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Abstract

The purpose of this thesis is to explore connectionism in the context of discrimination 

learning, as a potentially more complete description of associative learning than any of its 

predecessors, including contingency theory, given that it provides accounts of learning at 

each of Marr’s (1982) three levels of explanation: the implementational level, the 

algorithmic level, and the computational level. While the computational level explanation 

of what networks compute is not defined by a specific formula, given that it depends on 

the particular connectionist network considered, neural networks are certainly not limited 

to implementational accounts of computational level contingency theory, as has been 

suggested in the field of associative learning (Shanks, 1995). Given the suggestion that 

connectionist models can be considered potentially complete accounts of learning, 

applications of neural networks in learning theory and research are evaluated in this 

thesis. The particular discrimination learning tasks explored are negative and positive 

patterning. Two studies regarding the computational power of neural networks with 

distributed representations are presented, concluding that these models can provide 

interesting and computationally feasible accounts of negative and positive patterning, 

without overfitting the data. Six studies are presented concerning the relevance and 

necessary features of networks prone to catastrophic forgetting. It is concluded that, while 

catastrophic forgetting may be seen in neural networks in some domains, the 

phenomenon may not be particularly relevant to the field of discrimination learning when 

savings are considered through retraining. Finally, four studies are presented in the 

context of evaluating neural networks through data fitting. A model for evaluation is 

presented in which a particular connectionist model is evaluated, limitations of that model 

or of the simulation situation are considered, and another member o f the family of 

connectionist models is considered until an approximate fit to the data is achieved. In this 

way, one can determine a functionally plausible model for a particular learning situation. 

It is concluded that connectionism can provide a plausible and powerful account of 

discrimination learning.
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Chapter 1 1

Chapter 1 

INTRODUCTION

Memories, world knowledge, organized thought, communication -  many of the 

processes that allow organisms to function meaningfully -  are dependent upon learning. 

The concept of learning is a simple one in some respects. Everyone has some lay 

definition of learning. Arriving at an operational definition has proved more difficult. Is 

learning a change in behaviour? Is it a change in mental state? Not surprisingly, 

definitions of learning have been influenced by changing assumptions in the field of 

psychology.

While early explorations of learning phenomena were guided by a strong 

adherence to the observational method and animal models, learning today is more likely 

to be characterized by cognitive principles. Some researchers have used the cognitive 

psychology assumption, that cognition is information processing, to make methodological 

advancements in comparative research. Traditional animal models of learning are being 

or have been replaced or extended by computer simulations. Some of the early computer 

models of associative learning have been supplanted by more sophisticated parallel 

distributed processing models (PDP models, neural network models, or connectionist 

models; Rumelhart & McClelland, 1986) that go beyond the analysis and interpretation of 

learning data in that they, themselves, learn.

The move toward computer models shows a willingness on the part of learning 

researchers to move beyond the methodology that pervades the rich history of traditional
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Chapter 1 2

approaches to learning. However, there are theoretical implications for current 

conceptions of associative learning with the acceptance of these computer models as 

appropriate for investigations of learning phenomena. This thesis is an exploration of 

these theoretical implications. In the following chapters, I argue that connectionism can 

make contributions to learning theory that extend beyond methodology into theory, and 

that decisions made by researchers about the uses of these models can have a strong 

impact on the behaviour that these models produce and the theories that they suggest.

Associative learning has a history of good experimentation and solid progress in 

the understanding of learning phenomena. I propose that information can flow in both 

directions -  with associative learning theorists gaining insight from connectionist 

researchers and connectionists benefltting from many of the principles of learning that 

have been elucidated through traditional investigations. The format of this thesis is a 

pattern that can be used to advance theories of learning, first by exploiting connectionist 

networks for insight concerning theoretical issues in the area of discrimination learning 

and second, by implementing known principles of learning to improve connectionist 

models or to improve the manner in which these models are evaluated.

In Chapter 2 a selective survey of behavioural learning theory and cognitive 

learning theory is presented. I explain the move from an early assumption of learning 

(that two things must co-occur to become associated) to the conception o f associative 

learning that is assumed today through the work of Rescorla, Wagner and others in the 

late 60's and early 70's. I discuss cognitive conceptions of learning from the perspective of 

the mentalists in the behavioural learning tradition. The notion that cognition is
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Chapter 1 3

information processing will be introduced, that has provided impetus for the computer 

metaphor. The computer metaphor will be drawn upon as a basis for the theoretical and 

simulation work presented in the remainder of the thesis.

In Chapter 3 ,1 introduce connectionist models. I address the relationship between 

traditional associative learning theory and connectionist models, and I discuss the theory 

of David Shanks (1995) who adopts connectionist modeling as a research method. I 

suggest that, although connectionist models can be used methodologically, they are more 

than a methodology, as they can be used for theory development and as theories 

themselves. Where they are used as a method for the elucidation of traditional theories, it 

is appropriate to consider the implications of this decision. These implications are 

explored in Chapter 3.

Chapter 4 is primarily a theoretical argument that is an example of the first way 

that I suggest that theory can be advanced: by exploiting connectionist networks for 

theory construction. I describe both the limitations of early connectionist models, and the 

emergence of solutions to these problems and relate them to current limitations of 

theories of associative learning. Specifically, I demonstrate particular advantages of 

connectionist architectures in terms of the representation of compound stimuli 

(distributed representations and coarse coding) and suggest that these properties of 

connectionist networks be used to increase the representational power of models of 

discrimination learning. Two studies are included that demonstrate the computational and 

representational power of a relatively simple neural network model that solves a 

particular discrimination learning problem. An interpretation of one of these networks is
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provided that has implications for discrimination learning theory.

While I advocate a move toward distributed representations in Chapter 4 ,1 relate 

in Chapter 5 one of the limitations of models that contain distributed representations: 

these networks may be particularly prone to a phenomenon called catastrophic forgetting, 

in that a network trained on Task 1 forgets that task after being trained on Task 2. The 

studies presented in Chapter 5 address this issue. If networks are prone to catastrophic 

forgetting, it makes them improbable models of learning. In these studies, I do not find 

any kind of forgetting that could be called “catastrophic” when savings in reacquisition of 

Task 1 is considered, rather than network performance on trial 1 following training on 

Task 2 in any of the networks considered in Chapter 5. This set of studies falls under the 

second category cited as important in this thesis: these studies make use of known 

principles of learning and memory to improve the way that connectionist models are 

considered and tested.

Chapter 6 contains another set of studies that suggests refinements to 

connectionist models based on principles of learning. This study demonstrates how 

learning-improbable design decisions can have an effect on neural networks and can, by 

consequence, affect the hypotheses that these networks generate. It is illustrated that a 

network that is to be evaluated on the basis of its ability to produce behaviour that fits 

experimental data is only one of a family of connectionist models that could be used in a 

given situation. A model for testing connectionist theories is presented in which a 

simplest model is considered first and other members of the family are considered when 

the network does not produce the expected behaviour.
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Chapter 1 5

Further results and conclusions of the above studies are discussed in Chapter 7. 

Through the thesis, evidence is provided for the proposition that connectionist models can 

provide interesting and powerful extensions to theories of associative learning, when they 

are used with careful consideration. Arguments are made throughout the thesis, for 

thoroughly considering the implications of using connectionist networks in learning 

research, and for considering the implications of various design decisions that are made 

when networks are used in learning research and theory.
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Chapter 2 6

CHAPTER 2 

THE LEARNING OF ASSOCIATIONS

In this chapter, I present a brief review of principles of learning, first from a 

behavioural, then from a cognitive perspective. To prepare for a discussion of 

connectionist associations in Chapter 3 ,1 will outline the work of some who have made 

contributions to our current conception of associative learning in this chapter. Theorists 

and theories have been included because of their relevance to the subsequent chapters in 

this thesis; this history is not meant to be exhaustive.

In the first part of this chapter, two underlying assumptions of associative learning 

are contrasted. The first, contiguity, is the principle of temporal pairing (Shanks, 1995). 

Contiguity-based theories assume that associations are formed when two events co-occur 

or occur closely in time. Contiguity can easily be demonstrated in the laboratory by 

implementing an operant conditioning paradigm, for example, in which a pigeon is 

reinforced with food for pecking a key after a specified delay. It has been reliably shown 

that, as the delay between the pecking and the reinforcement increases, responses are 

fewer and less likely. Conversely, when reinforcement is delivered immediately after 

pecking, learning is rapid. Contiguity is, indeed, important for this type of learning.

Contiguity theories were pre-eminent in behavioural accounts of associative 

learning until the late 1960's when theorists demonstrated that contiguity could not 

account for all known phenomena. Contiguity is necessary but not sufficient for learning 

to occur. Contingency was introduced as an extension of and an alternative to contiguity.
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Chapter 2 7

Contingency also assumes temporal pairing but assumes directional dependence as well: 

the occurrence of one event is contingent upon the occurrence of another event. In 

classical conditioning terms, contingency requires that the probability of the 

unconditioned stimulus, given the conditioned stimulus, is greater than the probability of 

the unconditioned stimulus, given the absence of the conditioned stimulus [P(US/CS) > 

P(US/no CS)]. In operant conditioning terms, contingency requires that the probability of 

the delivery of the reinforcer, given the operant response is greater than the probability of 

no delivery of the reinforcer, given the operant response [P(ref/CR) > P(ref/no CR)]. 

Underlying contingency theory is the concept of correlation: the learner computes (by 

some method) the correlation between two events (Shanks, 1995).

This chapter moves from early and modem contiguity theories to contingency 

theory, in particular, the Rescorla-Wagner model, since it has a well known and strong 

relationship to learning in connectionist networks. The final section describes the 

influence of the cognitive revolution on psychologists’ perception of learning and 

introduces the concept of representations that will be revisited in Chapters 3,4, and 5.

Behavioural Theories o f Associative Learning: Contiguity

Learning and memory are intricately linked and fully dependent. The relationship 

between learning and memory is mediated through representations, that will be 

considered later in this chapter. As such, while many would begin a history of the formal 

analysis of learning with Pavlov and Thorndike, I begin with Ebbinghaus, the memory 

researcher. Ebbinghaus tested memory for lists of learned non-words and was, through 

testing memory, empirically testing the process of learning long before Thorndike.
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Ebbinghaus

Ebbinghaus started his learning and memory work in 1879 and began to publish 

results of his studies in 1885 (Leahey, 1997). As far as our discussion is concerned, 

Ebbinghaus' most significant contributions were his rejection of established laws of 

learning that had never been subjected to empirical investigation, and his proposal of a 

new theory of associations. Prior to the 1880's, associations had been regarded as though 

they had always existed: Ebbinghaus began to study associations as they were being 

formed. He proposed that associations between objects could be influenced, tampered 

with, and analyzed (Ebbinghaus, 1885).

Using himself as a subject, Ebbinghaus studied retention and savings of groups of 

non-word syllables that were neither semantically nor aesthetically related. He plotted the 

number of recall errors as a function of number of exposures to the group of non-word 

syllables, creating the first learning curve -  a staple of experimental psychology since. 

Ebbinghaus formulated a principle of learning, based on his study of associations. This 

was the law o f  frequency', the more frequently an experience occurs, the more easily it is 

recalled. The law of frequency re-emerges in later theories of learning, in a somewhat 

more complex form. Although Ebbinghaus predated contiguity theory, the law of 

frequency becomes an important part of the temporal pairing hypothesis: that the more 

frequently two events co-occur or occur close in time, the stronger the association 

between them (Shanks, 1995). This is the birth of the science of Associationism -  the 

notion that “all knowledge is based upon the associations between ideas” (p. 5).

In spite of his empirical, atheoretical approach (Leahey, 1997), Ebbinghaus
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retained some notions about learning that were considered antiquated and non-scientific. 

He believed learning was the acquisition of logical relations between ideas -  a very 

mentalistic concept that fell out of favour with learning theorists until much later in the 

20th century, when it made a comeback as a basis for associative learning and for 

physiological theories such as Hebb’s (1949).

Ebbinghaus engaged in research inspired by an interest in human higher mental 

processes. The Russian physiologist, Pavlov was, at approximately the same time, 

studying the cerebral cortex in animals from a physiological perspective. These 

perspectives appear to have little in common. However, the vastly different theories and 

methodological approaches of these two researchers have, together, provided what many 

would consider the original foundation of learning theory and research.

Pavlov

Ivan Pavlov began investigating learned or conditioned reflexes in dogs about 15 

years after Ebbinghaus published his short monograph, Memory in 1885. Pavlov was 

critical of existing methods of psychology claiming that “if we attempt an approach from 

this science of psychology to the problem confronting us we shall be building our 

superstructure on a science which has no claim to exactness as compared even with 

physiology” (Pavlov, 1927, p. 3).

Pavlov’s mechanistic view was influenced by Descartes, who asserted that every 

activity of the organism was a reflex (i.e., an obligatory reaction to a stimulus from the 

environment). Pavlov found that some activities of organisms, however, did not work like 

simple reflexes. He could demonstrate complex reflexes by establishing a setting in which
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a contingency existed between a stimulus (like a tone) and an outcome (like meat powder 

delivered to the mouth of a hungry dog). A simple reflex to meat powder in the mouth is 

salivation and, certainly, Pavlov found this simple reflex in his subjects. He called the 

meat powder the unconditioned stimulus (US) and the salivation to the meat powder the 

unconditioned reflex (UR). When a tone was reliably sounded prior to the administration 

of the meat powder, the dogs began to salivate at the sound of the tone that previously had 

no power to elicit this response. Pavlov called the tone the conditioned stimulus (CS) and 

the salivation to the tone the conditioned reflex (CR; Pavlov, 1927).

To explain this phenomenon, Pavlov formulated the principle of stimulus 

substitution: a reinforcer elicits a behaviour that comes to be associated with any stimuli 

that occur closely in time with the reinforcer. In the example above, the CS (the tone) 

comes to represent the US (the meat powder) and, hence, the response is elicited by the 

CS because of a learned equivalence between the US and the CS. In later learning 

terminology, stimulus-stimulus associations are formed. As a physiologist, Pavlov 

postulated that US-UR associations are innate and that CS-US associations came about as 

the result of the strengthening of neural connections.

Pavlov went on from the simple scenario of the tone and the meat powder to 

discover many interesting phenomena associated with classical conditioning. In his 1927 

book Conditioned Reflexes, Pavlov documented phenomena that continue to generate 

research today such as secondary conditioned reflexes, habituation, extinction, 

overshadowing, spontaneous recovery, conditioned inhibition, inhibition of delay, and 

responses to compound stimuli.
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Although some of the phenomena outlined in Conditioned Reflexes require more 

complex theory (e.g., some compound stimulus tasks, overshadowing), the underlying 

basis of Pavlov’s work was temporal contiguity: when the CS and the US occur closely in 

time, the US comes to represent the CS that elicits a UR: conditioning occurs.

While Pavlov was documenting the results of his many studies in Eastern Europe, 

similar work was being undertaken in America in the Harvard University lab of Edward 

Thorndike. While Pavlov’s empirical work predates that of Thorndike, Thorndike began 

publishing his work before Pavlov published the Russian version of Conditioned Reflexes 

(Leahey, 1997). Both researchers studied conditioning but their work overlapped little. 

Pavlov was interested in the conditioned reflex; Thorndike became a specialist in a type 

of learning presumed, at the time, to have a different underlying mechanism -  operant 

learning.

Thorndike

In initial experiments, Thorndike placed a cat in a cage-like "puzzle box" that had 

a pull string that acted as a release mechanism for the cage door. Typically, a cat would 

struggle to escape the cage until it accidentally pulled the escape cord. The next time the 

cat was placed in the puzzle box, it was more likely to pull the string. It had learned that 

pulling the string would result in escape from the box (Leahey, 1997).

Thorndike initially explained this learning with the law o f  effect and the law o f  

frequency. The law of effect states that the connection between a stimulus (the puzzle 

box) and a response (pulling the string) is strengthened if the response is followed by a 

satisfying outcome (getting out o f the box) or weakened if the response is followed by an
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aversive state of affairs. The law of frequency, according to Thorndike, is that the more 

often a situation connects with a particular response "the stronger becomes the tendency 

for it to do so in the future" (1932, p. 6). His early theory included other laws such as the 

"law of readiness" and the "law of exercise". By his 1932 book, The Fundamentals o f  

Learning, Thorndike had reduced the importance of many of his secondary laws and had 

substantially revised the law of effect (Bolles, 1975). Only the first half of the law of 

effect could be substantiated (the connection between a stimulus and a response is 

strengthened if the response is followed by a satisfying outcome); the punishment side of 

the law of effect could not be corroborated.

The law of effect is important to the present discussion because it served as a 

break from existing concepts of the nature of associations in learning. Formerly, mere 

contiguity or temporal pairing was presumed to be sufficient for conditioning. The law of 

effect made it clear that the strength of the stimulus-response (S-R) connection is 

determined by the consequences of the response. Although Thorndike's concept of the 

reinforcer is added to contiguity to produce the law of effect, Thorndike’s theory does not 

overwrite contiguity theory. Rather, for Thorndike, “the critical feature of the response- 

reinforcer relation was temporal contiguity” (Schwartz & Robbins, 1995, p. 208).

Thorndike’s approach was mechanistic. Although the organism was presumed to 

hold an idea that was connected (weakly or strongly) to another idea, it was not the 

“insight” or “logical relations” of earlier theories. Thorndike argued that if learning were 

the outcome of insight, then the learning curve that Ebbinghaus had described would be 

more like a learning cliff -  something that was neither empirically nor logically plausible.
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Thorndike’s theory came to be known as Connectionism, named after the bonds or 

associations between sensory input and behaviour (Hilgard, 1956).

For some, however, the concept of the reinforcer was still too mentalistic. The 

relevance of the reinforcer, as introduced by Thomdike, became a matter of debate in 

psychology. The American psychologist who most successfully challenged the 

importance of the reinforcer was John B. Watson who had a limited time in the 

psychology spotlight, but a long-lasting effect on American psychology (Bolles, 1975). 

Watson

Watson's major departure from many who came before was concerning the 

relevance of the reinforcer. Watson claimed that for the reinforcer to have an effect on the 

S-R connection, the organism would have to anticipate the reinforcer -  a mentalistic 

concept. To avoid this non-observable explanation, Watson stressed the law of frequency: 

that the more often a stimulus and a response occur together, the stronger the connection 

between the two will become.

But reinforcers appear to work! After all, animals come to respond at higher rates 

when responses are reinforced. Watson explained this phenomenon by describing a 

hypothetical experiment in which there are two possible responses. One response (R-) 

never results in reinforcement while the other response (R+) always does. A single trial 

finishes when the organism makes the R+ response. Watson points out that although 

initially, the organism should respond with R- and R+ equally, each and every trial must 

contain an R+ in order to terminate but need not contain an R-, therefore R+ is more 

frequently paired with the situation/stimulus (Bolles, 1975).
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Like Thorndike, Watson asserted that when stimulus and response occur at the 

same time (or close in time), the connection between them is strengthened. Watson also 

promoted the idea that, neurologically speaking, connections are not created through 

learning -  rather the neurological connections are present prior to the pairing o f a 

stimulus and response. The pairing either lowers the threshold of the old connection 

(making it more likely to “fire”) or awakens a latent connection (Bolles, 1975). Watson’s 

theory is another example of a contiguity-based theory; at its most basic level, this theory 

is about the temporal pairing of stimulus and response.

Other aspects of Watson's theory have not stood up well in the face of empirical 

evidence. Watson is interesting to this discussion, however, for his influence on 

American psychology that endures to the present. Although he did not invent 

behaviourism as Thorndike’s theory must also be considered behaviouralist, Watson is 

considered the first Behaviorist. His absolute rejection of the mentalistic perspective has 

persisted in learning research and in many theories of learning, until relatively recently.

The influence of behaviourism is clear in many subsequent theories of learning. 

There were, however, many versions of behaviourism besides Watson’s well-known 

theory (Hilgard, 1956). Edwin Guthrie, for example, devised his own behaviourist 

position inspired primarily by the views of the philosopher Singer (Bolles, 1975). 

Guthrie’s perspective differed in some key ways from the behaviourism of Watson but 

many concepts present in both Watson’s and Thorndike’s theories surfaced also in 

Guthrie’s theory of learning.
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Guthrie

Guthrie's theory of stimulus substitution contains echos of theories already 

discussed but is sufficiently distinctive to warrant its own discussion. Like Watson, 

Guthrie omitted the reinforcement mechanism from his theory, believing it to be 

mentalistic. He also stressed the law of frequency, that he called “positive adaptation.” 

Like Pavlov did for the conditioned reflex, Guthrie claimed that operant learning was a 

function of stimulus substitution (that he called “conditioning”) in which the CS comes to 

substitute for a US in eliciting a response (Guthrie, 1935). He stressed temporal pairing as 

being important in building the CS-US association.

One of the unique aspects of Guthrie's theory was his argument that learning is 

instantaneous. Upon presentation of a particular pattern of stimuli that was followed by a 

particular response, an organism could be instantly conditioned to that stimulus pattern.

He explained the gradual shape of the learning curve by pointing out that stimuli are part 

of an ever changing situation. From one trial to the next, subtle aspects of the stimulus 

situation, the subject, and the response are likely to change. The organism does not 

respond to the stimulus that the researcher may believe he or she is presenting; it responds 

to a stimulus pattern. Guthrie explained this:

The psychologist must resign himself to the fact that no psychological event is 

ever really repeated. The second repetition of a stimulus is only roughly and for 

practical purposes equivalent to the first; his laboratory subject is only 

substantially or approximately the same person who sat in the chair the day before 

. . .  no two responses are alike. Two trips through a maze, two conditioned
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salivary reflexes may be substantially the same, but they are always the same with 

a difference. (1935, pp. 10-11)

In keeping with Guthrie's assertion that the consequences of a particular response 

(the reinforcer) were inconsequential to learning, he explained why reinforcement appears 

to work with the following scenario: An organism is placed in situation A. Every time the 

organism makes a slight response, the situation changes slightly, but is still recognizable 

as situation A. When situation A changes slightly, the organism “writes over” the stimulus 

pattem-response association for situation A. This continues until the organism makes a 

response that changes situation A to situation B, for example, when the “appropriate” 

response takes place and the situation changes to one in which something is presented to 

the organism (a reinforcer). When situation B is entered, the organism no longer writes 

over the situation A association. Therefore, the stimulus pattem-response association, that 

has been reinforced, is maintained.

Guthrie’s theory is, again, an example of a contiguity-based theory. Although his 

theory appears quite unique, the foundation on which his theory is built is still contiguity: 

temporal pairing builds associations between stimuli. Like Watson’s theory, this is also a 

mechanistic theory. The behaviourism of Thorndike, Watson, and Guthrie was indeed 

more mechanistic and was considered more scientific than the philosophies of mind that 

predated them. In isolating the observable, these theorists aspired to create a science of 

behaviour.

By the 1930's, this science of behaviour was ready for an in depth, quantitative, 

and formal analysis of behaviour. Clark Hull entered the field in 1920. In the next 20
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years, Hull’s commitment to a formal model of learning yielded a series of influential 

concepts, and culminated in the publication of Principles o f Behaviour in 1943 (Leahey, 

1997).

Hull

Clark Hull was a synthesizer of theories that had come before. His general theory 

was similar to Thorndike’s in that the S-R connection required reinforcement in order to 

be strengthened. He believed that the CS was substituted for the US, as did Pavlov. His 

theory was similar to that of Edward Tolman who claimed that animals behave 

purposefully toward goals that are adaptive. Hull did not shy away from terms such as 

“expectancy” but claimed to be neither mentalistic nor mechanistic -  instead, he 

described himself as behaviouristic, after Watson. He went beyond former theories, 

however, with his quest for a quantitative model of behaviour (Bolles, 1975).

Hull also stressed that drive reduction is crucial for reinforcement. An organism 

must be motivated by a biological drive in order to behave. He distinguished between 

primary reinforcers that are direct biological drive reducers and secondary reinforcers that 

have been conditioned as reinforcers (e.g., social approval for humans). A drive, such as 

hunger, creates general behaviour -  not just behaviour related to the drive state. 

Eventually, an organism is rewarded for a particular behaviour -  pecking at food if the 

drive state is hunger, for example. That behaviour becomes more likely again when the 

organism enters into any drive state (Hull, 1943).

Hull reformulated Thorndike’s law of effect according to his drive-reduction

theory:
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Whenever an effect or activity occurs in temporal contiguity with the afferent 

impulse, or the perseverative trace of such an impulse, resulting from the impact 

of a stimulus energy upon a receptor, and this conjunction is closely associated in 

time with the diminution in the receptor discharge characteristic of a need, there 

will be an increment to the tendency for that stimulus on subsequent occasions to 

evoke that reaction. (1943, p. 80)

Hull’s theory clearly remains within the framework of contiguity-based theories.

Although Hull's drive-reduction theory has not been supported by research (for 

example drive states motivate specific rather than general behaviour) many of his ideas 

have stimulated further research and his mathematical formulations have encouraged 

formal theory within the discipline of learning (Bolles, 1975).

Summary

Early theoretical differences in classical conditioning were primarily of the micro 

variety: Are connections made between the unconditioned stimulus and the conditioned 

stimulus, or between the conditioned stimulus and the unconditioned response? It has 

since been generally agreed that an association must be formed between the stimulus and 

the response to that stimulus, however, Mackintosh (1974) argued that “there is no a 

priori reason why animals should not associate a CS both with a UCS and with their 

reaction to that UCS” (p. 89). In fact animals may be making many associations that 

affect the likelihood of behaviours. Operant conditioning is assumed to be mitigated by 

the formation of an association between a response that has been reinforced and the 

situation in which the reinforcement occurs. According to Mackintosh, “The most general
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associationist view would hold that animals may associate any set of events that happen 

to be correlated in time” (1974, p. 140).

After the work of theorists like Hull, emphasis moved firom the location of the 

associations to the nature of those associations. Theoretical differences had centred 

around what things became associated when a stimulus and a response occur closely in 

time. The question that moved to the forefront in the late 1960's was whether two things 

occurring closely in time was sufficient to produce conditioning (Rescorla & Wagner, 

1972; Rescorla, 1968). This question led to two outcomes: a reformulation of contiguity 

theory and an alternative to contiguity: contingency.

The reformulation of contiguity theory suggests that, rather than absolute temporal 

contiguity being the basis for associative learning, relative estimates of temporal 

contiguity may be important for learning. Gibbon and Balsam (1981) suggest that an 

organism evaluates the CS-US interval (the time between the onset of a CS and the 

delivery of a US) relative to the time between USs. If the CS-US interval is shorter than 

the US-US interval in the absence of the CS, the CS becomes associated with the onset of 

the US (see also Jenkins, Barnes & Barrera, 1981).

Relative contiguity theory differs from absolute contiguity theory in that, while 

absolute contingency requires only the co-occurrence of two events or that two events 

occur close to each other in time, relative contiguity requires that one event is more likely, 

given another event. Relative contiguity then, is a close relative of the notion of 

contingency in which directional dependence is presumed: one event is contingent upon 

another.
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Behavioural Theories o f  Associative Learning: Contingency

Although Associationism explained basic learning phenomena well, it became 

apparent during the 1960's that contiguity theory could not account for more complex 

phenomena such as compound stimulus tasks and blocking (Rescorla, 1969; Wagner, 

1968,1969a; Wagner, Logan, Haberlandt, & Price, 1968). In 1972, Rescorla and Wagner 

published a paper in which they showed that contingency, not contiguity, is the condition 

necessary for learning to occur. Statistically speaking, contingency is “simply the 

calculation of the degree to which a pair of events covary” (Shanks, 1995, p. 21): 

contingency is an estimate of the correlation between two events. For a computation of 

contingency, it is important not just that A predicts B, but also that not A predicts not B 

(Rescorla, 1968).

Humans and other organisms certainly seem to be responsive to correlation (see 

Rescorla, 1968) but the computation involved in estimating degree of relatedness remains 

a matter of speculation. Some have proposed a x  calculation in which

The degree of association between two stimuli (jf) is predicted based on a comparison 

between a, the frequency of the co-occurrence of the two stimuli and d, the frequency of 

the non-occurrence of both stimuli and b and c, the frequency o f one of the stimuli 

without the other, x2 is a covariation calculation for binary variables and is a two-way

2 N (a d  -  be)1
X [(a  + b \ c  + d )(a  + c)(b  + d)]
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dependency (is stimulus 1 dependent on stimulus 2 or is stimulus 2 dependent on 

stimulus 1?). While x2 is an actual calculation of correlation, it ignores the contingency 

requirement of directional dependence.

Another proposed rule, AP, on the other hand, is directionally dependent:

AP = P(US|CS) - P(US|no CS)

in which AP (which is actually a correlation calculation for continuous variables) 

represents change in associative strength. Both x2 and AP have had some empirical 

validation but, according to Allan and Jenkins (1983), no proposed rule accurately 

predicts human data. Allan and Jenkins found that the AD rule

AD = (a+d) - (b+c)

most closely conforms, but still remains an inadequate (r = .73) explanation of the data. 

The Rescorla-Wagner Mode!

In an attempt to model associative learning within the framework of contingency 

theory, Rescorla and Wagner developed a basic equation that contains some elements that 

had not been represented in previous models. In the Rescorla-Wagner model, learning is 

due to changes in associative strength between a conditioned stimulus and an 

unconditioned stimulus. Rescorla and Wagner assume that context is important in 

conditioning and they incorporate background into their model as part of a compound
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stimulus. For a conditioned stimulus, A, the following equation represents change in 

associative strength:

A V ,  =  < x p ( X - V „ )

in which AV, is change in associative strength, a  is a learning rate parameter that is 

dependent upon the salience of a component stimulus, p is a learning rate parameter 

dependent upon the nature of the unconditioned stimulus, X is the asymptotic value of 

possible associative strength, and Vu is the associative strength among all active stimuli 

(Rescorla & Wagner, 1972). Statistically speaking, the learning organism calculates an 

association or covariation between pairs of events (Shanks, 1995). As the difference 

between the current associative strength and the maximum associative strength that can 

be attributed to a connection decreases, less conditioning occurs. In other words, as 

conditioning proceeds through trials, less is learned on each trial. This explains the 

deceleration of learning as demonstrated by the acquisition curve, and accounts for 

overshadowing (when A and B are presented as a compound stimulus to predict a US. 

Subsequently, when A is presented without B, there is a deficit in responding) and 

blocking (A is paired with the US. Subsequently, when A is presented with B, subjects fail 

to condition to stimulus B).

The Rescorla-Wagner model has become the dominant model of associative 

learning: the model against which other models of learning are evaluated. There seems to 

be no flagging of interest in this model. In fact, Pearce and Bouton (2001) report that
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between the years 1981 and 1985, the Social Science Citation Index records more than 

330 citations while between the years 1995 and 1999 more than 480 citations are 

recorded. Given that this model is now 25 years old, it has aged remarkably gracefully 

and has withstood many empirical criticisms (see Miller, Barnet, & Graham, 1995 for a 

review of the successes and failures of the model).

Contiguity and Contingency Today

The contiguity/contingency debate resurfaces occasionally when one or the other 

is unable to account for a particular phenomenon. Miller & Matzel (1988) note that for an 

organism to calculate contingency, the organism must know how often the CS has 

occurred with the US: that is, the learning of the CS-US association must already have 

taken place before contingency has been calculated. Hallam, Grahame, Harris, & Miller 

(1992) have suggested that temporal contiguity may be responsible for the acquisition of 

behaviour while contingency may direct behavioural expression after learning.

Limitations of the computational power of both contiguity and contingency 

theories will be discussed in the following chapter.

Associative Learning: The Cognitive Perspective 

While the purer behavioural theories became less and less mentalistic through the 

decades leading up to the 1960's, mentalism was gaining momentum among a group who 

became interested in learning in terms of how it could inform about what was processed 

and stored in the mind when something was learned: the cognitivists. The cognitive 

movement is generally considered a revolution (Lachman, Lachman, & Butterfield, 1979) 

of Kuhnian proportions (Kuhn, 1962/1970) in psychology. Cognitive psychology’s most
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obvious ancestors are in the fields of mathematics and artificial intelligence and go much 

further back than “the dawn of cognitivism” in psychology in the 1970's. Although 

viewed as an alternative to behavioural psychology however, many of the roots of the 

cognitive movement in psychology can be traced back to those theorists of the 

behavioural era who considered associations between mental events to be important for 

learning.

Cognition in Behavioural Approaches

An example of an early cognitivist within the behavioural tradition is Edward 

Tolman. While Tolman was an Associationist in that he believed that associations are 

learned by temporal contiguity, his theory fell outside the mainstream of theory in his 

time (Bolles, 1975). He was opposed to the notion that reflexes were solely responsible 

for behaviour and that all behaviour was determined. Instead, he emphasized purposive, 

goal-directed, intelligent aspects of behaviour.

He suggested that organisms learn to predict events based on some expectancy of 

that event (Tolman, 1932). Tolman theorized that a pattern of many expectancies creates 

a “cognitive map” in which information such as temporal information relevant to many 

associations may be stored. These maps allow organisms to evaluate the expected 

outcomes associated with a number of alternative behaviours. The expectancies stored in 

a cognitive map are modified and governed by a set of syntactic rules that, while different 

in complexity, are not so different in substance from the widely accepted Stimulus- 

Response rule thought to govern all of behaviour by the mechanistic theorists (Bolles, 

1975).
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The importance of Tolman’s work to the present discussion is primarily contained 

in the language that he used to describe his theory. He introduced some cognitive 

constructs into behavioural theory long before cognition had become a driving force in 

psychology. Some aspects of Tolman’s theory, including his notion of cognitive maps and 

syntactic rules are recapitulated in other, later, cognitive theories of behaviour.

Interestingly, although theorist Clark Hull rejected mentalistic constructs that form 

the basis of cognitive theories and debated frequently with Tolman concerning 

mechanistic and purposive behaviour (Leahey, 1997), some of the work of Hull 

foreshadowed the move in cognitive circles toward the computer metaphor. Hull, who 

was committed to principles of mathematics and physics was also convinced that 

machines could think. He believed that mechanistic psychology would be fulfilled in 

machines that learned (Leahey, 1997). He built prototypes of intelligent, artificial systems 

and claimed that “learning and thought are here conceived as by no means necessarily a 

function of living protoplasm than is serial locomotion” (Hull & Baemstein, 1929; in 

Leahey, 1997). While his mechanistic philosophy remained at the forefront of Hull’s 

psychology, intelligent machines became less important in his work as his mathematical 

theory became more widely accepted.

Modern Cognitive Psychology and Learning

Understanding the processes of learning was of primary importance to the 

behavioural theorists who could be described as mentalistic or cognitive. For the 

cognitivists of the 1970’s, however, learning became less important as the focus of 

theories and research turned to representations.
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Representations are the mental codes or traces that allow organisms to remember 

the results of experience. The relationship between learning and representation seems 

clear: that the process of learning about stimuli builds representations of those stimuli. 

Representations, however, have not always been easy to define. Representational systems 

require the assumption of two worlds: the real world that is being represented and the 

representational world (Roiblat, 1982). A particular representation requires a mental 

mapping between the real world (some sensory input) and the representational world.

Cognitive psychology also became increasingly enamored with a computer 

metaphor throughout the 1970's. The primary assumption of the computer metaphor is 

that there is a similarity between processing that is done in a computer and processing 

that is done in the mind. Computers and organisms receive input, process information, 

produce output. Central to this perspective is the notion that cognition is information 

processing or, at least, that cognition is like information processing. Within behavioural 

circles, the stimulus-response assumption of earlier models has, for the most part, been 

replaced with a stimulus-processing-response assumption, allowing for some computer

like processes in models of associative learning.

Summary

In this chapter, I have briefly reviewed some theories of associative learning. In 

the next chapter, I will present another approach to learning, Parallel Distributed 

Processing (PDP). PDP technique and theory owe much to the fundamental principles of 

learning mentioned above (Kehoe, 1990) and to the prime tenet of the information 

processing branch of the cognitive movement: that cognition is information processing.
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PDP models provide the opportunity to pursue questions of learning and questions of 

representation simultaneously while simulating the learning of associations in information 

processing systems. Associations, contingency, and representations will be considered in 

Chapter 3 in the context of connectionist models of learning.
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Chapter 3

CONNECTIONISM: LEVELS OF ANALYSIS

As has been shown in Chapter 2, investigations of learning phenomena have 

traditionally taken place in the labs of researchers under the umbrella of psychology. 

Pneories of learning were drafted by scientists who were trained as psychologists and 

who initially reduced the vast problem space associated with learning by looking at 

animal models. More recently, cognitive explanations of learning have become 

mainstream in psychology, and researchers in other areas have become interested in 

learning phenomena. While theories of associative learning were being developed, 

alternate lines of inquiry were concurrently being pursued outside of the discipline of 

psychology: the information-processing theories of cognition and neuroscience 

explanations of brain physiology have been explored together in connectionist circles.

While connectionism has not generally been considered in reviews of associative 

theory, PDP models have properties that can inform learning theory. Connectionist 

models are, in the most general sense, associative in nature (Bechtel, 1985). In this 

chapter, I describe the basic building blocks of connectionist architectures and their 

relationship to theories of associative learning. I will also outline the argument of David 

Shanks, a learning theorist and researcher who uses the tri-level hypothesis of David Marr 

(1982) -  a framework for research adopted in cognitive science -  to explicate the state of 

associative learning theory today. I then suggest an alternate way of viewing connectionist 

models of learning phenomena, more in line with most of the proponents of PDP
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modeling: as more than simply an implementation of existing associative learning theory. 

This perspective takes advantage of the particular properties of connectionist models that 

makes them powerful models of learning and cognition.

Basic Principles o f PDP Models

Connectionist models are information processing systems. The basic principles of 

connectionist modeling are relatively simple, although there are numerous variations. 

Unlike standard computer programs that respond to input in exactly the way the 

programmer has programmed them to, connectionist networks can learn how to classify 

patterns or instances. Connectionist networks are made up of a number of elements that 

allow them to process input in a brainlike fashion (Dawson, 1998). These elements 

include the basic building blocks of connectionism: the processing units.

Processing Units

Neuronal inspiration. Connectionist systems are built of processing units, that are 

analogous to neurons.1 A processing unit simulates a neuron in that it processes an 

electronic signal from a number of sources, and attenuates the signal through synapses to 

adjacent units. In connectionist networks, the processing units are arranged in layers and 

are connected to one another via weighted connections. These weighted connections are 

generally described as a simulation of a synapse.

Activation functions. Processing units compute net input, then adopt an internal 

activity level according to an activation function. The most basic of these is a binary 

function or a step function in which the strength of the output signal is 0 when the sum of

'The neural analogy is explored later in this chapter.
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Figure 3-1. A sigmoidal activation function. This type of function makes a single 
discrimination as indicated by the shadow under the function.

the inputs is less than a threshold value and 1 when the sum is greater than that value. 

Processing units with binary functions are limited to linear classifications.

Another common activation function is a sigmoidal junction in which the signal is 

“squashed" to approximate a binary function while allowing intermediate signals to be 

adopted, rather than limiting activity to 0 or 1. The sigmoidal function transforms 

negative inputs to a positive value less than .5, a net input of 0 into an internal activity of 

.5, and a positive input into a value between .5 and 1.00. Like the binary function, the 

sigmoidal activation function is a monotonic classifier (see Figure 3-1).

In some networks, a non-monotonic activation function, such as a Gaussian 

function is used. The Gaussian transforms high or low net inputs to 0 and mid-range net 

inputs to 1. This enables the processing unit to make two linear discriminations (see
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Figure 3-2. A gaussian activation function, as used in value units (Ballard, 1986).
This function makes a non-linear discrimination as shown in the shadow 
under the function.

Figure 3-2). Processing units with non-monotonic activation functions are sometimes 

referred to as value units (Ballard, 1986). Although non-monotonic activation functions 

have been recognized as a theoretically powerful possibility, they have not traditionally 

been used. Recently, a method for training networks of value units has been developed 

(Dawson & Schopflocher, 1992).

The processing units in a connectionist system are combined into an 

interconnected network. They are organized into discrete layers in which input is 

processed. The combination of processing units into a neural network is a matter of 

network topology.
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Network Topology

The first iayer of processing units in the network are input units that are most 

usually either turned o ff or on to represent a pattern or a problem. Input units send 

information on in the network via connections between the first layer and the next layer.

That next layer is made up of hidden units that are processing units that receive a 

signal from each of the input units. They calculate an internal level of activity, based on 

the net input, then relay a signal to the next layer of processing units. Hidden units pre- 

process (Bechtel & Abrahamsen, 1991) information by detecting features in the input 

patterns that aid the network in learning an appropriate mapping of associations between 

the input space and the output space.

The final layer in a network is made up of output units. Output units are 

processing units that receive a signal from the hidden units. They compute the total signal 

being sent and then adopt a level of internal activity. In some networks, output units 

receive a signal only from the hidden units, while in other networks they are also 

connected directly to the input units.

Regardless of the network topology or the activation function of the processing 

units, all networks learn. Learning is generally accomplished through the same 

mechanism that governs learning in traditional models of learning: through experience. In 

the case of PDP models, a network changes its representation of knowledge as new 

information is acquired.

Learning in PDP Networks

Knowledge is represented in a network in the connections between processing
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units. The processing units in each layer of a connectionist system are generally 

connected to all processing units in the next layer. The connections between the units are 

modifiable and are weighted. A signal moving through a network passes through these 

connections; a weight attenuates the signal. It is the pattern of the connection weights that 

determines what the network knows and how a particular pattern is classified.

When a network is being trained on a particular problem, a set of input patterns 

that represent the problem is presented to the network and connection weights are 

modified according to rules. Generally, a network is informed of the difference between 

its output and the expected output -  in cognitive science terms, the network is supervised. 

The network adjusts its connection weights to account for the error and the process is 

repeated as another set of inputs is presented to the network until the network performs 

the task to some specified degree of accuracy. Most often, feedback is given to the 

network concerning how much its output differs from the expected output and weights are 

changed enabling the network to more correctly classify the patterns. A set of patterns is 

presented repeatedly until some level of accuracy has been achieved by the network. Each 

presentation of a complete set of training patterns is called an epoch or a sweep. The 

modification of the weights in a network is the key to how the network learns. This 

modification is done according to a learning rule.

As all the building blocks of PDP networks can be varied, there are a diverse array 

of networks that can be classified as PDP. To illustrate the basic structure of PDP 

networks, and to lay the foundation for a discussion on learning within networks, I will 

briefly describe two types of networks, the perceptron and the multi-layer perceptron.
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Sample PDP Networks

Perceptrons

In 1958, Rosenblatt described a network of units called a perceptron that, 

theoretically, is a powerful model. In Rosenblatt's network there are sensory input units, 

intervening association units, and output units, linked together via weighted connections 

(see Figure 3-3). Not all intervening units are linked to all input units; the connections are 

randomly assigned. Likewise, not all output units are linked to all intervening units. The 

processing units in the perceptron introduced by Rosenblatt have binary activation 

functions.

Practically, however, there was no method for training this type of perceptron

Output layer

Association cells

—
Sensory (input) layer

Figure 3-3. Rosenblatt's original conception of a perceptron.
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when it was introduced. A simplified, trainable version of this theoretical perceptron was 

devised. This trainable network is different from Rosenblatt’s original conception of a 

perceptron in that the input units are directly linked to the output unit and no intervening 

layer is allowed. This type of network has inherited the name “perceptron” from 

Rosenblatt’s theoretical network, in spite of this obvious difference. Hereafter, the term 

“perceptron” is used to define the two-layer network with no intervening units.

The basic form of a perceptron is a simple network that only contains input units 

and a single output unit (see Figure 3-4). Generally, the processing units in a perceptron 

have binary activation functions. Simple perceptrons are defined as networks with input 

units being connected to a single output unit, with no intervening processing units, and no

Single Output Unit

Weighted
Connections

Layer of Input Units

Figure 3-4. A perceptron modified as a two-layer network with no intervening units.
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other connections present. Perceptrons can learn to classify patterns by adjusting their 

connection weights according to a learning rule.

Multi-layer perceptrons

In the 1980's, methods were developed for training networks more complicated 

than simple perceptrons. A more complex version of the perceptron, multi-layer 

perceptrons (Rumelhart, Hinton & Williams, 1986) have layers of interconnected 

processing units, similar to the proposed structure of Rosenblatt’s original perceptron. A 

layer of hidden units (that each receive weighted input from each input unit) compute an 

activation and send a signal to the next layer of processors, is added to a perceptron (as in 

Figure 3-5), making a multi-layer network.

Output Units

Hidden Units

Input Units

Figure 3-5. A multilayer perceptron.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 37

Trained networks discover a mapping from the input space to the output space: 

they are trained to determine the associative relationship between the input patterns and 

their class (or their expected output value). The hidden layer of units in multi-layer 

perceptrons provides the network an opportunity to restructure the data into sub

groupings of its own choosing before it computes an output. Networks with connections 

only between an input layer and an output layer rely on the representation and 

organization offered in the input space.

Associative Learning and Connectionist Learning Rules 

Uses of connectionist architectures to demonstrate particular phenomena of 

learning are not unknown in the literature (e.g. Gluck & Bower, 1988, 1990; Gluck & 

Thompson, 1987; Kehoe, 1998; Pearce, 1994; Schmajuk, 1997; Shanks, 1991). Many 

notable examples, however, (e.g. Shanks, 1995) receive connectionism primarily as a 

technique useful for the elucidation of associative learning phenomena within traditional 

models. Some, however, have allowed for the possibility of collaborative work among 

fields within the cognitive areas. In their recent review of theories of associative learning, 

Wasserman and Miller (1997) welcome interdisciplinary efforts to understand learning:

In accord with Thorndike’s and Pavlov’s early speculations, elementary 

associative learning still seems able to serve as the foundation for our 

understanding of many complex forms of behavior and cognition. However, our 

review reveals a rich body of knowledge about associations that surely causes us 

to question the simplicity of even this basic brand of mentation . . .  The next 

several years of research will be exciting ones, as neuroscientists and cognitive
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scientists join experimental psychologists in an interdisciplinary attack on the 

challenging problems of associative learning and behavior change, (p. 598).

In this section, I argue that further integrations and collaborations between 

connectionist and learning theorists are essential to the progress of these sub-fields within 

their disciplines. Connectionist models can bring something to a union between these two 

areas that learning theorists have long acknowledged as a shortfall of traditional learning 

theories (e.g. Spence, 1936) -  representational power. Where connectionist networks have 

floundered, however, learning theory is strong -  in the acknowledgment of specific 

processes of learning that many cognitive science models have overlooked. According to 

Hanson & Burr, connectionism "is especially suited to learning and allows the 

relationship between learning and representation to be studied directly for the first 

time"(1990, p. 471). Given this, connectionist models provide an interesting and valuable 

common language to learning theory and cognitive conceptions of cognition.

As mentioned earlier, neural networks learn. The process of learning is through 

modification of the connections between units in the network. This modification is done 

according to a learning rule. One powerful learning rule is the Widrow-HofF rule 

(Widrow & Hoff, 1960/1988; or the Delta rule, Rumelhart and McClelland, 1986) -  a 

least mean squared method for adjusting the network weights such that the difference 

between the desired output and the actual output is minimized. The Widrow-Hoff rule is 

used to train simple connectionist networks like perceptrons, in which processing units 

from the input layer are connected directly to the units in the output layer, with no layer of 

intervening hidden units.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 39

In 1981, in an introduction of their model of learning, Sutton and Barto showed 

the equivalence of the Rescorla-Wagner model of learning and the Widrow-Hoff learning 

rule, given certain constraints. This proof demonstrated the close relationship that exists 

between traditional learning theories and models of learning that have developed in 

cognitive science.

Although Widrow-Hoff is a powerful learning rule, it can be demonstrated that the 

networks trained with this learning rule are not representationally powerful enough to 

account for learning in all situations (Minsky & Papert, 1969/1988). As an example, 

networks trained with the Widrow-Hoff learning rule can only learn to classify a set of 

patterns if the set of input vectors meets the constraint of linear separability (Bechtel & 

Abrahamsen, 1991). An "exclusive OR" problem (X-OR; referred to in learning research 

as a negative patterning problem) does not meet the constraint of linear separability, as 

the learner must learn to discriminate on more than one dimension, and must carve the 

problem space in a way that is non-linear; therefore, the Widrow-Hoff rule is 

representationally inadequate to account for X-OR (Dawson, 1998) or negative patterning 

learning, as is suggested in the following chapter.

As a model of learning, the Widrow-Hoff rule lacks the power to train networks 

that are able to represent certain types of associative learning; its leaming-theory 

equivalent, the Rescorla-Wagner model of learning can, likewise, be shown to be limited. 

Some solutions to the representation problem have been attempted in learning theory 

(Bitterman, 19S3; Pearce, 1987; 1994). These solutions require the assumption that the
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learning organism treats some element of a compound stimulus as different, either by 

hypothesizing a separate unique cue that is associated with the compound stimulus, or by 

assuming that the compound stimulus is treated holistically, but differently than the 

elements that make up the compound. The assumption that a compound stimulus is 

represented separately from the elements of the compound is explored in greater detail in 

Chapter 4 in two connectionist architectures.

In cognitive science circles, the criticism of early connectionist models trained 

with the Widrow-Hoff learning rule stalled connectionism in the 1970’s and necessitated a 

major change in connectionist models. Any model of learning must be powerful enough 

to solve linearly non-separable problems since these problems are routinely solved by 

organisms in everyday life. In fact, humans can learn linearly non-separable problems at 

least as fast as linearly separably ones (Medin & Schwanenflugel, 1981). The Widrow- 

Hoff rule is limited in a way that learning in nature is not and is therefore not a plausible 

model of learning.

The problems associated with the failures of the Widrow-Hoff rule were 

addressed by building multi-layer networks and training them using a learning rule called 

back-propagation (also called the generalized delta rule; Rumelhart, et al., 1986). Back- 

propagation, like the Widrow-Hoff rule, uses the difference between the desired and 

actual output of the network to modify weights. The Widrow-Hoff rule is inappropriate 

for training multi-layer networks because it assumes that each modifiable connection 

weight is adjacent to an output unit. In multi-layer networks, the connections feeding the 

hidden units have no adjacent output units. Back-propagation is so called because it
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propagates the error from the output unit back through the network.

Back-propagation is an improvement over Widrow-HofF learning because, 

theoretically, a multi-layer network trained using the back-propagation of error learning 

rule can represent any data set. Therefore, these networks are able to represent problems 

that are not linearly-separable like X-OR or negative patterning. According to Sarle, 

multi-layer perceptrons are “general-purpose, flexible, nonlinear models that, given 

enough hidden neurons and enough data, can approximate virtually any function to any 

desired degree of accuracy. In other words, MLPs are universal approximators” (1994, p. 

S). According to Rumelhart, et al.: “if we have the right connections from the input units 

to a large enough set of hidden units, we can always find a representation that will 

perform any mapping from input to output through these hidden units” (1986, p. 319).

Connectionism and the Tri-level Hypothesis 

In 1993, learning researcher David Shanks summarized the current state of the 

area of associative learning in The Psychology o f  Associative Learning and devoted a 

large section of his book to connectionism. As mentioned above, connectionist 

architectures have been used by researchers as a method to elucidate particular 

phenomena. Shanks book seems to mark the beginning of a new era in learning -  an era 

in which connectionism is accepted as a mainstream associative method. Shanks 

treatment of connectionism provides a link between connectionist methods and learning 

theory. He uses the Tri-level hypothesis of David Marr (1982) as a framework for his 

argument supporting the use of connectionist architectures for modeling learning.

Marr’s theory holds that the nature of cognitive science in general and information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 42

processing in particular is such that multiple levels of explanation are required to achieve 

a full understanding of an information processing system and, by extension, cognitive 

phenomena. Marr's three levels of explanation are the computational level, the 

representational/algorithmic level, and the implementational level (see also Dawson,

1998; Pylyshyn, 1984).

The computational level of analysis is concerned with the goal of the computation 

and, therefore, about defining the problem that the information-processing system is 

seeking to solve. Computational approaches involve translations into a formal language. 

Translations allow the development of strategies for solving problems and make 

predictions about the system (Dawson, 1998). The algorithmic level deals with process 

questions -  "how is the goal of the system realized?" or "what information processing 

steps are used to arrive at the solution to the problem being solved?". The 

implementational level asks questions about the physical components of the system - 

"how are the information processing steps of the algorithmic level physically 

implemented in the system?". A complete explanation of cognitive processes requires 

answers to questions at each of these three levels of analysis.

Shanks answers the first question, the computational level question, with 

contingency theory ; The system "computes the degree of conditional contingency between 

events" (1995, p. 104). He refers particularly to three different formal contingency-based 

models. These are AP, and AD. These have been described in more detail in Chapter 2.

Shanks answers the second question with instance theories, and in particular, the 

context model (Medin, 1975) that emphasizes "the memorization of instances, with
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stimuli being represented in a multidimensional psychological space and with inter

stimulus similarities being an exponential function of distance in the space" (Shanks,

1995, p. 104). For context theories, each new instance is represented in memory in the 

category that contains the instance to which it is most similar.

The third question, that of implementation or mechanism, Shanks answers with 

connectionism. He identifies some of the limits o f old connectionist architectures and 

their similarity to the Rescorla-Wagner model of learning. He argues that the additional 

power of multilayer connectionist networks to classify problems such as the X-OR 

problem makes them appealing as implementations of contingency theory. He describes 

the relationship between contingency and connectionism in terms of the mathematical 

equivalence, given certain constraints, of the delta rule (the Widrow-Hoff rule described 

earlier) and the Rescorla-Wagner model. He goes on to cite a proof by Chapman and 

Robbins (1990) that, in a network described with only input and output units and trained 

with the delta rule, the weight associated with a particular cue (input) will equal AP -  “the 

degree of statistical contingency between the cue and the outcome” (Shanks, 1995, p.

114). This relationship holds only at asymptote. Shanks also describes a study by 

Wasserman, Elek, Chatlosh, & Baker (1993) in which Wasserman and colleagues asked 

human subjects to estimate the contingency between a key press and a flashing light for a 

number of different levels of P(0/A) and P(0/-A). The subjects’ estimates were a very 

close fit to predictions made by the delta rule, at asymptote. Prior to asymptote, the delta 

rule provides a relatively good fit to acquisition curves (Shanks, 1995, p. 114).

Shanks’ attempt to harmonize various theories of learning by assigning them to
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different levels of the tri-level hypothesis is an interesting proposal. However, when the 

three levels of explanation are introduced by Marr (1982) as the appropriate method for 

describing cognitive phenomena, Marr also argues that these levels must be logically 

related to one another (see also Dawson, 1998; Pylyshyn, 1984; Rumelhart &

McClelland, 1985; 1986).

If Shanks proposes contingency theory, in particular AP or AD, as the 

computational explanation of choice, he ought also to acknowledge that the appropriate, 

logically related implementation of contingency theory is an old connectionist network 

like a perceptron, trained with the Widrow-Hoff learning rule. Contrary to Shanks 

argument, multi-layer connectionist models trained using back-propagation of error do 

not extend the representational power of contingency theory. Rather, these models serve 

to highlight the representational inadequacy of contingency theory. For Shanks' levels of 

explanation to be theoretically consistent and logically related, he either needs to 

relinquish traditional conceptions of contingency learning at the computational level, or 

abandon the additional representational power that modem connectionist models provide.

Where, then, does connectionist theory fit in Marr’s framework? Connectionism 

provides some answers to some questions at each of Marr’s levels of analysis -  the 

implementational, the algorithmic, and the computational.

Connectionism: an Implementational Account

Connectionism could be an interesting implementational account of cognition. 

However, connectionist models are not actually meant to model the physical processes at 

work in the brain in terms of containing one-to-one relationships of neurons to processing
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units -  at least, not yet.

Connectionist models are information processing systems that are “brain-like" in 

structure. According to Bechtel, “PDP models are not themselves neural models -  they 

are abstract processing schemes built on analogy with neuronal nets but capable of being 

realized in other architectures” (1985, p. 54). These networks are “neuronally inspired” 

(Rumelhart & McClelland, 1986, p. 130) as many of their processes are functionally 

similar to neural processes but they are not meant to be biologically equivalent to the 

brain or even to parts of the brain. In particular, the learning rule generally used to train 

multilayer perceptrons, back-propagation, has been criticized for its neural implausibility : 

“back-propagation is biologically implausible, inasmuch as error signals cannot literally 

be propagated back down the very same axon the signal came up” (Churchland & 

Sejnowski, 1989). Rumelhart and McClelland (1986) claim that they have made some 

decisions, for practical reasons, that simplify the process of cognition. Through this 

simplification, some biological plausibility is lost. They justify this by seeing the process 

of “model building as one of successive approximations” (Rumelhart & McClelland, p. 

136).

Their functional equivalence is debated in the literature and attempts have been 

made to introduce connectionist models that are more “biologically plausible” (Gluck & 

Myers, 1993; 2001; Schmajuk, 1997). It is generally agreed, however, that despite the 

numerous variables that make a general, biologically equivalent model unlikely at this 

time, PDP models are biologically and functionally similar to brains. This makes these 

models potentially more interesting than their cognitive psychology, flow-chart
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competitors or than their behavioural psychology AP or AD ancestors.

While connectionist models are, to some degree, implementational accounts, in 

that they are functionally similar to the physical structure they model, they can also be 

considered at Marr’s second level of analysis, the algorithmic level.

Connectionism: an Algorithmic Level Account

Algorithmic explanations are concerned with algorithms followed or steps taken 

in information processing. It is this level that has been the traditional focus of cognitive 

and behavioural psychology. Most research and theorizing in these two sub-specialties of 

psychology is done on psychological processes (algorithms), not at either the formal 

language (computational) level or the biological implementational level. While 

connectionist conceptions of cognition have biological themes and can speak to issues of 

implementation, and can have formal aspects and can speak to issues of computation (as 

we will see in the following section), most connectionist models can be understood best 

as theories spoken in the algorithmic language, as models of processes of cognition. 

According to Rumelhart and McClelland, "we believe that we are studying the 

mechanisms of cognition"(1986, p. 120).

In a discussion of recent evidence and the plausibility of principles of association, 

Rescorla (1992) suggests that CS-US associations may need to be considered 

hierarchically to account for the data. He further suggests that hierarchical associative 

functions are implemented in a multilayer network, aligning the notions of the 

hierarchical associative model and connectionist architectures. He describes the primary 

level of explanation at which this argument is made for instrumental learning: "Furthering
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the understanding of how hierarchical organization is learned and functions is a prime 

issue in the analysis of this sort of learning" (p. 70).

While the algorithmic level may be the primary level at which PDP models have 

been considered by some of their proponents (Rumelhart & McClelland, 1986), 

computational level questions can also be answered by connectionist theory. 

Connectionism: a Computational Level Account

There are an almost infinite number of combinations of components of PDP 

networks, therefore, a simple, formal explanation of what PDP networks are computing in 

general is impossible. Most PDP networks, however, are computing one of a number of 

complex forms of multiple regression. According to Sarle (1994, p. 1), “multilayer 

perceptrons are nothing more than nonlinear regression and discriminant models.” As 

networks become more complex, however, so do the statistical algorithms they resemble. 

Some models, such as counterpropagation and self organizing maps (Sarle, 1994) are best 

defined as nonstatistical as they have no statistical equivalents. A perceptron with a linear 

activation function is similar to multiple or multivariate linear regression (depending 

upon the number of output units): if the activation function is logistic, the analogous 

statistic is logistic regression. When nonlinear hidden units are added to perceptrons, the 

math becomes more intricate but the algorithm is still similar to various forms of 

nonlinear multiple regression.

Connectionism as Cognitive Theory 

Marr’s three levels of analysis must be logically related: they also act to constrain 

one another. Implementational accounts are interested in how cognition might actually be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 48

effected in the brain. Implementational accounts are related to algorithmic accounts in 

terms of how the information processing steps might be represented. As an example of 

how one level may constrain the theorizing that is done at a different level, consider the 

following: "any algorithm that would require more specific events to be stored separately 

than there are synapses in the brain should be given a lower plausibility rating than those 

that require much less storage" (Rumelhart & McClelland, 1985, p. 194). Storage is really 

about representation, an issue primarily considered at the algorithmic level o f analysis. 

Representation is relevant at the computational level as well, although the method of 

representation is not important. Computational level analysis of representation only 

require that the "representation is rich enough, in principle, to support computation of the 

required function" (Rumelhart & McClelland, 1985, p. 194) and that the algorithmic level 

explanation of representation is consistent with the computational level.

Implicit in the primarily algorithmic account of cognition and learning that 

connectionist models provide is an implementational account and a computational 

account (Rumelhart & McClelland, 1985). The logical, computational story associated 

with connectionist models at either the algorithmic or the implementational levels is not 

contingency. From that perspective, connectionism must be considered a competitor of 

simple associative theory. However, “ . . .  any behavior that can be characterized by 

associative principles can ipso facto be characterized by the more powerful models. Such 

models should not, therefore, be considered as alternatives to associative models; rather, 

associative rules are simply special cases of the rules employed by more powerful 

theories” (Bever, Fodor, & Garrett, 1968, p.585).
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Connectionist models can produce answers to questions at each of Marr’s three 

levels o f analysis. The answers that are provided by these models are logically and 

causally related. Is this enough evidence to consider connectionism a theory of cognition? 

This question is one that is debated in the literature. Despite the fact that it is unlikely a 

complete cognitive account in its present form, PDP theory provides an appropriate 

approximation to cognition.

Considering connectionist models as theories is not new and has been 

controversial. McCloskey (1991), for example, suggests that there is a large gap between 

simulation and explanation. He describes a scenario in which a black box is connected to 

a keyboard and a monitor. Input in the form of a letter string is given through the 

keyboard and a word/non-word decision is printed to the screen. A phonological 

representation is printed to the screen. A reaction time for each of these processes is also 

displayed. He then suggests that it would be possible to test this machine in a number of 

different situations and establish relatively good correspondence between the responses of 

the machine and the responses of a human sample. From here, McCloskey asks whether 

his black box is a theory of word recognition. It impressively classifies word/non-words 

similarly to human samples. However, in order to classify such a machine as a theory, 

you would want to ascertain how it arrived at a lexical decision; how it represented 

phonology; how particular phenomena of interest came to be seen in machine’s 

functioning. Even if all the components of the black box are described in detail 

(McCloskey does this and, in this particular thought experiment, the components are 

connectionist after Seidenberg and McClelland, 1989), McCloskey suggests that there is
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insufficient information provided to allow the machine to be considered a theory. He 

argues that "although the ability of a connectionist network (or other computational 

device) to reproduce certain aspects of human performance is interesting and impressive, 

this ability alone does not qualify the network as a theory, and does not amount to 

explaining performance" (1991, p. 388).

The Connectionist Black Box

McCloskey’s criticism of connectionism is another echo of a theme in behaviorist 

psychology: the problem of the “black box”. Behaviourist theories have been criticized as 

being unfalsifiable: “black-box theories have an explanatory ceiling that cannot be 

penetrated because of an intrinsic inability of black-box theorists to control the causes of 

behavior” (Kendler, 1989, p. 265). Both connectionists and behaviourists have been 

reproached for being too concerned with what organisms are doing and not concerned 

enough with how the organisms are doing what they are doing. However, most 

connectionists actually consider PDP models primarily as algorithmic accounts of 

cognition, as mentioned previously (Rumelhart & McClelland, 1986), and have been very 

interested in representations (Hanson and Burr, 1990; Maki, 1990). Rumelhart and 

McClelland suggest that this is the primary difference between behaviourist accounts and 

connectionist accounts: “In our models, we are explicitly concerned with the problem of 

internal representation and mental processing, whereas the radical behaviorist explicitly 

denies the scientific utility and even the validity of the consideration of these constructs” 

(Rumelhart & McClelland, 1986, p. 121).

These representations, however, rarely pop out of connectionist models: the things
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that make PDP models interesting (parallel processing; distributed representations) also 

make them complicated. Although complete explanations of representations may be 

desirable for connectionist researchers, representations are often obscured in models, 

making explanations difficult. Connectionist models have been accused of being 

entangled in Bonini's Paradox-. “If a computer simulation falls into this trap, then this 

means that it is no easier (and perhaps is harder) to understand than the phenomenon that 

the simulation was suppose to illuminate” (Dawson, 1998, p. 123). PDP models can 

easily become very complicated and have, most often, been considered impossible to 

interpret. According to Seidenberg, “Connectionist models do not clarify theoretical 

ideas, they obscure them” (1993, p. 229).

If connectionism is to be considered a tool of clarification, connectionist 

researchers must move toward a policy of looking into the “black box” to determine how 

their models are forming and storing representations. This is required if connectionism is 

to be considered an algorithmic account of cognition: process and representation are key 

to this level of analysis. Interpretation o f PDP models may, then, be essential if we hope 

to use connectionist models to inform psychology about theory, which is how McCloskey 

(1991) concludes his argument. According to Rumelhart and Todd “getting a coherent 

picture o f ‘what goes on’ inside a network as it develops, manipulates, and alters the 

representation of the knowledge it processes is vital for our understanding of 

connectionist information processing, and likely for our understanding of the minds these 

systems model” (1992, p. 3). If connectionist models can be shown to have sensible 

internal structure, they may be considered not only interesting, as is McCloskey’s (1991)
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weak compliment to connectionist models, but also informative.

Some researchers have made attempts to understand the internal structure of 

networks, as McCloskey (1991) recommends as a solution to the black box. Some are 

interpreting their networks in terms of regularities in activations of hidden units (e.g., see 

Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995; Christiansen & Chater,

1992; Dawson, Medler & Berkeley, 1997; Elman, 1990; Gorman & Sejnowski, 1988; 

Hanson & Burr, 1990; Willson, Valsangkar-Smyth, McCaughan, & Dawson, 1999) and 

some have purposely inserted structure into their networks (e.g. McMillan, Mozer & 

Smolensky, 1991; Dawson, Medler, McCaughan, Willson, & Carbonaro, 2000).

Connectionist models can, given certain conditions, be considered theories of 

cognition. Given that these models can also provide answers at each of Marr’s levels of 

analysis, the implementational, the algorithmic, and the computational, with future 

“successive approximations” (Rumelhart & McClelland, 1986, p. 136) they may one day 

be considered complete theories of cognition and learning. For now, it may be enough to 

say that successful aspects of these models can be used to direct cognitive theory. Hanson 

suggests that "the simple assumptions in connectionist models that lead to successful 

practical results can generate theories" (1990, p. 511).

General Discussion

The relationship between connectionism and associative learning theory may not 

be as Shanks describes -  with connectionism as an implementational account of 

contingency -  but it does exist. Connectionism is associationist, but not merely 

associationist, according to Bechtel and Abrahamsen (1991). Connectionism is:
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an elaboration of associationism that has benefited (sic) from and can contribute 

to many of the goals of the cognitivism of the last twenty years . . .  Among the 

elaborations that were not even conceived of within classical associationism are: 

distributed representation . . .  hidden units . . .  mathematical models of the 

dynamics of associationist learning, supervised learning . . .  back-propagation, and 

simulated annealing within a self-organizing dynamic network” (p. 102).

If these properties of networks give multilayer networks the edge over perceptrons, their 

presence in models of associative learning may provide those models with the power to 

solve the kinds of problems that multilayer networks are able to solve.

Conceptions of cognition and learning are needed, that adopt features that are 

known to have computational power, algorithmic validity, and implementational 

plausibility. These properties are available in connectionist models. However, while 

learning rules most commonly used to train connectionist architectures may be 

representationally powerful and implementationally interesting, they have been criticized 

for failing to be sensitive to known principles of learning -  an algorithmic level criticism.

As an example, consider the concept of the back-propagation of error through a 

network. The basic theorem dictates that feedback is given to a network that is making an 

incorrect classification about how wrong its classification is. In most learning situations, 

this type of feedback is not provided. Rather, an organism is generally limited to 

information about whether a particular behaviour is right (through the presence of a 

reinforcer) or wrong (through the absence of a reinforcer).

Some attempts to rectify this limitation have been made, most notably by Sutton
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& Barto (1998) who have introduced "reinforcement learning” to artificial models. 

Reinforcement learning is an approach in which only global feedback is given to the 

network. Rather than supervising a network and providing the differences between actual 

and expected responses, reinforcement learning only provides information about whether 

a response is right or wrong. This may be a more realistic method for training networks, 

however, reinforcement learning is cumbersome and training times are often excessively 

long (Hinton, 1989).

Another weakness of back-propagation that has received some attention in the 

literature is a problem known as catastrophic forgetting (Ratcliff, 1990; Robins, 1995). 

Catastrophic forgetting occurs when networks trained in a situation a are retrained in a 

situation b, then retested on problems in situation a. Networks trained using back- 

propagation tend to have poor recovery of learning in situation a; the learning that has 

taken place in situation b writes over the prior learning. The phenomenon of catastrophic 

forgetting in neural networks makes these networks dubious models of learning, since a 

learning organism is easily able to overcome the challenge of learning associations in new 

situations, then needing to recall associations in prior situations. This phenomenon will 

be dealt with in greater detail in Chapter 5.

Recently, Delamater, Sosa and Katz (1999) have demonstrated a use of a 

connectionist model in learning theory construction that goes beyond the conception of 

connectionism as an implementational tool. They use a connectionist network, trained 

using back propagation, to suggest hypotheses for a study that was designed to evaluate 

the two main accounts of discrimination learning: the unique cue hypothesis, and the
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configural approach. They then use the structure of the network to conclude that 

contributions to discrimination learning may be made both by unique cues and configural 

cues. The Delamater et al. study illustrates the use of a connectionist model to guide 

theory as applied to a specific learning task: discrimination learning. I contend that 

connectionist models can be exploited further -  as will be explored in the following 

chapter.

One of the properties of connectionist models considered by Bechtel and 

Abrahamsen (1991, p. 102) to be extensions of classical associationism that ought to be 

considered in modem cognitive models is the notion of distributed representations. This 

issue is considered in detail in the following chapter, in the context of discrimination 

learning.
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Chapter 4 

THE “PROBLEM OF PATTERNING” REVISITED

Over the years, patterning has generated some controversy in the field of 

discrimination learning because it has been difficult to explain in terms of accepted 

theories of representation. Patterning is a special case of conditional discrimination. 

Positive patterning occurs when a subject is trained to respond to a compound stimulus, 

AB, but not when either A or B is presented alone. Negative patterning occurs when a 

subject responds to either A or B alone, but not when A and B are presented in 

compound.

Negative patterning is a problem for associative theory because both stimulus A 

and stimulus B are presented as often without reinforcement as they are with 

reinforcement. There should accrue neither a positive nor a negative association between 

the stimuli and the outcome; in a balanced study, both stimuli have a 50 percent chance of 

occurring with reinforcement. This is a problem for one of the early assumptions of 

conditioning: that associative strength conforms to an additive principle such that the 

associative strength of a compound stimulus, AB, is equal to the sum of the associative 

strengths of the components, stimuli A and B (Spence, 1936). The summative principle is 

inadequate to account for negative patterning because subjects are taught that stimulus A 

alone has a positive weight, stimulus B alone has a positive weight, but that the 

compound stimulus AB has a negative weight. The summative principle, in this case, 

predicts a strong approach response to the compound AB, and cannot account for the
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avoidance learning.

This limitation of the summative principle parallels the issue in connectionism in 

which perceptron-like networks were shown to be unable to learn tasks that are linearly 

non-separable (Minsky & Papert, 1969/88). Negative patterning, described above, is 

formally equivalent to the linearly non-separable logic problem X-OR, described in 

Chapter 3; therefore, the summative principle and perceptrons are similarly limited. In 

connectionist networks and in models of patterning learning, this limitation can be 

overcome in more than one way.

One way of overcoming this problem in perceptrons is by transforming the input 

space -  adding an extra input to a X-OR problem that signals the co-occurrence of the 

other input units modifies the problem such that it can be performed by a simple 

perceptron (Rumelhart, et al., 1986).

A second way of overcoming this limitation in perceptrons is through the addition 

of hidden units that pre-process information. This approach has been considered in 

Chapter 3. In the hidden layer, a hidden processing unit can be used by the network to 

detect the co-occurrence of the input units. This enables the network to treat the 

compound stimulus differently than the elements that compose the compound, and solve 

the problem.

In models of discrimination learning there is also more than one way to solve the 

“problem of patterning” (Bitterman, 1953, p. 123). The solutions that have been offered 

can be classed into two groups. The first group modify the summative principle by the 

addition of a “unique cue" -  this is parallel to the neural network solution of transforming
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the input space by the addition of an extra input unit. The second group of solutions 

overcome the limitation by assuming a process in which the co-occurrence of the inputs 

creates a configural representation that is treated holistically and differently than the 

elements that make up the compound -  this is parallel to the neural network assumption 

of preprocessing hidden units. These learning solutions will be considered in the next 

sections.

Solutions to the Problem of Patterning 

Patterning: A Unique Cue Account

To account for the limitation of the summative principle, alternatives were 

introduced, the earliest of which was the unique cue approach (Bitterman, 1953). 

According to this theory, a subject distinguishes between a compound stimulus and the 

components of that stimulus via a “unique cue” that is present during the compound 

stimulus trials but not present on the simple stimulus trials. In the negative patterning 

situation, A and B both acquire a positive weight but when they are presented together, 

the unique cue, UAB, has a strong enough negative weight that it overcomes the sum of the 

positive weights of A and B.

Improvements to the simplest unique cue model include the influential Rescorla- 

Wagner model (Rescorla & Wagner, 1972) that, while it explains some phenomena that 

are problematic for the simple unique cue approach, fails to explain other phenomena 

such as single trial conditioning and some types of discrimination problems (Pearce, 

1994).

In general, these theories can be referred to as elemental theories: they depend
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upon representations of the elements and the summation of the associative strengths 

associated with these elements to account for compound conditioning.

Patterning: A Configural Cue Account 

An alternative to unique cue approaches has been the configural cue account, in 

which a compound stimulus AB is treated holistically, and differently than the elements 

that make up the compound (Spence, 1952). The representation of the compound stimulus 

is a single representation but it is affected by the similarity of the compound to other 

stimuli (Gluck, 1991).

In support of a configural hypothesis, Pearce (1994) has developed a connectionist 

model with a layer of input units, a layer of what Pearce calls “output units” that intervene 

between the units in the configural layer, a layer of hidden “configural” units and an 

output unit that Pearce identifies as an unconditioned stimulus. There are as many “output 

units” in the model as there are elements and as many configural units in the model as 

there are combinations of these elements. Each of the configural units is prepared to key 

in on a particular stimulus; either an elemental stimulus or a compound stimulus (e.g. A 

or AB or ABC etc.). Connections between units remain latent until explicit training 

occurs that awakens particular connections in the network. Pearce's model has had 

success in predicting many learning phenomena and has been very influential in 

extending theories about compound stimuli.

Elemental and Configural Processes 

Some researchers who have been concerned with the learning of compound 

stimulus tasks have begun to look at how these processes may interact and whether other
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processes may be at work. Kehoe and colleagues, for example, (Bellingham, Gillette- 

Bellingham, & Kehoe, 1985; Kehoe, 1986; 1988; Kehoe & Gormezano, 1980; Kehoe & 

Graham, 1988; Weidemann & Kehoe, 1997) have investigated negative and positive 

patterning, primarily in the nictitating membrane response of the rabbit. In this particular 

preparation, Kehoe and colleagues have observed both summative processes and 

configural or “Gestalt-like” processes. In a study evaluating theories of the conditioning 

of compound stimuli, Bellingham et al. (1985) found that a simulation of the unique cue 

hypothesis predicted that positive patterning should proceed more slowly than negative 

patterning: a prediction that is contradicted by the empirical data presented. They also 

simulated the configural hypothesis in which there was some generalization between 

stimulus elements and compounds to which the elements belonged. They found that the 

configural hypothesis failed to predict excitatory summation early in training during 

acquisition of the negative patterning task. Kehoe and Graham (1988) in a study 

investigating stimulus compounding (training with two distinct stimuli) and negative 

patterning, found no support for a pure configural hypothesis and some support for a 

unique stimulus hypothesis.

Taking this mixed evidence into consideration, it seems unlikely that either a 

simple unique stimulus theory or a purely configural theory is able to account for the 

complex process of learning compound stimulus tasks. While an elemental theory may be 

better able to account for stimulus generalization and initial response to the compound in 

negative patterning, configuration describes a more parsimonious, although still 

somewhat incomplete, solution to the negative patterning task.
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Recently, Delamater and colleagues (1999) have restated that Pearce’s configural 

model is inadequate to account for some phenomena. They have proposed that a 

combination of Pearce’s configural account and an elemental account better predicts 

experimental results. The Delamater et al. model looks similar to the Pearce model: the 

same number of input units and configural units, and a single US output unit. The primary 

difference between the models is in the connections between the units. While Pearce’s 

model contains only connections between units in one layer and units in the next layer, 

Delamater et al. have added connections between the input layer and the US output unit 

that skip the intervening layer. Recall from Chapter 3 that two-layer networks -  networks 

without any hidden units -  that are trained with the Widrow-Hoff learning rule are 

instantiations of the Rescorla-Wagner Model (Rescorla and Wagner, 1972). The 

Rescorla-Wagner model is a variant of the simple elemental hypothesis: while the 

connections in the Pearce model are “configural connections”, the connections linking the 

input layer directly with the output layer add a “unique cue” or Rescorla-Wagner 

component to the Delamater et al. model.

Linear Regression Model 

In statistical terms, the unique cue model, the configural account and the blend of 

the two, can all be viewed as linear regression models in which A and B are predictors, 

and either UAB or AB or the configural unit that responds to input AB represents the 

interaction between them. In a problem such as the negative patterning problem described 

above, in which there are four states (A off, B off; A on, B off; A off, B on; A on, B on),
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there are five terms required in the regression equation (yljk = px + a, + pk + aPjk + ejjk).2 In 

a slightly more complex problem in which there are three stimuli (A, B, and C), there are 

eight (23) possible states and nine terms in the regression equation (yljk| = pT + a, + pk + X„, 

+ apjk + aXjm + pX1tm + apX,kni + e1)k).3 A subject learning a negative patterning problem 

with just three inputs would be required to learn and remember eight contingencies. If the 

problem were increased to seven stimuli, the subject would need to learn and remember 

128 (27) separate contingencies -  a difficult problem.

In a discussion about representations in models of learning, Kehoe (1988) 

acknowledges the special challenge to models of discrimination learning posed by 

negative patterning. He discusses the process of converting a non-linear problem like the 

simple, two element negative patterning problem into a linear problem with the addition 

of a special input that responds to the joint occurrence of the two elements. This move is 

one that is equivalent to the move made by the elemental theory camp with the 

introduction of the unique cue. According to Kehoe, however, “this tactic for solving 

nonlinear representation problems would create an explosive proliferation of special 

inputs” (1988, p. 412; also Kehoe, 1990).

2

The general linear model in which y1Jk is the score of the i* subject in the j th level of Aj 
and the k̂ , level of Bk; pT is the grand mean; a} is the treatment effect of factor AJ (pAj - 
pT); pk is the treatment effect of factor Bk; apjk is the interaction effect of treatments 
and Bk ; and eljk is the error component of the equation.
3

As above, the general linear model in which yjjk, is the score of the i,,, subject in the j th
level of Aj, the k^ level of Bk and the m̂ , level of Cm; pT is the grand mean; dj and pk are
as above; is the treatment effect of factor Cm; aPJk, aX,m and PX^ are 2-way interaction 
effects; apX,km is the 3-way interaction effect of treatments A}, Bk, and Cm; and eIjk is the
error component of the equation.
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Whether the special units are input units in a two-layer network or are extra 

hidden units in a multi-layer network that are required to provide representations of the 

compound stimuli (as in the configural cue account of compound stimulus learning), it 

seems evident that the number of processing units required is a power function of n, in 

which n is the number of elements in a discrimination problem.

Other connectionist models of configural learning that have demonstrated some 

success in accounting for phenomena associated with compound stimuli can also be 

critiqued on this level. Schmajuk and DiCarlo (1992), for example, whose model inspired 

the unique cue connections in the Delamater et al. network, present a connectionist model 

in which two simple stimuli are presented as inputs along with an input unit representing 

the context. These three inputs are massively connected to three configural stimulus 

nodes that are massively connected to six “simple and configural stimulus-US 

associations”. These configural and simple association nodes are also massively 

connected to the 3 nodes in the input layer. The 6 configural and simple association nodes 

are connected to a single output unit, the US. Schmajuk and DiCarlo’s model has had 

great success at accounting for many discrimination learning phenomena (for a list of the 

model’s successes, see Schmajuk, 1997). However, the number of parameters in this 

model is large for the simple tasks it is designed to perform: the discrimination of 2 

elements and their compound. This type of solution to the “data fitting” problem in 

discrimination learning is a likely case of overfitting, similar to a regression equation with 

many more predictors than data points to predict.

A promising and manageably-sized network model of discrimination learning has
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been proposed by Kehoe (1988). Kehoe’s model has successfully predicted many learning 

phenomena. In this model, two elements T and L are presented as sensory inputs linked to 

two hidden units that are connected to a single output unit. The model also contains a 

single US sensory input unit that is connected both to the hidden layer and directly to the 

output unit. This US unit, in spite of its name, actually has the ability to function as a 

special input in the simple discrimination tasks that this network was designed to 

perform. Whether this particular model would require additional “US” input units when 

scaled-up remains to be seen.

The “explosive proliferation” of parameters in recent models of discrimination 

learning requires us to consider that current conceptions of discrimination learning may 

be less than parsimonious. To further this argument, let us consider that, while the 

processing of associations is done in the mind, ultimately, representation is traced back to 

the physical structure, the brain, and the brain is a finite machine. Demonstrating that the 

brain does not have the capacity to solve simple discrimination problems by representing 

compound stimuli distinctly from their components can be considered a challenge to the 

unique cue hypothesis, the configural cue hypothesis, and any model that blends these but 

requires a configural or a special unit for each compound stimulus.

Ballard's Packing Constraint

The number of neurons in the brain is vast -  but not infinite. The limitations of the 

brain have been informally recognized, but the concept of the boundedness of the brain 

was initially operationalized by cognitive scientist, Dana Ballard (1986). As an 

illustration, Ballard used a color discrimination task to demonstrate that neuronal demand
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can easily surpass supply when the assumption is made that neurons represent specific 

stimuli. This problem, termed the packing problem, can be quantified by the equation U = 

Nk in which U is the number of processing units required, N is the number of inputs (in 

this case, number of discemable differences within each color category) and K. is the 

dimensionality of the unit (or the number of colors considered). In line with this equation, 

Ballard found that U easily surpasses the number of neurons available, in order to 

perform a particular, reasonably simple, colour discrimination task.

By extension, assuming one neuron per stimulus, unique cue or configural cue 

encoding by the processes involved in some of the connectionist models discussed in this 

chapter, would also often surpass the limits of an animal brain for complex tasks such as 

navigating through an environment, locating a distant food source, or hunting moving 

prey.

Solving the Packing Problem

In order to solve a complex problem with multiple stimuli, a learner takes 

shortcuts. It is well understood that the notion that one neuron could be responsible for a 

single representation is an oversimplification. This oversimplication can be thought of as 

a localist assumption. We know, however, that a single neuron can be partially 

responsible for many representations, in concert with many other neurons, and it is a 

pattern of neuronal activation that allows discrimination among these representations.

The packing problem was first introduced by Ballard in the context of 

connectionism. Power limitations of locally coded models was acknowledged by other 

proponents of PDP modeling as well (e.g. McClelland, 1986; Rumelhart & McClelland,
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1986). In these circles, the packing problem was resolved by the addition of some 

properties of connectionist models that allow for patterns of activation across units in a 

network. For example, connectionist networks can be constructed such that individual 

“neurons” are used in multiple representations in a manner analogous to overlapping 

receptive fields in the visual system. According to Hinton, McClelland and Rumelhart 

(1986), “each entity is represented by a pattern of activity distributed over many 

computing elements, and each computing element is involved in representing many 

different entities” (p. 77).

In order to accomplish representations that are distributed across hidden units in a 

connectionist model, it is necessary to restrict the number of hidden units in the model 

such that the number of hidden units is fewer than the number of input combinations to be 

represented. In a situation then, in which there are three stimulus elements, A, B, and C, 

and all the possible compounds of these elements, the number of hidden units must be 

less than 9, the number of input combinations. If a model has as many hidden units as it 

has input patterns, a hidden unit can key in on only one input pattern. Distributed 

representations are not required of such a model.

In the case of the models used by both Pearce (1994) and Delamater et al. (1999) 

there are as many hidden units as there are input patterns. This does not appear to be a 

problem for the learning of the simple tasks that these networks simulate, but becomes a 

problem when these models are extended to account for learning in more complex, “real 

world” tasks because the power that is required to solve this type of problem exceeds that 

which is available to the model.
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Few scientists today would argue that any representation could possibly be 

contained in a single neuron. Both the logic of the packing constraint and our current 

knowledge about the function and anatomy of the brain make this argument implausible. 

Neurons are massively interconnected and interdependent. The primary assumption, 

therefore, guiding the packing constraint (one stimulus, one neuron) is, then, obviously 

false. Rather than nullifying Ballard’s argument, however, this fact underlines Ballard’s 

message: something besides local coding is happening in the brain. If we assume that 

some set of neurons is responsible for a particular representation rather than a single 

neuron, the capacity of the brain to represent large numbers of stimuli is even more 

apparent, unless we assume overlapping representations. Overlapping representations are 

a “given” in terms of neurobiology. Why shouldn’t we be using this evidence to build 

more functionally and psychologically plausible models of learning, that are more and 

more often instantiated in “neuronally inspired” (Rumelhart & McClelland, 1986, p. 130) 

connectionist networks?

The Inductive Approach

While connectionist models are often used as deductive tools to make predictions 

based on a particular theory that is instantiated in the network, networks can also be used 

inductively to guide theory.

One advantage of connectionist systems over classical, rule-based systems in 

cognitive science is that a network is not required to produce representations that make 

semantic sense (Rumelhart & Todd, 1993). Rather, a network dynamically develops a set 

of representations that best fits the task of mapping the inputs to the outputs. While
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networks in which representations are intentionally locally coded are not unknown in the 

literature (e.g. McClelland & Rumelhart, 1981), networks with distributed representations 

are generally considered more desirable and interesting (Rumelhart & Todd, 1993). 

Encouraging local representations by providing sufficient hidden units to achieve this 

discourages the “semantics-free” property that is appealing in connectionist networks. As 

each representation can be found in a single hidden unit, the unit acts as a rule that 

classifies the input as some category of output. A fully locally distributed network is 

simply an instantiation of a theory in which the rules of the theory are wired, in advance, 

into the network.

While there is nothing particularly wrong with instantiating a theory in a network 

to derive novel predictions in a deductive manner, it is not the only way that connectionist 

networks can be used. By turning the question asked around, and starting, inductively, 

with the data, it is possible that we may be able to answer different types of theoretical 

questions.

Pearce's connectionist model (1994) is, deliberately, an instantiation of Pearce’s 

configural theory of compound conditioning (1987, 1994). The network of Delamater et 

al. (1999) contains components that correspond to configural units and direct connections 

that correspond to elemental associations that are, again, deliberately included in the 

network architecture.

Some interesting questions arise from this discussion. What happens in a network
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if, rather than hardwiring or handwiring* it to perform an input/output mapping according 

to either a configural, an elemental or a blended theory, elemental or configural processes 

are allowed to emerge in a network during training? And what happens in a network if it 

is constrained such that one-to-one relationships of input patterns to hidden units are 

disallowed?

In the following simulations, there are fewer hidden units in the hidden layer than 

there are input patterns to classify in the particular problems to be learned. Not only does 

this encourage the networks to find their own input/output mappings but it also is closer 

to a solution that can fit within the constraints imposed by the packing problem and takes 

advantage of the power of a PDP model by asking a simple network to perform a 

complicated task.

Study I: Configural Cues in Patterning

This study demonstrates negative and positive patterning learning in a model 

similar to Pearce’s configural cue model, but with fewer hidden units than inputs, 

requiring distributed representations. The method simulates that of Delamater et al. who 

pretrained rats and networks on a task, then trained them on either a negative or positive 

patterning task, using previously reinforced elements or previously not reinforced 

elements.

The rats demonstrated facilitation of learning for the negative patterning task

4

Here I distinguish between “hardwiring” a network with fixed units that are non-adaptive 
and “handwiring” an adaptive network that is required to perform a task in a determined 
manner, simply as a function of its architecture.
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when the elements had been previously reinforced. They also found slight facilitation for 

the previously reinforced elements group for the positive patterning task. Relevant to our 

discussion here, they also found initial excitatory summation in both previously 

reinforced and not reinforced conditions in the negative patterning task, that is, the rats 

responded initially more to the previously unseen compound stimulus AV than to either 

element A or V alone, in spite of the fact that the elements were reinforced while the 

compound was not. Initial excitatory summation is consistent with findings from other 

labs in both negative patterning (in which elements A and B are reinforced while the 

compound is presented during training without reinforcement) and in stimulus 

compounding (in which elements A and B are reinforced during training and the 

compound is tested subsequent to the training) and with other preparations (Bellingham, 

et al., 1985; Couvillon & Bitterman, 1982; Kehoe, 1986; 1988; 1998; Kehoe & 

Gomezano, 1980; Kehoe & Graham, 1988; Kehoe, Home, Home & McCrae, 1994).

In the Delamater et al. study, the configural cue network failed to produce the 

same results as the rats. In particular, although the researchers could find initial excitatory 

summation in the previously reinforced condition in the negative patterning task, they 

were unable to produce it in the not reinforced condition.

This study is meant to be a replication of the patterning study of Delamater et al. 

(1999); the major exceptions being that it employes a network in which the number of 

hidden units is less than the number of inputs to be discriminated, therefore requiring 

representations that are not simple one-to-one relationships between input patterns and 

hidden units, and the network is trained simultaneously on negative and positive
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patterning.

Method

Networks

All of the networks trained in this study had 10 input units, 4 hidden units, and a 

single output unit. All processing units had logistic activation functions. The units in the 

input layer were each connected to all hidden units; the hidden units were all connected to 

the output unit. There were no direct connections between the input units and the output 

unit. Prior to training, the connection weights between processing units were randomly 

started between -.5 and +.5. The network is depicted in Figure 4-1.

Figure 4-1. Simulation Study 1: A PDP model that simultaneously leams the
negative and positive patterning problems. Units A - D are used to train 
the positive patterning task; Units E - H are used to train the negative 
patterning task; Units X and Y are background stimulus cues (see text 
for details).
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Input Coding

Elements A through D were used for training on positive patterning, while 

elements E through H were used to train the network on the negative patterning task. 

Elements A, B, E and F were never presented together, and were always presented with 

background stimulus X , simulating similarity among these 4 stimuli (e.g. being auditory 

cues). Similarly, elements C, D, F and G were always presented with background 

stimulus Y, simulating a commonality (e.g. being visual cues).

In this simulated training situation, the input patterns were coded across 10 input 

units. Cues A through H corresponded to the first 8 (binary) input units of the network 

with a value of 1 indicating the presence of a particular cue and a value of 0 indicating its 

absence. Background cues X and Y were coded in the last two input units in the network 

and were, again, either off (0) or on (1). This design allows simultaneous training on both 

the negative and the positive patterning tasks, while providing a previously reinforced and 

a previously not reinforced condition for each task. The simultaneous training is 

undertaken in this study to underscore the representational power available in a relatively 

simple neural network.

Training

All networks in this study were trained using error back-propagation (Rumelhart, 

et al., 1986) in which an error term derived from the difference between the expected 

output of the network and the actual output of the network is propagated back through the 

network and the connection weights are adjusted. Presentation of the input patterns was 

randomized. Connection weights were adjusted after each pattern presentation. The
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learning rate was 0.1 and all networks were pretrained and trained without momentum.

Pretraining. The pretraining phase consisted o f presenting all networks with each 

element (A through H) with its appropriate background stimulus. AX, CY, EX, and GY 

were presented with reinforcement, while the remaining elements were presented without 

reinforcement. These pretraining input patterns were presented to the networks until the 

response of the network fell within .1 of the expected output state for all patterns.

Patterning. In the previously reinforced condition, the pretrained networks solved 

negative and positive patterning problems using previously reinforced elements (A, C, E, 

and G) in which the elements A and C were never reinforced but the compound always 

was reinforced (AX°, CY°, AXCY*) and elements E and G were always reinforced but 

the compound never was (EX", GY", EXGY0).

In the previously not reinforced condition, not reinforced elements were used (B, 

D, F, and H). B and D were used for the positive patterning task (BX°, DY°, BXDY"). F 

and H were used for the negative patterning task (FX \ HY", FXF1Y0).

Networks were trained until their output fell within .1 of the expected output for 

all patterns in the training set.

Results and Discussion

As in the Delamater et al. (1999) study, these networks did not display initial 

excitatory summation in the previously not reinforced condition for the negative 

patterning task, when that task was isolated from the positive patterning task for analysis 

(see Figure 4-2).
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Previously Not Reinforced Elements
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Figure 4-2. Results for Simulation 1, negative patterning task, with no pretraining of 
the elements. Notice that the training proceeds in a straightforward 
manner and that no excitatory summation is present during training.

Excitatory summation was found in the previously reinforced condition for negative 

patterning (see Figure 4-3).

As mentioned in the earlier introduction of their model, Delamater et al. overcome 

this deficiency in the connectionist model by using a model that has direct network 

connections between the input and output layers that bypass the hidden layer, in addition 

to the connections between the units in a layer and each unit of adjacent layers. This 

model produces initial excitatory summation in the negative patterning task when it is not 

exposed to a pretraining manipulation. This type of a move significantly increases the 

computational power of a network. While increases in power are often desirable, a
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Previously Reinforced Elements
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Figure 4-3. Results for Study 1, negative patterning task, with pretraining of the 
elements. Notice that there is excitatory summation in this condition.

problem as simple as negative or positive patterning may underwhelm a huge network. 

This model, although it produces the desired result, is likely unnecessarily complicated 

for the task it is asked to perform.

An alternative to creating a network that overfits the patterning task is to attempt 

to fit the data by adjusting one of the other degrees of freedom in a simulation. As 

discussed in Chapter 3, connectionist networks are made of many components. Delamater 

et al. altered the connectivity of the network to fit the data. In Study 1 of this thesis, the 

number of processing units in the hidden layer was adjusted. In the following study, it is 

demonstrated that changing the activation function of even a single processing unit can 

have an effect on the behaviour produced by that network.
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Study 2 demonstrates that a relatively complex task -  simultaneous negative and 

positive patterning training -  can be performed by a simple network, as in the previous 

study with the simple modification of an activation function, and can produce initial 

excitatory summation when there is no pretraining manipulation.

Study 2: Initial Excitatory Summation 

Method

Networks

The model is a connectionist network containing primarily integration device 

processing units (processing units with logistic activation functions) and one value unit. 

The processing units are arranged in three layers: an input layer of six binary units in 

which the input patterns are represented and a hidden layer of three integration devices. 

The output unit is a value unit, that is, it has an activation function that is non-mono tonic. 

This value unit has a gaussian activation function (Dawson & Schopflocher, 1992; 

Dawson, 1998) that has the effect of transforming the incoming signal such that 

intermediate signals produce the highest output for the network, and extreme (either high 

or low) incoming signals produce lower activation in the output unit. The network is 

depicted in Figure 4-4.

Input Coding

The training set was the same as that used to train the networks in Study 1. It 

combined the negative and positive patterning tasks. The difference is that, given that 

there was no pretraining manipulation in this task, four of the elements were unnecessary. 

Elements A and B were always paired with background stimulus X. Elements C and D
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A B C D  X V

Figure 4-4. Network used in Study 2. A and B are elements used in negative
patterning trail ing; C and D are elements used in positive patterning 
training; X and Y are background stimuli (see text for details).

were always presented with background stimulus Y. Positive patterning contained input 

patterns AX°, CY°, AXCY*; negative patterning contained input patterns B X \ D Y \ 

BXDY0.

Training

The network was trained with a variation of the generalized delta rule (Dawson & 

Schopflocher, 1992) that is designed to train networks containing value units. The 

learning rate was set at .03 with no momentum. The criterion for a “hit” was . 1. 

Connection weights prior to training were randomly assigned, between the values of -.5 

and .5. Weights and biases were updated after each pattern presentation, and order of 

presentation of the patterns was randomized.
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Positive Patterning
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Figure 4-5. The course of learning for the positive patterning schedule in Study 2.

Results

After 838 epochs, the network converged. Learning was measured during training 

by recording the activation of the output unit every 50 epochs. The course of learning is 

shown in Figure 4-5 for positive patterning, and Figure 4-6 for negative patterning.

In the positive patterning situation with this network, I observe initial high 

responding by the network for both stimulus elements and the stimulus compound. The 

network reduces responding to all stimuli before making a strong discrimination. The 

network always responds, appropriately, more to the reinforced compound than to the 

unreinforced elements.
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Negative Patterning
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Figure 4-6. The course of learning during the learning of the negative patterning 
schedule.

In the negative patterning situation, the network also begins with high responding 

to the stimulus elements and the compound. Until around 550 sweeps, however, the 

network responds more to the unreinforced compound than to either of the reinforced 

elements. In other words, the network displays initial excitatory summation.

Discussion

It was mentioned earlier that internal representations are “semantics-free” -  that 

is, they have no “handwired” theory in the hidden layer. The input-output mapping into 

which a network settles can sometimes be semantically interpreted however, by the 

extraction of rules from the hidden layer (Berkeley, et al., 1995; Christiansen & Chater, 

1992; Hanson & Burr, 1990; Dawson, 1998; Dawson, etal., 1997; 2000; Elman, 1990;
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Willson et al., 1999). These interpretations give information about how a network is 

solving or has solved a particular problem and can be useful when looking for processes 

at work in a system. To answer process-type questions like the ones above, we need to 

look at the pattern of activation across the hidden units to determine what the network is 

doing and to see whether a semantic interpretation can be made.

Interpreting the network

Selected hidden unit activations for the negative patterning part of the problem are 

presented in Table 4-1. No hidden unit is able to key in on a particular pattern by the end 

of training, although hidden unit 3 is primarily responsible for representing the compound 

stimulus, BXDY. Given this finding, it is tempting to suggest that hidden unit 3 has 

emerged as a configural unit and that the representations of the elements have been 

distributed across the other 2 units in the network. After the network has converged, the 

internal activation of hidden unit 3 is .638 when BX+ is presented, .705 when DY+ is 

presented, and .788 when the compound BXDY- is presented. This finding could be 

viewed as consistent with the configural theory of Pearce (1987, 1994) in which 

presentation of the elements triggers a response in “configural” hidden unit 3 because of 

their similarity to the compound (Gluck, 1991).

If the representations were contained only within the hidden units, however, we 

could expect to see some marked changes at approximately 500 sweeps in hidden unit 

activations, given the marked behaviour change of the network at this stage of training. 

Instead we see relatively consistent (and small) changes in the internal activity of the units 

between 500 and 600 sweeps. This finding illustrates the fact that representations in PDP
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Sweeps Hidden Unit #1 

BX+

Hidden Unit #2 

BX+

Hidden Unit #3 

BX+

100 .296 .366 .477

500 .156 .266 .543

550 .174 .260 .567

600 .195 .264 .601

838 .216 .275 .638

Sweeps Hidden Unit #1 

DY+

Hidden Unit #2 

DY+

Hidden Unit #3 

DY+

100 .311 .314 .564

500 .183 .212 .632

550 .206 .197 .654

600 .238 .194 .682

838 .292 .198 .705

Sweeps Hidden Unit #1 

BXDY-

Hidden Unit #2 

BXDY-

Hidden Unit #3 

BXDY-

100 .159 .211 .532

500 .040 .099 .636

550 .042 .082 .677

600 .045 .073 .732

838 .048 .066 .788

Table 4-1. Selected hidden unit activations for negative patterning in Study 2.
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models are contained not just in the processing units in the network, but also in the 

connections between the units. In this particular case, the representations are not simply 

elemental or simply configural, although evidence for behaviour driven by both of these 

processes is in evidence in this network: the representations are distributed.

General Discussion 

The studies reported in this chapter have demonstrated that psychologically 

interesting results can be drawn from networks with fewer hidden units than input 

patterns to discriminate. These studies are meant to demonstrate that it may be possible 

for a model of discrimination learning to conform to the packing constraint by using 

distributed representations -  that is what PDP models are primarily designed for. But 

what does this mean for theories of discrimination learning?

Given that the network used in Study 2 fits the experimental data reasonably well, 

compared to a model that requires the addition of direct connections between the input 

layer and the output layer and local representations within the hidden layer, I suggest that, 

within this limited domain, these extra connections and extra processing units may be 

unnecessary in a model of discrimination learning. Without any “elemental” connections, 

the network looks much more like the configural model of Pearce. It is, however, a 

configural account with a difference since there is no longer a one-to-one mapping of 

stimulus pattern to hidden unit.

As mentioned previously, Kehoe and colleagues (Bellingham, et al., 1985) have 

noted the advantages of elemental models that can explain summative processes in 

networks and stimulus generalization. The network presented in Study 2 of the present
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chapter clearly demonstrates summation at an appropriate stage of acquisition of the 

negative patterning task. Elemental processes, however, seem unable to account for the 

learning of problems that require differential associations of the elements and their 

compounds as is the case in positive and negative patterning. The network presented in 

Study 2 is able to represent elements separately from their compounds, given that it is 

able to solve patterning problems.

Given the present data and other sources (Kehoe, 1988; 1998; Schmajuk, 1998; 

Schmajuk & DiCarlo, 1992; Delamater et al., 1999), it seems likely that both elemental 

and configural processes contribute to the learning of complex discriminations. These 

processes may be important at different stages of acquisition in a connectionist network: 

elemental processes may be important during the initial phase of training and give way to 

configural processes later in training. It is well known that connectionist models are 

dependent on the process of summation. The equivalence of the Widrow-Hoff learning 

rule (Widrow & Hoff, 1960/1988) used to train two-layer networks and the summation- 

based Rescorla-Wagner model (Rescorla & Wagner, 1972) bears this out (Kehoe, 1998; 

Sutton & Barto, 1981). We know, however, that the process of acquiring a behavioural 

response to a presented stimulus requires at least two phases: an encoding of inputs stage 

and a conversion of the coding to a behavioural outcome. This requires a multi-layer 

solution (see Chapter 3). While inputs to a particular node in a network are generally 

added together, that sum is then transformed according to an activation function that may 

be a step-type threshold function or may be a non-linear function as is used in the output 

unit of network presented in Study 2 of this chapter. So, although PDP models are based
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upon summative principles at the level of micro-processing in a particular node, the 

input-output mapping contained in a network generally bears little resemblance to simple 

summation.

While elemental processes are in evidence, the connectionist models presented in 

this chapter clearly represent compounds as distinct from their components -  that is, they 

contain configural representations. They are different from other configural models, 

though, in the nature of the representations that are distributed across the layer of hidden 

units, rather than being locally coded in a single unit.

The intent of this chapter is to encourage exploration into the notion of distributed 

representations in models of learning. Networks that contain distributed rather than purely 

local representations can provide models of learning with representational power, without 

violation of the packing constraint. These networks have many advantages aside from the 

power that they conserve that have not been discussed in detail in the present chapter, 

however. They are less brittle when damaged and are sensitive and adaptable to changes 

in the environment (Hinton, et al., 1986). Networks that contain distributed 

representations also show stimulus generalization, which is a phenomenon that initially 

motivated Pearce’s interest in configuration (1987). Stimulus generalization happens in 

distributed networks because of the fact that (by definition) similar representations 

overlap in the network (Hinton, et al., 1986; Rumelhart & Todd, 1993): when the 

compound stimulus AB is presented, it partially stimulates the representations of A and B 

that are coded across some of the same hidden units.

Networks with distributed representations may have a serious disadvantage,
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however. Networks that are highly distributed may be particularly susceptible to a 

phenomenon that has been called catastrophic forgetting or catastrophic interference 

(Ratcliff, 1990; Robins, 1995). The problem of catastrophic forgetting in networks will be 

explored in the following chapter.
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Chapter 5 

CATASTROPHIC FORGETTING

An issue in connectionism has been a tension that exists between stability and 

plasticity (Grossberg, 1987; Robins, 1995) in networks. A network is a model of learning, 

as we have seen, and of memory -  in terms of the representations that are produced 

within the network. In this sense, it is important that these representations be preserved 

over time -  that they be relatively stable. However, as models of learning, they must also 

be flexible or plastic enough to deal with new inputs and situations. These two processes 

are equally important in a model of learning and representation but are at odds with one 

another: as a network’s stability increases, its plasticity decreases and vice versa (Robins, 

1995, pp. 123-124).

Perhaps because of the strong relationship between connectionist models and 

theories of learning, as outlined in Chapter 3, stability often suffers in favour of highly 

plastic learning machines. Given this bias, highly plastic networks are often prone to a 

phenomenon called catastrophic forgetting or catastrophic interference5 (Carpenter,

1997; Carpenter & Grossberg, 1988; French, 1992; 1997; Lewandowsky, 1991; 

Lewandowsky & Li, 1995; McCloskey & Cohen, 1989; Ratcliff, 1990; Robins, 1995; 

1996) that arises from their lack of stability. Catastrophic forgetting occurs when the 

learning of new information by a network causes old information to be lost. This has been

5

I will be using the term catastrophic forgetting for the sake of simplicity throughout this 
paper, rather than catastrophic interference.
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a serious setback for connectionism.

While catastrophic forgetting is a setback for a simulation of the behaviour of 

organisms, representational failures within a system "are frequently more important than 

successes, because failures can reveal critical constraints on the modeled natural system" 

(Pavel, 1990). This is, indeed, part of the process of learning from learning machines -  

interpreting the relative successes and failures of a simulation may lead us to understand 

more about the natural system that it models. However, any model of learning and 

memory that cannot overcome this simple issue of representation must be deemed a 

questionable model, especially given the argument that connectionist models should be 

considered more than an implementational level account of cognition.

Particularly prone to this problem are networks in which there are distributed 

representations (French, 1992; 1997), that I argued in favour of adopting as models o f 

learning in the previous chapter. How can this dilemma be solved? Distributed 

representations offer much to connectionist models of learning -  does there need to be a 

tradeoff between interesting and powerful networks with distributed representations and 

networks that can handle stable representations while continuing to learn in new 

situations? This question is explored in the rest of this chapter as I consider, first, why 

there is loss of information in networks, how the question of catastrophic interference has 

traditionally been studied and whether the forgetting is reasonable or catastrophic in 

discrimination learning paradigms. I will also consider a set of simulations in which I 

demonstrate remarkable savings in networks, rather than catastrophic forgetting. Studies 

3-A and 3-B look into the question of the measurement of forgetting. How is forgetting
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best measured for discrimination tasks? Study 4 is an investigation of what is required of 

the problem to produce forgetting in networks. Studies S-A and 5-B are an attempt to 

replicate studies that indicate that distributed networks are more prone to catastrophic 

forgetting than are other, more local networks.

Why do Networks Forget?

First, let us consider the question of why information is lost in connectionist 

networks. If we think of a neural network as a function approximator that maps a set of 

inputs to a set of outputs according to a particular function, F(i),. When new information 

is encountered, F(i), must be altered to account for the new information, creating F(i):. If 

the new function, F(i): is similar to F(i)h it is unlikely that data coded by the first 

function will be mis-classified according to the new function, F(i):. If the two functions 

are very different, however, it is likely that there will be significant interference (see 

Figure 5-1; from Robins, 1995, p. 136). One would expect, then, that if the intervening 

task is quite similar to the task in situation A , little catastrophic forgetting should be seen. 

Conversely, if the intervening schedule is very different from the schedule in situation A, 

or is opposite to the schedule in situation A, we should see much catastrophic forgetting.

For the studies in this section, I have selected two discrimination learning tasks 

that I have described in greater detail in other chapters: negative and positive patterning. 

These patterning schedules are particularly appropriate for a study of catastrophic 

forgetting, because the two tasks are almost opposites of each other. We should see high 

forgetting of situation A (negative patterning) after networks are trained on situation B 

(positive patterning) because the function associated with situation A is so different than
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Old Data Point
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New Data Point
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Figure 5-1. Neural networks as function approximators: When functions learned in 
Situation “a” are very different than functions learned in Situation “b”, 
loss of fit with data points in Situation “a” is likely.

the one associated with situation B.

Study 3-A

Forgetting or Savings: Rate of Re-acquisition

This study, and the ones that follow, are part of an exploration into forgetting in 

networks. Studies 3 and 4 explore the notion that the term catastrophic forgetting may be 

a little dramatic for the forgetting phenomenon that we see in networks, at least where 

discrimination learning tasks are modeled. We consider, in all studies in this chapter, a set
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of networks trained first on negative patterning, then on an interfering task, positive 

patterning, then tested for recall of negative patterning. The first group of networks, for 

this study, is compared to a control group of networks, trained only on the last two 

phases: positive patterning, followed by negative patterning. This study begins by asking 

how forgetting might be measured appropriately when these learning tasks are 

considered.

How is Forgetting Measured?

The cognitive process of forgetting has aroused much attention in cognition and 

learning and has, no doubt, been measured many ways. In terms of the catastrophic 

forgetting literature, however, some conventions have emerged. Ratcliff (1990) and 

Robins (1995), for example, describe forgetting in terms of a loss of "goodness" of a base 

population of instances as new instances are introduced. They train a network on a 

population of base items. They then test for recall of these original items as new items are 

introduced, one per intervening trial. Ratcliff (1990) notes variables that influence 

forgetting functions, such as the size of the base population. Both Ratcliff (1990) and 

Robins (1995) suggest a type of rehearsal mechanism to maintain the goodness of the 

base population. Other solutions to the stability problem in networks have been proposed 

(e.g. Ans & Rousset, 2000; Grossberg, 1987; McClelland, 2000; McClelland, 

McNaughton, & O’Reilly, 1995). Most involve a kind of short term memory function like 

rehearsal or network switching that further complicates already relatively complex 

models of memory.

Testing forgetting in a network by looking for a loss of goodness seems specially
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suited to a situation in which a researcher is interested in a task in which items are added 

to an existing lexicon, or added to an existing list of paired associates (McCloskey & 

Cohen, 1989). It may be less suited to test the type of memory for schedules that learning 

researchers expect to find in discrimination learning.

Is This Forgetting Reasonable or Catastrophic?

For example, consider a preparation in which a pigeon is trained in a negative 

patterning paradigm to peck a key for a reward when a tone CS is present or when a light 

CS is present, but not when the two CS’s occur together. This is situation A. The pigeon, 

then, is trained on a positive patterning problem, using the same tone and the same light. 

This time, the pigeon is given a reward when it pecks at the presentation of the compound 

tone and light CS, but not when it pecks at either the tone or the light alone. This is 

situation B. To solve the task in situation B, it is necessary for the tone+ and the light+ 

responses to be extinguished. In this situation, the first trial of situation B acts as the first 

extinction trial for situation A. Providing we test recall of situation A after training on 

situation B, we should see "forgetting” of the associations learned in situation A. One 

might expect, however, that the pigeon’s reacquisition of the negative patterning task in 

the "test" phase (situation C) of the study would be quicker. Whether this is the case or 

not is, of course, an empirical question. Research supports this hypothesis (Napier, 

Macrae, & Kehoe, 1992): organisms reacquire extinguished responses more quickly than 

they acquire them initially.

We may expect that, while the specific representations tone CS+, light CS+ and 

compound CS- are not actively available at the onset of testing, some kind of
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representation trace may be preserved throughout the training in situation B. If this is true, 

the pigeon should re-leam the schedule in situation C more quickly than it learned the 

schedule the first time it was exposed to the training conditions.

Forgetting or Remembering?

Perhaps, when looking at investigating learning tasks such as the discrimination 

learning tasks of interest in this thesis, rather than measuring forgetting by looking at 

amount of error produced by a network when a member of the base population is 

presented, we ought to measure remembering -  and look for savings in reacquisition of 

the base population. This type of investigation of forgetting in networks is not unknown 

(see e.g. French, 1992) in which reacquisition is considered important. Heatherington & 

Seidenberg (1989) have suggested that the catastrophic forgetting associated with initial 

error after an interference task is shallow forgetting. They demonstrate that the networks 

have not forgotten the task by showing rapid reacquisition of the original task.

This method of testing memory is certainly well known in psychology in general, 

made popular as the savings method by Ebbinghaus (1885). Ebbinghaus would train 

himself on a list of syllables until he knew them to a particular degree of accuracy. He 

would test himself on these lists after a variable interval. He found that some forgetting 

had always taken place as his recall was not perfectly accurate. As a measure of how 

much had been retained, Ebbinghaus then measured how long it would take him to 

relearn the list -  or how much had been saved through the interval. The present study 

considers forgetting in terms of reacquisition of the original task, by examining savings 

rather than error at the onset of retraining.
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Method

Networks

The networks used in this study had two input units, two hidden units, and a 

single output unit. The two input units were directly connected to the two hidden units 

that were both connected to the output unit (see Figure 5-2). The connection weights were

Figure 5-2. Network used in Study 3.

randomly started with a value between -.5 and +.5. The input units were binary units; the 

hidden units and output unit had logistic activation functions. Networks were excluded 

from analysis if they did not converge in the training phase. Networks were run until 

there were 25 networks in each condition.

Training

Training consisted of three phases in the experimental condition. Phase 1 was the 

initial negative patterning phase. Networks were trained to respond with a 1 at the output
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unit, when either input element was on (1,0 or 0,1) but not when both elements were 

either off (0,0) or on (1,1). Phase 2 was the interference task. Networks were trained on a 

positive patterning schedule in which they learned to respond with a 1 at the output unit 

to the compound stimulus (1,1) but not to either of the two elements (1,0 or 0,1), nor 

when both elements were off (0,0). Phase 3 was the same as Phase 1. This condition will 

be referred to as the 3-phase condition.

In the control condition, networks were only trained on Phase 2 and Phase 3. This 

was to determine whether any facilitation seen in reacquisition of the negative patterning 

task in Phase 3 of the experimental condition is due to the positive patterning schedule in 

Phase 2 of the study, which is meant only to be an interference task. This condition will 

be referred to as the 2-phase condition.

All networks in this study were trained with error back-propagation (Rumelhart, et 

al., 1986). The input patterns were presented and a difference between the network 

response (the activation of the output unit) was compared to an expected response for the 

network (either 0 or 1). The difference between response and expected response was then 

propagated back through the network. Training continued until the response of the 

network fell within .1 of the expected output for all patterns in the set, or until 20,000 

sweeps. If the network had not converged by 20,000 sweeps, training was stopped and 

that network was deemed to have failed to solve the problem. Presentation of the input 

patterns was randomized within phases. Connection weights were altered after each 

pattern was presented. The learning rate was set a t . 15 for all networks. Momentum was 

not used.
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Results and Discussion 

Means and variability for number of epochs to convergence for the 3-phase 

condition and the control, 2-phase condition in Table 5-1. To have 25 networks in the 

3-phase condition, it was necessary to run 50 networks. Of the 25 networks that were

Phase 1 Phase 2 Phase 3

Ratio of 

Phase 1 to 

Phase 3

Study 3- 

A

3-Phase

mean 7288.2 1440.2 1200.5 6.2

s.d. 2208.8 90.0 218.2 2.2

2-Phase

mean 2648.0 5695.6

s.d. 218.5 1960.2

Study 4 

Discrete Elements

Study 5-A 

4 Hidden Units

mean 9318.4 894.6 278.1 37.5

s.d.

mean

2659.1 363.9 81.2 17.5

6.07017.1 6165.9 1227.2

s.d. 1365.6 3650.1 281.4 1.5

Table 5-1. Means and Standard Deviations for Studies 3-A, 4 and 5-A.
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excluded from the condition, 12 of them did not converge on the initial negative 

patterning problem and 13 failed to solve the intervening, positive patterning task.

In comparing Phase 1 and Phase 3 in the 3-phase condition, it is evident that the 

homogeneity of variance constraint for parametric analysis was not met [F(24,24) = 

102.7;/? < .01]. The Kolmogorov-Smimov non-parametric test was used to evaluate the 

difference between these means.

In the 3-phase condition, a significant difference was found between initial 

acquisition of the negative patterning task in Phase 1 and the re-acquisition of that task in 

Phase 3 (Dk = 1.00; p  < .01). The networks learned the negative patterning task faster the 

second time.

To demonstrate that this effect is not due to facilitation by the positive patterning 

task in Phase 2, the control condition was run (the 2-phase condition), in which networks 

were only exposed to Phase 2 and Phase 3. To acquire 25 networks in the two-phase 

condition, 88 networks had to be trained. Of the 63 networks that were excluded from this 

analysis, all 63 solved the positive patterning task but failed to converge on the 

subsequent negative patterning task. One network in the 2-phase condition was excluded 

from the analysis as it was identified as an outlier (epochs in Phase 3 = 19, 446; see box 

plot in Figure 5-3). Note that, while in the first condition, 50 networks were needed to 

acquire 25 networks that solved the problem (50% convergence), in this condition, 88 

networks were needed to acquire 25 converged networks (28% convergence). Rather than 

facilitating negative patterning learning, positive patterning seems to block the learning of 

negative patterning when there is no prior learning, such as occurs in Phase 1 of this
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Figure 5-3. Box plot identifying an outlier in the 2-Phase condition of Study 3-A.

study, on a negative patterning task. This finding is consistent with experimental data. 

Bellingham and colleagues (1985) demonstrate that positive patterning blocks the 

learning of negative patterning in appetitive learning in rats and in aversive learning 

(using the nictitating membrane response) in rabbits. They found that, although positive 

patterning blocks negative patterning, the reverse is not true: negative patterning does not 

block positive patterning.

There is a significant difference between the 3-phase group’s reacquisition of the 

negative patterning task in phase 3, and the 2-phase group’s initial acquisition of the 

negative patterning task in phase 3 (Dk = 1.0;/? < .01). Again, these groups fail to meet 

the homogeneity of variance constraint [F(23,24) = 80.7; p  < .01]; a Kolmogorov- 

Smimov analysis was used for assessing this difference. This indicates that the faster 

acquisition of negative patterning in Phase 3 by the 3-phase group is not due to
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facilitation from the positive patterning schedule. In fact, the positive patterning task 

seems to inhibit negative patterning learning. It must then be due to something that has 

been saved from the first learning of negative patterning in Phase 1.

Study 3-B

Forgetting or Savings: What Does Remembering Look Like?

Statistical significance aside, what course does the reacquisition of the task take? 

Is there enough loss between Phase 1 and Phase 3 to suggest catastrophic forgetting of 

Phase 1 ? It is useful to look at the course of learning, in this situation.

Method

Networks were the same as in Study 3-A. They had two input units, two hidden 

units, and a single output unit. There were initially 10 networks in each condition of this 

study. Networks that did not converge by 20, 000 sweeps were excluded from the 

analysis; this is discussed in the results section below.

As in Study 3-A, in the experimental group, networks were trained on negative 

patterning in the initial phase of training. In the second phase of training, networks were 

trained on positive patterning as an interfering task. In the final phase, networks were re

taught negative patterning. This is referred to as the 3-phase group. As in Study 3-A, in 

the control group, networks were trained on positive patterning, then on negative 

patterning. This group is referred to as the 2-phase group.

The networks in this study were trained with back-propagation. The learning rate 

was set a t . 15 for all networks. Momentum was not used.

The networks were monitored during training. The sum of squared error (SSE),
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summed across all four input patterns, for each network was recorded every 10 epochs.

Results and Discussion 

In the experimental condition, of the ten subjects initially run, Subjects 7 and 10 

were rejected from the analysis for failing to converge in Phase 1. Subjects 5 and 8 were 

rejected for failing to converge in Phase 2. This leaves six networks in the 3-phase

Learning, Interference, and Re-learning

LU
T5
2?CTJ3
O’

CO

  Phase 1
Phase 2 

 Phase 3

NqfP tfP  no*** ^  

Epochs

Figure 5-4. SSE plotted against number of epochs for the 6 networks in the two 
inputs, two hidden units, 3-phase condition, Study 3-B.
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condition in this study. In the control condition, o f the ten networks initially run, al! ten 

converged on the positive patterning task, but only four were able to go on and solve the 

negative patterning task. The six networks that failed to solve negative patterning in the 

2-phase condition were excluded from analysis.6

Figure 5-4 shows the average SSE plotted against the number of epochs for the six 

networks in the 3-phase condition, for each of the 3 phases.

Notice the initial average SSE in Phase 3 of the 3-phase condition. If we were 

measuring forgetting as Ratcliff (1990) did, we would likely conclude that the networks 

had forgotten the task. The course of learning demonstrates, however, that the task has 

not been forgotten. Information about the negative patterning schedule has allowed the 

network to solve the task more quickly in Phase 3, in spite of the fact that the responses 

acquired in Phase 1 would have had to be extinguished in Phase 2.

Figure 5-5 shows the average SSE for the 4 networks in the 2-phase condition, for 

both phases. The phases in this graph are labeled Phase 2 and Phase 3, even though the 

networks in this condition never received a Phase 1, for ease of comparison. Phase 2 is 

acquired more quickly than Phase 3 -  positive patterning is a simpler problem than 

negative patterning. The significant effect to note here, however, is the difference 

between Phase 3 in the 3-phase condition (in Figure 5-4) and Phase 3 in the 2-phase 

condition.

6

While the ri s for this study seems small (6 and 4), their size is justified given that the 
point to be made here is a simple one, and does not require a means comparison. 
Additionally, the wiretapping procedure of watching a network train generates a vast 
amount of data and is resource intensive.
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P h a s e  2 
P h a s e  3

Figure 5-5. SSE for the 4 networks in the two inputs, two hidden units, 2-phase 
condition, Study 3-B.

In Study 3-A, it was demonstrated that a statistically significant difference exists 

between the acquisition of negative patterning in Phase 1 and reacquisition of negative 

patterning in Phase 3, and that this effect was not due to priming from the positive 

patterning, interference task. In this study, it is demonstrated that this statistical 

significance translates into practical significance or apparent significance as shown in the 

figures: networks re-leam negative patterning after an interference task faster than they 

leam it initially.
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When forgetting is measured in terms of savings, the outcome seems reasonable, 

not catastrophic. As mentioned earlier, an organism would certainly require a number of 

trials to determine what type of schedule was being presented, particularly if the elements 

were the same across phases of the experiment. What if the elements were not the same? 

An experimenter would expect, in this case, that the organism would require less time to 

reacquire an initial task if the interfering task did not require the extinction of a particular 

response from that task. Study 4 explores the notion of savings using separate elements 

for the intervening task.

Study 4: Separate Elements, Separate Tasks 

Method

Networks

Networks were run until there were 25 networks in each condition. All networks 

had four input units. Two of these input units, A and B, were used for Phase 1 and Phase 

3 (negative patterning) while the other two, C and D, were used for Phase 2 (positive 

patterning). The networks in this condition had two hidden units and a single output unit 

(see Figure 5-6) All processing units had logistic activation functions. Before training the 

connection weights were randomly started between -.5 and +.5.

Input Coding

The training set reflects the intention to use separate inputs for negative and 

positive patterning. The input patterns were coded across the 4 input units that had 

activations of 0 or 1. Phase 1 consisted of a negative patterning problem in which the 

elements A (1,0,0,0) and B (0,1,0,0) were reinforced, while the AB compound stimulus
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Figure 5-6. Network used in Study 4. This network is the same as that used in Study 
3, except that the input patterns are coded across separate input unit 
pairs, depending upon the phase of training (see text for details).

(1,1,0,0) was not. Phase 2 consists, as in the previous study, of a positive patterning 

schedule in which elements C (0,0,1,0) and D (0,0,0,1) were not reinforced while the CD 

(0,0,1,1) compound was reinforced. A null input pattern (0,0,0,0) was presented without 

reinforcement in each of these phases. Input patterns for Phase 3 were the same as in 

Phase 1.

Training

All networks were trained as in Study 3-A and 3-B, using back-propagation 

(Rumelhart, et al., 1986). Input pattern order was randomized. Connection weights were 

updated after each pattern presentation. The learning rate was set a t . 15 and the networks 

were trained without momentum. Networks were trained on the Phase 1 inputs until the 

response of the network fell within . 1 of the expected output state for all patterns. The
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networks were then trained on Phase 2 inputs, then on Phase 3 inputs. If a network had 

not found a solution within 20,000 sweeps in any of the three phases, training was 

stopped.

Results and Discussion

Means and variances are in Table 5-1 (p. 95). To acquire a subject base of 25 

networks per condition, 34 networks were run. Homogeneity of variances was violated 

for a comparison of means in Phase 1 and Phase 3 [F(24,24) = 1072.4; p  < .01]. A 

Kolmogorov-Smimov one-sample test was done to evaluate group differences. The 

difference between number of sweeps to convergence in Phase 1 and Phase 3 is 

significant (Dk = l.0 ;p  < .01): there is considerable savings from Phase 1 to Phase 3.

The task in this study is initially more difficult with four input units than the task 

in Study 3 in which there are only two input units (means are 7288.2 for the two-input 

problem and 9318.4 for the four-input problem in Phase 1), since changing the number of 

input units changes the dimensionality of the problem. Between these groups, variances 

are homogenous [F(24,24) = 1.4; p  > .01], so a t-test was done to evaluate the difference 

between means for Phase 1 acquisition (t pooled (48) = 2.9; p  < .01]: the four-input 

problem is more difficult than the two-input problem, as measured by the rate of 

acquisition of the task.

To account for this difference in difficulty, ratios of number of epochs in Phase 1 

to number of epochs in Phase 3 were calculated for the two-input and the four-input 

networks. Average ratios of Phase 1 to Phase 3 acquisition for the two-input condition 

presented in Study 3 and for the four-input condition presented in this study are recorded
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in Table 5-1. The difference between ratios in the two-input condition and the four-input 

condition were evaluated with a Kolmogorov-Smimov non-parametric test as these 

groups fail to meet the homogeneity of variance constraint [F(24,24) = 63.3; p  < .01], The 

difference between means of ratios is significant (Dk = 1.0; p  < .01). This indicates that, 

after a correction has been made for scale differences, the Phase 3 rate of learning is 

closer to the Phase 1 rate of learning in the two-input condition than in the four-input 

condition. As predicted, there is significantly less forgetting when the elements are either 

used for one task or the other but not for both.

Study 5-A 

Local and Distributed Representations: Savings

As mentioned previously, the research notes that particularly prone to 

catastrophic forgetting are networks that have distributed representations (French, 1992). 

This is particularly relevant to the argument made in the previous chapter that distributed 

representations provide more interesting and powerful accounts of cognition than local 

models. Clearly if they are more prone to unnatural forgetting, they are less plausible 

models of cognition than their local counterparts. I attempt to replicate this finding in this 

study.

One proposed means of manipulating the locality of the representations in a 

network is by altering the number of hidden units (Seidenberg & McClelland, 1989). In 

this study, networks from Study 3-A were presumed to contain more distributed 

representations and were used as a "distributed" comparison group. Given that there are 

four input patterns and only two hidden units in these networks, individual hidden units
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cannot be trained to locally key in on a particular input pattern. Representations must be 

distributed in these networks. In the "local" condition in this study, networks were 

provided with as many hidden units as input patterns. Networks were not forced into 

developing local representations of the inputs. Rather, local representations were 

permitted in the networks, given that the architecture allowed for them and networks tend 

to be lazy in that they generally choose the simplest representation that their architecture 

allows. This study evaluates the effect of providing the network with an opportunity to 

produce local representations. It is concerned with forgetting from a savings perspective -  

rate of reacquisition of the task is measured. The following study, Study 5-B, looks at 

forgetting in a manner more similar to that of Ratcliff (1990) -  in terms of SSE. Study 5- 

C is concerned with whether reducing the number of hidden units in the network has, 

indeed, produced networks with more local representations than the networks in Study 3- 

A.

Method

Networks

The study was run until there were 25 networks in each condition. These networks 

were similar to those used in Study 3-A and 3-B, but they had two input units and four 

hidden units. Input units were connected to all four hidden units; the hidden units were 

connected to a single output unit. All processing units had logistic activation functions. 

Connections were randomly started between -.5 and .5.

Training

Training was the same as that in the 3-phase condition of Study 3. Networks were
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trained on a negative patterning problem in Phase 1, a positive patterning problem in 

Phase 2, and retrained on the negative patterning task in Phase 3. There were four input 

patterns per phase (0,0; 1,0; 0,1; 1,1) with expected outcomes governed by the schedule 

(negative or positive patterning) for each phase.

Networks were trained using back-propagation. The order of presentation of 

inputs within phases was randomized. Connection weights were updated after each 

pattern was presented. The learning rate was set a t . 15. Networks were trained without 

momentum. Training was stopped when output was within .1 of the expected output for 

all patterns in the training set, or when the network reached 20,000 sweeps without 

finding a solution to the problem.

Results and Discussion 

Means and variances are presented in Table 5-1. To acquire a subject base of 25 in 

each condition, 28 networks were run. Of the three networks that failed to find a solution 

to the 3-phase task, all three failed to solve the positive patterning problem in Phase 2. 

Variances in Phase 1 acquisition and Phase 3 acquisition are not homogeneous [F(24,24) 

= 23.6, p  < .01]; a Kolmogorov-Smimov test was used to compare means. The difference 

between acquisition of negative patterning in Phase 1 and reacquisition in Phase 3 is 

significant (Dk = 1.0; /? < .01); the networks relearned the task in fewer sweeps than it 

took them to learn it the first time.

Differences between the networks in the 4-hidden-unit condition and networks in 

the 2-hidden-unit condition can be assessed by the same method used in Study 4 -  by 

using a ratio of acquisition in Phase 1 to acquisition in Phase 3 for a group of networks
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with only two hidden units and a group of networks with four hidden units. The ratio 

mean and variance are reported in Table 5-1 (p. 95) for the four-hidden-unit networks.

The ratios for the networks with four hidden units were compared to the ratios for the 3- 

phase group in Study 3-A. Variances were considered homogeneous [F (24,24) = 2.63; p  

> .01] so a Mest was used to evaluate the differences between means of ratios. There is no 

significant difference between these groups in rate of reacquisition of the negative 

patterning task in Phase 3 [t pooled (13) = .216, p  > .05] when we look for differences by 

this method.

Savings is only one way to judge forgetting, however. While I argued earlier that 

savings may be a more appropriate way to look at forgetting when using the types of 

discrimination learning tasks used throughout this chapter, many researchers have used 

other measures. When comparing the two groups of networks described in this study, 

what happens when we look at a measure more akin to Ratcliffs (1990) goodness 

construct?

Study 5-B 

Local and Distributed Representations: "Goodness"

How can we evaluate goodness in these networks? Comparing the total SSE for 

the networks in the two conditions (two hidden units and four hidden units) before any 

retraining takes place in Phase 3 would be similar to goodness of a base population after 

an intervening task.
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Method

Networks

Data for the control, two-hidden-unit condition was taken from the 10 networks 

originally run in Study 3-B in the 3-phase condition. These networks had two input units, 

two hidden units, and a single output unit.

In the experimental condition in this study, networks were the same as in the two- 

hidden-unit condition, except that they contained four processing units in the hidden 

layer. They had two input units and a single output unit. All processing units had logistic 

activation functions. Connections were randomly started between -.5 and +.5.

Training

Networks in both conditions were trained on the first 2 phases of the 3-phase task 

described originally in Study 3-A. In Phase 1, networks were trained on negative 

patterning, until the output of the network fell within .1 of the expected response of the 

network for all patterns. In Phase 2, networks were trained on positive patterning until the 

response fell within .1 of the expected output for all patterns. In Phase 3, a measure of 

goodness was recorded before retraining took place. Goodness was measured as SSE of 

the network when the network was presented with the first trial of a negative patterning 

schedule, summed across all input patterns.

These networks were trained with back-propagation (Rumelhart, et al., 1987). 

Input patterns were presented in a random order. Connection weights were updated after 

each pattern presentation. If networks had not found a solution to the task in either Phase 

1 or Phase 2 by 20,000 epochs, they were excluded from the study.
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Results and Discussion 

In the control group containing the networks with only two hidden units originally 

presented in Study 3-A, of the ten subjects initially run, Subjects 7 and 10 were rejected 

from the analysis for failing to converge in Phase 1. Subjects 5 and 8 were rejected for 

failing to converge in Phase 2. This leaves six networks in the two-hidden-unit condition 

in this study.

In the four-hidden-unit condition, of the 10 subjects run, Networks 5,6, and 7 

were excluded from analysis, as they never converged on a solution to the negative 

patterning task. This leaves 7 networks in the study. Figure 5-7 shows average SSE
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Figure 5-7. SSE for the 9 networks in the local representation condition: two input 
units, four hidden units, Study 5.
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during training in the three phases for the 4 hidden unit networks.

Comparing SSE prior to any training on the negative patterning task in Phase 1 

for the two hidden unit condition (mean = 1.025, s.d. = .008) and the four hidden unit 

condition (mean = 1.030, s.d. = .015 ) demonstrated that there was no difference between 

the groups initially [f pooled (13) = .94; p > .05]. In task reacquisition, however, in Phase 

3, the networks in the two hidden unit condition (mean = 2.654, s.d. .019) had more loss 

of "goodness" than the networks in the four hidden unit condition [mean = 2.620, s.d. = 

.034; / pooled (13) = 2.17;p < .05].

This finding seems to provide evidence for the notion that networks that contain 

more local representations are less prone to forgetting a task after being trained on an 

interfering task than are networks with more distributed representations. This would be 

consistent with earlier reports of forgetting in local and distributed networks (French, 

1992). Is the manipulation of local to distributed representations in these networks valid, 

however? Although the networks have enough hidden units to preserve each 

representation in a single hidden unit, to determine whether they have done this, we need 

to look inside the network.

Study 5-C 

Local and Distributed Representations: Network Interpretation 

Method

The control network in this study was the same as the networks run in Study 3-A. 

It had two input units, two hidden units and a single output unit. In the "local" condition, 

the networks had two input units, four hidden units and an output unit. There was one
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network analyzed per condition.

Training was the same procedure as in previous studies in this chapter and was the 

same for both conditions in this study. In Phase 1, the networks learned to respond 

appropriately to a negative patterning schedule. They were trained until their output was 

within .1 of the expected output for all training patterns. They were then trained on a 

positive patterning schedule as an interference task, again, until their output reached the 

criterion of being within .1 of the expected output for all patterns. The networks were 

then re-trained on the negative patterning schedule.

These networks were trained using back-propagation (Rumelhart et al., 1986). 

Input patterns were presented in a random order. Connection weights were updated after 

each pattern presentation The learning rate was set at 1.5. No momentum term was used 

in this study.

Hidden units were "wiretapped" throughout training. Wiretapping is a process in 

which the internal activation of each hidden unit is recorded for each input pattern. Of 

importance to this study are the wiretaps taken during the final epoch of training in each 

phase. These hidden unit activations tell a story about how the representations are 

encoded in the hidden layer at the conclusion of training.

Results and Discussion

Hidden unit activations for the control network that contain only two hidden units 

are presented in Table 5-2. Distributed representations most often present as a group of 

non-0 weights that are not too high for each hidden unit (Hanson & Burr, 1990). 

However, looking, in particular, at hidden unit activations in Phase 3, we see that both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 113

Hidden Unit 1 Hidden Unit 2

Null- .99 .88

.84 .03A+

.84B+ .03
Phase 1

AB- .13 .00

Null- .82 .99

.03 .66A-

.03 .66
Phase 2

.00AB+ .03

Null- 1.00 .83

.82 .01A+

.82B+ .01
Phase 3

.08AB- .00

Table 5-2. Hidden unit activations for the “distributed” network in Study 5-C.

Hidden Units 1 and 2 contain only relatively high activations and very low activations. 

Hidden Unit 1 responds strongly to the null pattern and to each of the elements, but does 

not respond to the compound stimulus. This unit functions within the network as a "NOT 

AND" detector -  that is, it is timed to not respond to the AND (1,1) pattern. The other 

hidden unit in this condition is an "NOT OR" detector -  it responds to the compound but 

does not respond when either A, or B, or A and B are detected. These hidden units do not 

contain highly distributed representations, as expected. Rather they locally key in on 

particular features in the input space. These features are not as simple as a one-pattem,
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Hidden Unit 

1

.89

Hidden Unit 

2

Hidden Unit 

3

Hidden Unit 

4

Phase 1

Null- .46 .99 .26

AX+ .03 .72 .82 .43

BY+ .03 .55 .83 .56

AXBY- .00 .79 .18 .73

Phase 2

Null- .99 .51 .85 .36

AX- .67 .67 .05 .47

BY- .68 .52 .06 .56

AXBY+ .03 .68 .00 .66

Phase 3

Null- .88 .52 .99 .32

AX+ .02 .76 .81 .55

BY+ .02 .62 .81 .66

AXBY- .00 .83 .13 .83

Table 5-3. Hidden unit activities of the four hidden units in the network in the 
“local” condition in Study 5-C.

one-unit mapping that is discussed in Chapter 4, but can still be described as local 

representations.

Hidden unit activations for the networks that contain four hidden units are 

presented in Table 5-3. These activations reveal an interesting pattern, primarily in their 

similarity to the activations in Table 5-2. For example, Hidden unit 1 in this four-hidden- 

unit network is familiar. It too is a NOT OR detector like Hidden unit 2 in the two- 

hidden-unit condition. And Hidden Unit 3 in the four-hidden-unit condition is a NOT
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AND detector -  it is the same as Hidden Unit 1 in the two-hidden-unit condition. The 

remaining two hidden units in the four-hidden-unit condition contain distributed 

representations. Neither of these units "keys in" on any particular feature in the input 

space.

Clearly, then, the manipulation of reducing the number of hidden units in these 

networks has not produced networks with more distributed representations. If anything, 

the reverse is true. The larger network contains two hidden units that are not local feature 

detectors. A question to ask about these units, then, is: if they are not feature detecting, 

what are they doing? The answer to this seems to be that they are not responsible for 

much! We know that, in the four-hidden-unit network, Hidden Units 1 and 2 are 

sufficient to solve the problem -  given that two hidden units with the same function are 

able to solve the problem in the two-hidden-unit condition. The other two hidden units 

are likely extraneous in the network.

This discussion brings us back around to where we were in Chapter 4. There is a 

problem in the four-hidden-unit network of overfitting. In Study 5-B, I presented 

evidence that supported the notion that there was more forgetting in the two-hidden-unit 

condition than in the four-hidden-unit condition, when forgetting was measured by SSE 

at sweep 1 in Phase 3. We now know that this was not due to a local versus distributed 

manipulation. I would speculate that, instead, the effect could be due to the problem of 

overfitting. It could be the case that networks that overfit the problem of interest are less 

prone to forgetting when goodness is measured.
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General Discussion

Studies 3-A and 3B were concerned with catastrophic forgetting in standard, 

distributed networks, looking at savings in reacquisition instead of by error. Study 4 

contained a manipulation of the architecture of a network; by increasing the number of 

input units, negative and positive patterning could be taught using separate elements and 

forgetting was significantly reduced. Studies SA, 5B, and 5C were concerned with 

investigating the claim that distributed networks are more susceptible to forgetting than 

localist models. In these studies, network architecture was manipulated by changing the 

number of hidden units available to represent the problems. While an effect was found, 

the manipulation of local versus distributed was questioned in Study 5-C and it was 

suggested that the effect could be related to a problem of overfitting.

A theme across the studies in this chapter is that the phenomenon of catastrophic 

forgetting is dependent upon how you look at the problem, and upon what problems you 

look at. For certain learning tasks, it seems unreasonable to presume that networks should 

not have any loss when an intervening task is introduced. In this sense, the term 

"catastrophic" as it applies to the type of forgetting seen in networks may be an 

overstatement. Studies 3 A and 5A, include an exploration of a different way that 

forgetting can be measured in networks. For the discrimination learning tasks presented 

in this thesis, I argue that savings may be more relevant than a goodness o f  base 

population measure with no retraining.

When savings are considered, it appears that trace representations of the original 

task are available to the network throughout the interference phase. This is consistent
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with the findings of Heatherington & Seidenberg (1989). During Phase 2 training, the 

negative patterning learning is suppressed so that the network can produce appropriate 

behaviour in the positive patterning phase. The negative patterning task is not forgotten, 

however. Evidence for this is provided in all conditions -  reacquisition of a task is much 

faster than original acquisition.

There is less forgetting in networks in which the elements are unique to either the 

negative or the positive patterning task (Study 4). This is consistent with what would be 

expected: more is preserved of the original representation of the negative patterning task.

If there is less forgetting in local networks than in distributed networks (French, 

1992), evidence for this is not found in this thesis. When "goodness" is evaluated, 

however, instead of savings, there is an effect for number of hidden units in a network: 

Networks with more hidden units display less forgetting than distributed networks (Study 

5-B). The effect for more forgetting in these larger networks provides a weak effect, 

however, and is dependent upon the measure used. In addition to the marginality of the 

finding, SSE measure or the "goodness" measure does not seem an appropriate way to 

measure forgetting in this particular discrimination learning task. It is illogical to expect 

an organism or a network to respond appropriately to a schedule that it does not expect. 

After being trained on the positive patterning schedule in Phase 2, testing a network’s 

recall of negative patterning before it is informed of the schedule change seems trivial. 

This is bome out in a look at the SSE measure for both the two and the four hidden unit 

conditions in Study 5-2. The SSE is significantly higher at the outset of training in Phase 

3 than it was before any training took place for both conditions. This makes sense when
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we consider how different the functions must be to fit the inputs in the negative 

patterning task and in the positive patterning task. The SSE findings may be more 

relevant within a different research domain than they seem to be for discrimination 

learning phenomena.

Throughout this chapter, I have presented studies in which evidence for savings is 

prominent. Rather than finding catastrophic forgetting in networks, the studies in this 

chapter demonstrate that, while networks do forget, networks also remember, that appears 

more relevant to this domain of study.

In Chapter 4, distributed models were presented as necessary in models of 

discrimination learning. The exploration of catastrophic forgetting in this chapter came 

about because of a finding that, although distributed networks may be desirable ffom one 

perspective, it is possible that models that contain distributed representations are more 

prone to forgetting. The number of hidden units in a network is a variable -  a variable 

about which the network designer makes a decision. The number of hidden units included 

in a network is not the only decision that a modeler makes when designing a network as a 

model of learning. The following chapter explores aspects of design in simulations that 

can have an influence on the behaviour produced by connectionist models.
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Chapter 6

EVALUATING CONNECTIONIST MODELS OF LEARNING

Connectionist networks have been put forward as models of associative learning 

(Gluck & Myers, 1993; Kehoe, 1988; Shanks, 1995). Networks have been proposed as 

models in specific learning situations, such as conditional discrimination (Maki & 

Abunawass, 1991; Pearce, 1994), as has been discussed in previous chapters. Testing the 

plausibility of these models is certainly important if they are to be considered useful in 

the description of associative learning. A strategy for the evaluation of these models is to 

attempt to fit human or animal performance on a specific task to data from a comparison 

group of network "subjects".

As an example from the conditional discrimination literature, consider, again, the 

study by Delamater, et al. (1999) in which the researchers pre-conditioned rats on simple 

stimuli, then trained the rats using either the previously reinforced stimuli, and a 

compound of the same stimuli, or previously not reinforced stimuli, and a compound of 

those stimuli. The training situation involved either a positive patterning task (in which 

only the compound stimulus was reinforced) or a negative patterning task (in which either 

the first or second stimulus when presented alone was reinforced, but the compound was 

not reinforced). The purpose of the study was to evaluate the ability of three competing 

theories of discrimination learning to explain the performance of the animal sample. One 

of these theories was a connectionist theory that, most generally, was described by 

Delamater et al. as a model in which representations change during the course of learning
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and solutions to the task develop depending on the nature of the task.

Delamater et al. (1999) showed that a connectionist model demonstrated 

facilitation in positive patterning learning when the stimuli had been previously 

reinforced demonstrated facilitation in negative patterning learning when the stimuli had 

not been previously reinforced. However, rats that had been pre-conditioned, then trained 

on the task failed to follow this pattern. Instead, the rats demonstrated facilitation in both 

negative and positive patterning when the stimuli had been previously reinforced.

The experimental component of the Delamater et al. study involved rats in one of 

four conditions. The rats were pretrained on the same task as the networks, and were then 

given one of four problems to solve involving combinations of four stimuli: two distinct 

visual stimuli and two distinct auditory stimuli. As in the network study, the conditions 

were: a positive patterning problem with elements that had been previously reinforced; a 

positive patterning problem with elements that had been previously not reinforced; a 

negative patterning task with elements that had been previously reinforced; a negative 

patterning task with elements that had been not reinforced in the pretraining session.

The main findings in the Delamater et al. rat study gave the researchers reason to 

question the validity of the neural network model they used. The rats showed a) slight 

facilitation for acquiring the positive patterning task in the previously reinforced 

condition (consistent with the model) and also b) facilitation for acquiring the negative 

patterning task in the previously reinforced condition (contrary to the prediction of the 

model). In the negative patterning situation, the researchers also found that the rats 

learned the discrimination faster between the auditory component and the compound than
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they did between the visual component and the compound. The negative patterning 

situation also brought out an initial excitatory summation effect, that is, early in training, 

the rats responded more to the compound than to either of the elements, although it had 

never before been exposed to the compound, as explored in Chapter 4.

As a result of the simulation data being a poor fit to the experimental data, 

Delamater et al. concluded that "the present data suggest that if changes in the internal 

representations of stimuli occur throughout training, they do not do so in the manner 

anticipated by the standard multi-layered network model of Rumelhart etal." (1999, p. 

108). While their conclusion that their rat subjects do not learn like connectionist 

networks is certainly true of the particular network used by these researchers, it should be 

recognized that there are almost as many varieties of connectionist models as there are 

researchers who use them (Dawson, 1998, Chapter 3). The notion of testing a general 

connectionist theory is problematic, since there is no general connectionist network 

against which an appropriate hypothesis can be constructed. Hanson (1990) 

acknowledges that "there are no obvious principles that will allow the generic design of 

connectionist models at this point" (p. SI2). Gluck and Bower (1988) suggest that "it is 

difficult to test the adaptive network ffamework in general. Rather, one can only test a 

specific realization of the framework" (p. 167). However, it is possible to develop 

strategies for the evaluation of information processing systems that are dependent upon 

the nature of the question being investigated. Gluck and Bower go on to say "by noting 

the circumstances where it predicts accurately versus those where it has shortcomings, we 

can gather generalizations about which network assumptions and learning algorithms are
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generally adequate to explain results across broad ranges of experimental conditions" 

(1988, p. 167).

A model for this evaluation process can be found in a paper by Allan Newell 

(1973) in which Newell attempts to model human control processes with a production 

system2 using a classic cognitive psychology paradigm (Sternberg, 1970). While 

Newell’s specific model of control is not particularly relevant to the present discussion, 

his scheme for fitting the data is one that is loosely followed in the rest of this chapter. 

Newell begins his argument with a series of questions about the production system of 

interest. He claims that "there are many questions that can be answered in many different 

ways. Each assemblage of answers yields a different production system with different 

properties from its siblings. Taken in all, they constitute a family of schemes for 

specifying information processing systems" (Newell, 1973, p. 464). Throughout the 

remainder of the paper, Newell presents various production systems that do not function 

appropriately when performing this well understood task. Production systems 1 - 6 are 

presented in the paper with explanations of the characteristics that they do not possess 

that they should. Production system 7 is presented as being "close to satisfying the 

several empirical propositions listed earlier" (p. 492). The successes and failures of this 

model led Newell to make further hypotheses about human information processing.

In the same way, any connectionist network that we could consider as a model of

2
Production systems are a class of (non-connectionist) information processing systems that 
behave according to a set of operators or rules. The production system used in Newell’s 
argument in the 1973 paper is explained in much detail in Newell and Simon (1972).
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discrimination learning is a member of a connectionist family with a host of variable 

properties. On this subject, Rumelhart & McClelland (1986) comment:

"We don’t really have a single model. Rather, we have a family of related models. 

In the best of all worlds each of our specific models may turn out to be a rough 

approximation to some unifying, underlying model as specialized to the problem 

area in question. More likely, however, each represents an exploration into a more 

or less uncharted region of the space of PDP models." (p. 145)

In this chapter, I explore various members of the family of connectionist models to 

determine their fit to the rat data in the study discussed earlier by Delamater et al. (1999). 

Network architecture is manipulated in Study 6, the structure of the problem space in 

Study 7, and an aspect of learning in Study 8. By manipulating these aspects of 

simulation, it is demonstrated that a reasonable fit to experimental data can be achieved 

with a neural network model.

Study 6: A Perceptron Solution to Negative Patterning 

When considering models of data, it is generally considered most acceptable to 

begin with the simplest model that is powerful enough, in principle, to account for the 

data, or to solve a problem of interest. This is similar to a parsimony argument in which 

simpler theories are preferred over more complex ones, provided they contribute a viable 

solution.

In the Delamater et al. (1999) study, rats were trained on negative and positive 

patterning tasks. Previously, I have noted that negative patterning is equivalent to the 

logical X-OR problem, and that positive patterning is equivalent to the logical AND
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problem. In the simulation portion of the study, however, the researchers have used only 

three input patterns per condition.

The simulated learning situation of Delamater et al. (1999) consisted of four 

separate stimuli and two background stimuli. The first two stimuli (A and B) were 

considered distinct from one another but related in some way (as two distinct auditory 

cues would be). They were never presented together and, when either A or B was 

presented, the background cue X was presented with them. The second two stimuli (C 

and D) were also considered distinct yet related (as two visual cues would be). C and D 

shared a common background cue (Y) and were never presented together.

(0, 0)

Figure 6-1. Linear non-separability, with each discrimination represented by a line.
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In positive patterning the patterns presented by Delamater et al (1999) were AX-, 

CY-, AXCY+ in the previously reinforced condition and BX-, DY-, BXDY+ in the 

previously not reinforced condition. In negative patterning the patterns were AX+, CY+, 

AXCY- in the previously reinforced condition and BX+, DY+, BXDY- in the previously 

not reinforced condition.

In spite of the fact that the negative patterning situation (logical X-OR) is a 

linearly non-separabie problem as discussed in Chapter 3 (see Figure 6-1), the problems 

in all four of these conditions are linearly separable (see Figure 6-2). While linearly non- 

separable problems require two discriminations or two carvings of the problem space,

1,0

Figure 6-2. Training sets of Delamater et al. (1999), graphically represented. Sets in 
all conditions require the subjects to discriminate the elements from the 
compound. Given the number of inputs, this requires one discrimination 
which is represented by the line.
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linearly separable problems only require one discrimination. The positive patterning 

problem in this study is not exactly a true logical AND problem; likewise, the negative 

patterning problem is not a typical logical X-OR.

Delamater et al. (1999) use a multilayer network in their study, modeled after 

Rumelhart, et al. (1986). Multilayer networks are required for solving linearly non- 

separable problems. Recall, as discussed in Chapter 3, Minsky and Papert’s (1969/88) 

criticism of perceptron networks included the proof that these networks were incapable of 

providing a solution to a linearly non-separable problem. This criticism brought about the 

need for multi-layer models. When a task is linearly separable, as the negative and 

positive patterning tasks are in the study described above, a perceptron is powerful 

enough to provide a solution. In theory, the problems in the Delamater et al. study can be 

solved with a simple perceptron.

This study explores this hypothesis and the notion that this simplest of 

connectionist architectures may provide an interesting and plausible solution to negative 

and positive patterning when networks are pretrained on selected elements of the training 

set where the more powerful connectionist network failed to do so. The behaviour that is 

required by an appropriate model of this type of discrimination learning is that pretraining 

of elements facilitates learning in both negative and positive patterning.

Method

Networks

There were 25 networks in each condition. Each had 6 inputs and an output unit 

(see Figure 6.3). The output unit of all networks was influenced by a bias. A bias is an
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Figure 6-3. Perceptron of Study 6.

extra source of activation that influences only the unit to which it is attached. Although a 

bias is not technically a processing unit, it is often useful to think of the bias as a unit 

(Bechtel & Abrahamsen, 1991) that maintains a constant activation of 1 across all input 

patterns. The bias comes from the weight between the "bias unit" and the output unit. 

While the activation of the "bias unit" remains fixed, the weight is modifiable and biases 

the output unit. The input units were binary units and were either off (value of 0) or on 

(value of 1). The activation function of the output unit was a step function. All connection 

weights were randomly started between -.5 and -h5.

Input Coding

The input patterns were the same as in the Delamater et al. (1999) simulation. 

Cues A, B, C and D corresponded to the first 4 (binary) input units of the network with a 

value of 1 indicating the presence of a particular cue and a value of 0 indicating its
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absence. Background cues X and Y were coded in the last two input units in the network 

and were, again, either off (0) or on (1).

Training

The perceptrons were trained with the Widrow-Hoff learning rule (Widrow & 

Hoff, 1988). Connection weights were adjusted after each pattern presentation. The 

learning rate was . 1.

Pretraining. Networks in all conditions were pretrained the same way. The 

pretraining set consisted of the following patterns AX+ (100010+), BX- (010010-), CY+ 

(001001+), DY- (000101-). A network was considered to have converged, or solved the 

problem, when its output response was within . 1 of the expected response for each of the 

patterns in the pretraining set. Networks were then required to solve either a positive 

patterning or negative patterning problem, either with previously reinforced elements 

(elements A and C) or with previously non-reinforced elements (elements B and D).

Positive and Negative Patterning. In the positive patterning, previously 

reinforced condition, pretrained networks solved a problem in which elements A and C 

were used with their corresponding background cues (AX-, CY-, AXCY+). In the 

positive patterning, previously not reinforced condition, pretrained networks solve a 

problem using elements B and D with their corresponding background cues (BX-, DY-, 

BXDY+).

In the negative patterning, previously reinforced condition, pretrained networks 

solved a negative patterning problem using elements A and C (AX+, CY+, AXCY-). In 

the previously not reinforced condition, they solved a negative patterning problem using
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elements B and D (BX+, DY+, BXDY-).

Networks were pretrained and trained until they reached an output state less than 

.1 from the expected output for each pattern. Number of epochs to convergence was 

recorded for each network.

Resuits and Discussion

Pretraining

Cell means and variability for number of epochs to convergence are presented in 

Table 6-1 for the pretraining phase of the study. When the networks are separated into 

conditions, there is no significant difference between means in the pretraining phase of 

the experiment [F(3,96) = 1.47; p > .30]. As the pretraining phase occurs before there are 

any differences between the groups, this is as expected. Pretraining specifics are not 

mentioned in other studies in this chapter. The pretraining phase did not vary in the

Negative Patterning Positive Patterning

mean s.d. mean s.d.

Pretraining
Previously
Reinforced

7.0 2.9 7.2 2.6

Previously
Not

Reinforced

5.7 2.9 7.2 3.1

Training
Previously
Reinforced

12.6 10.4 10.0 8.7

Previously
Not

Reinforced

6.9 
(n = 23)

6.1 15.2 12.0

Table 6-1. Means and standard deviations for Study 6.
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studies in this chapter and, while pretraining is a manipulation, it is assumed not to vary, 

either across conditions within studies, or across studies.

Patterning

Cell means and variability for number of epochs to convergence during the 

training phase are also reported in Table 6-1. There is a significant difference between the 

positive patterning, previously reinforced versus previously not reinforced group [/ 

pooled (48) = 1.75; p  < .05, one tailed]. Previous reinforcement of elements facilitates 

positive patterning learning. For negative patterning, however, although a significant 

difference is found between the previously reinforced and previously not reinforced 

groups [/ pooled (46) = 2.29; p  < .05], the difference is not in the expected direction; 

previous reinforcement clearly does not facilitate the learning of negative patterning in 

these perceptions. Two networks were excluded from analysis in the negative patterning, 

previously not reinforced group as they were identified as outliers (values = 28, 38; see

I__________I_________ I_________ I__________I
0 10 20 30 40

Number of Epochs to C aim rg t

Figure 6-4. Study 6: Perceptron network, negative patterning, previously not 
reinforced. Box plot identifies 2 outliers.
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box plot in Figure 6-4).

This model, then, does not fit the experimental data of Delamater et al. (1999). 

From the discussion earlier, we know that we cannot yet say that connectionist networks 

do not learn the task as the rats do because a perceptron trained with a Widrow-Hoff 

training rule is one of a large family of connectionist networks. Rather than simply 

moving to another network, however, let us return to an assumption made earlier in this 

study about the training sets used in the simulation. Although the training set used in this 

study matches the training set used in the simulations in the Delamater et al. study, does 

it really match the training set given to the rat sample?

Consider an appetitive negative patterning scenario in which rats leam to respond 

to the presentation of element A alone, or element C alone to receive reinforcement, but 

not to the AC compound stimulus. Is this all the organism learns in this scenario? 

Actually, the rat also learns that in the absence of element A or element C (for example, 

during inter-trial intervals), it shouldn’t bother to respond, because it is never reinforced 

in the absence of all stimuli. The networks in this study have never been exposed to a 

situation in which neither A nor C is presented. To properly simulate the learning 

environment of the rats in the experimental study, it is necessary to include a "null trial" 

in which no elements are presented to the network. Perhaps the training in the Delamater 

et al. study does not produce the expected behaviour for negative patterning because the 

training set does not accurately simulate negative patterning.

If we include a null trial in the above study, the formal problem that is being 

solved in the negative patterning condition becomes a typical logical X-OR problem. As
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an X-OR problem, it is no longer linearly separable as was the case in Study 6. This 

problem is linearly non-separable and, as such, requires the additional power of a 

multilayer perceptron to solve it.

The following study is an exploration of the effect of adding null trials to the 

positive and negative patterning training sets in a multilayer perceptron, while continuing 

to use the pretraining manipulation of the previous study.

Study 7: Negative and Positive Patterning with Null Trials

Method

Networks

There were 25 networks in each condition. Networks in this study had 6 input 

units, 4 hidden units, and a single output unit. All processing units had logistic activation 

functions. Prior to pretraining, connection weights were randomly started between -.5 and 

+.5. The network used in this study is shown in Figure 6-5.

Input Coding

Inputs were again coded across the 6 input units such that A and B were always 

presented with background unit X and that C and D were always presented with 

background unit Y. Elements A, B, C. and D corresponded to the first four input units; 

elements X and Y were coded in the remaining two input units. All input units were 

binary units, either off (0) or on (1).

Training

The networks were trained using error back-propagation (Rumelhart et al., 1986) 

in which an error term derived from the difference between the expected output of the
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Figure 6-5. Multilayer perceptron used in Studies 7, 8-A, and 8-B.

network and the actual output of the network is propagated back through the network and 

the connection weights are adjusted. Presentation of the input patterns was randomized 

within conditions. Connection weights were adjusted after each pattern presentation. The 

learning rate was 0.1 and all networks were pretrained and trained with a momentum term 

of .9, in the same way that the networks in the Delamater et al. (1999) study were trained.

Pretraining. Networks in all 8 conditions were pretrained in the same way. The 

pretraining set consisted of the following patterns AX+ (100010+), BX- (010010-), CY+ 

(001001+), DY- (000101-). A network was considered to have converged, or solved the 

problem, when its output response was within .1 o f the expected response for each of the 

patterns in the pretraining set. Networks were then either trained on positive patterning or 

negative patterning, either using the previously reinforced elements or the previously not
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reinforced elements.

Positive patterning. In the control condition, positive patterning was the same as 

in Study 6. In all "with nulls" conditions, a null trial (no input units "on", no 

reinforcement; coded as 000000-) was added to the training set to make the positive and 

negative patterning problems true to the logical AND and X-OR problems, and more 

similar to the learning situation that the comparison rat sample faced. In the experimental, 

previously reinforced condition, pretrained networks were required to solve a positive 

patterning problem in which cues A and C were used (Null-, AX-, CY-, AXCY+). In the 

experimental, previously not reinforced condition, networks were required to solve a 

positive patterning problem in which cues B and D were used (Null-, BX-, DY-,

BXDY+). Networks were trained until their output for each pattern fell within .1 of the 

expected output for the pattern.

Negative patterning. In the control, "without nulls" condition, negative patterning 

was trained in the same way as in Study 6. In the experimental groups, the null set was 

added to the training sets. In the experimental, previously reinforced condition, pretrained 

networks solved a negative patterning problem with elements A and C (Null-, AX+,

CY+, AXCY-). The experimental, previously not reinforced condition required networks 

to solve the negative patterning problem with previously not reinforced elements, B and 

D (Null-, BX+, DY+, BXDY-). Again, networks were trained until they reached an 

output state less than . 1 away from the expected output for each pattern.

Results and Discussion 

Cell means and standard deviations for the number of epochs to convergence for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 135

Negative Patterning Positive Patterning

mean s.d. mean s.d.

Control
Previously
Reinforced

316.3 
(n = 24)

47.6 9.6 .7

(Without 
Null Trials) Previously

Not
Reinforced

175.9 7.6 298.7 
(n = 22)

29.8

Training
Previously
Reinforced

409.9 71.0 169.6 6.6

With Null 
Trials Previously

Not
Reinforced

328.7 
(n = 24)

50.9 366.2 58.8

Table 6-2. Cell means and standard deviations for Study 7.

networks in all patterning conditions can be found in Table 6-2. All networks converged: 

in all conditions, all 25 networks solved the problem.

Given the large differences in the standard deviations of groups that are to be 

compared, F-tests were run to determine whether the assumption of homogeneity of 

variances was met for these groups. In the negative patterning paradigm, control group, 

the variances are significantly different [F (23,24) = 39.2; p  < .01]. In the negative 

patterning paradigm, with null trials group, the variances are not significantly different [F

(24,23) = 1.36; p  > .01]. In the positive patterning paradigm, control group, the variances 

are significantly different [F (21,24) = 1812.3; p < .01]. In the positive patterning, with 

null trials group, the variances are, again, significantly different [F(24,24) = 79.4; p < 

.01]. Non-parametric, two-sample Kolmogorov-Smimov tests were done for both
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Figure 6-6. Study 7: No nulls, negative patterning, previously not reinforced. Box 
plot identifies 3 outliers.

conditions in the positive patterning group and for the control group in the negative 

patterning paradigm. Differences between means were tested in the remaining condition 

using a /-test.

In the control condition, run with no null trials as in the Delamater et al. (1999) 

study and as in Study 6, these multilayer networks display facilitation in the positive 

patterning condition when the elements have been reinforced, as expected (Df = 1.0;/? < 

.01, one-tailed). Three networks were excluded from the previously not reinforced 

condition as they were identified as outliers (values = 409,416,490; see box plot in 

Figure 6-6). In the negative patterning control condition, however, networks do not 

display facilitation for reinforced elements, in fact the difference is in the opposite 

direction and is significant (Df = 1.0 ,p  < .01); pretraining inhibits the learning of 

negative patterning for the networks in this condition. One network was excluded from 

the previously reinforced condition as it was identified as an outlier (value = 514; see box
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Figure 6-7. Study 7: No nulls, negative patterning, previously reinforced. Box plot 
identifies 1 outlier.

plot, Figure6-7).

When null trials are added to the training set, networks continue to demonstrate 

facilitation for the learning of positive patterning (Df = 1; p  < .01, one-tailed). One of the 

networks was excluded from analysis in the positive patterning, previously not reinforced 

condition, as it was a clear outlier (value = 503; see box plot in Figure 6-8). In the 

negative patterning paradigm, the relationship is, again, not in the expected direction [/ 

pooled (47) = 4.6; p  > .01, one tailed]; in this condition, pretraining clearly does not 

facilitate learning negative patterning.

This multilayer network with null trials included in the training set still does not 

fit the experimental data in the negative patterning condition, as there is no facilitation 

demonstrated in the condition in which previously reinforced elements are used. Given 

that the model still does not fit the data, there must be something missing in the model. 

The move taken by Delamater et al. (1999) at this point was to add direct connections
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Figure 6-8. Study 7: With nulls, positive patterning, previously not reinforced. Box 
plot identifies 1 outlier.

from input layer to output layer. Since the model contains sufficient power to solve the 

problems that it is required to solve, rather than boosting the power by manipulating the 

architecture, the following study is concerned with learning in the networks, and whether 

the type of learning done by networks in Study 7 can be appropriately compared to the 

learning situation of the comparison group.

Study 8-A: Should Networks be Losing Momentum?

As mentioned earlier, there are as many varieties of connectionist models as there 

are researchers that use them, and evaluating the plausibility of these models is important.

A model of learning and its learning environment are made up of a large number 

of components that influence learning such as the network architecture and the structure 

of the training set. Not all of these components are justified by the theory they are meant 

to model. The discrepancy between the components of the system and the theory that the
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system simulates is the reason for the gap that exists between the "loose level of verbal 

theorizing and the tight level of description required for a program" (Lewandowski, 1993, 

p. 240). This gap is bridged by a number of decisions that must be made by the modeler. 

Those who build and evaluate the plausibility of such models, particularly of learning, 

need to differentiate between learning-relevant components that are part of the theory 

that is modeled, and engineering-relevant components that are included in connectionist 

models only as part of a design decision. Learning-relevant aspects of connectionist 

systems are "fair game" for testing; a feature such as distributed representations that is 

central to a theory that a network models, ought to be explored for plausibility. Not all 

connectionists have been interested in learning and have introduced features to their 

models that are interesting ffom an engineering or a statistical perspective -  by making 

networks converge more quickly, or with less units, or in a manner more easily computed 

(Dawson & Shamanski, 1994).

Some of these engineering-relevant components have become standard features of 

automated PDP packages and are incorporated into networks that are then used as 

psychological models. Although these components may not be intentionally included in 

the theory of learning that is being evaluated, they indeed are part of the model that is 

actually being tested. As part of the strategy of evaluating networks, these superfluous 

components should be kept to a minimum. One such feature of connectionist networks is 

momentum, that is described in more detail below.

Connectionist Learning And Momentum

PDP networks leam through a process of adjusting the value of the weighted
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connections between processing units. For example, consider one popular learning rule 

called backpropagation of error (Rumelhart, et a i, 1986). In backpropagation, a 

difference between actual network output and expected network output is computed and 

the error is propagated back through the network. The network then adjusts its weights on 

the basis of this error: when the error is large, the weight adjustment is large and much 

learning occurs; when the error is very small, there is little or no change in the connection 

weights.

In backpropagation, network weights at time t + / are adjusted according to the 

following equation:

Apwji<t-.i)= qSpOpj

in which r| is a constant that affects the rate of learning, 8p is the error associated with the 

difference between the output of the network and the expected output of the network 

upon presentation of pattern p, o^ is the i01 element of the output pattern associated with 

the input pattern p, and ApW-j is the change of the connection weight between the i^ and 

the j 01 unit when pattern p  is presented to the network at time t + 1.

Momentum is a component of the backpropagation learning rule that causes the 

network to adjust the connection weights in a similar direction to that in which they have 

previously been changed. When momentum is used in a network, one calculates the 

weight change at time t + 1 according to the equation described above. Then, one adds 

this weight change to the previous weight change (i.e., the weight change at time t) scaled
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by a constant. This constant is the momentum term. In other words, when momentum is 

used, learning is governed by the following equation:

=  qSpOp, +  aA pWjj(t)

in which a is the momentum term.

The advantage o f momentum is that it prevents the network from oscillating 

between two alternatives that would otherwise keep the network from moving toward a 

solution. Momentum is useful from an engineering perspective -  it allows networks to 

converge faster -  however, it is not a feature of a connectionist network that is relevant 

for a psychological theory. In particular, we know of no evidence that momentum 

governs associative learning in animals or humans.

In the example from the discrimination learning literature cited above, Delamater 

et al. (1999) used a connectionist network with a relatively small learning rate (q = 0.1) 

and used a large momentum term (a = 0.9). This study focuses on the effect that this 

design decision may have had on the behavior that their model produced and explores the 

possibility that manipulating this variable may produce more plausible learning in 

multilayer networks.

Method

Networks

Network architecture was the same as in the previous study. Networks had 6 input 

units, 4 hidden units and one output unit. Processing units had logistic activation
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functions. Input units were fully connected only to units in the hidden layer; hidden units 

were connected to the output unit. Prior to training, connection weights were randomly 

started between -.5 and +.5. Networks that did not train were excluded from the study. 

There were 25 networks in each condition.

Input Coding

Input patterns were coded in the input layer, again so that elements A and B were 

always presented with background stimulus X and that elements C and D were always 

presented with background unit Y. Input units 1 to 4 corresponded to elements A, B, C, 

and D. Input units 5 and 6 corresponded to the background units. All input units were 

binary units, either off (0) or on (1).

Training

Two sets of input patterns were used. In one condition, null patterns were not 

included. This group was included as a control, to determine whether the effect of 

removing the momentum term was independent of the effect of including null trials in the 

training sets. In the second condition, null patterns were included.

Networks were pretrained in the same way as in previous experiments in this 

chapter. They were then required to solve either a negative or a positive patterning 

problem, as before, using either previously reinforced elements or non-reinforced 

elements, either with or without a null pattern in the training set. All networks were 

trained without momentum.

Positive Patterning. In the conditions with no null trials, there were 3 input 

patterns in each set. In the previously reinforced condition, networks solved a positive
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patterning problem using cues A and C (AX-, CY-, AXCY+). In the previously not 

reinforced condition, networks solved a problem using elements B and D (BX-, DY-, 

BXDY+).

In conditions with null trials included, there were 4 patterns in each set. In the 

previously reinforced condition, networks were trained on input sets using cues A and C 

(Null-, AX-, CY, AXCY+). In the previously not reinforced condition, networks were 

trained on patterns using non-reinforced cues, B and D (Null-, BX-, DY, BXDY+).

Negative Patterning. In the conditions with no nulls, the training set in the 

previously reinforced condition consisted of patterns using cues A and C (AX+, CY+, 

AXCY-). In the previously not reinforced condition, training sets included patterns using 

cues B and D (BX+, DY+, BXDY-).

In the conditions in which null patterns are included, training sets in the 

previously reinforced condition are (Null-, AX+, CY+, AXCY-) and in the previously not 

reinforced condition are (Null-, BX+, DY+, BXDY-).

All networks in all conditions were trained until their output fell within . 1 of the 

expected output for each pattern in the training set. Number of epochs to convergence 

was recorded for each network.

Results and Discussion

The eight cell means and standard deviations for number of epochs to 

convergence are reported in Table 6-3. As the standard deviations appear different from 

one another, F tests were done to determine whether they meet the homogeneity of 

variance constraint within conditions. In the positive patterning situation, without null
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Negative Patterning Positive Patterning

mean s.d. mean s.d.

Without 
Null Trials

Previously
Reinforced

2306.0 353.2 106.8 16.9

Previously
Not

Reinforced

1722.4 67.2 3061.5 
(n = 24)

449.5

With Null 
Trials

Previously
Reinforced

3672.5 
(n = 24)

376.6 1717.4 
(n = 23)

69.7

Previously
Not

Reinforced

3892.4 1076.4 3448.7 537.4

Table 6-3. Means and variances for Study 8-A.

trials, there is a significant difference between variances [F (23,24) = 707.4; p  < .01]. In 

the positive patterning situation, with null trials there is also a significant difference 

between variances [F (22,24) = 59.4; p  < .01]. In negative patterning, when nulls are not 

included there is a significant difference between variances [F (24,25) = 27.6; p  < .01]. 

When nulls are included, there is also a significant difference between variances [F

(24,23) = 8.1;/? < .01]. All analyses of differences between means in this study will be 

done using the Kolmogorov-Smimov non-parametric test.

Facilitation in the positive patterning situation for previously reinforced elements 

is present in the "no nulls" condition (Df = 1.0;/? < .01, one tailed). One network was 

excluded from analysis in the previously not reinforced condition (value = 4988; see box 

plot in Figure 6-9). Facilitation is also present in the "with nulls" condition (Df = 1.0; p  <
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Figure 6-9. Study 8-A: No nulls, positive patterning, previously not reinforced. Box 
plot identifies one outlier.

.01, one tailed). Two networks were excluded from the previously not reinforced 

condition as they were identified as outliers (values = 2413, 2497; see box plot in Figure 

6- 10).

Facilitation in the positive patterning condition when the elements have been

Number of Epochs to Comrorgo

Figure 6-10. Study 8-A: Without nulls, negative patterning, previously not 
reinforced. Box plot identifies 2 outliers.
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previously reinforced appears to be a robust phenomenon as it has been seen in all studies 

presented in this chapter. It is observed when the network of interest is a perceptron or a 

multilayer perceptron. It is seen with and without null input patterns in the training set, 

with and without momentum in the multilayer perceptrons in the studies in this chapter. 

The critical condition in this set of studies is the negative patterning situation in which 

facilitation for previously reinforced elements should be observed in the behaviour of 

networks.

In the negative patterning situation, previous reinforcement of the elements does 

not facilitate learning without momentum when there are no null patterns in the training 

set. In fact there is a significant relationship in the opposite direction: pretraining inhibits 

learning in this condition (Df = 1.0; p  < .01). One outlier was identified and excluded in 

the previously not reinforced condition (value = 4021; see box plot in Figure 6-11).

In the negative patterning situation when null patterns are included in the training

2000 2500 3000 3500 4000 4500
Nnahcr rfEpachi ta Caavwry*

Figure 6-11. Study 8-A. Without nulls, negative patterning, previously not 
reinforced. Box plot identifies 1 outlier.
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Figure 6-12. Study 8-A: With nulls, negative patterning, previously not reinforced.
Box plot identifies 1 outlier.

set and there is no momentum term included in the learning rule, however there is a 

significant difference between the group trained on pretrained elements and on not 

pretrained elements (Df = .44; p  < .01, one-tailed). One outlier in the previously not 

reinforced condition was excluded from analysis (value = 5112; see box plot in Figure 6- 

12). There is significant facilitation for networks trained on negative patterning using 

pretrained elements when there are null trials included in the training sets and the 

momentum term is removed from the learning rule.

In this chapter, we have been concerned with rate of acquisition of a task that has 

been measured by number of epochs to convergence. This is, of course, only one way to 

measure learning. In Chapter 4, there was an emphasis on how a task was acquired. In the 

next study, I present data on how the task was acquired over time, for the networks 

learning the negative patterning task.
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Study 8-B: Momentum and the Course of Learning

One of the concerns that Delamater et al. (1999) conveyed about the standard 

connectionist model that they used was its inability to produce behaviour that looked 

anything like the behaviour of the rat sample. Rather than observing the rate of 

acquisition of patterning in a group of networks, in this study, the acquisition of the task 

is observed. Networks trained, without the use of momentum, on negative patterning with 

a null trial are compared to the simulations of Delamater et al. and to the experimental 

sample of Delamater et al. in terms of how the task is acquired.

Method

The network architecture is the same as in the previous study. The inputs were 

coded in the same way as in Study 8-A. There were 10 networks in each condition in this 

study. Network number was limited because of the quantity of data produced by 

"wiretapping" a network during training.

Training was the same as in Study 8-A for networks learning the negative 

patterning task. Networks were pretrained as before, then required to solve a negative 

patterning problem using either previously reinforced elements (Null-, AX+, CY+, 

AXCY-) or previously not reinforced elements (Null-, BX+, DY+, BXDY-).

In this study, output unit activation was used as a measure of learning. Output unit 

activation can be interpreted as the strength of a response. It should approach 1 for the 

elements, and 0 for the null trial and the compound in the negative patterning task as 

training proceeds. Output unit activation was recorded for the presentation of each pattern 

during the training of these networks.
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Figure 6-13. Data reproduced from Delamater et al. (1999). Negative patterning
acquisition for a group of networks learning with momentum, without 
null trials using previously reinforced elements.

Results and Discussion

The course of learning of the negative patterning task for networks using

previously reinforced elements and for networks using previously not reinforced elements

is presented in Figures 6-13 to 6-18. Data are presented that were produced by the

connectionist model of Delamater et al. (1999) in Figures 6-13 and 6-16. The data

produced by the rat sample of Delamater et al. (1999) are presented in Figures 6-14 and

6-17. Data for the connectionist model presented in this chapter trained with null trials

and no momentum term in the learning rule are presented in Figures 6-15 and 6-183.

3

Note that the null patterns have been excluded from the graphs to make comparisons 
across the groups easier. Null patterns were responded to at a low rate in both conditions.
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Figure 6-14. Data reproduced from Delamater et al. (1999). Negative patterning 
acquisition for a group of rats using previously reinforced elements.
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Figure 6-15. Negative patterning acquisition for a group of networks learning 
without momentum, with null trials using previously reinforced 
elements.
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In the previously reinforced conditions, one can see that the Delamater simulation 

(Figure 6-13) treats all three trial types (A1+, V1+ and Al V1-) as the same until 

approximately block 3 (epoch 150) when it begins to acquire the discrimination. In both 

the rat study (Figure 6-14) and the current simulation without momentum (Figure 6-15), 

the elements seem to be treated separately from the compound from the start. Both groups 

display initial excitatory summation: there is a stronger response to the compound that 

has never been presented, than to either of the components that have been previously 

reinforced.

In the previously not reinforced conditions, it can be seen in Figure 6-16 that the 

connectionist model of Delamater and colleagues starts the session with a strong

— — A2+
 ......  V2+
  A2V2-

With Previously Not Reinforced Elements

C
2
2
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0.6
cn _ . 
D  0.4
c
I ta>
Z 0.2

0.0

50-Trial Blocks

Figure 6-16. Data reproduced from Delamater et al. (1999). Negative patterning
acquisition for a group of networks learning with momentum, without 
null trials using previously not reinforced elements.
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discrimination between the elements and the compound, and continues to improve its 

performance until the problem is solved. From a neural networks perspective, this is a 

good solution in that the network solves the problem cleanly and quickly. From an 

associative learning perspective, however, it is less interesting, as it clearly fails to predict 

the empirical data in Figure 6-17. The rats display initial excitatory summation in phase I 

of the acquisition (approximately blocks 1-3): initially, they respond more to the 

compound than to the elements. In phase II (approximately blocks 3-5) the rats seem to 

"unlearn" their initial response and by phase III (block 6 and up) they have acquired the

  A verage of F+ and  N+
- .......  FN-

With Previously Not Reinforced Elements

C

f  28

1
I
CAQ> 14

c
s
5

2-Session  Blocks

Figure 6-17. Data reproduced from Delamater et al. (1999). Negative patterning 
acquisition for a group of rats using previously not reinforced 
elements.
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Figure 6-18. Negative patterning acquisition for a group of networks learning
without momentum, with null trials using previously not reinforced 
elements.

discrimination. In the no momentum, with nulls condition of the present study, there is no 

excitatory summation in the previously not reinforced condition (Figure 6-18); rather, the 

network initially makes an appropriate discrimination. However, the networks seem to 

unlearn the task in what could be called phase II (from 300-700 epochs), then begin to re

acquire the discrimination at around 800 epochs.

From these results there are several things to note. The first is that the no

momentum model provides results that are similar to the results of the empirical study of 

Delamater et al. in the acquisition of the previously reinforced condition of the negative 

patterning task. However, the current model without momentum and with null trials is not
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a perfect fit to the empirical data, as it shows no excitatory summation in the previously 

not reinforced condition in the negative patterning situation. This is a failure of this 

iteration of the connectionist networks. However, this model appears to be a better fit to 

the data than is the PDP model (with momentum) of Delamater et al. (1999).

A more significant finding in this study is that, despite their architectural near

equivalence, the PDP model of Delamater et al. (1999) and the PDP model presented in 

this paper show very little resemblance to one another in terms of the course of 

acquisition of negative patterning. The difference between the two models is the use of 

momentum and the addition of null trials to the training set. From this we may learn that, 

in some cases, minor variations in connectionist models and in the training of these 

models can cause large differences in outcome -  differences that may have a large impact 

on the theories that these simulations are often used to clarify.

General Discussion 

In Study 6, we considered the possibility that the problem being posed to the 

network could be solved with a much simpler system. Positive patterning and negative 

patterning were solved by a simple perceptron in this study, but, although facilitation was 

seen in the positive patterning task for networks using pretrained elements, networks 

trained on the negative patterning task did not show this pattern.

Study 7 began with a question about what organisms really leam when they leam 

negative and positive patterning. A null trial was added to the training sets to simulate the 

information that is conveyed to an organism in the absence of any relevant stimuli. With 

the addition of these null trials, it was necessary to use a multi-layer perceptron. Again,
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the networks learning the positive patterning task demonstrated facilitation when the 

elements used for training had been previously reinforced. In the negative patterning 

situation, however, networks did not demonstrate the facilitation effect as the rats had in 

the study of Delamater et al. (1999).

Study 8-A began with a discussion about what other aspects of the training 

situation might be responsible for differences between the rat sample and the network 

sample used in Study 7. A distinction was made between learning-relevant and learning- 

irrelevant aspects of simulation work. Networks were then trained on negative or positive 

patterning with pretraining, as before, without a momentum term in the learning rule. 

Networks learning positive patterning demonstrated facilitation. In the negative 

patterning condition, networks also demonstrated facilitation, consistent with 

experimental data.

Study 8-B demonstrated that the course of learning for networks trained without 

momentum on patterning tasks including a null trial was a good fit to the experimental 

data of Delamater et al. (1999) for the positive patterning task. In the negative patterning 

condition, the similarities are not as clear between the no-momentum, with nulls network 

group and the rat sample but the relationship is closer between these groups than between 

either group and the simulation data of Delamater and colleagues, in which momentum is 

used and no null trials are included in the training set.

It is important to recall that each connectionist network that is evaluated by a 

researcher on the basis of its fit to a body of data is one of a large family of connectionist 

networks that could be considered. The behaviour of different networks in this family of
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models is different. Therefore, one cannot evaluate the behaviour of a connectionist 

network on the basis of its failure to fit the behaviour of an empirical sample, and 

conclude that the sample does not leam in a manner consistent with connectionism.

Evaluating the strength of connectionist models is a necessary pursuit. In this 

case, we are especially concerned with connectionist models of associative learning. A 

strategy for testing these models has been pursued in this chapter. A fit to the behaviour 

of an empirical sample was sought and, indeed, the fit improved with an exploration of 

the effect of changes to the network architecture. We have examined the effect of altering 

the architecture and the problem definition and of distinguishing between learning- 

relevant and learning-irrelevant aspects of simulation. A strategy for developing 

connectionist models is implicit in this process. It is important to consider carefully the 

implications of various design decisions on the outcome of a study, and to make the 

simulation situation as close to the experimental learning situation as is possible.
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Chapter 7 

GENERAL DISCUSSION

In this thesis, I have explored various models of learning, and uses of 

connectionist networks in the context of discrimination learning problems. In Chapter 2 ,1 

introduced contiguity theory and contingency theory, to set the stage for the argument in 

Chapter 3 that modem connectionist networks may have associative properties, but that 

they are not merely associative. Contingency theory is most properly represented in a 

simple perceptron, not in a modem, multilayer connectionist network.

Theoretical consistency was the theme of Chapter 3 .1 argued for the pursuit of 

connectionist modeling as a tool for understanding principles of associative learning, but 

also as a theory that is an extension of current associative theories. Connectionist 

networks ought not to be considered to be simple implementations of contingency theory, 

because neural network models necessarily carry with them algorithmic and 

computational level baggage.

In Chapter 3 it is further argued that several things ought to be considered when 

using connectionist models. First, researchers ought to understand the theoretical 

implications of using networks to make predictions or to fit data in learning research. 

Sometimes, network models used in research have little in common with the theory they 

are meant to fit. Second, it is important to constrain networks such that as many of the 

components as possible are consistent with conventions and rules of connectionist 

modeling and with known principles of learning. The remainder of the thesis focused on
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the outcomes of various decisions that are made, either intentionally or not, when 

simulation work is undertaken in learning research.

Summary of Research 

All studies are briefly summarized in Table 7-1. In Chapter 4, two studies are 

presented that are relevant to the question of overfitting in networks. One of the issues 

mentioned above is the issue of making models that are consistent with conventions and 

rules o f connectionist modeling. One of the expectations of a model is that it is powerful 

enough to solve a problem but does not overfit the problem of interest. Considering this,

and the scientific value of parsimony in theories, Chapter 4 was primarily concerned with

Manipulation Results

Study 1: 
Configural 

Cues in 
Patterning

- simultaneous negative 
and positive patterning; 
with or without 
pretraining of elements

- excitatory summation when elements 
pretrained
- not when elements not pretrained*

Study 2: Initial 
Excitatory 
Summation

Study 3-A: 
Forgetting vs. 
Savings -  Rate 

of Re- 
Acquisition

- as above but with a 
value unit output unit

- excitatory summation with pretraining 
and without pretraining
- network interpretation confirms 
distributed, configural representations

- catastrophic forgetting 
in networks when the 
dependent measure is rate 
of re-learning a task
- compare a 3-phase 
group to a 2-phase 
control

- 3-phase group: relearning is faster 
than initial learning
- 2-phase group: Phase 2 alone does not 
facilitate learning of Phase 3 (in fact, it 
inhibits learning of Phase 3)

Study 3-B: 
Forgetting or 

Savings -  What 
Does Re- 

Acquisition 
Look Like?

- as above but plots of 
learning in Phase 1, 
Phase 2 and Phase 3 are 
compared for the two 
groups

- while initial SSE is very high in Phase 
3 in the 3-phase condition, the Phase 1 
task is relearned quickly. Savings in the 
network is more obvious than forgetting
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Study 4: 
Separate 

Elements, 
Separate Tasks

- considers forgetting 
when the intervening task 
uses different elements 
than are used in Phases 1 
and 3

- there are significant savings when the 
elements do not overlap between the 
initial task and the intervening task
- when reacquisition ratios are 
compared, there is less forgetting when 
the elements do not overlap than when 
they do overlap

Study 5-A: 
Local and 

Distributed 
Representations 

-  Savings

- considers forgetting in 
networks with either 4 
hidden units or 2 hidden 
units
- looking for an effect for 
locality

- comparison of reacquisition ratios 
reveals no difference in rate of 
reacquisition (ratio controls for 
differences in difficulty)

Study 5-B: 
Local vs. 

Distributed 
Representations 
-  "Goodness"

- as above but using SSE 
before retraining as 
dependent measure (as 
Ratcliff)

- comparison of SSE is significant: 
networks with 4 hidden units are less 
prone to forgetting when this measure is 
used
- the relevance of this finding to these 
discrimination learning tasks is 
questioned

Study 5-C: 
Local 

Representations 
-  Network 

Interpretation

- as above but looks 
inside a network in each 
of the conditions to 
determine the nature of 
the representations

- find that the local vs. distributed 
manipulation is not successful as 
expected
- find that two of the hidden units in the 
4 hidden unit condition are not 
necessary
- suggest that the finding in Study 5- 
B (above) may be the result of 
overfitting rather than local vs. 
distributed representations

Study 6: A 
Perceptron 
Solution to 
Negative 
Patterning

- a perceptron is trained 
on negative and positive 
patterning (as modeled 
by Delamater et al.) 
either with or without 
pretraining

- the perceptron is easily able to solve 
these problems
- when pretraining or no pretraining 
conditions are compared, facilitation for 
pretrained conditions is present in 
positive patterning (as expected) but is 
not present in negative patterning 
(facilitation was expected)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 160

Study 7: 
Negative and I 

Positive 
Patterning with 

Null Trials

- as above but validity of 
the training sets used in 
the Delamater et al. study 
(and in Study 6) is 
questioned
- null trials are included 
in the training sets (and 
compared to a "without 
nulls" control)
- multi-layer perceptrons 
used instead of 
perceptrons

- for positive patterning, facilitation for 
pretrained networks is present in both 
without nulls and with nulls conditions 
(as expected)
- for negative patterning, neither group 
demonstrates facilitation in the 
pretrained condition (where facilitation 
was expected)

Study 8-A: 
Should 

Networks Be 
Losing 

Momentum?

- considers momentum 
and what happens to 
learning in a network 
when momentum is 
removed
- networks without 
momentum, with and 
without null trials are 
tested

- facilitation is present for pretrained 
elements when networks leam positive 
patterning, both with and without null 
trials when there is no momentum
- facilitation is not present in the 
negative patterning condition when 
elements have been pretrained, when 
there are no null trials in the training set 
(where facilitation was expected)
- there is facilitation for pretrained 
elements when there is no momentum 
and there are null patterns included in 
the training set (as per expectation)

Study 8-B: 
Momentum and 
the Course of 

Learning

- the course of learning of 
networks without 
momentum and with null 
trials in the training set 
are compared to the 
simulations and the 
empirical data reported in 
the Delamater et al. study 
(1999)

- the data in the no momentum, with 
nulls conditions are more similar to the 
experimental data of Delamater than the 
simulations of Delamater as reported in 
the 1999 study. Some conditions are a 
very good fit.
- however, no excitatory summation is 
seen in networks learning negative 
patterning when the elements have not 
been previously reinforced

Table 7-1. Summary of Studies 1 - 8-B at a glance.
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demonstrating the power of connectionist networks. Study I illustrated that the 

discrimination learning problems, negative and positive patterning, can be solved 

simultaneously with a relatively simple network. This network was powerful enough for 

the task it was designed to solve, but produced behaviour that did not conform to 

expectations based on experimental samples. Study 2 presented a network solution to 

simultaneous negative and positive patterning that produced behaviour closer to 

expectations. The take-home message for modelers from these two studies is that 

overfitting a problem may produce solutions that depend on local input-output 

regularities, rather than solutions in which a network is permitted to develop its own 

input-output mapping, that is certainly the greatest strength of connectionist models. In 

Chapter 4, by constraining the number of hidden units in a model, a theory was allowed 

to emerge in a network, rather than an existing theory simply being instantiated in a 

network model. The analysis of the internal structure of the network made some 

predictions concerning the relevance of elemental and configural processes in models of 

discrimination learning.

While it is important that researchers adhere to the principles of use of 

connectionist networks, it is equally important that networks produce behaviour that is 

psychologically valid. In Chapter 5, the phenomenon of catastrophic forgetting was 

examined, given that some distributed networks are especially prone to it. It was found in 

Studies 3-A and 3-B that when networks are evaluated in terms of savings, rather than in 

terms of error after an intervening task, the forgetting that they experience is far from 

what could be called catastrophic. Considering forgetting from a savings perspective
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seems more relevant when evaluating forgetting in connectionist models of 

discrimination learning, given that most tasks relevant to the domain require reacquisition 

of old tasks or acquisition of similar but new tasks.

In Study 4, a question of the nature of the problem was explored. It was deemed a 

necessary condition of forgetting in networks that the elements used in the initial task and 

in the intervening task be the same. That is, when the input units are discrete for the two 

tasks, very little forgetting is seen in the neural networks used in this study.

Comparisons of networks with different numbers of hidden units in Study 5-A 

showed that within this domain there does not seem to be an effect on forgetting across 

these groups when reacquisition of a task is considered. In Study 5-B, however, an error 

measure was considered and an effect for number of hidden units was present. It was 

concluded that this effect was small and, perhaps, more relevant to other domains that to 

that of discrimination learning. In any case, the difference between the groups in Study 5- 

B could not be attributed to a difference between local and distributed networks, as a 

network analysis in Study S-C determined that these networks both contained hidden 

units that were timed to respond to features in the input space: both contained partially 

locally distributed representations.

Chapter 6 provided a suggested framework for testing connectionist models. 

Given that there is no general connectionist model against which specific hypotheses can 

be tested, I proposed that various members from the family of connectionist networks be 

evaluated, depending upon the nature of the task and the assumptions of the specific 

learning task being considered. A starting point is with a network that is the simplest one
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that can solve the problem of interest. In the case of the negative and positive patterning 

tasks that have been used throughout the thesis, when null patterns are excluded these 

tasks can be solved independently with a simple perceptron. This model was explored in 

Study 6. As this network produced behaviour that did not fit a rat sample that learned 

either negative or positive patterning after being pretrained on some of the elements, we 

again considered the nature of the task they were solving. Null patterns were added in 

Study 7 to simulate the inter-trial-interval for the animal subjects. A multilayer 

perceptron was needed to solve this task. These networks solved the task did not display 

facilitation in the negative patterning, previously not reinforced condition, as the 

experimental sample had done.

When evaluating connectionist models as behavioural models, it is important to 

isolate those elements of a network that are learning-relevant and to minimize the 

influence of aspects of the networks that are only engineering-relevant. In Studies 8-A 

and 8-B it was demonstrated that, by eliminating the momentum term from the learning 

rule and maintaining the null patterns in the training set, the networks produced behaviour 

more similar to experimental models.

Implications for Associative Learning Theory and Connectionism

In this thesis, 1 have presented data and theory that support the use of 

connectionist models in theories of associative learning. I have promoted the proposition 

that connectionist models provide powerful, plausible accounts of learning. Yet I have not 

presented a particular connectionist model to which I am particularly committed. It is one 

of the goals of this set of studies to explore proper uses of the family of connectionist
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models in the context of discrimination learning. Connectionist models should be 

exploited for the power they have and for theory development, rather than as an 

implementation of theories that are less powerful.

Bechtel and Abrahamsen (1991) claim that “If connectionism can produce 

plausible, powerful learning mechanisms as well as explanatory models of rule-like 

behavior, it may take a prominent place in cognitive science as an integration of 

associationism and cognitivism that has a broader domain of applicability than either of 

its predecessors” (p. 103). Connectionist models are capable of producing rule-like 

behaviour, as can be seen in studies involving network interpretation (Berkeley, et al., 

1995; Christiansen & Chater, 1992; Dawson, 1998; Dawson, et al., 1997; 2000; under 

review; Elman, 1990). The question of plausible, powerful learning mechanisms has been 

the focus of this thesis and has not been fully answered here. Models will be needed that 

make specific predictions about discrimination learning, that are constructed with concern 

for the implications of various design decisions laid out in this thesis.

Connectionism provides a family of models of learning that are distinct from other 

associative models. The account of learning provided by connectionist networks is 

representationally powerful beyond earlier theories of learning and can be exploited for 

theory construction. In this thesis, I demonstrate that connectionist models of learning can 

also provide plausible accounts of learning, when modelers are attentive to the accuracy 

of the simulation. With explanations or the promise of explanations of learning at the 

implementational level, the algorithmic level and the computational level, Connectionism 

has the potential to provide a plausible and powerful extension of associative theory and a
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more complete, tri-level account of learning.
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