National Library of Canada Bibliotheque nationale du Canada Canadian Theses Division Division des theses canadiennes Ottawa, Canada K1A 0N4 # PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER | Please print or type — Ecrire en lettres moulees ou dactylogra | other | , | | |--|---|---------------------------------------|---------------------| | Full Name of Author - Nom complet de Lauteur | | | | | JAYAL MAGETINEATI | | | | | Date of Birth - Date de naissance | Country of Birth Lieu de nai | issance | | | June 6 1951 | iti (Vin v | | | | Permanent Address Residence fixe | | | | | 8626 23 NVI | | | | | CIMONION, ALBIUTA | | | | | IF NATA AGANA. | · | | | | | | | | | FEASIBILITY OF THEITPOLYTIC | FLOTATION FOR | 11.6 | | | TREATMEN VOIT PROPORTION DE | - ACLT MALLO VI | | | | HEAVY DIE EXCENTION FAC | | | | | | | | | | | | | | | University — Universite | , | | | | UNIVERSITY OF ALBERTA | | | | | Degree for which thesis was presented — Grade pour lequel cette | these fut presentee | · · · · · · · · · · · · · · · · · · · | | | M.Sc. | | | | | Year this degree conferred — Annee diobtention de ce grade | Name of Supervisor — Nom du | directeur de these | | | 1980 | S. E. HRUDCY | | , | | | | | | | Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film | L'autorisation est, par la presente, accordee à la BIBLIOTHÉ QUE NATIONALE DU CANACA de microfilmer cette thèse et di prêter ou de vendre des exemplaires du film | | | | The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission | | | | | April 23, 1980 | of Nogendran | | $\frac{\lambda}{2}$ | | Date | Signature | | | J. Najentran April 23, 1980 Canadian Theses on Microfiche Service Bibliothèque nationale du Canada Direction du developpement des collections Service des thèses canadiennes sur microfiche NOTICE **AVIS** The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible. If pages are missing, contact the university which granted the degree, Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy. Previously copyrighted materials (journal articles, published tests, etc.) are not filmed. Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis. THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction. S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade. La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité. Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés. La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse. LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE # THE UNIVERSITY OF ALBERT/ FEASIBILITY OF ELECTROLYTIC FLOTATION FOR THE FLATMENT OF PRODUCTION FEET VOLE WATER AT HEAVY OIL EXTRACTION FACILITIES by (C) JAYALINGAM NAGENDRAN B.S., P.Eng. # A THESIS OF MASTER OF SCIECE IN ENVIRONMENTAL ENGINEERING CIVIL ENGINEERING EDMONTON, ALBERTA SPRING, 1980 # THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research. for acceptance, a thesis entitled FEASIBILITY OF ELECTROLYTIC FLOTATION FOR THE TREATMENT OF PRODUCTION RECYCLE WATER AT HEAVY DIL EXTRACTION FACILITIES submitted by JAYALINGAM NAGENDRAN B.S., P.Eng. in partial fulfilment of the requirements for the degree of MASTER OF SCIECE in ENVIRONMENTAL ENGINEERING. Date April 16, 1980 #### **ABSTRACT** One current technology for extracting heavy oil from underground formations is a method of steam stimulation. This process generates a large volume of oil-in-water emulsion. For economic and environmental re sons, it is necessary to treat this emulsion wastewater so that the clarified water can be reused for steam production and reinjection into the formation. The in-situ heavy oil extraction facility in Cold Lake, Alberta, Canada presented the opportunity to obtain actual heavy oil-in-water emulsions for experimental work on a bench scale. The primary objective was to evaluate the electrolytic flotation process for technical and economic viability is treating heavy oil-in-water emulsions. Using electrolytic flotation for heavy oil-in-water emulsion treatment was a new application for this process and presented many uncertainties. Numerous trials were conducted to determine the capability of this process and under varying operating conditions. The major variables in the experiment were, current density, electrode material, residence time in the reactor and chemical dosage. The results confirm the technical feasibility of the electrolytic flotation process for the destabilization of oil-in-water emulsions from heavy oil extraction facilities. The cost for 90 to greater than 99 percent treatment efficiency was 0.22¢/bbl of synthetic crude produced for power consumption and 3.56¢/bbl for chemical consumption. Treating the same wastewater with chemical coagulation alone to obtain equivalent treatment would cost 5.56¢/bbl of synthetic crude produced. The cost per barrel calculations were based on 141,000 barrels of synthetic crude produced per day with a production recycle water rate of 38.2 x 10³ m³/d. In addition, the required residence time in the electrolytic flotation cell was 15 minutes compared to 1 to 4 hours required for chemical coagulation alone. The reduced residence time allows for smaller reactor size and therefore reduced capital cost. #### **ACKNOWLEDGEMENTS** The guidance of Dr. S.E. Hrudey of the Civil Engineering Department at the University of Alberta, during the course of this investigation is sincerely and very gratefully acknowledged. This study was sponsored by Petro-Canada and Mr. J. Rowley was extremely helpful in all dealings with the company. Acknowledgement is extended to Alberta Environment for giving me the necessary education leave and ESSO Resources Canada Limited for supplying the wastewater samples. Sincere appreciation is also extended to all those who helped with this project by aiding in the construction, setting up and obtaining equipment, in particular Dr. D. Smith, Dr. V. Gourishankar, Mr. A. Muir, Mr. R. Gitzel, Mr. R. Billey and Mr. S. Tookwinas. The help of Mr. S. Penttinen in text formatting and typing, Mrs. B. Kupina in typing the appendix and Mr. D. Spink in proof reading have been invaluable. Special acknowledgment is given to my parents for their encouragement and to my wife, Shyamala for her immense understanding and support during the course of my graduate studies. # Table of Contents | Chapte | er | Page | |---------|---|------| | Ι. | INTRODUCTION | 1 | | II. | OBJECTIVES | 6 | | III. | EMULSION THEORY AND SCOPE OF THE ELECTROLYTIC FLOTATION PROCESS | 7 | | | A. EMULTUN THEORY | 7 | | | B. DESTABILIZATION OF EMULSIONS | | | | C. ELECTROLYTIC FLOTATION | 23 | | ΙV. | EXPERIMENTAL METHODOLOGY | | | | A. ANALYTICAL | | | | B. EXPERIMENTAL | | | ٧. | RESULTS AND DISCUSSION | | | VI. | CONCLUSIONS AND RECOMMENDATIONS | 81 | | REFEREI | NCES | 84 | | | IX | | # LIST OF TABLES | TABLI | E | |-------|---| | | | | 1 | Two California Crudes Illustrating Differences | | | between Heavy and Light Crude oils (Berry, 1979)4 | | 2 | Six Major Classes of Emulsion (Lissant, 1974)14 | | 3 | Types of Electrode Materials Used in the | | | Electrolytic Flotation Process | | 4 | Performance Characteristics of Electrolytic | | | Flotation | | 5 | A Comparison of Filtered Versus Centrifuged | | | Samples for Oil and Grease Analysis | | 6 | Extraction Efficiency of Freon in the Oil | | | and Grease Analysis41 | | 7 | Fourth Extraction Efficiency with Methylene | | • | Chloride in the Oil and Grease Analysis43 | | 8 | Influence of Alum Dosage, Residence Time and | | | Current Density on Electrolytic Flotation60 | | 9 | -Electrolytic Flotation To Assess Treatment | | | Performance With Ferric Ion Dosage61 | | 10 | Coagulation Test Results | | 11 | Simultaneous Electrolytic Flotation and | | | Chemical Coagulation Tests | | | | J # LIST OF FIGURES | FIGURE | ······································ | |--------|---| | 1 - | Location in Alberta of the Four Major Oil Sands | | | Deposits2 | | 2 | Idealized Representation of the Electrical | | | Double Layer at an Dil-Water-Interface | | | (Becker, 1965)9 | | 3 | Potential at an Dil-Water-Interface | | 4 | The Double Layer at the Oil-Water-Interface | | | in Emúlsions10 | | 5 | The Effect of Alum Dosage on Total Organic | | | Carbon at Varying Current Densities67 | | 6 | The Effect of Current Density on
Total | | | Organic Carbon68 | | 7 | The Effect of Current Density on Oil and Grease69 | | 8 | A Comparison of the Chemical Requirement for | | • | Electrolytic Flotation Vs. Coagulation | ٢,٠,٠ | | W. Control of the Con | |-------|--| | | LIST OF PLATES | | PLATE | PAGE | | 1 | Rotary Evaporator Used in Qil Extraction 40 | | 2 | Dil Extraction Using a Modified Erlenmeyer Flask45 | | 3 | Raw Wastewater Barrels and Container Used . | | | for Preheating the Wastewater47 | | 4 | Electrolytic Flotation Cell48 | | 5 | Electrode Grid Clearly Showing Corroded Anodes50 | | 6 | Experimental Apparatus with Power Supply, | | | Insulated Reactor with Heating Coils, Timer | | | and Electrode Grid52 | | 7 | Chemical Coagulation Test Apparatus53 | | 8 | Highly Corroded Electrodes55 | Degrees API gravity at $$60^{\circ}F = \left(\frac{141.5}{\text{Sp. gravity at }60^{\circ}F} - 131.5\right)$$ Asphaltene -- A crude oil base classification referring to oil at the heavy end of the range (15° API gravity and lower). Asphaltic drude oils contain a large proportion of high boiling point hydrocarbons. Hydrocarbons -- An organic compound made up of atoms of carbon and hydrogen. Because many of these compounds are present natirally in crude oil and natural gas, and as the carbon atoms each have four valence bonds, by which they can attach to other atoms, many hundreds of hydrocarbon compounds have been identified. Resins -- Resins represent a complex mixture of aliphatic and cyclic organic compounds, such as terpenes and oxyterpenes, resin alcohols, and resin acids. Resins are as a rule wholly or partly soluble in alcohol, ether or J volatile oils and in this respect are distinct from gums. 0. **3** 15 # I. INTRODUCTION In an era of depleting non-renewable resources and higher energy costs, the recovery of untapped heavy oil is necessary and has recently become economically viable. Berry (1979) has reported a world wide heavy oil reserve of over 4,000 billion barrels in place, whereas recoverable light crude is estimated at only 2,000 billion barrels. Heavy oils are differentiated from standard light crude oil on the basis of their relative gravities and viscosities. Heavy oils, typically have API gravities between 10° and 20° and a viscosity range of between 40 and 2,000,000 centipoise at 15.6°C. In contrast, light oils have API gravities of 35° or more and viscosities usually under 10 centipoise at 15.6°C. The known heavy oil reserve in Alberta is associated with the oil sand deposit. There is also recent evidence of more heavy oil in some carbonate formations, however very little is known about this potential reserve. The Alberta oil sands are amongst the largest deposits of their kind in the world and are estimated to contain about 1,000 billion barrels of bitumen in-place. The four major deposits are Athabasca, Cold Lake, Peace River and Wabasca (Figure 1). These deposits underlie an area of approximately 70,000 km² in eastern and northern Alberta and vary in depth from surface outcrops to beds covered with more than 750 meters of overburden. The Cold Lake oil sands are made up of four separate deposits each covered by overburden extending from 300 FIGURE 1 LOCATION IN ALBERTA OF THE FOUR MAJOR OIL SANDS DEPORTS meters to a depth of 600 meters. The crude bitumen occurs in beds of sand, usually partly cemented together, and in porous carbonate rocks. The sand grains are usually covered with a film of water, and bitumen occupies part of the pore space, along with fine clay particles, other mineral matter and occasionally some natural gas. An experimental oil extraction project has been operating for 12 years at Cold Lake, Alberta and a full scale, permanent facility will be constructed pending Government approval. The facility is expected to recover 160,000 barrels per day of crude bitumen which would be upgraded and treated to produce 141,000 barrels per day of synthetic crude oil (EIA, 1979). Montgomery (1980) has reported the API gravity of the Cold Lake heavy crude to be between 10° and 14°. Heavy crude also contains greater quantities of sulphur, nickel and vanadium than conventional crude. The carbon to hydrogen ratio of heavy crude is relatively high and the percent recovery of bitumen from the formation is low. A breakdown of the Cold Lake heavy crude is presented in Table 1. Heavy oil in its natural state is too viscous to flow freely. Therefore, a method of steam stimulation is employed to reduce the viscosity and enable the oil to flow. However this process generates a large volume of oil-in-water emulsion. It is economically and environmentally essential to treat this oil-in-water emulsion, firstly to recover the oil and secondly to use the hot water for steam generation TABLE 1 Average Class Composition of Bitumen from the Cold Lake Deposits (Strausz, 1979) | Components | ₩eight % | |-----------------------|---------------| | Hydrocarbons: | 40 | | Saturated
Aromatic | 21
19 | | Asphal tene: | <u>16</u> | | Resins: Acidic Basic | 44
15
7 | | Neutral N-Compounds | 1 | | Neutral . | 21 | for re-injection. The produced oil-in-water emulsion for experiments in this study was obtained from the ESSO Resources Canada Limited, experimental in-situ heavy oil production plant at Cold Lake, Alberta. A process called electrolytic flotation was tested as a possible method of destabilizing and separating this relatively stable oil-in-water emulsion. The experimental electrolytic flotation process consisted basically of an electrode grid placed at the bottom of a batch reactor cell. The emulsion contains predominantly negatively charged colloidal globules of oil. Due to the repulsion of like charges the oil globules are prevented from coagulating, contributing to the stability of the emulsion. Current passing from the electrode grid through the emulsion may neutralize charged particles and thereby destabilize the emulsion and promote floc formation. The bubbles created due to the electrolysis of water then carry the flocs to the surface to effect phase separation. The effects of electrode material, current density, residence time and chemical addition on the electrolytic flotation process were investigated. Treatment efficiency at an economically viable energy input was also investigated. #### II. OBJECTIVES The electrolytic flotation process has been proved successful in treating many types of industrial wastewater. However, this process has not been used in treating oil-in-water emulsions from heavy oil extraction facilities. Therefore as a first stage of experimental work in this process application, the following objectives were set: - 1) To evaluate the feasibility of the electrolytic flotation process for separating oil from oil-in-water emulsions originating from production recycle water at heavy oil extraction facilities. - 2) To evaluate the sensitivity of the electrolytic flotation process to relevant wastewater characteristics. - 3) To consider the process variables that seem most probable to have a significant effect on electrolytic flotation process performance. - 4) To identify the suitable process conditions within the framework of the parameters (variables) chosen and compare the cost of electrolytic flotation to that of chemical coagulation. - 5) Based on the findings of this experimental study, to consider the applicability of the electrolytic flotation process to oil removal from other industrial oily wastewaters. # III. EMULSION THEORY AND SCOPE OF THE ELECTROLYTIC FLOTATION PROCESS #### A. EMULSION THEORY Emulsion refers to a mixture of a liquid in another liquid in which it is immiscible. The phase which is present in finely divided droplets is called the disperse or internal phase and the phase forming the medium in which these droplets are suspended is called the continuous or external phase. Becher (1965) defined an emulsion as a heterogeneous system, consisting of at least one immiscible
liquid intimately dispersed in another in the form of droplets, whose diameter, in general exceeded 0.1 μ . There have been many emulsion theories published over the years. These publications included theories with respect to the orientation of molecules, phase volume, emulsion type, nature of the interfacial film, interfacial viscosity, dimensions of the interfacial film, droplet diameter, electrical charge, etc.. In this study dealing with electrolytic treatment of emulsion wastewater, it is convenient to begin the discussion with the electrical theories of emulsion. Becher (1965) summarized the work done by Helmholtz, Gouy and Stern and has pointed out the complexity of interfacial interactions due to the existence of surface charges. In an attempt to explain this phenomena, Helmholtz introduced the concept of the electrical double layer. Helmholtz assumed that the charge on the particles of a hydrophobic colloid was due to an unequal distribution of ions at the particle-water interface. Further, Helmholtz pointed out that if ions of one charge were closely bound to the particle, ions of opposite charge will line up parallel to them, forming a double layer of charges (Figure 2). Helmholtz' theory requires that the potential drop at the interface be sharp and considering the mobility of ions, it is doubtful that the regular orientation of ions which is needed to form the true Helmholtz layer are achievable. To overcome this shortcoming in the Helmholtz theory, Gouy proposed that the double layer is diffuse, with the outer ionic layer possessing an electrical density falling off exponentially. Stern on the other hand proposed a compromise theory between Helmholtz and Gouy which dealt with a two part double layer with one layer, approximately a single ion in thickness fixed to the interfacial surface. In this layer, there is a large drop in potential (Helmholtz layer) at the interface. The second layer extends some distance into the liquic Persing phase and is diffuse (Gouy layer), with a great fall in potential into the bulk of the liquid. The po als at an cil-water interface according to the time theories are illustrated in Figure 3. Introduction of the pointial knowing the properties assumed by Gouy into the Poisson equation leads to several interesting results. One of these as reported by Becher (1965) is the existence of the parameter, FIGURE 2 IDEALIZED REPRESENTATION OF THE ELECTRICAL DOUBLE LAYER AT AN OIL-WATER INTERFACE (BECHER 1965) FIGURE 3 POTENTIAL AT AN OIL-WATER INTERFACE ACCORDING TO (A) THE SIMPLE HELMHOLTZ THEORY (B) THE GOUY DIFFUSE DOUBLE-LAYER THEORY (C) THE STERN DIFFUSE DOUBLE-LAYER THEORY. THE POTENTIAL MEASURED AT THE PLANE OF SHEAR IS THE ZETA-POTENTIAL. (BECHER 1965) FIGURE 4 THE DOUBLE LAYER AT THE OIL-WATER INTERFACE IN EMULSIONS. (A) IN THE ABSENCE OF SURFACE-ACTIVE COMPOUNDS. (B) IN THE PRESENCE OF SURFACE-ACTIVE COMPOUNDS. (C) IN THE PRESENCE OF A LARGE CONCENTRATION OF ELECTROLYTE IN THE WATER PHASE, IN ADDITION TO THE SURFACE-ACTIVE COMPOUND. (VAN DEN TEMPLE 1953) $$K = \left(\frac{8 \text{ Tr} nZ^2 e^2}{\epsilon KT}\right)^{1/2} \qquad \dots (1)$$ where: Z = the valence of the ions of opposite charge to the surface charge; e = the elementary charge on the particle (1.6 x 10^{-19} C); € = the dielectric constant (unitless); K =the Boltzman's constant (1.38 x 10⁻²³ J.K⁻¹); T = the absolute temperature °K; and k = the reciprocal of the distance from the particle of a plane containing most of the charged particles (cm⁻¹). Therefore 1/k is the effective diameter of the particle, and the thickness of the double layer is seen to be proportional to $n^{-1/2}$, i.e. to the concentration of the ionic species which constitutes the ions of opposite charge to the surface charge. This fact has important consequences for the theory of the coagulation of emulsions as will be shown subsequently when discussing liquid-liquid interfaces. The foregoing theories have dealt predominantly with particles rather than droplets because most theoretical work has concerned itself with the solid-liquid interface. Becher (1965) cited Verwey's work which states that the principal difference between the solid-liquid interface and the liquid-liquid interface is the possiblity of a double layer existing on both sides of the interface. Van den Temple (1953) illustrated the existence of the two sided double layers (Figure 4A). As can be seen, the potential on both sides of the interface is appreciable. In the oil-in-water emulsions the smallest part of the double layer potential occurs in the outer aqueous phase (in the absence of emulsifying agents). Such a system will have a strong tendency towards coalescence and hence be an instable emulsion. The addition of surface active agents (surfactants), concentrated at the interface, changes the potential pattern significantly. The magnitude of the potential difference between the interiors (AV) of the two phases remains unchanged, so long as the ionic concentrations in the bulk phase are not affected by the adsorption process. The initial change in the potential difference caused by the adsorption of the surface-active. ions is compensated for by a rearrangement of the dissolved ions across the interface. This is shown in Figure 4B. As is evident, the major portion of the charge is now concentrated in the aqueous phase, and the zeta-potential is sufficiently large so that a stable oil-in-water emulsion can result. Moore (1972) defined the zeta potential at the interface as the effective potential across the double layer. Basically this refers to the cotential at the interface, as illustrated in Figure 3 and Figure 4. Figure 4C illustrates the changes in the potential patters caused by the addition of a large amount of electrolyte in the water phase in addition to the surface active agent. As would be expected from Equation 1, the effective radius of the diffuse double layer is decreased by this addition. The ions of the opposite charge to that of the surface charge move in among the surface-active ions, producing a thin layer of uniform potential. Since there are many types of emulsions, it is necessary to classify emulsions into some uniform categories. A convenient way to classify emulsions is to divide them into two categories on the basis of the nature of the external phase. The two categories of interest to this discussion are oil-in-water (o/w) and water-in-oil (w/o) emulsions. The terms "oil" and "water" are very general. Almost any highly polar, hydrophilic liquid can be termed as "water" and hydrophobic, nonpolar liquids can be termed as "oil". Lissant (1974) classified emulsions by dividing the two major categories above into three classes, based on the volume percentage of the internal phase, or the internal phase ratio. Emulsions with less than 30 percent internal phase form the first class. Emulsions with about 30 to 74 percent internal phase fall into the second class and those with more than 74 percent internal phase fall into the third class. The two categories and the three classes of emulsions lead to six different groups of emulsions (Table 2). TABLE 2 The Six Major Classes of Emulsions | | | Internal-phase ratio (IPR) | | | |--------------|-------------|----------------------------|----------------------|--| | GROUP | 30% | 30 to 74% | 74% | | | Water in oil | Low-IPR w/o | Medium-™R w/o | High-IP R w/o | | | Oil in water | Low-IPR o/w | Medium-IPA o/w | High-IPR o/w | | **~**+ Becher (1965) reported Alexander and Johnson's work which indicates that the charge on particles in colloidal systems, can generally arise in three different ways: - a) ionization: - b) adsorption; and - c) frictional contact. In the case of emulsion droplets, the difference between the first two mechanisms is blurred. In connection with the charge arising from a possible frictional mechanism. Becher (1965) cited Coehn's empirical rule which states that a substance having a high dielectric constant is positively charged when in contact with another substance having a lower dielectric constant. Since water has a dielectric constant much higher than most of the substances which are likely to be the other phase of the emulsion, including oil, it appears that droplets of an oil-in-water emulsion will probably have a negative charge, whereas the water droplets in a water-in-oil emulsion will probably be positively charged. Based on the literature review thus far, the production recycle water obtained from Cold Lake, Alberta, used in this experimental study can be categorized as a Low Internal Phase Ratio, oil-in-water emulsion with emulsion droplets that are most probably negatively charged. The treatment of this emulsion to effect phase separation requires the destabilization of the emulsion. Destabilization and phase separation usually occur in a two step process. The first step is coagulation and the second step is flocculation. Therefore it is important to consider the processes of coagulation, flocculation and other methods of destabilizing the emulsion wastewater. # B. DESTABILIZATION OF EMULSIONS Kemmer (1979) defined coagulation as the destruction of the emulsifying properties of the surface-active agent or neutralization of the charged oil droplet and defined flocculation as the agglomeration of the neutralized droplets into large, separable globules. WPCF (1977) defined flocculation as the coalescence or agglomeration of finely divided suspended matter by physical or chemical coagulant aids. Coagulation and flocculation processes have commonly been used for pretreatment of wastewater. As reported in WPCF (1977), the flocculation process may be a self-flocculation process which occurs through mixing only or an induced flocculation consisting of chemical addition followed by mixing. Some agglomeration of colloids will begin immediately because of Brownian movement in the liquid. This is referred to as perikinetic flocculation as contrasted with
orthokinetic flocculation, which is accomplished by particle collisions induced by hydraulic or mechanical means. It is the orthokinetic flocculation that is of interest to us in this study. Some of the significant fundamental theories of particle aggregation to flocculation have been developed by Camp (1955) and Hudson (1965). Camp (1955) revealed that the completion of the chemical reactions in a coagulation or softening process is almost instantaneous after the chemicals are fully dissolved. The precipitates first formed are crystals molecular size. The initial increase of size of these colloidal crystals is caused by true diffusion or Brownian motion. At this stage the particles are still too small to be seen by the naked eye. The completion of the coaquiation process requires gentle turbulent mixing of the suspension. The rate of coagulation depends on the number of particles, the rate of collision, the size of particle's, ability of particles to adhere to each other, detention time and degree of mixing (mean velocity gradient). Camp (1955) proved that the rate of collisio of particles at any given particle concentration is proportional to the absolute velocition gradient or the space rate of change of velocity at any point. Velocity gradients are created in fluids by energy input. Such energy is dissipated by the creation of shear forces that are equal at any point to the product of the fluid viscosity and the velocity gradient. The rate of power dissipation (the work of shear per unit of volume per unit of time at a point) is known as the "dissipation function". The mean value of the dissipation function W, is equal to the total power dissipation divided by the volume of the flocculation chamber. The root-mean-square velocity gradient, G is defined by the following equation: $$G = \left(\frac{W}{\sqrt[3]{2}}\right)^{\frac{1}{2}} \qquad (2)$$ in which \lor is the absolute viscosity of the fluid. Since the rate of floc formation is directly proportional to the velocity gradient G, it should follow that the greater the magnitude of G the less should be the time required to form the floc. Hence, for economy in the size of flocculation chambers, the velocity gradients should be made as large as practicable. The practical limit however, of the velocity gradient for any flocculation process is determined by the size of the floc particles required because there is a maximum size of floc particles associated with each velocity gradient. This is best exemplified by examining the viscosity of the fluid. By definition, the viscosity of a fluid is the proportionality constant between the unit shearing force, T , and the velocity gradient, G' , at a point. $$\Rightarrow = \frac{T}{G}, \qquad \dots \qquad (3)$$ It is evident from equation 3 that the higher the velocity gradients become, the greater will be the shearing forces in a fluid. As floc particles grow they become weaker and are In view of Camp's (1955) finding that the coagulation step is almost instantaneous, the rate determining step in this process would be the slower flocculation process. Becher (1965) reported that increasing the concentration of the oil phase in the emulsion will result in a slowly increasing rate of coagulation but a much faster increasing rate of flocculation. Consequently, in highly concentrated emulsions, the coagulation step can be the rate determining step. Even in dilute emulsions, coagulation can be made the rate determining step by the addition of surface-active agents. These agents may have little or no effect on the rate of flocculation but can inhibit coagulation considerably (Becher, 1965). Having considered the two stage process of coagulation and flocculation that occurs while demulsifying an emulsion, some of the methods that have been used for demulsifying emulsions need further consideration. Emulsions may be broken by chemical, electrolytic, or physical methods. Emulsion breaking can also be termed as "resolution" of an emulsion. Kemmer (1979) reported many common forms of breaking emulsions. Chemicals are used extensively to destabilize emulsions and enhance mechanical treatment. Sulphuric acid has been used in oily wastewater treatment plants as a first step in emulsion breaking. Chemical coagulating agents, such as salts of iron or aluminum have also been used successfully. However, the hydroxide sludges of aluminum and iron are difficult to dewater. Even though acids are more effective than coagulant salts, the resulting acidic wastewater has to be neutralized prior to disposal or reuse. Kemmer (1979) also reported that organic demulsifiers such as polyamines, alkyl substituted benzene sulfonic acids and their salts, alkyl phenolic resins, etc., are extremely effective emulsion breaking agents, giving more consistent results and generally producing better effluent quality than inorganic chemical treatments. The main chemical coagulant used in this study was ferric chloride (FeCl₃). Ferric chloride is one of three iron compounds used in wastewater treatment as a coagulant. Commercially, ferric chloride is available as liquid, anhydrous and hydrated crystals. The anhydrous form is granular while the crystalline form is irregular lumps. Liquid ferric chloride is a dark brown solution in water. WPCF (1977) reported that ferric chloride is very hygroscopic and therefore it has to be shipped in air-tight containers. Because of the hygroscopic and corrosive nature of anhydrous ferric chloride, it is recommended that stock solutions be prepared for use in treatment processes. It must also be noted that heat is generated when this chemical goes into solution. The iron salt reacts with the natural alkalinity of the wastewater to form a hydroxide precipitate that coagulates suspended and colloidal material. Two representative formulae are as follows: 2 FeC1₃ + 3 Ca(HCO₃)₂ $$\longrightarrow$$ 2 Fe(OH)₃ + 3 CaC1₂ + 6° CO₂ FeC1₃ + 3 NaOH \longrightarrow Fe(OH)₃ + 3 NaC1 Mechanical oil-in-water emulsion treatment methods currently in established use are air flotation (AF), dissolved air flotation (DAF), vacuum flotation (VF), ultra filtration (UF) and activated carbon adsorption (AC). Air flotation, dissolved air flotation and vacuum flotation have been discussed by Metcalf and Eddy (1972). These different types of air flotation alone are not capable of destabilizing a stable emulsion. However, once the emulsion is destabilized, air flotation methods are capable of effecting phase separation. In air flotation, air bubbles are formed by introducing the gas phase directly into the liquid phase through a revolving impeller or through diffusers. Such flotation alone is usually not effective for phase separation of oil-in-water emulsions. In dissolved air flotation, air is dissolved in wastewater under a pressure of several atmospheres and is followed by the release of the pressure to the atmospheric level. This is more effective than the air flotation process for phase separation. Finally in vacuum flotation, the wastewater is saturated with air and a partial vacuum is applied, which causes the dissolved air to come out as bubbles. This process is not as effective as the dissolved air flotation process for phase separation. Kemmer (1979) described ultra filtration as a method of forcing an oily emulsion to pass through very small pores (less than 0.005 microns) in a membrane. Only water and dissolved low molecular weight materials can pass through the pore structure of the membrane, leaving a concentrate of the emulsified oil droplets and suspended particles. Plugging does not occur as it can in ordinary filtration because particulates are much larger than the pores and cannot enter the membrane structure. Activated carbon is usually employed to clean up wastewater containing less than 100 mg/L of soluble and emulsified organics. This is usually a polishing step. Activated carbon, when contacted with water containing organic material, will remove these compounds selectively by a combination of adsorption of the less polar molecules, filtration of larger particles and partial deposition of colloidal material on the exterior surface of the activated carbon. WPCF (1977) reported that the removal of soluble organics by adsorption depends on the diffusion of the particle to the external surface of the carbon, and then within the porous absorbent. For colloidal particles, internal diffusion is relatively unimportant because of the small particle size. Adsorption is partially the result of forces of attraction at the surface of a particle that cause soluble organic materials to adhere to that surface when they contact it, and partially the result of the limited water solubility of many organic substances. The fact that activated carbon has a large and highly active surface area per unit weight makes it an efficient adsorptive material. The large surface area and the activity of this surface is the result of the activation process that produces numerous pores within the carbon particle and creates active sites on the surface of the pores. Having considered the theory of emulsions and various methods of destabilizing emulsions, electrolytic flotation will be specifically considered as a method for emulsion destabilization. # C. ELECTROLYTIC FLOTATION Electrolytic flotation, as the name may suggest, is a means of flotation which uses electrolysis to effect the treatment. Hölderness (1966) defined electrolysis as the decomposition of a compound molten or in solution, by the passage of electric current. For electrolysis, a source of direct current is required. The current is conveyed to the electrolyte by electrodes. The electrode(s) connected to the positive pole of the source of current is the anode and the electrode(s) connected to the negative pole of the purce is the cathode. The conventional current enters the electrode by the anode and leaves by the cathode. Holderness (1966) reported that all other factors
reing constant, the order of discharge of ions will be that of tree electrochemical series. The least electropositive elements (or groups) will tend to discharge first (i.e., most electropositive ions remain ionized in solution longer than the least electropositive ions). The order of ascending electropositivity is as follows: # *CATIONS $$Pt^{4+} < Ag^{+} < Cu^{++} < H^{+} < Pb^{++} < Sn^{++} < Fe^{++} < Zn^{++} < Al^{3+} < Mg^{++} < Na^{+} < Ca^{++} < K^{+}$$ A similar phenomena occurs with electronegative ions to that of the electropositive ions. The order of ascending electronegativity is as follows: # ANIONS The order of discharging ions according to their discharge potential becomes complicated when the relative concentration of ions are dissimilar. For ions whose discharge potentials are close together, such as DH- and Cl-, the order of discharge is reversed if the concentration of Cl- is much greater in solution than that of OH-. However, this effect would not be felt, for example, between DH- and SO_4 - owing to the great difference in their electronegativity. The nature of the electrode can also influence the ionic discharge. The most important example is, if a common salt solution is electrolyzed with a platinum cathode, H+ from water discharges first. $$2 \text{ H}^+ + 2 \text{ e}^- \longrightarrow \text{H}_2$$ If, however, a mercury cathode is used, the energy of discharge of the sodium ion is much reduced and it discharges to form a sodium amalgam and no hydrogen is liberated under these conditions. Masterton and Slowinski (1969) reported the cathodic reductions and anodic oxidations that take place in a water solution. At the cathode, the cation may be reduced to the corresponding metal or the water molecule may be reduced to generate elementary hydrogen. $$2 H_2 O + 2 e^- \longrightarrow H_2(g) + 2 OH^-$$ At the anode, the anion may be oxidized to the corresponding non-metal or the water molecule may be oxidized to generate elementary oxygen. $$H_2^0 \longrightarrow 1/2 \ 0_2(g) + 2 \ H^+ + 2 \ e^-$$ The important and necessary requirement for a successful electrolytic flotation operation is the generation of oxygen gas at the anode and the hydrogen gas at the cathode. It is these gas molecules that are solely responsible for carrying the flocs formed in this process to the surface of the reactor cell. The passage of current is also responsible for neutralizing charged particles and droplets in solution enabling the emulsion droplets to coagulate and flocculate prior to the flotation process. The electrolytic flotation process has found wide application outside North America for the treatment of industrial wastewaters. In North America, the food processing industry has found this process a valuable means of treating their wastewaters. The majority of technical information on the electroytic flotation process appears in foreign language journals or patents. Translations of some of the important foreign language publications and available publications in English have been used as the source of background information in this investigation. Snyder and Willihnganz (1976) reported electrolytic flotation as being attractive for oily emulsions because it breaks up the emulsion, separates the oil in a floating layer and requires no chemical addition. However, Dubois (1976) reported that electrolytic flotation has very little effect on emulsions and as a result this process cannot be used on emulsions unless combined with chemical coagulation-flotation treatments. On the other hand, Beck, et al. (1974) reported that electroflotation can provide relatively rapid flotation and compaction of floc and can be used alone or in conjunction with flocculants. Ramirez, et al. (1976) went a step further and stated that electrolytic flotation can be used with or without coagulants, but the process should be carried out in two sequential steps. The first step being electrocoagulation and the second step being electrofloctation. Chambers and Cottrell (1976) recommended electrolytic flotation especially for low flow rates (less than 25 m³/h). Choffel (1976) reported electrolytic flotation as being very efficient but rather costly and its application limited to waste volumes under 100 m³/h. Genkin and Belevtsev (1978) indicate the process being applicable to relatively concentrated wastewater discharged in small volumes. Ramirez, et al. (1977) studied a commercial operation performing efficiently at flow rates a little over 100 m³/h. Clayton and Noble (1974) reported better than 99% removal of settleable matter from a potato crisp factory having an effluent flow of 200 m³/h. There are many electrode materials that can be used. It is even possible to use different electrodes for the anode and the cathode. Depending on the electropositivity of the metal used for the anode, the dissolution of metals is variable during the electrolysis of water. Therefore, the type of anodes used is very significant, for it will dictate the frequency of electrode replacement and resultant operating and maintenance cost. To circumvent this problem, researchers have experimented with numerous stable electrode materials (Table 3). Snyder and Willihnganz (1976) used gold for the anode and stainless steel for the cathode to prevent the dissolution of the anode. On the other hand, in operations where chemical addition is necessary prior to electrolytic flotation, it is at times preferable to have sacrificial electrodes such as iron and aluminum. Genkin and Belevtsev (1978) listed the main advantages of using a electrocoagulation process over a coagulation with chemical addition as follows: - the apparatus for electrocoagulation is more compact and its operation is simple; - detention periods are shortened; - chemical feeding equipment is reduced or absent; - the liquid phase in sludge produced is reduced giving a reduced volume of sludge; - electrocoagulation takes place analogous to coagulation with iron and/or aluminum but with the added advantage of the liquid not being enriched with anions and the salt content does not increase due to precipitation of the metal hydroxides. # TABLE 3 # Types of Electrode Material Used in the Electrolytic Flotation Process - 1. Iron [Kaliniichuk, et. al. (1976)] - 2. Aluminum [Barrett (1976), Chamers and Cottrell (1976), Kaliniichuk, et al. (1976)] - 3. Smainless steel [Snyder and Willihnganz (1976)] - 4. Platinum [Mikheeva et al. (1974)] - 5. Graphite carbon [Genkin and Belevtsev (1978)] - 6. Dioxide of lead [Chambers and Cottrell (1976), Genkin and Belevtsev (1978)] - 7. Manganese and ruthenium deposited on titanium [Genkin and Belevtsev , (1978)] - 8. Lead coated titanium [Lewin and Forster (1974)] - 9. Stainless steel cathode, gold anode [Snyder and Willihnganz (1976)] - 10. Duriron [Ramirez, et al. (1977)] The utility of the electrotytic flotation process is evident by the number of successful applications undertaken by various industries. The types of industries using this technique on wastewater have been summarized by Clayton and Noble (1974) as follows: - 1. Emulsions: Mineral or Synthetic oils - 2. Water containing fats: Slaughterhouses, Milk Industry, Cream Manufacturers - 3. Textile Industry: Finishing and Dyeing - 4. Painting: Coloured waters - 5. Chemical Industry: Polymers, Colourants - 6. Pharmaceutical Industry: In particular if the water contains biological poisons. - 7. Papermills: Coating, printing waters - 8. Sulphite or Kraft Pulp production - 49. Wood Industry: Fiberboard and Plywood - 10. Glass Industry: Elimination of Silicates - 11. Clay and Porcelain Industry - 12. Food Industries - 13. Mixed or Municipal Wastewaters Genkin and Belevtsev (1978) reported the capability of the electrolytic flotation process to remove the following dissolved impurities: cyanides, rhodamides, nitro-compounds, amines, alcohols, aldehydes, ketones, azo dyes, sulphides, mercaptans and anthraquinone derivatives. However, no explanation was given for the mechanism of removal. In addition to the versatility of the electrolytic flotation process, there are also many other advantages to this process over conventional treatment methods such as chemical coagulation and gravity settling and dissolved air flotation. The major apparent advantage of electrolytic flotation over other flotation oil removal processes is its ability in some circumstances to remove *emulsified oils*. Beck, et al. (1974) summarized the advantages of the electrolytic flotation process as follows: - The process almost always surfaces the floc, keeping the floc together in one place for easy skimming. - Surfaced floc contains less water than conventional floc. - The combination of chemical and electrochemical inputs drastically cuts chemical costs for water treatment because of their synergistic effect. - The process can handle light and heavy wastewater loads without requiring a change of sequence. - Detention time is very short, allowing smaller treatment tanks and reduced space requirements. - The overall cost of the process is low. - Effluent waters often have better than 90 percent reduction in chemical oxygen demand, biochemical oxygen demand, suspended solids and oil and grease. Chambers and Cottrell (1976) reported the following additional advantages: - The electrode grids can be arranged to provide good coverage of the flotation tank's surface area, so uniform mixing between the effluent and the gas bubbles is achieved. - A large amount of very small bubbles is formed with minimum turbulence. - The electric-field gradient between the electrodes aids flocculation of existing solids. - Gas production and residence time are easily controlled. The most important aspect in the investigation undertaken was the ability of the electrolytic flotation process to remove oil from wastewater. A summary of the oil removal performance reported in the literature for this process is provided in Table 4. The operating parameters that affect the
performance of the electrolytic flotation process are: a. current density; TABLE 4. PERFORMANCE CHARACTERISTICS OF ELECTROFLOTATION | ~. | , | | | | | | | - | | | |--|---------------------------------|------------------------|------------------------|-----------------------|------------------------------|---|---------------------------|-----------------------------------|--|--------------------------| | Reference | Ohtsugi and Kai (1974) | Mizusaki (1975) | Ayuzawa, et al. (1975) | Nakayama (1977) | Itagaki and Yajima
(1977) | Bedrin, et al. (1377) | Naruse, et al. (1976) | Stelmach and Wisniewski
(1976) | Petrova, et al. (1973) | Mikheeva, et al. (1974) | | Electrode
Material | A I | Al cathode
Pb anode | ۱A | Ferrite | , | n
a | Pt/Ta anode
Cu cathode | ı | T ¥ | Steel | | Electrical
Input | 30 mA/cm ²
e 15 v | 40 mA/cm ² | 90 V | 50 mA/cm ² | , | 30 mA/cm ²
.25 KW hr/m ³ | 1 | 1 | | 30-40 mA/cm ² | | Chemical
Usage | | , | 1. | cac1 ₂ | NaC1
CaC1 ₂ | • | 1 | | A12 (504) ₃
1500-2500 mg/L | | | H | 2 | r | 5.8 | ı | . 1 | ı | ۲۵ | ı | ω | | | \$ 011
Removal | 393 | 99.7% | 99.99\$ | 396 | 99.9% | | 99.99\$ | 93-95\$ | 366 | ₹ r | | Effluent
0:1
Concentration
mg/L | - | 3.5 | - , | . 20 | - ≢-, | 2.5 | 01 | 01 | 20-40 | 15-20 | | Influent
0il
Concentration
mg/L | 1,300 | 1,350 | 10,000 | 500 | 008,4 | 5-15 | 23,000 | 150 | 10-20,000 | 25-200 | 110TE: Electrical input in mA/cm² means milli Amperes per centimeter squared of horizontal electrode surface area. - b. applied voltage; - c. electrode material; and - d. residence time. Current density is defined as the amperes of current per centimeter squared of horizontal electrode surface area. Therefore, for a given current input, the following variations will increase the current density: - i) fewer electrodes: - ii) shorter electrodes; and - iii) smaller diameter electrodes. For a given electrode system, current input is directly proportional to the applied voltage (ie. when the applied voltage increases current input increases). However, when maintaining a constant current input, increasing the number of electrodes will decrease the voltage across the electrode grid. For better electrolytic flotation treatment performance, greater current densities and voltages are advantages. The limiting factor in increasing these variables is operating power costs. Hence, cost-effective current density and voltage should be derived within the constraints of acceptable and reasonable power cost. In liquid effluents where the oil emulsions can be easily broken, current densities as low as 30 mA/cm² have been found to be adequate (Table 4). The electropositivity of electrodes is a very important variable in the electrolytic flotation process. Electrodes with greater electropositivity, as dicated earlier, tend to ionize into solution rapidly and thereby at as a coagulating agents. This enhances the performance of the process but at the same time frequent anode replacement is necessary. For continuous, uninterrupted operation, electrodes with low electropositivity are required. Also, greater current densities have a greater ionizing effect on electropositive anodes. Depending on the anode material, this could also be considered a limiting factor on how high the current density could be increased. Longer residence times, give rise to better treatment efficiencies provided constant destabilization of the emulsion is taking place. However, longer residence time requires larger reactor volume, resulting in a much larger capital cost for the same volume of wastewater treated. Also, longer residence time with continuous treatment means greater power cost. Therefore, residence time should be minimized. # IV. EXPERIMENTAL METHODOLOGY The analytical and experimental work were done, in two phases. The first phase involved an exploratory stage to establish a combination of analytical and experimental procedures that would indicate the capability of the electrolytic flotation process to treat the specific wastewater at hand. Having established the analytical method and the experimental conditions necessary to produce meaningful results, the second stage volved generating data adequate for statistical validation and verification of the performance capability of the electrolytic flotation process. One significant difference in the analytical method between Phase 1 and Phase 2 was in the method of sample handling prior to the oil and grease analysis. In Phase 1 all samples were filtered using a Whatman No. 40 filter. paper. However, with further experimental work it was found that the centrifuged samples provided a better indicator of the actual emulsified oil and grease left in the sample. Therefore all oil and grease analyses in Phase 2 were performed on centrifuged samples (Table 5). #### A. ANALYTICAL Total organic carbon (TOC) was analysed by the combustion infrared method 505 (APHA; 1975) using a Beckman model 915 A Total Carbon Analyzer. The maximum deflection of the chart recorder was set at 100 mg/L carbon for a 20 µL sample injection of 100 mg/L standard. The filtered sample TABLE 5 A Comparison of Filtered vs Centrifuged Samples for Oil and Grease Analysis (analysis performed on untreated raw samples) | 0/8 G concentration of filtered samples mg/L | 0 & G concentration of centrifuged samples mg/L | |--|---| | . 240 | 1750 | | 270 | 1900 | | ` 340 | 1980 | | | | | Mean: 280 | 1850 | was diluted five fold prior to analysis. TOC was measured by first analyzing for total carbon and then for inorganic carbon and the difference between the two was calculated to be TOC. The pH of the samples was measured with a glass combination electrode and a Hach portable pH meter which was standardized with pH 4.0 and pH 9.0 buffer solutions. Total alkalinity was measured by titration of a 25 mL sample with 0.02 N sulphuric acid to a pH 4.5 endpoint according to method 403 (APHA, 1975). The endpoint was detected when the colour changed from blue to pink using bromocresol green-methyl red indicator. Electrical conductivitm was read directly off a Hach conductivity meter after standardizing the instrument with a 0.0100 M standard potassium chloride solution. Oil and grease concentration was considered to be the most important experimental parameter and as such considerable time was allocated to the establishment of an accurate method of analysis. The solvents evaluated for the oil and grease extraction were limited to Freon 113 (1, 1, 2 - in chioro - 1, 2, 2 trifluoroethane) and methylene chloride (CH₂Cl₂). Freon is the solvent recommended and used in method 502 (APHA, 1975). Thus it was hoped that the Partition-Infrared Method could be used to measure the oil and grease concentration. A series of three successive extractions were made with 25 mL volumes of methylene chloride per extraction using twenty two (22) different emulsion samples. Once extracted the methylene chloride was evaporated using a "Buchi" Rotavapor R rotary evaporater (Plate 1) The extracted oil concentration was quantified by a method similar to the partition-gravimetric method 502A (APHA, 1975). Then, 100 mL of Freon 113 was added to the distilling flask containing the oil and the flasks were shaken to aid in redissolving the oil in the solvent. The distilling flask with the Freon 113 was allowed to sit for over 12 hours. The Freon 113 with the extracted oil was poured into another preweighed clean distilling flask and again the procedure of method 502A (APHA, 1975) was followed. The resulting oil concentration was re-orded. Knowing the concentrations of oil extracted by meinlylene chloride and Freon 113, it was c. possible to find by difference the percent of oil extracted by Freon 113 with respect to the concentration extractable by methylene chloride. It was found that the mean of the percent extractable by Freon 113 is 46.5% of that éxtractable by methylene 'chloride using a sample population of 22. The standard deviation was calculated to be 25% (Table 6). Therefore it was concluded that methylene chloride was a more efficient solvent in extracting emulsified oils originating from heavy oil extraction facilities. The next stage of the oil and grease analysis was to find the optimum number of extractions needed using methylene chloride. Again a sample population of 22 was ROTARY EVAPORATOR USED IN OIL EXTRACTION PLATE 1 TABLE 6 EXTRACTION EFFICIENCY OF FREON IN THE OIL & GREASE ANALYSIS | Sample
| Mass of Extracted O&G
with CH2 Cl2
mg | Mass of CH ₂ Cl ₂ Extract
Dissolving in 100mL
of Freon, mg | Extracted
by Freon | |--|--|--|---| | 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. | 652
696
144
144
9
9
14
13
6
49
8
13
84
6
9
13
18
6
58
10
13
9 | 244
312
136
94
1
1
4
1
4
5
64
4
5
7
12
4
6
3
5 | 37. 42
44, 83
94. 44
65. 28
11. 11
28. 57
7. 69
66. 67
81. 63
50. 00
38. 46
76. 19
66. 67
10. 34
30. 00
38. 46
22. 22 | mean $\bar{x} = 46.54$ Std. Dev $\bar{x} = 25.13$ used. Three successive 25 mL volume extractions were done with methylene chloride and the oil concentration was
determined, again using the partition volumetric method similar to method 502A (APHA, 1975). Then a fourth 25 mL extraction with methylene chloride was done on the already extracted sample and the concentration of oil was determined. It was found that the mean percent of oil extracted by the fourth extraction was small compared to that extracted by the first three extractions (Table 7). In view of the relatively low recovery by the fourth extraction, the added benefit of this extraction is negligible. This is justified when considering that the precision of the oil and grease analysis was observed to be of similar magnitude. Therefore three methylene chloride extractions are considered to be sufficient. Once methylene chloride was selected as the solvent, the partition-infrared method 502 B (APHA, 1975) was no longer feasible. The chemical structure of methylene chloride, unlike Freon 113 has two C-H bonds which would interfere and mask the wave length range of 2700 to 3100 cm⁻¹ which is the same range used to determine the oil and grease concentration. The peak wave length used for oil and grease analysis is 2930 cm⁻¹. Hence it was necessary to use a method similar to the partition-gravimetric method 502A (APHA, 1975) with the exception of using methylene chloride instead of Freon 193 and the following procedure was followed: TABLE 7 4th EXTRACTION EFFICIENCY OF METHYLENE CHLORIDE IN THE OIL & GREASE ANALYSIS | ample
| O & G Concentration with 3 Extractions mg/L | O & G Concentration
on the 4th Extraction
mg/L | % Extracted on the 4th Extraction | | |------------|---|--|-----------------------------------|--| | _ | | _ | W 3. | | | 1. | 16 | 2 | 12.5 | | | 2. | 720 | 0. | 0 | | | 3. | 47 | 0 | 0 . | | | 4. | 66 | 0 | 0 | | | 5. | 70 | 0 | 0 | | | 6. ° | 29 | 3 | 10.3 | | | 7. | 245 | 10 | 4.1 | | | 8. | 40 | . 0 | 0 | | | 9. | 67 | 7 | 10.4 | | | 10. | 422 | 6 | 1.4 | | | 11. | 29 | 0 | 0 | | | 12 | 43 | 0 | 0 | | | 13. | 67 | 0 . | . 0 | | | 14. | 31 | 0 | 0 | | | 15. | 65 | 0 | . 0 | | | 16. | 46 | ; o , | 0 | | | 17. | 292 | 0 | 0 | | | 18. | <i>\$</i> 8 | • 0 | 0 | | | 19. | 188 | 0 | 0 | | | 20. | 49 | 0 | 0 | | | 21. | 46° | 0. | . · <u>· ·</u> 0 | | | 22. | 45 | 0 | . 0 . | | # o/o Extracted on 4th Extraction Mean of all values = 1.76 Mean for values showing results = 7.74 Fraction having zero values = 0.77 Where possible 200 mL of sample volume was pipetted into a modified flask (Plate 2). The sample volume was reduced to 100 mL when analyzing highly concentrated samples such as the untreated raw sample. The sample was acidified to a pH of less than 2 with a 1+1 solution of hydrochloric acid and extracted three times with methylene chloride. The modified flask in Plate 2 was designed to replace the separatory funnel in method 502A (APHA, 1975) for a two fold purpose. The first purpose was to reduce the manpower requirement in vigorously shaking the separatory funnel in view of the many oil and grease analyses that were performed in this study. The second purpose was to achieve more consistent results with the modified flask arrangement than with the separatory funnel. A magnetic bar was introduced into the modified flask and all the mixing was done with the aid of magnetic stirrers. All samples were stirred for two minutes and the magnetic bars were rotated at the same velocity. The oil laden methlyene chloride was funneled into a clean, pre-weighed round bottom distilling flask as per method 502A (APHA, 1975). The distilling flask was then connected to the rotary evaporator. When all the methylene chloride was evaporated and only the residual oil and grease remained in the distilling flask, it was removed from the rotary evaporator and put in an oven at 103°C for 5 minutes. From the oven the distilling flask was transferred to desicator for one hour prior to weighing it and calculating the oil and grease concentration. OIL EXTRACTION USING MODIFIED ERLENMEYER FLASKS PLATE 2 \mathcal{D}^{\cdot} # B. EXPERIMENTAL The samples for this study were obtained from the experimental insitu heavy oil recovery plant in Cold Lake, Alberta, Canada. The plant is owned and operated by ESSO Resources Canada Ltd. The oil-in-water emulsion samples were trucked in 25 gallon plastic lined barrels. The samples were transported in two batches. The first batch consisted of 10 drums and the second batch consisted of 15 drums. The samples were stored at room temperature and the sample age used in the experiments varied from two days to two months. All samples used were pumped from the 25 gallon barrels into a plastic container (Plate 3). The plastic container had a tap near its bottom from which the samples were transferred to the electrolytic flotation cell. By drawing the sample off the bottom of the container, floating non-emulsified oil was not transferred to the reactor. This allowed the assessment of the treatment efficiency for emulsified oil alone. A heating coil was placed in the plastic container to raise the temperature of the sample to approximately 50°C to 60°C. The electrolytic flotation cell was constructed from transparent acrylic plastic. The cell was cylindrical in shape with an internal diameter of 15 cm and a height of 91 cm (Plate 4). The cell was fitted with four sampling ports. The bottom sampling port was placed 15 cm above the bottom of the cell and each subsequent sampling port was spaced 20 RAW WASTEWATER BARRELS AND CONTAINER USED FOR PREHEATING THE WASTEWATER PLATE 3 * ELECTROLYTIC FLOTATION CELL PLATE 4 cm apart. The sampling ports were designed such that the sample could be drawn off anywhere within the cross section of the reactor in the plane of the sampling port. This was built into the system to avoid wall effects influencing the quality of sample collected. The electrolytic flotation cell had a detachable coupling 22 cm above the bottom to enable easier handling and cleaning when necessary. The first phase of the experiment was conducted with 12 liter sample volumes and the second phase was conducted with 5 liter sample volumes. Four electrolytic flotation cells were constructed each equipped with a heating coil and insulation material surrounding the exterior to maintain the sample at a constant temperature. Initially eight electrode grids were constructed, the first four containing 2 pairs of electrodes spaced 2 cm apart and the next four containing 4 pairs of electrodes spaced 1 cm apart. The electrode materials used initially were iron and aluminum. Each electrode was 7.5 cm in length and 0.32 cm in diameter. Later, 7.5 cm long stainless steel electrodes with a diameter of 0.32 cm and 7.5 cm long platimum electrodes with a diameter of 0.16 cm were used. The electrodes were fitted into a 10 cm by 10 cm square electrode grid (Plate 5) and were held in place with plastic screws. With these detachable screws, the replacing or changing of electrodes in the electrode grid was easily accomplished. Separate wires were welded to each electrode. The wires leading to the anode were brought together and ELECTRODE GRID CLEARLY SHOWING CORRODED ANODES PLATE 5 welded to a single wire leading to the power supply. Similarly the wires leading to the cathode were welded together with a single wire to the power supply. Two different variable, direct current power supplies were used (Hewlett-Packard Model 10438 B variable current and voltage, direct current power supply and a Sorenson Model DCR 60-T8B variable current and voltage, direct current power supply). The experimental procedure consisted of transferring the heated wastewater sample from the plastic container into the electrolytic flotation cell. The electrode grid was placed at the bottom of the cell and the two wires leading out were connected to the positive and negative terminals of the power supply (Plate 6). When chemical addition was desired, it was added and agitated prior to turning on the power supply. At predetermined time intervals, samples were collected from the bottom sampling port, in the vicinity of the center of the horizont. cross section of the cell in order to avoid wall effects. Coagulation tests were conducted in 1 L beakers using 800 mL sample volumes. A Model 300 Phipps and Bird, Inc., six paddle stirrer was used to mix the flocculating agent, ferric chloride (FeCl₃), into the sample (Plate 7). EXPERIMENTAL APPARATUS WITH POWER SUPPLY, INSULATED REACTOR WITH HEATING COILS, TIMER AND ELECTRODE GRID PLATE 6 CHEMICAL COAGULATION TEST APPARATUS PLATE 7 # V. RESULTS AND DISCUSSION The primary objective of this study, was to evaluate the feasibility of the electrolytic flotation process for separating oil from oil-in-water emulsions originating from r at heavy oil extraction facilities. production reco it was necessary to establish the To achieve this of this process prior to developing a technical f cost analysis. The technical feasibility of the electrolytic flotation process on many industrial wastewaters excluding emulsified wastewater from heavy oil extraction facilities is known and has been discussed previously. Therefore, the initial approach taken in establishing the technical feasibility of treating emulsion wastewater from the heavy oil extraction facility was to apply process conditions already established in treating other types of wastewater. On this basis, the experiments were conducted with iron and aluminum electrode grids. Sample volumes of 12 liters were used at room temperature and current densities ranging from 50 mA/cm² to 400 mA/cm² over a period of up to 1.5 hours were applied. Even though some visible clarification took place at 1.5 hours, the anodes were highly corroded (Plate 8) and they had to be replaced prior to each experiment. The high electropositivity of aluminum and iron, caused them to have a high affinity to enter solution and made these electrode materials unsuitable for
this experiment. The high rate of anode dissolution created some doubt as to whether the sample clarification was due solely HIGHLY CORRODED ELECTRODES PLATE 8 17 to the electrolytic flotation process or whether it was due to a combination of chemical coagulation, flocculation and electrolytic flotation. In order to eliminate metal ions from the anodes from entering the solution and masking the effect of the electrolytic flotation process, it was necessary to use, for the anode material, a less electropositive metal which would not dissolve into solution easily. New electrode grids were made with stainless steel electrodes, to determine if stainless steel would be more stable than iron or aluminum. Contradictory to Anon. (1969) which stated that stainless steel electrodes had a one year operating life, it was evident that stainless steel was also not a satisfactory anode material. Even though the rate of anode dissolution under similar conditions was considerably less than that of iron and aluminum, it was still significant. To substantiate this, the anodes were weighed before and after each run. Calculations showed that approximately 350 mg/L to 700 mg/L of metal entered the solution at current densities varying from 130 mA/cm² to 200 mA/cm² over a 1.5 hour operating period. Hence, stainless 📽 steel was considered an unsuitable anode material and its use was discont) nued. These results indicated that the anode material had to be very stable, i.e., the anode material had to be very low in electropositivity. Therefore a noble metal, platinum, was considered. There were two ways to use the platinum electrodes. One was to make the anodes out of platinum and use a less expensive metal for the cathodes. The second alternative was to use platinum for the entire electrode grid. Both these modes of operation, though potentially viable yielded unsatisfactory treatment results. The power supply indicated that the current dropped towards zero within 15 minutes of operation. Upon examining the electrodes, it was evident that the anodes were coated with a black precipitate. The characteristics of this precipitate will be discussed later. To overcome this problem the experiment was run by manually alternating the polarity of the electrodes every 10 minutes. Alternating the polarity had the effect of self cleansing the anodes and therefore allowing continuous operation. The use of platinum for the anodes and another more electropositive metal for the cathodes was then not possible, because when the polarity was alternated the cathodes became the anodes. Once the utility of this presedure was established, an automatic timer was built which attered the polarity of the electrodes every 10 minutes. Electrode grids were constructed with platinum alectrodes and with the aid of the automatic timer, continuous operation was possible. The electrochemically stable platinum anodes did not dissolve into solution and therefore electrode replacement was not necessary. However, in the absence of any chemical addition, there was no visible treatment taking place. This result suggested that some chemical addition was necessary to treat the production recycle water using the electrotytic flotation process. Even though Dubois (1974) was not dealing with heavy oil emulsions, this is in keeping with his conclusion that electrolytic flotation without chemical addition has very "little effect on emulsions. However, this is contradictory to Snyder and Willihnganz (1976) who reported that chemical addition was unnecessary in the electrolytic flotation process. It is also contradictory to Beck, et al. (1974) and Ramirez, et al. (1976) who reported that this process can provide emulsion breaking and clarification with or without chemical addition. When attempting to establish a sumtable metal for the electrodes, simultaneous chemical coagulant dosages were also tried. It was hoped that when the electrolytic flotation process alone failed to treat the emulsion wastewater a combination of chemical coagulation and electrolytic flotation would work. Initially alum was selected and dosed at 25 mg/L. In all, seven trials were performed with iron, stainless steel and platinum electrodes muith current densities varying from 65 mA/cm² to 100 mA/cm². The two trials with platinum electrodes showed no visible clarification after 1.5 hours of operation. Two similar trials with calcium hydroxide were tried at dosages of 25 mg/L and \$0 mg/L using stainless steel electrodes at a current density of about 150 mA/cm2 without any success over 1.5 hours. Another trial with 500 mg/L of humic acid and stainless steel electrodes did not provide any treatment. Using the stainless steel electrodes again a frothing agent cetyl trimethyl ammonium bromide was tried at 20 mg/L and current density of 500 mA/cm² and no visible treatment occurred. Finally the reactor sample was acidified with sulphuric acid to a pH less than 45, visible flocs formed but no clearing of the effluent took place. These preliminary unsatisfactory results necessitated that alternative operating conditions be considered. The recycle water at the Cold Lake pilot plant was generated at approximately 90°C. Based on the work of Vold and Mittal (1965), higher operating temperatures offered some promise. They studied the effects of temperature on the stability of Nujol-Water emulsions and found that the emulsions were all found to be less stable at higher temperatures. Therefore the samples we heated to between 50°C and 60°C. This was regarded as the maximum feasible temperature for the experimental set up available. With heated samples and chemical coagulants (alum and later ferric chloride) the electrolytic flotation process provided visible clarification. The results of these experiments are summarized in Table 8 and Table 9. These results will be discussed later in this section. Thus, the technical feasibility of the electrolytic flotation process was established. The economic feasibility will also be discussed later. The second objective was to evaluate the sensitivity of the electrolytic flotation process to relevant wastewater TABLE 8: INFLUENCE OF ALUM DOSAGE, RESIDENCE TIME AND CURRENT DENSITY ON ELECTROLYTIC FLOTATION | Ç | | | | | | | | | | | | | |------------|------------------------|---------------------------|--|-----|--|--------------------------------------|-------------|------|---|---|----------|-------------| | 3 | , | | | | AI . | INITIAL | | | is. | FINAL | | V. | | Expt. | Alum
Dosage
ng/L | Residence
Time
hrs. | Current
Density
ma/cm ² | ųd | Electrical
Conductivity
Micromhos/cm | Alkalinīty
as CaΩ3 equiv.
mg/L | 08G
mg/L | . hq | Electrical_
Conductivity
Micromhos/cm | Alkalinity
as CaCO ₃ equiv.
mg/L | TOC #8/L | 1/3m
090 | | 1 | 20 | 1.5 | 198 | 7.0 | 5750 | 240 | 3480 | 7.9 | 2000 | 380 | 129 | 720 | | ~ | 70 | 1.5 | 330 | 7.0 | 5750 | 240 | 3480 | 8.6 | 0009 | 320 | 46 | 94 | | ٠
س | 20 | 1.5 | 66 | 7.0 | 5750 | 240 | 3480 | 7.8 | 6500 | 320 | 65 | 2 | | * | . 20 | 1.5 | 165 | 7.0 | 5750 | 240 | 3480 | 8.1 | 6750 | 360 | 76 | 29 | | ۰, | 70 | 1.5 | 66 | 7.0 | 5750 | 240 | 3480 | 8.1 | 6750 | 420 | 98 | 245 | | ٠ | 70 | 1.5 | 132 | 7.0 | 5800 | 340 | 3180 | 7.5 | 0009 | 336 | 102 | 67 | | ^ | 50 | 1.5 | 66 | 7.0 | 5800 | 340 | 3180 | 7.5 | 0009 | 330 | 109 | 422 | | 80 | 01 | 1.5 | 132 | 7.0 | 5800 | 340 | 3180 | 7.6 | 6500 | 348 | 111 | 67 | | ` 6 | 10 | 1.5 | 66 | 7.0 | 2800 | 340 | 3180 | 8.5 | 0059 . | 370 | 102 | 292 | | ន | 97 | 1.5 | 165 | 7.0 | . 5800 | 340 | 3180 | 9.6 | 9059 | 360 | 125 | 65 | | = | ន | 1.5 | 99 | 7.2 | 0009 | 360 | 2890 | 8.2 | 0059 | 350 | 103 | 188 | | 17 | • | 1.5 | 165 | 7.2 | 0009 | 360 | 2890 | 8.4 | 6250 | 320 | . 83 | 9,4 | | 13. | • | 1.5 | 132 | 7.2 | 000 | 360 | 2890 | 8.0 | 9059 | 352 | 96 | 52 | | 14 | • | 1.5 | 66 | 7.2 | 2,6000 | 360 | 2890 | 8.0 | 9059 | 352 | 93 | 176 | | 15 | • | 1.75 | 66 | 7.2 | 0009 | 360 | 2890 | 7.6 | 9059 | 360 | 103 | 8 | | 91 | 0 | . 2 | 66 | 7.2 | 0009 | 360 | 2890 | 7.6 | w200 | 360 | 8 | 390 | | 17 | 0 | 1.25 | 132 | 7.0 | .69003 | 330 | 2084 | 7.4 | 0069 | 370 | 9 | 356 | | 18 | 0 | 1.25 | 198. | 7.0 | 0069 | 330 | 2084 | 7.6 | 00: | 380 | 76 | 180 | | 62 | • | 1.5 | 198 | 7.0 | 0069 | 330 | 2084 | 7.6 | 9200 | 360 | 8 | 800 | | 20 | ន | 1.5 | 198 | 7.0 | 0069 | 330 | 2084 | 7.6 | . 7000. | 370 🔭 | 105 | 1300 | | 71 | • | 1.5 | 797 | 7.0 | 0069 | 330 | 2084 | 8:7 | 7500 | 368 | | 96 | | | | | | , | | | | | | 7 | | | Sample volume for all experiments = 12 litres Temperatu Temperature of sample = 55°C + 5°C y TABLE 9 ELECTROLYTIC FLOTATION: To Assess Treatment Performange With Fermic Ion Dosage | , | | Fe ³⁺ Co | oncentration m | g/L | | | |---------------------------------|---|---|---|--|--|--| | | 0 | 80 | 0 | 100 | 0 | 125 | | 0il & Grease Concentration mg/L | 626
488
508
610
615
676
705
684
563
742
806
884
1175
880
882
936 | 101
97
88
74
79
108
84
105
83
114
95
118
136
163 | 645
448
492
455
464
488
508
610
615
676
705
684
563
742
884 | 52
47
54
51
69
51
48
63
62
60
68
67
69 |
464
886
882
936
786
786
897
897
834
868
868
868
868
868 | 36
51
49
38
39
38
49
51
47
50
41
57 | | Avg. | 736.25 | 106.3 | 644.7 | 58.4 | 821.1 | 44.9 | | Std.
Dev. | 181.64 | 24.1 | 187.55 | 7,13 | 132.77 | 6.6 | NOTE: Sample volume: 5L Electrodes: Ρt Residence time: ∮ h∂ur Temperature: Current: 55°C ± 5°C Volts: 1 Amp 6 V characteristics. In the early phase of the experiment, while attempting to obtain a suitable electrode material, the most troublesome wastewater characteristic was the sulphur compounds which were in solution. This was evident when using platinum electrodes. Within fifteen minutes of turning the power supply on, the current tropped towards zero. Upon examining the electrodes a black precipitate was visible. Mikheeva, et al. (1974) reported this to be a sulphide precipitate caused by sulphur containing organic compounds present in wastewater. This problem was overcome by automatically switching the polarity of the electrodes as has already been discussed. The relative stability of the emulsion wastewater was evident when comparing the current densities that were required to treat this emulsion wastewater as reported in Table 8 (up to 330 mA/cm²) to that of the typical current densities that were required to treat other emulsion wastewaters as reported in Table 4 (up to 50 mA/cm²). A possible reason for this added stability may have to do with the presence of surfactants in the emulsion wastewater under study. Swisher (1970) reported that surfactants have a strongly hydrophize group and a strongly hydrophize group tends to orient towards the water phase and the hydrophobic group tends to orient towards the oil phase. This promotes dispersion and emulsification. The most hydrophobic group is the hydrocarbon radical having a total of from about 10 to 20 carbon atoms. Swisher (1970) also reported that the hydrophobic groups contributed by the petroleum industry are principally hydrocarbons, deriving originally from the paraffins of crude oil. Typical hydrophilic groups are sulfonates, sulphates and carboxylates. Strosher and Peak (1978) reported that of 16 chemical groups investigated from samples of oil sands (Athabasca formation) upgrading plant effluent and associated effluents, the most abundant organic constituents were the hydrocarbons, organic sulphur compounds, organic nitrogen compounds and oxygenated organic compounds. A previous study done by Strosher and Peak (1976) reports that 92% of the extractable carbon from oil sands plant tailing pond dike filter drainage was in the form of oxygenated compounds, including organic acids, phenols, ketones, aldehydes, organic acid esters, amides, quinones, organic sulphur compounds, organic nitrogen compounds and hydrocarbons. Montgomery (1980) confirmed the presence of the compounds found above to also be present in the Cold Lake heavy oil formations. However, he indicated the relative concentrations of the compounds to be different between the Cold Lake and Athabasca formations. Therefore, one could speculate that the surfactant properties of polar organic compounds, such as those reported above, could contribute to the stability of the oil-in-water emulsions produced from Cold Lake heavy oil. Another characteristic that may be a relevant indicator of the sensitivity of the electrolytic flotation process is electrical conductivity. As reported in Table 8, the range of electrical conductivity in the emulsion wastewater was between 5000 micromhos per centimeter and 7500 micromhos per centimeter. This is far greater than the typical electrical conductivity of other wastewaters treated successfully by electrolytic flotation. Ramirez, et al. (1976) reported the electrical conductivity of wastewater originating from a meat processing plant without dehairing liquor to be between 950 micromhos per centimeter and 1500 micromhos per centimeter. Das Gupta and Mohanta (1976) reported the electrical conductivity of Kraft mill effluent as 578 micromhos per centimeter. The higher electrical conductivity is indicative of a higher dissolved solids concentration. The third objective was to consider the process variables that seem most likely to have a significant effect on electrolytic flotation process performance. The rate of mixing of the reactor sample could be a significant process variable. As cited previously Camp (1955) showed that the rate of collision of particles at any given particle concentration is proportional to the absolute velocity gradient or the space rate of change of velocity at any point. However as velocity increases the shearing forces will also increase and as floc particles grow, higher velocities can break them down again. Therefore, it was decided to apply gentle mixing to the reactor sample to increase the probability of particle collision and thus the rate of coagulation. The possible presence of surface active agents in the sample could have a slowing down effect on the rate of coagulation and it was felt that gentle mixing could overcome such problems as have already been discussed. A motor with a long shaft and three propellers was used to mix the reactor contents. However, at this stage of the experimental development, sufficient chemical addition was not used and even though coagulation may have taken place to some degree, clarification of the effluent did not take place. The mixing device was used only for 15 minutes of each experiment. The heavy motor sitting on top of the reactor and the impellers catching the wires leading out of the electrodes caused some practical problems. In subsequent experiments the reactor volume was reduced and further use of the mixer was not possible without great modifications. Therefore, establishing the contribution of mixing to the process was not pursued. Initial evaluation of other process variables was conducted at a stage when samples were being heated to between 50°C and 60°C, but using stainless steel electrodes and alum dosage. This was also a stage in the experimental development when the oil and grease sample analysis was done without centrifuging the sample prior to analysis. However, the information obtained showed some important trends. The process variables that were tested were current density, residence time in the reactor and alum dosage. These results are tabulated in Table 8. Owing to the lack of confidence with the oil and grease analysis in these experiments the . 3 total organic carbon concentrations were used as an alternate indicator. The total organic carbon analysis was done on filtered samples. Therefore all the dissolved organic carbon is represented by this analysis. If it can be assumed that a fixed proportion of this total organic carbon is contributed by the oil and grease, we can plot total organic carbon versus current density and alum dosage to get some idea of the performance. These are plotted in Figure 5 and Figure 6. The effects of increasing current density on the oil and grease concentration is plotted in Figure 7. From Figure 5 it is evident that alum dosage up to 20 mg/L has no significant effect on the electrolytic flotation process. However, subsequent experiments in which the stainless steel electrodes were weighed before and after each run showed that between 350 mg/L and 700 mg/L of the stainless steel electrode was entering solution. Therefore the effect of the alum dosage was totally masked by the high electrode metal dosage. Theoretically the maximum rate of iron that could be dissolved for the test conditions employed (assuming that all the electrons in the process are supplied by the ionization of iron to the ferric ion) is 783, mg/L (9,400 mg) (Appendix B). The relationship between total organic carbon and current density is not very well established as illustrated in Figure 6. However, Figure 7 seems to indicate a possible reduction effect on oil and grease concentration with increasing current density. From this point on all oil and grease samples were FIGURE 5 THE EFFECT OF ALUM DOSAGE ON TOTAL ORGANIC CARBON AT VARYING CURRENT DENSITIES (TABLE 8) centrifuged and more consistant and reliable oil and grease analysis was possible. Also, all the experiments on the electrolytic flotation process were conducted with platinum electrodes. The fourth objective was to identify the suitable process conditions within the framework of the parameters (variables) chosen and to compare the cost of electrolytic flotation to that of chemical coagulation. Having established the need for chemical coagulation in conjunction with electrolytic flotation, the stategy here was to first assess the chemical requirement to break the emulsion without using the electrolytic flotation process. This would then be used to compare the chemical requirement for the electrolytic flotation process to show the benefit of using the electrolytic flotation process. - coagulating agent on the basis of preliminary trial with a variety of chemicals (lime, ferric sulphate, alum, etc.). The concentration of the ferric ion (Fe³⁺) was varied from 0 mg/L to 156 mg/L. Each series of tests contained six one liter beakers containing 800 mL of sample. Twenty such series of experiments were conducted. The results of these are tabulated in Table 10. If must be noted that the initial 15 series of six beaker tests were conducted on the original batch of sample brought from Cold Lake, and the final 5 series of experiments were conducted on the second batch of sample brought from Cold Lake. The oil and prease عانسة | Martin Ta | | |--------------|--| | Ē | | | CONCENTARION | | | THEFT | | | 2 | 8 | 11 6 Ore | Des Conce | Off & Green Concentration mg/L | \$ | | | | | | • | | | | . • • ; | : " | -1 | | | , | + | , (| | |--------|------|----------|------------|--------------------------------|----|------|------------------|--------|------|------|------------|-------|-------------|----------|---------|------------------
--------------|--------|----------------|-----------------|---|-------|--------------| | 15 | | | ^ | • | • | | ٠ | • | • | • | ;= | 2 | = | 2 | 2 | : | | 3 | = ; | ٤ | ≺ | 0 | | | • | 1 | (| | *11.4 | 3 | M. 0 | 9504 | 760 | 2 2 | ž | 9(a) | ž | 3 | 2695 | 9 | 3 | 229 | : | 3 | 225 | £ | 15 | | | n.n | 3 | | | | | | γ· | | { | | | | | | Ý. | ł | - | | -1
: | <u>:</u> | ž | 733.1 | | | 3 | Š | | | | | • | | • | - | | | | : . | | | EMETA | نبد | , est. | : 1 | ž | ĭ | 74.92 | | | 27.22 | 3 | | | | | ۵ | | _ | | | | · , | | | , , | • | | | | | | | | | 18.33 | | 3 | | ŧ | ŧ | 1 . | | | , fi | | • | , | | | , | - 7 : | . , | | , | | - | | | | 26.33 | | ¥ | ş | 3 | £ | ž | Ř | Ĭ | Citt | ã | ١ | | | | | â | | = | * | 91 | Ē | 107.6 | | | | 4 | | / 8 | \$. | \$ | 191 | 192 | | | = | ·£ | 3 | - F | * | * | = | · s . | = | 5 | 3 | 2 | * | | | 18.3 | | 2 | z | 2 | z | 3 | | 2 | F | 3 | • | \$ | 53 | 3 | 3; | • | 2 | £ | = | \$ | 3 | * | | | 177.3 | | | | | | 10 | • | , | | | 8 | 2. | 2 | ř. | ,£ | * | " | \$, | ٤ | * | x | 22.67 | | | 2.3 | ^ | 2 | 8 | * | 2 | = | \$ | 2 | . 2 | · /2 | , <u>,</u> | * | . 2 | \$ | \$ | \$ | z | Ľ | | | | 3 2 | | | 186.25 | 2 | 2 | | | • | \$ | \$ | £., | · , | 2 | 2 | * | ~ | 2 | 2 | ; , . | | | * | 2 | á | ••• | | | | y; ? | | | | | , | | | | · | | | ,
]
, | | | | | | | | | | , | | | | | | MOTE: All namples upra | 1 | | nated to 55° C a | , U 05 | ٠. | | • |
د | | | | | | | • & 3
• ₹2. | ·
·
· : • | | | | | | | | | | | | | | | , - | | | | | | | | | , | * | | | - | concentration of the untreated samples in the first batch was on the average approximately seven fold higher than the oil and grease concentration in the second batch of samples. This is typical of the operating fluctuations at the plant and hence the experimental system should be capable of handling these fluctuations. Experimental results showed that the range of initial concentrations from 500 pg/L to 5500 mg/L, did not affect the concentration of the treated samples significantly. To substantiate this finding the mean of the first 15 treated samples were compared to the mean of the last 5 treated samples after breatment the 125 mg/L of ferric ions. The t-test statistic showed that the low means did not differ significantly at the 10% significance level (Appendix 1). Having established the concentration of ferric ions needed for clarification by the coagulation test, it was essential to compare the ferric ion concentration needed to obtain equivalent clarification using the electrolytic flotation process. It was also important to operate the electrolytic flotation process at an economically viable rate of energy consumption. It was calculated that if 1 ampere of current and 7 volts were applied for one hour it would cost approximately \$33.00 per 1000 m³ of wastewater treated. Reducing retention times to one-half hour or fifteen minutes would reduce this cost to \$16.50 and \$8.25 respectively for each 1000 m³ treated (Appendix 2). Based on these calculations, the electrolytic flotation process was limited to a maximum of 1 ampere of current input. The electrolytic flotation experiments were conducted at ferric ion contrations varying from 50 mg/L to 125 mg/L with 5 litter sample volume and at a temperature of $55^{\circ}\text{C} \pm 5^{\circ}\text{C}$. After the initial experiments the ferric ion concentrations were slimited to 80 mg/L, 100 mg/L and 125 mg/L. The results of these experiments are summarized in Table 9. These results indicate the treatment achieved with 80 mg/L ferric ion concentration in the electrolytic flettenion process is equivalent to the treatment achieved with 125 mg/L of ferric ion concentration in the chemical coagulation experiments at the 10% significance level (Appendix 3). The overall performance of the ohemical coagulation versus electrolytic flotation process is plotted in Figure 8 and shows clearly the superior performance of electrolytic flotation process over chemical coagulation alone. In order to eliminate any sample variances due to the age of the sample and other experimental factors that may change from day to day, simultaneous electrolytic flotation and chemical seagulation experiments were conducted. In the electrolytic flotation experiments samples were collected at 15 minute and 30 minute intervals. In the chemical coagulation experiments, stirring was continued for 30 minutes and the flocs formed were allowed to settle for a minimum of four hours. These results are tabulated in Table 11. Both the electrolytic flotation and the chemical coagulation tests were conducted at 125 mg/L of terric ion FIGURE 8 THE CHEMICAL REQUIREMENT FOR ELECTROLYTIC FLOTATION VE COASULATION ## SIMULTANEOUS ELECTROLYTIC FLOTATION AND CHEMICAL COAGULATION TESTS | Expt. | | ic Flotation
6 volts | Coagulation | |--|--|--|--| | y | 15 min. | 30 min, | 30 min. | | 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11. | 41
41
43
41
44
40
53
56
50
50 | 34
45
47
37
42
44
42
42
46
44
47
48 | 88
84
82
89
82
88
70
64
67
73
79
89 | | Ave. | 45.6 \= µ1 | 2ى = 43.2 | 79.6 = µ3 | | Std.
Dev. | 5.5 | 4.2 | √ 9.0 ° | Note: All these experiments were conducted with a Ferricion concentration of 125 mg/L and at 55°C. concentration. A one way analysis of variance of the three sets of results (two from electrolytic flotation and one from chemical coagulation) was done (Appendix 4). The results confirm a highly significant difference (P<0.001) between the three means. However, when the means of the two electrolytic flotation process *esults were compared using the Duncan's multiple-range test, it showed that the treatment of samples obtained after 15 minute residence time and 30 minute residence time did not differ significantly (Appendix 5). These findings clear show that the electrolytic flotation process is superior to chemical coagulation along in summary the best process conditions obtained for electrolytic flotation were a current density of 132 mA/cm^2 , a residence time of 15 minutes, a ferric ion dosage of 80 mg/17, These process conditions were obtained at an operating temperature of $55^{\circ}\text{C} \pm 5^{\circ}\text{C}$. Though the treatment cost of the electrolytic flotation process is less than that of chemical coagulation, the relative cost of the two processes, is of vital importance to the industrial operator. Cost analysis was based on a 350 pound drum of ferric chloride costing \$90.00 and a daily production rate of 141,000 barrels of synthetic crude with a produced water recycling rate of 38.2 x 10³ m³/d (Appendix 2 and 6). On this basis the chemical cost for the electrolytic flotation process (at 80 mg/L ferric ion concentration) was estimated at approximately 3.56¢ per bbl. of synthetic crude produced. Adding the cost of power estimated at 0.22¢ per bbl. of synthet discrude produced for 15 minutes of operation. at 1 ampere and 7 volts, make the cost of treatment 3.78¢ per bbl. of synthetic crude produced. It was hoped that the rate of hydrogen production during electrolysis would off set some of the power and chemical costs. However, calculations performed (Appendix 9) showed a hydrogen production volume of only 0.4 L per ampere per hour during the electrolytic flotation process. Therefore the cost benefit of recovering hydrogen was negligible. On the other hand the chemical cost of treating the wastewater by chemical coagulation at 12 mg/k of ferric ion concentration in order to obtain the equivalent treatment obtainable by electrolytic treatment is approximately 5.56¢ per bbl. of synthetic crude produced. This plus the gentle stirring for half a hour increases the cost to approximately 5.96¢ per bbl. of synthetic crude produced. As residence time was from 1 to 4 hours in chemical coagulation treatment, the size of the coagulation chamber would have to be 4 to 16 times larger than the equivalent electrolytic flotation unit. This elarger reactor size would add substantially to the capital cost for chemical coaquiation treatment. As reported in EIA (1979) the ESSO Resources Canada Limited, Cold Lake, heavy oil extraction facility will produce wastewater for recycling at the rate of 38.2 x 103m3/d (8.4 x 105 Imp. gallons per day). Van Note, et al. (1975) illustrated graphically that the operating and maintenance cost of a 1000 m3/d primary sedimentation unit with ferric chloride addition was \$14.98 per 1000m3 of wastewater treated. They have also shown the operating and maintanance cost for \$000"m3/d activated sludge plant with ferric chloride addition is \$24.23 per 1000 m³/d wastewater treated. Assuming a 100% increase in operating and maintenance cost since 1975, these costs will translate to \$29.96 and \$48.46 per 1000 m3 respectively. The cost of theating 1000 m³/d with the electrolytic flotation process using a 80 mg/L of ferric ion concentration and current densities sufficient to achieve a treatment efficiency of between 90% and 99% or better is \$139.60. Sewage treatment costs cannot be directly related to the electrolytic flotation process costs estimated by this study due to * differences in wastewater characteristics and in the nature of the processes, however, comparisons do provide a gross indicator of the relative magnitude of treatment costs. Based on the economic cost evaluations, it is apparant that the electrolytic flotation process would be very attractive if less expensive means of chemical treatment could be applied. Also, the cost of ferric chloride sludge handling has not been assessed and this could present a further
drawback to the application of this technology. However, in view of the technical feasibility of electrolytic flotation, the use of this process is still conceivable particularly if other treatment processes prove to be uneconomically or technically unfeasible. The fifth objective, on the basis of the findings of this study, was to consider the applicability of the electrolytic flotation process to oil removal faom other industrial oily wastewaters. Based on the higher rate of anode dissolution when using metals of higher electropositivity (iron, aluminum, stainless steel, nickel etc.), this process will be very useful in short term or intermittent operations. Spills and emergency situations as well as operations where small volumes of wastewater are collected over period of time and then discharged der the intermittent operations periodically 1 category. In such operations, replacing the electrodes does not cause operating delays. Therefore, sacrificial electrodes are ideally suited. Sacrificial electrodes have the advantage of supplying metal ions at a constant rate, thereby eliminating the necessity for chemical coagulant addition. This also eliminates the need for chemical storage tanks and equipment for injecting and mixing the chemicals. Also withe rate of metal addition can be controlled by the current input to the electrodes. The electrolytic flotation process has the advantage of floating the sludge layer for easy skimming. At floating sludge layer is usually more compact (less water content) than a settled sludge layer. Since the buoyancy forces move the sludge to the surface and the gravitational forces of the floc particles already at the surface act opposite to the buoyancy forces, a more compact sludge layer is formed. An electrolytic flotation unit is light and compact and therefore is easily portable for emergency requirements. The simplicity of operating an electrolytic flotation unit and the treatment efficiency of the process makes this an attractive a ternative in emergency situations. ## VI. CONCLUSIONS AND RECOMMENDATIONS The results indicate that the electrolytic flotation process is technically feasible and a process superior to chemical coagulation in treating production recycle wastewater from heavy oil extraction facilities. The electrolytic flotaten process under the best conditions tested was found to be quick and efficient producing a thick floating sludge layer. Further work is needed to determine if chemical usages can be reduced or if alternate less expensive chemicals can be used. Under the conditions total the treatment costs were considered higher as would be desirable for full scale implementation. Increasing the current density increased the treatment efficiency. The best current density and residence time conditions were fixed by limiting the power cost of treating 1000 m³ to less than \$20.00. Based on this limitation it was found that the current density was \$100 mA/cm² (1 ampere, 7 volts). 15 minutes of residence time was found to be adequate and treatment was possible within the cost objective for power consumption. Heating the sample above room templeature was vital in obtaining better treatment efficiency and chemical addition was necessary to obtain emulsion destabilization and phase separation. The experimental temperature was selected to be 55°C ± 5°. This was however not based on the best performance but rather on the maximum practicable temperature for the given experimental set up. Further work on accurately maintaining the temperature and studying its effect on the treatment efficiency with each incremental increase of 10°C would be useful. It was found that 80 mg/L of ferric ion concentration was necessary to obtain an oil and grease concentration of less than 50 mg/L in the treated sample. The initial oil and grease concentrations before treatment varied from 500 mg/L to over 5500 mg/L. Therefore the treatment efficiency varied from 90 percent to over 99 percent. The electropositivity of the presence material must be very low to prevent rapid dissolution. The article into solution and thereby necessitating frequent replacement of electrodes. Platinum was found to be a suitable electrode material, but an automatic timer was required to alter the polarity and prevent electrode fouling. More experimental work should be done on increasing the current density while decreasing the chemical addition in order to establish the interplay ween these two variables. A temperature as close to the actual operating temperature (90°C) as possible may reduce the chemical requirement drastically. A better characterization of the wastewater with respect to the presence of emulsifiers and demulsifiers would be useful. As a first stage, synthetic crude prepared in the laboratory with known characteristics may help better define the interdependence of various chemical components in solution. It is very likely that sample age may have a It is also recommended that a two stage process be tried, with the first stage being chemical coagulation and the second stage being electrolytic flatation. Mixing of the sample to enhance flocculation should also be studied, to determine to optimum mixing velocity. Finally, the height of the wastewater column above the electrode grid could be a significant parameter. That is, the current density per unit volume of wastewater treated should receive attention. University of Alber ## REFERENCES - Anderson, H.I. (1975). Apparatus for Removal of Dissolved or Suspended Solids in Wastewater.U.S. Patent3, 865, 711. Chem. Abs., 32717u. - Anon. (1968). Electrolysis-bred Bubbles Clarify Water. *Chem*: 6. Eng., Vol. 75, No., 16, pp. 82-84. - APHA-AWWA-WPCF. (1975). Standard Methods for the Examination Wastewater. 14th. Ed. American Public Lalth Association, New York, N.Y. - Ayuzawa, S., Tsuchiya, K. (and Taira, K. (1975). Treatment of Waste Water by Electrolysis. dapan Patent 75, 151, 772. Chem. Abs., 84: 155342w. - Barrett, F. (1976). The Electroflotation of Organic Wastes. Chem. Ind., pp. 880-882 - Becher, P. (1965). Emulsions: Theory and Practice. Reinhold Publishing Corporation, New York. pp. 440. - Beck, E.C., Giannini, A.P. and Ramirez, E.R. (1974). Electrocoagulation Clarifies Food Wastewater. Food Technology., pp. 18-22. - Bedinin, V.A., Kryzhanovskii, A.N. and Ivanov, O.V. (1977) Purification of Waste Waters of an Industrial Rain Collector to Use the Waters in Circulating Water Supply. Izu. Vyssh. Uchevn. Zaved. Sthoit Ankhit., Vol. 5, pp. 110-114 (Russ). Chem. Abs., 87: 777396a. - Benjamin, J.R. and Cornell, C.A. (1970). Probability, Statistics, and Decision for Civil Engineers. McGraw Hill Book Company. - Bennett, H., Bishop, J.L., and Wulfinghoff, M.E., (1968). Practical Emulsions, Vol. 1, Chemical Publishing Company, Inc., New York. - Berry, R.I., (1979). Heavy Oil-- an Untapped Find. Chem. Eng., July 30, 1979. pp. 25-27. - Camp, T.R. (1955). Flocculation and Flocculation Basins. Trans. Amer. Soc. Civil Engr. 120, 1. pp. 1-16. - Chambers, D.B. and Cottrell, W.R.T. (1976). Flotation: Two Fresh Ways to Treat Effluents. *Chem. Eng.*, pp. 95-98. - Choffel, G. (1976). Liquid Waste Treatment in the Vegetable Oil Processing Industry--European Practices. J. Am. Oil Chemists' Soc., Vol. 53, pp. 446-448. - Clayton, R.C. and Noble, J.G. (1974). Electro-M Process. Effluent Water Treat. J., Vol. 14, pp. 21-25. - Das Gupta, S. and Mohanta, S. (1976) Barringer Research Limited. Electrochemical Process for the Treatment of Kraft Mill Effluent. CPAR Project Report 523-1. A research program sponsored by the Department of fisheries and Environment in cooperation with the Canadian Pulp and Paper Industry. - Dubois, A. 1976). Treatment of Oil Emulsions used in Flocculation and Electroflotation. Paper presented to the International Symposium held in Lieges, May 1976. - EIA (1979). Cold Lake Project Final Environmental Impact Assesment Volume 1 -- Project Description. Esso Resources Canada Limited, October, 1979. - Gardner, W. and Cooke, E.I. (1971). Handbook of Chemical Synonyms and Trade Names. CRC Press. A Division of the Chemical Rubber Co., Cleveland, Ohio. - Genkin, V.E. and Belevisev A.N. (1978). Proc. Joint US/USSR Symp. on Advanced Equipment and Facilities for Wastewater Treatment. U.S. EPA, Cincinatti, Ohio. pp. 32-35. - Gruenfeld, M., (1973). Extraction of Dispersed oils from - Water for Quantitative Analysis by Infrared Spectrophotometry. Environ. Sci. Technol., Vol. 7, No. 7, pp. 636-639. - Hudson, Jr., H.E. (1965). Physical Aspects of Focculation. Jour. Amer. Water Works Assn., Vol. 57, pp. 8. - Itagaki, T. and alima, T. (1977). Treatment of Waste Liquor Containing Grant and Anionic Surfactants. Japan Patent 7775, 056. Chem. Abs., 88:413085. - liniichuk, E.M., Vasilenko, I.I., Shchepanyuk, V.Yu., Zukhoverkhova, N.A. and Makarov, I.A. (1976). Treating refinery wastewaters to remove emulsified oils by electrocoagulation and electroflotation. *Int. Chem. En.*, Vol. 16, No.3. pp. 434-435. - Kemmer, F.N. (1979). The NALCO Water Handbook. Nalco Chemical Company. McGraw-Hill Book Company, New York. pp. 8-1 8-16, pp. 11-1 11-13. - Lewin, D.C. and Forster, C.F. (1974). Protein Recovery from Dairy Wastes by Electroflotation. *Eff. Wat. Treat.*Jour., pp. 142-148. - Lissant, K.J. (1974). Emulsions and Emulsion Technology. Marcel Dekker, Inc. New York. pp. 440. <. - Masterton, W.L. and Slowinski, E.J. (1969). Chemical Principles. W.B. Saunders Company. Philiadelphia / London / Toronto. pp. 511-531. - Mathews. A., Bishnoi, P.R. and Svrcek, W.Y. (1979). Treatment of Oil Contaminated Waste Waters by Foam Fractionation. Water Res., Vol. 13. pp. 385-391. - Meng, H.K., Karolinskii, A.M. and Bondarynk, T.P. (1972). Purification of Wastewaters Containing Oils and Oil Emulsions from Metal Rolling Plants by Electroflotation. Ochistka Vod. Vozdush. Basseinov Predpr. Chern. Met., pp. 137-143. (Russ.), Chem. Abs., 40775q. - Metcalf, L. and Eddy, H.P. (1972). Wastewater
Engineering Collection Treatment Disposal. Metcalf and Eddy Inc. McGraw Hill Book Company. pp. 296-301. - Middlebrooks, J.E. (1976). Statistical Calculations How to Solve Statistical Problems. Ann Arbor Science Publishers Inc., Ann Arbor, Mich. 48106. - Mikheeva, E.P., Kagasov, V.M., Yugai, F.S., Mamakov, A.A., Akulov, P.V. and Zhilyaev, Yu.A. (1976). Electroflotation of Oils from Waste Waters from Coal-tar Chemical Industry, III, Selection of Apparatus Layout. Elektron, Obrab. Mater., Vol. 5, pp. 55-59. (Russ.), - Chem. 4bs., 86: 160\$8y. - Mikheeva, E.P., Kagasov, V.M. and Mamakov, A.A. (1974). An Electroflotation Method of Purifying Coking Industry Effluent from Dils. *Electrochem. Ind. Proc. Bio.*, No.6. pp. 40-42. - Miller, I. and Freund, J.E. (1977). Probability and Statistics for Engineers. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 07362. - Mizusaki, H. (1975). Breaking of Oil-water Emulsions by Electrolysis. Japan Patent 74 89679. *Chem. Abs.*, 15252w. - Montgomery, D.S. (1980) Personal contact. - Moore, J.M. (1972). Physical Chemistry. 4th Edition Prentice-Hall, Inc., New Jersey. pp. 516. - Morrison, R.T. and Boyd, R.N. (1971). Organic Chemistry. Allyn and Bacon, Inc. Boston. - Nakayama, T. and Itagaki, T. (1977). Removal of Dil from Wastewater by Electrolysis. Japan Patent 77 89 248. Chem. Abs., 88: 54777u. - Naruse, T., Kotani, K. and Kato, Y. (1976). Treatment of - Emulsion Containing Waste Water by Electrolysis. Vol. 12, pp. 57-61 (Japan), *Chem. Abs.*. 88:27415t. - Ohtsugi, S. and Kai, K. (1974). Treating Emulsion Waste Water by Electrolysis. Japan Patent 74 06 766. *Chem. Abs.*, 137079d. - Petrova, N.A., Selitskii, G.P. and Yuzhaninov, A.G. (1973). Purification of Emulsion Waste Waters. Vol. 141, pp. 67-8 (Russ.), Chem. Abs., 32630k. - Ramirez, E.R., Barber, L.K. and Clemens, O.A. (1977). Physiochemical Treatment of Tannery Wastewater by Electrocoagulation. Proc. 32nd. Industrial Waste Conference, Purdue University Eng. Ext. Ser. pp. 183-188. - Ramirez, E.R., Johnson, D.L. and Clemens, D.A. (1976). Direct Comparison in Physiochemical Treatment of Packinghouse Wastewater Between Dissolved Air and Electroflotation. Proc. 31st. Industrial Waste Conference, Purdue University Eng. Ext. Ser. pp. 563-573. - Reid, Crowther and Partners Limited: (1978). Electrolytic Flotation of Pulp and Paper Mill Wastewaters - Phase I Bench-Scale Trials. A research program sponsored by the - Department of Fisheries and Environment in cooperation with the Canadian Pulp and Paper Industry. - Snyder, -D.D. and Willihnganz, R.A. (1976). A New Electrochemical Process for Treating Spent Emulsions. Proc. 31st. Industrial Waste Conference, Purdue University Eng. Ext. Ser. pp. 782-791. - Stelmach, K. and Wisniewski, K. (1976). Electroflotation method for Oil Removal from Industrial Effluents. Vol. 2, pp. 126-132 (Pol.), Chem. Abs., 86:110842j. - Strausz, O.P. (1979). Some Recent Advances in the Chemistry of Oil Sand Bitumen. Hydrocarbon Research Center, Department of Chemistry, University of Alberta, Edmonton, Canada. - Strosher, M.T. and Peake, E. (1978). Characterization of Organic Constituents in Waters and Wastewaters of the Athabasca oil Sands Mining Area. Alberta Oil Sands Environmental Research Program. Project HY 3.1.1. - Strosher, M.T. and Peake, E. (1976). The Evaluation of Wastewaters from an Oil Sand Extraction Plant. Hydrology Technical Research Committee Alberta Oil Sands Environmental Research Program. Project HY 3.1. - Swisher, R.D. (1970). Surfactant Biodegradation. Marcel Dekker, Inc., New York. pp. 19-37. - Tabuchi, K., Uchiyama, T., Kobayaski, R. (1973). Electrolytic Treatment of Emulsion Wastewaters. Japan Patent 74, 128, 543. Chem. Abs., 168206i. - The Cold Lake Project. (1978). A Report to The Energy Resources Conservation Board. By Imperial Dil Limited. May 1978. - Van Den Temple, M. (1953). Stability of Oil in Water Emulsions I, II and III. Recueil. De. Travaux. Chimiques Des. Pays-Bas., Vol. 72. pp. 419-461. - Van Note, R.H., Hebert, P.V., Patel, R.M., Chupek, C. and Feldman, L. (1975). A Guide to The Selection of Cost-Effective Wastewater Treatment Systems. EPA 430 / 9-75-002. July 1975. - Vold, R.D. and Mittal, K.L. (1972). The Effects of Temperature on the Stability of Nujol-Water Emulsions. U. Coll. I. Sc., Vol. 42, 1973, pp. 436-439. - Water Pollution Control Federation and the American Society of Civil Engineers (1977). Wastewater Treatment Plant Design. Lancaster Press, Inc. pp. 201-211. 93 APPENDIX 0 From Table 10: For 125 mg/L Fe³⁺: Run 1 - 15 $$\overline{X}_A$$ = 107.6 \overline{X}_B = 83.8 S_A = 32.29 S_B = 14.04 ΣA_j = 1614.0 ΣB_j = 419.0 ۷; Standard error of the mean \overline{d} between the two sets of samples: $$SS_{A} = \frac{15}{5} X_{Aj}^{2} - (\frac{15}{5} X_{Aj}^{2})^{2}/15 = \frac{15}{5} X_{Aj}^{2}$$ $$= (106^{2} + 86^{2} + \dots + 138^{2}) - \frac{1614^{2}}{15}$$ $$= 188.266 - \frac{1614^{2}}{15} = 14599.6$$ $$S_A^2 = \frac{14599.6}{n_A - 1} = \frac{14599.6}{14} = 1042.83$$ $$SS_B^2 = 35901 - \frac{419^2}{5} = 788.8$$ $$S_B^2 = \frac{788.8}{n_B - 1} = \frac{788.8}{4} = 197.2$$ $$F = \frac{S_A^2}{S_B^2} = \frac{1042.83}{197.2} = \frac{5.29}{197.2}$$ $$F_{0.025}$$ (14,4) = 14.25 Since the calculated F value is smaller than the critical F value there is no significant difference in the variances and therefore the variances can be pooled. Therefore, $$s^2 = \frac{\sum x_{Aj}^2 + \sum x_{Bj}^2}{(n_A-1) + (n_B-1)} = \frac{14599.6 + 788.8}{14 + 4}$$ = 854.91 $$s_{\overline{d}} = s^2 = \frac{n_A + n_B}{n_A n_B} = 854.91 = \frac{15 + 5}{15 \times 5}$$ Therefore, $$S_d = 15.1$$ ## Two Tailed t-Test $$t = \frac{x_A - x_B}{S_d} = \frac{d}{S_d}$$ $$= \frac{107.6 - 83.8}{15.1} = 1.58$$ $t_{0.05}$ (for 18 degrees of freedom) = 2.101 $t_{0.10}$ (for 18 degrees of freedom) = 1.734 The experimental value of t lies within the critical tabular value, therefore, the hypothesis H_0 : $\mu_1 = \mu_2$ is accepted and is claimed that \bar{X}_A does not differ significantly from \bar{X}_B at the 10% significance level. 1 Ampere 7 voits for 1 hour of operation. Watts = $7 \times 1 = 7$ in 5 liters of solution. Therefore, $$\frac{\text{Watts}}{L} = \frac{7}{5} = 1.4 = 0.0014 \text{ kW/L}$$ Since 0.0014 kW/L is applied for one hour, we have - (0.0014) (1) - = (0.0014) kWh/L Cost of 1 kWh = 2.3 cents. $0.0014 \text{ kWh/L} = 1.4 \text{ kWh/m}^3$ Cost of treating one million gallons (4546 m^3) for 1 hour = 4.56 $$\frac{L}{g}$$ X 1,000,000g X 0.0014 $\frac{kWh}{L}$ 2.3 $\frac{cents}{kWh}$ = $$14683 \text{ cents} = $146.83 = $33.00/1000 m^3$$ Therefore, cost of treating for 1/2 hour $$=$$ \$73.42 - \$16.50/1000 m³ Therefore, cost of treating for 15 minutes $$= $36.71 = \frac{$8.25/1000 \text{ m}^3}{}$$ Therefore, cost per bbl. of synthetic crude produced (based on 141,000 bbl produced and a recycle rate of 8.4 \times 10⁶ gal) $$= \frac{36.71 \times 8.4 \times 10^6}{10^6} = \frac{0.22 \text{ cents/bbl}}{141,000}$$ | | Oil ar | nd Grease Com | ncentrat | ion (mg/L) | | | |--|-----------|---------------|----------|--|-------------|--| | 80 mg/L Fe ³⁺
Electrolytic | Flotation | | ٠ | 125 mg/L Fe ³⁺
Coagulation | • | | | | | <u> </u> | Α, | <u> </u> | | | | 101 | ,, | | | 106 | | | | 97 | | | • | 86 | | | | 88 | | ŕ | | 80 | | | | 74 | | | | 47 | | | | 79 | | | | 68 | • | | | 108 | | | | 161 | | | | 84 | | | | 152 | • | 0 | | 105 | | | | 129 | | | | 83 | •. | | | 135 | | | | 114 | | | • | 111 | • | | | 95 | | | | 78 | | | | 118 | | | | 104 | ٠ | | | 136 | | , | | 121 | | | | 163 | | | | 9 8 - | | • | | 135 | | | | 138/ | | | | 121 | | r | | 81 | 1 | - | | | | • | | 83 | . (| | | | | , Y | | 91 | *** **** | | | \ | | N. Company | | 101 | | | | • | | | | 63 | | ************************************** | | 106.3 | | | | 102 | + | | | Std.Dev. 24.1 | | | | 30.4 | ~ | | | (# of 16
lata points) | | | | 20 | | | | 1700.8 | | | | 2040.0 | | | Calculation of the standard error of the difference, \overline{d} : $$ss_A = \frac{16}{5} \frac{x_A^2}{Aj} - \frac{16}{(\frac{5}{5} x_{Aj})^2/16} = \frac{16}{5} \frac{x_A^2}{Aj}$$ 1.e., $$SS_A = (101^2 + 97^2 + ... + 135^2 + 121^2) - \frac{1700.8^2}{16}$$ = 189,581 - 180,795² = 8,785 Therefore, $$SS_{\Lambda} = 8785$$ $$s_A^2 = S_{A/n_{A-1}} = 8785 = 585.7$$ $$ss_B = (106^2 + 86^2 + ... + 101^2 + 63^2) - \frac{2040^2}{20} = \frac{20}{5} x_{Bj}^2$$ = 224,167.0 - 208,080.0 = 16,087 Therefore $$SS_B = 16,087$$ $$s_B^2 = SS_B/n_{B-1} = \frac{16.087}{19} = 846.7$$ $$F = \frac{s_B^2}{s_A^2} = \frac{846.7}{585.7} = 1.45$$ $$F_{0.01}(16,20) = 3.26$$ Since the calculated F value is smaller than the critical F value, there is no significant difference in the variances, therefore, the variances can be pooled. $$s^2 = \frac{\sum X_{Aj}^2 + \sum X_{Bj}^2}{(n_{A-1}) + (n_{B-1})} = \frac{8785 + 16087}{(15 + 19)}$$ 1.e., $$s^2 = 731.53$$ $$s_d = \frac{s^2}{n_A n_B} = \frac{n_A + n_B}{n_A n_B} = \frac{731.53}{16 \times 20}$$ i.e., $$s_{\tilde{d}} = 82.3$$ ### Two-Tailed t - Test $$t = \frac{(\overline{x}_A - \mu_A) - (\overline{x}_B - \mu_B)}{s_d}$$ $$H_0: \mu_1 = \mu_2$$ $$H_1: \mu_1 \neq \mu_2$$ $$t = \frac{\overline{x}_A - \overline{x}_B}{s_{\overline{d}}} = \frac{\overline{d}}{s_{\overline{d}}}$$ $$t = \frac{106.3 - 102}{82.3} = 0.052$$ $$t_{0.10}$$ ([15 + 19] degrees of : ciom) = 1.692 The experimental value of t lies well within the critical tabular value. Therefore, the hypothesis H_0 : μ_1 = μ_2 is accepted at the 10% significance level. Null Hypothesis: $$H_o: \mu_1 = \mu_2 = \mu_3$$ (from Table II) Analysis of Variance Calculations: Total Som of Squares (TSS) TSS = $$\begin{bmatrix} 12 & 3 \\ \Sigma & \Sigma \\ 1 & j \end{bmatrix} \times \begin{bmatrix} 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} x^2/36 \end{bmatrix}$$ i.e., TSS = $$(41^2 + ... + 89^2) - (\frac{2020^2}{36})$$ i.e.,
$$TSS = 124,704 - 113,344.44$$ Therefore, Experimental Sum of Squares (CSS): $$CSS = \frac{{}^{12}_{\Sigma} \chi^{2}/3 - \frac{\chi^{2}}{36}}{\frac{1}{1} i^{2}}$$ $$= \frac{{}^{12}_{\Sigma} (163^{2} + \dots + 184^{2}) - (2020^{2})}{\frac{3}{6}}$$ i.e., $$CSS = \frac{340,798.0}{3} - 113,344.44$$ Therefore, CSS = 254.89 Error Sum of Sequence (ESS): $$= 11,359.56 - 254.89 = 11,104.67$$ Mean Sequence $$MS_C = \frac{CSS}{degs. of freedom} = \frac{254.89}{12-1} = 23.17$$ $$MS_E = \frac{ESS}{degs. \text{ of freedom}} = \frac{11,104.67}{(36-3)-1} = \frac{11,104.67}{32}$$ Therefore, $MS_E = 347.02$ Calculated F Value $$F = \frac{MS_E}{MS_C} = \frac{347.02}{23.17} = 14.98$$ Critical F-Value (from tables) degs. of freedom = $$\frac{32}{11}$$ $$F_{0.05}(32,11) = 2.57$$ $$F_{0.01}(32,11) = 3.94$$ $$F_{0.001}(32,11) = 6.68$$ ## Analysis of Variance Summary | Source of Variation | Degrees of Freedom | Sum of
Squares | Mean
Square | ,
F | |---------------------|--------------------|-------------------|----------------|--------| | Treatments | 11 | 255 | 23.17 | 14.98 | | Error | 32 | 11,105 | 347.02 | | | Total | 43 | 11,360 | | - | | | | | | | There is a highly significant difference between the experimental type means, therefore, the hypothesis is rejected. Duncan's Mutiple-Range Test | Experiment | Electrolytic Flotation = 30 min. | Electrolytic Flotation = 15 min. | Chemical
Coagulation | | |------------|----------------------------------|----------------------------------|-------------------------|--| | Mean | 43.2 | 45.6 | 79.6 | | Variance of sample means, $$S_{\overline{x}} = \left(\frac{\text{error mean square}}{\text{f of experiments}}\right)^{\frac{1}{2}} \left(\frac{347.02}{12}\right)^{1/2}$$ = 5.38 | p means - | 2 | 3 | - | |---|--------|------|--| | r _p (from Duncan's multiple range test tables) | 2.89 . | 3.03 | For 32 degrees of freedom (see previous ANOVA table) | Multiplying each value of r_p by $S_{\overline{X}}$ = 5.38, we have | p | 2 | 3 | |----|-------|-------| | Rp | 15.55 | 16.30 | R_p - Least signifleant range. To test for significant differences among two adjacent means, we obtain ranges of (45.6-43.2)=2.4 and (79.6-45.6)=34.0 respectively. Since the first of these values does not exceed $R_2=15.\overline{55}$, the difference between the means is not significant. Since the second of these values exceeds $R_3=16.30$, the difference between the means is significant. 43.2 45.6 79.6 \$90.00 for 350 lb FeCl3. M.W. of FeCl₃ = 162.206 g i.e., every 162.206 g of FeCl₃ has 55.847 g of Fe³⁺ Therefore, in 350 lb. FeCl₃ the weight of Fe³⁺ $$= 350 \times \frac{55.847}{162.206} = 120.5 \text{ lb.} \quad \text{Fe}^{3+}$$ If 80 mg/l is needed $1 \times 10^6 \text{ gal} = 4.54 \times 10^6 \text{L}$ Therefore, in 4.54 \times 10⁶ L we need (80) (4.54 \times 10⁶) mg of Fe³⁺ - $= 3.632 \times 10^8 \text{ mg}$ - = 363.2 kg - = 799 or 800 $1b/10^6$ gal of Fe^{3+} 800 lb Fe³⁺ = $$\frac{800}{120.5}$$ X 350 = 2,323.6 lb FeCl₃ For electrolytic flotation at \$90.00 for 350 lb cost of FeCl₃ per $$10^6$$ gal = $\frac{2324}{350}$ x 90 = \$597.60/10⁶ gal For coagulation Need approximately 120 lb. Fe³⁺ for 10⁶ gal 1250 lb. $$Fe^{3+} = \frac{1250}{120.5}$$ X 350 = 3630.7 lb FeCl₃ in 350 lb FeCl₃ at \$90.00 for 350 lb. Cost of FeCl₃ per 10^6 gal = $\frac{3630.7}{350}$ x 90 = \$933.61 160,000 bbl of crude bitumen is upgraded to produce 141,000 bbl of synthetic crude oil 8.4 X 10^6 gallons (38.2 X 10^3 m³/d) of water is to be recycled. Therefore, gal/bbl of synthetic crude produced = $\frac{8.4 \times 10^6}{141,000}$ = 59.57 gal/bbl Chemical cost of electrolytic flotation = \$597.60/106 gal Therefore, chemical cost per bbl of synthetic crude produced $$= \frac{597.60}{10^6} \times 59.57 = 3.56 \frac{1}{6} \text{ /bb1}$$ Chemical cost of coagulation = \$933.61/10⁶ gal Therefore, chemical cost per bbl of synthetic crude produced $$= \frac{933.61}{10^6} \times \$59.57 = 5.56 \frac{1}{6} / \text{bb1}$$ ### Current Density Calculations Length of electrode = 7.5 cm Diameter of electrodes: $$Fe = 0.32 cm$$ $$A1 = 0.32 \text{ cm}$$ Stainless Steel = 0.32 cm $$Pt = 0.16 cm$$ Horizontal surface area of Fe, Al and stainless steel electrodes = $2\pi rh$ = $$(2)(\pi)(\frac{0.32}{2})$$ 7.5 = 7.54 cm² Therefore, 2 anodes $$= 7.54 \times 2 = 15.1 \text{ cm}^2$$ Horizontal surface area of Pt electrodes $$= 2\pi rh$$ = $$(2)(\pi)(\frac{0.16}{2})(7.5)$$ = 3.78 cm² Therefore 2 anodes $$= 7.6 \text{ cm}^2$$ Pt (for 2 anodes) $$1 \text{ Amp} = \frac{1 \text{ Amp}}{7.6 \text{ cm}^2} \times 1000^{-3.2} \quad 132 \text{ mA/cm}^2$$ 2 Amp = $$\frac{2}{7.6}$$ X 1000 = 263 m/ π^2 $$3 \text{ Amp} = \frac{3}{7.6} \times 1000 = 395 \text{ mA/cm}$$ Al, Fe, Stainless Steel (2 anodes) 1 Amp = $$\frac{1}{15.1}$$ X 1000 = 66 mA/cm² 2 Amp = $$\frac{2}{15.1}$$ X 1000 = 132 mA/cm² 3 Amp = $$\frac{3}{15.1}$$ X 1000 = 199 mA/cm² $$4 \text{ Amp} = \frac{4}{15.1} \times 1000 = 265 \text{ mA/cm}^2$$ $$5 \text{ Amp} = \frac{5}{15.1} \times 1000 = 391 \text{ mA/cm}^2$$ Al, Fe, Stainless Steel (4 anodes) 1 Amp = $$\frac{1}{30.2}$$ X 1000 = 33 mA/cm² $$2 \text{ Amp} = \frac{2}{30.2} \times 1000 = 66 \text{ mA/cm}^2$$ $$3 \text{ Amp} = \frac{3}{30.2} \times 1000 = 99 \text{ mA/cm}^2$$ $$4 \text{ Amp} = \frac{4}{30.2} \times 1000 = 132 \text{ mA/cm}^2$$ $$5 \text{ Amp} = \frac{5}{30.2} \text{X} \ 1000 = 166 \text{ mA/cm}^2$$ ## Theoretical Rate of Iron Dissolution Assuming that all the current in the system was conducted through electrons obtained from the ionization of iron, i.e.: $$Fe^{\circ}$$ ---- Fe^{3+} + $3e^{-}$ Assume, For 1 Amp over 1 hour of operation Therefore, # of coulombs needed = $$1 \frac{\text{coulomb}}{\text{sec}} \times 1 \text{ hour } \times (60 \times 60 \frac{\text{sec}}{\text{hr}})$$ = 3600 coulombs but, 1 coulomb = 6.25×10^{18} electrons. Therefore, Therefore, # of moles = $$\frac{2.25 \times 10^{22}}{6.023 \times 10^{23}}$$ = 0.0374 moles 1 mole Fe weighs = 55.84 grams/mole Therefore, Therefore, at 2 Amp for 1.5 hours = 2089 X 2 X 1.5 = 6267 mg At 3 Amp for 1.5 hours = 2089 X 3 X 1.5 (200 mA/cm^2) for stainless steel electrodes = 9,400 mg 12 liter sample volume was used. Therefore, concentration of Fe^{3+} in solution $$=\frac{9400}{12}$$ mg = 783 mg/L # Hydrogen Generation Rate $$H^+ + H^+ + 2e^- \longrightarrow H_2$$ i.e., need 2 electrons per molecule of ${\rm H}_2$ generated. Assume: 1 Amp for 1 hour $$1 \text{ Amp} = 1 \frac{\text{coulomb}}{\text{sec}}$$ Therefore, 1 Amp over 1 hour = 1 X 60 X 60 = 3600 coulombs 1 coulomb = 6.25×10^{18} electrons Therefore, 3600 coulombs = $$(6.25 \times 10^{18})$$ (3600) = 2.25×10^{22} electrons Need 2e per molecule Therefore, Number of molecules = $$\frac{2.25 \times 10^{22}}{2}$$ = 1,125 x 10²² Therefore, Number of moles = $$\frac{1.125 \times 10^{22}}{6.23 \times 10^{23}}$$ = 0.0181 moles 1 gram mole at S.T.P. occupies 22.4 Liters Therefore, 0.0181 gram mole = 0.4054 Liters = 405.4 mL volume i.e., 405.4 mL volume of hydrogen will be produced per each ampere per hour.