEE

our de:ivaﬂA jot use perturbation series and,iS\
mudhvsiﬁplei_ 4ét of Bongaarts while yieldiny more
celegant risulfE . T e
. We exas ‘the inequalities: . NG

zw Pl L s

S et N

zzn VEO )1 L e
X é& | ,.,.'_ B S
 _wh1ch we have already shown to be equivalent to-(zsﬁ)} e

-Qand (2 7)r (2 64) can be wrifteh as ':,:-“;  }?  f;¢;°i?
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where p = Z f+Y (f

"
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o

Trace P, PO < = }x’ . (2.66) .

+y is the projection operator%on

the Space of functlons assoc1ated with the non-negatlve

spectrum of h and P_
space of functions asSpc;ate

of h
o

]

) f° ) (f_é pfogects on the
8 )
gative' spectrum

. These operators can(be written in terms of un-

te

normalizable eigenfunctions (of h or h)) as

written as

fe= |

X ‘ 2
= ) (o] X . N
VP+ f jdE fE)(fE and ?_ =(Jdg sz (“,Pv ))( (_,p’s) .

L)

We haye

e

& : - Tt
o

—

-~

'Using these forms the conaition,(2:64)'or (2.66) can be

’ :.p.% - r;‘ . )
dp Z lex v (p) e T fo(x)] <= (2.67)
~ S=1 ' -~ . ' . . .
where vS(p) is the usual _spinor such that
| ‘f ) N - , -;1 Lnﬁ
(YO0 (p) = y.p + m)ve(p) =0 .. -

A o ;;21 | B T
o o an S
-,y P e = fax v® lp)*e ih - ey’ \*A(x) Fg (%)

PN Iy e . b
L S S : . B

1p«x i . S : ,“. P
=I:.Idxv (p) "6 © A

L ,3

and uslng (f(- ﬁ s);llf ) ‘.(hkf(_ p 8)'f )r ﬁhiBQiglh.

A also

N

T e S o
' ij;a.Q{j:_}’;:;;.¢¢ ‘/;‘Q. i{f } f;f¥ fij¥f€f

* L




219

. ip.x T + ip.x
= —“(B)de vs(gﬁ*e - ~fE()f)- de vs(g)*e - ,ey y A(x)f (x)

so that
. s * ;
a s * 1g-§f L -1 - s, & ip.x o . _
Jax v* 1% £ )= ErotpT) & @) s ey Y3 (%) f5 )
- .  (2.68)

We note- that-even if the functions used are not-notmai—_
izable, Ehe'above manipulations are figorous. This

T . . can be seen by us1ng any wave packet made up of these
functlons, equatlon (2 68) then has the meaping of an

equallty°between two dlstributlons in p and E "over the

-~ . 3

‘spaqe,of L2 functlons of p‘and E. Let us now take

.
-

A(x) ='0; we have again:

':/“’ o » a ! - ) " 3 .
. 5 "* 12'§ o 1..J'J . ) Do _‘ o . ‘
. , \ Ou i . , B . ) i ‘- : . 5 ) \‘ ;9 ..
p.x . - : . . .v V(y «’ . . . 7/
jdx vo (p) e ~ ~eA (x)f (x) : AL (2.69)

. p. . .“,i -~ T
=[ax veipy e HETN (x)+[eA (x} l--e 8% bg ()

R et
- [dg veap) e T *eA_-a.-(x)fg(x)'_‘ B
Y ‘._,.'(;')14e2A2(x)}f (x)‘
L@ 707




ve,

&

.“:!J—_

ip.x

Jax Aprte

o

-1 .S ~
= TEIGTETTde vo(p) e

This replaced

S *‘i?'
dx v (p) e

_ 1 fas
= ———————I-dx.
[E+w(g)]

)

Since always
/

©

1

-
o

~er(i()fE(i()

« 1p.X

in'equation (éu&S)‘gives:

LE+w(EJ

12

in’f g* (x)g(x) ,

1p b4 ) 2
v (p)e~ TE () | stp'Z

Co
4.4

2

Joxte® 1o, 012 + e*af00n)

i

2 _ (.. % 4B’
u ;devg (x)g(f)’IdE'Ide

{1ey Y. [3A (x)]+e A (x) o (x).

°y.faa_ () 1+e’A2 (x) g (x) .

(2.71) -

g* (%) £5,(0) |

inequalities with (2.71), we obtain .

: j.dg sglﬁmwd' ) ®(p

< el w(‘g)‘l ’j? 5@& _

t-ip.x

f ~{1eY Y. laA ]+e a2 }{1ey Y- [3A ]+e2 z}é ~ ~v5@ﬂ

(2.72)

W

ﬁp
o
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w(p)
satisfied when

Since Jdp < ©, the condition (2.67) wil; be

-~

fdx’ez[aAo(x)lz < ®» and jdx e4Ag(x) <o (2.73)

Similar calculations can be done for the term

; 2 « 1p.x :
ZZ](f_A,fSB)|2= de'fdp ) ljdx w (-p)e * ~fE.(x)l2
X8 _ T os=1 )~ * , -
and the condition é(g) = 0 together with (2.73) again

ensures that it is finite.

-

4

;i{(}- The above method allows us also to obtain some
results for the case of Dirac particles interacting
’ i \J '

with an external pseudo-vector field as

(=iy.9 + m)y(x) = -i(5Y5Y-¢(X)¢(X) .

We note that no results were given previously for this
case. Taking again ¢ (x) = e(t~to)¢(§), this~problem
can be treated exactly as fg; the previous system with
now |

h=nh_+ i(i&oysy.¢(§kf. ' - (2.74)

For the conditions (2.6) and (2.7), we derive

as before; “ ‘ ¢
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o : _ iG o o}
(f(-,g.s)’fE) - [E+w(g)l“(f(-,g,s)’.Y Y5Y-0fg),

and taking $(x) =0,
_ ~-1G o . . o
T TEre (T f(-,p,s) VsboTE) - (2.75)

We now. repeat a calculation similar to that done in

0 .

equations (2.69), (2.70) for (f(—,g,s)’y5¢9h fE),

using \

_ :.0 SR o
;75¢o'hol = 1Y ¥g5Y- (30,) - 2my V5o -
Replacing the result obtained in (2.75), we get

) = —iG o

o " (.0 |
* (Era(p))2 | (-ipis) EYYsT- (26)

(—'Els)’fE
_ . 0 . 2 ‘
2my Ve, + 1G(Ys¢o) }fE)

LY
‘As in the previous case, we can see that when

Jd§ ¢§(§) < @ '
‘\ Id§ ¢g(§) < oo
- and _Jd§[§¢o(§)]2 <> / ‘ - (2.76)

\

the cbndition (2.6) is satisfied and so also will be

: L
(2.7). /‘ : » O e
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We note.that the key tb the successful applica-
tion of ihe above proof.resides in the fact that h =
ho +'YOM(§) and M(x) is such that the commutator
[YOM(g),ho]'does not contain any derivative term.

It can be checked that the most general 4 x 4 matrix
M(x) which has this property is of the form M(x) =

ao(§)Y° + as(x)yoys. In particular, with the magnetic

potential, M(x) = ey.A(x) and

>

(o] — _ . . )
[ey Y-A(x),h I=-2myA + iyv; (3,A:)+ 21(kai)Aiak .
(2.77)

A term like (YkYi)Aiak éppéaring Qn‘the right hand side
oé equation (2.70) becomeg (ykyi)Aipk and we can see
‘that we then run into trouble with the integration Idg
in‘equatio;,(2.72). Termé in 22 in the nuﬁé}étbi will
prevent the'convergence of»thelg-integral so that ‘an

Ll

alternate pr@of must be found.
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. : » .
3) Potential with Many Step Functions in Time and

Continuous Time Dependence

S
Sequence of Step Functions in Time .
i) Let us start by considering the following ex-

ternal field: A(t'x) = 6 (t —t)e(t -t )A(X), t1> t .
The external fleld is null before t and is null again

after t %he solution of the field equation is there— |

l.
"fore the free field win before to‘ the field wA,‘which

satisfies equation (2.2), for t < t< ti and again a free

field: wout after tl. As in the first case discussed,

the solution muﬁisbe continuous so that

yt,x) = Vi (t,x) o : ottty
-ih(t-—to) - '
= wA(t X)=e win(to’f) to < t'svtl
[} B )
_ -ih, (t-t,) A~
=hue (tix) =e (g /x)
-ih_(t-t,) -ih(t,-t )
_ (o} 1 1l "o .
.= e T e win(to'f) t 2 to .
(3.1)
Since the system up to time ti must behave ]

exactly as in the prevxous problem, we Just have to

examlne the t1me 1nterva1 t>»tl. There is ‘then no

-

external fleld so that the functlons to be used in

“o

LI A |
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assqciating physical particles with the field are siﬁply
those associated with the positivq\i::tjféative parts
of the spectrum of ho. This means .t , how, the par-
ticles creation and apnihilation opéiatoré'by(t> Fl).

d, (t> t;) and theifjadjoints are the same as the
bg(t>'tl), dz(t >tl) aﬁd their adjoints. These create
and annihilate the physical particles which.one would
observe aftéf time t,. There is now-jﬁst one Bogoliubov
&ransformation to'be examined instead of two (as pre-

viously thé”equations (2.4) and (2.5)); here in terms

of initial free particles operators we have: .

‘ =3O (1= o o ,..in o o -
ba(t)—ba(t)~g{(f+a,u(t,to)f+8)b6 () +(£] ult, t )£ ) x

n t
(t )™}

trev. Ot o 0 ,in 0 o
§a(t)-dﬁ(t)—é{(f_a.u(t,to)f+B>§B (£,)+(£2 ,ult,t ) €2 ) x

in,, 't
Q@ ) ‘ °
: - =ih_(t-t,) -ih(t,-t_ )
where u(t,t)) = e © 1 e 1o .

. There will be a unlque vacuum state 1n~h defined

by these operator%xlf and only if

-ih_(£-t;) -ih(t,-t ) |
A e R TL S
a g T | -

A

&

G - ~ih ft-t')v-ih(h -t ) 4, L
':gbgl(fed’e o_‘\'l-e, % (o] fgﬂ)jz <‘w :

e



(r—tl)

Since e ¥ t maps the set of functions {f o}

and-{ffa} back onto themselves in a one to one fashion,

the above condi s are equivalent to

z fr(fo‘ e-ih(tl—t
a B +a/! ‘
-ih(tl—to)

) %‘lan‘_’a,e A . O (3.3)
o l ‘

These are exactly the conditions (2.8) and (2.9) at

t ='tl. These were shown to hold for all times if they

were satisfied at any time t # t, so that if (2.8) and

(2.9) were satisfied (3.3) will be satisfied and vice

.

versa.

i 4

We define the operators‘bs(p)‘and d;(p) as

-iw (p) t
b (p) e

1, . '
bs(g,t> tl)

-J.w(p)t
d (p) e = .

1,
ds(g't>tl)

1

: In the present problem, bl and 4~ are the annihilatlon

- operators for the freely movrng partlcles after tlme

-

'i‘tl, i.e.

’A‘l' . . . “ l . o t :
by (p) = bg“f(g)» S g =aMe .

~ ~

l A
The energy operator for t>»tl 1s

I

ogou ,t- H(t>tl) Idp /z go(p){bl(p) bk (g)+d (p)’r dltp)} .

226
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- i (e —t ) =iH(t.-t )
.  S\E\e'. s Aol N 1 "o
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The time translation operator U(t,t') for t> tl

and t' <ty is simply

in s _ _spout
~iH (to-ﬁ') 1H(tl to) 1H (t tl)

U(t,t') = e e e | . (3.4)
Since
bCS’Ut(g)?.dw(E)t=U+(t,t'u)b;'n(g)e-iw(E)t'U(t,t;')
dgut(g.ﬁa—iw(g)t=U+(t,t')'d;n(é)e-iw(g)%.U(t,t')‘.,
the Sfmatrix is
SindPe Cim(e -t ) irOUty

5 =000 =e % 1 0% Lo (3.s)
Having

ot iH(t -t ) L -iH(t -t )

H = e H e '

{3.4) and (3.5) can be rewritten as
© in, ‘ in ' ‘ "
o - =iHT(t-t') +iHT U (t.-t ) -iH(t,-t )
Ult,t') 2 e e L og 1o

4

(o ii) Let us now consider cases where the external

field‘dbangéé“in;time‘according £oua $equéh¢ewova'step

- functionst - ' L L e
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[}}
o

A(t,)f) v t<to
A
= Ai(f) ti_1<:t< ti . l=l&2,...N
= Ay 0 vE> ey (3.6)

As in the previohs examples, the field operator solu-

t#on for tj—l <t s tj is simply

-ih_ (t-t. .) =-ih.
vit,x) =e 3 1710

-ihy (g,-t ) -ih_(t_-t')
N N R N E )

where hj is defined as

= h - o X
hj = ho HeY Y'Aj(ﬁ) . ' (3.8)

We are going- to show that
p(t,x) = ult,t )y, (t ,x) (3.9)

is unlteﬁlly implementable for all t»> t lf and only

lf all hJ are such that the condltlons (2 8) and (2.9)

are satisfied. Since these were . shown to be equlvalent
;to (2.6) and (2.7) there will then exlst also well

- defined energy operators Hj'of the form

iz pdEthie s | e v alentaden
L R L Ke! 10)

o
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where Sj(—) is the negative pért of the spectrum of hj

and SjZ-S its complement, '’
Let us firstly examine the case to <t S'ti;
(3.9) is then simply \/
-ihy (t-t ) AR -
w(t,g)\= e Vin{tgrX) (3.11)

~ .
and we have already shown that this is unitarily imple- @ﬂ
. - )

"

mentable if and only if hl is such that (2.6) and (2.7)

are. satisfied and that there exists an energy operator’

H, of the form (3.10). We have -

I T ' -
w(t,f) = Ul(t to)win(to’f)ul(t tc)., 7(3.12)
where

-iH. (t-t )
_ 1l o)

Let us now consider tl <t S-tz;

1h (t- t ) ihl(tl-to) : » : ):)
. R - ;@?

Using (3.12) this is eéuiValent to

\Ul(#l'to)w(t'f)ul(tl'to)"e Yin(torX). §3.l4)

- o , 1
" We thenisee that (3.13) is unitarily implementable if .-
and only 1f (3. 14) is. As before, this is so if and
‘ only if h, is such that (2.6) ‘and (2. 7) are sat;stiad.-
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‘There will then exist a unitary operator

il (t-ty)
= _ 2 1
‘ Uz(t—tl) —ﬂe -
such that
e . win(to,x)=5U2(t-tl)win(to,x)Uz(t—tl) .

.
w .

2 \
operators b (E), a (E) and their adjointgh are also

.

H isfgf the form (3.10). The creation and annihilation

related to bln(to), al (to) according to equation (2.4).

That is ﬁz is the Hamiltonian defined in the first :
. . R . (N —
problem when A(x)" is Az(x).' We have ” :

v

ey x)-U*(t -t ) 5] (%!k )w n (g x0T, (E-t))U (tl-to) .
(3.15)

', There is no difficulty in extending thls to any

-

-number of steps. By 1nductlon, using the same argument
as used in 901ng from equatlon (3.13). to (3. 15), we

.thuS&prove the required result. We~obtain that the . v

unltary opeérator lmplementing (3. 9) is. slmply, for

'}'; $t<t » . .. . . . .
31 5. ST
‘1 . B .- ) - : N ‘:““‘;z;'!{"

Ut t,) = - 0 (t t 1)U l(tj 1 J 2).,.0 (t2 1)U1(t1-t )

' ”3, (3 16)

where




231

.
R
N

N (3.17)

- ‘ ft')
U_R' (t-t')

} defined in section 2)

-

ﬁfl is the en "gy"._

with A (x) eicular, if A, (x) = 0
for some 2‘,'-;
' b . N ’ !
or H. for times t. t t.
t j imes 3-1 < < jo

fme translations such that

| iH, ( ~iH: (t=t, )
vit,x) = e I plt. ,,x)e 3 3-1
~ AR B
e - 3
i.e. | .
- iH, (t-t . < .
y(t,x)=e ( 3 1t )wln(t X)U t3 1rt,) X
[ ' 0
' ' .
. -iH, (t-t )
X e ~1 .
'Compafing this wi »::':
vie,x) = vhie,e ) Rt Ut ) R o

. iR () - -1l (t-t
= U+(tj~l'to)e B 3 1 Wj_ri(to'-’f)e_ ) j

o :
x U(t l't) ‘
we éee‘-that‘»;‘ R -

IHYI ‘t"t _ "18 (t-tgl)

o “_”p -

:’é,u*(t l,t ) By U(tj_
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The energy op’era'tor Hj will then have the form (3.10)-

In fact, the particiesvcreatic')n and annihilation opér- .

? 2 . . are given by
..o '\. J-l “\

= ' 5J
=.U (tJ l,t )b (E)U(tj l't )

. j _iEﬂl t ~ -~ 1' ) ) -j . - B . L
] . — . [] - .
d-(E')e )/5T1~- U (tj_l,to)d (E )U(tj-ljto?‘ (3.19)
t e ' . N . . / .: .

(x) # 0, the fleld theoretlcal S-matr:.x,

If Agyg

relating the operations bJ, dJ to the initial operato‘r_s :

-~

bin, din., hs made uﬁ of the unitary transfoi:'mation
""relartlng B3 (E), 3’ (E) to the 1n1t1a1 opera»tors bin, at?
and . U(tN t} . J \\ S ,{ ’
‘ 1f- An+l£x) oy w(t x) ‘for\t>tN ‘i .the’ free
'field ¥ ue ttrX) and N
' i (t-tN) | .°'"\ - -iE (t—tN)
-t.
wout(t x)= [e Ultyrto) T ¥ynltgex) le \:
- v L o ! \\. - -\\ ) o
AT I m4U(tht )]\ -iu' L
o R S ST \ .
8o’ that the S nuatr:.x whlch in this case (AN\\\- 0)' .:.8 ' o
; ,such that "'out(o x) = s w (0 x)s is Smply \ - ,.,‘4__‘.

8 =e tN ° u(tN t ) B ¢ 3% 1) L

S

. j e
* (..- ! B LY
L - .
\
.
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L . . . ¥
Let us’'now consider an-external f ;1d of the sform

t <t - CL
" Yo |

[
o

- A(t,x) =

. p .{ ) /.'v u; | . " i . .
WPlto,tg) + to<t<ty (lgp<e)

+

. Mm

Altg,x) - >t A . ' (3.21)

Where‘ﬂ(t;g)e,ﬁplté,tf) means that-for all t e (to,tff

. Lo
- d

# ',5ﬂ R o .
: ~ . o ‘ O Iy ,
It 1s knzyn (see for example T Kato [19661. example

.‘5 " | J dt' IAu (h'li‘) Ip < w V . “ . )
t L. R . , ‘ .. A

l 13) that any such fnnctlon of time can’ be approximated;sl
:; as closely as one wants, by a finibe serles of step N _ ;
. functlons 1n t1me (i.e. llke,those discussed in the . .
v‘ preceding section)‘ B 7.€" | o
Lét us then dlv1de the tﬁme 1nte:va1 (to,tf

Ry

* g[ 1n N eépal sub-intervals At -'(tf -t )YN and call fmljl'
uN(t t. ) the c—number unltary operat@r def:.néd as. % :
”./_ Vé&‘ =

b4

. equat;on (3 7) in which we take - B -
*‘J = ‘h -eY°YA(’£) ST T ey L
. . o -; :0 . ‘-’l’ o. '- "::lw . ) . l‘« .v”‘.\ ‘: - “ " ‘v

A (x) = A(tj.,x)o"-'A(t + jAt x) " Lt (333)
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[

We will suépose that A(t,x) is such that the following'
limit defining the c-number unitary operator u(t,‘!)
- exists: -

lim uN(t,to)= U(F7to)A‘ L - (3.24)

A4 N+w°

’ : e
f?zhowtyant to see’what is implied when, , v t

<

such thaté}o g the conditions (2.6) and (2.7)

are satisfied i.e. when

A
L] * 4
. ‘ i

’ ' « o,
. Trace P+(t)'P8 < o ;o
Trace P_(t) PO < v ot ., (3.25)
;

P (t), P_(t) are the projeétiqn operators on the‘func-
tions corresponding respectively to non-negativs and

negative eigenvalues of h(t) = ho— eyoyA(t,§). .

Whatever N the conditions (2.6), k2.7) will =

‘obviously"be satisfied tj i.e. we have

K]

Trace Pa P° < =

Trace' P) PQ < » - 5 - ' (3.26)
- . _’ :"’J L . " ¢ . - .
- As was shown in the previous.section ii), the Bogoliubov
| VY * A . ' ' P P )
v transformation corresponding"to ~ .

O . .
. ” . B . - »

vie.x) = uN(t{to?winA#o;f) T (3.27) E

o

L T
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. - l\~ ' 12
will then be unitarily imglemezijzi; at all times

whatever N. 1In particular, whe becomes very large,

(3.27) becomes (by hypothesis) ~ - .

so_that this should be unitdrily implementable for all
times when (3.25) is satisfied. .

’ ConVersely,’if‘(3.28) is assumed unitarily im- \\\
plementable (by an operator U(t,to)) for all times :

tO <t s«tf, then -
s - _ '
g ' wgt—dtﬂf) = u(t-dt'to)‘ﬁin(to'f) - (3.29)

is unitarily implementable (by-U(t-dt,to)). Since by !
definition

g R . [
ut,t ) = e ih(t)dt u(é-dt,t ) (3.30)

one has

.

t = e
UM (e )y (£, X)UCE,E ) = ult, E )y, (t_,x)
= eTih(B)at (t-dt,t )y, (t_,x)

i

. . “ .
_ ih(t)at +, . s
= e Ut (mat, )by (8, 20U e d#.to) .

Therefore
‘e-lh(t)dt

3 = Uel LT
Vin(torX) = U(t-at,t )UT (£ F

Y "X U(t,to)UT(t-dt,fgy ' /

—
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-ih(t)dt ‘
on win(to,§) must then

thé transformation e
be unifarily'implemenéable. From section 2), we know
that this is true if and only if h(t) is such that |
the conditions (2.6) and (2.7) hold. Since (3.31)
must be true for all t, K2.é)-amd (2.7) must hold for
all t (i.e. (3.25) must hold) and then a well defined
énergy operaéor of the usual form.must exist at all
times. ’

“We thus obtagn that when the external field

s

A(t,x) is such that a c-number unitary operator can

be defined by.equation (3.24), o

if for/all t, h(t) is such that conditions (2.6), (2.7)
are gatisfied. There will then'exist also, at all

‘tiges, a well defined energy operator H(t) of the form

() = ! dE E‘b(E,t)*b(E,t)+' f dEfE"d(E',t)*d(E',t);
\ 5. 1- . 8 (=)

7.

St(-).is the negative partaof the spectrum of h(t) and
. o Lo ‘ ‘
Sti—i its complement. o

This is the same property as the one demonstrated .

"'in*the previous section with a finite sequence ofistep*
" functions in time.

°
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Although a more detailed proof than the one we

| gave above could be desirable, the important results

obtalned ar ertalnly expected to be trdﬁ due to the
follow1ng facts. //the case of the sequence of step
functions, .the re?é&ts are completely independent of
the number (N) and lengths of the time intervals. 1In
section 2), we have proved that the-conditions (2.6),
(2.7) (and (2.8), (2.9)) also are independeﬁt of the
length of the time iﬁtervals "a" # 0 appearing in eiha
'The results obtained in this section confirm

the great importance ‘of the conditions (2.6) and (2.3)
(or the equivalent (2.8) and (2.9)). These now appea;‘
as really crucial for having‘aﬂsatisféctbry physicalﬂ

interpretation of the present formalism.

The most urgent problem to be resolved at the

. moment is whether or not these conditions can be

‘satisfied with magnetic potentials. We recall that

uy +

in the case of the potential .6 (t)A(x), we were able
to prove explicitly thét nb magnetic fields were
allowéd Thls however was a very particular example;
in the genéral case, no, such negativé)answer has been
obtained even though, up to ndw, nobody.has been able
to obtaln any magnetlc potentlal w1th which (2.6) and

(2.7) are satlsfled
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It would certainly be worthwhile also to try
and get better estimates on.A6(§). It is reasonable
to expect that, in the final version of the, external
fiela theory, there should be almost no restrictions
on the potential's. The only restrictions should come -
from the usual c-number requirements (like demanding .
that A is such that h(t) is self-adjoint and u(t,t')

exists for example) just as in the treatment of systems

with time ;ndépendent potentials.
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