In compliance with the Canadian Privacy Legislation some supporting forms may have been removed from this dissertation.

While these forms may be included in the document page count, their removal does not represent any loss of content from the dissertation.

University of Alberta

ASYMPTOTIC STRUCTURES IN BANACH SPACES

by
Bünyamin Sarı

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in

Mathematics

Department of Mathematical and Statistical Sciences

Edmonton, Alberta
Fall 2003

National Library of Canada	Bibliothèque nationale du Canada
Acquisitions and Bibliographic Services	Acquisisitons et services bibliographiques
395 Wellington Street	395, rue Wellington Ottawa ON K1A 0N4 Canada
Canada ON K1A 0N4	

Your file Votre référence ISBN: 0-612-88044-3
Our file Notre référence
ISBN: 0-612-88044-3

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou aturement reproduits sans son autorisation.

University of Alberta

Release Form

Name of Author: Bünyamin Sarı
Title of Thesis: Asymptotic Structures in Banach Spaces
Degree: Doctor of Philosophy
Year this Degree Granted: 2003

Permission is hereby granted to the UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.
(Signed) \qquad
a

Canada, T6G 2G1
Date: . 2...May203.....

UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled Asymptotic Structures in Banach Spaces submitted by Bünyamin Sarı in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics.

Dr. Edward Odell (University of Texas at Austin)

May 1, 2003

To my family

Abstract

This thesis is composed of two independent parts:
Part I studies the asymptotic structures of Banach spaces through the notion of envelope functions. Analogous to the original ones, a new notion of disjoint-envelope functions is introduced and the properties of these functions in connection to the asymptotic structures are studied. One of the central result obtained using these functions is a new characterization for asymptotic- ℓ_{p} spaces. One application of this result yields a solution to a conjecture on the structure of so-called Tirilman spaces. Apart from some other applications of the envelope functions, the finite representability of these functions are investigated.

Part II is on the structure of the set of spreading models of Orlicz sequence spaces. In the case when an Orlicz sequence space admits few (countable) spreading models, a description of this set is established.

Acknowledgments

First and foremost, I sincerely thank my advisor Nicole Tomczak-Jaegermann. I am truly fortunate to have such an exceptional teacher introducing me to the beauty of Banach Space Geometry and also teaching me how to approach mathematical research. I will always be indebted to her for her constant help and generous support at various stages of my graduate study, and particularly grateful for her endless patience with me.

I thank Cuixia Hao for fruitful discussions on the structure of Orlicz sequence spaces. I have also benefited from discussions with Steve Dilworth and Ted Odell. In particular, the idea of the proof of Theorem 4.3.9 evolved from a remark of S. Dilworth. T. Odell have made numerous suggestions on all parts of the thesis. I sincerely thank them both for sharing their ideas with me.

I also thank all members of the Functional Analysis Group with whom I had the opportunity to interact freely. I thank Tony Lau and Laurent Marcoux for the wonderful courses they taught which help build intuition in early years of my graduate study.

Ali Ülger got me interested in functional analysis in my undergrad years and motivated me to come to Alberta for the graduate school. I thank him deeply.

My colleague and officemate Razvan Anisca has been a wonderful friend both in and out of Math Department, I would like to thank him and Monica Ilie for their friendship. I also met many nice people in Edmonton. I thank Julia Chu for all we have shared and for her friendship. I also thank Cengiz and his family, Murat, Fatih, Faruk and all my friends for their pleasant company.

Contents

1 Introduction 1
1.1 Notations and Basic Concepts in the Geometry of Banach Spaces 10
I Envelope Functions and
Asymptotic Structures of Banach Spaces 14
2 Asymptotic Structures of Banach spaces : A General View 15
2.1 Basic Concepts 15
2.1.1 Games and Asymptotic Spaces 16
2.2 Asymptotic- ℓ_{p} Spaces 20
2.3 Duality and Permissible Norming 22
2.4 Envelopes 23
3 Envelope Functions and Asymptotic Structure 25
3.1 Asymptotic Unconditionality 25
3.2 Disjoint Envelope Functions 37
3.3 Duality for Disjoint-Envelope Functions 45
3.4 A Characterization of Asymptotic- ℓ_{p} Spaces 47
3.5 Tirilman Spaces 54
3.6 Envelopes and Reflexivity 57
3.7 Finite Representability of Envelopes 62
II Spreading Models of Orlicz Sequence Spaces 71
4 The Structure of The Set of Spreading Models of Orlicz Se- quence Spaces 72
4.1 Introduction 72
4.2 Preliminaries in Orlicz Sequence Spaces 74
4.3 Spreading Models of Orlicz Sequence Spaces 76
Bibliography 87

Chapter 1

Introduction

This thesis is devoted to study some problems in Asymptotic Geometric Analysis of infinite-dimensional Banach spaces.

In general, asymptotic methods in the theory of infinite-dimensional Banach spaces rely on stabilizing information of finite nature "at infinity". This way we discard properties which may appear sporadically in the space and could be removed by passing to appropriately chosen subspaces or some other substructures. First methods of this kind began to develop in the 1970's, in connection with Ramsey theorems and the notion of a spreading model (to be described later in this introduction). The ideas behind what is now called an asymptotic theory of (infinite-dimensional) Banach spaces were crystallized in the early nineties in connection with spectacular developments of the infinite-dimensional Banach spaces.

From the very beginning of Functional Analysis initiated by the work of Banach in the 1920's the objective of the classical theory of infinite-dimensional spaces have been mainly to establish a structure theory for Banach spaces. Besides isomorphism type questions, primarily, the problems were centered around seeking subspaces with 'nice' structural properties in all Banach spaces. Must every infinite-dimensional Banach space which is isomorphic to all its infinitedimensional closed subspaces be isomorphic to a Hilbert space? Does every
infinite-dimensional Banach space contain one of the classical spaces c_{0} or ℓ_{p} for some $1 \leq p<\infty$? Even these simply stated questions raised by Banach turned out to be not so trivial. In fact, the first problem, called the homogeneous Banach space problem, was solved only in the nineties. We will briefly discuss the developments in this decade shortly. The latter question was answered in the early seventies, when Tsirelson [Ts] discovered a counterexample. Tsirelson's space is now referred to as "the first truly non-classical Banach space". The definition of this space involves a clever inductive procedure which enables a certain geometric property to pass to every infinite-dimensional subspace, and the saturation property achieved this way prevents the space from containing c_{0} or any ℓ_{p}. Soon afterwards, Figiel and Johnson [FJ] gave an analytic description of the norm in the space now denoted by T, which is the dual of Tsirelson's original example. The norm in T appears as a solution to an implicit equation, contrary to the definitions of the classical spaces for which the norms are given by explicit formulas. This idea of defining a norm implicitly has become relatively commonplace. Many new Tsirelson-like spaces have been engineered since then to solve a good many problems in Banach space theory (cf. [CS]).

The deep developments of the nineties have shed light on the ideas initiated with Tsirelson's example. It turned out that the Tsirelson-like spaces are not just a collection of pathological examples but, in fact, they hold the key to a deeper understanding of the infinite-dimensional phenomena. The idea of saturating spaces with a desired geometric property was re-vitalized when Schlumprecht [S] defined a space which initiated a series of results answering fundamental and long standing problems of Banach space theory. For Gowers and Maurey [GM], Schlumprecht's space was a starting point which lead them to their ground-breaking construction of a space with no unconditional basic sequences. Their space, in fact, has a stronger property, namely, it is hereditary indecomposable (H.I.), which means that none of its closed subspaces can be written as a topological direct sum of two infinite-dimensional closed subspaces.

Gowers then showed that H.I. spaces arise naturally among Banach spaces. His famous dichotomy theorem states that every Banach space has either a subspace with an unconditional basis or an H.I. subspace [G1]. It is remarkable to note that these new spaces, despite their 'unnatural' definitions, played important part in the solutions of fundamental problems about the classical spaces. The dichotomy theorem of Gowers combined with a result of Komorowski and Tomczak-Jaegermann [KT] gave a positive solution to the homogeneous space problem: a Hilbert space is the only infinite-dimensional Banach space, up to isomorphism, which is isomorphic to every infinite-dimensional closed subspace of itself. Also Schlumprecht's space played an important role in the solution of another famous problem known as the distortion of Hilbert (and the classical ℓ_{p}) spaces [OS3]. These developments and the discovery of new spaces had a great impact on the classical understanding of 'nice' subspaces. Quoting from Maurey, Milman and Tomczak-Jaegermann [MMT], "it has been realized recently that such a nice and elegant structural theory (of infinite-dimensional Banach spaces) does not exist. Recent examples (or counterexamples to classical problems) due to Gowers and Maurey [GM] and Gowers [G2], [G3] showed much more diversity in the structure of infinite-dimensional Banach spaces than was expected."

At the other end of the spectrum, in the last three decades, having employed new powerful techniques from other areas of mathematics such as probability and combinatorics, there have been deep developments in the local theory of Banach spaces (cf. e.g [MS]). This theory is asymptotic in nature; striking regularities of finite-dimensional spaces are observed when dimension increases to infinity.

In the light of the developments of the nineties, the dichotomic nature of finite vs. infinite-dimensional theory naturally invited the formulation of a similar asymptotic approach for infinite-dimensional spaces.

Again the first ideas come from the seventies with the notion of a spreading
model, which involves stabilization of norms at infinity. In 1974, Brunel and Sucheston [BS] gave a simple but unexpected application of Ramsey theorem to Banach spaces. Roughly speaking, Ramsey type theorems are of the following form. Given any finite coloring of some mathematical structure (such as graphs or a set of n-tuples from a sequence of vectors in a Banach space), there is a substructure (hence a subgraph or a set of n-tuples from a subsequence) which is monochromatic. In other words, any function defined on the structure into a finite set can be stabilized (becomes constant) on a substructure. As a direct application with obvious approximation and diagonalization arguments, Brunel and Sucheston showed that in every Banach space every normalized basic sequence $\left\{x_{i}\right\}$ has a subsequence $\left\{y_{i}\right\}$ on which the norm of any linear combination of n vectors of $\left\{y_{i}\right\}$ stabilizes (they span the same finite dimensional space) provided that they are sufficiently far along $\left\{y_{i}\right\}$. Consequently, the iterated limit

$$
\lim _{i_{1} \rightarrow \infty} \ldots \lim _{i_{k} \rightarrow \infty}\left\|\sum_{k} a_{k} y_{i_{k}}\right\|
$$

exists and it defines a norm on the linear space of finite scalars c_{00}. (The reason for the iterated limit is that keeping the order of scalars is important in this definition.) The space c_{00} with this new norm is called a spreading model (generated by $\left\{y_{i}\right\}$). This new object we obtain behaves relatively 'better' than the original sequence $\left\{y_{i}\right\}$. For instance, the unit vector basis $\left\{e_{i}\right\}$ of a spreading model has the 'spreading' property, which means that $\left\|\sum_{i=1}^{k} a_{i} e_{n_{i}}\right\|=\left\|\sum_{i=1}^{k} a_{i} e_{m_{i}}\right\|$ for all scalars $\left(a_{i}\right)_{i=1}^{k}, n_{1}<\ldots<n_{k}$ and $m_{1}<\ldots<m_{k}$. Moreover, the basis is often unconditional. Thus starting with an arbitrary basic sequence, a spreading model provides subsequences of finite (but of arbitrary) length with 'nice' properties.

Spreading models are proven to be very useful in Banach space theory (cf. e.g. [BL]). When considering questions about finding nice finite-dimensional subspaces, we can simply assume that the space has a spreading (and even unconditional $[R]$) basis by passing to a spreading model. Since any space finitely
representable in a spreading model is finitely representable in the generating sequence (this fact is immediate from the definition of a spreading model), we can then transfer these finite spaces into the space. The proof of the classical Krivine's theorem, for instance, follows this scheme (cf. e.g. [MS]).

Despite their usefulness, spreading models do not reflect the intrinsic properties of a space. To access information about subspace structures of a Banach space, one has to look at the blocks of, rather than subsequences of, a basis. This is the Bessaga and Pelczynski principle, which states that every subspace Y of a space X with a basis has a further subspace Z isomorphic to a block subspace. This reduces many problems about subspaces of Banach spaces to ones about block subspaces.

Is there a block Ramsey theorem which could provide stronger stabilization results than that of spreading models? The answer turned out to have an interesting twist. Gowers [G1] indeed proved such an infinite block Ramsey theorem which lead to his famous dichotomy theorem mentioned above. On the other hand, as the solution of the distortion problem [OS3] showed, a truly infinite-dimensional phenomena in general may not stabilize.

In the light of these results, Maurey, Milman and Tomczak-Jaegermann [MMT] have introduced a new type of stabilization which gave rise to a new notion of asymptotic structures. This theory of asymptotic structures essentially introduced to study the structure of infinite-dimensional spaces, and yet it involves stabilization of finite-dimensional subspaces which appear everywhere far away in the space. The main idea is to bridge finite-dimensional and infinitedimensional theories. Such finite-dimensional spaces which appear everywhere far away in the space are called asymptotic spaces. The notion of asymptotic spaces generalizes the notion of spreading models; but it has essential differences.

To explain this notion, we first recall some basic notations. The precise definitions and some other aspects of the asymptotic theory will be given in

Chapter 2. For subsets I and J of the natural numbers \mathbb{N}, we write $I<J$ if $\max I<\min J$. For simplicity, we consider a Banach space with a basis $\left\{x_{i}\right\}$. For a vector $y=\sum_{i} a_{i} x_{i}$ in X, the support of y, supp y, is just the set of i for which a_{i} is non-zero. A block vector is a vector with a finite support, and blocks are successive, $y_{1}<y_{2}$, if $\operatorname{supp} y_{1}<\operatorname{supp} y_{2}$.

An n-dimensional space E with a monotone normalized basis $\left\{e_{i}\right\}$ is an asymptotic space of X (we denote by $E \in\{X\}_{n}$), if there exist successive blocks y_{1}, \ldots, y_{n} in X as close to $\left\{e_{i}\right\}$ as we wish, and arbitrarily far and spread out with respect to the basis $\left\{x_{i}\right\}$. Precisely, given $\varepsilon>0$, for arbitrarily large m_{1} there is a block y_{1} with $\left\{m_{1}\right\}<\operatorname{supp} y_{1}$ such that for an arbitrarily large m_{2} there is a block y_{2} with $\left\{m_{2}\right\}<\operatorname{supp} y_{2}$, etc, such that y_{1}, \ldots, y_{n} obtained after n steps are successive and $(1+\varepsilon)$-equivalent to the basis $\left\{e_{i}\right\}$. The successive blocks y_{1}, \ldots, y_{n} are called permissible vectors. The asymptotic structure of X consists of all asymptotic spaces of X. Now it is clear that if $\left\{e_{i}\right\}$ is the natural basis of any spreading model generated by a subsequence of the basis $\left\{x_{i}\right\}$ of X, then for all n, the span of the first n vectors $\left\{e_{i}\right\}_{i=1}^{n}$ is an asymptotic space of X. In fact, one can always find better asymptotic spaces; it is a consequence of the classical Krivine's theorem that for every X there is $1 \leq p \leq \infty$ such that $\ell_{p}^{n} \in\{X\}_{n}$ for all n. Thus $\{X\}_{n}$ is never empty.

The first general problem in this context is to describe the set of asymptotic spaces of a given Banach space X. The definition of an asymptotic space already hints that this might not be an easy task. As it is common practice in analysis, a starting point would be then to define some relevant functions on the asymptotic structure of X and hope to get information through studying these functions.

This, in fact, is the main project of the first part of this thesis. The functions we consider are called envelope functions; they have been introduced by Milman and Tomczak-Jaegermann [MT1] and used to discover a new class of Banach spaces, called asymptotic- ℓ_{p} spaces.

For any finite sequence of scalars $a=\left(a_{i}\right)$ the upper envelope is a function
$r(a)=\sup \left\|\sum_{i} a_{i} e_{i}\right\|$, where the supremum is taken over all natural bases $\left\{e_{i}\right\}$ of asymptotic spaces $E \in\{X\}_{n}$ and all n. Similarly, the lower envelope is a function $g(a)=\inf \left\|\sum_{i} a_{i} e_{i}\right\|$, where the infimum is taken over the same set. These functions clearly define upper and lower bounds for the 'spectrum' of the set of asymptotic spaces of X. The useful fact about the envelopes is that they have nice properties, for instance, they are always close to some ℓ_{p}-norms (see section 2.4).

A Banach space X is called asymptotic- $\ell_{p}(1 \leq p \leq \infty)$ if there exists C such that for all n and $E \in\{X\}_{n}$, the basis in E is C-equivalent to the unit vector basis of ℓ_{p}^{n}. Clearly this happens if and only if both g and r are equivalent to the ℓ_{p}-norm. As examples, the original Tsirelson's space is an asymptotic- ℓ_{∞} and its dual T is an asymptotic- ℓ_{1} space. Asymptotic- ℓ_{p} spaces appear naturally in connection with the distortion problem [MT1]. Thus the structure of these spaces is of particular interest. An interesting result proved in [MMT] says that for $1<p<\infty$, if X is a Banach space such that there exists C such that for every n, every asymptotic space $E \in\{X\}_{n}$ is C-isomorphic to ℓ_{p}^{n}, then X is an asymptotic $-\ell_{p}$ space. This means that in the asymptotic setting isomorphisms imply the equivalence of bases (at least for ℓ_{p} spaces for $1<p<\infty$). This is truly an asymptotic phenomenon; its classical analogue requires a strong additional assumption on bases (cf. [LT] and also [JMST]).

In Part I, we prove another result of this type; a characterization of asymptoticℓ_{p} spaces in terms of the ' ℓ_{p}-behavior' of disjoint-permissible vectors with constant coefficients. To describe this result, we consider a Banach space X with an asymptotic unconditional structure, which means that there exists C such that for every n and $E \in\{X\}_{n}$, the basis $\left\{e_{i}\right\}$ in E is C-unconditional. In such a space X, consider the set (we denote by $\{X\}^{d}$) of all sequences of normalized vectors $\left\{x_{j}\right\}$ which are disjointly supported with respect to the basis of some asymptotic space for X. These are called disjoint-permissible vectors. Then we have the following characterization for asymptotic- ℓ_{p} spaces. Let $1 \leq p \leq \infty$.

For a Banach space X with asymptotic unconditional structure if there exists K such that for every n and $\left\{x_{j}\right\}_{j=1}^{n} \in\{X\}^{d}$,

$$
\frac{n^{1 / p}}{K} \leq\left\|\sum_{j=1}^{n} x_{j}\right\| \leq K n^{1 / p}
$$

then X is asymptotic- ℓ_{p}.
For the proof, we introduce the notion of disjoint-envelope functions; these are the natural analogues of the envelope functions defined on the set $\{X\}^{d}$. For any finite sequence of scalars $a=\left(a_{i}\right)$, the upper disjoint-envelope is a function $r^{d}(a)=\sup \left\|\sum_{i} a_{i} x_{i}\right\|$, where the supremum is taken over all $\left\{x_{i}\right\} \in\{X\}^{d}$. Similarly, the lower disjoint-envelope is a function $g^{d}(a)=\inf \left\|\sum_{i} a_{i} x_{i}\right\|$ defined over the same set. The disjoint envelopes share the nice properties as similar to the original envelopes.

The new results of Part I are contained in Chapter 3. The first section of the chapter is about the notion of asymptotic unconditionality, which is a notion of great importance for the thesis. This notion was first introduced by Milman and Sharir $[\mathrm{MiS}]$ and, in particular, they gave a characterization of asymptotic unconditionality in terms of norming permissible functionals. Section 3.1 is mainly devoted to the proof of a reformulation of this result in the context of asymptotic structures. The proof is rather complicated, so it is divided into several parts to emphasize several facts involved, which are of independent interest.

The disjoint-envelope functions are introduced in Section 3.2, which also develops some properties of these functions analogous to those of original envelopes. In [MT2], it is shown that the envelope functions on a reflexive space X and on its dual X^{*} are in natural duality. In Section 3.3 we show that the analogous result holds for the disjoint-envelopes as well.

The characterization for asymptotic- ℓ_{p} spaces mentioned above is given in Section 3.4. We also show by presenting suitable examples that this result
cannot be improved by replacing disjoint-permissible vectors (i.e., vectors in the set $\left.\{X\}^{d}\right)$ in the assumption with permissible vectors. These examples turn out to be a class of Banach spaces already in the literature, called the Tirilman spaces. Incidentally, as a byproduct of the results proved in Section 3.4, we obtained a solution to a conjecture of Casazza and Shura [CS] about the structure of the Tirilman spaces. These are presented in Section 3.5.

Section 3.6 contains another application of the envelope functions. Using the (original) envelopes and a stabilization result due to Milman and TomczakJaegermann [MT2], we prove an asymptotic analog of a classical result of James concerning reflexivity: A Banach space X with an asymptotic unconditional structure must either have ℓ_{1}^{n} or ℓ_{∞}^{n} as asymptotic spaces for all n, or it contains a reflexive subspace.

The final section of Chapter 3 deals with a finite representability problem for the envelope functions. As remarked earlier, for every Banach space X the envelope functions r and g are always close to some ℓ_{p} (and ℓ_{q}) norms, where p and q depend on the asymptotic structure of X only. A similar fact holds also for the disjoint-envelope functions. We refer to these p and q as the power types of the envelopes. The problem we are concerned with here is whether these ℓ_{p} and ℓ_{q} spaces are finitely representable in X asymptotically. Namely, is it true that for all $n, \ell_{p}^{n}, \ell_{q}^{n} \in\{X\}_{n}$ (resp. $\ell_{p}^{n}, \ell_{q}^{n} \in\{X\}^{d}$), where p and q are the power types of r and g (resp. r^{d} and g^{d})? We show in Section 3.7 that the answer is affirmative for the disjoint-envelopes and yet it is negative for the original envelopes.

In Part II we study the structure of the set of spreading models of Orlicz sequence spaces.

As we remarked earlier, a spreading model involves a stabilization on subsequences of a basic sequence, and hence it may not provide intrinsic properties of the space. However, one can consider the set of all spreading models (which will be denoted by $S P(X)$) of a Banach space X. In some instances, from the
information about the set $S P(X)$ one can get infinite-dimensional information of X (cf. e.g. [OS5], [OS4]).

Our particular object of attention is the following novel approach to the spreading model theory due to Androulakis, Odell, Schlumprecht and TomczakJaegermann [AOST]. Defining a partial order on the set $S P(X)$, they have studied the structure of the partially ordered set $S P(X)$, and, for instance, they showed that every countable set of spreading models (generated by weakly null sequences) of a space X admits an upper bound with respect to this partial order. In some cases, using the results about the structure of the set $S P(X)$ they have obtained interesting applications concerning the existence of certain operators on X.

Following this direction, in Chapter 4 we study the structure of this partially ordered set for Orlicz sequence spaces. We showed that if the set of spreading models of an Orlicz sequence space is countable, then it contains both the upper and the lower bounds, and the upper bound is the space itself and the lower bound is some ℓ_{p} space. This and some other results are given in Section 4.3. Section 4.2 reviews some basic facts about Orlicz sequence spaces. The precise definition of a spreading model and a discussion of the results of [AOST] are presented in the introduction of Chapter 4.

1.1 Notations and Basic Concepts in the Geometry of Banach Spaces

In this thesis, all spaces are real separable Banach spaces and all subspaces are closed subspaces. By X, Y, \ldots we usually denote infinite-dimensional Banach spaces; we reserve E, F, \ldots to denote finite-dimensional Banach spaces.

The norm in X is denoted by $\|.\|_{X}$, or simply by $\|$.$\| if there is no ambiguity.$ By B_{X} we denote the closed unit ball $\{x \in X:\|x\| \leq 1\}$, and by S_{X} the unit sphere $\{x \in X:\|x\|=1\}$ of X.

Linear continuous maps between two Banach spaces X and Y are called operators and denoted by $T: X \rightarrow Y$. If T is an isomorphism between X and Y, the isomorphism constant C is defined by $C=\|T\|\left\|T^{-1}\right\|$ and in this case we write $X \stackrel{C}{\simeq} Y$, or simply $X \simeq Y$ if we do not want to specify the isomorphism constant. We will say that X and Y are C-isomorphic or simply isomorphic.

For a set E in $X, \overline{\operatorname{span}}[E]$ denotes the closed linear span of E in X and $\overline{\operatorname{conv}}[E]$ the closed convex hull of E.

As examples of Banach spaces we shall often use the classical sequence spaces c_{0}, and $\ell_{p}(1 \leq p \leq \infty) . c_{0}$ is the space of all real sequences $x=\left(a_{n}\right)$ with $\lim _{n \rightarrow \infty} a_{n}=0$ with the norm $\|x\|_{\infty}=\sup _{n}\left|a_{n}\right|$. For any $1 \leq p<\infty, \ell_{p}$ is the space of real sequences $x=\left(a_{n}\right)$ with $\sum_{n}\left|a_{n}\right|^{p}<\infty$, and the norm $\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p} . \ell_{\infty}$ is the space of all bounded real sequences $x=\left(a_{n}\right)$ with the norm $\|x\|_{\infty}=\sup _{n}\left|a_{n}\right|$. For each $n \in \mathbb{N}, \ell_{p}^{n}(1 \leq p \leq \infty)$ denotes the n-dimensional space \mathbb{R}^{n} with ℓ_{p}-norm.

Perhaps the most fundamental notion we use throughout the thesis is the notion of a basis. A Schauder basis or simply a basis for a Banach space X is a sequence $\left\{x_{n}\right\}$ of vectors in X such that every vector x in X has a unique representation of the form $x=\sum_{n} a_{n} x_{n}$ where each a_{n} is a scalar and the sum converges in the norm topology. For each n, the mapping $x \rightarrow a_{n}$ then defines a continuous linear functional x_{n}^{*} on X. A sequence $\left\{x_{n}\right\}$ in X is a basic sequence if $\left\{x_{n}\right\}$ is a basis for its closed linear span in X. The basis projections of a basis $\left\{x_{i}\right\}$, defined by $P_{n}\left(\sum_{i=1}^{\infty} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} x_{i}$ for $n=1,2, \ldots$, are (necessarily) uniformly bounded linear operators, and the supremum of the norms of these basis projections is called the basis constant. A basis is called monotone provided that its basis constant is one. In most of the applications we will consider the normalized monotone bases. A sequence $\left\{x_{n}\right\}$ is called normalized if for each n, $\left\|x_{n}\right\|=1$.

A pair $\left\{u_{n}, u_{n}^{*}\right\}$ of sequences is a biorthogonal system on X if $u_{n} \in X$ and $u_{n}^{*} \in X^{*}$ for all n with the property that $u_{n}^{*}\left(u_{m}\right)=\delta_{n m}$, i.e., $u_{n}^{*}\left(u_{n}\right)=1$
and $u_{n}^{*}\left(u_{m}\right)=0$ for $n \neq m$. If $\left\{x_{n}\right\}$ is a basis for X, then the sequence of biorthogonal functionals $\left\{x_{n}^{*}\right\}$ is a basic sequence in X^{*}.

In studying the structure of Banach spaces with a basis, it is desirable to have some additional properties of the basis which essentially provide a more 'computable' environment in the space. Among the most important ones is the property of unconditionality.

A basis $\left\{x_{n}\right\}$ is said to be unconditional (or C-unconditional) if there exists a constant $C>0$ such that for all scalars $\left\{a_{n}\right\}$ and signs $\theta_{n}= \pm 1$, we have

$$
\left\|\sum_{n} \theta_{n} a_{n} x_{n}\right\| \leq C\left\|\sum_{n} a_{n} x_{n}\right\| .
$$

That is, inserting plus-minus signs into the sum does not increase the norm more than C. The smallest such C is called the unconditional basis constant of $\left\{x_{n}\right\}$. Being unconditional for a basis $\left\{x_{n}\right\}$ is equivalent to the fact that every permutation of $\left\{x_{n}\right\}$ is also a basis.

We frequently use the following observation concerning the unconditional constant. Let $\left\{x_{n}\right\}$ be an unconditional basis for X with constant C. Then for every $x=\sum_{n} a_{n} x_{n}$ in X and every bounded sequence of reals $\left\{\lambda_{n}\right\}$, we have

$$
\left\|\sum_{n} \lambda_{n} a_{n} x_{n}\right\| \leq C \sup _{n}\left|\lambda_{n}\right|\left\|\sum_{n} a_{n} x_{n}\right\| .
$$

A block basis $\left\{y_{j}\right\}$ of the basis $\left\{x_{i}\right\}$ is a sequence of non-zero vectors of the form $y_{j}=\sum_{i=n_{j}+1}^{n_{j+1}} a_{i} x_{i}$ for some sequence $n_{1}<n_{2}<\ldots$. Every block basis $\left\{y_{j}\right\}$ of the basis $\left\{x_{i}\right\}$ is a basic sequence and the basis constant of a block basis is no larger than the basis constant of $\left\{x_{i}\right\}$. Recall that for a vector $y=\sum_{i} a_{i} x_{i}$, the support of y is $\operatorname{supp} y=\left\{i: a_{i} \neq 0\right\}$. A sequence $\left\{y_{j}\right\}$ is disjointly supported if for every $j, \operatorname{supp} y_{j}$ is finite and $\operatorname{supp} y_{j} \cap \operatorname{supp} y_{k}=\emptyset$ whenever $j \neq k$. A block basis $\left\{y_{j}\right\}$ is not only disjointly supported but also it is successive, i.e., $\max \operatorname{supp} y_{j}<\min \operatorname{supp} y_{j+1}$, for all j. Unlike a block basis, a disjointly supported sequence might not be a basic sequence in general.

However, it is a (unconditional) basic sequence if the basis $\left\{x_{i}\right\}$ is unconditional. In the literature, the disjointly supported sequences are sometimes referred as 'blocks', however this distinction is important to us, and it will be emphasized throughout the thesis.

We say that a basic sequence $\left\{x_{n}\right\}$ dominates the basic sequence $\left\{y_{n}\right\}$ if there exists a constant A such that for all scalars $\left\{a_{n}\right\}$, we have

$$
\left\|\sum_{n} a_{n} y_{n}\right\| \leq A\left\|\sum_{n} a_{n} x_{n}\right\| .
$$

If $\left\{x_{n}\right\}$ dominates $\left\{y_{n}\right\}$ and $\left\{y_{n}\right\}$ dominates $\left\{x_{n}\right\}$, then we say that $\left\{x_{n}\right\}$ is equivalent to $\left\{y_{n}\right\}$. That is, there exist constants A and B such that for all scalars $\left\{a_{n}\right\}$, we have

$$
\frac{1}{B}\left\|\sum_{n} a_{n} x_{n}\right\| \leq\left\|\sum_{n} a_{n} y_{n}\right\| \leq A\left\|\sum_{n} a_{n} x_{n}\right\|
$$

The smallest constant $K=A B$ of this form is called the equivalence constant. In this case we say that $\left\{x_{n}\right\}$ is K-equivalent to $\left\{y_{n}\right\}$ to emphasize the constant, and denote this by $\left\{x_{n}\right\} \stackrel{K}{\sim}\left\{y_{n}\right\}$.

A stronger property than unconditionality is symmetry of a basis. A basis $\left\{x_{n}\right\}$ is symmetric provided that every permutation of $\left\{x_{n}\right\}$ is equivalent to $\left\{x_{n}\right\}$. In particular, every permutation of $\left\{x_{n}\right\}$ is a basis, so a symmetric basis is unconditional. A basis $\left\{x_{n}\right\}$ is called subsymmetric provided that it is unconditional and equivalent to each subsequence of itself. A symmetric basis is subsymmetric (cf. 3.a. 3 of [LT]). The unit vector bases for c_{0} and ℓ_{p} $(1 \leq p<\infty)$ are symmetric. Not every subsymmetric basis is symmetric, and some examples of such bases are, for instance, considered in section 3.5.

Part I

Envelope Functions and Asymptotic Structures of

 Banach Spaces
Chapter 2

Asymptotic Structures of Banach spaces : A General View

In this chapter we shall describe basic general notions of asymptotic infinite dimensional theory of Banach spaces. Our purpose here is not to give an allinclusive review of this more recent and fast growing theory, but rather to motivate the problems we study in this thesis as well as to recall the necessary fundamental notions and notations we use throughout.

2.1 Basic Concepts

We have recalled some of the standard Banach space notation in section 1.1, for the unexplained terms we refer to the standard textbook of Lindenstrauss and Tzafriri [LT]. For the notation and basic concepts of asymptotic structure, we shall follow [MMT].

Here we would like to start with some fundamental notation which is essential in the sequel. Let X be a Banach space with a fixed basis (or a minimal system, which will be introduced shortly) $\left\{x_{i}\right\}$. Recall that the support of a vector $x=\sum_{i} a_{i} x_{i}$, denoted by $\operatorname{supp} x$, is the set of all i such that $a_{i} \neq 0$. The set of natural numbers is denoted by \mathbb{N}. For non-empty subsets I and J of \mathbb{N}
we write $I<J$ if $\max I<\min J$. For $n \in \mathbb{N}$ and $x \in X$ we write $n<x$ if $n<\min \operatorname{supp} x$. For $x, y \in X$ we write $x<y$ if $\operatorname{supp} x<\operatorname{supp} y$. We call $\left(x_{1}, \ldots, x_{n}\right)$ an n-tuple of successive blocks if $x_{1}<x_{2}<\ldots<x_{n}$. If Y is a set of block vectors, (for instance, a tail subspace) we write $n<Y$ if $n<y$ for all $y \in Y$.

Let $\left\{x_{n}\right\}$ be a basis (or a minimal system) for X, and let $I \subset \mathbb{N}$. By X_{I} we will denote the set of all vectors $x \in X$ such that $\operatorname{supp} x \subset I$, and by $S\left(X_{I}\right)$ we will denote the set of all normalized vectors in X_{I}.

2.1.1 Games and Asymptotic Spaces

Asymptotic structures of a Banach space X are defined with respect to a fixed family $\mathcal{B}=\mathcal{B}(X)$ of infinite-dimensional subspaces of X, which satisfies two conditions.

The filtration condition says that

For every $X_{1}, X_{2} \in \mathcal{B}$ there exists $X_{3} \in \mathcal{B}$ such that $X_{3} \subset X_{1} \cap X_{2}$.

The norming condition says that there exists $C<\infty$ such that

$$
\|x\| \leq C \sup \|x\|_{X / X_{0}} \quad \text { for all } x \in X
$$

where the supremum is taken over all subspaces $X_{0} \in \mathcal{B}$ and $\|\cdot\|_{X / X_{0}}$ denotes the norm in the quotient space X / X_{0}.

Natural examples of such families are the family $\mathcal{B}^{0}(X)$ of all subspaces of X of finite-codimension, and the families of all tail subspaces with respect to a fixed basis or a fixed minimal system in X. These families will be denoted by $\mathcal{B}^{t}(X)$, if the reference system is clear in the context.

Recall that $\left\{u_{i}\right\}$ is called a minimal system in X, if there exists a sequence $\left\{u_{i}^{*}\right\}$ in X^{*} such that $\left\{u_{i}, u_{i}^{*}\right\}$ is a biorthogonal system. Unless otherwise stated, we shall assume that $\left\{u_{i}\right\}$ is fundamental (i.e., $\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq 1}=X$) and that $\left\{u_{i}^{*}\right\}$
is total (i.e., if $u_{i}^{*}(x)=0$ for all i then $x=0$) and norming (i.e., there exists $C<\infty$ such that $\|x\| \leq C \sup \left\{\left|x^{*}(x)\right| \mid\left\|x^{*}\right\| \leq 1, x^{*} \in \overline{\operatorname{span}}\left[u_{i}^{*}\right]_{i \geq 1}\right\}$, for all $x \in X$) (we sometimes say C-norming, to emphasize the constant C). It is well known that every Banach space contains a minimal (and fundamental and 1norming) minimal system. This was first proved by Markushevich and minimal systems are sometimes called Markushevich bases. Moreover, if X^{*} is separable the system can be chosen so that, in addition, $\overline{\operatorname{span}}\left[u_{i}^{*}\right]_{i \geq 1}=X^{*}$ (Theorem 1.f.4, [LT]). If $\left\{u_{i}\right\}$ is such a minimal system in X, a tail subspace is a subspace of the form $X^{n}=\overline{\operatorname{span}}\left[u_{i}\right]_{i>n}$, for some $n \in \mathbb{N}$.

If \mathcal{B} is a family satisfying the filtration condition, we may introduce an equivalent norm on X in such a way that \mathcal{B} is 1-norming in the new norm. Therefore unless otherwise stated, we shall assume that the family \mathcal{B} is 1 -norming. Then by a compactness argument it is easy to see that the following condition holds:
for every finite-dimensional subspace $W \subset X$ and every $\varepsilon>0$ there is $Z \in \mathcal{B}$ such that $\|x\| \leq(1+\varepsilon)\|x+z\|$, for all $x \in W$ and $z \in Z$.

By \mathcal{M}_{n} we denote the space of all n-dimensional Banach spaces with fixed normalized monotone bases, and the distance given by (the logarithm of) the equivalence constant of the bases (see section 1.1). Recall that \mathcal{M}_{n} is a compact metric space.

Let us recall the language of asymptotic games [MMT] that is convenient for describing asymptotic structures. In such a game (with respect to a fixed family \mathcal{B}) there are two players \mathbf{S} and \mathbf{V}. Rules of the moves are the same for all games. Set $Y_{0}=X$. For $k \geq 1$, in the k th move, player \mathbf{S} chooses a subspace $Y_{k} \in \mathcal{B}(X), Y_{k} \subset Y_{k-1}$, and then player \mathbf{V} chooses a vector $x_{k} \in S\left(Y_{k}\right)$ in such a way that the vectors x_{1}, \ldots, x_{k} form a basic sequence with the basis constant smaller than or equal to 2 . Further rules will ensure that the games considered here will stop after a finite number of steps specified in advance.

A space $E \in \mathcal{M}_{n}$ with the basis $\left\{e_{i}\right\}$ is called an asymptotic space for X
(with respect to \mathcal{B}) if for every $\varepsilon>0$ we have

$$
\begin{aligned}
& \forall Y_{1} \in \mathcal{B} \quad \exists y_{1} \in S\left(Y_{1}\right) \forall Y_{2} \in \mathcal{B}, Y_{2} \subset Y_{1} \quad \exists y_{2} \in S\left(Y_{2}\right) \quad \ldots \\
& \ldots \quad \forall Y_{n} \in \mathcal{B}, Y_{n} \subset Y_{n-1} \exists y_{n} \in S\left(Y_{n}\right) \\
& \left\{y_{1}, \ldots, y_{n}\right\} \stackrel{1+\varepsilon}{\sim}\left\{e_{i}\right\}_{i=1}^{n} .
\end{aligned}
$$

(By abuse of notation, we will write $\left\{y_{1}, \ldots, y_{n}\right\} \stackrel{1+\varepsilon}{\sim} E$ instead.) Any n-tuple $\left(y_{1}, \ldots, y_{n}\right)$ obtained as above is called permissible. We say that \mathbf{V} has a winning strategy in a vector game for E and $\varepsilon>0$, if he can choose vectors $\left\{y_{1}, \ldots, y_{n}\right\} \stackrel{1+\varepsilon}{\sim} E$. In particular, E is an asymptotic space for X if V has a winning strategy for E and $\varepsilon>0$. The vector y_{i} is called an i th winning move of \mathbf{V} in a vector game for E and ε.

The set of all n-dimensional asymptotic spaces for X is denoted by $\{X\}_{n}$. It is easy to see that the set $\{X\}_{n}$ is closed in \mathcal{M}_{n}.

It was proved in [MMT], 1.4 and 1.5, that this set can be also characterized in terms of a different asymptotic game called a subspace game. Given a family $\mathcal{F} \subset \mathcal{M}_{n}$ and $\varepsilon>0$, we say that \mathbf{S} has a winning strategy in a subspace game for \mathcal{F} and $\varepsilon>0$ if

$$
\begin{aligned}
\exists Y_{1} & \in \mathcal{B} \quad \forall y_{1} \in S\left(Y_{1}\right) \quad \exists Y_{2} \in \mathcal{B}, Y_{2} \subset Y_{1} \quad \forall y_{2} \in S\left(Y_{2}\right) \quad \ldots \\
\ldots & \exists Y_{n} \in \mathcal{B}, Y_{n} \subset Y_{n-1} \quad \forall y_{n} \in S\left(Y_{n}\right) \\
& \exists F \in \mathcal{F} \quad\left\{y_{1}, \ldots, y_{n}\right\} \stackrel{1+\varepsilon}{\sim} F .
\end{aligned}
$$

It is shown there that $\{X\}_{n}$ coincides with the smallest subset $\mathcal{F} \subset \mathcal{M}_{n}$ such that for every $\varepsilon>0, \mathrm{~S}$ has a winning strategy for \mathcal{F} and $\varepsilon>0$.

We refer to any such subspace Y_{i} as an i th winning move of \mathbf{S} in a subspace game for $\{X\}_{n}$ and ε, and to vectors $\left\{y_{1}, \ldots, y_{i}\right\}$ (with $1 \leq i \leq n$) as the first i moves of \mathbf{V} in the same subspace game. Note that the basis constant of $\left\{y_{1}, \ldots, y_{i}\right\}$ is less than or equal to $1+\varepsilon$.

Asymptotic spaces can be also described in terms of countably branching
trees (cf. [MiS], [KOS], [OS1]). We will use a tree which describes the moves of the player V in a vector game.

For $n \in \mathbb{N}$, let T_{n} be a countably branching tree of length n on \mathbb{N}. This means that $T_{n}=\left\{\left(s_{1}, \ldots, s_{j}\right) \mid s_{i} \in \mathbb{N}\right.$ for $\left.1 \leq i \leq j, \quad 1 \leq j \leq n\right\}$, ordered by the relation $\left(s_{1}, \ldots, s_{j}\right) \prec\left(t_{1}, \ldots, t_{k}\right)$ if $j \leq k$ and $s_{i}=t_{i}$ for all $1 \leq i \leq j$. For each $E \in\{X\}_{n}$ and $\varepsilon>0$ we can build an asymptotic tree $\mathcal{T}(E, \varepsilon)$ on $S(X)$ indexed by T_{n} and consisting of winning moves of V in a vector game for E and ε. That is, $\mathcal{T}(E, \varepsilon)=\left\{x\left(s_{1}, \ldots, s_{i}\right) \in S(X) \mid\left(s_{1}, \ldots, s_{i}\right) \in T_{n}\right\}$, with the order on \mathcal{T} induced by T_{n}.

Denoting by $\left\{e_{i}\right\}$ the natural basis in E we get that any branch $x\left(s_{1}\right) \prec$ $x\left(s_{1}, s_{2}\right) \prec \ldots \prec x\left(s_{1}, \ldots, s_{j}\right)$ of $\mathcal{T}(E, \varepsilon)$ is $(1+\varepsilon)$-equivalent to $\left\{e_{1}, \ldots, e_{j}\right\}$, for $1 \leq j \leq n$. Moreover, for any node $\sigma=x\left(s_{1}, \ldots, s_{i}\right) \in \mathcal{T}(E, \varepsilon)$ with $1 \leq i<n$ and any subspace $Y \in \mathcal{B}$ there is a successor $\sigma^{\prime}=x\left(s_{1}, \ldots, s_{i}, s_{i+1}^{\prime}\right) \in \mathcal{T}(E, \varepsilon)$ with $\sigma \prec \sigma^{\prime}$ and $\sigma^{\prime} \in Y$.

If $\tau \in T_{n}$ and $x(\tau) \in \mathcal{T}(E, \varepsilon)$, we refer to $x(\tau)$ as the τ 'th winning move of V in a vector game determined by $\mathcal{T}(E, \varepsilon)$.

Let us now recall some of the immediate properties of asymptotic spaces. Let $E \in\{X\}_{n}$ with the basis $\left\{e_{i}\right\}_{i=1}^{n}$. If $\left\{f_{i}\right\}_{i=1}^{k}$ is a successive block basis of $\left\{e_{i}\right\}_{i=1}^{n}$ and $F=\overline{\operatorname{span}}\left\{f_{i}\right\}$, a block subspace of E, then $F \in\{X\}_{k}$. Moreover, given $n \in \mathbb{N}$ and $\varepsilon>0$, the subspace player \mathbf{S} has a strategy in an asymptotic game such that after n moves, all normalized successive blocks of the n-tuple resulting from the game, are all permissible, i.e., each of them is $(1+\varepsilon)$-equivalent to the basis of some asymptotic space (1.8.3, [MMT]).

The 'juxtaposition' of finitely many asymptotic spaces is also an asymptotic space. Namely, let $n_{1}, \ldots, n_{k} \in \mathbb{N}$ and let $E_{j} \in\{X\}_{n_{j}}$ for $j=1, \ldots, k$. For every $N \geq \sum_{j} n_{j}$ and any disjoint subsets I_{j} of $\{1, \ldots, N\}$ with $\left|I_{j}\right|=n_{j}$, there exists an asymptotic space $F \in\{X\}_{N}$ with the basis $\left\{f_{i}\right\}$ such that $\left\{f_{i}\right\}_{i \in I_{j}} \stackrel{1+\varepsilon}{\sim} E_{j}$ for $j=1, \ldots, k$.

Finally, it follows from Krivine's theorem that for every Banach space X,
there exists $1 \leq p \leq \infty$ so that for all $n, \ell_{p}^{n} \in\{X\}_{n}$, hence $\{X\}_{n}$ is non-empty.

2.2 Asymptotic- ℓ_{p} Spaces

Banach spaces X with a 'simple' asymptotic structure in the sense that there are no asymptotic spaces $E \in\{X\}_{n}$ other than $E \sim \ell_{p}^{n}$ (whose existence follows from Krivine's theorem as remarked above) are of special interest and are called asymptotic $-\ell_{p}$ spaces.

Precisely, a Banach space X is an asymptotic- ℓ_{p} space (with respect to a family \mathcal{B}) for $1 \leq p \leq \infty$ if there is a constant C such that for all n and $E \in\{X\}_{n}$, the basis $\left\{e_{i}\right\}$ in E is C-equivalent to the unit vector basis of ℓ_{p}^{n}. That is, for some k, l such that $k l \leq C$ and $(1 / k)\|a\|_{p} \leq\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\| \leq l\|a\|_{p}$, for all scalars $\left(a_{i}\right)$. We denote this by $E \stackrel{C}{\sim} \ell_{p}^{n}$.

The class of asymptotic- ℓ_{p} spaces is quite rich, and it clearly contains ℓ_{p} spaces (for $p=\infty$ we take c_{0}). Trivial examples which are not always isomorphic to ℓ_{p} spaces are obtained, for instance, by taking ℓ_{p}-direct sum $\left(\sum \bigoplus F_{n}\right)_{\ell_{p}}$ of arbitrary finite dimensional spaces F_{n}, with $\sup \operatorname{dim} F_{n}=\infty$.

More interesting examples of asymptotic- ℓ_{p} spaces which do not contain isomorphic copies of ℓ_{p} spaces are p-convexified Tsirelson spaces $T_{(p)}[\mathrm{FJ}]$, and the most famous of all is the Tsirelson space T [Ts], an asymptotic- ℓ_{1} space. Although in this thesis we shall not use the Tsirelson space, the existence and the construction of this space is behind most of new phenomena and developments of the asymptotic theory of infinite-dimensional Banach spaces, and we would like to recall the definition of this space.

The main feature of the Tsirelson space T is that the norm does not have an explicit formula and it is given as the solution to an implicit equation. We follow Figiel and Johnson's [FJ] description of the (dual of the original) Tsirelson space. Let c_{00} be the linear space of finitely supported sequences. T is the completion
of $\left(c_{00},\|\cdot\|\right)$, where $\|\cdot\|$ is given by the implicit equation

$$
\|x\|=\max \left\{\|x\|_{\infty}, \sup \frac{1}{2} \sum_{i=1}^{n}\left\|E_{i} x\right\|\right\}
$$

where the inner supremum is taken over all n and $n \leq E_{1}<\ldots<E_{n}$, successive finite intervals of \mathbb{N} supported after n. Here $E_{i} x$ denotes the restriction of x to the set E_{i}. Of course, the existence of such a norm must be verified, and although it is not difficult to show this we refer to [CS] for the proof (and for more information on Tsirelson space).

The unit vectors (e_{i}) form a 1-unconditional basis for T, and it is easy to see from the definition that whenever a block sequence $\left(x_{i}\right)_{i=1}^{n}$ satisfies $n \leq$ $x_{1}<\ldots<x_{n}$, then $\left\|\sum_{i=1}^{n} x_{i}\right\| \geq(1 / 2) \sum_{i=1}^{n}\left\|x_{i}\right\|$. (To see this, simply take the smallest interval E_{i} containing $\operatorname{supp} x_{i}$ for each $1 \leq i \leq n$.) Thus, every sequence of n successive normalized blocks supported after n is 2-equivalent to the unit vector basis of ℓ_{1}^{n} (the other inequality is trivially obtained by the triangle inequality). Hence T is an asymptotic- ℓ_{1} space. In fact, it has a stronger property, namely, that for some $C<\infty$ any normalized n-blocks supported after n is C-equivalent to ℓ_{1}^{n}. In spite of such a rich ' ℓ_{1} '-structure, T does not contain any subspace isomorphic to ℓ_{1} and it is reflexive.

Idea of defining Tsirelson-like spaces have developed intensively over the last decade, and in particular, more examples of asymptotic- ℓ_{1} spaces with some more interesting properties are constructed (cf. [AD] and [ADKM]).

A rather interesting result proved in [MMT] says that the equivalence condition in the definition of asymptotic- ℓ_{p} spaces can be relaxed considerably. A Banach space X is asymptotic- ℓ_{p} (for $1<p<\infty$) if (and only if) for all n and all $E \in\{X\}_{n}, E$ is C-isomorphic to ℓ_{p}^{n}. This result suggests further possibilities in this direction and motivated by this result, we prove another characterization for asymptotic- ℓ_{p} spaces in section 3.4.

2.3 Duality and Permissible Norming

Whenever we have a property for a Banach space X, it is natural to consider if the dual space X^{*} possesses the same or a dual property. A priori it is not obvious how to link the asymptotic structures in X and in X^{*}. In general terms, to establish a connection one requires the norming functionals in X^{*} of permissible vectors to be permissible (in X^{*}) as well.

A natural setting to seek duality relations is that we assume that X has a shrinking minimal system $\left\{u_{i}, u_{i}^{*}\right\}$ (this means that $\left\{u_{i}^{*}\right\}$ is fundamental in X^{*}) and asymptotic structures in X and X^{*} are determined by the tail families $\mathcal{B}^{t}(X)$ and $\mathcal{B}^{t}\left(X^{*}\right)$ with respect to $\left\{u_{i}\right\}$ and $\left\{u_{i}^{*}\right\}$ respectively. Then we have the following permissible norming lemmas (cf. Theorem 2.2 of [MiS] and 4.5 of [MMT]).

Lemma 2.3.1 Let X be a Banach space with a shrinking minimal system. There exists an equivalent norm which is 2 -equivalent to the original norm such that
(i) for every $\delta>0$ and every tail subspace $\tilde{V} \in \mathcal{B}^{t}\left(X^{*}\right)$ there exists a tail subspace $\tilde{X} \in \mathcal{B}^{t}(X)$ such that for every $x \in S(\tilde{X})$ there is $f \in S(\tilde{V})$ with $f(x) \geq 1-\delta$,
(ii) for every $\left\{e_{i}\right\} \in\{X\}_{n}$ and $\varepsilon>0$ the following holds: for all scalars $\left(a_{i}\right)$ there exists a permissible n-tuple $\left\{x_{i}\right\}$ in X satisfying $\left\{x_{i}\right\} \stackrel{1+\varepsilon}{\sim}\left\{e_{i}\right\}$, and a permissible n-tuple $\left\{g_{i}\right\}$ in X^{*} and non-zero scalars $\left(b_{i}\right)$ such that $g_{i}\left(x_{j}\right)=0$ for $i \neq j$ and

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|\left\|\sum_{i=1}^{n} b_{i} g_{i}\right\| \leq(1+\varepsilon)\left(\sum_{i=1}^{n} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} b_{i} g_{i}\right) .
$$

A somewhat stronger version of part (ii) has been proved in Proposition 2.1, [MT2]. Namely, one can choose the n-tuple $\left\{x_{i}\right\}$ independent of the scalar sequence $\left(a_{i}\right)$ if X has a bimonotone basis. In section 3.1 we will prove another stronger version for Banach spaces with asymptotic unconditional structure,
which turns out to characterize asymptotic unconditionality (Theorem 3.1.2).
To avoid repetitions, we will always assume without loss of generality that X is re-normed so that the conclusion of Lemma 2.3.1 holds. Let us also remark that if the dual space X^{*} is also separable then the shrinking assumption can be dropped. In that case one can find a minimal system $\left\{u_{i}, u_{i}^{*}\right\}$ so that $\left\{u_{i}^{*}\right\}$ is also fundamental in X^{*} and hence 1-norming (cf. Proposition 1.f.4, [LT] and the remarks following Theorem 2.2, [MiS]).

2.4 Envelopes

The most important tool used in this first part of the thesis is the notion of envelope functions. Envelopes are defined on the asymptotic structures of Banach spaces and some properties of families of asymptotic spaces $\{X\}_{n}$ can be demonstrated through these functions.

For any sequence with finite support $a=\left(a_{i}\right) \in c_{00}$ the upper envelope is a function $r_{X}(a)=\sup \left\|\sum_{i} a_{i} e_{i}\right\|$, where the supremum is taken over all natural bases $\left\{e_{i}\right\}$ of asymptotic spaces $E \in\{X\}_{n}$ and all n. Similarly, the lower envelope is a function $g_{X}(a)=\inf \left\|\sum_{i} a_{i} e_{i}\right\|$, where the infimum is taken over the same set.

It follows immediately from the properties of the set $\{X\}_{n}$ that the functions r_{X} and g_{X} are 1-unconditional and 1-subsymmetric. And it is easy to see that r_{X} is a norm on c_{00} and that g_{X} satisfies triangle inequality on disjointly supported vectors. That is, if $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right) \in c_{00}$ such that suppa is disjoint from suppb (with respect to the unit vector basis in c_{00}), then $g_{X}(a+b) \leq$ $g_{X}(a)+g_{X}(b)$.

The upper envelope function r_{X} is sub-multiplicative. i.e., for any finite number of successive vectors $b^{i}=\left(b_{j}^{i}\right) \in c_{00}$ such that $r_{X}\left(b^{i}\right) \leq 1$, and for any $a=\left(a_{i}\right) \in c_{00}$, we have

$$
r_{X}\left(\sum_{i} a_{i} b^{i}\right) \leq r_{X}(a)
$$

Similarly, the lower envelope g_{X} is super-multiplicative. I.e., if $g_{X}\left(b^{i}\right)=1$ for all i, then

$$
g_{X}\left(\sum_{i} a_{i} b^{i}\right) \geq g_{X}(a)
$$

Note that in terms of bases, the multiplicativity properties simply mean that in the 'space' $\left(c_{00}, r_{X}\right)$ (resp. in $\left(c_{00}, g_{X}\right)$) the unit vector basis dominates (resp. is dominated by) every block basis in the space. The proof of these multiplicativity properties can be found in [MT1], where the envelope functions are first defined and used.

As examples, the c_{0} and $\ell_{p}(1 \leq p<\infty)$ norms are both sub- and supermultiplicative. In fact, these are the typical examples of the envelope functions in view of the following result, which says that the envelope functions are always 'close' to some ℓ_{p}-norms (1.9.3, [MMT]).

Proposition 2.4.1 Let X be a Banach space. There exists $1 \leq p, q \leq \infty$ such that for all $\varepsilon>0$ there exist $C_{\varepsilon}, c_{\varepsilon}>0$ such that for all $a \in c_{00}$ we have

$$
c_{\varepsilon}\|a\|_{q+\varepsilon} \leq g_{X}(a) \leq\|a\|_{q} \text { and }\|a\|_{p} \leq r_{X}(a) \leq C_{\varepsilon}\|a\|_{p-\varepsilon} .
$$

Here it is understood that if $q=\infty$ (resp. $p=1$), then g_{X} is equivalent to $\|\cdot\|_{\infty}$ (resp. r_{X} is equivalent to $\|\cdot\|_{1}$). Note that a Banach space X is an asymptotic- ℓ_{p} space if and only if both g_{X} and r_{X} are equivalent to $\|\cdot\|_{p}$, and by the above inequalities, if and only if g_{X} is equivalent to r_{X}.

In section 3.2 we will introduce the notion of disjoint-envelope functions for Banach spaces with asymptotic unconditional structure, and establish the similar properties as above. The envelope and the disjoint-envelope functions then will be our main tools in studying the asymptotic structures of Banach spaces.

Chapter 3

Envelope Functions and Asymptotic Structure

We start this Chapter with an important notion of asymptotic unconditionality. Let us emphasize that, unless otherwise stated, we will always consider the asymptotic structure of Banach spaces with respect to tail families \mathcal{B}^{t} of a minimal system $\left\{u_{i}\right\}$. Moreover, \mathcal{B}^{t} will be assumed to be 1-norming.

3.1 Asymptotic Unconditionality

A Banach space X has asymptotic unconditional structure if there exists a constant $C \geq 1$ such that for all $n \in \mathbb{N}$ and for every asymptotic space $E \in\{X\}_{n}$ the natural basis $\left\{e_{i}\right\}_{i=1}^{n}$ in E is C-unconditional.

As an easy consequence of permissible norming lemmas, Lemma 2.3.1, we observe that this property is self-dual for dual Banach spaces.

Proposition 3.1.1 Let X be a Banach space with a shrinking, fundamental and 1-norming minimal system. If X^{*} has asymptotic unconditional structure with constant C, then X also has asymptotic unconditional structure with the same constant.

Proof Let $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ and $\varepsilon>0$. Fix an arbitrary scalar sequence $\left\{a_{i}\right\}$ and a sequence $\left\{\epsilon_{i}\right\}$ of signs. By Lemma 2.3.1, there exist a permissible n-tuple $\left\{x_{i}\right\}$ in X such that $\left\{e_{i}\right\} \stackrel{1+\varepsilon}{\sim}\left\{x_{i}\right\}$ and a permissible n-tuple $\left\{g_{i}\right\}$ in X^{*} and scalars $\left\{b_{i}\right\}$ such that $g_{i}\left(x_{j}\right)=0$ for $i \neq j$ and

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i} x_{i}\right\|\left\|\sum_{i=1}^{n} b_{i} g_{i}\right\| \leq(1+\varepsilon)\left(\sum_{i=1}^{n} \epsilon_{i} a_{i} x_{i}\right)\left(\sum_{i=1}^{n} b_{i} g_{i}\right)
$$

By interchanging the signs between scalars $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ and using the assumption, the latter term is less than or equal to

$$
(1+\varepsilon)\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|\left\|\sum_{i=1}^{n} \epsilon_{i} b_{i} g_{i}\right\| \leq C(1+\varepsilon)\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|\left\|\sum_{i=1}^{n} b_{i} g_{i}\right\| .
$$

That is, $\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i} x_{i}\right\| \leq C(1+\varepsilon)\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|$. And since $\varepsilon>0$ was arbitrary, it follows that

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i} e_{i}\right\| \leq C\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\|,
$$

as desired.
Our main aim in this section is to prove the following characterization of asymptotic unconditionality in terms of norming permissible functionals. This is a reformulation of Theorem 2.3 of [MiS].

Theorem 3.1.2 Let X be a Banach space. X has asymptotic unconditional structure (with respect to $\mathcal{B}^{t}(X)$) if and only if the following holds.

There exists a constant $C \geq 1$ such that for all $n \in \mathbb{N}$ and $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ and any partition $\left\{A_{1}, A_{2}, \ldots, A_{l}\right\}$ of $\{1, \ldots, n\}$ and $\varepsilon>0$, there exists a permissible n-tuple $\left\{x_{i}\right\}_{i=1}^{n}$ in X satisfying $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim}\left\{e_{i}\right\}_{i=1}^{n}$ such that for all $\left\{a_{i}\right\}_{i=1}^{n}$ there exists a permissible n-tuple $\left\{g_{i}\right\}_{i=1}^{n}$ of functionals in X^{*} and scalars $\left\{b_{i}\right\}_{i=1}^{n}$ such that $g_{i}\left(x_{j}\right)=0$ whenever $i \neq j$ and for all $1 \leq j \leq l,\left\|\sum_{i \in A_{j}} b_{i} g_{i}\right\| \leq 1+\varepsilon$ and

$$
\left\|\sum_{i \in A_{j}} a_{i} x_{i}\right\| \leq C\left(\sum_{i \in A_{j}} a_{i} x_{i}\right)\left(\sum_{i \in A_{j}} b_{i} g_{i}\right)
$$

The property described in the theorem is called Property A in $[\mathrm{MiS}]$ and it is stated in terms of trees. Note that Lemma 2.3 .1 says that such a property is always satisfied for trivial partitions, i.e., there is only one set $A_{1}=\{1, \ldots, n\}$ or each A_{j} is a singleton.

It is easy to see that the property described above implies asymptotic unconditionality of X. Indeed, let $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ and $\varepsilon>0$ be arbitrary, and let $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ be arbitrary sequence of scalars and signs respectively. We apply the property to the partition $\left\{A_{1}, A_{2}\right\}$ of $\{1, \ldots, n\}$, where $A_{1} \subset\{1, \ldots, n\}$ is the set of all i such that $\epsilon_{i}=1$; and A_{2} is the complement of A_{1} in $\{1, \ldots, n\}$. Then there exist $\left\{x_{i}\right\}_{i=1}^{n} \in X$ such that $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim}\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{g_{i}\right\}_{i=1}^{n} \in X^{*}$ such that $\left\|\sum_{i \in A_{j}} b_{i} g_{i}\right\| \leq 1+\varepsilon$ and

$$
\left\|\sum_{i \in A_{j}} a_{i} x_{i}\right\| \leq C\left(\sum_{i \in A_{j}} a_{i} x_{i}\right)\left(\sum_{i \in A_{j}} b_{i} g_{i}\right),
$$

for $j=1,2$.
But this implies, by the triangle inequality, that

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i} e_{i}\right\| \leq(1+\varepsilon)\left(\left\|\sum_{i \in A_{1}} a_{i} x_{i}\right\|+\left\|\sum_{i \in A_{2}} a_{i} x_{i}\right\|\right) \leq 2 C(1+\varepsilon)^{2}\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\| .
$$

The converse is more complicated and we will split the proof into several parts. We believe that each step is of independent interest.

We have defined the notion of permissibility for the sequence of successive (normalized) vectors. We now extend this definition in a natural way to a sequence of successive intervals in \mathbb{N}.

For a fixed n and $\varepsilon>0$, we say that a sequence $\left\{I_{1}, \ldots, I_{n}\right\}$ of successive intervals in \mathbb{N} is permissible if for all normalized vectors $\left\{x_{i}\right\}_{i=1}^{n}$ such that $\operatorname{supp} x_{i} \subset I_{i},\left\{x_{i}\right\}_{i=1}^{n}$ is permissible. i.e., $\left\{x_{i}\right\} \stackrel{1+\varepsilon}{\sim} E$ for some $E \in\{X\}_{n}$.

For a tail subspace $Y \in \mathcal{B}^{t}(X)$, if $M \in \mathbb{N}$ is such that $Y=\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq M}$ and for a finite interval $I \subset \mathbb{N}$, by $I \geq Y$ we will mean that $\min I \geq M$.

Now we describe a winning strategy for \mathbf{S} in a special subspace game, which
we will call a subspace game for intervals. The rules of a subspace game for intervals are the same as of a subspace game, except that in the k th step the vector player \mathbf{V} chooses a finite interval I_{k} (rather than a vector x_{k}) such that $I_{k} \geq Y_{k}$, where $Y_{k} \in \mathcal{B}^{t}$ being k th move of S.

Let us observe that given n and $\varepsilon>0$, the subspace player S has a winning strategy for $\{X\}_{n}$ in a subspace game for intervals such that after n moves, if $\left\{I_{1}, \ldots, I_{n}\right\}$ is any sequence of successive intervals played by \mathbf{V}, then $\left\{I_{1}, \ldots, I_{n}\right\}$ is permissible.

Indeed, let $Y_{1} \in \mathcal{B}^{t}$ be the first move of \mathbf{S} playing the winning strategy in the subspace game for $\{X\}_{n}$ and $\varepsilon>0$. Fix a $\delta>0$ to be defined later. Let I_{1}, the first move of \mathbf{V}, be an arbitrary finite interval such that $I_{1} \geq Y_{1}$. Let \mathcal{N}_{1} be a finite δ-net in $S\left(X_{I_{1}}\right)$. Considering any vector from \mathcal{N}_{1} as a first move of V and a winning move $\tilde{Y}_{2} \in \mathcal{B}^{t}$ for player S for $\{X\}_{n}$ and $\varepsilon>0$; take the intersection $Y_{2} \in \mathcal{B}^{t}$ of all these (finitely many) tail subspaces $\tilde{Y}_{2} . Y_{2}$ is the second winning move for S . Thus Y_{2} has the following property which is valid for all $y_{1} \in \mathcal{N}_{1}$: treating y_{1} as the first move of \mathbf{V}, Y_{2} is a winning move of \mathbf{S} in a subspace game for $\{X\}_{n}$ and $\varepsilon>0$. Given an arbitrary finite interval I_{2} such that $I_{2} \geq Y_{2}$, take a finite δ-net in $S\left(X_{I_{2}}\right)$ and choose Y_{3} such that for all $y_{2} \in \mathcal{N}_{2}$, treated as a second move of \mathbf{V}, Y_{3} is a winning move of \mathbf{S} and so on. After n steps, given any $\left\{x_{i}\right\}_{i=1}^{n}$ such that $x_{i} \in S\left(X_{I_{i}}\right)$, i.e., $\operatorname{supp} x_{i} \subset I_{i}$, $\left\{x_{i}\right\}_{i=1}^{n}$ is, by a standard perturbation argument, $(1+\varepsilon)(1+n \delta)$-equivalent to some $E \in\{X\}_{n}$. Consequently, $\left\{I_{1}, \ldots, I_{n}\right\}$ is permissible.

The above strategy can be elaborated further to get the following.
Lemma 3.1.3 The subspace player \mathbf{S} has a winning strategy in a subspace game for $\{X\}_{2 n}$ and $\varepsilon>0$ such that the following holds.

There exists an integer K_{1} such that for each finite interval $I_{1}>K_{1}$ there is an integer $M_{1}>I_{1}$ such that for each integer $L_{2}>M_{1}$ there is an integer $K_{2}>L_{2}$ such that for each finite interval $I_{2}>K_{2}$ there is $M_{2}>I_{2}$ and so on such that for each finite interval $I_{n}>K_{n}$ there is $M_{n}>I_{n}$, and let $L_{n+1}>M_{n}$
be arbitrary.
Then, denoting $\Delta_{(i, j)}=\left(M_{i}, L_{j}\right)$ for $i<j$ and $\Delta_{(0, j)}=\left(K_{1}, L_{j}\right)$, any sequence of intervals of the form

$$
\left\{I_{1}, \Delta_{\left(1, k_{2}\right)}, I_{k_{2}}, \Delta_{\left(k_{2}, k_{3}\right)} \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, n+1\right)}\right\}
$$

or

$$
\left\{\Delta_{\left(0, k_{1}\right)}, I_{k_{1}}, \Delta_{\left(k_{1}, k_{2}\right)}, I_{k_{2}}, \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, n+1\right)}\right\}
$$

where $1 \leq k_{1}<\ldots<k_{m} \leq n$, is permissible.
Proof The subspace player \mathbf{S} will follow a winning strategy for $\{X\}_{2 n}$ and $\varepsilon>0$ in a subspace game for intervals such that all the intervals resulting from this game will be permissible with an additional trick described below.

The numbers M_{1}, \ldots, M_{n} and K_{1}, \ldots, K_{n} will denote $\min \operatorname{supp} Y_{l}$, where Y_{l} is the l th winning move of \mathbf{S} for $1 \leq l \leq 2 n$. Recall that if $Y=\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq K} \in \mathcal{B}^{t}$, then $\min \operatorname{supp} Y=K$

Let $Y_{1}=\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq K_{1}}$ be the first winning move of \mathbf{S} for $\{X\}_{2 n}$ and $\varepsilon>0$. Let I_{1} be an arbitrary finite interval such that $I_{1}>K_{1}$. S chooses $Y_{2}=$ $\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq M_{1}} \in \mathcal{B}^{t}$ as a winning move for $\{X\}_{2 n}$ and $\varepsilon>0$ as described in the subspace game for intervals. (In precise terms this has been explained before the statement of the lemma).

Let $L_{2}>M_{1}$ be arbitrary. The next move of \mathbf{S} depends on two considerations.

Considering the interval $\Delta_{(1,2)}=\left(M_{1}, L_{2}\right)$ as a second move of \mathbf{V}, \mathbf{S} chooses $Y_{3}^{1} \in \mathcal{B}^{t}$ so that $\left\{I_{1}, \Delta_{(1,2)}\right\}$ is a permissible pair of intervals.

Secondly, pretending that $\Delta_{(0,2)}=\left(K_{1}, L_{2}\right)$ as a first move of \mathbf{V} in a subspace game for intervals with the length less than $2 n, \mathbf{S}$ chooses $Y_{3} \subset Y_{3}^{1}$ as his winning move. $Y_{3}=\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq K_{2}}$ is the actual choice of \mathbf{S}. This ends the first step of the construction. Note that $K_{1}<I_{1}<M_{1}<L_{2}<K_{2}$.

In next steps of the game the strategy for \mathbf{S} is similar to the above but
gets slightly more complicated due to increasing additional considerations after every step. Hence we explain the move of \mathbf{S} in an arbitrary step (inductively) in detail.

Suppose that for $j \geq 1, I_{1}, \ldots, I_{j}, M_{1}, \ldots, M_{j}$ and K_{1}, \ldots, K_{j} have been already obtained so that the following holds.

Suppose that any sequence of the form

$$
\left\{I_{1}, \Delta_{\left(1, k_{2}\right)}, I_{k_{2}}, \Delta_{\left(k_{2}, k_{3}\right)} \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, j+1\right)}\right\}
$$

or

$$
\left\{\Delta_{\left(0, k_{1}\right)}, I_{k_{1}}, \Delta_{\left(k_{1}, k_{2}\right)}, I_{k_{2}}, \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, j+1\right)}\right\}
$$

where $1 \leq k_{1}<\ldots<k_{m} \leq j$ and $L_{j+1}>M_{j}$ is arbitrary, is permissible.
Fix $L_{j+1}>M_{j}$. Then, by assumption, any sequence of intervals of the above forms is permissible. Hence for each $1 \leq k_{1}<\ldots<k_{m} \leq j$, \mathbf{S} has a next move Y^{k}. Take the intersection Y of all these (finitely many) tail subspaces Y^{k}. Then $Y=\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq K_{j+1}}$ is the next move of \mathbf{S}, and $K_{j+1}>L_{j+1}$.

Now let I_{j+1} be given arbitrary interval such that $I_{j+1}>K_{j+1}$. For each $1 \leq k_{1}<\ldots<k_{m} \leq j$ and a sequence of permissible intervals as above, S has next move Y^{k} such that $\left\{I_{1}, \Delta_{\left(1, k_{2}\right)}, I_{k_{2}}, \Delta_{\left(k_{2}, k_{3}\right)} \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, j+1\right)}, I_{j+1}\right\}$ or $\left\{\Delta_{\left(0, k_{1}\right)}, I_{k_{1}}, \Delta_{\left(k_{1}, k_{2}\right)}, I_{k_{2}}, \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, j+1\right)}, I_{j+1}\right\}$ is permissible. Again, the actual choice of S is the intersection Y of all these Y^{k} 's, so that all the sequences of intervals as above are permissible. If $Y=\overline{\operatorname{span}}\left[u_{i}\right]_{i \geq M_{j+1}}$, then $M_{j+1}>K_{j+1}$ and it is easily seen that the property assumed for j th step holds for $(j+1)$ th step as well.

S repeats this strategy until obtaining I_{n} and M_{n}, and hence the permissibility properties are satisfied for the claimed intervals.

Lemma 3.1.4 Let X be a Banach space with an asymptotic unconditional minimal system with constant $C \geq 1$. Let $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ be arbitrary. Then there exists a permissible n-tuple satisfying $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim}\left\{e_{i}\right\}_{i=1}^{n}$ such that for any subset
$A \subset\{1, \ldots, n\}$ and any scalars $\left\{a_{i}\right\}$ there exists a finitely supported $\phi_{A} \in X^{*}$ with $\left\|\phi_{A}\right\|=1$ such that

$$
\left\langle\phi_{A}, \sum_{i \in A} a_{i} x_{i}\right\rangle \geq(1 / C)\left\|\sum_{i \in A} a_{i} x_{i}\right\|
$$

and $\left\langle\phi_{A}, x_{j}\right\rangle=0$ for all $j \notin A$.
Proof Let $\varepsilon>0$. Consider an asymptotic game in which \mathbf{S} follows his winning strategy for $\{X\}_{2 n}$ and $\varepsilon>0$ as described in the previous lemma, and \mathbf{V} follows his winning strategy for $\left\{e_{i}\right\}_{i=1}^{n}$.

We use the same notation as in Lemma 3.1.3, and suppose without loss of generality that the first move of \mathbf{S} is $Y_{1}=X$. i.e., $K_{1}=1$. Let $x_{1} \in S\left(Y_{1}\right)$ be the first move of \mathbf{V} for $\left\{e_{i}\right\}_{i=1}^{n}$. Let I_{1} be any finite interval containing $\operatorname{supp} x_{1}$, and let M_{1} be as in Lemma 3.1.3. Let $L_{2}>M_{1}$ be arbitrary and K_{2} be as in Lemma 3.1.3. Let x_{2} be the second move of \mathbf{V} for $\left\{e_{i}\right\}_{i=1}^{n}$ such that $\operatorname{supp} x_{2}>K_{2}$, and let I_{2} be an interval such that supp $x_{2} \subset I_{2}$ and so on.

At the end, the resulting vectors $\left\{x_{i}\right\}_{i=1}^{n}$ are $(1+\varepsilon)$-equivalent to $\left\{e_{i}\right\}_{i=1}^{n}$ and moreover all the resulting sequence of intervals are permissible as described in Lemma 3.1.3.

Let $1 \leq k_{1}<k_{2}<\ldots<k_{m} \leq n$ be the elements of A. By Lemma 3.1.3, in particular, the sequence of intervals

$$
\left\{I_{1}, \Delta_{\left(1, k_{2}\right)}, I_{k_{2}}, \Delta_{\left(k_{2}, k_{3}\right)} \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, n+1\right)}\right\}
$$

and

$$
\left\{\Delta_{\left(0, k_{1}\right)}, I_{k_{1}}, \Delta_{\left(k_{1}, k_{2}\right)}, I_{k_{2}}, \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, n+1\right)}\right\}
$$

are permissible. If $k_{1}=1$, we use the first the sequence above, otherwise we use the second. Moreover, since L_{n+1} is arbitrary, we take $\Delta_{\left(k_{m}, n+1\right)}$ to be the interval $\left(M_{k_{m}}, \infty\right)$.

Now set $k_{0}=0$ and $L_{1}=\min I_{1}$ (which can be 1 , of course). Note also
that $\Delta_{\left(0, k_{1}\right)}=\left[1, L_{k_{1}}\right)$ since $K_{1}=1$. Consider $\Delta=\bigcup_{i=0}^{m} \Delta_{\left(k_{i}, k_{i+1}\right)}$ (if $k_{1}=1$ take $\left.\Delta_{\left(0, k_{1}\right)}=\emptyset\right)$. Put $X_{\Delta}=\overline{\operatorname{span}}\left\{u_{i}\right\}_{i \in \Delta}$ and consider the finite dimensional quotient space X / X_{Δ}.

Let $\left\{a_{i}\right\}_{i=1}^{n}$ be an arbitrary sequence of scalars and $\phi_{A}^{\prime} \in\left(X / X_{\Delta}\right)^{*}$ be a norm-one functional such that $\left\langle\phi_{A}^{\prime}, \sum_{i \in A} a_{i} x_{i}+X_{\Delta}\right\rangle=\left\|\sum_{i \in A} a_{i} x_{i}\right\|_{X / X_{\Delta}}$.

We can identify ϕ_{A}^{\prime} isometrically with $\phi_{A} \in X_{\Delta}^{\perp}$ such that $\left\langle\phi_{A}^{\prime}, y+X_{\Delta}\right\rangle=$ $\left\langle\phi_{A}, y\right\rangle$ for all $y \in X$.

Now since,

$$
\left\|\sum_{i \in A} a_{i} x_{i}\right\|_{X / X_{\Delta}}:=\inf \left\{\left\|\sum_{i \in A} a_{i} x_{i}+\sum_{i=0}^{m} z_{i}\right\|: z_{i} \in X_{\Delta_{\left(k_{i}, k_{i+1}\right)},}, 0 \leq i \leq m\right\}
$$

and by Lemma 3.1.3, the sequence $\left\{\Delta_{\left(0, k_{1}\right)}, I_{k_{1}}, \Delta_{\left(k_{1}, k_{2}\right)}, I_{k_{2}}, \ldots, I_{k_{m}}, \Delta_{\left(k_{m}, n+1\right)}\right\}$ is permissible, the sequence $\left\{\frac{z_{1}}{\left\|z_{1}\right\|}, x_{n_{1}}, \frac{z_{2}}{\left\|z_{2}\right\|}, x_{n_{2}}, \ldots, x_{n_{s}}, \frac{z_{s+1}}{\left\|z_{s+1}\right\|}\right\}$ is permissible and therefore C-unconditional, by the assumption.

Hence it follows that

$$
\left\langle\phi_{A}, \sum_{i \in A} a_{i} x_{i}\right\rangle=\left\|\sum_{i \in A} a_{i} x_{i}\right\|_{X / X_{\Delta}} \geq(1 / C)\left\|\sum_{i \in A} a_{i} x_{i}\right\| .
$$

Moreover, $\operatorname{supp} \phi_{A}=\operatorname{supp} \phi_{A}^{\prime} \subset\left[1, M_{k_{1}}\right) \cup\left(L_{k_{2}}, M_{k_{2}}\right) \cup \ldots \cup\left(L_{k_{m}}, M_{k_{m}}\right)$. i.e., ϕ_{A} is finitely supported.

Remark In the above lemma, we were able to choose $\left\{x_{i}\right\}_{i=1}^{n}$ independent of scalars $\left\{a_{i}\right\}$. This is already stronger than and should be compared with Lemma 2.3.1.

Proof of Theorem 3.1.2 We have already shown one implication. For the converse, assume that X has asymptotic unconditional structure with constant $C \geq 1$, and let $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ be arbitrary. Let $\mathcal{T}\left(\left\{e_{i}\right\}_{i=1}^{n}, \varepsilon\right)=\left\{x\left(s_{1}, \ldots, s_{n}\right)\right\}$ be an asymptotic tree for $\left\{e_{i}\right\}_{i=1}^{n}$ (see 2.1.1). Following the winning strategy for S in a subspace game described in Lemma 3.1.3, we construct a subtree $\mathcal{T}^{\prime}\left(\left\{e_{i}\right\}_{i=1}^{n}, \varepsilon\right)=\left\{x\left(s_{1}, \ldots, s_{n}\right)\right\}$ of this tree such that every branch of this sub-
tree is obtained by Lemma 3.1.3.
Precisely, let I_{1} be the smallest interval such that $I_{1} \supset \operatorname{supp} x\left(s_{1}\right)$, and let M_{1} be as in Lemma 3.1.3. For each $L_{2}>M_{1}$, let K_{2} be as in Lemma 3.1.3 and choose s_{2} (a node in \mathcal{T}^{\prime}) such that $\min \operatorname{supp} x\left(s_{1}, s_{2}\right) \geq K_{2}$ (hence $x\left(s_{1}, s_{2}\right)$ depends on given $\left.L_{2}\right)$. Let I_{2} be the smallest interval such that $I_{2} \supset x\left(s_{1}, s_{2}\right)$ and so on.

Let $x\left(\bar{s}_{1}\right)$ be the first winning move of \mathbf{V} determined by $\mathcal{T}^{\prime}\left(\left\{e_{i}\right\}_{i=1}^{n}, \varepsilon\right)=$ $\left\{x\left(s_{1}, \ldots, s_{n}\right)\right\}$.

Let $\left\{A_{1}, \ldots, A_{l}\right\}$ be a disjoint partition of $\{1, \ldots, n\}$. Fix a small $\delta>0$ to be defined later, and let \mathcal{N} be a finite δ-net in the unit ball of l_{∞}^{n}. Fix an arbitrary $\left\{a_{i}\right\}_{i=1}^{n} \in \mathcal{N}$. For every branch $\gamma=\left(\bar{s}_{1}, s_{2}, \ldots, s_{n}\right)$ of $\mathcal{T}^{\prime}\left(\left\{e_{i}\right\}_{i=1}^{n}, \varepsilon\right)=$ $\left\{x\left(s_{1}, \ldots, s_{n}\right)\right\}$, let

$$
w_{\gamma}^{j}=w^{j}\left(\bar{s}_{1}, s_{2}, \ldots, s_{n}\right)=\sum_{n_{i} \in A_{j}} a_{i} x\left(\bar{s}_{1}, \ldots, s_{n_{i}}\right)
$$

where $1 \leq n_{1}<n_{2}<\ldots<n_{s} \leq n$ are elements of A_{j}.
And let $\phi_{\gamma}^{j}=\phi^{j}\left(\bar{s}_{1}, \ldots, s_{n}\right)$ be the norm-one functional obtained by Lemma 3.1.4 applied to subset A_{j}, that is, $\phi_{\gamma}^{j}\left(w_{\gamma}^{j}\right) \geq(1 / C)\left\|w_{\gamma}^{j}\right\|$.

For each $1 \leq j \leq l$, let $\phi^{j}\left(\bar{s}_{1}, s_{2}, \ldots, s_{n-1}\right)$ be a w^{*}-cluster point of the sequence $\left\{\phi^{j}\left(\bar{s}_{1}, \ldots, s_{n}\right)\right\}$ (with $s_{n} \rightarrow \infty$); then let $\phi^{j}\left(\bar{s}_{1}, s_{2}, \ldots, s_{n-2}\right)$ be a w^{*} cluster point of $\left\{\phi^{j}\left(\bar{s}_{1}, s_{2}, \ldots, s_{n-1}\right)\right\}$ (with $s_{n-1} \rightarrow \infty$), and so on, let $\phi^{j}\left(\bar{s}_{1}\right)$ be a w^{*}-cluster point of $\left\{\phi^{j}\left(s_{1}, s_{2}\right)\right\}$ (with $s_{2} \rightarrow \infty$).

We repeat this construction for all $\left\{a_{i}\right\}_{i=1}^{n} \in \mathcal{N}$ and $1 \leq j \leq l$ and eventually obtain l-fixed limits $\phi^{1}, \ldots, \phi^{l}$ corresponding to each A_{j} (and for all $\left\{a_{i}\right\} \in \mathcal{N}$).

First we note the following important property of these limit points obtained at each step. For each $1 \leq j \leq l$, let $1 \leq n_{1}<n_{2}<\ldots<n_{s} \leq n$ be the elements of A_{j}. Let r be an integer such that $n_{t}<r<n_{t+1}$ (if such an r exists). Then $\max \operatorname{supp} \phi^{j}\left(\bar{s}_{1}, s_{2}, \ldots, s_{r-1}\right) \leq M_{n_{t}}$ and therefore depends only on $s_{1}, s_{2}, \ldots s_{n_{t}-1}$. And if $r<n_{1}$ then $\phi^{j}\left(\bar{s}_{1}, \ldots, s_{r-1}\right)=0$.

Indeed, by Lemma 3.1.4, $\phi^{j}\left(\bar{s}_{1}, \ldots, s_{r}\right)$ vanishes on $\left[M_{n_{t}}, L_{n_{t+1}}\right]$. Hence if
$s_{1}, s_{2}, \ldots, s_{r} \rightarrow \infty$, then $L_{n_{t+1}} \rightarrow \infty$ as well. Therefore $\phi^{j}\left(\bar{s}_{1}, \ldots, s_{r-1}\right)$ vanishes on $\left[M_{n_{t}}, \infty\right)$. For a similar reason, when $r<n_{1}$, we get $\phi^{j}\left(\bar{s}_{1}, \ldots, s_{r-1}\right)=0$.

We now construct the desired permissible vectors $\left\{x_{i}\right\}_{i=1}^{n}$ and functionals $\left\{g_{i}\right\}_{i=1}^{n}$. Note that while the choice of $\left\{x_{i}\right\}_{i=1}^{n}$ will be independent of scalars $\left\{a_{i}\right\}_{i=1}^{n}$, the choice of functionals will depend on the particular sequence of scalars.

We have already fixed $x_{1}=x\left(\bar{s}_{1}\right)$. Let $h_{1}=\phi^{j_{1}}$ and $g_{1}=h_{1} /\left\|h_{1}\right\|$, where $1 \in A_{j_{1}}$. Then supp $h_{1} \subset\left[1, M_{1}\right)$ and moreover, $\phi^{j}=0$ for all $j \neq j_{1}$ by above remark.

For $k \in \mathbb{N}$ by Q_{k} we denote the natural projection of X^{*} onto the k th tail subspace.

Now choose \bar{s}_{2} (from the index tree of \mathcal{T}^{\prime}) such that

$$
\left\|Q_{M_{2}}\left(\phi^{j}\left(\bar{s}_{1}, \bar{s}_{2}\right)-\phi^{j}\left(\bar{s}_{1}\right)\right)\right\| \leq \varepsilon / n, \text { for all } 1 \leq j \leq l
$$

Let $x_{2}=x\left(\bar{s}_{1}, \bar{s}_{2}\right)$ (The second winning move of \mathbf{V}).
And put $h_{2}=\phi^{j_{2}}\left(\bar{s}_{1}, \bar{s}_{2}\right)-Q_{M_{2}}\left(\phi^{j_{2}}\left(\bar{s}_{1}, \bar{s}_{2}\right)\right)$, where $2 \in A_{j_{2}}$ and, let $g_{2}=$ $h_{2} /\left\|h_{2}\right\|$.

Now it is easy to check the following. If $j_{1}=j_{2}$ (that is, $1,2 \in A_{j_{1}}$), then $h_{1}+h_{2}$ well approximates $\phi^{j_{1}}\left(\bar{s}_{1}, \bar{s}_{2}\right)$ in norm. Indeed, in this case, $Q_{M_{2}} \phi^{j_{1}}\left(\bar{s}_{1}\right)=$ $\phi^{j_{1}}\left(\bar{s}_{1}\right)$ and

$$
\begin{aligned}
\left\|\left(h_{1}+h_{2}\right)-\phi^{j_{1}}\left(\bar{s}_{1}, \bar{s}_{2}\right)\right\| & =\left\|\phi^{j_{1}}\left(\bar{s}_{1}\right)-Q_{M_{2}}\left(\phi^{j_{1}}\left(\bar{s}_{1}, \bar{s}_{2}\right)\right)\right\| \\
& =\| Q_{M_{2}}\left(\phi^{j_{1}}\left(\bar{s}_{1}\right)-\phi^{j_{1}}\left(\bar{s}_{1}, \bar{s}_{2}\right) \| \leq \varepsilon / n .\right.
\end{aligned}
$$

If $j_{1} \neq j_{2}$, then, since $\phi^{j_{2}}\left(\bar{s}_{1}\right)=0, h_{2}$ well approximates $\phi^{j_{2}}\left(\bar{s}_{1}, \bar{s}_{2}\right)$. And for all $j \neq j_{1}, j_{2}, \phi^{j}\left(\bar{s}_{1}, \bar{s}_{2}\right)=0$.

In next steps, the construction of x_{i} 's and g_{i} 's are carried out inductively in a similar fashion.

Suppose that $x_{1}=x\left(\bar{s}_{1}\right), x_{2}=x\left(\bar{s}_{1}, \bar{s}_{2}\right), \ldots, x_{r}=x\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)$ and $h_{1}, h_{2}, \ldots, h_{r}$
have been already obtained so that

$$
\left\|\sum_{t \in A_{j}, t \leq r} h_{t}-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)\right\| \leq \varepsilon r / n
$$

for all $1 \leq j \leq l$ (we have already shown this for $r=1$ and $r=2$).
Choose \bar{s}_{r+1} such that

$$
\| Q_{M_{r+1}}\left(\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right) \| \leq \varepsilon / n\right.
$$

for all $1 \leq j \leq l$.
And let $x_{r+1}=x\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)((r+1)$ th winning move of $\mathbf{V})$ and put

$$
h_{r+1}=\phi^{j_{r+1}}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)-Q_{M_{r+1}}\left(\phi^{j_{r+1}}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)\right),
$$

where $r+1 \in A_{j_{r+1}}$.
Now let us check that the property assumed for r is still satisfied with these choices for $r+1$ as well.

Indeed, if $j=j_{r+1}$, (i.e., $r+1 \in A_{j}$) then

$$
\begin{aligned}
\left\|\sum_{t \in A_{j}, t \leq r+1} h_{t}-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)\right\| & \leq\left\|\sum_{t \in A_{j}, t \leq r} h_{t}-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)\right\| \\
& +\left\|h_{r+1}-\left(\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)\right)\right\| \\
& \leq \varepsilon r / n+\| Q_{M_{r+1}}\left(\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right) \|\right. \\
& \leq \varepsilon r / n+\varepsilon / n=\varepsilon(r+1) / n,
\end{aligned}
$$

since $Q_{M_{r+1}} \phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)=\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)\left(\right.$ for $\left.j=j_{r+1}\right)$.
If $j \neq j_{r+1}$ (i.e., $r+1 \notin A_{j}$), then $Q_{M_{r+1}} \phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)=\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)$.
And hence

$$
\begin{aligned}
\left\|\sum_{t \in A_{j}, t \leq r+1} h_{t}-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)\right\| & \leq\left\|\sum_{t \in A_{j}, t \leq r} h_{t}-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right)\right\| \\
& +\| Q_{M_{r+1}}\left(\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r+1}\right)-\phi^{j}\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right) \|\right.
\end{aligned}
$$

$$
\leq \varepsilon r / n+\varepsilon / n=\varepsilon(r+1) / n
$$

Repeating this construction, at the end, we obtain $x_{1}=x\left(\bar{s}_{1}\right), \ldots, x_{n}=$ $x\left(\bar{s}_{1}, \ldots, \bar{s}_{n}\right)$ and functionals $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ so that for all $1 \leq j \leq l, \| \sum_{t \in A_{j}} h_{t}-$ $\phi^{j}\left\|\leq \varepsilon, \phi^{j}\left(w^{j}\right) \geq(1 / C)\right\| w^{j} \|$ and $\phi^{j}\left(w^{j}\right)=0$ for $i \neq j$. Now let $g_{i}=h_{i} /\left\|h_{i}\right\|$, $b_{i}=\left\|h_{i}\right\|$ and let $\delta>0$ small enough so that $\left\|\sum_{i \in A_{j}} a_{i} x_{i}-w^{j}\right\| \leq \varepsilon$ for all scalars $\left\{a_{i}\right\}$ and for all $1 \leq j \leq l$. Then it follows that, for all scalars $\left\{a_{i}\right\}$,

$$
\left\|\sum_{i \in A_{j}} a_{i} x_{i}\right\| \leq(1+\varepsilon)^{2} C\left(\sum_{i \in A_{j}} a_{i} x_{i}\right)\left(\sum_{i \in A_{j}} b_{i} g_{i}\right)
$$

for all $1 \leq j \leq l$, as desired.
Finally note that the permissibility of $\left\{g_{i}\right\}_{i=1}^{n}$ follows from the construction. Indeed, since $\operatorname{supp} g_{i} \subset\left(L_{i}, M_{i}\right)$ for all $1 \leq i \leq n$, and since the choices of L_{i} 's were arbitrary, we can choose those to be the winning moves of S in a subspace game for $\left\{X^{*}\right\}_{n}$.

3.2 Disjoint Envelope Functions

Let X be a Banach space with an asymptotic unconditional structure (with a constant $C \geq 1$). We define the set $\{X\}^{d}$ of all normalized disjoint-permissible vectors in X as follows. For $n \in \mathbb{N},\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$ if there exist $\left\{e_{j}\right\}_{j=1}^{m} \in\{X\}_{m}$ for some $m \geq n$ and a disjoint partition $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of $\{1,2, \ldots, m\}$ such that for each $1 \leq i \leq n, x_{i}=\sum_{j \in A_{i}} \alpha_{j} e_{j}$ for some scalars $\alpha=\left(\alpha_{j}\right)$ such that $\left\|x_{i}\right\|=1$.

First we make a few remarks about the set $\{X\}^{d}$ (where superscript d stands for 'disjoint'). Clearly, for all $n \in \mathbb{N}$ and $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ we have that $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$. i.e., $\bigcup_{n}\{X\}_{n} \subset\{X\}^{d}$. If $\left\{x_{i}\right\} \in\{X\}^{d}$, then $\left\{x_{i}\right\}$ is an unconditional basic sequence (with constant C). It is also clear that if $\left\{u_{j}\right\}$ is a block (successive or just disjoint) basis of some $\left\{x_{i}\right\} \in\{X\}^{d}$, then $\left\{u_{j}\right\} \in\{X\}^{d}$ as well. Finally, if $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$ then $\left\{x_{\pi(i)}\right\}_{i=1}^{n} \in\{X\}^{d}$, where π is a permutation of $\{1, \ldots, n\}$. This property, obviously, is not shared, in general, by the bases of asymptotic spaces.

We also have the following property of $\{X\}^{d}$ which is inherited from $\{X\}_{n}$. If $\left\{x_{i}\right\}_{i=1}^{n_{1}}$ and $\left\{y_{i}\right\}_{i=1}^{n_{2}}$ are in $\{X\}^{d}$, then there exists $\left\{z_{i}\right\}_{i=1}^{n_{1}+n_{2}} \in\{X\}^{d}$ such that $\left\{z_{i}\right\}_{i=1}^{n_{1}} \stackrel{1}{\sim}\left\{x_{i}\right\}_{i=1}^{n_{1}}$ and $\left\{z_{i}\right\}_{i=n_{1}+1}^{n_{1}+n_{2}} \stackrel{1}{\sim}\left\{y_{i}\right\}_{i=1}^{n_{2}}$.

Indeed, if $\left\{x_{i}\right\}_{i=1}^{n_{1}}$ and $\left\{y_{i}\right\}_{i=1}^{n_{2}}$ are disjoint blocks of the bases $\left\{e_{i}\right\}_{i=1}^{m_{1}}$ and $\left\{f_{i}\right\}_{i=1}^{m_{2}}$ of some asymptotic spaces respectively, then we can find an asymptotic space $\left\{g_{i}\right\}_{i=1}^{m_{1}+m_{2}}$ such that $\left\{e_{i}\right\}_{i=1}^{m_{1}} \stackrel{1}{\sim}\left\{g_{i}\right\}_{i=1}^{m_{1}}$ and $\left\{f_{i}\right\}_{i=1}^{k} \stackrel{1}{\sim}\left\{g_{i}\right\}_{i=m_{1}+1}^{m_{1}+m_{2}}$ (1.8.2, [MMT]). Hence the corresponding disjoint blocks $\left\{z_{i}\right\}_{i=1}^{n_{1}+n_{2}}$ of $\left\{g_{i}\right\}_{i=1}^{m_{1}+m_{2}}$ have the desired property. When $\left\{x_{i}\right\}_{i=1}^{n_{1}}$ and $\left\{y_{i}\right\}_{i=1}^{n_{2}}$ are in $\{X\}^{d}$, to avoid repetitions, we will simply say that $\left\{x_{i}, y_{i}\right\} \in\{X\}^{d}$ without referring to $\left\{z_{i}\right\}$.

We define now the natural analogs of envelope functions on $\{X\}^{d}$.
Definition 3.2.1 Let X be a Banach space with an asymptotic unconditional structure. For $a=\left(a_{i}\right) \in c_{00}$, let $g_{X}^{d}(a)=\inf \left\|\sum_{i} a_{i} x_{i}\right\|$ and $r_{X}^{d}(a)=\sup \left\|\sum_{i} a_{i} x_{i}\right\|$, where the inf and the sup is taken over all $\left\{x_{i}\right\} \in\{X\}^{d}$. We call g_{X}^{d} and r_{X}^{d} the disjoint-lower and disjoint-upper-envelope functions respectively.

It is easy to see that both functions g_{X}^{d} and r_{X}^{d} are 1 -symmetric and 1unconditional. Moreover, while r_{X}^{d} defines a norm on c_{00}, g_{X}^{d} satisfies triangle inequality on disjointly supported vectors (of c_{00}).

Indeed, let $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$ be two disjoint vectors in c_{00} and let $\varepsilon>0$ be arbitrary. Pick $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ in $\{X\}^{d}$ such that $g_{X}^{d}(a)+\varepsilon / 2 \geq\left\|\sum_{i} a_{i} x_{i}\right\|$ and $g_{X}^{d}(b)+\varepsilon / 2 \geq\left\|\sum_{i} b_{i} y_{i}\right\|$. Then, by the above remark, $\left\{x_{i}, y_{i}\right\} \in\{X\}^{d}$ and hence

$$
\begin{aligned}
g_{X}^{d}(a+b) & \leq\left\|a_{1} x_{1}+b_{1} y_{1}+a_{2} x_{2}+b_{2} y_{2}+\ldots\right\| \\
& \leq\left\|a_{1} x_{1}+a_{2} x_{2}+\ldots\right\|+\left\|b_{1} y_{1}+b_{2} y_{2}+\ldots\right\| \\
& \leq g_{X}^{d}(a)+g_{X}^{d}(a)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, it follows that $g_{X}^{d}(a+b) \leq g_{X}^{d}(a)+g_{X}^{d}(b)$, whenever $a, b \in c_{00}$ are disjointly supported.

To compare the disjoint-envelope functions with the original envelopes, note that for all $a \in c_{00}$, by the definition of these functions we have, $g_{X}^{d}(a) \leq$ $g_{X}(a) \leq r_{X}(a) \leq r_{X}^{d}(a)$.

We will use the following convenient notation. Let $\left(e_{i}\right)$ be the unit vector basis of c_{00}. For $a=\left(a_{i}\right) \in c_{00}$, occasionally we will write $g_{X}^{d}\left(\sum_{i} a_{i} e_{i}\right)$ instead of $g_{X}^{d}(a)$. Moreover, for any finite number of successive vectors $b^{i}=\left(b_{j}^{i}\right) \in c_{00}$ such that $g_{X}^{d}\left(b^{i}\right)=1$ for $i=1,2, \ldots$ and for any vector $a=\left(a_{i}\right) \in c_{00}$, we write $g_{X}^{d}\left(\sum_{i} a_{i} x_{i}\right)$ instead of $g_{X}^{d}\left(\sum_{i} a_{i} b^{i}\right)$, where $x_{i}=\sum_{j} b^{i}{ }_{j} e_{j}$ are blocks of the basis $\left(e_{i}\right)$ of c_{00} normalized with respect to g_{X}^{d}. We'll use similar notation for r_{X}^{d} as well.

Next we establish some of the properties of the disjoint-envelope functions similar to the original ones.

Lemma 3.2.2 Let X be a Banach space with asymptotic unconditional structure.
(i) The upper envelope function r_{X}^{d} is sub-multiplicative. i.e., for all $\left(a_{i}\right) \in$
c_{00}, we have

$$
r_{X}^{d}\left(\sum_{i} a_{i} x_{i}\right) \leq r_{X}^{d}\left(\sum_{i} a_{i} e_{i}\right)
$$

for any sequence of successive blocks $\left(x_{i}\right)$ in c_{00} with $r_{X}^{d}\left(x_{i}\right) \leq 1$ for all $i=$ $1,2, \ldots$
(ii) The lower envelope function g_{X}^{d} is super-multiplicative. i.e., for all $\left(a_{i}\right) \in$ c_{00}, we have

$$
g_{X}^{d}\left(\sum_{i} a_{i} x_{i}\right) \geq g_{X}^{d}\left(\sum_{i} a_{i} e_{i}\right)
$$

for any sequence of successive blocks $\left(x_{i}\right)$ in c_{00} with $g_{X}^{d}\left(x_{i}\right)=1$ for all $i=$ $1,2, \ldots$.

Proof (i) Let $x_{i}=\sum_{j=k_{i}+1}^{k_{i+1}} b_{j} e_{j}$ for some $1 \leq k_{1}<k_{2}<\ldots$ be a block basis of c_{00} with $r_{X}^{d}\left(x_{i}\right) \leq 1$ for all $i=1,2 \ldots$, and let $a=\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in c_{00}$ and $\varepsilon>0$ be arbitrary. Then there exists $\left\{u_{j}\right\}_{j=1}^{k_{l}+1} \in\{X\}^{d}$ such that

$$
\begin{aligned}
r_{X}^{d}\left(\sum_{i=1}^{l} a_{i} x_{i}\right)-\varepsilon & =r_{X}^{d}\left(\sum_{i=1}^{l} a_{i}\left(\sum_{j=k_{i}+1}^{k_{i+1}} b_{j} e_{j}\right)\right)-\varepsilon \\
& \leq\left\|\sum_{i=1}^{l} a_{i}\left(\sum_{j=k_{i}+1}^{k_{i+1}} b_{j} u_{j}\right)\right\|
\end{aligned}
$$

Set $c_{i}=\left\|\sum_{j=k_{i}+1}^{k_{i+1}} b_{j} u_{j}\right\|$, then $c_{i} \leq r_{X}^{d}\left(x_{i}\right) \leq 1$. Let $w_{i}=\left(1 / c_{i}\right) \sum_{j=k_{i}+1}^{k_{i+1}} b_{j} u_{j}$, for $i=1, \ldots l$, then $\left\{w_{i}\right\} \in\{X\}^{d}$. Thus the latter term in above is equal to

$$
\begin{aligned}
\left\|\sum_{i=1}^{l} a_{i} c_{i} w_{i}\right\| & \leq r_{X}^{d}\left(a_{1} c_{1}, a_{2} c_{2}, \ldots, a_{l} c_{l}\right) \\
& \leq r_{X}^{d}\left(a_{1}, a_{2}, \ldots, a_{l}\right)
\end{aligned}
$$

The last inequality is due to unconditionality of r_{X}^{d} and the fact that $c_{i} \leq 1$ for
$i=1, \ldots, l$. Since $\varepsilon>0$ was arbitrary, we have obtained that

$$
r_{X}^{d}\left(\sum_{i=1}^{l} a_{i} x_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{l} a_{i} e_{i}\right)
$$

as desired.
(ii) The proof of this part follows similar lines and hence we skip it.

Lemma 3.2.3 Let X be a Banach space with an asymptotic unconditional structure. Then, for all $\left(a_{i}\right) \in c_{00}$, we have

$$
\begin{equation*}
g_{X}^{d}\left(\sum_{i} a_{i} x_{i}\right) \leq r_{X}^{d}\left(\sum_{i} a_{i} e_{i}\right) \tag{i}
\end{equation*}
$$

where $\left(x_{i}\right)$ is a sequence of successive blocks in c_{00} with $g_{X}^{d}\left(x_{i}\right) \leq 1$ for all $i=1,2, \ldots$.
(ii)

$$
g_{X}^{d}\left(\sum_{i} a_{i} e_{i}\right) \leq r_{X}^{d}\left(\sum_{i} a_{i} x_{i}\right)
$$

where $\left(x_{i}\right)$ is a sequence of successive blocks in c_{00} with $r_{X}^{d}\left(x_{i}\right)=1$ for all $i=1,2, \ldots$.

Proof (i) Let $x_{i}=\sum_{j=k_{i}+1}^{k_{i+1}} b_{j} e_{j}$ for some $1 \leq k_{1}<k_{2}<\ldots$ be a block basis of c_{00} with $g_{X}^{d}\left(x_{i}\right) \leq 1$ for all $i=1,2 \ldots$ let $a=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ be arbitrary scalars and let $\varepsilon>0$. For each i, pick $\left\{u_{j}^{i}\right\}_{j} \in\{X\}^{d}$ such that

$$
\left\|\sum_{j} b_{j} u_{j}^{i}\right\| \leq g_{X}^{d}\left(x_{i}\right)+\varepsilon \leq 1+\varepsilon .
$$

Then $\left\{u_{j}^{i}\right\}_{i, j} \in\{X\}^{d}$. Let $c_{i}=\left\|\sum_{j} b_{j} u_{j}^{i}\right\|$ and $w_{i}=\left(1 / c_{i}\right) \sum_{j} b_{j} u_{j}^{i}$ for $i=$ $1,2, \ldots$. Then we have,

$$
g_{X}^{d}\left(\sum_{i} a_{i} x_{i}\right)=g_{X}^{d}\left(\sum_{i} a_{i}\left(\sum_{j} b_{j} e_{j}\right)\right)
$$

$$
\begin{aligned}
& \leq\left\|\sum_{i} a_{i}\left(\sum_{j} b_{j} u_{j}^{i}\right)\right\| \\
& =\left\|\sum_{i} a_{i} c_{i} w_{i}\right\|
\end{aligned}
$$

and since $\left\{w_{i}\right\} \in\{X\}^{d}$, the latter term above is less than or equal to

$$
r_{X}^{d}\left(a_{1} c_{1}, a_{2} c_{2}, \ldots, a_{l} c_{l}\right) \leq(1+\varepsilon) r_{X}^{d}\left(\sum_{i} a_{i} e_{i}\right)
$$

where the last inequality follows from the unconditionality of r_{X}^{d}. Finally, since $\varepsilon>0$ was arbitrary, the desired inequality follows.
(ii) The proof of this part is similar.

The most interesting fact about disjoint-envelope functions is that they are always close to some l_{p}-norms. This is similar as for the original envelope functions (see Proposition 2.4.1). As remarked in [MMT], this is a general fact for multiplicative functions which satisfy a weaker triangle inequality as g_{X} does.

Proposition 3.2.4 Let X be a Banach space with asymptotic unconditional structure. Then there exist $1 \leq p, q \leq \infty$ such that for all $\varepsilon>0$ there exist $C_{\varepsilon}, c_{\varepsilon}>0$ such that for all $a \in c_{00}$ we have

$$
c_{\varepsilon}\|a\|_{q+\varepsilon} \leq g_{X}^{d}(a) \leq\|a\|_{q} \text { and }\|a\|_{p} \leq r_{X}^{d}(a) \leq C_{\varepsilon}\|a\|_{p-\varepsilon}
$$

Here it is understood that if $q=\infty$ (resp. $p=1$), then g_{X}^{d} is equivalent to $\|\cdot\|_{\infty}$ (resp. r_{X}^{d} is equivalent to $\|\cdot\|_{1}$). If $p=\infty$, then for all $r<\infty$ there exists $C_{r}<\infty$ such that $r_{X}^{d}(a) \leq C_{r}\|a\|_{r}$.

Remark The proof of these inequalities follows from well known standard arguments as in the case of the original envelope functions. As we show below for r_{X}^{d} case, the proofs make use of the classical theorem of Krivine (for a statement of Krivine's theorem see section 3.6.3). However, since the lower disjoint-envelope g_{X}^{d} is not necessarily a norm, to be able to use Krivine's theorem, one needs to
check that the theorem holds in a more general setting, namely for functions which satisfy the triangle inequality for disjointly supported vectors. To avoid this cumbersome work, we postpone the proof of g_{X}^{d} case to the section 3.6.3, where we give a different and a self-contained proof.
Proof (r_{X}^{d} Case) For $n, m \in \mathbb{N}$, the sub-multiplicativity of r_{X}^{d} implies that

$$
r_{X}^{d}\left(\sum_{i=1}^{n m} e_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) r_{X}^{d}\left(\sum_{i=1}^{m} e_{i}\right)
$$

Hence, by induction, we get that $r_{X}^{d}\left(\sum_{i=1}^{n^{k}} e_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right)^{k}$, for all $n, k \in \mathbb{N}$. Let

$$
1 / p=\inf \ln r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) / \ln n
$$

Then, clearly, $r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \geq n^{1 / p}$, for all $n \in \mathbb{N}$. Moreover, for all $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that for all $n \in \mathbb{N}$, we have $r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq C_{\varepsilon} n^{1 / p-\varepsilon}$.

Now consider the space $\left(c_{00}, r_{X}^{d}\right)$. The unit vector basis $\left\{e_{i}\right\}$ is symmetric and since $r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \geq n^{1 / p}$ for all n, it follows from Krivine's theorem (see section 3.6.3) that there exists $r \leq p$ such that ℓ_{r} is block finitely representable in the space $\left(c_{00}, r_{X}^{d}\right)$, i.e., for all $\delta>0$ and $n \in \mathbb{N}$, there exists a sequence of successive blocks $\left\{x_{i}\right\}_{i=1}^{n}$ in $\left(c_{00}, r_{X}^{d}\right)$ such that $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\delta}{\sim} \ell_{r}^{n}$. Moreover, by the sub-multiplicativity of r_{X}^{d}, for all n, we have

$$
\frac{n^{1 / r}}{1+\delta} \leq r_{X}^{d}\left(\sum_{i=1}^{n} x_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq C_{\varepsilon} n^{1 / p-\varepsilon}
$$

Since this is true for all ε and n, it follows that $r \geq p-\varepsilon$ for all $\varepsilon>0$, and thus it follows that $r=p$.

Finally, by sub-multiplicativity of r_{X}^{d} and that $\delta>0$ can be chosen arbitrarily, it follows that $r_{X}^{d}(a) \geq\|a\|_{p}$ for all $a \in c_{00}$.

To prove the upper $\ell_{p-\varepsilon}$ estimate for r_{X}^{d} we make use of an auxiliary norm $\sigma_{p-\varepsilon}$. For $1 \leq s \leq \infty$, the unit ball of the norm σ_{s} is the convex hull of all vectors
$\alpha=\left(\sum_{i}\left|\alpha_{i}\right|\right)^{-1 / s}\left(\alpha_{i}\right)_{i=1}^{n}$, where $\alpha_{i}= \pm 1$ or 0 . (The norm σ_{s} is equivalent to the norm of Lorentz sequence space $d(w, 1)$, where the weight $w=\left(w_{i}\right)$ satisfies $\sum_{i=1}^{n} w_{i}=n^{1 / s}[\mathrm{LT}]$.) A direct estimate shows that for all $s^{\prime}<s$ there exists $C_{s^{\prime}}<\infty$ and $C_{s^{\prime}}$ does not depend on n so that $\sigma_{s}(a) \leq C_{s^{\prime}}\|a\|_{s^{\prime}}$ for all $a \in c_{00}$. Now fix $\varepsilon>\delta>0$. As we remarked earlier, there exists $C_{\delta}>0$ such that $r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq C_{\delta} n^{1 / p-\delta}$. Put $p-\delta=s$, and hence $r_{X}^{d}(a) \leq C_{\delta} \sigma_{s}(a) \leq$ $C_{\delta} C_{p-\varepsilon}\|a\|_{p-\varepsilon}$ for all $a \in c_{00}$. Hence, for all $a \in c_{00}, r_{X}^{d}(a) \leq C_{\varepsilon}\|a\|_{p-\varepsilon}$, where $C_{\varepsilon}=C_{\delta} C_{p-\varepsilon}$.

Using the super-multiplicativity of g_{X}^{d}, as in the first part of the above proof, we easily obtain the following.

There exists $1 \leq q \leq \infty$ such that for all $\varepsilon>0$ there exists a constant c_{ε} such that for all n,

$$
\begin{equation*}
c_{\varepsilon} n^{1 / q+\varepsilon} \leq g_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq n^{1 / q} \tag{3.1}
\end{equation*}
$$

Definition 3.2.5 Let p be as in Proposition 3.2.4 and let q be as in (3.1). We say that the lower-disjoint envelope g_{X}^{d} has power type- q and the upper-disjoint envelope r_{X}^{d} has power type-p.

We define similarly the power types of the original envelope functions. We say that p and q are the power types of r_{X} and g_{X} respectively, when $1 \leq p, q \leq$ ∞ as in Proposition 2.4.1.

As we remarked earlier, it is clear from the definitions that $g_{X}^{d}(a) \leq g_{X}(a) \leq$ $r_{X}(a) \leq r_{X}^{d}(a)$ for all $a \in c_{00}$. Also note that for asymptotic- ℓ_{p} spaces all these functions are equivalent. However, in general they might be very different as the next example shows.

Example 3.2.6 There exists a Banach space X with an unconditional basis such that while the power type of g_{X} is $1, g_{X}^{d}$ is equivalent to $\|\cdot\|_{\infty}$.

Proof The Schlumprecht space S has this property. Recall that the space S is defined on c_{00} as follows [S]. For $a \in c_{00}$, put

$$
\|a\|=\max \left\{\|a\|_{\infty}, \sup _{l \geq 2} \frac{1}{\log _{2}(l+1)} \sum_{i=1}^{l}\left\|E_{i}(a)\right\|\right\}
$$

where the inner sup runs through all subsets E_{i} of \mathbb{N} such that max $E_{i}<$ $\min E_{i+1}$. Here $\|a\|_{\infty}=\sup _{i}\left|a_{i}\right|$ and $E_{i}(a)=\sum_{j \in E_{i}} a_{j} e_{j}$ for $a=\sum_{i} a_{i} e_{i} \in c_{00}$.

The space S is well known and much studied in recent years, and we shall use some of these results here.

It is easy to see that the unit vector basis $\left\{e_{i}\right\}$ is 1 -subsymmetric and 1 unconditional. Subsymmetry implies that for any successive normalized blocks $\left\{x_{i}\right\}_{i=1}^{n}$ of $\left\{e_{i}\right\}$, we have $\left\{x_{i}\right\}_{i=1}^{n} \in\{S\}_{n}$. Also from the definition of the norm, $\left\|\sum_{i=1}^{n} x_{i}\right\| \geq \frac{n}{\log _{2}(n+1)}$ for all $\left\{x_{i}\right\}_{i=1}^{n} \in\{S\}_{n}$. This implies that the power type of g_{S} is 1 .

On the other hand, it is shown in [KL] by a much more delicate calculation that c_{0} is disjointly finitely representable in S. i.e., for all $n \in \mathbb{N}$ and $\varepsilon>0$, there exists a sequence $\left\{x_{i}\right\}_{i=1}^{n}$ of disjointly supported vectors such that $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim}$ ℓ_{∞}^{n}. The subsymmetry of the basis implies that for all disjointly supported sequences $\left\{x_{i}\right\}_{i=1}^{n}$, we have $\left\{x_{i}\right\}_{i=1}^{n} \in\{S\}^{d}$. i.e., $g_{S}^{d} \sim\|.\|_{\infty}$. Therefore while g_{S} is close to the ℓ_{1}-norm, g_{S}^{d} is equivalent to $\|\cdot\|_{\infty}$.

Moreover, it can be deduced from the proof of [KL] that one can find disjoint permissible vectors $\left\{x_{i}\right\}_{i=1}^{n}$ such that $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim} \ell_{\infty}^{n}$ in every block subspace Y of S. Thus, for every block subspace Y of S we have that g_{Y} is close to the ℓ_{1}-norm and g_{Y}^{d} is equivalent to $\|\cdot\|_{\infty}$.

Also it is easy to verify that for the dual space S^{*}, we have that $r_{S^{*}}$ has power type- ∞ and $r_{S^{*}}^{d}$ is equivalent to the ℓ_{1}-norm (see Proposition 3.3.1 below).

3.3 Duality for Disjoint-Envelope Functions

Recall that the lower envelopes g_{X} and g_{X}^{d} satisfy the triangle inequality only for disjoint vectors, they do not necessarily define a norm on c_{00}. For this reason, we introduce, as in [MT2], the following norms on c_{00} which are 'close' to the lower envelopes.

Denote by \bar{g}_{X} (resp. \bar{g}_{X}^{d}) the largest norm on c_{00} which is less than or equal to g_{X} (resp. g_{X}^{d}). Also by $r_{X}^{*}, \bar{g}_{X}^{*}, r_{X}^{d *}$ and $\bar{g}_{X}^{d *}$, we denote the norms on c_{00} which are dual to $r_{X}, \bar{g}_{X}, r_{X}^{d}$ and \bar{g}_{X}^{d} respectively.

The following duality relations for the original envelope functions have been established in [MT2]. Let X be a reflexive Banach space with a minimal system, then

$$
(1 / 4) r_{X^{*}}^{*}(a) \leq \bar{g}_{X}(a) \leq 4 r_{X^{*}}^{*}(a) \text { and }(1 / 4) \bar{g}_{X^{*}}^{*}(a) \leq r_{X}(a) \leq 4 \bar{g}_{X^{*}}^{*}(a),
$$

for all $a \in c_{00}$. The proof of these inequalities makes use of Lemma 2.3.1.
Equipped with Theorem 3.1.2 we show next that the similar duality relations hold for disjoint-envelope functions for reflexive Banach spaces with asymptotic unconditional structure.

Proposition 3.3.1 Let X be a reflexive Banach space with a minimal fundamental and 1 -norming system $\left\{u_{i}, u_{i}^{*}\right\}$. If X has an asymptotic unconditional structure with constant $C \geq 1$, then

$$
(1 / C) r_{X^{*}}^{d *}(a) \leq \bar{g}_{X}^{d}(a) \leq r_{X^{*}}^{d *}(a) \text { and }(1 / C) \bar{g}_{X^{*}}^{d *}(a) \leq r_{X}^{d}(a) \leq \bar{g}_{X^{*}}^{d *}(a)
$$

for all $a \in c_{00}$.
Proof By Proposition 3.1.1, X^{*} also has an asymptotic unconditional structure with the same constant C, hence the functions $r_{X^{*}}^{d *}$ and $\bar{g}_{X^{*}}^{d *}$ are well-defined.

Let $\left\{x_{i}\right\} \in\{X\}^{d}$ and $\varepsilon>0$. Theorem 3.1.2 implies that there exist $\left\{x_{i}^{\prime}\right\}$ in X satisfying $\left\{x_{i}\right\} \stackrel{1+\varepsilon}{\sim}\left\{x_{i}^{\prime}\right\}$ and $\left\{g_{i}^{\prime}\right\}$ in X^{*} satisfying $\left\{g_{i}^{\prime}\right\} \stackrel{1+\varepsilon}{\sim}\left\{g_{i}\right\}$ for some
$\left\{g_{i}\right\} \in\left\{X^{*}\right\}^{d}$ such that $g_{i}^{\prime}\left(x_{i}^{\prime}\right) \geq 1 / C$ and $g_{i}^{\prime}\left(x_{j}^{\prime}\right)=0$ for $i \neq j$.
Fix $a=\left(a_{i}\right) \in c_{00}$. Then for any $b=\left(b_{i}\right) \in c_{00}$, we have

$$
\begin{aligned}
1 / C \sum_{i}\left|a_{i} b_{i}\right| & \leq\left(\sum_{i} a_{i} x_{i}^{\prime}\right)\left(\sum_{i} b_{i} g_{i}^{\prime}\right) \\
& \leq\left\|\sum_{i} a_{i} x_{i}^{\prime}\right\|_{X}\left\|\sum_{i} b_{i} g_{i}^{\prime}\right\|_{X^{*}} \leq r_{X^{*}}^{d}(b)\left\|\sum_{i} a_{i} x_{i}^{\prime}\right\|_{X} .
\end{aligned}
$$

Taking the supremum over all $b \in c_{00}$ with $r_{X^{*}}^{d}(b) \leq 1$ and then the infimum over all $\left\{x_{i}\right\} \in\{X\}^{d}$ we get, by the definition of the norm $r_{X^{*}}^{d^{*}}$, that $r_{X^{*}}^{d *}(a) \leq C g_{X}^{d}(a)$ for all $a \in c_{00}$. Also, since \bar{g}_{X}^{d} is the largest norm which is less than or equal to g_{X}^{d}, it follows that $r_{X^{*}}^{d *}(a) \leq C \bar{g}_{X}^{d}(a)$ for all $a \in c_{00}$. Moreover, applying the same argument to X^{*}, we also get $r_{X}^{d *}(a) \leq C \bar{g}_{X^{*}}^{d}(a)$, and hence by duality, $r_{X}^{d}(a) \geq(1 / C) \bar{g}_{X^{*}}^{d *}(a)$. These estimates prove the left hand inequalities in each statement.

To prove the remaining inequalities, let $a=\left(a_{i}\right) \in c_{00}$ and $\left\{x_{i}\right\} \in\{X\}^{d}$ be arbitrary. Then there exists an asymptotic space $\left\{e_{j}\right\} \in\{X\}_{m}$ for some m such that for all $i=1,2, \ldots, x_{i}=\sum_{j \in A_{i}} \alpha_{j} e_{j}$ for some partition $\left\{A_{i}\right\}$ of $\{1,2, \ldots, m\}$. Now by Lemma 2.3.1, there exist permissible vectors $\left\{y_{j}\right\}_{j=1}^{m} \in X$ satisfying $\left\{y_{j}\right\}_{j=1}^{m} \stackrel{1+\varepsilon}{\sim}\left\{e_{j}\right\}_{j=1}^{m}$ and permissible functionals $\left\{g_{j}\right\}_{j=1}^{m} \in X^{*}$ and scalars $\left\{b_{j}\right\}$ such that $\left\|\sum_{j=1}^{m} b_{j} g_{j}\right\| \leq 1+\varepsilon$ with $g_{j}\left(x_{i}\right)=0$ for $i \neq j$ and

$$
\left\|\sum_{i} a_{i}\left(\sum_{j \in A_{i}} \alpha_{j} y_{j}\right)\right\| \leq(1+\varepsilon)\left(\sum_{i} a_{i}\left(\sum_{j \in A_{i}} \alpha_{j} y_{j}\right)\right)\left(\sum_{j} b_{j} g_{j}\right) .
$$

(Note that we have applied Lemma 2.3.1 to $\left\{e_{j}\right\}_{j=1}^{m}$ and the sequence of scalars $\left(d_{j}\right)_{j=1}^{m}$ where $d_{j}=a_{i} \alpha_{j}$ for all $j \in A_{i}$ and $i=1,2, \ldots$.)

For each $i=1,2, \ldots$, let $w_{i}=\sum_{j \in A_{i}} b_{j} g_{j}$ and $\left\|w_{i}\right\|=c_{i}$. Then note that

$$
\begin{aligned}
\frac{w_{i}}{c_{i}}\left(\sum_{j \in A_{i}} \alpha_{j} y_{j}\right) & \leq\left\|\sum_{j \in A_{i}} \alpha_{j} y_{j}\right\| \\
& \leq(1+\varepsilon)\left\|x_{i}\right\| \leq 1+\varepsilon
\end{aligned}
$$

and clearly $w_{i}\left(\sum_{j \in A_{k}} \alpha_{j}^{k} y_{j}\right)=0$ for $i \neq k$.
Now it follows from above that

$$
\begin{aligned}
\left\|\sum_{i} a_{i}\left(\sum_{j \in A_{i}} \alpha_{j} y_{j}\right)\right\| & \leq(1+\varepsilon) \sum_{i}\left|a_{i} c_{i}\right|\left|\frac{w_{i}}{c_{i}}\left(\sum_{j \in A_{i}} \alpha_{j} y_{j}\right)\right| \\
& \leq(1+\varepsilon)^{2} \sum_{i}\left|a_{i} c_{i}\right| \\
& \leq(1+\varepsilon)^{2} \bar{g}_{X^{*}}^{d}(c) \bar{g}_{X^{*}}^{d^{*}}(a)
\end{aligned}
$$

where we set $c=\left(c_{i}\right)$.
But

$$
\bar{g}_{X^{*}}^{d}(c) \leq g_{X^{*}}^{d}(c) \leq\left\|\sum_{i} c_{i} \frac{w_{i}}{c_{i}}\right\| \leq\left\|\sum_{j=1}^{m} b_{j} g_{j}\right\| \leq 1+\varepsilon
$$

Thus, we have obtained that

$$
\left\|\sum_{i} a_{i} x_{i}\right\| \leq(1+\varepsilon)^{4} \bar{g}_{X^{*}}^{d^{*}}(a)
$$

Now taking the supremum over all $\left\{x_{i}\right\} \in\{X\}^{d}$ we get, since $\varepsilon>0$ was arbitrary, that $r_{X}^{d}(a) \leq \bar{g}_{X^{*}}^{d^{*}}(a)$ for all $a \in c_{00}$.

Again applying the same argument to X^{*}, we obtain that $r_{X^{*}}^{d}(a) \leq \bar{g}_{X}^{d^{*}}(a)$, and by duality $r_{X^{*}}^{d *}(a) \geq \bar{g}_{X}^{d}(a)$, which finishes the proof of the all inequalities.

3.4 A Characterization of Asymptotic- ℓ_{p} Spaces

In this section, we prove a characterization for asymptotic- ℓ_{p} spaces. Our starting point is the following consequence of the results proved in [KOS].

Suppose that for a Banach space X there exists a constant $K>0$ such that for all n and permissible vectors $\left\{x_{i}\right\}_{i=1}^{n}$ in X we have

$$
\left\|\sum_{i=1}^{n} x_{i}\right\| \geq n / K
$$

Then X is an asymptotic $-\ell_{1}$ space.
Let us note that although this result is not stated in [KOS] as we formulated above, this is a consequence of Propositions 6.7 and 6.8 proved there, and we will provide a proof of this statement (see Corollary 3.4.3).

The above result shows that asymptotic- ℓ_{1} spaces can be fully characterized by the ℓ_{1}-behavior of its normalized permissible vectors on constant coefficients. A natural question in this context is whether this remains true in general. We formulate the question for $1<p<\infty$.
Problem Let $1<p<\infty$. Suppose that there exists a constant C so that for all n and for all permissible vectors $\left\{x_{i}\right\}_{i=1}^{n}$ in a Banach space X we have

$$
\frac{n^{1 / p}}{K} \leq\left\|\sum_{i=1}^{n} x_{i}\right\| \leq K n^{1 / p}
$$

Is X an asymptotic $-\ell_{p}$ space?
We can also restate this problem in terms of the envelope functions. Let X be a Banach space and suppose that there is $1<p<\infty$ and a constant K such that for all $n, g_{X}(1,1, \ldots, 1) \stackrel{K}{\sim} n^{1 / p} \stackrel{K}{\sim} r_{X}(1,1, \ldots, 1)$. Does it follow that $g_{X}(a) \sim\|a\|_{p} \sim r_{X}(a)$ for all $a \in c_{00}$?

We will see in the next section that the answer to this problem is negative in general, even for spaces with an unconditional basis. However, we will show here that this is true if we replace the envelope functions g_{X} and r_{X} in the assumption with the disjoint- envelope functions g_{X}^{d} and r_{X}^{d}. This was also our initial reason to introduce the disjoint-envelope functions.

The main result of this section is the following characterization for asymptoticℓ_{p} spaces.

Theorem 3.4.1 Let X be a Banach space with asymptotic unconditional structure. Suppose that there exist $1 \leq p \leq \infty$ and constant $K>0$ such that for all
$n \in \mathbb{N}$ and for all $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$, we have

$$
\frac{n^{1 / p}}{K} \leq\left\|\sum_{i=1}^{n} x_{i}\right\| \leq K n^{1 / p}
$$

Then X is an asymptotic $-\ell_{p}$ space.

For the proof, we will require the following characterization of the unit vector basis of ℓ_{p}, which is of independent interest. The idea of the proof of the next theorem is inspired by the proof of the Proposition 6.9 in [KOS].

Theorem 3.4.2 Let X be a Banach space with a subsymmetric and unconditional basis $\left(x_{i}\right)$. Suppose that there exist $1 \leq p \leq \infty$ and a constant $K>0$ such that for all $n \in \mathbb{N}$ and for all disjointly supported normalized vectors $\left\{y_{i}\right\}_{i=1}^{n}$ in X, we have

$$
\frac{n^{1 / p}}{K} \leq\left\|\sum_{i=1}^{n} y_{i}\right\| \leq K n^{1 / p}
$$

Then $\left(x_{i}\right)$ is equivalent to the unit vector basis of l_{p}.

Proof Without loss of generality, we may (and will) assume that the basis is 1 -subsymmetric and 1 -unconditional.

We need to show that there is a constant $C>0$ so that for all $a=\left(a_{i}\right) \in c_{00}$, we have

$$
\frac{1}{C}\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{i} a_{i} x_{i}\right\| \leq C\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

First we give the proof of the left hand inequality. Suppose to the contrary that the lower ℓ_{p}-estimate fails. That is, for all $\varepsilon>0$ there exists $a=\left(a_{i}\right)_{i=1}^{k}$ such that $\left\|\sum_{i=1}^{k} a_{i} x_{i}\right\|<\varepsilon$ while $\sum_{i=1}^{k}\left|a_{i}\right|^{p}=1$. By unconditionality of the basis (x_{i}) we can assume that all a_{i} 's are positive.

Fix $\varepsilon<\frac{1}{K^{3} 2^{1 / p}}$, and let $\left(a_{i}\right)$ be as above. Since the a_{i} 's are positive, we normalize by taking the p th root and rewrite our assumption in the form, $\sum_{i=1}^{k} a_{i}=1$ while $\left\|\sum_{i=1}^{k} a_{i}^{1 / p} x_{i}\right\|<\varepsilon<\frac{1}{K^{3} 2^{1 / p}}$.

By a slight perturbation, if necessary, we assume that a_{i} 's are positive rationals and we write $a_{i}=\frac{n_{i}}{N}$ for $1 \leq i \leq k$, where n_{i}, N are natural numbers. Put also $N=n_{i} m_{i}+k_{i}, 0 \leq k_{i}<n_{i}, 1 \leq i \leq k$. Now consider the vector $x=\sum_{i=1}^{k} a_{i}^{1 / p} \sum_{j=1}^{N} x_{j}^{i}$, where $x_{j}^{i}=x_{(i-1) N+j}$ for $1 \leq i \leq k$ and $1 \leq j \leq N$. i.e., x is of the form $x=\left(a_{1}^{1 / p}, \ldots, a_{1}^{1 / p}, a_{2}^{1 / p}, \ldots, a_{2}^{1 / p}, \ldots, \ldots, a_{k}^{1 / p}, \ldots, a_{k}^{1 / p}\right)$ with respect to ($x_{1}, x_{2}, \ldots, x_{k N}$), where each block consists of N constant coefficients $a_{i}^{1 / p}$. First, we estimate the norm of x from below.

For each $1 \leq i \leq k$, since $N=k_{i}\left(m_{i}+1\right)+\left(n_{i}-k_{i}\right) m_{i}$, we may fix a partition

$$
\{1, \ldots, N\}=\bigcup_{\mu=1}^{k_{i}} A_{\mu, i} \cup \bigcup_{v=1}^{n_{i}-k_{i}} B_{v, i},
$$

where $\left|A_{\mu, i}\right|=m_{i}+1$ for each $\mu=1, \ldots, k_{i}$ and $\left|B_{v, i}\right|=m_{i}$ for each $v=$ $1, \ldots, n_{i}-k_{i}$. Then we have

$$
\begin{align*}
\|x\| & =\left\|\sum_{i=1}^{k} a_{i}^{1 / p} \sum_{j=1}^{N} x_{j}^{i}\right\|=\left\|\sum_{i=1}^{k}\left(\frac{n_{i}}{N}\right)^{1 / p} \sum_{j=1}^{N} x_{j}^{i}\right\| \\
& =\left\|\sum_{i=1}^{k}\left(\sum_{\mu=1}^{k_{i}}\left(\frac{n_{i}}{N}\right)^{1 / p} \sum_{j \in A_{\mu, i}} x_{j}^{i}+\sum_{v=1}^{n_{i}-k_{i}}\left(\frac{n_{i}}{N}\right)^{1 / p} \sum_{j \in B_{v, i}} x_{j}^{i}\right)\right\| . \tag{3.2}
\end{align*}
$$

Now, using the assumption, we estimate the norm of each of the disjoint blocks appearing in (3.2).

For each $\mu=1, \ldots, k_{i}$, since $\left|A_{\mu, i}\right|=m_{i}+1$, we have

$$
\begin{aligned}
\left\|\left(\frac{n_{i}}{N}\right)^{1 / p} \sum_{j \in A_{\mu, i}} x_{j}^{i}\right\| & \geq \frac{\left(m_{i}+1\right)^{1 / p}}{K}\left(\frac{n_{i}}{N}\right)^{1 / p} \\
& \geq \frac{\left(n_{i} m_{i}+n_{i}\right)^{1 / p}}{N^{1 / p} K} \geq \frac{1}{K} .
\end{aligned}
$$

For each $v=1, \ldots, n_{i}-k_{i}$, since $\left|B_{v, i}\right|=m_{i}$, we have

$$
\left\|\left(\frac{n_{i}}{N}\right)^{1 / p} \sum_{j \in B_{v, i}} x_{j}^{i}\right\| \geq \frac{n_{i}^{1 / p}}{N^{1 / p}} \frac{m_{i}^{1 / P}}{K} \geq \frac{1}{2^{1 / p} K}
$$

Let

$$
u_{\mu}^{i}=\frac{\sum_{j \in A_{\mu, i}} x_{j}^{i}}{\left\|\sum_{j \in A_{\mu, i}} x_{j}^{i}\right\|} \text { and } w_{v}^{i}=\frac{\sum_{j \in B_{v, i}} x_{j}^{i}}{\left\|\sum_{j \in B_{v, i}} x_{j}^{i}\right\|}
$$

By the unconditionality of the basis and by the above estimates for the blocks u_{μ}^{i} and w_{v}^{i} appearing in (3.2), we obtain that the expression (3.2) is greater than or equal to

$$
\begin{equation*}
\frac{1}{2^{1 / p} K}\left\|\sum_{i=1}^{k}\left(\sum_{\mu=1}^{k_{i}} u_{\mu}^{i}+\sum_{v=1}^{n_{i}-k_{i}} w_{v}^{i}\right)\right\| \tag{3.3}
\end{equation*}
$$

The blocks u_{μ}^{i} and w_{v}^{i} are disjointly supported (in fact, note that the partition can be chosen so that they become successive) and normalized, therefore by the assumption, (3.3) is greater than or equal to

$$
\frac{1}{2^{1 / p} K^{2}}\left(\sum_{i=1}^{k} n_{i}\right)^{1 / p}=\frac{N^{1 / p}}{2^{1 / p} K^{2}}
$$

We have used that $1=\sum_{i=1}^{k} a_{i}=\sum_{i=1}^{k} \frac{n_{i}}{N}$. Thus, we have obtained that

$$
\begin{equation*}
\|x\| \geq \frac{N^{1 / p}}{2^{1 / p} K^{2}} \tag{3.4}
\end{equation*}
$$

On the other hand, letting $y_{j}=\sum_{i=1}^{k} a_{i}{ }^{1 / p} x_{j}^{i}$ for $1 \leq j \leq N$, by subsymmetry of the basis $\left(x_{i}\right)$ and the assumption, we have $\left\|y_{j}\right\|<\varepsilon$. Thus, since $\left\{y_{j}\right\}$ are disjointly supported, by the assumption we have

$$
\begin{equation*}
\|x\|=\left\|\sum_{i=1}^{k} a_{i}^{1 / p} \sum_{j=1}^{N} x_{j}^{i}\right\|=\left\|\sum_{j=1}^{N} y_{j}\right\| \leq \varepsilon K N^{1 / p} . \tag{3.5}
\end{equation*}
$$

Comparing two estimates in (3.4) and (3.5), we arrive at a contradiction by taking ε small enough. Hence there exists $C<\infty\left(C \geq K^{3} 2^{1 / p}\right)$ so that $\left\|\sum_{i} a_{i} x_{i}\right\| \geq(1 / C)\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{1 / p}$, for all $\left(a_{i}\right)$.

The proof of the upper ℓ_{p} estimate is similar. Suppose to the contrary that for all $M>1$ there exists a positive scalar sequence $\left(a_{i}{ }^{1 / p}\right)_{i=1}^{k}$ such that
$\left\|\sum_{i=1}^{k} a_{i}{ }^{1 / p} x_{i}\right\|>M$ while $\sum_{i=1}^{k} a_{i}=1$. Fix $M>2^{1 / p} K^{3}$ and find $\left(a_{i}{ }^{1 / p}\right)_{i=1}^{k}$ satisfying the above. With the same set up as in the first part of the proof, we estimate the norm of the vector x in (3.2) from above. Thus,

$$
\left\|\sum_{i=1}^{k} a_{i}^{1 / p} \sum_{j=1}^{N} x_{j}^{i}\right\| \leq K^{2} 2^{1 / p} N^{1 / p}
$$

On the other hand, as in (3.5), using the assumption again we have

$$
\left\|\sum_{i=1}^{k} a_{i}^{1 / p} \sum_{j=1}^{N} x_{j}^{i}\right\| \geq \frac{M N^{1 / p}}{K} .
$$

But this is a contradiction by the choice of M. Hence there exists an absolute constant $C \geq 1\left(C \geq 2^{1 / p} K^{3}\right)$ such that

$$
\left\|\sum_{i} a_{i} x_{i}\right\| \leq C\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

for all scalars $\left(a_{i}\right)$. The proof is now complete.
Let us remark that the above proof uses only the disjointly supported vectors. In particular, the conclusion of the theorem holds for more general functions (e.g. for the lower disjoint-envelope g_{X}^{d}) than the norms, which satisfy the conditions.
Proof of Theorem 3.4.1 Clearly it is sufficient to show that both g_{X}^{d} and r_{X}^{d} are equivalent to $\|\cdot\|_{p}$. The assumption already implies that

$$
\frac{n^{1 / p}}{K} \leq g_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq K n^{1 / p}
$$

where $\left(e_{i}\right)$ is the unit vector basis of c_{00}.
Let $\left\{u_{i}\right\}$ and $\left\{w_{i}\right\}$ be arbitrary successive blocks of c_{00} with $g_{X}^{d}\left(u_{i}\right)=1$ and $r_{X}^{d}\left(w_{i}\right)=1$ for all $i=1,2, \ldots$ respectively. From the multiplicativity properties
of the disjoint envelopes, Lemma 3.2.2, and Lemma 3.2.3, it follows that

$$
\frac{n^{1 / p}}{K} \leq g_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq g_{X}^{d}\left(\sum_{i=1}^{n} u_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq K n^{1 / p}
$$

and

$$
\frac{n^{1 / p}}{K} \leq g_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} w_{i}\right) \leq r_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq K n^{1 / p}
$$

That is, $g_{X}\left(\sum_{i=1}^{n} u_{i}\right) \stackrel{K^{2}}{\sim} n^{1 / p}$ and $r_{X}\left(\sum_{i=1}^{n} w_{i}\right) \stackrel{K^{2}}{\sim} n^{1 / p}$ for all successive normalized block bases $\left(u_{i}\right)$ and $\left(w_{i}\right)$ of $\left(c_{00}, g_{X}^{d}\right)$ and $\left(c_{00}, r_{X}^{d}\right)$ respectively. Moreover, since both g_{X}^{d} and r_{X}^{d} are also 1-symmetric, the same estimates hold for all disjointly supported normalized sequences in $\left(c_{00}, g_{X}^{d}\right)$ and (c_{00}, r_{X}^{d}) respectively. Thus, by Theorem 3.4.2, both g_{X}^{d} and r_{X}^{d} are equivalent to $\|.\|_{p}$ with a constant which depends only on K. Therefore X is an asymptotic- ℓ_{p} space.

As we remarked at the beginning of the section, for $p=1$ this result can be considerably improved.

Corollary 3.4.3 Suppose that for a Banach space X there exists a constant $K>0$ such that for all n and permissible vectors $\left\{x_{i}\right\}_{i=1}^{n}$ in X we have

$$
\left\|\sum_{i=1}^{n} x_{i}\right\| \geq n / K
$$

Then X is an asymptotic- ℓ_{1} space.
Proof (Sketch) It is sufficient to show that the lower (original) envelope function satisfies $g_{X}(a) \geq c\|a\|_{1}$, for some constant c. (The upper estimate trivially follows from the triangle inequality.)

The proof follows the same lines in the first part of the proof of Theorem 3.4.1, so we only indicate the few differences.

With the same setup as in the first part of the proof of Theorem 3.4.1, assume that the above estimate fails and consider the vector x in (3.2). Then the
estimate, $g_{X}(x) \geq \frac{N}{2 K^{2}}$ in (3.4) holds because, as we remarked there, the blocks appearing in (3.3) can be arranged to be successive. On the other hand, the upper estimate $g_{X}(x)<\varepsilon K N$, in (3.5) simply follows from the triangle inequality for g_{X} on disjointly supported vectors. Thus we arrive at a contradiction.

3.5 Tirilman Spaces

In this section, we deviate somewhat from the general theme of the thesis, and turn our attention to a particular class of Banach spaces, called the Tirilman spaces.

To complement the main result of the previous section, we show here that the characterization of asymptotic- ℓ_{p} spaces given in Theorem 3.4.1 cannot be strengthened further as stated in the problem discussed there. Namely, we show that for all $1<p<\infty$, there is a Tirilman space X with the property that for all n and permissible vectors $\left\{x_{i}\right\}_{i=1}^{n}$ in X, we have $\left\|\sum_{i=1}^{n} x_{i}\right\| \stackrel{K}{\sim} n^{1 / p}$ for some constant independent of n, and yet X is not an asymptotic- ℓ_{p} space.

Additionally, as a consequence of Theorem 3.4.2 of the previous section, we also obtain a solution to a conjecture of Casazza and Shura on the Tirilman spaces.

The Tirilman spaces are introduced and studied by Casazza and Shura [CS]. Their definitions depend on a slight modification of the original spaces constructed by L. Tzafriri [T] (The name 'Tirilman' comes from the Romanian surname of L. Tzafriri.)

We recall now the definition and few properties of these spaces, which we shall use.

Let $1<p<\infty$. Fix $0<\gamma<1$. As in the case of Tsirelson's and Schlumprecht's spaces, the norm is defined on c_{00} implicitly. For all $a=\left(a_{i}\right) \in$ c_{00}, let

$$
\|a\|=\max \left\{\|a\|_{\infty}, \gamma \sup \frac{\sum_{j=1}^{k}\left\|E_{j} a\right\|}{k^{1 / q}}\right\}
$$

where the inner supremum is taken over all finite successive intervals of natural numbers $1 \leq E_{1}<E_{2}<\ldots<E_{k}$ and all k, and $1 / p+1 / q=1$.

The Banach space $\left(c_{00},\|\|.\right)$, which is defined with the parameters p and γ, is called a Tirilman space and denoted by $\operatorname{Ti}(\gamma, p)$.

It is not difficult to show that such a norm indeed exists. Also, it is immediate from the definition that the unit vectors $\left\{e_{i}\right\}_{i=1}^{\infty}$ form a normalized 1-subsymmetric 1-unconditional basis for $\operatorname{Ti}(\gamma, p)$.

We shall also use the following results proved in [CS].
Theorem 3.5.1 Let $1<p<\infty$. There exists $0<\gamma<1$ such that the following hold for Ti (p, γ).
(1) For any normalized successive blocks $\left\{x_{j}\right\}_{j=1}^{n}$ of the basis $\left\{e_{i}\right\}_{i}$, we have

$$
\gamma n^{1 / p} \leq\left\|\sum_{j=1}^{n} x_{j}\right\| \leq 3^{1 / q} n^{1 / p}
$$

(2) $\operatorname{Ti}(p, \gamma)$ does not contain isomorphs of any $l_{p}(1 \leq p<\infty)$ or of c_{0}. In particular, Ti (p, γ) is a reflexive space.

Observe that the left hand side inequality in the first part of the Theorem easily follows from the definition of the norm. Indeed, let $\left\{x_{j}\right\}_{j=1}^{n}$ be a normalized successive block sequence of the basis. For each $1 \leq j \leq n$, let E_{j} be the smallest interval containing the support of x_{j}. Then,

$$
\left\|\sum_{j=1}^{n} x_{j}\right\| \geq \gamma \frac{\sum_{j=1}^{n}\left\|E_{j} x_{j}\right\|}{n^{1 / q}} \geq \gamma \frac{n}{n^{1 / q}}=\gamma n^{1 / p}
$$

For the proof of other statements see Lemma X.d. 4 and Theorem X.d. 6 of [CS] (Note that in [CS] the proof of these statements are given for $p=2$ only, appropriate modifications are necessary for the general case).

Example 3.5.2 Let $1<p<\infty$. Then there exists $0<\gamma<1$ such that the Tirilman space $T i(p, \gamma)$ has the property that for all n and all permissible vectors
$\left\{x_{j}\right\}_{j=1}^{n}$, we have $\left\|\sum_{i=1}^{n} x_{i}\right\| \stackrel{K}{\sim} n^{1 / p}$, where K depends on γ and p only, and yet Ti (p, γ) is not an asymptotic- ℓ_{p} space.

Proof By Theorem 3.5.1, there exists $0<\gamma<1$ such that the Tirilman space $T i(p, \gamma)$ has the property that for all n and successive blocks $\left\{x_{j}\right\}_{j=1}^{n}$ of the basis, we have $\gamma n^{1 / p} \leq\left\|\sum_{j=1}^{n} x_{j}\right\| \leq 3^{1 / q} n^{1 / p}$. In particular, the same estimates hold for all permissible vectors. On the other hand, since the basis $\left\{e_{i}\right\}$ is subsymmetric, if $T i(p, \gamma)$ was asymptotic ℓ_{p}, this would imply that the basis $\left\{e_{i}\right\}$ is equivalent to the unit vector basis of ℓ_{p}. However, this contradicts the part (2) of Theorem 3.5.1.

Moreover, Casazza and Shura conjectured that $T i(2, \gamma)$, where $0<\gamma<10^{-6}$, has a symmetric basis (Conjecture X.d.9, [CS]). (As it is shown in [CS], for $0<\gamma<10^{-6}$ the conclusion of Theorem 3.5.1 holds.) However, this is not the case, as the next theorem shows.

Theorem 3.5.3 Let $1<p<\infty$ and let $0<\gamma<1$ be as in Theorem 3.5.1. Then $T i(p, \gamma)$ contains no symmetric basic sequences.

Proof To the contrary, suppose that there is a symmetric basic sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ in $T i(p, \gamma)$. By Theorem 3.5.1, $T i(p, \gamma)$ is reflexive, thus $\left\{x_{i}\right\}$ is weakly null and by so-called sliding hump argument there exists a subsequence which is equivalent to a block basis of the unit vector basis $\left(e_{i}\right)$ of $T i(p, \gamma)$ (cf. Proposition 1.a. 12 of [LT]). Since the sequence $\left\{x_{i}\right\}$ is symmetric, it is equivalent to all of its subsequences, in particular, $\left\{x_{i}\right\}$ itself is equivalent to a block basis of $\left\{e_{i}\right\}$. Now it follows from the first part of Theorem 3.5.1 that for all n and all normalized successive blocks $\left\{u_{i}\right\}_{i=1}^{n}$ of $\left\{x_{i}\right\}$, we have

$$
\gamma n^{1 / p} \leq\left\|\sum_{i=1}^{n} u_{i}\right\| \leq 3^{1 / q} n^{1 / p}
$$

By symmetry of $\left\{x_{i}\right\}$, the same estimates hold for all disjointly supported normalized vectors $\left\{u_{i}\right\}_{i=1}^{n}$. Thus by Theorem 3.4.2, $\left\{x_{i}\right\}$ must be equivalent to
the unit vector basis of l_{p}, which contradicts the second part of Theorem 3.5.1.

The definition of $T i(p, \gamma)$ in [CS] has been modelled on spaces constructed by Tzafriri in [Tz]. This definition was fully analogous to that of the Tirilman spaces, except that in the implicit equation of the norm the inner supremum is taken over all disjoint subsets E_{j} of the natural numbers (rather than successive ones) [Tz]. In this case, as it is easily seen, the unit vectors form a symmetric basis for the space. In the literature of the Tsirelson-like spaces, the Tzafriri spaces are the modified Tirilman spaces (cf. [CS]).

It is well known, for instance, that the modified Tsirelson space is canonically isomorphic to the Tsirelson space, i.e., the unit vector bases are equivalent.

A natural question then was raised in [CS] (see X.D. Notes and Remarks 3) whether the same holds for the Tirilman spaces. It follows immediately from Theorem 3.5.3 that the answer is negative. In fact, Theorem 3.5.3 implies the following

Corollary 3.5.4 Let $1<p<\infty$ and let $0<\gamma<1$ be as in Theorem 3.5.1. Then the Tzafriri space with these parameters p and γ does not imbed into $T i(p, \gamma)$.

3.6 Envelopes and Reflexivity

In this section, we return to the original envelope functions and use them to give an application relating the asymptotic structure of a Banach space to its infinite-dimensional subspace structure.

Recall that a classical result of James (cf. [LT]) asserts that a Banach space with an unconditional basis is either reflexive or has a subspace isomorphic to c_{0} or ℓ_{1}. Using the envelope functions we prove the following asymptotic analog of this result for Banach spaces with asymptotic unconditional structure.

Theorem 3.6.1 Let X be an infinite-dimensional Banach space with asymptotic unconditional structure. Then either $\ell_{1}^{n} \in\{X\}_{n}$ or $\ell_{\infty}^{n} \in\{X\}_{n}$ for all n or X contains an infinite-dimensional reflexive subspace.

This result is an immediate consequence of Propositions 3.6.2 and 3.6.3 proved below. Also observe that the Proposition 2.4.1 implies that for every Banach space X the lower envelope g_{X} is equivalent to $\|\cdot\|_{\infty}$ if and only if its power type is $q=\infty$, and the upper envelope r_{X} is equivalent to $\|\cdot\|_{1}$ if and only if its power type is $p=1$.

Recall that a Banach space with a basis $\left\{x_{i}\right\}$ is reflexive if and only if $\left\{x_{i}\right\}$ is both shrinking and boundedly complete. The property of shrinking is equivalent to the fact that for every $x^{*} \in X^{*}$, the norm of the restriction of x^{*} to $\operatorname{span}\left[x_{i}\right]_{i=n}^{\infty}$ tends to zero as n tends to infinity. A basis $\left\{x_{i}\right\}$ is boundedly complete provided that whenever the sequence $\left\{\sum_{i=1}^{n} a_{i} x_{i}\right\}_{n=1}^{\infty}$ is bounded, then it is convergent (cf. [LT]).

The next proposition which is stated in terms of the power types of the envelope functions is a simple generalization of 4.2 of [MMT], where it was proved for stabilized asymptotic- ℓ_{p} spaces. In the proof, we shall make use of the stabilization result due to Milman and Tomczak-Jaegermann [MT1], which we recall now.

Let X be a Banach space and let \mathcal{B} be a family satisfying the filtration conditions. There exists a subspace $Z \subset X$ with a basis $\left\{z_{i}\right\}$ such that
(i) for all $n \in \mathbb{N}$ and $\varepsilon>0$ there exists $N=N(n, \varepsilon)$ such that for any normalized successive blocks $z_{N}<w_{1}<\ldots<w_{n}$ of $\left\{z_{i}\right\}$ there exists $E \in\{X\}_{n}$ such that $\left\{w_{1}, \ldots, w_{n}\right\} \stackrel{1+\varepsilon}{\sim} E$.
(ii) for every $n \in \mathbb{N}$ and every space $E \in\{X\}_{n}$ the following is true for every $\varepsilon>0:$

$$
\begin{aligned}
& \forall M_{1} \in \mathbb{N} \exists m_{1}>M_{1} \quad \forall M_{2}>M_{1} \exists m_{2}>M_{2} \quad \ldots \\
& \quad \ldots \quad \forall M_{n}>M_{n-1} \quad \exists m_{n}>M_{n} \quad\left\{z_{m_{1}}, \ldots, z_{m_{n}}\right\} \stackrel{1+\varepsilon}{\sim} E .
\end{aligned}
$$

Moreover, for $k \in \mathbb{N}$, the basis constant of $\left\{z_{i}\right\}_{i \geq k}$ is less than or equal to $1+\varepsilon_{k}$, for some sequence $\varepsilon_{k} \downarrow 0$.

We will call this subspace Z a stabilizing subspace of X. In the language of games, (i) means that the winning strategy of the subspace player \mathbf{S} in a subspace game in Z is very simple. For every $\varepsilon>0$ and $n \in \mathbb{N}$, \mathbf{S} may always choose the same tail subspace $Z_{N}=\overline{\operatorname{span}}\left\{z_{i}\right\}_{i \geq N}$, where $N=N(n, \varepsilon)$, regardless of the moves of \mathbf{V}. And the part (ii) says that the winning strategy for the vector player \mathbf{V} is also simple. For every $E \in\{X\}_{n}$ and $\varepsilon>0$, the vector player V can restrict its moves only to basis vectors $\left\{z_{i}\right\}$ as his winning strategy.

Proposition 3.6.2 Let X be a Banach space and let q and p be power types of g_{X} and r_{X} respectively. If $1<p, q<\infty$, then X contains an infinitedimensional reflexive subspace.

Proof Let $Z \subset X$ be a stabilizing subspace with basis $\left\{z_{i}\right\}$. Fix $\varepsilon>0$ for the rest of the proof. Then for all $n \in \mathbb{N}$ there exists $N=N(n, \varepsilon)$ such that any n successive blocks supported (with respect to $\left\{z_{i}\right\}$) after N are (1+ $)$-equivalent to some asymptotic space $E \in\{X\}_{n}$.

We will show that $\left\{z_{i}\right\}$ is both shrinking and boundedly complete, hence Z is reflexive.

Since the power type p of r_{X} satisfies $p>1$, by Proposition 2.4.1, for any fixed $p>r>1$ there exists a constant C_{r} (which depends on r only) such that $r_{X}(a) \leq C_{r}\|a\|_{r}$ for all $a=\left(a_{i}\right) \in c_{00}$. This, in particular, implies that for all $n \in \mathbb{N}$ and $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$, we have $\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\| \leq C_{r}\|a\|_{r}$. Now if $\left\{z_{i}\right\}$ was not shrinking, then there exists $z^{*} \in Z^{*}$ with $\left\|z^{*}\right\|=1$ and $\delta>0$ for which there is a normalized block sequence $\left\{u_{i}\right\}_{i}$ of $\left\{z_{i}\right\}$ such that $z^{*}\left(u_{i}\right) \geq \delta$ for all $i=1,2, \ldots$. But for all $n \in \mathbb{N}$, there exists $N=N(n, \varepsilon)$ such that whenever $N<u_{1}<\ldots u_{n}$, then $\left\{u_{i}\right\}_{i=1}^{n}$ is a permissible sequence. Hence,

$$
C_{r}(1+\varepsilon) n^{1 / r} \geq\left\|\sum_{i=1}^{n} u_{i}\right\| \geq z^{*}\left(\sum_{i=1}^{n} u_{i}\right) \geq n \delta
$$

Since $r>1$, this is a contradiction for a large enough n. Therefore $\left\{z_{i}\right\}$ must be shrinking.

Also $\left\{z_{i}\right\}$ is boundedly complete. Indeed, since the power type q of g_{X} satisfies $q<\infty$, by Proposition 2.4.1, for any fixed $q<s<\infty$, there exists c_{s} such that $g_{X}(a) \geq c_{s}\|a\|_{s}$ for all $a \in c_{00}$. In particular, for all $n \in \mathbb{N}$ and $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$, we have that $\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\| \geq c_{s}\|a\|_{s}$. Suppose to the contrary that $\left\{z_{i}\right\}$ is not boundedly complete. Then there exists a normalized block basis $\left\{u_{i}\right\}$ of $\left\{z_{i}\right\}$ such that $\sup _{n}\left\|\sum_{i=1}^{n} u_{i}\right\|=M<\infty$. But for all n, there exists $N=N(n, \varepsilon)$ such that if k is such that $N<u_{k}$, then the sequence $N(n, \varepsilon)<u_{k+1}<\ldots<u_{k+n}$ is permissible. Hence,

$$
2 M \geq 2\left\|\sum_{i=1}^{k+n} u_{i}\right\| \geq\left\|\sum_{i=k+1}^{k+n} u_{i}\right\| \geq c_{s}(1+\varepsilon) n^{1 / s}
$$

Since $s<\infty$, this is a contradiction for large enough n. Thus $\left\{z_{i}\right\}$ is boundedly complete, and the proof is completed.

Proposition 3.6.3 Let X be a Banach space with an asymptotic unconditional structure. Then
(i) $g_{X}($.$) is equivalent to \|\cdot\|_{\infty}$ if and only if for all $n, \ell_{\infty}^{n} \in\{X\}_{n}$,
(ii) $r_{X}($.$) is equivalent to \|\cdot\|_{1}$ if and only if for all $n, \ell_{1}^{n} \in\{X\}_{n}$.

Proof The proof of part (i) is easy. If g_{X} is C-equivalent to $\|\cdot\|_{\infty}$ for some $C>0$, then for all $n \in \mathbb{N}$, there exists $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ such that $\left\|\sum_{i=1}^{n} e_{i}\right\| \leq$ $2 g_{X}(1,1, \ldots, 1) \leq 2 C$. The unconditionality of the basis $\left\{e_{i}\right\}_{i=1}^{n}$ then implies that $\left\{e_{i}\right\}_{i=1}^{n}$ is $4 C^{2}$-equivalent to the unit vector basis of ℓ_{∞}^{n}. The constant $4 C^{2}$ is independent of n, and now by well known standard blocking argument of James, for all n and $\varepsilon>0$, one can find blocks $\left\{x_{i}\right\}_{i=1}^{n}$ of $\left\{e_{i}\right\}_{i=1}^{m}$ for large enough m such that $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim} \ell_{\infty}^{n}$. Since $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$, the result follows. The converse implication is trivial.

To prove the second part, assume that r_{X} is equivalent to $\|\cdot\|_{1}$. By Proposition 2.4.1, necessarily $r_{X}(.) \stackrel{1}{\sim}\|\cdot\|_{1}$. (However this is not important for
the proof.) Fix $n \in \mathbb{N}$ and pick an asymptotic space $E \in\{X\}_{n}$ with the natural basis $\left\{e_{i}\right\}_{i=1}^{n}$ such that $\left\|\sum_{i=1}^{n} e_{i}\right\| \geq(1 / 2) r_{X}(1, \ldots, 1) \geq n / 2$. Pick $x^{*} \in E^{*}$ with $\left\|x^{*}\right\|=1$ and $x^{*}\left(\sum_{i=1}^{n} e_{i}\right)=\left\|\sum_{i=1}^{n} e_{i}\right\|$. Consider the set $I=\left\{i:\left|x^{*}\left(e_{i}\right)\right| \geq 1 / 4\right\}$. Since $\left|x^{*}\left(e_{i}\right)\right| \leq 1$ for all i, a standard argument shows that the cardinality k of I satisfies $k=|I| \geq n / 3$. For an arbitrary scalar sequence $a=\left(a_{i}\right)$, let $\varepsilon_{i}=\operatorname{sgn} a_{i} x^{*}\left(e_{i}\right)$ for $i \in I$. Then

$$
\left\|\sum_{i \in I} \varepsilon_{i} a_{i} e_{i}\right\| \geq x^{*}\left(\sum_{i \in I} \varepsilon_{i} a_{i} e_{i}\right)=\sum_{i \in I}\left|a_{i}\right|\left|x^{*}\left(e_{i}\right)\right| \geq(1 / 4) \sum_{i \in I}\left|a_{i}\right| .
$$

This shows that $\left\{e_{i}\right\}_{i \in I}$ is $4 C$-equivalent to the unit vector basis in ℓ_{1}^{k}, by the unconditionality of the basis (with constant C). Clearly, a subsequence of the basis in asymptotic space spans an asymptotic space and again by James blocking argument we reduce the constant to $1+\varepsilon$. i.e., $\ell_{1}^{k} \in\{X\}_{k}$ and the result follows.

It was a famous open problem in Banach space theory whether every infinitedimensional Banach space contains a subspace which is either reflexive or isomorphic to c_{o} or ℓ_{1}. Gowers [G] solved this in the negative by constructing a counterexample. Gowers' example contains ℓ_{1}^{n} 's uniformly. i.e., for all $n \in \mathbb{N}$ and $\varepsilon>0$ there exists a sequence $\left\{x_{i}\right\}_{i=1}^{n}$ in the space such that $\left\{x_{i}\right\}_{i=1}^{n} \stackrel{1+\varepsilon}{\sim} \ell_{1}^{n}$. Gowers then suggested the existence of infinite-dimensional Banach spaces which does not contain ℓ_{1}^{n} 's uniformly and without infinite-dimensional reflexive subspaces (see also Q5 in [O]). The following consequence of Theorem 3.6.1 implies that if there is such a space X, then X cannot contain a subspace with asymptotic unconditional structure.

Corollary 3.6.4 Let X be an infinite-dimensional Banach space which does not contain ℓ_{1}^{n} 's uniformly. If X has asymptotic unconditional structure, then X contains an infinite-dimensional reflexive subspace.

Indeed, it is well known and easy to see that if X does not contain ℓ_{1}^{n} 's uniformly, it cannot contain ℓ_{∞}^{n} 's uniformly either. In particular, X does not have
asymptotic spaces isomorphic to ℓ_{1}^{n} or ℓ_{∞}^{n} for all n, so the conclusion follows from Theorem 3.6.1.

3.7 Finite Representability of Envelopes

Recall that we have shown in Proposition 3.6.3 that for a Banach space X with asymptotic unconditional structure, if g_{X} is equivalent to $\|\cdot\|_{\infty}$ (respectively $r_{X} \sim\|.\|_{1}$), then $\ell_{\infty}^{n} \in\{X\}_{n}$ (respectively $\ell_{1}^{n} \in\{X\}_{n}$) for all $n \in \mathbb{N}$. An identical proof shows that the same remains true if we replace the envelope functions with the disjoint envelopes g_{X}^{d} and r_{X}^{d} (in this case of course $\ell_{1}^{n}, \ell_{\infty}^{n} \in\{X\}^{d}$).

A natural question, which we consider in this section, is whether for every Banach space X with asymptotic unconditional structure, $l_{q}^{n}, l_{p}^{n} \in\{X\}_{n}\left(l_{q}^{n}, l_{p}^{n} \in\right.$ $\{X\}^{d}$) for all $n \in \mathbb{N}$, where q and p are the power types of g_{X} and $r_{X}\left(g_{X}^{d}\right.$ and $\left.r_{X}^{d}\right)$ respectively.

Quite remarkably, the disjoint envelopes case of the problem has an affirmative answer. Namely, we will prove the following theorem.

Theorem 3.7.1 Let X be a Banach space with asymptotic unconditional structure. Let $1 \leq p \leq q \leq \infty$ be the power types of r_{X}^{d} and g_{X}^{d} respectively. Then $l_{p}^{n}, l_{q}^{n} \in\{X\}^{d}$ for all $n \in \mathbb{N}$.

The proof of this theorem is non-trivial but the ideas were already known since the 70 's. This theorem can be viewed as a 'disjoint-block' version of the classical Maurey-Pisier Theorem ([MP], see also [MS]). Such a 'disjointblock' version was already proved by Milman and Sharir [MiS] in a different formulation. They have defined the notion of 'asymptotic block type and cotype' and showed, analogously to the Maurey-Pisier Theorem, that if q is the infimum of asymptotic block cotype and p is the supremum of asymptotic block type of the space X with an asymptotic unconditional structure, then ℓ_{q} and ℓ_{p} are 'disjointly' block finitely representable in X.

Although they make use of different notions, Theorem 3.7.1 in spirit is equivalent to Milman-Sharir's result. However, our proof here, which is based on a recent presentation of the proof of the Maurey-Pisier Theorem given by Maurey $[\mathrm{M}]$, is somewhat shorter than that of [MiS].

An important ingredient of the proof, as in the proof of the Maurey-Pisier theorem, is Krivine's theorem. We will use the following statement which is actually a corollary of Krivine's theorem, as stated in [M].

Krivine's Theorem Let $r, s \geq 1$, let X be a Banach space. Suppose that for some $\kappa>0$ and for every $n \geq 2, X$ contains a normalized (suppression) unconditional sequence $\mathbf{y}^{(n)}=\left(y_{1}^{(n)}, \ldots, y_{n}^{(n)}\right)$ such that

$$
\left\|\sum_{i \in C} y_{i}^{(n)}\right\| \geq \kappa|C|^{1 / r}
$$

for every subset $C \subset\{1, \ldots, n\}$, or such that

$$
\left\|\sum_{i \in C} y_{i}^{(n)}\right\| \leq \kappa|C|^{1 / s}
$$

for every subset $C \subset\{1, \ldots, n\}$. Then for some $p \leq r$ (or $p \geq s$) and for every $k \geq 1, \varepsilon>0$, there is $N(k, \varepsilon)$ such that whenever $n \geq N(k, \varepsilon)$, it is possible to form k successive blocks of $\mathbf{y}^{(n)}$ that are $(1+\varepsilon)$-equivalent to the unit vector basis of ℓ_{p}^{k}.

Proof of Theorem 3.7.1 Without loss of generality we will assume that the asymptotic unconditionality constant is $C=1$ (in the general case the estimates in the proof should be multiplied by C).
g_{X}^{d} Case. Let q be the power type of g_{X}^{d}. If $q=1$, since $g_{X}^{d} \leq g_{X}$, then the power type of g_{X} is also equal to 1 . Thus it follows immediately from Krivine's theorem that $\ell_{1}^{n} \in\{X\}_{n}$ for all n. (This fact does not require the asymptotic unconditionality assumption.)

Now suppose that $q>1$. Let $1<s<q$ and for all $n \in \mathbb{N}$, let $\phi(n)$ be the
smallest real number for which

$$
\sum_{i=1}^{n}\left|a_{i}\right|^{s} \leq \phi(n)^{s}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{s}
$$

for all $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$ and scalars $\left\{a_{i}\right\}$.
Since the power type of g_{X}^{d} is q and $s<q$, it follows that ϕ is not bounded as a function of n, and it is easy to see that it is increasing.

We will refer to the following argument as 'the exhaustion' argument.
Fix $0<\varepsilon<1 / 2$ and pick $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$ and scalars $\left\{a_{i}\right\}$ such that $\sum_{i=1}^{n}\left|a_{i}\right|^{s}=1$ and

$$
\begin{equation*}
1>(1-\varepsilon) \phi(n)^{s}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{s} \tag{3.6}
\end{equation*}
$$

Let $\left(B_{\alpha}\right)_{\alpha \in I}$ be a maximal family of mutually disjoint subsets of $\{1,2, \ldots, n\}$, possibly empty, such that

$$
\begin{equation*}
\sum_{i \in B_{\alpha}}\left|a_{i}\right|^{s} \leq \varepsilon\left\|\sum_{i \in B_{\alpha}} a_{i} x_{i}\right\|^{s} \tag{3.7}
\end{equation*}
$$

Let B be the union of the sets $B_{\alpha}, B=\bigcup_{\alpha \in I} B_{\alpha}$, and let m be the cardinality of the index set I (note that $m<n$ because $\left|B_{\alpha}\right|>1$). Then

$$
\begin{align*}
\sum_{i \in B}\left|a_{i}\right|^{s} & =\sum_{\alpha \in I} \sum_{i \in B_{\alpha}}\left|a_{i}\right|^{s} \leq \sum_{\alpha \in I} \varepsilon\left\|\sum_{i \in B_{\alpha}} a_{i} x_{i}\right\|^{s} \\
& \leq \varepsilon \phi(m)^{s}\left\|\sum_{\alpha \in I} \sum_{i \in B_{\alpha}} a_{i} x_{i}\right\|^{s} \leq \varepsilon \phi(n)^{s}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{s}, \tag{3.8}
\end{align*}
$$

here the second inequality uses the definition of $\phi(m)$ applied to vectors $\left\{u_{\alpha}\right\}_{\alpha=1}^{m} \in$ $\{X\}^{d}$, where $u_{\alpha}=\frac{\sum_{i \in B_{\alpha}} a_{i} x_{i}}{\left\|\sum_{i \in B_{\alpha}} a_{i} x_{i}\right\|}$ for all $\alpha \in I$, and the last inequality uses the unconditionality of $\left\{x_{i}\right\}$ and the fact that $\phi(m) \leq \phi(n)$.

Let A denote the complement of B and for every $j \geq 0$ let

$$
A_{j}=\left\{i \in A: 2^{-j-1}<\left|a_{i}\right| \leq 2^{-j}\right\} .
$$

Then from (3.6) and (3.8) it follows that

$$
\begin{equation*}
\sum_{i \in A}\left|a_{i}\right|^{s}>(1-2 \varepsilon) \phi(n)^{s}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{s} \tag{3.9}
\end{equation*}
$$

Let j_{1} be the smallest $j \geq 0$ such that A_{j} is non-empty, and let $k=\left|A_{j_{0}}\right|$ be the cardinality of the largest set $A_{j_{0}}$ among all A_{j} 's. Then by (3.9),

$$
\begin{aligned}
k \sum_{j=j_{1}}^{\infty} 2^{-j s} & \geq \sum_{j=j_{1}}^{\infty} 2^{-j s}\left|A_{j}\right| \geq \sum_{i \in A}\left|a_{i}\right|^{s} \\
& >(1-2 \varepsilon) \phi(n)^{s}\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{s} \geq(1-2 \varepsilon) \phi(n)^{s} 2^{-j_{1} s-s}
\end{aligned}
$$

This shows that k is large when $\phi(n)$ is large. i.e., since $\phi(n)$ increases to infinity with n, so does k.

Now by maximality of B,

$$
\sum_{i \in C}\left|a_{i}\right|^{s}>\varepsilon\left\|\sum_{i \in C} a_{i} x_{i}\right\|^{s}
$$

for every non-empty subset $C \subset A_{j_{0}}$. Since $2^{-j_{0}-1}<\left|a_{i}\right| \leq 2^{-j_{0}}$ for every $i \in A_{j_{0}}$, it follows that

$$
\left\|\sum_{i \in C} x_{i}\right\| \leq 2(1 / \varepsilon)^{1 / s}|C|^{1 / s} \leq 2(1 / \varepsilon)|C|^{1 / s}
$$

for all $C \subset A_{j_{0}}$.
Therefore we have obtained that there exists a constant $\kappa=2(1 / \varepsilon)$ such that for all $k \in \mathbb{N}$ there exists $\left\{x_{i}\right\}_{i=1}^{k} \in\{X\}^{d}$ such that $\left\|\sum_{i \in C} x_{i}\right\| \leq \kappa|C|^{1 / s}$ for all $C \subset\{1, \ldots, k\}$ and $s<q$.

Now by Krivine's theorem, there is $q^{\prime} \geq s$ such that $\ell_{q^{\prime}}^{n} \in\{X\}^{d}$ for all n. But since $s<q$ was arbitrary and q is the power type of g_{X}^{d}, it follows that $q^{\prime}=q$, hence the proof of this case is completed.
r_{X}^{d} Case. The proof of this case is similar but there are slight differences.
Let p be the power type of r_{X}^{d}. If $p=\infty$, since $r_{X} \leq r_{X}^{d}$, then the power type of r_{X} is also equal to infinity. Again it follows immediately from Krivine's theorem that $\ell_{\infty}^{n} \in\{X\}_{n}$ for all n. (This does not require the asymptotic unconditionality assumption.)

Now suppose that $p<\infty$, and fix $p<r$. For each $n \geq 1$, let $\psi(n)$ be the smallest constant such that

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{r} \leq \psi(n)^{r} \sum_{i=1}^{n}\left|a_{i}\right|^{r}
$$

for all $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$ and scalars $\left\{a_{i}\right\}$.
Since the power type of r_{X}^{d} is p and $p<r$, it follows that $\psi(n)$ increases to infinity.

Fix $0<\varepsilon<1 / 2$ and pick $\left\{x_{i}\right\}_{i=1}^{n} \in\{X\}^{d}$ and scalars $\left\{a_{i}\right\}$ such that $\sum_{i=1}^{n}\left|a_{i}\right|^{r}=1$ and

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{r}>(1-\varepsilon) \psi(n)^{r} \tag{3.10}
\end{equation*}
$$

Let $\left(B_{\alpha}\right)_{\alpha \in I}$ be a maximal family of mutually disjoint subsets of $\{1,2, \ldots, n\}$ such that

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{r} \leq \varepsilon \sum_{i \in B_{\alpha}}\left|a_{i}\right|^{r} \tag{3.11}
\end{equation*}
$$

Let B be the union of the sets $B_{\alpha}, B=\bigcup_{\alpha \in I} B_{\alpha}$, and m be the cardinality
of the index set I. Then

$$
\begin{align*}
\left\|\sum_{i \in B} a_{i} x_{i}\right\|^{r} & =\left\|\sum_{\alpha \in I} \sum_{i \in B_{\alpha}} a_{i} x_{i}\right\|^{r} \\
& \leq \psi(m)^{r} \sum_{\alpha \in I}\left\|\sum_{i \in B_{\alpha}} a_{i} x_{i}\right\|^{r} \tag{3.12}\\
& \leq \varepsilon \psi(m)^{r} \sum_{\alpha \in I} \sum_{i \in B_{\alpha}}\left|a_{i}\right|^{r} \leq \varepsilon \psi(n)^{r} .
\end{align*}
$$

Let A denote the complement of B and for every $j \geq 0$ let

$$
A_{j}=\left\{i \in A: 2^{-j-1}<\left|a_{i}\right| \leq 2^{-j}\right\} .
$$

Then $A=\bigcup_{j=0}^{\infty} A_{j}$ because $\sum_{i=1}^{n}\left|a_{i}\right|^{r}=1$. Let $k=\max _{j}\left|A_{j}\right|$ denote the maximal cardinality of the sets $\left\{A_{j}\right\}_{j \geq 0}$. Then,

$$
\begin{align*}
\left\|\sum_{i \in A} a_{i} x_{i}\right\| & =\left\|\sum_{j=0}^{\infty} \sum_{i \in A_{j}} a_{i} x_{i}\right\| \\
& \leq \sum_{j=0}^{\infty}\left\|\sum_{i \in A_{j}} a_{i} x_{i}\right\| \leq k \sum_{j=0}^{\infty} 2^{-j}=2 k \tag{3.13}
\end{align*}
$$

Hence, using (3.10), (3.12) and (3.13), we obtain

$$
\begin{aligned}
(1-\varepsilon)^{1 / r} \psi(n) & <\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \\
& \leq\left\|\sum_{i \in B} a_{i} x_{i}\right\|+\left\|\sum_{i \in A} a_{i} x_{i}\right\| \\
& \leq \varepsilon^{1 / r} \psi(n)+2 k
\end{aligned}
$$

which shows that k is big when $\psi(n)$ is big. Let j_{0} be such that $\left|A_{j_{0}}\right|=k$. By maximality of B we obtain that for every non-empty subset C of $A_{j_{0}}$, we have

$$
\left\|\sum_{i \in C} a_{i} x_{i}\right\|^{r}>\varepsilon \sum_{i \in C}\left|a_{i}\right|^{r} \geq \varepsilon 2^{-\left(j_{0}+1\right) r}|C|
$$

It follows that

$$
\left\|\sum_{i \in C} x_{i}\right\| \geq(1 / 2) \varepsilon^{1 / r}|C|^{1 / r}
$$

Since we can find such vectors $\left\{x_{i}\right\}_{i=1}^{k} \in\{X\}^{d}$ for all $k \in \mathbb{N}$, the result follows again from Krivine's theorem. i.e., $\ell_{p}^{n} \in\{X\}^{d}$ for all $n \in \mathbb{N}$.

We now give the proof the remaining part of Proposition 3.2.4, as was promised in section 3.2.

Proof of Proposition 3.2.4 (g_{X}^{d} Case) We have already shown using the super-multiplicativity of g_{X}^{d} that there exists $1 \leq q \leq \infty$ such that for all $\varepsilon>0$ there exists a constant $c_{\varepsilon}>0$ such that for all n, we have

$$
c_{\varepsilon} n^{1 / q+\varepsilon} \leq g_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq n^{1 / q}
$$

We first show the lower estimate for the envelope, i.e., for all $\varepsilon>0$ there exists c_{ε}^{\prime} such that $g_{X}^{d}(a) \geq c_{\varepsilon}^{\prime}\|a\|_{q+\varepsilon}$.

For every $\varepsilon>0$ and $n \in \mathbb{N}$, let $\phi_{\varepsilon}(n)$ be the smallest constant such that

$$
\|a\|_{q+\varepsilon} \leq \phi_{\varepsilon}(n) g_{X}^{d}\left(\sum_{i=1}^{n} a_{i} x_{i}\right)
$$

for all disjointly supported vectors $\left\{x_{i}\right\}_{i=1}^{n}$ such that $g_{X}^{d}\left(x_{i}\right)=1$ for all i, and scalars $a \in c_{00}$.

If for every $\varepsilon>0, \sup _{n} \phi_{\varepsilon}(n)<\infty$, then there is nothing to prove.
Suppose that for some $\varepsilon_{0}>0, \sup _{n} \phi_{\varepsilon_{0}}(n)=\infty$. Then, it follows from the exhaustion argument as in the proof of Theorem 3.7.1 (g_{X}^{d} Case) that there exists a constant $\kappa>0$ such that for all n, there exists disjointly supported vectors $\left\{x_{i}\right\}_{i=1}^{n}$ such that $g_{X}^{d}\left(x_{i}\right)=1$ for all i, and

$$
g_{X}^{d}\left(\sum_{i=1}^{n} x_{i}\right) \leq \kappa n^{1 / q+\varepsilon_{0}}
$$

Now fix $\varepsilon_{1}<\varepsilon_{0}$. Then, there exists $c_{\varepsilon_{1}}$ such that for all n, we have

$$
c_{\varepsilon_{1}} n^{1 / q+\varepsilon_{1}} \leq g_{X}^{d}\left(\sum_{i=1}^{n} e_{i}\right) \leq g_{X}^{d}\left(\sum_{i=1}^{n} x_{i}\right) \leq \kappa n^{1 / q+\varepsilon_{0}}
$$

When n is large enough, this is a contradiction. Therefore, for every $\varepsilon>0$, there exists $1 / c_{\varepsilon}^{\prime}=\sup _{n} \phi_{\varepsilon}(n)<\infty$ such that $g_{X}^{d}(a) \geq c_{\varepsilon}^{\prime}\|a\|_{q+\varepsilon}$, as desired.

For the upper estimate, note that by Theorem 3.7.1, $\ell_{q}^{n} \in\{X\}^{d}$ for all $n \in \mathbb{N}$. This immediately implies that $g_{X}^{d}(a) \leq\|a\|_{q}$, for all $a \in c_{00}$. The proof is now completed.

We end this section with a few remarks concerning the finite representability problem for the (original) envelope functions case.

First, we observe that the answer to this problem is negative in general. For instance, if $\left(e_{i}\right)$ is the summing basis for $X=c_{0}$, then r_{X} is equivalent to $\|\cdot\|_{1}$, where the asymptotic structure is with respect to the summing basis $\left(e_{i}\right)$, but $\ell_{1}^{n} \notin\{X\}_{n}$ for all n. Moreover, a non-reflexive Banach space X constructed in [KOS], Example 6.4, has the property that for all n, there exists $\left\{e_{i}\right\}_{i=1}^{n} \in\{X\}_{n}$ such that $\left\|\sum_{i=1}^{n} e_{i}\right\|=1$, in particular, $g_{X} \sim\|\cdot\|_{\infty}$, and yet c_{0} is not block finitely representable in X, in particular, $\ell_{\infty}^{n} \notin\{X\}_{n}$ for all n.

In these examples, the asymptotic structures are (necessarily) not unconditional. As it has been shown in Proposition 3.6.3, for a Banach space X with asymptotic unconditional structure, if the power type of g_{X} is $q=\infty$ (respectively the power type of r_{X} is $p=1$), then $\ell_{\infty}^{n} \in\{X\}_{n}$ (resp. $\ell_{1}^{n} \in\{X\}_{n}$) for all n. Also, if $q=1$ (resp. $p=\infty$), then regardless of the asymptotic unconditionality assumption, Krivine's theorem yields that $\ell_{1}^{n} \in\{X\}_{n}$ (resp. $\ell_{\infty}^{n} \in\{X\}_{n}$) for all n.

It is likely that there are also examples of Banach spaces with asymptotic unconditional structure with power types of the envelopes satisfying $1<p, q<$ ∞ and yet $\ell_{p}^{n}, \ell_{q}^{n} \notin\{X\}_{n}$. However we do not know how to construct such examples. We do not even know if there are such spaces without asymptotic
unconditional structure. For instance, for every $1<p<\infty$, one can define a new norm in a natural way on the space X of [KOS] mentioned above to obtain reflexive X_{p} spaces without asymptotic unconditional structure. However, these natural ' p-versions' of X do not seem to provide such examples. Finally, we do not know if reflexivity plays a role in this problem. This question was raised in [KOS], Problem 6.5.

Part II

Spreading Models of Orlicz
 Sequence Spaces

Chapter 4

The Structure of The Set of Spreading Models of Orlicz

Sequence Spaces

4.1 Introduction

It is a well known consequence of Ramsey theorem that for every normalized basic sequence $\left(y_{i}\right)$ in a Banach space X and for every $\left(\varepsilon_{n}\right) \searrow 0$ there exists a subsequence $\left(x_{i}\right)$ of $\left(y_{i}\right)$ and a normalized basic sequence $\left(\tilde{x}_{i}\right)$ in some Banach space \tilde{X} such that: For all $n \in \mathbb{N},\left(a_{i}\right)_{i=1}^{n} \in[-1,1]^{n}$ and $n \leq k_{1}<\ldots<k_{n}$

$$
\left|\left\|\sum_{i=1}^{n} a_{i} x_{k_{i}}\right\|-\left\|\sum_{i=1}^{n} a_{i} \tilde{x}_{i}\right\|\right|<\varepsilon_{n} .
$$

The sequence $\left(\tilde{x}_{i}\right)$ is called the spreading model of $\left(x_{i}\right)$ (or a spreading model of X) and it is a suppression 1-unconditional basic sequence if $\left(y_{i}\right)$ is weakly null. The subsequence $\left(x_{i}\right)$ is called a good subsequence of $\left(y_{i}\right)$ which generates the spreading model (\tilde{x}_{i}) and it has the property that every further subsequence of $\left(x_{i}\right)$ generates the same spreading model $\left(\tilde{x}_{i}\right)$. However $\left(y_{i}\right)$ might have many good subsequences, each generating a different spreading model.

In general, a spreading model of a Banach space X behaves better than X. For example, it is shown in $[\mathrm{R}]$ that one can always find a 1 -unconditional spreading model of X. It is well known, however, that unconditional basic sequences need not exist in X [GM]. On the other hand, some of the classical conjectures which have been proved to fail for an arbitrary Banach space X fail for spreading models as well. There are examples of Banach spaces for which no spreading model $\left(\tilde{x}_{i}\right)$ is equivalent to unit vector basis of c_{0} or ℓ_{p} for some $1 \leq p<\infty$ [OS2]. It is not true even that every Banach space X admits a spreading model which is either isomorphic to c_{0} or ℓ_{1} or is reflexive [AOST].

In a more general context, given a Banach space X, it is also of interest to study the set (or a particular subset) of all spreading models of X. One such approach due to Androulakis, Odell, Schlumprecht and Tomczak-Jaegermann [AOST] is following. Consider the set $S P_{\omega}(X)$, the partially ordered set of all spreading models (\tilde{x}_{i}) generated by normalized weakly null sequences in X. The partial order is defined by domination: $\left(\tilde{x}_{i}\right) \geq\left(\tilde{y}_{i}\right)$ if for some $K<\infty$, $K\left\|\sum_{i} a_{i} \tilde{x}_{i}\right\| \geq\left\|\sum_{i} a_{i} \tilde{y}_{i}\right\|$ for all scalars $\left(a_{i}\right)$. And identify $\left(\tilde{x}_{i}\right)$ and (\tilde{y}_{i}) in $S P_{\omega}(X)$ if $\left(\tilde{x}_{i}\right) \geq\left(\tilde{y}_{i}\right)$ and $\left(\tilde{y}_{i}\right) \geq\left(\tilde{x}_{i}\right)$. What can be said about the structure of the partially ordered set $S P_{\omega}(X)$?

The following theorem proved in [AOST] says that every countable subset of $S P_{\omega}(X)$ admits an upper bound in $S P_{\omega}(X)$.

Theorem 4.1.1 (AOST) Let $\left(C_{n}\right) \subset(0, \infty)$ such that $\sum_{n} C_{n}^{-1}<\infty$ and let X be a Banach space. For all $n \in \mathbb{N}$, let $\left(x_{i}^{n}\right)_{i}$ be a normalized weakly null sequence in X having spreading model $\left(\tilde{x}_{i}^{n}\right)_{i}$. Then there exists a semi-normalized weakly null basic sequence $\left(y_{i}\right)$ in X such that $\left(\tilde{y}_{i}\right) C_{n}$-dominates $\left(\tilde{x}_{i}^{n}\right)_{i}$ for all $n \in \mathbb{N}$.

The purpose of this chapter is to study the structure of the set $S P_{\omega}(X)$ when X is an Orlicz sequence space. In this case the above quoted theorem takes a simple form and it is particularly well illustrated. One of our main observation is the following. If an Orlicz sequence space X admits a spreading model (\tilde{x}_{i}) which dominates (but is not equivalent to) the (symmetric) unit
vector basis of X, then $S P_{\omega}(X)$ contains an uncountable increasing chain. As a consequence, we give a description of the structure of the set of spreading models of reflexive Orlicz sequence spaces X which have only countably many mutually non-equivalent spreading models. We show that in this case the set $S P_{\omega}(X)$ has a very special form: it contains both the upper and the lower bounds and moreover the upper bound is the space X itself and the lower bound is some ℓ_{p} space.

4.2 Preliminaries in Orlicz Sequence Spaces

We recall the basics of Orlicz sequence spaces following the book [LT], with which our notation is consistent.

An Orlicz function M is a real valued continuous non-decreasing and convex function defined for $t \geq 0$ such that $M(0)=0$ and $\lim _{t \rightarrow \infty} M(t)=\infty$. If $M(t)=0$ for some $t>0, M$ is said to be a degenerate function.

To any Orlicz function M we associate the space ℓ_{M} of all sequences of scalars $x=\left(a_{1}, a_{2}, \ldots\right)$ such that $\sum_{n=1}^{\infty} M\left(\left|a_{n}\right| / \rho\right)<\infty$ for some $\rho>0$. The space ℓ_{M} is equipped with the norm

$$
\|x\|=\inf \left\{\rho>0: \quad \sum_{n=1}^{\infty} M\left(\left|a_{n}\right| / \rho\right) \leq 1\right\}
$$

which makes ℓ_{M} into a Banach space called an Orlicz sequence space.
The subspace h_{M} of ℓ_{M} consisting of those sequences $x=\left(a_{1}, a_{2}, \ldots\right) \in \ell_{M}$ for which $\sum_{n=1}^{\infty} M\left(\left|a_{n}\right| / \rho\right)<\infty$ for every $\rho>0$ is closed and the unit vectors $\left\{e_{n}\right\}_{n=1}^{\infty}$ form a symmetric basis of h_{M}.

It is easy to verify that if M is a degenerate Orlicz function then $\ell_{M} \simeq \ell_{\infty}$ and $h_{M} \simeq c_{0}$. Since we will not be interested in these spaces, all the Orlicz functions appearing in this chapter will be assumed to be non-degenerate, unless otherwise stated.

An Orlicz function M is said to satisfy Δ_{2}-condition at zero if

$$
\lim _{t \rightarrow 0} \sup \frac{M(2 t)}{M(t)}<\infty .
$$

It is easily checked that the Δ_{2}-condition at zero implies that, for every positive number $Q, \lim _{t \rightarrow 0} \sup \frac{M(Q t)}{M(t)}<\infty$ (this condition is called the $\Delta_{Q^{-}}$ condition).

Some other conditions, each of which is equivalent to Δ_{2}-condition (Proposition 4.a.4, [LT]), are :
a) $\ell_{M}=h_{M}$
b) ℓ_{M} does not contain a subspace isomorphic to ℓ_{∞}
c) The unit vectors form a boundedly complete symmetric basis of ℓ_{M}.

In particular, if ℓ_{M} (or h_{M}) is reflexive, then M satisfies Δ_{2}-condition.
Two Orlicz functions M_{1} and M_{2} are equivalent at zero if there exist positive constants K, k, t_{0} such that

$$
K^{-1} M_{2}\left(k^{-1} t\right) \leq M_{1}(t) \leq K M_{2}(k t)
$$

for all $0<t \leq t_{0}$. When M_{1} or M_{2} satisfies Δ_{2}-condition then they are equivalent (at zero) if there exist constants $K>0$ and $t_{0}>0$ such that $K^{-1} \leq M_{1}(t) / M_{2}(t) \leq K$ for all $0<t \leq t_{0}$. This is the case if and only if $\ell_{M_{1}}$ and $\ell_{M_{2}}$ consist of the same sequences i.e. the unit vector bases in $\ell_{M_{1}}$ and $\ell_{M_{2}}$ are equivalent.

For an Orlicz function M consider the following subsets of the Banach space $C\left(0, \frac{1}{2}\right)$ of all real valued continuous functions on ($0, \frac{1}{2}$);

$$
\begin{aligned}
E_{M, \Lambda} & =\overline{\left\{\frac{M(\lambda t)}{M(\lambda)} ; \quad 0<\lambda<\Lambda\right\}}, \quad E_{M}=\bigcap_{0<\Lambda} E_{M, \Lambda} \\
C_{M, 1} & =\overline{\operatorname{conv}} E_{M, 1} \quad \text { and } \quad C_{M}=\overline{\operatorname{conv}} E_{M}
\end{aligned}
$$

where the closure is taken in the norm topology of $C\left(0, \frac{1}{2}\right)$. Then $E_{M, 1}, E_{M}$,
$C_{M, 1}$ and C_{M} are non-empty norm compact subsets of $C\left(0, \frac{1}{2}\right)$ consisting entirely of Orlicz functions (Lemma 4.a.6, [LT]).

The importance of these sets is due to the following result (Proposition 4.a. 7 and Theorem 4.a.8, [LT]).

Theorem 4.2.1 For every Orlicz function M the following assertions are true.
i) Every infinite-dimensional subspace Y of h_{M} contains a closed subspace Z which is isomorphic to some Orlicz sequence space h_{N}.
ii) Let X be a subspace of h_{M} which has a subsymmetric basis $\left\{x_{i}\right\}$. Then X is isomorphic to some Orlicz sequence space h_{N} and $\left\{x_{i}\right\}$ is equivalent to the unit vector basis of h_{N}. Moreover the function N belongs to the set $C_{M, 1}$.
iii) An Orlicz sequence space h_{N} is isomorphic to a subspace of h_{M} if and only if N is equivalent to some function in $C_{M, 1}$.

By (ii) of the above theorem, every subsymmetric basic sequence in an Orlicz sequence space is symmetric.

Finally we recall that every Orlicz sequence space h_{M} contains isomorphic copies of some ℓ_{p} or c_{0}. Moreover the set of p 's for which ℓ_{p} is contained in h_{M} is a closed interval (Theorem 4.a.9, [LT]).

4.3 Spreading Models of Orlicz Sequence Spaces

By Theorem 4.2.1, the set $C_{M, 1}$ 'coincides' (i.e. there is a one-to-one correspondence) with the collection of all subspaces of h_{M} which have a subsymmetric (or a symmetric) basis. The following proposition shows that the collection $S P_{\omega}\left(h_{M}\right)$ of all spreading models of h_{M} generated by weakly null basic sequences is also 'contained' in the set $C_{M, 1}$. The proof is a simple generalization of the argument given in $[\mathrm{LT}]$ (Proposition 4.a.7).

Proposition 4.3.1 Let M be an Orlicz function. Let $\left(\tilde{x}_{i}\right)$ be a spreading model generated by a weakly null sequence $\left(x_{i}\right)$ in h_{M}. Then there exists $N \in C_{M, 1}$
such that $\left(\tilde{x_{i}}\right)$ is equivalent to the unit vector basis of h_{N}. Moreover, $\left(\tilde{x}_{i}\right)$ is equivalent to a subsequence of $\left(x_{i}\right)$.

Proof Let $\left(y_{i}\right)$ be the good subsequence of $\left(x_{i}\right)$ which generates $\left(\tilde{x}_{i}\right)$. Since $\left(x_{i}\right)$ (and hence $\left(y_{i}\right)$) is weakly null by passing to a further subsequence if necessary we can assume that $\left(y_{i}\right)$ is a block basic sequence of the unit vector basis of h_{M}.

For each $i=1,2, \ldots$ let $y_{i}=\sum_{l=n_{i-1}+1}^{n_{i}} c_{l} e_{l}$. To every vector y_{i} we associate the function $M_{i}(t)=\sum_{l=n_{i-1}+1}^{n_{i}} M\left(\left|c_{l}\right| t\right)$. Since y_{i} is normalized, $\sum_{l=n_{i-1}+1}^{n_{i}} M\left(\left|c_{l}\right|\right)=$ 1 and hence the functions $\left\{M_{i}\right\}_{i=1}^{\infty}$, as elements of $C\left(0, \frac{1}{2}\right)$, belong to the set $C_{M, 1}$.

Now by the norm compactness of $C_{M, 1}$ (in $C\left(0, \frac{1}{2}\right)$), there exists a subsequence $\left\{M_{i_{n}}\right\}_{n=1}^{\infty}$ of $\left\{M_{i}\right\}$ and an Orlicz function $N \in C_{M, 1}$, which might be degenerate, so that $\left|M_{i_{n}}(t)-N(t)\right| \leq 2^{-n}$ for $0 \leq t \leq 1 / 2$ and $n=1,2, \ldots$. Assume for simplicity of notation that the subsequence $\left\{M_{i_{n}}\right\}_{n=1}^{\infty}$ coincides with the whole sequence $\left\{M_{i}\right\}$.

Now for any $a=\left(a_{i}\right)_{i=1}^{m} \in c_{00}$, we have

$$
\begin{aligned}
\left\|\sum_{i=1}^{m} a_{i} \tilde{x}_{i}\right\| & =\lim _{k_{1} \rightarrow \infty} \ldots \lim _{k_{m} \rightarrow \infty}\left\|\sum_{i=1}^{m} a_{i} y_{k_{i}}\right\| \\
& =\lim _{k_{1} \rightarrow \infty} \cdots \lim _{k_{m} \rightarrow \infty} \inf \left\{\rho: \sum_{i=1}^{m} M_{k_{i}}\left(\left|a_{i}\right| / \rho\right) \leq 1\right\} \\
& =\inf \left\{\rho: \sum_{i=1}^{m} N\left(\left|a_{i}\right| / \rho\right) \leq 1\right\} \\
& =\left\|\sum_{i=1}^{m} a_{i} e_{i}\right\|_{h_{N}}
\end{aligned}
$$

Moreover, the above argument yields that $\left(\tilde{x}_{i}\right)$ is actually equivalent to a subsequence of $\left(x_{i}\right)$. Indeed, since $\left|M_{i_{n}}(t)-N(t)\right| \leq 2^{-n}$ for $0 \leq t \leq 1 / 2$ and $n=$ $1,2, \ldots$, it follows that $\sum_{n=1}^{\infty} M_{i_{n}}\left(\left|a_{n}\right|\right)<\infty$ if and only if $\sum_{n=1}^{\infty} N\left(\left|a_{n}\right|\right)<\infty$, provided that N is non-degenerate. Hence the corresponding subsequence ($y_{i_{n}}$) is equivalent to unit vector basis of h_{N} (Proposition 4.a.7, [LT]). If $N(t)=0$ for some $t>0$, then $\left(z_{n}\right)$ is equivalent to unit vector basis of c_{0} which, in this case, is isomorphic to h_{N}.

Obviously, by Theorem 4.2.1, for every $N \in C_{M, 1}, h_{N}$ is a spreading model of h_{M}. Hence, with some abuse of notation, we can write

$$
S P_{\omega}\left(h_{M}\right) \subset C_{M, 1} \subset S P\left(h_{M}\right)
$$

where $S P\left(h_{M}\right)$ denotes the set of all spreading models of h_{M}.
Proposition 4.3.2 Let M_{1} and M_{2} be two Orlicz functions. Then the unit vector basis of $h_{M_{1}}$ dominates the unit vector basis of $h_{M_{2}}$ if and only if there exist constants $K>0, k>0$ and $t_{0}>0$ such that $M_{2}(t) \leq K M_{1}(k t)$ for all $0<t \leq t_{0}$.

Proof Suppose that the unit vector basis of $h_{M_{1}}$ dominates the unit vector basis of $h_{M_{2}}$. Let $\left\|\sum_{i=1}^{n} e_{i}\right\|_{h_{M_{1}}}=\rho_{n}$. We may assume that $\rho_{n} \nearrow \infty$. Indeed, otherwise both $h_{M_{1}}$ and $h_{M_{2}}$ are isomorphic to c_{0} and the conclusion is trivial. By assumption, in particular, there exists a constant $K \geq 1$ such that $\left\|\sum_{i=1}^{n} e_{i}\right\|_{h_{M_{2}}} \leq K\left\|\sum_{i=1}^{n} e_{i}\right\|_{h_{M_{1}}}$ for all $n \in N$. Then by definition of the norms, $M_{2}\left(1 / \rho_{n}\right) \leq K M_{1}\left(1 / \rho_{n}\right)$ for all $n \in N$. Now let $0<t \leq 1$ be arbitrary and suppose that for some n we have $1 / \rho_{n+1}<t \leq 1 / \rho_{n}$. Also let $k=\sup _{n} \rho_{n+1} / \rho_{n}$ (note that $k \leq 2$). Hence $M_{2}(t) \leq M_{2}\left(1 / \rho_{n}\right) \leq K M_{1}\left(1 / \rho_{n}\right) \leq K M_{1}(k t)$.

Conversely, suppose that $M_{2}(t) \leq K M_{1}(k t)$ for all $0<t \leq t_{0}$. Let $\left(a_{1}, a_{2}, \ldots\right)$ be an arbitrary scalar sequence such that $\left|a_{i}\right| \leq t_{0}$. Then

$$
\begin{aligned}
k\left\|\sum_{i} a_{i} e_{i}\right\|_{h_{M_{2}}} & =\inf \left\{\rho: \sum_{i} M_{2}\left(k\left|a_{i}\right| / \rho\right) \leq 1\right\} \\
& \leq \inf \left\{\rho: \sum_{i} M_{1}\left(\left|a_{i}\right| / \rho\right) \leq 1 / K\right\} \\
& =K\left\|\sum_{i} a_{i} e_{i}\right\|_{h_{M_{1}}}
\end{aligned}
$$

Moreover the assumption $\left|a_{i}\right| \leq t_{0}$ is not a restriction. Since the inequality we have just proved is homogeneous, by rescaling we can always assume that $\left|a_{i}\right| \leq t_{0}$.

Definition 4.3.3 Let N_{1} and N_{2} be two Orlicz functions. We say that N_{1} dominates N_{2} and denote by $N_{2} \leq N_{1}$ if there exist constants $K>0, k>0$ and $t_{0}>0$ such that $N_{2}(t) \leq K N_{1}(k t)$ for all $0<t \leq t_{0}$. We write $N_{2}<N_{1}$ if $N_{2} \leq N_{1}$ but $N_{1} \not \leq N_{2}$.

We shall occasionally also write $N_{1} \geq N_{2}$ instead of $N_{2} \leq N_{1}$. Obviously, $N_{2} \leq N_{1}$ and $N_{1} \leq N_{2}$ means that N_{1} is equivalent to N_{2}. Hence by Proposition 4.3.2, we have

$$
N_{2} \leq N_{1} \text { if and only if } h_{N_{2}} \leq h_{N_{1}},
$$

where the latter relation means that the unit vector basis of $h_{N_{1}}$ dominates the unit vector basis of $h_{N_{2}}$.

As mentioned earlier, it is shown in [AOST] that for an arbitrary Banach space X every countable subset of $S P_{\omega}(X)$ admits an upper bound in $S P_{\omega}(X)$. When X is an Orlicz sequence space, the corresponding result becomes an easy observation. Before stating this result we need the following easy lemma which will be used in the sequel.

Lemma 4.3.4 Let M be an Orlicz function. The unit vector basis $\left(e_{i}\right)$ of h_{M} is weakly null if and only if h_{M} is not isomorphic to ℓ_{1} if and only if $\lim _{t \rightarrow 0} M(t) / t=0$. In particular, $h_{N} \in S P_{\omega}\left(h_{M}\right)$ if and only if $N \in C_{M, 1}$ and $\lim _{t \rightarrow 0} N(t) / t=0$.

Proof The first equivalence follows from standard known results; if h_{M} is isomorphic to ℓ_{1}, since ℓ_{1} has unique symmetric basis, then the unit vector basis $\left(e_{i}\right)$ of h_{M} is equivalent to the unit vector basis of ℓ_{1} and hence it is not weakly null. Moreover, if $\left(e_{i}\right)$ is not weakly null, since it is symmetric, it is equivalent to the unit vector basis of ℓ_{1} (cf. Proposition 3.b.5, [LT]).

For the second equivalence, first we note that for every Orlicz function M, $\lim _{t \rightarrow 0} M(t) / t$ exists. This follows from the fact that the function $M(t) / t$ is monotone. Indeed, by convexity of M, for all $0<t<s$, we have $M(t) \leq$ $(t / s) M(s)+(1-t / s) M(0)=(t / s) M(s)$. i.e., $M(t) / t \leq M(s) / s$.

Moreover, for all n, by definition of the norm of h_{M}, we have

$$
\frac{\left\|\sum_{i=1}^{n} e_{i}\right\|_{h_{M}}}{n}=\frac{1}{n M^{-1}(1 / n)}=\frac{M\left(t_{n}\right)}{t_{n}}
$$

where M^{-1} is the inverse function of M and for all $n, M^{-1}(1 / n)=t_{n}$. (Note also that t_{n} tends to zero.) It follows that, $\lim _{n \rightarrow \infty}\left\|\sum_{i=1}^{n} e_{i}\right\|_{h_{M}} / n$ exists as well. Now recall the well known fact that a subsymmetric unconditional basis $\left(y_{i}\right)$ is equivalent to the unit vector basis of ℓ_{1} if and only if $\lim _{n \rightarrow \infty}\left\|\sum_{i=1}^{n} y_{i}\right\| / n>0$ (cf. [BL]). Since the unit vector basis $\left(e_{i}\right)$ of h_{M} is symmetric, in particular, it is subsymmetric, consequently it follows that the unit vector basis (e_{i}) of h_{M} is not equivalent to the unit vector basis of ℓ_{1} if and only if $\lim _{n \rightarrow \infty}\left\|\sum_{i=1}^{n} e_{i}\right\|_{h_{M}} / n=0$ if and only if $\lim _{t \rightarrow 0} M(t) / t=0$.

Finally, if $h_{N} \in S P_{\omega}\left(h_{M}\right)$, then by the remark following Proposition 4.3.1 the unit vector basis of h_{N} is equivalent to a subsequence of the generating weakly null basic sequence in h_{M}, therefore it is weakly null and by above $\lim _{t \rightarrow 0} N(t) / t=0$.

Remark It follows from the above Lemma and the remark following Proposition 4.3.1 that if an Orlicz sequence space h_{M} does not contain an isomorphic copy of ℓ_{1}, then the sets $S P_{\omega}\left(h_{M}\right)$ and $C_{M, 1}$ coincide. i.e., $S P_{\omega}\left(h_{M}\right)=C_{M, 1}$.

Proposition 4.3.5 Let M be an Orlicz function. Suppose that $h_{N_{1}}, h_{N_{2}}, \ldots \in$ $S P_{\omega}\left(h_{M}\right)$. Then there exists $h_{N_{0}} \in S P_{\omega}\left(h_{M}\right)$ such that $h_{N_{0}}$ dominates $h_{N_{i}}$ for every $i \in \mathbb{N}$.

Proof By Lemma 4.3.4, $N_{1}, N_{2}, \ldots \in C_{M, 1}$ and $\lim _{t \rightarrow 0} N_{i}(t) / t=0$ for all i. Define $N_{0}(t)=\sum_{i=1}^{\infty} 2^{-i} N_{i}(t)$, then clearly $N_{0} \in C_{M, 1}$. For every $i \in \mathbb{N}$, $N_{0}(t) \geq 2^{-i} N_{i}(t)$ for all $t>0$. Hence $h_{N_{0}}$ dominates $h_{N_{i}}$ for every $i \in \mathbb{N}$. It remains to show that $\lim _{t \rightarrow 0} N_{0}(t) / t=0$.

By uniform boundedness of $C_{M, 1}$ in $C\left(0, \frac{1}{2}\right)$, the sequence $\left\{N_{i}\right\} \subset C_{M, 1}$ is uniformly bounded on ($0,1 / 2$) (in fact it is bounded by 1 , cf. Lemma 4.a. 6
of [LT]). i.e., $\sup _{i} N_{i}(t) \leq 1$ on $(0,1 / 2)$. In particular, since, as in Lemma 4.3.4, $N_{i}(t) / t$ non-decreasing, we have $N_{i}(t) / t \leq 2 N_{i}(1 / 2) \leq 2$ for all $i \in \mathbb{N}$ and $0<t \leq 1 / 2$.

Let $\varepsilon>0$ and $m \in \mathbb{N}$ such that $2^{-m}<\varepsilon / 4$. Since $\lim _{t \rightarrow 0} N_{i}(t) / t=0$ for all i, there exists $t_{\varepsilon}>0$ such that for all $0<t<t_{\varepsilon}, \sum_{i=1}^{m} 2^{-i \frac{N_{i}(t)}{t}}<\varepsilon / 2$. Then for all $0<t<t_{\varepsilon}$,

$$
\begin{aligned}
\frac{N_{0}(t)}{t} & =\sum_{i=1}^{m} 2^{-i} \frac{N_{i}(t)}{t}+\sum_{i=m+1}^{\infty} 2^{-i} \frac{N_{i}(t)}{t} \\
& <\varepsilon / 2+2 \sum_{i=m+1}^{\infty} 2^{-i}<\varepsilon
\end{aligned}
$$

Consequently, $\lim _{t \rightarrow 0} N_{0}(t) / t=0$, as desired.

We have seen by Proposition 4.3.1 that every spreading model (\tilde{x}_{i}) of an Orlicz sequence space h_{M} generated by a weakly null sequence in h_{M} corresponds to a function N in $C_{M, 1}$. This reduces the study of the partially ordered set $S P_{\omega}\left(h_{M}\right)$ to the study of the partially ordered set $C_{M, 1}$. Hence our next results are on the structure of the set $C_{M, 1}$.

We start with an easy observation which will be used frequently in the sequel.

Lemma 4.3.6 Let M be an Orlicz function satisfying the Δ_{2}-condition. Then for all $N \in C_{M, 1}$, there exists a sequence $\left(G_{n}\right)$ of Orlicz functions which belong to the equivalence class of M in $C_{M, 1}$ such that $\left(G_{n}\right)$ converges uniformly in the norm topology of $C\left(0, \frac{1}{2}\right)$ to N.

Proof By the definition of the set $C_{M, 1}$, clearly, for every $N \in C_{M, 1}$ there exists a sequence $\left(G_{n}\right)$, where $G_{n}=\sum_{i \in \sigma_{n}} \alpha_{i}^{(n)} \frac{M\left(\lambda_{i}^{(n) t}\right)}{M\left(\lambda_{i}^{(n)}\right)}$ for some finite subset $\sigma_{n} \in \mathbb{N}$ and scalars $\alpha_{i}^{(n)}$ with $\sum_{i \in \sigma_{n}} \alpha_{i}^{(n)}=1$ and $0<\lambda_{i} \leq 1 / 2$ such that $\left(G_{n}\right)$ converges uniformly to N in norm topology of $C\left(0, \frac{1}{2}\right)$, due to the norm compactness of $C_{M, 1}$ in $C\left(0, \frac{1}{2}\right)$.

To show that G_{n} is equivalent to M for every $n \in \mathbb{N}$, it is sufficient to show that the functions $\frac{M(\lambda t)}{M(\lambda)}(0<\lambda \leq 1 / 2)$ are equivalent to M. Since M satisfies Δ_{2}-condition, so does every function in $C_{M, 1}$ (with the same constant). Hence,

$$
\lim _{t \rightarrow 0} \frac{M(t)}{M(\lambda t) / M(\lambda)}=\lim _{t \rightarrow 0} \frac{M(\lambda) M(t)}{M(\lambda t)}=K M(\lambda)
$$

where K is the Δ_{2}-condition constant. Also due to the Δ_{2}-condition, M is not degenerate, hence $M(\lambda) \neq 0$. Hence it follows that the functions $\frac{M(\lambda t)}{M(\lambda)}$ and hence G_{n} are equivalent to M, for every $n \in \mathbb{N}$. Note that, if N is not equivalent to M, then the equivalence constants grow to infinity as n increases.

Before stating an important result on the structure of the set $C_{M, 1}$, first we need also the following lemma which is a reformulation in our context of Proposition 3.7 of [AOST].

Lemma 4.3.7 Let $C \subset C_{M, 1}$ be a non-empty subset satisfying the following two conditions:
(i) C does not have a maximal element with respect to domination.
(ii) For every $\left(N_{i}\right) \subset C$ there exists $N \in C$ such that $N_{i} \leq N$ for every $i \in \mathbb{N}$.

Then for all ordinals $\alpha<\omega_{1}$ there exists $N^{\alpha} \in C$ such that if $\alpha<\beta<\omega_{1}$ then $N^{\alpha}<N^{\beta}$.

Sketch of the Proof We use transfinite induction. Suppose that N^{α} have been constructed for $\alpha<\beta<\omega_{1}$. Then N^{β} is chosen using (i) if β is a successor ordinal and (ii) if β is a limit ordinal.

The following theorem gives an important criterium on the structure of the set $C_{M, 1}$.

Theorem 4.3.8 Let M be an Orlicz function satisfying Δ_{2}-condition. Suppose that there exists $N_{0} \in C_{M, 1}$ such that $N_{0} \nsubseteq M$. Then the set $C_{M, 1}$ contains an uncountable increasing chain of mutually non-equivalent Orlicz functions.

Proof We will show that there exists a subset C of $C_{M, 1}$ which satisfies the conditions (i) and (ii) of Lemma 4.3.7.

First, we observe that the assumption implies that there exists $N_{0}^{\prime} \in C_{M, 1}$ satisfying $N_{0}^{\prime} \not \leq M$ which is, additionally, of the form

$$
\sum_{i=1}^{\infty} c_{i} \frac{M\left(\lambda_{i} t\right)}{M\left(\lambda_{i}\right)}
$$

for some $c_{i}>0$ with $\sum_{i} c_{i}=1$, and for $0<\lambda_{i}<1$.
Indeed, let $\left(G_{n}\right)$ be a sequence in the equivalence class of M which converges uniformly to N_{0} (Lemma 4.3.6). Since $N_{0} \not \leq M$, there exists a sequence $\left(t_{k}\right) \searrow 0$ such that for all $k \in \mathbb{N}$,

$$
\frac{M\left(t_{k}\right)}{N_{0}\left(t_{k}\right)}<\frac{1}{k 2^{k}}
$$

For every k, let n_{k} be such that $G_{n_{k}}\left(t_{k}\right) \geq(1 / 2) N_{0}\left(t_{k}\right)$, and put $N_{0}^{\prime}(t)=$ $\sum_{k=1}^{\infty} 2^{-k} G_{n_{k}}(t) \in C_{M, 1}$. Then,

$$
N_{0}^{\prime}\left(t_{k}\right) \geq 2^{-k} G_{n_{k}}\left(t_{k}\right) \geq 2^{-(k+1)} N_{0}\left(t_{k}\right) \geq(k / 2) M\left(t_{k}\right) .
$$

That is, $\lim \sup _{t \rightarrow 0} \frac{N_{0}^{\prime}(t)}{M(t)}=\infty$ and hence $N_{0}^{\prime} \nsubseteq M$. And clearly,

$$
\begin{aligned}
N_{0}^{\prime}(t)=\sum_{k=1}^{\infty} 2^{-k} G_{n_{k}}(t) & =\sum_{k} 2^{-k} \sum_{i} \alpha_{i}^{\left(n_{k}\right)} \frac{M\left(\lambda_{i}^{\left(n_{k}\right)} t\right)}{M\left(\lambda_{i}^{\left(n_{k}\right)}\right)} \\
& =\sum_{i} c_{i} \frac{M\left(\lambda_{i} t\right)}{M\left(\lambda_{i}\right)}
\end{aligned}
$$

for some c_{i} such that $\sum_{i} c_{i}=1$ and $0<\lambda_{i}<1$.
For convenience of notation we denote N_{0}^{\prime} by N_{0} again. So suppose that $N_{0}(t)=\sum_{i} c_{i} \frac{M\left(\lambda_{i} t\right)}{M\left(\lambda_{i}\right)}$. Observe that $c_{i} \neq 0$ for infinitely many i 's, due to the assumption that $N_{0} \not \leq M$.

For all n, let s_{n} be the normalized partial sum,

$$
s_{n}(t)=\frac{1}{\sum_{i=1}^{n} c_{i}} \sum_{i=1}^{n} c_{i} \frac{M\left(\lambda_{i} t\right)}{M\left(\lambda_{i}\right)}
$$

Then $s_{n} \in C_{M, 1}$. Let $k_{0} \in \mathbb{N}$ such that $\sum_{i=1}^{k_{0}} c_{i} \geq 1 / 2$. Then for all $n \geq k_{0}$, we have $s_{n}(t) \leq 2 N_{0}(t)$ for all $0 \leq t \leq 1$. Let us relabel the sequence $\left\{s_{n}\right\}_{n=k_{0}}^{\infty}$ and denote it again by $\left\{s_{n}\right\}_{n=1}^{\infty}$.

Now let

$$
C=\left\{\mathcal{N} \in C_{M, 1}: \mathcal{N}(t)=\sum_{n=1}^{\infty} b_{n} s_{n}(t), \text { for some } b_{n} \geq 0 \text { and } \sum_{n} b_{n}=1\right\}
$$

First, we remark that for all $\mathcal{N} \in C$, we have $N_{0} \not \mathbb{\mathcal { N }}$. Indeed, let $\mathcal{N}=$ $\sum_{n=1}^{\infty} b_{n} s_{n}(t) \in C$ for some $b_{n} \geq 0$ with $\sum_{n} b_{n}=1$ and let $\varepsilon>0$ be arbitrary. Let $m \in \mathbb{N}$ such that $\sum_{n=m+1}^{\infty} b_{n}<\varepsilon / 4$. Using the fact that $\sum_{n=1}^{m} b_{n} s_{n}(t)$ is equivalent to M and $N_{0} \not \leq M$, we pick $t_{\varepsilon}>0$ such that $\sum_{n=1}^{m} b_{n} \frac{s_{n}\left(t_{c}\right)}{N_{0}\left(t_{\varepsilon}\right)}<\varepsilon / 2$. Then, since $s_{n}(t) \leq 2 N_{0}(t)$ for all n and t, we have

$$
\begin{aligned}
\frac{\mathcal{N}\left(t_{\varepsilon}\right)}{N_{0}\left(t_{\varepsilon}\right)} & =\sum_{n=1}^{m} b_{n} \frac{s_{n}\left(t_{\varepsilon}\right)}{N_{0}\left(t_{\varepsilon}\right)}+\sum_{n=m+1}^{\infty} b_{n} \frac{s_{n}\left(t_{\varepsilon}\right)}{N_{0}\left(t_{\varepsilon}\right)} \\
& <\frac{\varepsilon}{2}+2 \sum_{n=m+1}^{\infty} b_{n}<\varepsilon .
\end{aligned}
$$

i.e., $\lim \inf _{t \rightarrow 0} \frac{\mathcal{N}(t)}{N_{0}(t)}=0$, and $N_{0} \not \leq \mathcal{N}$.

Now we check the conditions (ii) and (i) of Lemma 4.3.7 for the set C.
(ii) If $\mathcal{N}_{i}(t)=\sum_{n} b_{n}^{(i)} s_{n}(t) \in C$ for some $b_{n}^{(i)} \geq 0$ with $\sum_{n} b_{n}^{(i)}=1$ and $i=1,2, \ldots$, then we put $\mathcal{N}(t)=\sum_{i=1}^{\infty} 2^{-i} \mathcal{N}_{i}(t)$. Then,

$$
\mathcal{N}(t)=\sum_{i} 2^{-i} \sum_{n} b_{n}^{(i)} s_{n}(t)=\sum_{n} c_{n} s_{n}(t)
$$

where $c_{n} \geq 0$ with $\sum_{n} c_{n}=1$. i.e., $\mathcal{N} \in C$. Moreover, for all i, we have $\mathcal{N} \geq \mathcal{N}_{i}$.
(i) Suppose that there is a maximal element $\mathcal{M} \in C$. Then $\mathcal{M}(t)=$ $\sum_{n} b_{n} s_{n}(t)$ for some $b_{n} \geq 0$ such that $\sum_{n} b_{n}=1$. By the above remark, $N_{0} \not \leq \mathcal{M}$, and hence there exists a sequence $\left(t_{k}\right) \searrow 0$ such that for all k,

$$
\frac{\mathcal{M}\left(t_{k}\right)}{N_{0}\left(t_{k}\right)}<\frac{1}{k 2^{k}} .
$$

Since the partial sums s_{n} converge to N_{0}, for all k we may choose $\left(n_{k}\right)$ such that $s_{n_{k}}\left(t_{k}\right) \geq(1 / 2) N_{0}\left(t_{k}\right)$. Let $\mathcal{M}_{0}(t)=\sum_{k} 2^{-k} s_{n_{k}}(t) \in C$. Then for all k,

$$
\mathcal{M}_{0}\left(t_{k}\right) \geq 2^{-k} s_{n_{k}}\left(t_{k}\right) \geq 2^{-(k+1)} N_{0}\left(t_{k}\right) \geq(k / 2) \mathcal{M}\left(t_{k}\right)
$$

i.e., $\lim \sup _{t \rightarrow 0} \frac{\mathcal{M}_{0}(t)}{\mathcal{M}(t)}=\infty$ and $\mathcal{M}_{0} \not \leq \mathcal{M}$, a contradiction. Therefore, C does not contain a maximal element.

The proof is now complete by Lemma 4.3.7.
Remark. Recently, it has been shown in [FPR] that the set $S P(X)$ of all spreading models of a Banach space X is either countable (up to equivalence) or has cardinality continuum. Using this together with Theorem 4.3 .8 we immediately obtain the following

Corollary 4.3.9 Let M be an Orlicz function which satisfies Δ_{2}-condition. Suppose that h_{M} admits a spreading model h_{N} generated by a normalized weakly null sequence such that the unit vector basis of h_{M} does not dominate the unit vector basis of h_{N}.

Then the set $S P\left(h_{M}\right)$ has (up to equivalence) cardinality continuum.

Finally, we end this chapter with the following consequence of Theorem 4.3.8, which gives a description of the set of spreading models of reflexive Orlicz sequence spaces with only countably many spreading models.

Corollary 4.3.10 Let h_{M} be reflexive Orlicz sequence space. Suppose that $S P_{\omega}\left(h_{M}\right)$ is countable. i.e., the number of mutually non-equivalent spreading models generated by weakly null sequences in h_{M} is countable. Then
(i) h_{M} is the upper bound of $S P_{\omega}\left(h_{M}\right)$,
(ii) ℓ_{p} for some $1<p<\infty$ is the lower bound of $S P_{\omega}\left(h_{M}\right)$.

Proof Since h_{M} is reflexive, M satisfies Δ_{2}-condition (see the remark following the definition of Δ_{2}-condition in section 4.2 and also Proposition 4.b.2, [LT]). Also by the remark following Lemma 4.3.4, we have $S P_{\omega}\left(h_{M}\right)=C_{M, 1}$. (Note that by reflexivity, $S P_{\omega}\left(h_{M}\right)$ also coincides with the set $S P\left(h_{M}\right)$ of all spreading models of h_{N}.)
(i) By Proposition 4.3.5, the upper bound exists. Suppose that there exists $N \in C_{M, 1}$ such that N is not equivalent to M and h_{N} is the upper bound for $S P_{\omega}\left(h_{M}\right)$. It follows that $N \nsubseteq M$ and by Theorem 4.3.8, $C_{M, 1}$ contains uncountable mutually non-equivalent Orlicz functions, and thus $S P_{\omega}\left(h_{M}\right)$ is uncountable, a contradiction. Therefore h_{M} must be the upper bound.
(ii) Since the set of p 's for which ℓ_{p} embeds into h_{M} is a closed interval (Theorem 4.a.9, [LT]), it follows from the assumption that this set is singleton. Hence there exists a unique $1<p<\infty$ such that $\ell_{p} \in S P_{\omega}\left(h_{M}\right)$. Moreover it follows from Theorem 4.2.1 that h_{M} is ℓ_{p}-saturated. i.e., every subspace of h_{M} has a further subspace which contains an isomorphic copy of ℓ_{p}. For Orlicz sequence spaces, by Theorem 4.2.1, ℓ_{p} embeds into h_{M} if and only if $t^{p} \in C_{M, 1}$. In particular, for all $N \in C_{M, 1}$, the function t^{p} belongs to $C_{N, 1}$. Moreover, the assumption that M satisfies Δ_{2}-condition implies that N also satisfies $\Delta_{2^{-}}$ condition for all $N \in C_{M, 1}$.

If ℓ_{p} is not the lower bound of $S P_{\omega}\left(h_{M}\right)$, then there exists $N \in C_{M, 1}$ such that $t^{p} \not 又 N$. But, by the above, $t^{p} \in C_{N, 1}$, hence it follows from Theorem 4.3.8 that $C_{N, 1} \subset C_{M, 1}$ is uncountable. This implies that $S P_{\omega}\left(h_{M}\right)$ is uncountable, a contradiction. Therefore ℓ_{p} must be the lower bound of $S P_{\omega}\left(h_{M}\right)$.

Bibliography

[AD] A.S. Argyros and I. Deliyanni, Examples of asymptotic ℓ_{1} Banach spaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 973-995.
[ADKM] A.S. Argyros, I. Deliyanni, D. Kutzarova and A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998), no. 1, 43-109.
[AOST] G. Androulakis, E. Odell, Th. Schlumprecht and N. TomczakJaegermann, On the structure of the spreading models of a Banach space, Preprint.
[BL] B. Beauzamy and J.-T. Lapreste, Modeles etales des espaces de Banach [Spreading models of Banach spaces] Travaux en Cours. [Works in Progress] Hermann, Paris, 1984. iv+210 pp.
[BS] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1974), no. 4, 294-299.
[CS] P.G. Casazza and T.J. Shura, Tsirelson's space, Lecture Notes in Math., vol. 1363, Springer-Verlag, Berlin and New York, 1989.
[FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no ℓ_{p}, Composito Math. 29 (1974), 179-190.
[FPR] V. Ferenczi, A. Pelczar and C. Rosendal, On a question of Haskell P. Rosenthal, preprint.
[G1] W. T. Gowers, An infinite Ramsey theorem and some Banach-space dichotomies, Annals of Mathematics, 156 no. 3 (2002), 797-833.
[G2] W.T. Gowers, A space not containing c_{0}, ℓ_{1} or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), 407-420.
[G3] W. T. Gowers, A hereditarily indecomposable space with an asymptotic unconditional basis, Geometric aspects of functional analysis (Israel, 1992-1994), 112-120, Oper. Theory Adv. Appl., 77, Birkhuser, Basel, 1995.
[GM] W.T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.
[JMST] W. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298 pp.
[KOS] H. Knaust, E. Odell and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999), 173-199.
[KT] R. Komorowski and N. Tomczak-Jaegermann, Banach spaces without local unconditional structure, Israel J. Math. 89 (1995), no. 1-3, 205226.
[KL] D. Kutzarova and P. Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc., 128 (2000), no.7, 2059-2068.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, SpringerVerlag, New York, 1977.
[M] B. Maurey, Type, cotype and K-convexity, Handbook of the Geometry of Banach Spaces (W.B. Johnson and J. Lindenstrauss, eds.), vol. 2, Elsevier, Amsterdam, to be published.
[MMT] B. Maurey, V.D. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, Oper. Theory: Adv. Appl. 77 (1994), 143-175.
[MP] B. Maurey and G. Pisier, Series de variables aleatoires vectorielles independantes et proprietes geometriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45-90.
[MiS] V.D. Milman and M. Sharir, Shrinking minimal systems and complementation of ℓ_{p}^{n}-spaces in reflexive Banach spaces, Proc. London Math. Soc. 39 (1979), 1-29.
[MS] V.D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, lecture Notes in Math., vol. 1200, SpringerVerlag, Berlin and New York, 1986, 156 pp.
[MT1] V.D. Milman and N. Tomczak-Jaegermann, Asymptotic- ℓ_{p} spaces and bounded distortions, (Bor-Luh Lin and W.B. Johnson, eds.), Contemp. Math. 144 (1993), 173-195.
[MT2] V.D. Milman and N. Tomczak-Jaegermann, Stabilized asymptotic structures and envelopes in Banach spaces, Geometric Aspects of Functional Analysis (Israel Seminar 1996-2000), Lecture Notes in Math., 1745, Springer-Verlag, Berlin and New York, 2000, 223-237.
[O] E. Odell, On Subspaces, Asymptotic Structure, and Distortion of Banach Spaces; Connections with Logic, (C. Finet and C. Michaux, eds.), Analysis and Logic, Cambridge University Pr., 2003.
[OS1] E. Odell and Th. Schlumprecht, Trees and branches in Banach spaces, Trans. Amer. Math. Soc. 354 (2002), no.10, 4085-4108.
[OS2] E. Odell and Th. Schlumprecht, On the richness of the set of p's in Krivine's theorem, Oper. Theory: Adv. Appl. 77 (1995), 177-198.
[OS3] E. Odell and Th. Schlumprecht, The distortion problem, Acta Math. 173 (1994), no. 2, 259-281.
[OS4] E. Odell and Th. Schlumprecht, A problem on spreading models, J. Funct. Anal. 153 (1998), no. 2, 249-261.
[OS5] E. Odell and Th. Schlumprecht, Asymptotic properties of Banach spaces under renormings, J. Amer. Math. Soc. 11 (1998), no. 1, 175188.
[R] H. Rosenthall, Some remarks concerning unconditional basic sequences, Longhorn Notes: Texas Functional Analysis Seminar 1982-83, University of Texas, Austin, 15-48.
[S] Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81-95.
[Ts] B. S. Tsirelson, Not every Banach space contains ℓ_{p} or c_{0}, Func. Anal. Appl. 8 (1974), 139-141.
[Tz] L. Tzafriri, On the type and cotype of Banach spaces, Israel J. Math., 32, 1979, 32-38.

