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Abstract

This thesis describes an investigation of gravity currents, which are buoyancy-driven

horizontal fluid flows. In particular this work reports upon a series of laboratory exper-

iments and complementary (two-dimensional) direct numerical simulations that explore

the lock release of a fixed volume of dense fluid into a two-layer density-stratified ambi-

ent. By initial condition, the lock release experiments/simulations fall into one of two

categories: full-depth and partial-depth. The particular focus of this thesis is on the

“tailwaters” limiting case where the lock fluid density matches that of the lower ambient

layer. For either initial condition the front speed of the advancing lock fluid (which is

termed the “internal front”) is less than that of the excited interfacial disturbances.

Consequently, the internal front propagates at constant speed for less time than other

features of the flow, e.g. the downstream-propagating interfacial disturbance, which is

termed the dense gravity current (or GC1). Complementing GC1, there is an analogue

flow of light ambient fluid into the lock, and this is referred to as the light gravity current

(or GC2). Measured speeds for GC1, GC2, and the internal front are compared against

analogue predictions from two-layer shallow water (SW) theory as well as a Yih-type

energy analysis (C.-S. Yih. Dynamics of Nonhomogeneous Fluids. MacMillan Co., New

York, 1965). From this comparison, positive agreement is noted in the case of GC1

and the internal front. Meanwhile, the speed of GC2 post reflection from the lock end

wall is under-predicted by 10-20% depending on the initial depth of dense fluid within

the lock. This under-prediction is believed to result from a mismatch between where
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the SW prediction is made (immediately following GC2 reflection from the back of the

lock) and where the experimental GC2 speed is measured, usually 0.5-2.5 lock lengths

downstream by which point the GC2 height has decreased due to dispersion. Although

the GC1 height also undergoes a dispersive decrease in height, generally more positive

agreement is noted when comparing measured and predicted gravity current heights.

The distance travelled by the internal front prior to being arrested by the reflected GC2

agrees robustly with SW theory. Laboratory and DNS experiments exhibiting a thick

ambient interface are also reported upon. It is observed that the speed of the internal

front and the downstream distance it travels at a constant speed increase with interface

thickness. A second Yih-type analysis of internal front speed is performed in case of

thick interfaces, and its predictions agree well with the experimental data.
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Preface

Some of the research conducted for this thesis forms part of an international research

collaboration led by my supervisor Dr. Morris Flynn at the University of Alberta. The

shallow water theory described in Chapter 2 was developed by our collaborator Dr.

Marius Ungarish of Technion – the Israel Institute of Technology. I used Dr. Ungarish’s

theory and solution techniques to produce predictions for the speed, height, and distance

measurements obtained from the laboratory and numerical simulations described in

Chapter 4. Dr. Flynn conducted all of the numerical simulations while I performed all

of the laboratory experiments. I post-processed and analyzed all of the data from the

laboratory experiments and numerical simulations. The Yih-type analyses described in

Chapter 3 were my original work following a suggestion by Dr. Flynn. The remainder

of this thesis was written by me with many helpful edits contributed by Dr. Flynn. In

turn, we expect to submit the work described herein for publication in Environmental

Fluid Mechanics, a leading journal in the field.
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Chapter 1

Introduction

1.1 Background

Density differences strongly influence the dynamics of both the atmosphere and bodies of

water. Air density varies due to changing pressure, temperature, and moisture content

while oceanic density is influenced by water temperature and salinity. When density

decreases continually with height, or when a layer of less dense fluid lies above a dense

fluid layer, the fluid is stable and tends to remain stratified. In the opposite case, when

density increases with height, the fluid is unstable and convection occurs. All weather,

for example, occurs in the lowest layer of the atmosphere, the troposphere, which is

heated from below as the sun’s radiation warms the Earth’s surface. Conversely, in the

overlying stratosphere, temperature increases with height, and the tropopause, which is

the boundary between the troposphere and the stratosphere, acts as a lid and prevents

cloud formation. In an environmental context, density differences give rise to buoyant

plumes from smokestacks, influence the dispersion of smog in an urban airshed, and

govern the seasonal turnover of lakes (Patterson et al., 1984).

Differences in density can also result in horizontal fluid motion called gravity currents.

Gravity currents are ubiquitous in both the natural and industrial world (Simpson,
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1999). Gravity currents are present on many scales; atmospheric examples include

frontal weather systems, diurnal mountain winds, and airflows present in the heating and

cooling of buildings; in the hydrological context, examples are the leading edge of ocean

currents, saline wedges in river estuaries, and pipe discharge in a marine environment.

There are also multiphase gravity currents such as snow-laden air in avalanches.

In many cases gravity currents propagate through density-stratified, rather than

uniform, environments. The density stratification may be discrete, as is the case when

the upper layer of a cold body of water is heated by the sun and mixed by wind, or

continuous, which often occurs with increasing altitude in the troposphere.

The theoretical analysis of gravity currents dates back nearly 80 years to work by von

Kármán (1940), although the problem was first rigorously analyzed in the seminal work

of Benjamin (1968). Benjamin considered an air cavity propagating horizontally during

the emptying of a long channel containing fluid of uniform density as an analogue

to a gravity current. In this steady-state problem, Benjamin transformed the frame

of reference to one where the leading edge of the cavity is stationary. Along with

continuity considerations, Benjamin hypothesized that the flow force, i.e. the sum of

static and dynamic pressure integrated over the cross-section of the container, would be

conserved between a point far upstream and one far downstream of the gravity current

front. This led to a relationship between gravity current height and speed, which in

the special case of an energy-conserving flow, predicts that the gravity current will

occupy half the height of the channel and travel at one half of the long wave speed, i.e.

Froude number (Fr = c1√
gH

) = 0.5. Here, c1 is the speed of the cavity front, g is the

acceleration of gravity, and H is the height of the channel. In the more general case

where the gravity current dissipates energy, Benjamin’s theory predicts a maximum

non-dimensional speed of Fr = 0.53, which occurs at the point where head loss is also a

maximum, corresponding to a gravity current height approximately 1/3 of the channel

height. The theory also predicts that gravity currents of height greater than half of the
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channel height are impossible unless energy is added to the system from an external

source.

Huppert & Simpson (1980) derived an empirical relationship between gravity current

height and speed based on a series of lock-release experiments (with uniformly-dense

ambient fluid) that they performed. This relationship is

Fr =
1

2
φ− 1

3 (0.075 ≤ φ < 1) (1.1)

Fr = 1.19 (φ ≤ 0.075) (1.2)

where φ = h/H, i.e. the fractional current depth, and the Froude number is given in the

same way as defined by Benjamin (1968). They surmise that the former relationship

occurs during an initial “slumping” flow, where the forward-propagating disturbance

produced as a result of reflection from the back of the lock has not yet overtaken the

gravity current front. Meanwhile, the latter relationship pertains to a later self-similar

phase when the buoyancy forces are balanced by inertia. Huppert and Simpson’s model

makes good predictions during these two phases, but deviates from experimental results

for large times when viscosity dominates as the force balancing buoyancy. While the

empirical relationship agrees qualitatively with Benjamin’s theory, it predicts Froude

numbers 10-20% lower than those predicted by the analysis of Benjamin.

Rottman & Simpson (1983) present further lock-release experiments where the grav-

ity current propagates into an ambient fluid of uniform density. They compare their

experimental data to a two-layer shallow water theory, which is a simplification of the

full Navier-Stokes governing equations. Here, by a scaling argument where the length of

the channel is much greater than its height, vertical accelerations are much smaller than

horizontal accelerations, and the two momentum equations (x and z) are combined into

a single horizontal shallow water momentum equation. Rottman and Simpson present a

new, two-layer shallow water theory and obtain solutions using numerical methods. In

contrast to previously-presented steady-state analyses, the shallow water solutions ex-
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plicitly apply to time-dependent, lock-release scenarios. Using their experimental data

and shallow water theory, Rottman and Simpson argue that the transition from the

slumping phase to the inertial-buoyancy phase occurs when the disturbance reflected

from the back of the lock overtakes the gravity current. Evidence also supports the idea

of a later transition to a phase when viscous effects become important.

A more complicated problem involves gravity currents propagating into ambient en-

vironments of two or more layers, distinguished by density. Holyer & Huppert (1980)

first performed a theoretical investigation of the two-layer case. Holyer and Huppert’s

analysis proceeds using the Bernoulli equation several times, mass continuity, and con-

servation of flow force following the method of Benjamin (1968). They find that, in

contrast to Benjamin’s single-layer theory, multiple solutions are possible for a given

set of parameters. They propose that the solution which occurs in practice is that with

the maximum volume of the inflowing gravity current (for energy-conserving solutions),

and that where energy loss is at a maximum (for dissipative solutions).

A phenomenon related to gravity currents in multi-layered ambients is the propaga-

tion of internal bores along the ambient interface. In an investigation of internal bores

propagating in two-layered ambients, Wood & Simpson (1984) performed lock-release

experiments and elaborated on a flow-force steady state theory that assumes that the

energy is dissipated entirely in the lower, expanding layer. However, this assumption

leads to a problematic prediction of an infinite gravity current speed in the limit that

the lower ambient layer height → 0, which contradicts Benjamin’s accepted prediction

of finite speed in this case. Klemp et al. (1997), by contrast, obtained a prediction of

finite speed in the the limit of a vanishing lower layer depth by assuming that the dissi-

pation occurs entirely in the upper, contracting layer. Meanwhile, Wood and Simpson’s

experimental data agrees with the Klemp et al.’s new theory.

More recently, Tan et al. (2011) performed both laboratory and numerical experi-

ments where dense lock fluid was released into a two-layer stratified ambient fluid. They
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extend Benjamin’s analysis to the two-layer case, and obtain closure of the steady state

equations using a simple parametrization of height of the deflected ambient interface

that is supported by experimental data. This analysis considers both dissipation in the

upper ambient layer, and separately, dissipation in the lower ambient layer. Surpris-

ingly, both cases produce similar predictions. Tan et al.’s experimental data showed

positive agreement with their theoretical analysis, with a constant offset that is similar

to that observed by e.g. Huppert & Simpson (1980). Tan et al. also performed labo-

ratory and numerical lock-release experiments with thick ambient interfaces and found

either no change in gravity current speed for various interfaces thickness, or a slight

increase in speed with increasing interface thickness depending on initial conditions.

When the ambient fluid is multi-layered, in addition to propagating either along the

top or bottom boundaries of the channel, a gravity current may instead advance along

the interface between the two ambient layers when it is termed “intrusive”. This pos-

sibility was first considered by Holyer & Huppert (1980), and intrusive gravity currents

now form a broad area of research in their own right, with later investigations by e.g.

Sutherland et al. (2004) and Flynn et al. (2008).

1.2 Motivation

This investigation focuses on gravity currents formed by lock-release propagating along

the bottom of a two-layer stratified ambient fluid. In the present lock-release context,

much attention has been given to supercritical gravity currents. Consistent with the

definition suggested by Tan et al. (2011), a supercritical gravity current is defined as

one whose speed of propagation is larger than that of any long waves or bores that

may be excited along the ambient interface as a result of the forcing imparted by

the advancing gravity current. As such, and although supercritical gravity currents

generate an interfacial disturbance that appears above the gravity current head, this

disturbance cannot propagate ahead of the gravity current in the downstream direction.
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Conversely, when the gravity current is subcritical its frontal speed is comparatively

slow and the interfacial disturbance can propagate downstream in the form of a wave

or a bore. In this case there may arise a resonant interaction between the current

and disturbance (Maxworthy et al., 2002; Tan et al., 2011). Due to this complication,

subcritical gravity currents have been less thoroughly investigated. Notable exceptions

are the studies by Flynn, Ungarish & Tan (2012) and White & Helfrich (2012). These

authors investigated gravity current flow in two-layer stratified ambients for a range

of values of the density parameter S = ρ1−ρ2
ρc−ρ2

, including the subcritical range, which

nominally arises for 0.75 � S ≤ 1.00. Here ρc is the density of the gravity current

while ρ1 and ρ2 are the densities of the lower and upper ambient layers, respectively.

The analysis of Flynn et al. (2012) proceeds along two parallel tracks. First, they

generalize the analysis of Benjamin (1968) and thereby derive a front condition pertinent

to the case of a density-stratified ambient. The resulting equations, based as they are

on mass and momentum balance, typically admit multiple solutions, one of which is

always subcritical. To model the time-dependent lock release problem, Flynn et al.

(2012) develop a one-layer shallow water (SW) theory. By combining this SW theory

with the semi-empirical front condition suggested by Huppert & Simpson (1980), Flynn

et al. (2012) find good agreement with measurements of the gravity current front speed

derived from analogue laboratory and numerical experiments. By contrast, White &

Helfrich (2012) extend the two-layer hydraulic analysis of Holyer & Huppert (1980) by

developing a theory linking upstream bores to the steadily-propagating gravity current

front. This yields a resonant band of parameters where upstream undular bores are

formed. The resonant band is qualitatively and quantitatively corroborated by data

from a large number of lock-release numerical simulations that White & Helfrich (2012)

performed. The numerical data falls into regimes corresponding to a vanishing rate of

energy dissipation, suggesting that the frontal dissipation is in all cases small.

Although both of the above investigations feature theory and experiments that in-
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clude subcritical gravity currents, neither especially pays attention to the “perfectly”

subcritical case when S = 1. This S = 1 limit represents the exclusive focus of the

present study wherein we perform laboratory and 2D numerical lock-release experi-

ments, and elaborate on the two-layer SW theory of Ungarish (2009) and Ungarish

et al. (2014), whose connection to the present work is outlined below. In contrast to

Flynn et al. (2012) and White & Helfrich (2012), our theoretical treatment ignores

the steady-state problem and instead emphasizes the time-dependent lock-release flows

described by our SW model.

Because of our focus on the perfectly subcritical regime where the density of the

gravity current matches the density of the lower ambient layer into which it is propa-

gating, we propose a certain change of terminology from that used in studies focusing on

gravity current flow with S ≤ 1. Because the perfectly subcritical gravity current prop-

agates through a layer of equal density, it seems more appropriate to label the leading

edge of this flow as an internal front. (Whether in laboratory or numerical experiments,

the dense lock fluid and the internal front can be visualized using a passive tracer.)

In turn, and consistent with the study of Ungarish et al. (2014), we shall refer to the

downstream interfacial disturbance as a gravity current (or, more precisely, GC1), a

terminology that becomes more and more appropriate as the depth, hT1, of the lower

ambient layer decreases. In a symmetrical fashion, we shall refer to the upstream prop-

agating disturbance (whether or not the initial height of dense lock fluid, h01 equals the

channel height, H) as a second gravity current, GC2. GC1 thereby issues from Reser-

voir 1 and flows into a tailwater layer that we will refer to as Tongue 1. (The depth

of Tongue 1 is, as noted above, hT1.) Meanwhile, GC2 issues from Reservoir 2 (whose

depth is h02 = H − hT1) and flows into a tailwater that we will refer to as Tongue 2.

The depth of Tongue 2 is hT2 = H − h01 where hT2 = 0 in the full-depth lock release

case. Note finally that GC2 reflects from the lock end wall and thereafter propagates

in the downstream direction following the internal front and GC1.
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For a schematic summary of the above details, geometrical and otherwise, see figure

1.1. In this schematic, densities are represented by ρ while the boxed variables U and

V represent the speed of the internal front and GC fronts respectively, and the other

parameters all have dimensions of length. An additional parameter that is not shown

in the definition sketch is δ, the thickness of the ambient interface. In figure 1.1, δ is

vanishingly small, however, we report upon experiments below where δ is allowed to

assume a finite value, i.e. δ ≤ H. By contrast, we always assume the density interface

inside of the lock to be sharp.

Above, we describe the similarity of terminology with the earlier study of Ungarish

et al. (2014). Indeed, Ungarish et al. (2014) likewise examines (using SW theory and

numerical simulations) gravity current flow into a tailwater layer. However, there are

a number of aspects of this previous study that did not receive complete attention and

which we intend to examine here. More especially, in our experiments we distinguish

between the lock fluid and the lower ambient layer; the leading boundary between these

two is what we refer to above as the internal front, and we consider both the internal

front speed and the downstream distance travelled by the internal front before the onset

of deceleration. In theory and experiments, we also consider GC2, which, after reflecting

off the lock wall, propagates downstream and in some cases overtakes and arrests the

internal front. Characterizing the dynamics of not only GC1 but also GC2 and the

internal front requires not only that previous analyses be revisited, but that they also

be expanded in scope. Doing so using a combination of SW modeling and laboratory

and 2D numerical simulations is a central aim of this manuscript. Furthermore, and to

complement our SW theory, we perform a Yih-type energy analysis (Yih, 1965), which

exhibits surprisingly good agreement with the more rigorous SW results.

Another novel aspect of our work is that it considers the impact of a thick ambient

interface and thereby makes a connection with previous investigations of gravity current

flow in a continuously stratified ambient e.g. Maxworthy et al. (2002). As we will elab-
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orate upon in more quantitative detail below, increasing the interface thickness leads

to an increase in the speed and distance travelled by the internal front. In turn, this

observation may have particular import if one wishes to characterize the downstream

dispersion of a pollutant in a natural water body in which thermal and/or haline strat-

ification applies. Another application of the S = 1 gravity current regime includes the

analysis of nocturnal thunderstorm winds, where the temperature of the cold outflow

wind matches that of a cold ambient layer adjacent to the ground. Fulton et al. (1990)

observed solitary wave behaviour in winds from a nocturnal thunderstorm.

The rest of this thesis is organized as follows: Chapter 2 describes the SW model;

complementing this analysis, Chapter 3 presents a simple energy-based model motivated

by the seminal work of Yih (1965). Chapter 4 describes the laboratory and DNS ex-

periments while Chapter 5 discusses experimental and theoretical results, and Chapter

6 offers a summary and conclusions. Appendix A provides a summary of the labora-

tory and DNS experimental parameters while Appendix B describes the preparation of

the laboratory experiments. Appendix C elaborates on the SW solution methods and

Appendix D relates the gravity current shapes predicted by SW theory to the shapes

observed in the experiments.
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GC1 nose

to far end wall

Internal front

GC2 nose (reflected)

Internal bolus

Figure 1.1: Definition sketch for laboratory and numerical experiments showing, in a
stationary frame of reference, the initial condition (top) and a snapshot of the flow after
the reflection of GC2 from the back of the lock (bottom). Here, the dense fluid from
the lock is shaded. Quantities representing speeds are shown in boxes, i.e. U, VN1, and
VN2.
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Chapter 2

Shallow Water Theory

2.1 Two Layer Governing Equations

The SW model used here follows that of Ungarish and the reader is referred to Ungarish

et al. (2014) and Ungarish (2009) for a more in-depth description of the model and its

underlying assumptions.

Assuming a 2D rectilinear flow with negligible vertical accelerations, the standard

continuity equation is given by

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 (2.1)

where h is the depth of the fluid having density ρ1 and u is the corresponding horizontal

velocity. The 2D Euler equations can be combined into a single momentum equation

because u � w. Following the analysis of Rottman & Simpson (1983), and applying

the Boussinesq approximation leads to

(
H

H − h

)
∂u

∂t
+

[
H(H − 3h)

(H − h)2

]
u
∂u

∂x
+

[
g′ −

( H

H − h

)3u2

H

]
∂h

∂x
= 0 (2.2)

where x is the horizontal distance from the lock gate, g′ = g ρ1−ρ2
ρ1

is the reduced gravity,

and t is time. The above equations are nondimensionalized by scaling vertical distances
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with the initial depth of dense fluid inside the lock, h01 (≤ H), horizontal distances

with the lock length, l1, horizontal velocities with the long wave speed
√
g′h01 , and

time with l1√
g′h01

(see figure 1.1).

Equations (1) and (2) represent a coupled system of hyperbolic partial differential

equations. Applying the method of characteristics (see Ungarish (2009)) results in the

following ordinary differential equation:

dh

du
=

1

D

[
Au∓

√
(Au)2 +Dh

]
(2.3)

which is valid on characteristic trajectories

dx

dt
= c± = u(1−A)±

√
(Au)2 +Dh (2.4)

Here, A = h
H−h , D = 1 − h

H − H
(H−h)2

u2, and variables are now understood to be

non-dimensional, a convention that will be maintained until the end of Chapter 2.

2.2 The Nose Condition

While solutions of (2.3) produce a spectrum of h and u, it is still necessary to calculate

the behaviour of the gravity current nose, which is the front of the activated fluid. Any

fluid beyond the gravity current nose is in the undisturbed initial condition. Addition-

ally, we need a way to relate the speed of the fluid just behind the nose, uNi, to the

speed of the nose VNi. In figure 1.1, VN1 is the speed of GC1 while uN1 is the speed of

the fluid immediately behind GC1. U is the speed of the internal front, which may be

different from uN1. Note that this discussion applies equally to both the dense (i = 1)

and light (i = 2) gravity current.

In many cases the tongue fluid between the internal front and the gravity current

nose travels at the same speed uN1 as the internal front itself. In other words, and as

mentioned in the section 1.2, what defines the internal front (the grey fluid in figure

1.1) is colour (passive tracer) rather than salinity (active tracer).
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When there is no dense/light fluid tongue, i.e. hT i = 0, the gravity current front is

always a bore which moves at the same speed as the fluid immediately behind it. In

this case, and using the non-dimensional variables defined above,

uNi = VNi = FrB(a)
√

hNi (2.5)

where hNi is the height of the nose, a = hNi
H , and FrB is the Froude number function

defined by Benjamin (1968)

FrB(a) =

√
(2− a)(1− a)

1 + a
(2.6)

When a fluid tongue is present (hT i �= 0), the nose behaviour is more complicated.

In this case, the GC1 nose is not necessarily a bore; in some cases it may, in fact, be a

rarefaction wave. Actually, and as illustrated schematically by figure 2.1, the nose may

be one of three types, depending on the height of the tongue hT i.

Figure 2.1: An illustration of the three types of nose associated with propagating gravity
currents. Type 1 is a bore where the propagation speed is smaller than that of the
associated characteristic. Conversely, type 2 and type 3 show, respectively, a bore
and a smooth rarefaction wave where, in either case, the speed matches that of the
characteristic. Note that i = 1 in the case of the bottom, right-propagating gravity
current, GC1, and i = 2 for the top, left-propagating gravity current, GC2. Schematic
adapted from Ungarish et al. (2014).

Following the calculations of Ungarish et al. (2014), the critical tongue thickness for
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the formation of a type 1 or a type 2 bore reads as

hT i

H
<

√
ρ1/ρ2

1 +
√

ρ1/ρ2
(2.7)

which in the Boussinesq limit reduces to hTi
H < 1

2 . In the case where a bore forms,

continuity requires that, in a frame of reference where the bore is stationary, (uNi −
VNi)hNi = −VNihT i. This leads to

uNi = VNi

(
1− hT i

hNi

)
(2.8)

which confirms that the speed of the fluid immediately behind the bore is less than the

speed of the bore provided, of course, that hT i > 0. In this case, VNi no longer depends

exclusively on hNi and H as anticipated by Benjamin (1968) and (2.5). Rather, VNi is

given by

VNi = FrT(a, b)
√

hNi (2.9)

(Klemp et al., 1997). Here

FrT(a, b) =

√√√√√
a(2− a)− b(2− b)

(a− b)

(
1 + b

a − 2b+ 2a 1−b
1−a

) (2.10)

and b = hTi
H . Note that (2.10) reduces to Benjamin’s original formula (2.6) in the limit

of a vanishingly thin tongue, i.e. b → 0.

When the gravity current nose is a rarefaction wave (type 3 nose in figure 2.1)

(2.9) and (2.10) can be further simplified. After taking the limit a → b, and applying

l’Hôpital’s rule, it can be shown that

VNi =
√

hT1(1− b) (2.11)

which is the well-known expression for the long wave speed.
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2.3 Method of Solution

The solution methods described below were used to solve the SW model for (non-

dimensional) values ofH ∈ [1, 2] and hT1 ∈ [0, 1]. The solution method begins by solving

(2.3) along a characteristic path to determine u(h). The numerical integration requires

values for the initial height hinitial and speed uinitial; specification of these parameters

necessitates identification of the nose type for GC1 and GC2.

2.3.1 One Type 3 Nose

The simplest solution arises when either of the gravity currents (GC1 or GC2) has a

type 3 nose and so takes the form of a rarefaction wave. When GC2 has a type 3 nose,

(2.3) can be solved along a c+ characteristic that originates at the leading edge of the

rarefaction wave. Thus hinitial = 1 and uinitial = 0 and the solution of (2.3) is obtained

for h ∈ [1, hT1]. The so-determined solution of u(h) is then used in (2.4) to calculate

the spectrum of characteristics and to verify that the GC1 nose is of type 1. (Note that

for the range of parameters of interest here, a type 3 nose was never found to coexist

with a type 2 nose.) The GC1 nose speed, VN1, and height, hN1, is then solved using

(2.8) and (2.9). See Appendix C for details.

When the opposite is true, i.e. GC1 has a type 3 nose and GC2 has a type 1 nose,

(2.3) may instead be integrated along a c− characteristic considering hinitial = hT1 and

uinitial = 0. The solution of (2.3) is then obtained for h ∈ [hT1, 1].

2.3.2 No Type 3 Nose

When neither gravity current has a type 3 nose, one may proceed by assuming that

both noses are of type 2. (The case when one nose is of type 1 rather than of type 2 will

be addressed below.) Then (5.38) from Ungarish (2009), VN2 � 0.1798H +0.3475, may

be used to calculate the speed and height of both GC1 and GC2. Equation (5.38) is a

curve-fit to the speed of a bore propagating into an equal-density tongue as obtained
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from a two-layer shallow water model, i.e. equations 5.36 and 5.37 from Ungarish (2009).

Note that (5.38) may be directly applied to find VN2 prior to reflection; however, to find

VN1, the “upside down” equivalent to H must be calculated: i.e. the channel height

normalized by H − hT1. The initial height and speed to be used in solving (2.3) are

the height of the bore and the speed of the fluid just behind the bore (i.e. the fluid on

the lock gate-side of the bore, which applies to both GC1 and GC2). Equation (2.3) is

therefore solved twice, once to calculate u(h) on a c+ characteristic and once to calculate

u(h) on a c− characteristic. Thus (2.3) is integrated forwards with h ∈ [hinitial2 , hT1]

and backwards with h ∈ [hinitial1 , 1]. The intersection of the so-obtained curves for u(h)

specifies the height, hcore, and speed, ucore, of the fluid in the core section between the

two bores. See figure 2.2 for a schematic representation of this SW solution.

Figure 2.2: Schematic of the SW solution for a lock release experiment where both
gravity current noses are type 2 bores. The initial height and speed to be integrated
forward along a c+ characteristic are shown, and are respectively located at and just to
the right of the left-moving jump (VN2). The initial height and speed to be integrated
backwards along a c− characteristic are also shown, and are respectively located at and
just to the left of the right-moving jump (VN1). Also shown is the position of the lock
gate (vertical dashed line) and the height and speed of the core fluid.

Failing to obtain an intersection of the two u(h) curves implies that one (or both)

of the GC noses is (are) of type 1. This means that a weaker bore than calculated by

(5.38) from Ungarish (2009) must be used to determine hinitial and the corresponding

uinitial. Essentially this can be done by either choosing an hinitial2 that is slightly higher

or an hinitial1 that is slightly lower than that obtained from (5.38), then calculating the
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appropriate uinitiali by first computing the corresponding bore speed (i.e. VN2 or VN1),

using (2.9). Thereafter, continuity arguments may be employed e.g. (2.8). Which initial

(h, u) pair is to be adjusted is determined by which of the two u(h) curves (first de-

scribed in the preceeding paragraph) must be extended to yield the desired intersection.

The smallest change that achieves an intersection should be made, i.e. hinitial (and the

corresponding uinitial) should be changed just enough to achieve intersection and no

more. The final bore speed and height is that which just results in intersecting u(h)

curves and, as above, the intersection point of the two curves determines the height

and speed of the core fluid between the bores. A graphical method summarizing this

process and analogous to that described in Appendix C may be helpful, and is shown

in figure C.2 below.

2.3.3 Reflected GC2

The height and speed of GC2 following reflection from the back of the lock are deter-

mined using the method of Ungarish (2009), which is briefly outlined below. Here, we

assume that GC2 is either a type 1 or type 2 bore. When this is not the case, i.e. GC2

is a type 3 bore, the incident and reflected disturbance will both be rarefaction waves

as noted by Rottman & Simpson (1983). We do not examine theoretically this type 3

nose case.

Figure 2.3 shows GC2 immediately following reflection from the back of the lock.

The upstream conditions were previously determined using the SW analysis detailed

above. Only VN2 and hN2 are unknown. It is helpful to first introduce the ratio

χ =
hN2

h2
(2.12)

Continuity yields

VN2 = − u2
χ− 1

(2.13)
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The reduced hydrostatic pressure to the right of the bore is

pr =

⎧⎪⎪⎨
⎪⎪⎩
h1 − z (0 ≤ z ≤ h1)

0 (h1 ≤ z ≤ H)

(2.14)

Changing the frame of reference to one where the bore is stationary allows us to consider

the increase in pressure along the top boundary in figure 2.3. Bernoulli’s equation gives

1

2
V 2
N2 + pL +Δ =

1

2
(u2 + VN2)

2 (2.15)

where Δ denotes the head loss across the bore and pL is the unknown pressure along the

top boundary to the left of the bore. Making the simplifying assumption that Δ = 0

(which shows good agreement with more rigorous calculations (Klemp et al., 1997))

yields

pL =
1

2
u22 + u2VN2 (2.16)

where u2 is understood to be a negative quantity. This result allows us to calculate the

hydrostatic pressure to the left of the bore:

pl =

⎧⎪⎪⎨
⎪⎪⎩
pL +H − hN2 − z (0 ≤ z ≤ H − hN2)

pL (H − hN2 ≤ z ≤ H)

(2.17)

A flow-force balance is then applied on the left and right side of the bore (still in the

moving frame of reference) as follows:

∫ H

0
(u2 + p)ldz =

∫ H

0
(u2 + p)rdz (2.18)

Substituting (2.12-2.14) and (2.17) into (2.18) ultimately yields:

u22
χ− 1

= u21(G− 1) + u22(1−
1

2
G) +

1

2
h2{(G− 1)2 − (G− χ)2} (2.19)

where G = H/h2. Equation (2.19) represents one equation for one unknown, χ. The

height and speed of the reflected GC2 are valid for the conditions in the lock immediately
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following reflection; if the height and speed of the fluid layers into which the reflected

GC2 is propagating change, the height and speed of GC2 will necessarily change as well.

Figure 2.3: Schematic of the SW solution for the reflected GC2 showing the bore shortly
after reflection from the back of the lock. u1, u2, h1, and h2 are known, having been
determined in the initial SW analysis. Schematic adapted from figure 5.7 of Ungarish
(2009).
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Chapter 3

Yih-type Energy Analysis

To complement the results obtained by SW theory, a Yih-type energy analysis (Yih,

1965) is performed for the sole purposes of estimating the internal front speed and the

speed of GC1. By design, the analysis is not as comprehensive as that presented in

Chapter 2 e.g. it applies only up till the point where GC2 reflects from the end of the

lock.

3.1 Thin Interfaces

Figure 3.1 shows the definition sketch for thin interface experiments where, consistent

with experimental images to be presented later, we have assumed that the dense lock

fluid pushes downstream fluid from the lower ambient layer. GC1 and GC2 are assumed

to be type 1 bores linked by a core region of constant thickness, with depth hN1 equal

to that of the GC1 nose. Strictly speaking, this assumption is inconsistent: for the pa-

rameters of interest here, the SW model never actually predicts configurations in which

both gravity current noses are type 1 bores. However, and as shown in figure 5.1 below,

we find that the Yih-type analysis exhibits surprisingly good accuracy, at least insofar

as anticipating the speeds of the internal front and GC1. Rationalizing this observation,

we note that, most of the time, the SW model predicts bore pairs in the combinations
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of type 2-type 2 or type 1-type 2. It is therefore likely that the geometry/energetics of

the type 2 bore is sufficiently close to that of a type 1 bore to render a Yih-type analysis

an alternative that is neither unreasonable nor computationally expensive. Note that

from this section onward variables are once again dimensional.

Figure 3.1: Definition sketch for the Yih-type energy-based analysis. Both GC noses
are assumed to be type 1 bores. The lock fluid is shaded, and the position of the lock
gate before removal is shown as a vertical dashed line. The internal front moves with
speed U while the activated region of Tongue 1, whose initial depth is hT1, propagates
as a bore with speed VN1 �= U .

The analysis proceeds by evaluating the change in potential and kinetic energies that

occur between the initial condition and a time Δt after lock release. To evaluate the

change in potential energy of fluid 2, a volume centered on the lock gate and having

lateral extent (VN1 + VN2)Δt is considered at t = 0 and then again at a later instant in

time, t = Δt. With reference to this volume, the change in potential energy of fluid 2 is

ΔPEfluid2 =
1

2
ρ2gΔt

[
VN1(h

2
T1 − h2N1) + VN2(h

2
01 − h2N1)

]
(3.1)

Similarly, the potential energy change of fluid 1 during time Δt can be calculated as

ΔPEfluid1 =
1

2
ρ1gΔt

[
VN1(h

2
N1 − h2T1) + VN2(h

2
N1 − h201)

]
(3.2)

The corresponding change in kinetic energy of fluid 1 can be determined by consid-

ering the domain of fluid of density ρ1 activated during Δt, i.e.
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ΔKEfluid1 =
1

2
ρ1Δt(VN1 + VN2)U

2hN1 (3.3)

The analogous expression for fluid 2 is

ΔKEfluid2 =
1

2
ρ2Δt(VN1 + VN2)U

2
2 (H − hN1) (3.4)

Ignoring viscous dissipation, the sum of (3.1), (3.2), (3.3), and (3.4) must vanish. This

observation, combined with the mass balance identities

VN1 = U
hN1

hN1 − hT1
VN2 = U

hN1

h01 − hN1
U2 = U

hN1

H − hN1
(3.5)

leads to the following expression for U :

U2

g′H
= Fr2 =

(
1− hN1

H

)(
h01
H

− hN1

H

)(
1− hT1

hN1

)
(3.6)

The height hN1 being unknown, we consider the same symmetrical split as was done

by Yih (1965). Accordingly hN1 − hT1 = h01 − hN1 or, equivalently,

hN1

H
=

1

2

(
h01
H

+
hT1

H

)
(3.7)

Combining (3.6) and (3.7) leads to

U2

g′H
= Fr2 =

1

2

[
1− 1

2

(
h01
H

+
hT1

H

)](
h01
H

− hT1

H

)(
h01 − hT1

h01 + hT1

)
(3.8)

With an expression for U to hand, VN1 can then be estimated from (3.5a).

3.2 Thick Interfaces

Figure 3.2 shows the definition sketch for thick interface experiments where, consistent

with experimental images to be presented later, we have assumed that the dense lock

fluid pushes downstream fluid from the lower ambient layer. We also assume a linear
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change in density from ρ1 to ρ2 across the thick interface. As in �3.1 above, GC1 and

GC2 are assumed to be type 1 bores linked by a core region of constant thickness,

with depth hN1 equal to that of the GC1 nose. As before, this assumption may be

inconsistent, although the previous SW model does not apply to experiments with thick

interfaces. A final simplifying assumption is that the activated portion of the thick

interface moves to the left at the same speed as the upper ambient layer, VN2. In spite

of the above assumptions, we find that the Yih-type analysis exhibits reasonably good

accuracy in predicting the speed of the internal front, as shown in figure 5.7 below. This

analysis thus provides a straightforward way of predicting the speed of the internal front

when the interface is thick and h01 = H.

Figure 3.2: Definition sketch for the Yih-type energy-based analysis with a thick ambient
interface and where h01 = H. Both GC noses are assumed to be type 1 bores. The
lock fluid is stippled while the light ambient fluid is shaded. The density variation in
the thick interface is represented by a colour gradient, and the position of the lock gate
before removal is shown as a vertical dashed line. The internal front moves with speed
U while the activated region of Tongue 1, whose initial depth is hT1 − δ

2 , propagates as
a bore with speed VN1 �= U .

The analysis proceeds by evaluating the change in potential and kinetic energies that

occur between the initial condition and a time Δt after lock release. To evaluate the

change in potential energy of the fluid in the thick interface, a volume centered on the

lock gate and having lateral extent (VN1+VN2)Δt is considered at t = 0 and then again

at a later instant in time, t = Δt. With reference to this volume, the change in potential

energy of the thick interface, whose average density is 1
2(ρ1 + ρ2), is
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ΔPEinterface =
1

2
(ρ1 + ρ2)gΔtVN1δ

[
hN1 +

VN1δ

2(VN1 + VN2)
− hT1

]
(3.9)

Similarly, the potential energy change of fluid 1 during time Δt can be calculated as

ΔPEfluid1 =
1

2
ρ1gΔt

[
VN1(h

2
N1 − (hT1 − δ/2)2) + VN2(h

2
N1 −H2)

]
(3.10)

and the potential energy change of fluid 2 during time Δt is

ΔPEfluid2 =
1

2
ρ2gΔtVN1

[
H − (hT1 + δ/2)

]
[

VN1

VN1 + VN2

[
2δ +H − (hT1 + δ/2)

]
+ 2hN1 −H − (hT1 + δ/2)

]
(3.11)

The corresponding change in kinetic energy of fluid 1 can be determined by consid-

ering the domain of fluid of density ρ1 activated during Δt, i.e.

ΔKEfluid1 =
1

2
ρ1Δt(VN1 + VN2)U

2hN1 (3.12)

The analogous expression for fluid 2 is

ΔKEfluid2 =
1

2
ρ2Δt(VN1 + VN2)

H − (hT1 + δ/2)

H − (hT1 − δ/2)
U2 h2N1

H − hN1
(3.13)

while the change in kinetic energy of the thick interface is

ΔKEinterface =
1

2

ρ1 + ρ2
2

Δt(VN1 + VN2)
δ

H − (hT1 − δ/2)
U2 h2N1

H − hN1
(3.14)

Ignoring viscous dissipation, the sum of (3.9) – (3.14) must vanish. This observation,

combined with the mass balance identities

VN1 = U
hN1

hN1 − (hT1 − δ/2)
VN2 = U

hN1

H − hN1
(3.15)

yields, after a considerable amount of algebra, the following expression for U :
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U2

g′H
= Fr2 =

(
1− hN1

H

)2(
1− hT1

hN1
+ δ

2hN1

)[(
hT1
H − 1

)2

+

(
δ
2H

)2]
(
1− hT1

H + δ
2H

)2 (3.16)

The height hN1 being unknown, we consider the same symmetrical split as was done

by Yih (1965), noting that in the case of a thick interface the lower ambient layer depth

is now given by hT1 − δ/2. Accordingly hN1 − (hT1 − δ/2) = H − hN1 or, equivalently,

hN1

H
=

1

2

(
1 +

hT1 − δ/2

H

)
(3.17)

Note finally that we do not attempt a Yih-type analysis for the case of a thick ambient

interface and a partial-depth lock release anticipating that the associated algebraic

manipulations will be too complicated to yield a practical solution, not at least without

invoking overly restrictive simplifying assumptions.
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Chapter 4

Experiments

A total of 43 laboratory and 85 direct numerical simulation (DNS) lock-release ex-

periments were performed. We consider a two-layer density-stratified ambient in all

cases although in roughly half of the experiments, the ambient interface was thick and

supported a continuous (and roughly linear) variation of ρ with z. In all experiments

H � 20 cm with Δρ � 4% in the laboratory experiments and Δρ = 2% in the DNS

experiments. The Reynolds number was defined as Re = ρ2UH
μ where the dynamic vis-

cosity was taken to be μ = 0.01002 g/(cm·s) (Kundu et al., 2012). Although Re varied

from approximately 400 to 23 000, the influence of viscosity was small and features

of turbulent flow were consistently observed. Parameters that were varied in the thin

interface experiments were the depth of the dense lock fluid, h01, in reservoir 1, and the

depth, hT1, of tongue 1. For the thick interface experiments, we additionally varied the

thickness, δ, of the ambient interface. However, the center of the ambient interface was

kept constant at hT1 = 10 cm.

4.1 Laboratory Experiments

Lock-release laboratory experiments were performed in a 227 cm × 25 cm × 34 cm glass

tank having a wall thickness of 1.2 cm. The lock region spanned a horizontal distance of
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36 cm at the left end of the tank. The lower and upper ambient layers were respectively

comprised of salt water and fresh water, the latter of which was dyed orange with

food colouring. Meanwhile, the dense fluid in the lock, whose density matched that of

the lower layer, was dyed blue so that the internal front could be easily identified in

experimental images. For all laboratory experiments, the depth of the fluid inside the

lock was 20.0 cm whereas the depth of the fluid outside of the lock was slightly larger,

20.0 to 20.6 cm. (The fluid inside and outside of the lock were hydrostatically-balanced

at t = 0.) Parameter combinations with reservoir 1 (dense lock fluid) depth 10 cm

< h01 < 20 cm and tongue 1 (dense ambient layer) depth 2.5 cm < hT1 < 15 cm were

used. See Appendix A for a listing of all laboratory experiments. Also, a summary of

laboratory experimental preparation techniques is included in Appendix B.

Laboratory experiments were initiated by removing the lock gate as quickly as pos-

sible. The speed of the lock gate removal was limited by the tightness of the rubber

seals and varied from 9 seconds in experiment 1 to 2 seconds in experiment 43 as the

seals became progressively looser with repeated use. Tight seals were necessary to pre-

vent fluid migration, i.e. leakage during the filling process due to hydrostatic pressure

differences across the lock gate. The finite time required to remove the lock gate in

the laboratory experiments did not, however, impact the bulk features of the flow; this

is evident in figures 4.1 and 4.2, which compare time series of images from laboratory

experiments with and those from the analogous simulations.

Experimental videos were captured by a tripod-mounted DSLR camera (EOS REbel

T5i, Canon) and analyzed using post-processing software (see �4.3 below). The camera,

which was aligned with the center of the long side of the experimental tank, was located

a sufficient distance away (i.e. 375 cm) to minimize parallax errors. When parallax is

defined relative to the total tank length, it varies from zero at the image center to 3%

at the outside edges of the tank. The camera’s 18-55mm zoom lens (Canon) was set to

a focal length of approximately 35mm.
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Thick interfaces were carefully prepared using one of three methods depending on

the required thickness: for thinner interfaces an intrusive gravity current was used, as

described in Mehta, Sutherland & Kyba (2002); for medium interfaces a lock exchange

technique as elborated upon in Shin et al. (2004) was used; and for thick interfaces

Oster’s double bucket method (Oster, 1965) was used. In this latter case in particular,

ambient density profiles were obtained using a conductivity probe (MSCTI, Precision

Measurement and Engineering) that was lowered into the tank on a LabView-controlled

traverse. As expected, the measurements in question confirmed that the density varied

in a roughly linear fashion from the top of the lower ambient layer to the bottom of the

upper ambient layer – see Appendix B for further details.

4.2 Numerical Experiments

Analogous 2D DNS experiments were performed where the numerical domain measured

400 cm × 20 cm, the former distance including a 40 cm lock. A heavy fluid density of

ρ1 = 1.02 g/cm3 and a light fluid density of ρ2 = 1.00 g/cm3 were used. A passive tracer

was used to keep track of the fluid originating in the lock. Simulations were run using

Diablo (Taylor, 2008), an open-source, mixed spectral-finite difference algorithm that

employs a staggered grid with spatial resolutions of 0.2 cm and 0.08 cm, respectively,

in the horizontal and vertical directions. Diablo, which employs a Runge-Kutta-Wray

(RKW3) scheme for time advancement, has been used in numerous previous investi-

gations of gravity current behaviour e.g. Flynn, Boubarne & Linden (2008), Flynn,

Ungarish & Tan (2012), Bolster et al. (2008) and Maurer et al. (2010). As with the

laboratory experiments described previously, the primary purpose of running the nu-

merical simulations is to examine the bulk features of the fluid flow such as the speeds

and heights of the gravity currents as well as the speed of the internal front. These flow

dynamics are largely unaffected by turbulent flow detail, the most intense turbulent

mixing being observed behind the features of principal interest.
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Figure 4.1: Time series of laboratory experiment 1 (panels a-d) and the corresponding
DNS experiment 583 (panels e-h) with h01

H = 1.0 and hT1
H = 0.5. Consistent with the

dimensions of our experimental tank, each of the above panels measures 227 cm × 20 cm.
The position of the lock gate is indicated by the vertical white dashed line. The frames

shown correspond to non-dimensional times t
√
g′H
H of 2.0 (a and e), 10.0 (b and f), 18.0

(c and g), and 26.0 (d and h) following the initiation of the flow. The vertical blue and
red lines respectively denote the nose positions of GC1 and GC2, the latter of which
reflects from the back of the lock between panels (a-b) and (e-f).
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Figure 4.2: Time series of laboratory experiment 10 (panels a-d) and the corresponding
DNS experiment 584 (panels e-h) with h01

H = 0.75 and hT1
H = 0.125. Consistent with

the dimensions of our experimental tank, each of the above panels measures 227 cm ×
20 cm. The position of the lock gate is indicated by the vertical white dashed line. The

frames shown correspond to non-dimensional times t
√
g′H
H of 2.0 (a and e), 8.0 (b and

f), 14.0 (c and g), and 20.0 (d and h) following the initiation of the flow. The vertical
blue and red lines respectively denote the nose positions of GC1 and GC2, the latter of
which reflects from the back of the lock between panels (a-c) and (e-g).
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Figure 4.3: Image from laboratory experiment 13 with h01
H = 0.5 and hT1

H = 0.125.
Consistent with the dimensions of our experimental tank the image domain measures
227 cm × 20 cm. The position of the lock gate is indicated by the vertical white dashed

line. The frame shown corresponds to a non-dimensional time t
√
g′H
H of 14.0 following

the initiation of the flow. The vertical blue and red lines respectively denote the nose
positions of GC1 and GC2, the latter of which has previously reflected from the back
of the lock.

Supporting this claim, figures 4.1–4.2 show a comparison of analogue time series

images. The former and latter figures respectively consider cases where the GC1 nose

is predicted to be of type 3 and type 2. Figure 4.2 justifies the terminology adopted

in Chapter 1 whereby the interfacial disturbance generated downstream of the internal

bolus is referred to as GC1. As the lock depletes of dense fluid, there is a gradual

evolution of GC1 and its type 2 nose, i.e. the bore assumes an undular character. Such

behavior is even more evident in figure 4.3, which considers a smaller value of h01
H , i.e. 0.5

vs. 0.75 from figure 4.2. The lead solitary wave from the undular bore has a “leaky”

core and so includes dense lock fluid in progressively diminishing volumes. Because

shallow water models cannot capture such non-hydrostatic effects, the interested reader

is instead referred to Sutherland & Nault (2007) where the generation of solitary waves

by gravity currents is discussed in greater detail. Together, figures 4.1–4.3 illustrate the

different forms that the interfacial disturbances can take, i.e. a long wave, a bore, or a

solitary wave. The figures also confirm that the bulk flow features from the laboratory

experimental images are faithfully reproduced in the corresponding images extracted

from the DNS experiments.

31



4.3 Post-processing and Analysis

Laboratory experimental videos were cropped and resampled to 12 frames per second

to reduce file size, typically resulting in videos comprised of approximately 500 frames.

Video frames were then converted into arrays of 8-bit RGB values, with array sizes of

roughly 225 × 1600 × 3. Pixel resolution was determined by selecting points a known

distance apart in the first video frame.

Typical DNS data consisted of 51 frames of double-precision active and passive scalar

values stored in 256 × 2048 arrays. The time increment between successive output files

was therefore 1.25 s, however, the actual time step used in the simulations was smaller

by a factor of 250.

MATLAB algorithms were used to measure the internal front position as well as the

nose position of both gravity currents. The position of the internal front was determined

by averaging, row-by-row and across the vertical extent of the tank, the horizontal

locations of either a specified RGB colour value (lab) or a passive tracer concentration

(DNS). The GC1 front position was measured by executing a five row search along the

level of the ambient interface to determine where the interface height first deviated from

its downstream value. The GC2 front position was determined using a broadly similar

technique to that used to locate the internal front, i.e. by searching for a change in the

RGB colour value or passive tracer concentration over the five rows spanning the level

approximately ten rows below the crest GC2.
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Figure 4.4: Horizontal time series of laboratory experiment 1, with h01
H = 1 and hT1

H =
0.5. Symbol types are as follows: internal front, triangles; GC1, circles; GC2, crosses.
The solid horizontal line represents the time at which GC1 reflects from the tank end
wall.

On this basis we were able to produce horizontal time series (HTS) images like the

one in figure 4.4. The symbols in figure 4.4 correspond to the data from experiment

1, shown in the top four panels of figure 4.1. Plotted in figure 4.4 are the positions of

the internal front (triangles), GC1 nose (circles), and GC2 nose (crosses). In the latter

case, we show data from before and after the reflection of GC2 from the back of the

lock. The gaps in the GC2 data around the point of reflection are due to the difficulty in

measuring its nose position right at the point of reflection, which is oftentimes associated

with enhanced shear and mixing.

In figure 4.4, the internal front exhibits a well-defined region of constant-speed prop-

agation that can be observed between non-dimensional times of 0 and 17. Thereafter,

the internal front is arrested by the overtaking GC2. The horizontal line indicates the

time of reflection of GC1 and confirms that in the case shown, the internal front’s arrest

was due to the overtaking GC2 rather than the reflection of GC1. There exists a smaller

subset of experiments (not shown) where GC2 propagates relatively slowly and/or the

internal front travels relatively quickly. Here, the internal front begins to decelerate

when it feels the downstream influence of the tank end wall. Indeed such a downstream

influence and, more especially, the reflection of GC1 has the eventual consequence of

pushing the internal front from right to left after a period of frontal stasis – see figure
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4.4. The associated dynamics, being an artifact of our closed/finite domain, are not of

particular interest in the context of real environmental flows and shall not be examined

in significant detail here. In other words, our research emphasizes the period between

lock release and the arrest of the internal front, whether this is due to overtaking by GC2

or to the reflection of GC1. In general, as hT1
H decreases (in thin interface experiments)

or as the interface thickness δ increases (in thick interface experiments), the internal

front moves more quickly and is able to travel further downstream before its progress

is arrested. Additionally, GC1 and GC2 travel at approximately constant speed until

they interact with the tank end wall. Also of note is that GC2 travels more quickly

when initially moving to the left into the undisturbed lock fluid than after reflecting

from the back of the lock and propagating to the right.

The precise front speeds for GC1 and GC2 as well as the speed of advance of the

internal front are estimated by drawing lines of best fit to the relevant data over the

appropriate time interval. In turn, the distance travelled by the internal front before

decelerating was determined as the point where the open triangles from the HTS images

first deviated from the corresponding best fit line. Our MATLAB algorithm was further

extended to measure gravity current heights (see figure 4.5) in the case of the thin

interface experiments. This was done by detecting the border between fluid 1 and fluid

2 by searching for a specified difference in colour (laboratory experiments) or scalar

tracer (DNS experiments).

Figure 4.5: Image taken from experiment 7 with h01
H = 1 and hT1

H = 0.5. The entire
tank length of 227 cm × 20 cm is shown. The two pairs of horizontal lines are used to
estimate the heights of GC1 and GC2 (reflected).
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The height of the detected border was then averaged over a specified range of x,

usually about 20 pixels or 4 cm. This range was chosen by eye, and corresponded to the

extent of approximately constant gravity current height.

GC1 and GC2 heights were each measured at two locations: The GC1 height was

measured both when its leading edge reached two lock lengths, which was as early as

practical, and when its leading edge reached the end of the tank, i.e. 5.4 lock lengths.

In the case of the numerical simulations, which had a longer horizontal domain, the

second GC1 height was nonetheless measured at 5.4 lock lengths, this for the sake of

consistency. The GC2 height, by contrast, was measured both immediately following

its reflection from the back of the lock, and at the point where the GC2 front overtook

the internal front. When the internal front was arrested by interaction with the far tank

wall rather than by the overtaking GC2, the second GC2 height was measured as far

downstream as possible, before GC1 first contacted the end of the tank.

The prediction of gravity current heights derived from SW theory is based on the

assumption of a hydrostatic pressure gradient on either side of the propagating bore.

However, when GC2 reflects from the back of the lock, vertical accelerations may result

and pressures may become non-hydrostatic. For this reason, the measurement of the

GC2 height immediately following reflection required some care. For example, figure

4.6 shows a vertical time series (VTS) taken at the position where the GC2 height was

measured, in this case at -0.6 lock lengths. The line indicates the time interval over

which the GC2 trough could be measured. Although the height measurement was taken

at point in time where pressures were likely non-hydrostatic, the measured trough depth

is actually very similar to that corresponding to later times, when vertical accelerations

were again small. This gives reasonable confidence that our method for estimating the

height of GC2 is accurate.

35



Figure 4.6: Vertical time series of laboratory experiment 1 taken at x
l1

= −0.6. Here
h01
H = 1 and hT1

H = 0.5. The blue region represents the lock fluid while the yellow region
represents the upper ambient layer. The line indicates the vertical position and range
of time that the height of the GC2 trough could be measured immediately following
reflection from the back of the lock.
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Chapter 5

Results and Discussion

5.1 Thin Interface Experiments

Figure 5.1 shows internal front and gravity current speeds as measured during the period

where the internal front speed is constant. Each panel also shows predictions made by

SW theory (thick lines) and the Yih-type analysis (thin lines). Regions within each

panel of figure 5.1 are shaded according to the GC1 nose type as predicted using SW

theory and the equations of �2.2.

In the case of GC1 (open and filled squares, and solid lines), and in good agreement

with qualitative observations from experiments, SW theory predicts the appearance of

a type 1 or type 2 bore for hT1
H < 0.5 and a rarefaction wave for hT1

H ≥ 0.5 (Ungarish

et al., 2014). (The time series in figure 4.1 illustrates a GC1 front at the crossover

value of hT1
H = 0.5.) The SW prediction for the GC1 speed is nonetheless continuous

at hT1
H = 0.5 as confirmed by the solid curves of figures 5.1 a-d, which agree well with

both laboratory (filled squares) and DNS data (open squares) for the full range of hT1
H

values.

37



Figure 5.1: Plots of non-dimensional speed versus non-dimensional dense tongue depth
for decreasing dense lock fluid depths. The panels show experiments where (from top
to bottom) h01

H = 1.00, 0.88, 0.75, 0.63, and 0.50. The panels show GC1 speed (squares
and solid lines), reflected GC2 speed (diamonds and dotted line) and internal front
speed (triangles and dashed line data) Open symbols represent DNS data while closed
symbols represent laboratory experiments. The thick lines are predictions made by SW
theory (Chapter 2) while the thin lines are predictions made by the Yih-type analysis
(Chapter 3). The background shading shows the GC1 nose type predicted by SW theory,
including type 1 (white), type 2 (light grey), and type 3 (dark grey). Representative
error bars are as shown.

38



Turning now to the predictions of the Yih-type analysis for the GC1 speed, there is

generally good agreement with both the SW theory and the experimental data when

hT1
H � 0.5 or when h01

H < 1.0. When h01
H = 1.0 and hT1

H > 0.5 and, however, the

Yih-type analysis under-predicts both the GC1 speed data (open and closed squares

in figure 5.1 a) and the SW prediction of the GC1 front speed. This may be because,

as noted previously, the Yih-type analysis assumes that GC1 is always a type 1 bore.

However, both experimental images and more especially SW theory indicate that when

hT1
H ≥ 0.5, GC1 is instead a rarefaction wave, which here travels faster than a type 1

bore.

Measured internal front speeds are shown in figure 5.1 as open and closed triangles

while the corresponding theoretical predictions are given by the thick (SW) and thin

(Yih) dashed curves. Both the thick and thin curves approximately approach Ben-

jamin’s prediction of U√
g′H = 0.5 as hT1 → 0 (Benjamin, 1968); they also approach

U√
g′H = 0 as hT1 → h01. In between these extremes, the correspondence between

SW/Yih theory and experiments is both robust and roughly comparable to the agree-

ment observed by Tan et al. (2011), whose focus was primarily on supercritical flows

and who derived a corresponding theory that was neither SW or Yih-like in nature. It

is interesting to note, with reference to the experimental measurements in figure 5.1,

that both internal front and GC1 speeds decrease slightly as hT1
H → 0 from the right.

We speculate that a thin lower layer may play something of a “lubricating” role that

suppresses the overrunning of ambient fluid by GC1. Consider, for example, figure 5.2,

which shows snapshots collected from three numerical experiments that are identical

in all aspects except for the value of hT1. Although the simulations are 2D, it is clear

that hT1 = 0 is associated with the most significant turbulent mixing behind the gravity

current head. In turn, the speed of both GC1 and of the internal front are demonstrably

smaller than in the case where hT1
H = 0.05 (middle panel).

39



Figure 5.2: Images from DNS experiments 249, 571, and 573 with h01
H = 1.0 and initial

dense tongue heights hT1
H = 0.0 (top), 0.05 (middle), and 0.125 (bottom). The non-

dimensional time after lock release is t
√
g′H
H = 31 in all cases. The lock fluid is shown

in red, while the lower ambient layer is green and the upper ambient layer is blue. The
entire numerical domain of 400 cm × 20 cm is shown.

Comparing the internal front speed predictions of the Yih-type analysis to those of

SW theory in figure 5.1, positive agreement is noted for a wide range of hT1
H and for

all h01
H . When h01

H ≤ 0.75, and in the limit of hT1
H → 0, however, the Yih-type model

underpredicts its SW counterpart. While the Yih-type prediction seems to be consistent

with the numerical data points at hT1
H = 0, the agreement is likely coincidental. As

evidenced by figure 5.2, the reduced speeds seen in the numerical simulations are likely

due to the increased turbulent mixing and dissipation that arises when the ambient

lower layer is absent. The Yih-type analysis, by contrast, ignores turbulent mixing

entirely.

Figure 5.1 also includes data for the reflected GC2 nose (diamonds) and the corre-

sponding SW theory (dotted lines). (We do not attempt to measure the front speed

of GC2 before reflection owing to transient effects and the moderate lock lengths of
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interest here.) The SW theory predicts a bore rather than a rarefaction wave in the

top 4 panels where h01
H = 1.00, 0.88, 0.75, and 0.63. The bottom panel predicts that the

initially left-moving GC2 propagates with a type 3 nose (rarefaction wave) and upon

reflection a type 3 nose is also anticipated (Rottman & Simpson, 1983). Overall, the

agreement between experiment and theory is here less robust than for GC1 and the

internal front, which is especially evident in figure 5.1 a) where a ∼20% underpredic-

tion is observed. This may be because SW theory predicts the GC2 speed immediately

following reflection from the lock wall. In practice, reflection is associated with such a

large degree of mixing that, for pragmatic reasons, measured front speeds for GC2 are

more typically collected 0.5 to 2.5 lock lengths downstream of the back wall of the lock,

after the bore has reduced in height and increased in speed. This relationship of bore

speed to height is predicted by (2.13). In fact, when h01
H = 1.0 and the SW prediction

for the GC2 front speed is based instead on experimentally-measured heights, which

are used as inputs to (2.19) and that are measured at a downstream distance where the

GC2 front overtakes the internal front, we see considerable better agreement between

theory and experiment – see figure 5.3.

Figure 5.3: Plots of the non-dimensional GC2 front speed versus the non-dimensional
dense tongue depth for h01

H = 1.0. Shown are reflected GC2 speed experimental data
(diamonds) and predictions from SW theory (thin dotted line), both of which are taken
from figure 5.1 a. Also included above with the thick dotted line (but not in figure 5.1 a)
is an analogue SW prediction made using experimentally-measured heights as inputs to
(2.19). Open symbols represent DNS data while closed symbols are data points from
laboratory experiments. Representative error bars are as shown.
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Evidence for a dispersive evolution of GC2 in the streamwise direction comes from

the right-hand side panels of figure 5.4, which plot η2R
H , the GC2 height immediately

following reflection from the back of the lock against η2O
H , the GC2 height as the GC2

front overtakes the internal front. For η2O
H � 0.2, the GC2 height decreases with distance

travelled, as evidenced by the data points lying above the 1:1 line. The parametric range

in question corresponds to experiments with relatively low values of hT1
H . Indeed when

hT1
H is especially small, the time-dependent height decrease in GC2 has the longest time

over which to manifest. The left-hand side panels of figure 5.4 plot η2R
H against hT1

H

(open and filled diamonds). Also included in these panels are the predictions of SW

theory (thick lines). The agreement between experiments and theory is excellent in

the full-depth case (a) and remains qualitatively correct when h01
H = 0.75 (c). No SW

prediction is possible when h01
H = 0.5, in which case GC2 is predicted to take the form

of a long wave rather than a bore.

Complementary results but considering GC1 are shown in figure 5.5, whose left-hand-

side panels show
η1,2.0
H , as measured after a travel distance of two lock lengths vs. hT1

H .

The agreement with SW theory (thick lines) is good, albeit with an underprediction of

the DNS data (open squares) when hT1
H < 0.2 in panels (c) and (e). Conversely, the

right-hand side columns show
η1,2.0
H , versus

η1,5.4
H , GC1 height measured at a downstream

distance of 5.4 lock lengths, which corresponds to the far end wall of the laboratory tank.

While the full-depth case (b) exhibits a decrease in gravity current height between these

two points, the same cannot be said for the h01
H = 0.75 and 0.5 data (panels d and f).

Here, and within experimental uncertainty, η1,2.0 remains constant with downstream

distance.
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Figure 5.4: Plots of reflected GC2 height immediately following reflection versus dense
fluid tongue depth (left column) and reflected GC2 height at the point of overtaking
the internal front (or, in those select cases where overtaking was not responsible for
decelerating the internal front, at the point where GC1 reached the tank end wall).
h01
H = 1.0 (top), 0.75 (middle), and 0.5 (bottom). Open symbols are data from DNS
experiments whereas closed symbols are laboratory data. The thick lines are predictions
of SW theory, while the thin lines represent 1:1 correspondence. Representative error
bars are as shown.
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Figure 5.5: Plots of GC1 height measured at two lock lengths versus dense fluid tongue
depth (left column) and GC1 height measured at the far end of the tank (right column
- 5.4 lock lengths). h01

H = 1.0 (top), 0.75 (middle), and 0.5 (bottom). Open symbols
are data from DNS experiments whereas closed symbols are laboratory data. The thick
lines are predictions of SW theory, while the thin lines represent 1:1 correspondence.
Representative error bars are as shown.

Finally, the downstream distance travelled by the internal front before deceleration

is plotted against hT1
H in figure 5.6. Here, the agreement between theory and experiment

is excellent. In fact, SW theory predicts a rapid increase in the distance travelled as
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the speed of the internal front approaches the speed of the reflected GC2. In the limit,

the reflected GC2 will never catch up to the internal front, and the internal front will

propagate long distances at constant speed as has been observed in related contexts by

Mehta et al. (2002), Sutherland et al. (2004), and Tan et al. (2011).

Figure 5.6: Distance of first deceleration of the internal front vs. non-dimensional dense
tongue depth. Data and SW theory include squares and a solid line (h01

H = 1.0), triangles

and a dashed line (h01
H = 0.75), and diamonds and a dotted line (h01

H = 0.5). Open
symbols represent DNS data while closed symbols are data obtained from laboratory
experiments. Representative error bars are as shown.

5.2 Thick Interface Experiments

Figure 5.7 shows the variation of internal front speed with interface thickness. In con-

trast to figure 10 b of Tan et al. (2011), which consider subcritical gravity currents with

S < 1, here there is a more substantial variation of U√
g′H with δ

H e.g. an approximate

doubling of the front speed as δ
H increases from 0 to 1 for the case where h01

H = 1.0.

This can be understood intuitively as follows: when the interface thickness increases for

fixed hT1, a progressively thinner lower ambient layer is present. Thus increasing δ is

analogous to decreasing hT1 and, in either case, we expect a larger internal front speed

to result – see e.g. figure 5.1.

Our results, specifically those where δ
H = 1, may also be compared to SW theory

and experimental results from the literature. Table 5.1 shows a comparison between
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our measurements vs. those made by Maxworthy et al. (2002). Also included are the

SW predictions of Ungarish & Huppert (2002). Good agreement between the three sets

of results is seen.

Table 5.1: U√
g′H vs. h01

H in the limit of a very thick interface, δ
H = 1. Also included are

measurements made by Maxworthy et al. (2002) and SW predictions due to Ungarish
& Huppert (2002).

h01
H U&H M et al. Extrapolated Laboratory Data Numerical Data

1.00 0.28 0.27 0.28 0.29

0.75 0.23 – 0.27 0.28

0.50 0.17 0.19 0.17 0.20

Figure 5.7: Non-dimensional internal front speed versus non-dimensional interface thick-
ness. In all cases hT1

H = 0.5. Data were obtained from experiments with h01
H = 1.0

(triangles) and 0.5 (squares). Open symbols represent DNS data while closed symbols
are data points from laboratory experiments. The dashed line is the prediction made
by the Yih-type analysis for h01

H = 1.0. Representative error bars are as shown.
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Figure 5.8: Distance of first deceleration of the internal front vs. non-dimensional in-
terface thickness. In all cases hT1

H = 0.5. Data include triangles (h01
H = 1.0) and squares

(h01
H = 0.5). Open symbols represent DNS data while closed symbols are data obtained

from laboratory experiments. The grey triangle on the right-hand side of the plot rep-
resents an experiment where the internal front was stopped by the tank end wall and
would have travelled farther in a longer domain. Representative error bars are as shown.

Figure 5.8 shows the horizontal distance, xD, where the internal front first begins to

decelerate and its variation with δ
H . Similar to figure 5.6, we observe that xD increases

with the interface thickness, sharply where h01
H = 1.0 and δ

H → 1. If we assume

that the speed of GC2 varied relatively little with increased interface thickness (as

was observed when hT1 was decreased) the increase in the speed of the internal front

would allow it to travel further before being overtaken by the GC2 front. The triangles

(h01
H = 1.0) increase more sharply than the squares (h01

H = 0.5) as δ
H → 1 due to the

increased potential energy available for larger h01, which results in faster internal front

propagation, and longer propagation distances before deceleration.
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Chapter 6

Summary and Conclusion

6.1 Summary

The present study considered the time-dependent flow of gravity currents propagating in

a two-layer density-stratified environment in the limiting case where the gravity current

and lower ambient layer were of equal density, i.e. S = 1. Note that in this study,

what would otherwise (S < 1) be referred to as the gravity current, i.e. the dense lock

fluid, is more appropriately termed the internal bolus, since in our study the boundary

(or internal front) between the lock fluid and the lower ambient layer is defined by a

difference of passive, not active, scalar. Reserving the term “gravity current” (GC) for

circumstances involving a density difference, we refer to GC1 as the flow of dense fluid

and GC2 as the flow of the light fluid (both which may include a tailwater in addition to

the reservoir fluid – see figure 1.1). In this study, we tracked, using a two-layer shallow

water (SW) theory the motion of GC1 and of GC2 where, in the latter case, attention

was paid to the period before and after reflection from the back of the lock.

Although the S = 1 regime has been previously studied by Ungarish et al. (2014),

this thesis expands on this previous investigation in numerous ways. Firstly, and in

addition to exploring the post-reflection dynamics of GC2, we track the evolution of
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the dense lock fluid. This dense lock fluid travels at constant speed over a limited hor-

izontal distance, which is, in turn, an increasing function of h01 and δ and a decreasing

function of hT1. We also introduce a new, Yih-type analysis (Yih, 1965) which yields

an algebraic formula for the speeds of the internal and GC1 fronts. Additionally, we

perform laboratory as well as numerical experiments. Finally, we consider thick as well

as thin ambient interfaces.

Following the introductory Chapter 1 of this thesis, Chapter 2 outlines the SW theory

which will be later compared to experiment. The analysis presented in Chapter 2 is an

adaptation of the methods of Ungarish (2009) and Ungarish et al. (2014) to the present

investigation. This analysis was only applicable to the experiments that had a thin

interface. Following a discussion of the governing system of hyperbolic PDEs and their

solution by the method of characteristics, the boundary condition at the gravity current

nose is discussed. Note that in the S = 1 case three distinct nose types are possible:

a subcritical bore (which we termed type 1), a critical bore (type 2), and a rarefaction

wave (type 3). Next, specific solution methods are discussed – these are dependent on

the GC nose type. Note that some of these had not been encountered in previous work,

e.g. when the GC2 nose is of type 1. Finally, the reader is referred to Appendix C for

a further discussion of solution methods.

Chapter 3 outlines an original analysis of S = 1 gravity currents with thick and

thin interfaces. These calculations follow the style of Yih (1965), in which he considers

changes in potential and kinetic energy of the dense and light fluids in a lock-exchange

scenario, and makes the simplifying assumption that energy is conserved. Both the

new thin and thick interface calculations proceed in a similar fashion, considering each

layer of fluid in turn. In concert with the thick interface experiments performed in

this investigation, the density in the interface is considered to vary linearly between

the heavy and light fluids. The thick interface is treated as a separate layer in the

calculations. The new calculations result in algebraic expressions for the internal front
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and GC1 speeds. An additional relation is needed to define the height of GC1 and

the internal front – this is achieved by defining, as Yih did, the GC1 height to be the

average of h01 and hT1. While this Yih-type analysis makes a number of simplifying

assumptions, including that the GC1 and GC2 noses are always of type 1, it yields

surprisingly good predictions for the speed of the internal front and GC1.

The experimental and post-processing methods are described in Chapter 4. A total of

43 laboratory experiments and 84 direct numerical simulations (DNS) were performed.

The fluid domain was 227 cm × 20 cm (× 34 cm wide) with a 35.6 cm long lock in the

laboratory experiments and 400 cm × 20 cm with a 40 cm long lock in the majority of the

DNS experiments. Approximately one half of these lock-release experiments involved a

thin ambient interface (approximately 2 cm in laboratory experiments and vanishingly

thin in the DNS experiments), while the interface thickness ranged from 0 to 19.95 cm in

the other half of the experiments. The raw data from each experiment consisted either

of video taken with a DSLR camera or of analogous DNS images. The experimental

images were post-processed and analyzed to determine the speed of the internal front,

GC1, and GC2 and height of GC1 and GC2. Additionally, the distance travelled by the

internal front during the constant-speed phase of its evolution was measured.

Chapter 5 discusses experimental results, for both thick- and thin-interface exper-

iments. Comparisons between theory and experiment are drawn as outlined in this

paragraph and the next. For the thin interface experiments, the internal front speed

was found to decrease both with increasing hT1 and decreasing h01. This agrees with the

findings of Tan et al. (2011) in their study of S < 1 gravity currents. By contrast, the

GC1 and GC2 front speeds were insensitive to h01 (though the heights of both gravity

currents increased with h01). Moreover, the GC1 and GC2 front speeds decreased with

increasing hT1 when hT1
H > 0.5. In our study, the distance travelled by the internal

front before being arrested by the overtaking GC2 front was found to increase sharply

with decreasing hT1 and to decrease with h01. In general, the predictions made by our
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SW theory and the Yih-type analysis for the internal front speed and the GC1 speed

and height corresponded closely to our measurements. Conversely, the front speed and

height of GC2 were predicted with less accuracy, in general. Ours is not the first study

in which such deviations have been observed. For instance, Longo et al. (2015) also

found a discrepancy between SW theory and experiment in the reflected GC2 speeds

in a channel with a circular or semi-circular cross-sections. We surmise that the under

prediction of the reflected GC2 front speed was due to a mismatch between the location

at which the SW prediction was made (i.e. immediately following GC2 reflection) and

the location at which GC2 speed was measured (typically 0.5 to 2.5 lock lengths down-

stream). In between these two points the flow conditions upstream of the GC2 bore

changed non-trivially due to dispersion and non-hydrostatic effects. Notwithstanding

the above, our SW theory made excellent predictions of the distance travelled down-

stream by the internal front before being arrested by an overtaking GC2 front (figure

5.6).

For the thick interface experiments, we found an approximate U√
g′H = 0.2 increase in

the internal front speed as δ
H varied from 0 to 1 for h01

H = 0.5, 0.75, and 1.0. An increase

in the distance travelled by the internal front at constant speed before decelerating

was also observed. The internal front speed at δ
H = 1 compared favourably to that

found in related studies by Ungarish & Huppert (2002) and Maxworthy et al. (2002).

Additionally, the Yih-type analysis that was performed for varying δ when h01
H = 1.0 was

in reasonably good agreement with the experimentally-measured internal front speed.

6.2 Conclusion

In general terms, this investigation resulted in an improved understanding of the be-

haviour of gravity currents propagating in two-layer ambient environments that include

a “tailwater”, i.e. a layer with density equal to the propagating fluid (S = 1). In many

ways this behaviour is unique. For example, where in S < 1 cases the leading edge of
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the propagating fluid forms a rounded and quite sharply-defined nose that often moves

at a higher speed than the upstream fluid, in the present S = 1 case the leading edge

of the propagating fluid (the internal front) often spans the entire vertical extent of the

tailwater and moves at the same speed as the upstream tailwater.

The present study can be linked directly to the previous S = 1 data and theory

of Ungarish et al. (2014). Furthermore, these new experiments and theory provide a

starting point from which to understand the behaviour of the subcritical regime (0.75 �

S ≤ 1) more generally. While the S = 1 behaviour is unique in some ways as mentioned

above, the measured parameters also follow smoothly from previous 0.75 � S ≤ 1

results, such as those of Tan et al. (2011).

The scope of the present research may also be augmented by future work, especially

in the realm of thick interface experiments, wherein the height of the ambient inter-

face, hT1, may be varied, and the behaviour of the internal waves generated within

the thick ambient interface studied. From a laboratory experimental point of view,

this latter task would require the use of more sophisticated measurement techniques

e.g. synthetic schlieren (Sutherland et al., 1999; Flynn & Sutherland, 2004) or particle

image velocimetry.

Also, while Ungarish (2009) and others have addressed the question of SW theory for

ambients with continuous density stratification, we were not able to apply these directly

to our study. In particular, we considered the case of thick interfaces that spanned only

a portion of the channel depth. To this end, it would be useful to adapt a SW theory

to one that makes predictions that apply directly to this thick interface scenario.

Inasmuch as our Yih-type analysis applies to the thick interface scenario where h01 =

H, it would be useful to develop such a theory that applies to h01 < H. This was

attempted, but a satisfactory result was not obtained. Specifically, the complexity of

the problem increases substantially when the thick interface forms part of the layer

overlying the dense lock fluid, i.e. where hT1 + δ/2 > h01.
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In more general terms, and acknowledging that S = 1 gravity currents may occur in

a variety of real-world situations, other experimental geometries may be considered. For

instance, oceanic and atmospheric currents may flow up or down sloping terrain or across

undulating topography. Axisymmetric gravity currents could also be investigated; these

occur in scenarios such as the thunderstorm outflow winds that result from downdrafts

spreading horizontally along the Earth’s surface. Expanding this study into the non-

Boussinesq regime, and considering infinite rather than finite upper layer depths, would

be also be useful in studying dam-break and flooding scenarios, extending work by

Pritchard & Hogg (2002) among others.
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Appendix A

Summary of Experiments

A summary of the data relevant to our laboratory and DNS experiments is provided in
tables A.1 and A.2, respectively.

A.1 Laboratory Experiments

Table A.1: Laboratory experimental data (cgs units). All lock lengths were 35.6 cm.
We did not attempt to measure VN1 and VN2 for the thick interface experiments.

No. H h01 hT1 δ ρ1 ρ2 U VN1 VN2 xD
1 20.5 20.0 10.2 thin 1.04537 0.99900 4.25 14.46 11.76 40.9
2 20.1 19.9 15.1 thin 1.04087 0.99880 1.43 11.03 8.62 12.1
3 20.6 20.0 4.8 thin 1.04245 0.99875 9.06 13.18 13.14 152.4
4 20.4 20.0 7.4 thin 1.04106 0.99879 6.36 14.37 11.83 65.9
5 20.3 20.0 12.7 thin 1.04010 0.99880 2.34 12.27 10.08 23.5
6 20.2 15.2 10.0 thin 1.04110 0.99895 3.16 11.99 9.94 26.8
7 20.4 20.0 10.0 thin 1.03880 0.99884 4.21 13.47 10.63 41.7
8 20.4 15.3 5.0 thin 1.03872 0.99893 8.06 13.38 11.00 103.2
9 20.3 15.3 7.5 thin 1.03875 0.99872 5.81 12.49 9.61 46.3
10 20.5 15.4 2.5 thin 1.04100 0.99875 11.71 12.95 12.33 124.8
11 20.1 15.1 12.6 thin 1.04020 0.99875 1.48 11.68 9.62 15.9
12 20.2 10.1 7.4 thin 1.04220 0.99875 2.68 13.20 10.17 16.3
13 20.7 10.4 2.6 thin 1.04185 0.99893 11.15 12.83 11.18 110.1
14 20.2 10.1 5.1 thin 1.03919 0.99860 4.76 12.73 11.80 38.3
15 20.5 20.0 10.3 10.3 1.04525 0.99900 7.29 - - 154.8
16 20.3 19.9 9.3 7.2 1.0382 1.0010 6.02 - - 79.1
17 20.4 20.0 10.0 7.6 1.0463 1.0007 6.17 - - 76.9
18 20.4 20.1 9.7 11.8 1.0381 0.9990 5.76 - - 110.9
19 20.4 20.0 10.6 14.0 1.0374 0.9996 5.96 - - 128.8
20 20.4 20.0 10 20.0 1.0884 1.0520 6.96 - - 191.4

Continued on next page
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Table A.1 – continued from previous page

No. H h01 hT1 δ ρ1 ρ2 U VN1 VN2 xD
21 20.4 20.0 10 6.1 1.0374 1.0010 4.37 - - 62.7
22 20.2 15.2 10.3 6.3 1.0370 0.9985 3.68 - - 34.6
23 20.2 15.2 10.1 6.8 1.0335 1.0008 4.73 - - 46.3
24 20.4 12.0 10.0 15.2 1.0352 1.0004 3.62 - - 47.3
25 20.4 20.0 10.3 10.0 1.0373 0.9983 4.96 - - 73.1
26 20.4 20.0 10.2 3.9 1.0390 0.9984 4.40 - - 50.4
27 20.2 15.2 10.1 10.7 1.0374 0.9985 4.39 - - 51.9
28 20.2 15.2 10.1 2.3 1.0380 0.9985 3.60 - - 29.0
29 20.4 15.2 10.1 13.4 1.0360 0.9999 4.78 - - 69.0
30 20.2 10.6 10.1 15.4 1.0366 0.9988 3.27 - - 33.2
31 20.0 10.4 10.0 11.7 1.0367 0.9982 1.51 - - 18.4
32 20.0 9.8 9.4 3.5 1.0381 0.9983 0.86 - - 7.6
33 20.0 9.9 9.6 5.4 1.0395 0.9984 1.02 - - 5.4
34 20.4 20.0 9.5 7.8 1.0365 0.9982 5.22 - - 67.4
35 20.2 15.2 9.5 7.3 1.0358 1.0001 4.19 - - 39.4
36 20.2 15.2 10.1 19.5 1.0682 1.0315 6.59 - - 173.8
37 20.2 15.2 10.0 17.0 1.0684 1.0381 5.74 - - 133.0
38 20.1 10.1 10.0 19.4 1.0685 1.0334 3.88 - - 40.5
39 20.3 20.0 10.2 17.4 1.0911 1.0561 6.34 - - 132.2
40 20.4 20.0 10.2 10.9 1.0394 0.9986 5.16 - - 79.2
41 20.2 15.2 10.1 8.2 1.0381 0.9982 4.15 - - 39.7
42 20.0 10.0 10.0 5.5 1.0383 0.9987 1.50 - - 8.1
43 20.0 10.0 10.0 8.5 1.0363 0.9986 1.69 - - 8.4

A.2 DNS Experiments

Table A.2: DNS experimental data (cgs units). In all cases H = 20 cm, ρ1 = 1.02 g/cm3,
and ρ2 = 1.00 g/cm3. We did not attempt to measure VN1 and VN2 for the thick interface
experiments.

Case l1 l1 + l2 h01 hT1 δ U VN1 VN2 xD
246 40 400 20 10 0 2.49 9.82 8.31 47.8
247 40 400 20 5 0 5.49 9.87 9.34 133.8
248 40 400 20 15 0 0.79 7.91 6.08 13.1
249 40 400 20 2.5 0 8.20 9.58 9.05 332.8
255 40 400 20 6.64 0 4.31 10.02 8.35 94.2
501 40 400 15 10 0 1.89 9.82 9.11 21.8
502 40 400 15 7.5 0 3.28 10.02 8.96 49.8

Continued on next page
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Table A.2 – continued from previous page

Case l1 l1 + l2 h01 hT1 δ U VN1 VN2 xD
503 40 400 15 5 0 5.11 9.85 10.43 90.9
504 40 400 15 2.5 0 8.09 9.54 11.56 293.2
505 40 400 15 12.5 0 0.81 9.02 9.65 8.6
514 40 400 15 13.75 0 0.38 8.51 7.20 3.9
506 40 400 10 2.5 0 7.19 9.35 7.76 109.8
507 40 400 10 5 0 3.28 9.73 8.58 40.8
508 40 400 10 7.5 0 1.33 9.93 7.06 11.5
509 40 400 10 10 0 0 - - 0
510 40 400 20 17.5 0 0.28 6.16 4.11 5.6
511 40 400 20 7.5 0 3.79 10.25 8.47 74.0
512 40 400 20 12.5 0 1.55 9.30 7.62 24.7
513 40 400 20 13.3 0 1.30 8.93 7.29 20.8
515 40 400 17.5 2.5 0 8.06 9.76 9.39 335.6
516 40 400 17.5 5 0 5.37 10.06 9.34 118.2
517 40 400 17.5 7.5 0 3.70 10.24 8.84 58.8
518 40 400 17.5 10 0 2.45 10.01 8.16 33.0
519 40 400 17.5 12.5 0 1.40 9.30 7.57 17.4
520 40 400 17.5 15 0 0.59 7.91 6.48 7.2
521 40 400 12.5 5 0 4.29 9.95 7.59 56.6
522 40 400 12.5 2.5 0 7.95 9.63 7.79 208.6
523 40 400 12.5 7.5 0 2.49 10.16 7.28 27.1
524 40 400 12.5 10 0 1.01 9.93 7.03 8.8
525 40 400 20 10 5 2.85 7.74 - 54.5
526 40 400 20 10 10 3.44 - - 77.8
527 40 400 20 10 15 4.38 - - 130.1
528 40 400 20 10 19.95 5.62 - - 338.9
529 40 400 20 10 2.5 2.64 - - 48.3
530 40 400 20 10 7.5 3.12 - - 63.7
531 40 400 20 10 12.5 3.85 - - 100.2
532 40 400 20 10 17.5 5.09 - - 197.3
533 40 400 15 10 2.5 2.10 - - 22.5
534 40 400 15 10 5 2.26 - - 26.6
535 40 400 15 10 7.5 2.73 - - 30.5
536 40 400 15 10 10 3.03 - - 37.9
537 40 400 15 10 12.5 3.47 - - 48.3
538 40 400 15 10 15 4.02 - - 73.3
539 40 400 15 10 17.5 4.84 - - 136.2
540 40 400 15 10 19.95 5.50 - - 273.1
541 40 400 10 10 2.5 0.21 - - 2.8
542 40 400 10 10 5 0.48 - - 5.1

Continued on next page
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Table A.2 – continued from previous page

Case l1 l1 + l2 h01 hT1 δ U VN1 VN2 xD
543 40 400 10 10 7.5 0.80 - - 9.0
544 40 400 10 10 10 1.14 - - 14.9
545 40 400 10 10 12.5 1.52 - - 22.2
546 40 400 10 10 15 1.95 - - 33.7
547 40 400 10 10 17.5 3.06 - - 38.0
548 40 400 10 10 19.95 3.95 - - 68.3
549 120 400 15 10 0 1.95 9.85 8.34 68.3
550 120 400 15 7.5 0 3.93 10.15 8.67 73.4
551 120 400 10 7.5 0 1.45 9.80 8.34 45.8
552 120 400 10 5 0 3.95 9.69 8.85 134.5
553 80 400 15 5 0 5.94 9.95 7.60 145.0
554 80 400 17.5 5 0 5.65 9.75 8.95 244.4
555 80 400 17.5 7.5 0 4.00 9.81 8.39 103.6
556 80 400 17.5 10 0 2.57 9.45 7.92 71.2
557 80 400 17.5 2.5 0 8.22 9.54 8.56 303.4
558 80 400 17.5 12.5 0 1.44 8.52 7.37 37.2
559 80 400 17.5 15 0 0.58 7.83 6.45 15.5
560 80 400 12.5 2.5 0 8.23 9.54 - 239.3
561 80 400 12.5 5 0 5.21 9.88 9.54 90.3
562 80 400 12.5 7.5 0 2.57 10.05 8.17 59.8
563 80 400 12.5 10 0 1.09 9.81 - 23.1
564 40 400 15 1 0 9.40 9.58 9.61 -
565 40 400 12.5 1 0 8.90 9.31 8.82 -
566 40 400 10 1 0 8.27 8.98 8.09 -
567 40 400 15 0 0 8.57 8.57 - -
568 40 400 12.5 0 0 8.43 8.43 - -
569 40 400 10 0 0 7.71 7.79 - -
570 40 400 17.5 0 0 8.74 - - 216.4
571 40 400 20 0 0 8.67 8.67 - 248.1
572 40 400 17.5 1 0 9.37 9.31 8.95 358.6
573 40 400 20 1 0 9.40 9.57 8.95 359.6
578 80 600 15 5 0 5.11 9.75 9.54 193.0
579 80 600 17.5 5 0 5.53 9.95 9.28 248.0
580 80 600 17.5 2.5 0 8.54 9.46 - 506.0
581 80 600 12.5 2.5 0 8.46 9.38 - 477.0
582 71.2 400 20 10 0 2.56 10.01 7.80 145.5
583 35.6 400 20 10 0 2.52 10.03 8.18 73.04
584 35.6 400 20 10 0 7.74 9.64 9.38 219.5
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Appendix B

Preparation of the Laboratory

Experiments

Laboratory experiments with a thin interface (δ � 2 cm) were prepared by first adding

a layer of salt water to a depth > hT1 to the experimental tank with the lock gate in

the up position. In cases where h01 < H, a layer of fresh water (of depth 20 cm−h01)

dyed orange with food colouring was layered on top of the salt water layer using a

sponge float to minimize interfacial mixing. The lock gate was then lowered to a depth

of approximately 1 cm from the bottom of the tank. More (orange-dyed) fresh water

was then added to the ambient side of the tank. The resulting imbalance of hydrostatic

pressures between the outside and inside of the lock pushed down the ambient interface

and up the interface inside the lock. Addition of dyed fresh water was continued until

the fluid in the lock reached a total depth of 20.0 cm and, simultaneously, h01 reached

its desired value. Blue food colouring was then injected into the lower, dense, lock fluid

layer using a syringe with a long needle. Note that the above technique allowed for

an almost exact match between the densities of reservoir 1 and of tongue 1. In the

simpler cases where h01 = H, the procedure was identical to the above except that no

orange-dyed fresh water was added before the lock gate was lowered to within 1 cm of
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the tank bottom. All the fresh water was added after this step. Also, a syringe and

needle were not required to add the blue dye to the lock fluid.

Figure B.1: Examples of ambient interface density profiles as measured by the conduc-
tivity probe. Shown is the profile from laboratory experiment 36 (a), which is typical
of a thick interface experiment, the profile from laboratory experiment 41 (b), which is
typical of a medium interface experiment, and the profile in experiment 28 (c), which
is typical of an experiment with a thin interface.

Laboratory experiments with thick interfaces were prepared using one of three meth-

ods. Examples of density proflies measured with the conductivity probe are shown in

figure B.1. For interfaces ranging in thickness from 2-10 cm an intrusive gravity current,

such as those described in Mehta, Sutherland & Kyba (2002), was used. This technique

involved first filling the tank and lock as for a thin interface experiment. A second lock

gate was installed at an appropriate distance from the far tank wall, and after filling

the tank, this second lock gate was lowered. The salt and fresh water in this secondary

lock were then mixed, the secondary lock was released, and the resulting intrusive grav-

ity current propagated through the ambient region of the tank. In turn, this led to a

nontrivial broadening of the ambient interface. The main lock-release experiment was

conducted a minimum of 20 minutes later. To keep the density variation within the am-

bient interface as linear as possible, intrusions could also be released in sequence, where

the second lock gate, though fixed in terms of its downstream location, was raised and

lowered several times over with complete mixing of the secondary lock fluid occurring

prior to each release of the secondary lock.
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For interfaces 7-15 cm thick, a lock exchange of the type described by Shin et al.

(2004) was instead performed. This technique involved installing a second lock gate at

the approximate midpoint of the ambient region of the tank, then filling one side with

salt water and the other side with fresh water. The fresh water was then dyed orange

with food colouring. To produce an ambient interface having an approximately linear

density profile, the second lock gate was raised in a stepwise fashion, approximately 1

cm at a time. Through this process was produced a rising plume of light fluid that

propagated along the top of the dense fluid, while a dense gravity current propagated

along the base of the light fluid. Repetition of this procedure eventually produced a

layer of continuous stratification throughout the tank.

For interface thicknesses of 15-20 cm the double-bucket technique of Oster (1965) was

used. We reserved the use of the double-bucket technique to the case of the thickest

interfaces because the technique was limited in the overall density difference, ρ1 − ρ2,

that it could produce compared to the other two techniques.

When h01 < hT1+δ/2, the upper part of the thick interface had to appear inside and

outside of the lock. To achieve this, the intrusion and double-bucket techniques began

by filling the tank with salt water to a volume ≥ l1wh01 (where w is the tank width),

after which the remaining combination of salt and fresh water was added as required

by the technique in question. This resulted in an overfilled tank having a fluid depth of

> 20 cm. The main lock gate was then lowered to within 1 cm of the tank bottom and

an appropriate volume of lock fluid from just below the thick interface was removed by

siphon. Simultaneously, lower layer fluid from outside of the lock flowed into the lock.

This process continued until the depth, h01, of reservoir 1 reached the desired value.

In the case where h01 < hT1 + δ/2 and lock-exchange was being used to thicken the

ambient interface, the second lock gate was placed at a location that resulted in a greater

initial volume of salt water than fresh water. Thus, following removal of the second lock

gate, the resulting ambient interface was at a greater height than that required for the

64



experiment, which also resulted in an overfilled tank. The primary lock gate was then

raised to less than 1 cm from the tank bottom, and fluid was siphoned from the lock as

described in the previous paragraph. The hydrostatic balance maintained between the

lock and ambient sides of the tank during siphoning resulted in a steady decrease in H,

hT1, and h01. As before, siphoning was terminated once this trio of variables achieved

their desired values and Hlock = 20.0 cm.
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Appendix C

Additional Solution Methods for

the Shallow Water Model

As described in �2.3.1, and in Ungarish et al. (2014) when there is one type 3 nose, (2.3)

can be integrated along a characteristic starting from the undisturbed fluid bordering

the type 3 nose; if the type 3 nose is associated with GC2, then the initial height

and speed are chosen as hinitial1 = 1 and uinitial1 = 0 and integration is along a c+

characteristic. The solution of (2.3) is then used to obtain characteristic speed spectra

c±(u, h) from (2.4). The range of values for h are used to derive a spectrum of VN1(h)

using (2.9) and (2.10). For this purpose, a = h/H and hN1 = h. Finally, u(h) is used

to obtain a second spectrum of VN1(h), this time using (2.8) with uN1 = u (and, again,

hN1 = h).

With the above speeds to hand, a composite graph may be constructed as in figure

C.1. We first consider the intersection point of the two curves labelled as VN1. If their

intersection lies between the c+(h) and the c−(h) curves then the solution is valid and

the GC1 nose is of type 1, with height and speed determined by the aforementioned

intersection point. This is the scenario that figure C.1 illustrates. If, instead, the

intersection of the two VNi(h) curves lies above the c+(h) curve or below the c−(h)
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curve, the GC1 nose can be assumed to be of type 2. However, this scenario was never

encountered in this investigation.

Figure C.1: Sample composite graph showing the variation of u, c±, and VN1 with
h. VN1(u) and VN1(FrT) are respectively obtained by applying the solution of (3) into
(8) and (9)/(10). The non-dimensional initial conditions are H = 2.00 and b = 0.125,
leading to a type 3 GC2 nose. The height and speed of the GC1 nose are specified by
the intersection of the two VN1 curves. Because c−(hN1) < VN1(hN1) < c+(hN1) the
GC1 nose is of type 1.

In the case when GC1 is a type 3 nose (instead of GC2), a solution for the GC2

nose can be obtained by inverting the experimental geometry and proceeding as above.

Alternately, one may derive a solution by integrating (2.3) along a c− characteristic

having as initial conditions hinitial2 = hT1 and uinitial2 = 0. Solving along the c−

characteristic implies that h ∈ [hT1, 1].

In the case when neither GC1 nor GC2 has a nose of type 3, the method described

in �2.3.2 is used. First it is assumed that both GC1 and GC2 have a nose of type 2. As

a result, (2.3) is integrated twice: both forward along a c+ characteristic and backward

along a c− characteristic. The initial height to use for the integrations is determined
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using (5.38) from Ungarish (2009): hN1 and hN2 are determined then the initial heights

are hinitial1 = hN1 and hinitial2 = H − hN2 and speeds are as shown in figure 2.2. The

intersection of the two resulting u(h) curves gives the height and speed of the dense

fluid core.

As further described in �2.3.2, when the two curves do not intersect it is because

either GC1 or GC2 is of type 1. In this case, (2.3) is still integrated twice, but one

of the bores is weakened, i.e. hinitial1 must be increased or hinitial2 must be decreased

(and uinitiali follows from continuity arguments). Figure C.2 shows an example solution

where the GC1 nose is of type 2 while the GC2 nose is of type 1.

Figure C.2: Sample composite graph of u(h) used when the GC1 nose is of type 2 while
the GC2 nose is of type 1. The curves were obtained by integrating (2.3) both forward
along a c+ characteristic (thick line) and backward along a c− characteristic (thin).
The intersection indicates the height and speed of the fluid core between the bores. The
parameters are H = 1 and hT1 = 0.202. hinitial2 is obtained by reducing the height
calculated by (5.38) from Ungarish (2009) by 0.00014 while hinitial1 is obtained directly
from (5.38).
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Appendix D

Comparison of Gravity Current

Shapes – SW Theory

vs. Experiments

Here, we explore the correspondence between experimental gravity currents and those

predicted by SW theory. Before presenting this comparison in full, figure D.1 shows

DNS images and gives different examples of gravity current (GC1) shape for each of the

three predicted nose types (see �2.2). The examples in the top row, which are predicted

to be bores of type 1, tend to have relatively steep frontal slope (especially panel a).

Conversely, GC1 examples of the type 3 rarefaction/long wave (bottom row) exhibit

a frontal surface of nearly constant and relatively gentle slope. Type 2 critical bores

(middle row) tend to be a mixture of type 1 and 3, with both a steep and a gentle slope

evident, especially in panel d.
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Figure D.1: DNS examples of GC1 noses, grouped by the nose type from SW theory.
Each row features two examples of the bore type. Shown are type 1 subcritical bores
(a - case 564, and b - case 507), type 2 critical bores (c - case 502, and d - case 247)
and type 3 rarefaction/long waves (e - case 505, and f - case 248).

SW results were also used to predict specific gravity current shapes and postions,

based on predicted speeds and distances travelled after lock release. These predicted

shapes and positions were overlayed on the corresponding laboratory images, and are

shown in Figure D.2. Also shown in this figure are the predicted internal front positions.

The top panel features a type 1 subcritical bore, which is predicted as a jump just ahead

of the bore in the laboratory image. The observed mismatch is due to a slight over-

prediction of GC1 speed (Fr = 0.443 measured vs. 0.495 SW). In the middle panel a

type 2 critical bore is predicted, which includes both a jump and a sloping surface. Also

evident is the reflected GC2 bore trailing the internal front. Finally, the bottom panel

displays a predicted type 3 rarefaction wave. Here, the correspondence between the

predicted position and shape of the two GCs as well as the internal front is excellent.

Note that the reflected GC2 bore in the middle and bottom panels is of type 1.
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Figure D.2: Predicted shape and position of GC1, GC2, (black lines) and the internal
front (blue line) overlaid on images from laboratory experiments. Displayed are a GC1s
with a predicted type 1 (top), type 2 (middle), and type 3 (bottom) nose. The middle
and bottom panels also feature the reflected GC2 nose, which is of type 1 in both cases.

Also shown in the three panels of figure D.2 are the predicted positions of the internal

front (vertical blue lines). Generally good agreement with the SW model is seen except

in the case of the top panel. Here the internal front forms the (leaky) core of a solitary

wave-like GC1, causing it to lead the analogue SW prediction. The internal front’s

speed is under-predicted by the SW model (Fr = 0.385 measured vs. 0.286 SW).
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