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Abstract

This thesis is composed of two independent parts:

Part I studies the asymptotic structures of Banach spaces through the no­

tion of envelope functions. Analogous to the original ones, a new notion of 

disjoint-envelope functions is introduced and the properties of these functions 

in connection to the asymptotic structures are studied. One of the central re­

sult obtained using these functions is a new characterization for asymptotic-^, 

spaces. One application of this result yields a solution to a conjecture on the 

structure of so-called Tirilman spaces. Apart from some other applications of 

the envelope functions, the finite representability of these functions are investi­

gated.

Part II is on the structure of the set of spreading models of Orlicz sequence 

spaces. In the case when an Orlicz sequence space admits few (countable) 

spreading models, a description of this set is established.
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Chapter 1

Introduction

This thesis is devoted to study some problems in Asymptotic Geometric Analysis 

of infinite-dimensional Banach spaces.

In general, asymptotic methods in the theory of infinite-dimensional Banach 

spaces rely on stabilizing information of finite nature “at infinity”. This way 

we discard properties which may appear sporadically in the space and could be 

removed by passing to appropriately chosen subspaces or some other substruc­

tures. First methods of this kind began to develop in the 1970’s, in connection 

with Ramsey theorems and the notion of a spreading model (to be described 

later in this introduction). The ideas behind what is now called an asymptotic 

theory of (infinite-dimensional) Banach spaces were crystallized in the early 

nineties in connection with spectacular developments of the infinite-dimensional 

Banach spaces.

From the very beginning of Functional Analysis initiated by the work of 

Banach in the 1920’s the objective of the classical theory of infinite-dimensional 

spaces have been mainly to establish a structure theory for Banach spaces. Be­

sides isomorphism type questions, primarily, the problems were centered around 

seeking subspaces with ‘nice’ structural properties in all Banach spaces. Must 

every infinite-dimensional Banach space which is isomorphic to all its infinite­

dimensional closed subspaces be isomorphic to a Hilbert space? Does every

1
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infinite-dimensional Banach space contain one of the classical spaces c0 or £p for 

some 1 < p <  oo? Even these simply stated questions raised by Banach turned 

out to be not so trivial. In fact, the first problem, called the homogeneous Ba­

nach space problem, was solved only in the nineties. We will briefly discuss the 

developments in this decade shortly. The latter question was answered in the 

early seventies, when Tsirelson [Ts] discovered a counterexample. Tsirelson’s 

space is now referred to as “the first truly non-classical Banach space”. The 

definition of this space involves a clever inductive procedure which enables a 

certain geometric property to pass to every infinite-dimensional subspace, and 

the saturation property achieved this way prevents the space from containing Co 

or any £p. Soon afterwards, Figiel and Johnson [FJ] gave an analytic description 

of the norm in the space now denoted by T, which is the dual of Tsirelson’s 

original example. The norm in T  appears as a solution to an implicit equa­

tion, contrary to the definitions of the classical spaces for which the norms are 

given by explicit formulas. This idea of defining a norm implicitly has become 

relatively commonplace. Many new Tsirelson-like spaces have been engineered 

since then to solve a good many problems in Banach space theory (cf. [CS]).

The deep developments of the nineties have shed light on the ideas initi­

ated with Tsirelson’s example. It turned out that the Tsirelson-like spaces are 

not just a collection of pathological examples but, in fact, they hold the key 

to a deeper understanding of the infinite-dimensional phenomena. The idea 

of saturating spaces with a desired geometric property was re-vitalized when 

Schlumprecht [S] defined a space which initiated a series of results answering 

fundamental and long standing problems of Banach space theory. For Gowers 

and Maurey [GM], Schlumprecht’s space was a starting point which lead them 

to their ground-breaking construction of a space with no unconditional basic 

sequences. Their space, in fact, has a stronger property, namely, it is hereditary 

indecomposable (H.I.), which means that none of its closed subspaces can be 

written as a topological direct sum of two infinite-dimensional closed subspaces.

2
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Gowers then showed that H.I. spaces arise naturally among Banach spaces. His 

famous dichotomy theorem states that every Banach space has either a sub­

space with an unconditional basis or an H.I. subspace [Gl]. It is remarkable to 

note that these new spaces, despite their ‘unnatural’ definitions, played impor­

tant part in the solutions of fundamental problems about the classical spaces. 

The dichotomy theorem of Gowers combined with a result of Komorowski and 

Tomczak-Jaegermann [KT] gave a positive solution to the homogeneous space 

problem: a Hilbert space is the only infinite-dimensional Banach space, up to 

isomorphism, which is isomorphic to every infinite-dimensional closed subspace 

of itself. Also Schlumprecht’s space played an important role in the solution 

of another famous problem known as the distortion of Hilbert (and the clas­

sical lv) spaces [OS3]. These developments and the discovery of new spaces 

had a great impact on the classical understanding of ‘nice’ subspaces. Quoting 

from Maurey, Milman and Tomczak-Jaegermann [MMT],“it has been realized 

recently that such a nice and elegant structural theory (of infinite-dimensional 

Banach spaces) does not exist. Recent examples (or counterexamples to classi­

cal problems) due to Gowers and Maurey [GM] and Gowers [G2], [G3] showed 

much more diversity in the structure of infinite-dimensional Banach spaces than 

was expected.”

At the other end of the spectrum, in the last three decades, having employed 

new powerful techniques from other areas of mathematics such as probability 

and combinatorics, there have been deep developments in the local theory of 

Banach spaces (cf. e.g [MS]). This theory is asymptotic in nature; striking 

regularities of finite-dimensional spaces are observed when dimension increases 

to infinity.

In the light of the developments of the nineties, the dichotomic nature of 

finite vs. infinite-dimensional theory naturally invited the formulation of a 

similar asymptotic approach for infinite-dimensional spaces.

Again the first ideas come from the seventies with the notion of a spreading

3
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model, which involves stabilization of norms at infinity. In 1974, Brunei and 

Sucheston [BS] gave a simple but unexpected application of Ramsey theorem to 

Banach spaces. Roughly speaking, Ramsey type theorems are of the following 

form. Given any finite coloring of some mathematical structure (such as graphs 

or a set of n-tuples from a sequence of vectors in a Banach space), there is 

a substructure (hence a subgraph or a set of n-tuples from a subsequence) 

which is monochromatic. In other words, any function defined on the structure 

into a finite set can be stabilized (becomes constant) on a substructure. As a 

direct application with obvious approximation and diagonalization arguments, 

Brunei and Sucheston showed that in every Banach space every normalized 

basic sequence {a;*} has a subsequence {yi} on which the norm of any linear 

combination of n vectors of {yi} stabilizes (they span the same finite dimensional 

space) provided that they are sufficiently far along {yi}. Consequently, the 

iterated limit

exists and it defines a norm on the linear space of finite scalars c0o- (The reason 

for the iterated limit is that keeping the order of scalars is important in this defi­

nition.) The space c0o with this new norm is called a spreading model (generated 

by {yi})- This new object we obtain behaves relatively ‘better’ than the original 

sequence {yi}. For instance, the unit vector basis {e*} of a spreading model has 

the ‘spreading’ property, which means that || X^l=i aiert,!l =  II a»emJI f°r 

all scalars (a*)*-!, nx < . . .  < n* and mi < . . .  < rn*. Moreover, the basis is 

often unconditional. Thus starting with an arbitrary basic sequence, a spread­

ing model provides subsequences of finite (but of arbitrary) length with ‘nice’ 

properties.

Spreading models are proven to be very useful in Banach space theory (cf. 

e.g. [BL]). When considering questions about finding nice finite-dimensional 

subspaces, we can simply assume that the space has a spreading (and even un­

conditional [R]) basis by passing to a spreading model. Since any space finitely

4
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representable in a spreading model is finitely representable in the generating 

sequence (this fact is immediate from the definition of a spreading model), we 

can then transfer these finite spaces into the space. The proof of the classical 

Krivine’s theorem, for instance, follows this scheme (cf. e.g. [MS]).

Despite their usefulness, spreading models do not reflect the intrinsic prop­

erties of a space. To access information about subspace structures of a Banach 

space, one has to look at the blocks of, rather than subsequences of, a basis. 

This is the Bessaga and Pelczynski principle, which states that every subspace 

Y  of a space X  with a basis has a further subspace Z  isomorphic to a block 

subspace. This reduces many problems about subspaces of Banach spaces to 

ones about block subspaces.

Is there a block Ramsey theorem which could provide stronger stabilization 

results than that of spreading models? The answer turned out to have an 

interesting twist. Gowers [Gl] indeed proved such an infinite block Ramsey 

theorem which lead to his famous dichotomy theorem mentioned above. On 

the other hand, as the solution of the distortion problem [OS3] showed, a truly 

infinite-dimensional phenomena in general may not stabilize.

In the light of these results, Maurey, Milman and Tomczak-Jaegermann 

[MMT] have introduced a new type of stabilization which gave rise to a new no­

tion of asymptotic structures. This theory of asymptotic structures essentially 

introduced to study the structure of infinite-dimensional spaces, and yet it in­

volves stabilization of finite-dimensional subspaces which appear everywhere far 

away in the space. The main idea is to bridge finite-dimensional and infinite­

dimensional theories. Such finite-dimensional spaces which appear everywhere 

far away in the space are called asymptotic spaces. The notion of asymptotic 

spaces generalizes the notion of spreading models; but it has essential differ­

ences.

To explain this notion, we first recall some basic notations. The precise 

definitions and some other aspects of the asymptotic theory will be given in

5
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Chapter 2. For subsets I  and J  of the natural numbers N, we write I  < J  if 

m ax / < min J. For simplicity, we consider a Banach space with a basis {xj}. 

For a vector y =  X)* aixi i*1 the support of y, suppt/, is just the set of i for 

which a,i is non-zero. A block vector is a vector with a finite support, and blocks 

are successive, y\ < y2, if suppyi < suppt/2-

An n-dimensional space E  with a monotone normalized basis {e*} is an 

asymptotic space of X  (we denote by E  e  (X }n), if there exist successive blocks 

y i , . . . , y n in A  as close to {e,} as we wish, and arbitrarily far and spread out 

with respect to the basis {a:*}. Precisely, given e > 0, for arbitrarily large mi 

there is a block yi with {mi} < suppyi such that for an arbitrarily large m2 

there is a block y<i with {m2} < suppr/2, etc, such that y i , . . .  , y n obtained after 

n steps are successive and (1 +  e)-equivalent to the basis {e*}. The successive 

blocks y i , . . . , y n are called permissible vectors. The asymptotic structure of X  

consists of all asymptotic spaces of X . Now it is clear that if {e*} is the natural 

basis of any spreading model generated by a subsequence of the basis { x j  of 

X ,  then for all n, the span of the first n vectors {e*}”=1 is an asymptotic space 

of X . In fact, one can always find better asymptotic spaces; it is a consequence 

of the classical Krivine’s theorem that for every X  there is 1 < p < oo such 

that £p e  {X}n for all n. Thus { X } n is never empty.

The first general problem in this context is to describe the set of asymptotic 

spaces of a given Banach space X.  The definition of an asymptotic space already 

hints that this might not be an easy task. As it is common practice in analysis, a 

starting point would be then to define some relevant functions on the asymptotic 

structure of X  and hope to get information through studying these functions.

This, in fact, is the main project of the first part of this thesis. The functions 

we consider are called envelope functions; they have been introduced by Milman 

and Tomczak-Jaegermann [MT1] and used to discover a new class of Banach 

spaces, called asymptotic-^ spaces.

For any finite sequence of scalars a =  (a*) the upper envelope is a function

6
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r(a) =  sup || Yli aiei\\> where the supremum is taken over all natural bases {e*} 

of asymptotic spaces E  G {X}n and all n. Similarly, the lower envelope is a 

function g(a) = inf || JA aie*ll> where the infimum is taken over the same set. 

These functions clearly define upper and lower bounds for the ‘spectrum’ of the 

set of asymptotic spaces of X.  The useful fact about the envelopes is that they 

have nice properties, for instance, they are always close to some f^-norms (see 

section 2.4).

A Banach space X  is called asymptotic-ip (1 < p < oo) if there exists C such 

that for all n and E  G { X } n, the basis in E  is C-equivalent to the unit vector 

basis of ip. Clearly this happens if and only if both g and r are equivalent to the 

£p-norm. As examples, the original Tsirelson’s space is an asym ptotic-^ and 

its dual T  is an asymptotic-^ space. Asymptotic-^ spaces appear naturally 

in connection with the distortion problem [MT1]. Thus the structure of these 

spaces is of particular interest. An interesting result proved in [MMT] says that 

for 1 < p < oo, if X  is a Banach space such that there exists C such that for 

every n, every asymptotic space E  G {A}„ is C-isomorphic to then X  is an 

asymptotic-£p space. This means that in the asymptotic setting isomorphisms 

imply the equivalence of bases (at least for lp spaces for 1 < p < oo). This 

is truly an asymptotic phenomenon; its classical analogue requires a strong 

additional assumption on bases (cf. [LT] and also [JMST]).

In Part I, we prove another result of this type; a characterization of asymptotic- 

ip spaces in terms of the Tp-behavior’ of disjoint-permissible vectors with con­

stant coefficients. To describe this result, we consider a Banach space X  with 

an asymptotic unconditional structure, which means that there exists C such 

that for every n and E  G { X } n, the basis {e*} in E  is C-unconditional. In such 

a space X,  consider the set (we denote by {X}6*) of all sequences of normalized 

vectors {xj} which are disjointly supported with respect to the basis of some 

asymptotic space for X.  These are called disjoint-permissible vectors. Then we 

have the following characterization for asymptotic-^ spaces. Let 1 < p < oo.

7
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For a Banach space X  with asymptotic unconditional structure if there exists 

K  such that for every n and {x j}”=1 G {X}d,

n i/p "
~Y~ < llE^-ll ^ K n  >

3 = 1

then X  is asymptotic-^.

For the proof, we introduce the notion of disjoint-envelope functions; these 

are the natural analogues of the envelope functions defined on the set { X } d. For 

any finite sequence of scalars a =  (a*), the upper disjoint-envelope is a function 

rd(a) =  sup || ajXi||, where the supremum is taken over all {a;*} G {X}d. 

Similarly, the lower disjoint-envelope is a function gd(a) =  inf || ]TV a^H  defined 

over the same set. The disjoint envelopes share the nice properties as similar to 

the original envelopes.

The new results of Part I are contained in Chapter 3. The first section of the 

chapter is about the notion of asymptotic unconditionality, which is a notion 

of great importance for the thesis. This notion was first introduced by Milman 

and Sharir [MiS] and, in particular, they gave a characterization of asymptotic 

unconditionality in terms of norming permissible functionals. Section 3.1 is 

mainly devoted to the proof of a reformulation of this result in the context 

of asymptotic structures. The proof is rather complicated, so it is divided 

into several parts to emphasize several facts involved, which are of independent 

interest.

The disjoint-envelope functions are introduced in Section 3.2, which also 

develops some properties of these functions analogous to those of original en­

velopes. In [MT2], it is shown that the envelope functions on a reflexive space 

X  and on its dual X* are in natural duality. In Section 3.3 we show that the 

analogous result holds for the disjoint-envelopes as well.

The characterization for asymptotic-^ spaces mentioned above is given in 

Section 3.4. We also show by presenting suitable examples that this result

8
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cannot be improved by replacing disjoint-permissible vectors (i.e., vectors in 

the set {A}d) in the assumption with permissible vectors. These examples 

turn out to be a class of Banach spaces already in the literature, called the 

Tirilman spaces. Incidentally, as a byproduct of the results proved in Section 

3.4, we obtained a solution to a conjecture of Casazza and Shura [CS] about the 

structure of the Tirilman spaces. These are presented in Section 3.5.

Section 3.6 contains another application of the envelope functions. Using 

the (original) envelopes and a stabilization result due to Milman and Tomczak- 

Jaegermann [MT2], we prove an asymptotic analog of a classical result of James 

concerning reflexivity: A Banach space X  with an asymptotic unconditional 

structure must either have i \  or t n̂  as asymptotic spaces for all n, or it contains 

a reflexive subspace.

The final section of Chapter 3 deals with a finite representability problem 

for the envelope functions. As remarked earlier, for every Banach space X  the 

envelope functions r  and g are always close to some tp (and i q) norms, where p 

and q depend on the asymptotic structure of X  only. A similar fact holds also 

for the disjoint-envelope functions. We refer to these p and q as the power types 

of the envelopes. The problem we are concerned with here is whether these lv 

and t q spaces are finitely representable in X  asymptotically. Namely, is it true 

that for all n, £™,£q G {A}„ (resp. G (A }d), where p and q are the power 

types of r  and g (resp. rd and gd)? We show in Section 3.7 that the answer 

is affirmative for the disjoint-envelopes and yet it is negative for the original 

envelopes.

In Part II we study the structure of the set of spreading models of Orlicz 

sequence spaces.

As we remarked earlier, a spreading model involves a stabilization on subse­

quences of a basic sequence, and hence it may not provide intrinsic properties 

of the space. However, one can consider the set of all spreading models (which 

will be denoted by S P ( X )) of a Banach space X.  In some instances, from the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information about the set SP( X)  one can get infinite-dimensional information 

of X  (cf. e.g. [OS5], [OS4]).

Our particular object of attention is the following novel approach to the 

spreading model theory due to Androulakis, Odell, Schlumprecht and Tomczak- 

Jaegermann [AOST]. Defining a partial order on the set S P ( X ), they have 

studied the structure of the partially ordered set SP(X) ,  and, for instance, 

they showed that every countable set of spreading models (generated by weakly 

null sequences) of a space X  admits an upper bound with respect to this partial 

order. In some cases, using the results about the structure of the set SP( X)  

they have obtained interesting applications concerning the existence of certain 

operators on X.

Following this direction, in Chapter 4 we study the structure of this partially 

ordered set for Orlicz sequence spaces. We showed that if the set of spreading 

models of an Orlicz sequence space is countable, then it contains both the upper 

and the lower bounds, and the upper bound is the space itself and the lower 

bound is some £p space. This and some other results are given in Section 4.3. 

Section 4.2 reviews some basic facts about Orlicz sequence spaces. The precise 

definition of a spreading model and a discussion of the results of [AOST] are 

presented in the introduction of Chapter 4.

1.1 N otations and Basic Concepts in the  

Geom etry of Banach Spaces

In this thesis, all spaces are real separable Banach spaces and all subspaces are 

closed subspaces. By X , Y , . . .  we usually denote infinite-dimensional Banach 

spaces; we reserve E, F , . . .  to denote finite-dimensional Banach spaces.

The norm in X  is denoted by ||.||x, or simply by j|.|| if there is no ambiguity. 

By Bx  we denote the closed unit ball {x £ X  \ ||a;|| < 1}, and by Sx  the unit 

sphere {x € X  : ||a;|| =  1} of X.

10
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Linear continuous maps between two Banach spaces X  and Y  are called 

operators and denoted by T  : X  —>Y.  If T  is an isomorphism between X  and 

Y,  the isomorphism constant C is defined by C — ||Tj|||T-1 || and in this case we 

write X  ~  Y, or simply X  ~  Y  if we do not want to specify the isomorphism 

constant. We will say that X  and Y  are C-isomorphic or simply isomorphic.

For a set E  in X ,  span [£7] denotes the closed linear span of E  in X  and 

convfjE1] the closed convex hull of E.

As examples of Banach spaces we shall often use the classical sequence spaces 

c0, and £p (1 < p < oo). c0 is the space of all real sequences x = (an) with 

lim^ooajj =  0 with the norm Ĥ Hoo =  supn \an\. For any 1 < p < oo, £p 

is the space of real sequences x = (an) with J2n \an\P < 00> &nd the norm 

11®lip =  (S n L i \an\p)l!p■ £oo is the space of all bounded real sequences x =  (an) 

with the norm ||:r||oo =  supn |an|. For each n £  N, £” (1 < p < oo) denotes the 

n-dimensional space E.n with ^,-norm.

Perhaps the most fundamental notion we use throughout the thesis is the 

notion of a basis. A Schauder basis or simply a basis for a Banach space X  is 

a sequence {a;n} of vectors in X  such that every vector x in X  has a unique 

representation of the form x = ]T)n anxn where each an is a scalar and the sum 

converges in the norm topology. For each n, the mapping x  —>■ an then defines a 

continuous linear functional x*n on X . A sequence {xn} in X  is a basic sequence 

if {xn} is a basis for its closed linear span in X.  The basis projections of a basis 

{xi}, defined by PnCCi^i aix i) =  i aix i for n =  1,2, . . .  , are (necessarily) 
uniformly bounded linear operators, and the supremum of the norms of these 

basis projections is called the basis constant. A basis is called monotone provided 

that its basis constant is one. In most of the applications we will consider the 

normalized monotone bases. A sequence {xn} is called normalized if for each n,

l l ® n | |  =  1 -

A pair {un,u l}  of sequences is a biorthogonal system on X  if un € X  and 

u*n £ X* for all n with the property that u*n(um) — Snm, i.e., u*n(un) =  1

11
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and u*(um) =  0 for n ^  m. If {xn} is a basis for X,  then the sequence of 

biorthogonal functionals {x*n} is a basic sequence in X*.

In studying the structure of Banach spaces with a basis, it is desirable to 

have some additional properties of the basis which essentially provide a more 

‘computable’ environment in the space. Among the most important ones is the 

property of unconditionality.

A basis {xn} is said to be unconditional (or C-unconditional) if there exists 

a constant C > 0 such that for all scalars {an} and signs 6n =  ±1, we have

| |  ^  ^  | |  —  @ \ \  ^  ,  ® n * U i  | |  •

n n

That is, inserting plus-minus signs into the sum does not increase the norm 

more than C. The smallest such C is called the unconditional basis constant of 

{rcn}. Being unconditional for a basis {a;„} is equivalent to the fact that every 

permutation of {xn} is also a basis.

We frequently use the following observation concerning the unconditional 

constant. Let {xn} be an unconditional basis for X  with constant C. Then for 

every x =  anxn in X  and every bounded sequence of reals {An}, we have

|| \ na nXn || C SU p | An| || ^  || •
nn n

A block basis {yj} of the basis {a?;} is a sequence of non-zero vectors of the

form yj =  Y^=n)+i aix i f°r some sequence ni < n2 < _ Every block basis

{yj} of the basis {a;*} is a basic sequence and the basis constant of a block

basis is no larger than the basis constant of {a;*}. Recall that for a vector

V = aix ii the support of y is suppy =  {% : a* ^  0}. A sequence {yj} is

disjointly supported if for every j ,  suppyj is finite and suppyj D suppyk = 0 

whenever j  ^  k. A block basis {yj} is not only disjointly supported but also 

it is successive, i.e., maxsuppy^ < minsuppyJ+i, for all j.  Unlike a block 

basis, a disjointly supported sequence might not be a basic sequence in general.

12
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However, it is a (unconditional) basic sequence if the basis {a^} is unconditional. 

In the literature, the disjointly supported sequences are sometimes referred as 

‘blocks’, however this distinction is important to us, and it will be emphasized 

throughout the thesis.

We say that a basic sequence {xn} dominates the basic sequence {yn} if 

there exists a constant A such that for all scalars {an}, we have

II ^  ; ^n^/nll ^  -^H ^   ̂®n^n||-
n n

If {xn} dominates {yn} and {yn} dominates {rcn}, then we say that {xn} is 

equivalent to {yn}. That is, there exist constants A  and B  such that for all 

scalars {on}, we have

II ^  ; ^ n ^ n l l  5: || ^  ] a n2/n|| ^  A | |  ^  '  ^ n ^ n l l -
n n n

The smallest constant K  =  AB  of this form is called the equivalence constant. 

In this case we say that {xn} is ^-equivalent to {yn} to emphasize the constant, 

and denote this by {rcn} ~  {yn}-

A stronger property than unconditionality is symmetry of a basis. A ba­

sis {xn} is symmetric provided that every permutation of {xn} is equivalent 

to {xn}. In particular, every permutation of {xn} is a basis, so a symmetric 

basis is unconditional. A basis {xn} is called subsymmetric provided that it is 

unconditional and equivalent to each subsequence of itself. A symmetric ba­

sis is subsymmetric (cf. 3.a.3 of [LT]). The unit vector bases for c0 and £p 

(1 < p < oo) are symmetric. Not every subsymmetric basis is symmetric, and 

some examples of such bases are, for instance, considered in section 3.5.

13
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Part I 

Envelope Functions and 

Asymptotic Structures of 

Banach Spaces
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Chapter 2 

Asymptotic Structures of 

Banach spaces : A General View

In this chapter we shall describe basic general notions of asymptotic infinite 

dimensional theory of Banach spaces. Our purpose here is not to give an all- 

inclusive review of this more recent and fast growing theory, but rather to 

motivate the problems we study in this thesis as well as to recall the necessary 

fundamental notions and notations we use throughout.

2.1 Basic Concepts

We have recalled some of the standard Banach space notation in section 1.1, for 

the unexplained terms we refer to the standard textbook of Lindenstrauss and 

Tzafriri [LT]. For the notation and basic concepts of asymptotic structure, we 

shall follow [MMT],

Here we would like to start with some fundamental notation which is essen­

tial in the sequel. Let A be a Banach space with a fixed basis (or a minimal 

system, which will be introduced shortly) {#,}. Recall that the support of a 

vector x =  a^ j, denoted by suppx, is the set of all % such that a* ^  0. The 

set of natural numbers is denoted by N. For non-empty subsets I  and J  of N

15
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we write I  < J  if m ax / < min J. For n E  N and x E X  we write n < x 

if n < minsupprr. For x ,y  E X  we write a; < y if supprr < suppy. We call 

(aq,. . . ,  a;n) an n-tuple of successive blocks if X\ < x2 < . . .  < xn. If Y  is a set 

of block vectors, (for instance, a tail subspace) we write n < Y  if n < y for all 

y e Y .

Let {xn} be a basis (or a minimal system) for X ,  and let I  C N. By X i  we 

will denote the set of all vectors x E X  such that suppx C / ,  and by S(Xj)  we 

will denote the set of all normalized vectors in Xj.

2.1.1 Games and Asym ptotic Spaces

Asymptotic structures of a Banach space X  are defined with respect to a fixed 

family B — B(X)  of infinite-dimensional subspaces of X ,  which satisfies two 

conditions.

The filtration condition says that

For every Xi, X 2 G B  there exists X 3 E B such that X 3 C X \  D X 2.

The norming condition says that there exists C < 00 such that

||z|| < C sup ||®||x/x0 for a11 X E X ,

where the supremum is taken over all subspaces Xq E B and || • \\x/x0 denotes 

the norm in the quotient space X/Xq.

Natural examples of such families are the family B°(X) of all subspaces of 

X  of finite-codimension, and the families of all tail subspaces with respect to a 

fixed basis or a fixed minimal system in X.  These families will be denoted by 

Bt(X), if the reference system is clear in the context.

Recall that {'Ui} is called a minimal system in X ,  if there exists a sequence 

{u*} in X* such that {ui, u*} is a biorthogonal system. Unless otherwise stated, 

we shall assume that {«*} is fundamental (i.e., span[«*],>! =  X )  and that {u*}

16
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is total (i.e., if u*(x) — 0 for all i then x =  0) and norming (i.e., there exists 

C < oo such that ||a;|| < Csup{|a;*(a;)| | ||rr*|| < l,x* G span[u*]j>i}, for all 

x  G X )  (we sometimes say C-norming, to emphasize the constant C). It is well 

known that every Banach space contains a minimal (and fundamental and 1- 

norming) minimal system. This was first proved by Markushevich and minimal 

systems are sometimes called Markushevich bases. Moreover, if X* is separable 

the system can be chosen so that, in addition, span[u|]j>i =  X* (Theorem l.f.4, 

[LT]). If {ui} is such a minimal system in X ,  a tail subspace is a subspace of 

the form X n = span[ui]j>n, for some n G N.

If B is a family satisfying the filtration condition, we may introduce an equiv­

alent norm on X  in such a way that B is 1-norming in the new norm. Therefore 

unless otherwise stated, we shall assume that the family B is 1-norming. Then 

by a compactness argument it is easy to see that the following condition holds:

for every finite-dim ensional subspace W  C X  and every e > 0 there is Z  G B 

such that ||a:|| < (1 + e)||a: + z\\, for all x G W  and z G Z.

By M n we denote the space of all n-dimensional Banach spaces with fixed 

normalized monotone bases, and the distance given by (the logarithm of) the 

equivalence constant of the bases (see section 1.1). Recall that M n is a compact 

metric space.

Let us recall the language of asymptotic games [MMT] that is convenient 

for describing asymptotic structures. In such a game (with respect to a fixed 

family B) there are two players S and V. Rules of the moves are the same for 

all games. Set Yq =  X .  For k >  1, in the kth move, player S chooses a subspace 

Yk G B(X), Yk c  Tfc_i, and then player V chooses a vector xk G S(Yk) in such 

a way that the vectors x \ , . . . , x k form a basic sequence with the basis constant 

smaller than or equal to 2. Further rules will ensure that the games considered 

here will stop after a finite number of steps specified in advance.

A space E  G A4n with the basis {e*} is called an asymptotic space for X

17
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(with respect to B) if for every e >  0 we have

VFi e B  3yi € S(Yl) W 2 e  B,Y2 C Yi 3y2 e  S{Y2) . . .

. . .  VYn e B ,Y n c  yB_i 3y„ e S(T„)

{yi,•••,!/»} ~£ {c<}"=i-

(By abuse of notation, we will write {y i, . . . ,  yn} E  instead.) Any n-tuple 

{yu-'-iVn) obtained as above is called permissible. We say that V  has a 

winning strategy in a vector game for E  and e > 0, if he can choose vectors 

{yi, ■ • •, Un}  E. In particular, E  is an asymptotic space for X  if V  has a 

winning strategy for E  and e > 0. The vector yi is called an ith winning move 

of V  in a vector game for E  and e.

The set of all n-dimensional asymptotic spaces for X  is denoted by {X } n. 

It is easy to see that the set {X }n is closed in M n.

It was proved in [MMT], 1.4 and 1.5, that this set can be also characterized 

in terms of a different asymptotic game called a subspace game. Given a family 

T  C M n and e > 0, we say that S has a winning strategy in a subspace game 

for T  and e > 0 if

e B Vyi € S(Yi) 3Y2 e B,Y2 c  Y x Wy2 € S(Y2) . . .

. . .  3Yn e B ,Y n c Y n_1 Vyn £ S (Y n)

3F e f  { y u .- . iV n } 1"  F.

It is shown there that {X } n coincides with the smallest subset T  C M n such 

that for every e > 0, S has a winning strategy for T  and e > 0.

We refer to any such subspace Yi as an zth winning move of S in a subspace 

game for {X } n and e, and to vectors {yi,...,y»} (with 1 < i < n) as the 

first i moves of V  in the same subspace game. Note that the basis constant of 

{ y i , . . . ,yi} is less than or equal to 1 +  e.

Asymptotic spaces can be also described in terms of countably branching
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trees (cf. [MiS], [KOS], [OS1]). We will use a tree which describes the moves of 

the player V  in a vector game.

For n E N, let Tn be a countably branching tree of length n on N. This 

means that Tn =  { (s i,. . . ,  Sj) | s* E N for 1 < i < j, 1 < j  < n}, ordered 

by the relation (s i , . . . ,  Sj) -< (f i ,. . . ,  £&) if j  < k and s, =  t{ for all 1 < i < j.  

For each E  E {X } n and e > 0 we can build an asymptotic tree T(E , e) on S ( X ) 

indexed by Tn and consisting of winning moves of V  in a vector game for E  and 

s. That is, T {E , e) =  {x(si,. . . ,  Si) E S(X) \ (s1}. . . ,  s*) E Tn}, with the order 

on T  induced by Tn.

Denoting by {e*} the natural basis in E  we get that any branch x(si) -< 

x(si, s2) -< • • • -< ^(si, • • •, Sj) of T{E, e) is (1 +e)-equivalent to {ei,. . . ,  e^}, for 

1 < j  < n. Moreover, for any node a — x (s i , . . . ,  s*) E T(E, e) with 1 < i < n 

and any subspace Y  E B there is a successor a' — x(sx,. . . ,  s*, s'i+1) E T ( E , e) 

with a -< a1 and a1 E Y.

If r  E Tn and x (t ) E T(E ,e),  we refer to x(r) as the r ’th winning move of 

V  in a vector game determined by T(E,e).

Let us now recall some of the immediate properties of asymptotic spaces. Let 

E  E { X } n with the basis {e;}"=1. If is a successive block basis of {ej}”=1

and F  =  span{/j}, a block subspace of E, then F E {X}*. Moreover, given 

n E N and e > 0, the subspace player S has a strategy in an asymptotic game 

such that after n moves, all normalized successive blocks of the n-tuple resulting 

from the game, are all permissible, i.e., each of them is (1 +  e)-equivalent to the 

basis of some asymptotic space (1.8.3, [MMT]).

The ‘juxtaposition’ of finitely many asymptotic spaces is also an asymptotic 

space. Namely, let n i , . . . ,  n/t E N and let Ej E {X }nj for j  =  1 , . . . ,  k. For every 

N  > 52. nj and any disjoint subsets Ij of { 1 ,..., N}  with \Ij\ — n j , there exists 

an asymptotic space F E {X}^ with the basis {/*} such that X~£ Ej for

j  = l , . . . , k .

Finally, it follows from Krivine’s theorem that for every Banach space X,
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there exists 1 <  p <  oo so that for all n, £p € { X }n, hence {X}n is non-empty.

2.2 A sym ptotic-^  Spaces

Banach spaces X  with a ‘simple’ asymptotic structure in the sense that there 

are no asymptotic spaces E e {X } n other than E  ~  (whose existence follows 

from Krivine’s theorem as remarked above) are of special interest and are called 

asymptotic-£p spaces.

Precisely, a Banach space X  is an asymptotic-£p space (with respect to a 

family B) for 1 < p < oo if there is a constant C such that for all n and 

E  G { X }n, the basis {e*} in E  is C-equivalent to the unit vector basis of £p. 

That is, for some k, I such that kl < C and (l/fc)||a||p < || X^Lia*e*ll ^  l̂la llj>> 

for all scalars (a;). We denote this by E  ~  I™.

The class of asymptotic-^ spaces is quite rich, and it clearly contains £p 

spaces (for p =  oo we take Co). Trivial examples which are not always isomorphic 

to £p spaces are obtained, for instance, by taking £p-direct sum (X) ©  Fn)gp of 

arbitrary finite dimensional spaces Fn, with sup dimFn = oo.

More interesting examples of asymptotic-^, spaces which do not contain 

isomorphic copies of lv spaces are p-convexified Tsirelson spaces T(p) [FJ], and 

the most famous of all is the Tsirelson space T [Ts], an asymptotic-^ space. 

Although in this thesis we shall not use the Tsirelson space, the existence and the 

construction of this space is behind most of new phenomena and developments 

of the asymptotic theory of infinite-dimensional Banach spaces, and we would 

like to recall the definition of this space.

The main feature of the Tsirelson space T  is that the norm does not have an 

explicit formula and it is given as the solution to an implicit equation. We follow 

Figiel and Johnson’s [FJ] description of the (dual of the original) Tsirelson space. 

Let Coo be the linear space of finitely supported sequences. T  is the completion
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of (coo, ||.||), where ||.|| is given by the implicit equation

1 71
||x|| =max{||a:||oo,8u p - ^ | |£ ? is ||} ,

Z—1

where the inner supremum is taken over all n and n < E\ < . . .  < En, successive 

finite intervals of N supported after n. Here EiX denotes the restriction of x 

to the set E{. Of course, the existence of such a norm must be verified, and 

although it is not difficult to show this we refer to [CS] for the proof (and for 

more information on Tsirelson space).

The unit vectors (ej) form a 1-unconditional basis for T, and it is easy to 

see from the definition that whenever a block sequence (xj)"=1 satisfies n < 

x\ < . . .  < xn, then || ]CjLi 1̂1 > (1/2)£ " =1 ||a;j||. (To see this, simply take 

the smallest interval E{ containing supprrj for each 1 < i < n.) Thus, every 

sequence of n successive normalized blocks supported after n is 2-equivalent 

to the unit vector basis of (the other inequality is trivially obtained by the 

triangle inequality). Hence T  is an asymptotic-^! space. In fact, it has a stronger 

property, namely, that for some C < oo any normalized n-blocks supported after 

n is C-equivalent to l \ .  In spite of such a rich ‘̂ ’-structure, T  does not contain 

any subspace isomorphic to l\  and it is reflexive.

Idea of defining Tsirelson-like spaces have developed intensively over the last 

decade, and in particular, more examples of asymptotic-£i spaces with some 

more interesting properties are constructed (cf. [AD] and [ADKM]).

A rather interesting result proved in [MMT] says that the equivalence con­

dition in the definition of asymptotic-^ spaces can be relaxed considerably. A 

Banach space X  is asymptotic-^ (for 1 < p < oo) if (and only if) for all n and 

all E  E { X } n, E  is C-isomorphic to This result suggests further possibilities 

in this direction and motivated by this result, we prove another characterization 

for asymptotic-^ spaces in section 3.4.
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2.3 Duality and Permissible Norming

Whenever we have a property for a Banach space X ,  it is natural to consider 

if the dual space X* possesses the same or a dual property. A priori it is not 

obvious how to link the asymptotic structures in X  and in X*. In general 

terms, to establish a connection one requires the norming functionals in X* of 

permissible vectors to be permissible (in X*) as well.

A natural setting to seek duality relations is that we assume that X  has 

a shrinking minimal system {ui,u*} (this means that {«*} is fundamental in 

X*) and asymptotic structures in X  and X* are determined by the tail families 

Bt(X) and Bt(X*) with respect to {it*} and {u*} respectively. Then we have 

the following permissible norming lemmas (cf. Theorem 2.2 of [MiS] and 4.5 of 

[MMT]).

Lem m a 2.3.1 Let X  be a Banach space with a shrinking minimal system. 

There exists an equivalent norm which is 2-equivalent to the original norm such 

that

(i) for every 5 > 0 and every tail subspace V £ Bt (X*) there exists a tail 

subspace X  £ Bt (X) such that for every x £ S(X) there is f  £ S (V ) with 

f{x) > 1 - 8 ,

(ii) for every {ej} £ { X } n and e > 0 the following holds: for all scalars 

(flj) there exists a permissible n-tuple {a;*} in X  satisfying {x^} ^  {ej}, and a 

permissible n-tuple {<?j} in X* and non-zero scalars (bf) such that giixj) =  0 for 

i ^  j  and

n n n n

l l £ a j * j | | | | X > | |  < (l +  e J ^ O j S j )  (£& <& ).
i=1 i=1 i=1 i=  1

A somewhat stronger version of part (ii) has been proved in Proposition

2.1, [MT2]. Namely, one can choose the n-tuple {xi} independent of the scalar 

sequence {af) if X  has a bimonotone basis. In section 3.1 we will prove another 

stronger version for Banach spaces with asymptotic unconditional structure,
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which turns out to characterize asymptotic unconditionality (Theorem 3.1.2).

To avoid repetitions, we will always assume without loss of generality that 

X  is re-normed so that the conclusion of Lemma 2.3.1 holds. Let us also remark 

that if the dual space X* is also separable then the shrinking assumption can 

be dropped. In that case one can find a minimal system {ui,u*} so that {w*} 

is also fundamental in X* and hence 1-norming (cf. Proposition l.f.4, [LT] and 

the remarks following Theorem 2.2, [MiS]).

2.4 Envelopes

The most important tool used in this first part of the thesis is the notion of 

envelope functions. Envelopes are defined on the asymptotic structures of Ba­

nach spaces and some properties of families of asymptotic spaces {X } n can be 

demonstrated through these functions.

For any sequence with finite support a =  (a*) € coo the upper envelope is a 

function rx(a) =  sup || ]E*a*e*ll, where the supremum is taken over all natural 

bases { e j  of asymptotic spaces E  € {X }n and all n. Similarly, the lower 

envelope is a function gx{a) — inf || ||, where the infimum is taken over

the same set.

It follows immediately from the properties of the set {X }n that the functions 

rx  and gx are 1-unconditional and 1-subsymmetric. And it is easy to see that rx  

is a norm on c0o and that gx satisfies triangle inequality on disjointly supported 

vectors. That is, if a = (a*) and b = (bi) 6 coo such that suppa is disjoint 

from suppfr (with respect to the unit vector basis in c0o), then gx (a + b) < 

gx (a)+gx(b).

The upper envelope function rx  is sub-multiplicative, i.e., for any finite 

number of successive vectors bz — (&*■) e  c00 such that rx-(6*) < 1, and for any 

a  = (a,i) £ coo, we have

rx ( X ]aib*) -  r* (a)'
i
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Similarly, the lower envelope gx  is super-multiplicative. I.e., if gx (bl) = 1 

for all i, then

-  3x{a\
i

Note that in terms of bases, the multiplicativity properties simply mean 

that in the ‘space’ (c0o, rx ) (resp. in (c00, gx )) the unit vector basis dominates 

(resp. is dominated by) every block basis in the space. The proof of these 

multiplicativity properties can be found in [MT1], where the envelope functions 

are first defined and used.

As examples, the c0 and lv (1 < p < oo) norms are both sub- and super- 

multiplicative. In fact, these are the typical examples of the envelope functions 

in view of the following result, which says that the envelope functions are always 

‘close’ to some ^-norms (1.9.3, [MMT]).

Proposition 2.4.1 Let X  be a Banach space. There exists 1 < p, q < oo such 

that for all e > 0 there exist Ce, ce > 0 such that for all a G c00 we have

Cs\\a\\q+e < gx (a) < ||a ||9 and ||a||p < rx (a) < Cs\\a\\p_£.

Here it is understood that if q =  oo (resp. p =  1), then gx  is equivalent to H-Hoo 

(resp. rx  is equivalent to ||.||i). Note that a Banach space X  is an asymptotic-^ 

space if and only if both gx  and rx  are equivalent to ||.||p, and by the above 

inequalities, if and only if gx  is equivalent to rx -

In section 3.2 we will introduce the notion of disjoint-envelope functions 

for Banach spaces with asymptotic unconditional structure, and establish the 

similar properties as above. The envelope and the disjoint-envelope functions 

then will be our main tools in studying the asymptotic structures of Banach 

spaces.
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Chapter 3 

Envelope Functions and 

Asymptotic Structure

We start this Chapter with an important notion of asymptotic unconditionality. 

Let us emphasize that, unless otherwise stated, we will always consider the 

asymptotic structure of Banach spaces with respect to tail families Bl of a 

minimal system {u;}. Moreover, B1 will be assumed to be 1-norming.

3.1 Asym ptotic Unconditionality

A Banach space X  has asymptotic unconditional structure if there exists a con­

stant C > 1 such that for all n £ N and for every asymptotic space E  £ {X  }n 

the natural basis {ej}”=1 in E  is C-unconditional.

As an easy consequence of permissible norming lemmas, Lemma 2.3.1, we 

observe that this property is self-dual for dual Banach spaces.

Proposition  3.1.1 Let X  be a Banach space with a shrinking, fundamental 

and 1-norming minimal system. I f  X* has asymptotic unconditional structure 

with constant C, then X  also has asymptotic unconditional structure with the 

same constant.
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P roof Let {e*}”=1 € { X } n and e > 0. Fix an arbitrary scalar sequence {a*} 

and a sequence {e*} of signs. By Lemma 2.3.1, there exist a permissible n-tuple 

{xi} in X  such that {e*} ^  { x ^  and a permissible n-tuple {#*} in X* and 

scalars {&*} such that g%{xj) =  0 for i ^  j  and

n n n n

II 6*0^ 1111̂ 6̂ II < (1 +  e) CittiXî j hg^j.
i—1 i=1 i—1 i—1

By interchanging the signs between scalars {a*} and {6*} and using the 

assumption, the latter term is less than or equal to

n n n n

kgi\\.
i=l i—1 i=l i—1

That is, || Ym=i eiaixi\\ ^  C(1 +  e)ll Yh=i aix i\\- And since e > 0 was arbitrary, 

it follows that
n n

|| ^ ^ 6*0*6*11 C*|| ttj6j ||,
i—1 i=1

as desired. □

Our main aim in this section is to prove the following characterization of 

asymptotic unconditionality in terms of norming permissible functionals. This 

is a reformulation of Theorem 2.3 of [MiS].

Theorem  3.1.2 Let X  be a Banach space. X  has asymptotic unconditional 

structure (with respect to Bt(X) ) if and only if the following holds.

There exists a constant C > 1 such that for all n G N and {e*}*^ G { X } n 

and any partition {Ai, A2, . . . ,  A/} o /{ l , . . . ,  n} and e > 0, there exists a permis­

sible n-tuple {a:i}f=1 in X  satisfying {a;*}f=1 ^  {e*}”=1 such that for all {a*}”=1 

there exists a permissible n-tuple {<7*}”=1 of functionals in X* and scalars {6*}"=1 

such that gi(xj) =  0 whenever i ^  j  and for all 1 < j  < I, || ^2ieA. hgi\\ < 1 + e 

and

|| ̂ 2  aix i\\  ̂ aiXi) { Y 2  bi9i)•
i(zAj i£Aj i&Aj
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The property described in the theorem is called Property A  in [MiS] and it 

is stated in terms of trees. Note that Lemma 2.3.1 says that such a property is 

always satisfied for trivial partitions, i.e., there is only one set A\ — {1, . . . ,  n} 

or each Aj is a singleton.

It is easy to see that the property described above implies asymptotic un­

conditionality of X .  Indeed, let {ej}”-! G { X } n and e > 0 be arbitrary, 

and let {aj}”=1 and {£»}”= i be arbitrary sequence of scalars and signs respec­

tively. We apply the property to the partition { ^ 1, ^ 2} of { l , . . . ,n } ,  where 

Ai C {1 ,... ,n} is the set of all i such that e* =  1; and A% is the complement 

of Ai in {1 ,... ,n}. Then there exist {x;}”=1 G X  such that {xi}f=1 X~e {ej}”=1 

and {gi}i=i 6 X* such that || YlieA, bi9i\\ < 1 +  £ and

|| ^a iX iW  <
idzAj j

for j  = 1, 2.

But this implies, by the triangle inequality, that

n n

11^6*0^11  <  (1 +  e ) ( | |  ^ 2  a,iXi\\ +  II ^ 2  a i x i \ \ )  ^  2C(1 +  g)2|| y ^ a je tH .
i= 1 ie A i i€A2 i= 1

The converse is more complicated and we will split the proof into several 

parts. We believe that each step is of independent interest.

We have defined the notion of permissibility for the sequence of successive 

(normalized) vectors. We now extend this definition in a natural way to a 

sequence of successive intervals in N.

For a fixed n and e > 0, we say that a sequence { / i , . . . , / n} of succes­

sive intervals in N is permissible if for all normalized vectors {£*}"-1 such that
1-j-£suppxj C Ii, is permissible, i.e., {x^} ~  E  for some E  G { X } n.

For a tail subspace Y  G Bt(X), if M  G N is such that Y  =  span[uj]j>M and 

for a finite interval I  C N, by I  > Y  we will mean that min I  > M.

Now we describe a winning strategy for S in a special subspace game, which
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we will call a subspace game for intervals. The rules of a subspace game for 

intervals are the same as of a subspace game, except that in the A;th step the 

vector player V  chooses a finite interval i* (rather than a vector Xk) such that 

h > Y k ,  where Yk G Bl being &th move of S.

Let us observe that given n and e > 0, the subspace player S has a winning 

strategy for {A}n in a subspace game for intervals such that after n moves, if 

{ / i , . . . ,  In} is any sequence of successive intervals played by V, then {/l5. . . ,  In} 

is permissible.

Indeed, let Y\ G B* be the first move of S playing the winning strategy in 

the subspace game for {X}n and s > 0. Fix a 5 > 0 to be defined later. Let 

Ii, the first move of V, be an arbitrary finite interval such that h > Y \ .  Let 

M i be a finite 5-net in S(X il ). Considering any vector from M i as a first move 

of V and a winning move Y2 £ Bl for player S  for {X }n and e > 0; take the 

intersection Y2 G Bt of all these (finitely many) tail subspaces Y2. Y2 is the 

second winning move for S. Thus Y2 has the following property which is valid 

for all y i  G M i', treating y \  as the first move of V, Y2 is a winning move of S 

in a subspace game for { X } n and e > 0. Given an arbitrary finite interval I2 

such that I2 > Y2, take a finite 5-net in S(X i2) and choose I 3 such that for 

all y 2 G M 2, treated as a second move of V, F3 is a winning move of S and so 

on. After n steps, given any such that Xi G S(X ji), i.e., suppz; c  Ii,

{£j}”=1 is, by a standard perturbation argument, (1 +  e)(l +  nS)-equivalent to 

some E  G { X } n. Consequently, { /1, . . . ,  /„} is permissible.

The above strategy can be elaborated further to get the following.

Lem m a 3.1.3 The subspace player S has a winning strategy in a subspace game 

for { X } 2n and e > 0 such that the following holds.

There exists an integer Ki such that for each finite interval Ii > Ki there 

is an integer Mi > Ii such that for each integer L2 > M\ there is an integer 

K 2 > L2 such that for each finite interval I2 > K 2 there is M2 > I2 and so on 

such that for each finite interval In > K n there is Mn > In, and let L„+1 > Mn
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be arbitrary.
Then, denoting A(y) =  (M i,Lj) for i < j  and A(0)J) =  (Ki,Lj), any se­

quence of intervals of the form

{-Tb A (ljfcj) J  -^2) A(fe2,fe3) • • • 1 Ikml A(fcm,n+1)}

or

{A(0,fei) ) Iki 1 A(fe1,fe2)) -Ifc2> • • • 1 Ikm 5 A(fcm>n+1)}, 

where 1 < ki < . . .  < km < n, is permissible.

P roof The subspace player S will follow a winning strategy for { X } 2n and 

e > 0 in a subspace game for intervals such that all the intervals resulting from 

this game will be permissible with an additional trick described below.

The numbers M \ , . . . ,M n and K i , . . . , K n will denote min supply, where Yt 

is the ith winning move of S for 1 < I < 2n. Recall that if Y  = span[uj]j>K € 

then min suppF =  K

Let Yi =  span[ui]j>/f! be the first winning move of S for {X } 2n and e > 0. 

Let /i  be an arbitrary finite interval such that I\ > K\. S chooses Y2 =  

span[uj]j>Mi G 5* as a winning move for {X } 2n and e > 0 as described in the 

subspace game for intervals. (In precise terms this has been explained before 

the statement of the lemma).

Let L2 > Mi be arbitrary. The next move of S depends on two considera­

tions.

Considering the interval A ^ )  =  (Mi, L2) as a second move of V, S chooses 

Y f  G so that {Ii, A(ii2)} is a permissible pair of intervals.

Secondly, pretending that A(0,2) =  {K\, L2) as a first move of V  in a subspace 

game for intervals with the length less than 2n, S chooses Y s  C F31 as his winning 

move. Y3 =  span[uj]i>/f2 is the actual choice of S. This ends the first step of 

the construction. Note that K\ < I\ < M\ < L2 < K 2.

In next steps of the game the strategy for S is similar to the above but
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gets slightly more complicated due to increasing additional considerations after 

every step. Hence we explain the move of S in an arbitrary step (inductively) 

in detail.

Suppose that for j  > 1, I \ , . . . ,  Ij, M i,. . .  ,Mj and K i , . . . ,  Kj have been 

already obtained so that the following holds.

Suppose that any sequence of the form

{ - ^ 1 J ^ 2  5 ^ ( ^ 21^ 3 )  ' • • ) I  km > ^ ( k m j + l ) }

or

{ ^ ( 0 , f c i ) )  -T fc l ) ^ ( A ; i , f c 2 ) >  - ^ 2  > • • • > ^km  > ^ ( f c m j + 1 ) }  >

where 1 < k\ < . . .  < km < j  and Lj+1 > Mj is arbitrary, is permissible.

Fix Lj+1 > Mj. Then, by assumption, any sequence of intervals of the above 

forms is permissible. Hence for each 1 < k% < . . .  < km < j ,  S has a next move 

Y k . Take the intersection Y  of all these (finitely many) tail subspaces Y k . Then 

Y  =  span[uj]i>^j+1 is the next move of S, and Kj+1 > Lj+

Now let I j +1 be given arbitrary interval such that I j +\ >  Kj+\ .  For each

1 < k\ < . . .  < km < j  and a sequence of permissible intervals as above,

S has next move Y k such that { h ,  A(i,fe2), ^ ( k m, j+ i) ,  I j + i }

or {A(0ifel), / fcl, A(fclifc2) , / fe2, . . . , / fcm, A {kmtj+i h I j+1} is permissible. Again, the 

actual choice of S is the intersection Y  of all these F^’s, so that all the sequences 

of intervals as above are permissible. If Y  — span[uj]j>A/j+1, then M j +1 > K j +1 

and it is easily seen that the property assumed for j th  step holds for (j  + l)th  

step as well.

S repeats this strategy until obtaining In and Mn, and hence the permissi­

bility properties are satisfied for the claimed intervals. □

Lem m a 3.1.4 Let X  be a Banach space with an asymptotic unconditional min­

imal system with constant C > 1. Let {ej}”=1 E {A-},! be arbitrary. Then there 

exists a permissible n-tuple satisfying {^i}"=1 ^  {ej}”=1 such that for any subset
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A  C { 1 , . . . ,n} and any scalars {a^} there exists a finitely supported 4>a € X* 

with \\(j>A\\ — 1 such that

{(p A ^a iX i)  > (1/(7)11^0^11
ieA i£A

and ((j>A, Xj) =  0 for all j  £ A.

P ro o f Let e > 0. Consider an asymptotic game in which S follows his winning 

strategy for (X }2n and e > 0 as described in the previous lemma, and V follows 

his winning strategy for {ej}"=1.

We use the same notation as in Lemma 3.1.3, and suppose without loss of 

generality that the first move of S is YI =  X .  i.e., K\  =  1. Let X\ E S(Y'i) be the 

first move of V  for {e,}™=1. Let I \  be any finite interval containing supp^i, and 

let Mi be as in Lemma 3.1.3. Let L2 > Mi be arbitrary and X2 be as in Lemma 

3.1.3. Let x2 be the second move of V  for {ei}”=1 such that suppa;2 > K 2, and 

let I 2 be an interval such that suppx2 C I 2 and so on.

At the end, the resulting vectors {rrj}"=1 are (l+e)-equivalent to {ei}”_1 and 

moreover all the resulting sequence of intervals are permissible as described in 

Lemma 3.1.3.

Let 1 < ki < k2 < . . .  < km < n be the elements of A. By Lemma 3.1.3, in 

particular, the sequence of intervals

,fc2)> -^2) A(fc2,fc3) • • • ) Ikml  A(fcm,n+1)}

and

{ A ( 0 , A ; i ) ) f f e u  A ( f c j j f c j ) ,  I k i i  ■ ■ • 11 k m i  A ( f e m , 7 1 - 1 - 1 ) }

are permissible. If ki =  1, we use the first the sequence above, otherwise we 

use the second. Moreover, since Ln+i is arbitrary, we take A(fcm)n_)_i) to be the 

interval (Mkm, oo).

Now set ko = 0 and L\ =  m in/i (which can be 1, of course). Note also
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that A(o,fcx) =  [1, Zrjbi) since Ki =  1. Consider A =  \Jf=0 ^(ki,ki+1) (if h  = 1 

take A(0,fc1) =  0). Put X a  =  span{uj}j€A and consider the finite dimensional 

quotient space X / X a -

Let {ai}-l=i be an arbitrary sequence of scalars and (j)'A e  ( X / X a )* be a 

norm-one functional such that ($A, Xa£a aix i +  Xa)  =  || J2ieA aixi\\x/xA- 
We can identify <j>'A isometrically with <f>A 6 X A such that {(f)'A, y +  X A) =  

(cj)A, y) for all y € X .

Now since,

m
II ^ a ixi \\x /xA • -  inf{|| ^Toia* +  : *  e X A^ k.+lV 0 < i < m } ,

ieA ieA i=0

and by Lemma 3.1.3, the sequence {A(o,fcl), Ikl,A {klM), I k2, ■ • ■, h m, A(fem,n+i)} 

is permissible, the sequence {pJjpZm, 1 • ‘ ,Xn"  ifi+W is Permissible
and therefore C-unconditional, by the assumption.

Hence it follows that

{(t>A,^OiXi) =  W^aiXiWx/x* > (1/(7)11^0^11.
igA igA igA

Moreover, su p p ^  =  su p p ^  C [1, Mkl) U (Lk2,M k2) U.. .  U (Lkm, Mkm). i.e., 

4>a is finitely supported. □

Remark In the above lemma, we were able to choose {xj}”=1 independent of 

scalars {a*}. This is already stronger than and should be compared with Lemma 

2.3.1.

P ro o f of T heorem  3.1.2 We have already shown one implication. For the 

converse, assume that X  has asymptotic unconditional structure with constant 

C > 1, and let {ej}̂ =1 G {A}n be arbitrary. Let T d e * } ^ , e) =  {a?(si,. . . ,  sn)} 

be an asymptotic tree for {ex}-L1 (see 2.1.1). Following the winning strategy 

for S in a subspace game described in Lemma 3.1.3, we construct a subtree 

£) =  {£(si> • • • j sn)} of this tree such that every branch of this sub-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tree is obtained by Lemma 3.1.3.

Precisely, let I\ be the smallest interval such that I\ D supprr(si), and let 

Mi be as in Lemma 3.1.3. For each L2 > Mi, let K 2 be as in Lemma 3.1.3 

and choose s2 (a node in T') such that minsuppx(si, s2) > K 2 (hence a;(si, S2) 

depends on given L2). Let I2 be the smallest interval such that I2 D x (s i ,s2) 

and so on.

Let x(si) be the first winning move of V  determined by T'({ej}"=1,e) = 

{« (« !,..., s„)}.

Let { A i , . . .  ,Ai} be a disjoint partition of { 1 ,..., n}. Fix a small 8 > 0 

to be defined later, and let Af be a finite 5-net in the unit ball of Fix an 

arbitrary {a*}"=1 G Af. For every branch 7 =  (si, s2, . . . ,  sn) of T'({ej}f=1, e) = 

{ x ( s i , . . . ,s n)}, let

w* =  wJ(si, s2, . . . , s n) =  ^ 2  aix (s i> ■ • •. O ,

where 1 < rii < n2 < . . .  < ns < n are elements of Aj.

And let =  $ ( s \ , . ■ ■, sn) be the norm-one functional obtained by Lemma 

3.1.4 applied to subset Aj , that is, ^ (w ^ )  > (1/C)||u^||.

For each 1 < j  < I, let ${s \ ,  s2, ■. ■, sn-i) be a io*-cluster point of the 

sequence {<^(si,. . . ,  sn)} (with sn —>■ 00); then let <jA{s\, s2, . . . ,  sn_2) be a w*- 

cluster point of {<^(si, s2, . . . ,  sn_i)} (with sn_i —>• 00), and so on, let <^(si) be 

a ty*-cluster point of {^ '(si> §2)} (with s2 —> 00).

We repeat this construction for all {aj}”=1 G Af and 1 < j  < I and eventually 

obtain I-fixed limits (j)1, . . . ,  <j>1 corresponding to each Aj (and for all {a*} G Af).

First we note the following important property of these limit points obtained 

at each step. For each 1 < j  < I, let 1 < rii < n2 < . . .  < ns < n be the 

elements of Aj. Let r be an integer such that nt < r < nt+1 (if such an r 

exists). Then m ax su p p ^ s i, S2> • • • > sr_i) < Mnt and therefore depends only 

on Si, s2, . . .  snt—\. And if r < n\ then . . . ,  sr_i) = 0.

Indeed, by Lemma 3.1.4, ^ ( s i , . . . ,  sr) vanishes on [Mnt, Lnt+1\. Hence if
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Si, S2, . . . ,  sr —► oo, then Lnt+1 —t oo as well. Therefore </^(si,. . . ,  sr_i) vanishes 

on [Mnt, oo). For a similar reason, when r < n\, we get (/►’(s i ,. . . ,  sr_i) =  0.

We now construct the desired permissible vectors {xi}^=l and functionals 

{di}i=i- Note that while the choice of {£i}”=1 will be independent of scalars 

{ai}”=1, the choice of functionals will depend on the particular sequence of 

scalars.

We have already fixed Xi = x(si). Let hi — <jAl and g\ — hi/\\hi\\, where 

1 £ Ajx. Then supphi C [l,Mi) and moreover, $  = 0 for all j  ^  j \  by above 

remark.

For k £ N by Qk we denote the natural projection of X* onto the A;th tail 

subspace.

Now choose S2 (from the index tree of T') such that

\\Qm>(&(5u h )  ~  <^(si))|| < e/n, for all 1 < j < l .

Let x2 = x(si, S2) (The second winning move of V).

And put h2 =  <P(si, ^2) -  Qm2{<S>*2{s i , s2)), where 2 £ Aj2 and, let g2 =

W IIM -
Now it is easy to check the following. If j x =  j 2 (that is, 1,2 £ A^ ), then 

hi+ h2 well approximates <jA'{si, h )  in norm. Indeed, in this case, Qm20j'1(s 1) =  

^ ( s i )  and

\\{hl + h2) - r  (Si,Sa)|| =  W ^ ^ i )  ~ Qm2{(^1{s i , s2))\\

= \\QM2(<l>il{si) ~ ft 'isuh)]] < e/n.

If j i  /  J2, then, since <jA2(si) — 0, h2 well approximates <̂ 2(si, s2). And for all 

^ ( s i , s 2) =  0.
In next steps, the construction of Xi s and ^ ’s are carried out inductively in 

a similar fashion.

Suppose that aq =  :r(si), x2 =  a;(si,s2), . . . , x r = x (s i , .. . , s r) and hi, h2, . . . ,
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have been already obtained so that

|| ht -  f t  (su . . . ,  sr)\\ < er/n ,
t£Aj,t<r

for all 1 < j  < I (we have already shown this for r = 1 and r =  2).

Choose sr+i such that

\\QMr+1(f t(su ---,8r+i) - < ^ ( s i , . . . , s r)|| < e/n  

for all 1 < j  < I.

And let xr+\ =  a;(si,. . . ,  sr+i) ((r +  l)th  winning move of V) and put

hr+l — f t r+ (Si, . . . , Sr+1) QMT+\{ft + (®1» • • • > ®r+l))>

where r +  l e  Ajr+

Now let us check that the property assumed for r is still satisfied with these 

choices for r  +  1 as well.

Indeed, if j  = j r+1, (i.e., r  +  1 € Aj) then

|| ^  ht - f t ( s u . . . , s r+1)\\ < || ^ 2  ht - f t ( s i , . . . , s r)||
t£Aj,t<r+l t£Aj,t<r

+ WK+l ~  ( ^ (S ! , . . . ,s r+1) -< ^ '( s i , . . . ,S r))||

< er/n  +  ||QMr+1( ^ ( s i ,■ • • ,§r+i) -  f t ( h , - - - ,

< er/n + e/n  = e ft  + l)/n ,

since QMr+1f t{ s i , . . . ,  sr) = f t  f a , . . . ,  sr) (for j  =  j r+1).

If j  #  jr+i (i-e., r + 1 $  Aj), then QMr+1f t ( s i , . . . ,  sr+i) =  f t f t i ,  ■■■, sr+1). 
And hence

|| hf f t  (si, . . . , Sr-fi) || < || h t - f t ( 8 U---,8r)\\
teAj,t<r+l t£Aj,t<r

"I" \\Qmt+i {ft (Si, • • • > Sr4_x) f t  (fir, • • • , Sr) ||
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< er /n  +  e/n — e(r +  l) /n .

Repeating this construction, at the end, we obtain x\ =  rr(si),. . . ,  xn — 

rr(si,. . . ,  sn) and functionals {hi, /12, . . . ,  hn} so that for all 1 < j  < II 5~lteAj ht 

< |̂| < £, f t iw i)  > (1/C)||«^|| and $(w i)  =  0 for i ±  j .  Now let -  hi/\\hi\\,

bj, = ||hj|| and let 5 > 0 small enough so that || YlieA, ttiXi ~ w jW -  £ ôr 

scalars {a*} and for all 1 < j  < I. Then it follows that, for all scalars {a*},

|| +  
i(zAj i(z.A.j Aj

for all 1 < j  < I, as desired.

Finally note that the permissibility of {&}"= i follows from the construction. 

Indeed, since supp^ C (Li, Mi) for all 1 < i < n, and since the choices of L/s  

were arbitrary, we can choose those to be the winning moves of S in a subspace 

game for {X*}„.

□
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3.2 Disjoint Envelope Functions

Let X  be a Banach space with an asymptotic unconditional structure (with a 

constant C > 1). We define the set {X}d of all normalized disjoint-permissible 

vectors in X  as follows. Forn G N, {xj}"=1 G {X}d if there exist {ej}™=i G { X } m 

for some m >  n and a disjoint partition {A\, A2, . . . ,  A n} of {1, 2, . . . ,  m} such 

that for each 1 < i < n, Xi — Y^jeAi ai ej f°r some scalars a =  (aj) such that 

\\x i\\ =  L

First we make a few remarks about the set {X } d (where superscript d 

stands for ‘disjoint’). Clearly, for all n G N and {ej}”=1 G {X } n we have 

that {ej}”̂  G {X}d. i.e., IJnfaO** c  faO d- fa*} e  {x Y i  then fa*} is an 
unconditional basic sequence (with constant C). It is also clear that if {uj} is a 

block (successive or just disjoint) basis of some {xj} G {X}d, then {uj} G { X } d 

as well. Finally, if {xj}"=1 G { X } d then {x^(j)}”=1 G {X }d, where 7r is a permu­

tation of {1, . . . ,  n}. This property, obviously, is not shared, in general, by the 

bases of asymptotic spaces.

We also have the following property of {X}rf which is inherited from {X}n.

If {xj}”̂  and are in {X}d, then there exists fai} ^ ”2 e  {X}d such that

{ ^ } " i ~  M S i  and ~  {w}2 i-
Indeed, if fa * } ^  and {yi}™li are disjoint blocks of the bases {ej}™\ and 

{fi }j=i °f some asymptotic spaces respectively, then we can find an asymptotic 

space {^}"L\+TO2 such that {ej}™\ ~  {gi}T=\ and ~  {9i)T=mT+1 (L8-2>
[MMT]). Hence the corresponding disjoint blocks {zi}™lfn2 of {#i}™=11+m2 have 

the desired property. When { x i } ^  and are in {W}d, to avoid repeti­

tions, we will simply say that {xj,t/j} G {X }d without referring to {zj}.

We define now the natural analogs of envelope functions on {W}d.

D efinition 3.2.1 Let X  be a Banach space with an asymptotic unconditional 

structure. Fora =  (af) G c00, letgx(a) =  inf|[ X)j«iXj|| andr^-(a) =  sup|| Y^iaixi\\ 

where the inf and the sup is taken over all {xj} G { ^ } d. We call gx and rx  the 

disjoint-lower and disjoint-upper-envelope functions respectively.
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It is easy to see that both functions gx  and rdx  are 1-symmetric and 1- 

unconditional. Moreover, while rdx  defines a norm on c00, gx  satisfies triangle 

inequality on disjointly supported vectors (of coo)-

Indeed, let a =  (a*) and b =  (&*) be two disjoint vectors in c0o and let e > 0 

be arbitrary. Pick {:rj} and {?/*} in {X}d such that gx (a) + e/2 > || J2iaix i\\ 

and gx (b) + e/2  > || Yhi îViW- Then, by the above remark, {xh yi} G {X}d and 

hence

gx (a + b) < ||aiXi +  6i?/i +  02X2 +  622/2 +  • • • ||

< ||oia;i +  0,2X2 +  . . .  || +  \\biyi 4- 622/2 +  • • ■ ||

< 9x(a)+ 9 i(o , )+ £-

Since e > 0 was arbitrary, it follows that gx (a + b) < gx (a) + gx (P)i whenever 

a, b G Coo are disjointly supported.

To compare the disjoint-envelope functions with the original envelopes, note 

that for all a G c0o, by the definition of these functions we have, gx  (a) < 

9x{a) < rx (o) < rdx {a).

We will use the following convenient notation. Let (ej) be the unit vector 

basis of c0o- For a = (aj) G c0o, occasionally we will write instead

of gx (o). Moreover, for any finite number of successive vectors b% = (&*•) G c0o

such that gx (bl) =  1 for i = 1,2, . . .  and for any vector a =  (a*) G c00, we write

gx (J2i aix i) instead of gx (Y/,i ai^1), where x t = b%j&j are blocks of the basis 

(ej) of coo normalized with respect to gx . We’ll use similar notation for rx  as 

well.

Next we establish some of the properties of the disjoint-envelope functions 

similar to the original ones.

Lem m a 3.2.2 Let X  be a Banach space with asymptotic unconditional struc­

ture.

(i) The upper envelope function rx  is sub-multiplicative, i.e., for all (aj) G
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cqo, we have

4($3 aiXi) - r x  (53 aiei) '

for any sequence of successive blocks (Xi) in coo with rx {xf) < 1 for all i = 

1, 2 , . . . .

(ii) The lower envelope function gx  is super-multiplicative, i.e., for all {af) € 

coo, we have

9 x  ($3  Oi*<) > 9 x  (E a ie i) >
i i

for any sequence of successive blocks {xf) in coo with gx {xi) = 1 for all i =  

1,2 .......

P ro o f (i) Let =  Ej=fcj+i bj ej f°r some 1 < < &2 < . . .  be a block basis

of coo with rx {xf) < 1 for al i i  =  1 ,2 ...,  and let a — (ai, 02, . . . ,  af) € c0o and 

e > 0 be arbitrary. Then there exists { u j} ^ 1 € { X } d such that

I I &i+1

rdx  ( 5 3  W i )  ~ £ = rx  ( 5 3  ai ( 5 3  biei)  ) “  e
i= l  i= 1 j = k i+ 1

I &i+i

— ||Ea*( 53
i=l j=ki+1

Set q =  || £i=fci+1 fcjtij-U, then q < rj^xf)  < 1. Let w{ =  (1/q) Ej=fei+i bi u T  

for i =  1, . . .  I, then {wi} G { ^ } d. Thus the latter term in above is equal to

1

i —1
5 3  aiCiWi < rdx {a1cu a2c2, . . . , a lcl)

< rx(ai,a2, . . . ,a i)

The last inequality is due to unconditionality of rx  and the fact that q  < 1 for
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z =  Since 5 > 0 was arbitrary, we have obtained that

1 1
rx  (X ^ aiXi) -  rx  ( X ! a^ )  ’

i=l i— 1

as desired.

(ii) The proof of this part follows similar lines and hence we skip it.

□

Lem m a 3.2.3 Let X  be a Banach space with an asymptotic unconditional 

structure. Then, for all (af) G coo, we have

(i)

9dx  ( X I aiXi) -  rx  ( X I ai6i) ’
i i

where (Xi) is a sequence of successive blocks in Coo with 9x{xf) < 1 for all 

* =  1 , 2 , . . . .

(ii)

9x ( X I ttiei) -  rx  (X ^ aiXi) ’
i i

where (Xi) is a sequence of successive blocks in Coo with rx(xi) =  1 for all 

* =  1, 2, . . . .

P ro o f (i) Let Xi =  fyej f°r some 1 < ki < k% < ■.. be a block basis

of Coo with 9x (x i) < 1 for all * =  1,2 —  let a = (01,02, . . . ,  a*) be arbitrary 

scalars and let e > 0. For each i, pick {u^}3 e {X}d such that

| | 5 > 5  -  +  ̂< i + s-
j

Then {u fii j  e  {X}d. Let Cj =  and Wi =  (1/q) ]>T for * =

1,2, —  Then we have,

9 x ( j 2 aiXi) = 9 x ( j 2 ai ( Y l bi ei ) )
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and since {wi}  G {AT}rf, the latter term above is less than or equal to

rjf (aici, a2c2, . . . ,  atci) < (1 +  e)rdx  ,
i

where the last inequality follows from the unconditionality of rx . Finally, since 

e > 0 was arbitrary, the desired inequality follows.

(ii) The proof of this part is similar. □

The most interesting fact about disjoint-envelope functions is that they are 

always close to some /p-norms. This is similar as for the original envelope 

functions (see Proposition 2.4.1). As remarked in [MMT], this is a general fact 

for multiplicative functions which satisfy a weaker triangle inequality as gx does.

Proposition  3.2.4 Let X  be a Banach space with asymptotic unconditional 

structure. Then there exist 1 < p, q < oo such that for all e > 0 there exist 

CE,c£ > 0 such that for all a G c0o we have

C e l M l g + e  <  9x{ p)  <  I M I ?  a n d  I H I p  <  r x ( a ) <  C ' e | | a | | p _ e .

Here it is understood that if q =  oo (resp. p = 1), then gx  is equivalent to 

||.||oo (resp. rx  is equivalent to ||.||]J. If p =  oo, then for all r < oo there exists 

Cr < oo such that rx (a) < Cr ||a||r .

Remark The proof of these inequalities follows from well known standard argu­

ments as in the case of the original envelope functions. As we show below for rx  

case, the proofs make use of the classical theorem of Krivine (for a statement of 

Krivine’s theorem see section 3.6.3). However, since the lower disjoint-envelope 

gx  is not necessarily a norm, to be able to use Krivine’s theorem, one needs to

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



check that the theorem holds in a more general setting, namely for functions 

which satisfy the triangle inequality for disjointly supported vectors. To avoid 

this cumbersome work, we postpone the proof of gx  case to the section 3.6.3, 

where we give a different and a self-contained proof.

P roof (rx  Case) For n, m E N, the sub-multiplicativity of rdx  implies that

nm n m

d ( X > )  < ^ ( £ ^ 4  ( £ > , ) .
2=1 i=1 i—1

Hence, by induction, we get that rx  e* )  — rx  ( S I L i  ei j  j f ° r  n , k  EN.

n

1 / p  = inf In

Let

Then, clearly, rdx  e«) > nl!p, for all n E N. Moreover, for all e > 0 there 

exists C£ > 0 such that for all n E N, we have rx  e*) ^  Cenllp~F~.

Now consider the space (c00, rx ). The unit vector basis {e*} is symmetric 

and since rx  (]CiLi > n l!p for all n, it follows from Krivine’s theorem (see 

section 3.6.3) that there exists r < p  such that £r is block finitely representable 

in the space (c0o, rx ), i.e., for all 8 > 0 and n E N, there exists a sequence of 

successive blocks {£*}”_! in (c0o, rx ) such that ^  I™. Moreover, by the

sub-multiplicativity of rx , for all n, we have

n \ j r n n

^  rx ( ^ 2 x i )  < rx ( Y l ei )  ^  c ^ 1/p~£-1 +  s . -
2 = 1  2 = 1

Since this is true for all e and n, it follows that r >  p  — e for all e > 0, and thus 

it follows that r  =  p.

Finally, by sub-multiplicativity of rx  and that S > 0 can be chosen arbitrar­

ily, it follows that rx (a) > ||a||p for all a E c00.

To prove the upper £p- s estimate for rx  we make use of an auxiliary norm 

op- e. For 1 < s < oo, the unit ball of the norm os is the convex hull of all vectors
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a — QZ* la *l)- 1̂ a(a *)?=i> where ce* =  ±1 or 0. (The norm as is equivalent 

to the norm of Lorentz sequence space d(w, 1), where the weight w =  (wi) 

satisfies Wi ~  [LT].) A direct estimate shows that for all s' < s there

exists Cs> < oo and Csi does not depend on n so that as(a) < CV||a||.i' for all 

a e  coo- Now fix e > 5 > 0. As we remarked earlier, there exists Cg > 0 such 

that rx  (S iL i ei) — Cgnllp~s. Put p — S = s, and hence rx (a) < Cgas{a) < 

CsCp- e\\a\\p- e for all a e cqq. Hence, for all a € coo, r^(a) < Ce||a||p_e, where 

Ce = CSCp„£.

□

Using the super-multiplicativity of as in the first part of the above proof, 

we easily obtain the following.

There exists 1 < q < oo such that for all e > 0 there exists a constant cs 

such that for all n,

cen1/g+s < gdx  e<) < n1/g. (3.1)
1

D efinition 3.2.5 Let p be as in Proposition 3.2.4 and let Q be as in (3.1). We 

say that the lower-disjoint envelope gx  has power type-q and the upper-disjoint 

envelope rx  has power type-p.

We define similarly the power types of the original envelope functions. We 

say that p and q are the power types of rx  and gx  respectively, when 1 < p,q < 

oo as in Proposition 2.4.1.

As we remarked earlier, it is clear from the definitions that gx (a) < gx(o) < 

rx(o) < rx ( a) f°r o € coo- Also note that for asymptotic-^ spaces all these 

functions are equivalent. However, in general they might be very different as 

the next example shows.

Exam ple 3.2.6 There exists a Banach space X  with an unconditional basis 

such that while the power type of gx is 1, g^ is equivalent to ||.||oo-
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P roof The Schlumprecht space S  has this property. Recall that the space S  

is defined on c0o as follows [S]. For a € Coo, put

1 1
||a|| =  max{Halloo,sup +  ^  ^  ||#i(o)||}»

where the inner sup runs through all subsets Ei of N such that max Ei < 

m m E i+i. Here Halloo =  sup* |aj| and Ei(a) = aj ei f°r a = Yli a»e* e Coo- 

The space S  is well known and much studied in recent years, and we shall 

use some of these results here.

It is easy to see that the unit vector basis {ei} is 1-subsymmetric and 1- 

unconditional. Subsymmetry implies that for any successive normalized blocks 

{;Xi}™=1 of {e*}, we have i € {5}n. Also from the definition of the norm, 

II Y%=ixi\\ > iog2(n+i) for a11 1 e  {'S'}n- This implies that the power type

of gs  is 1.

On the other hand, it is shown in [KL] by a much more delicate calculation

that Co is disjointly finitely representable in S. i.e., for all n 6 N and e > 0, there
\~\~£exists a sequence {^j}?=i °f disjointly supported vectors such that ~

The subsymmetry of the basis implies that for all disjointly supported 

sequences {x,}"=1, we have {xj}”=1 G {-S'}6*, i.e., gg ~  IMloo- Therefore while gs 

is close to the 4 -norm, is equivalent to || •Hoc.

Moreover, it can be deduced from the proof of [KL] that one can find disjoint 

permissible vectors {Xi}”=1 such that {Xi}”=1 X~e £̂ o in every block subspace Y  

of S. Thus, for every block subspace Y  of S  we have that gy is close to the 

4 -norm and g y  is equivalent to ||.||oo-

Also it is easy to verify that for the dual space S*, we have that rs* has power 

type-oo and rf, is equivalent to the 4 -norm (see Proposition 3.3.1 below). □
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3.3 Duality for Disjoint-Envelope Functions

Recall that the lower envelopes gx  and gx  satisfy the triangle inequality only for 

disjoint vectors, they do not necessarily define a norm on c0o- For this reason, 

we introduce, as in [MT2], the following norms on c0o which are ‘close’ to the 

lower envelopes.

Denote by gx  (resp. gx ) the largest norm on c0o which is less than or equal 

to gx  (resp. gx ). Also by rx ,gx , rx  and gx , we denote the norms on c0o which 

are dual to rx ,gx ,rx  and gx  respectively.

The following duality relations for the original envelope functions have been 

established in [MT2]. Let X  be a reflexive Banach space with a minimal system, 

then

(l/4)r^„(a) < gx (a) < 4rx *(a) and (1/4)gx *(a) < rx (a) < 4gx ,(a),

for all a G coo- The proof of these inequalities makes use of Lemma 2.3.1.

Equipped with Theorem 3.1.2 we show next that the similar duality relations 

hold for disjoint-envelope functions for reflexive Banach spaces with asymptotic 

unconditional structure.

Proposition  3.3.1 Let X  be a reflexive Banach space with a minimal funda­

mental and 1-norming system { u i , u * } .  I f  X  has an asymptotic unconditional 

structure with constant C > 1, then

(1/C)r%.(a) < gx {a) < r $ . ( a )  and (1 /C)g$.{a) < rdx (a) < gx »{a),

for all a e coo-

P ro o f By Proposition 3.1.1, X* also has an asymptotic unconditional structure 

with the same constant C, hence the functions rx , and gx » are well-defined.

Let {Xi} G { X } d and e > 0. Theorem 3.1.2 implies that there exist {^'} 

in X  satisfying M  ~e {s'} and {g'i} in X* satisfying {g[} {^i} for some

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



{gi} G {X*}d such that g[{x'/) > 1/C  and g'i(x'j) = 0 for i ^  j.  

Fix a — (a,i) G c00. Then for any b =  (&*) G c00, we have

1 / C ^ 2 \aibi\ <
i i %

Taking the supremum over all b G Coo with rx * (b) < 1 and then the infimum over

all {^i} G { X } d we get, by the definition of the norm rx *, that rx * (a) < Cgx (a) 

for all a G coo- Also, since gx  is the largest norm which is less than or equal 

to gx , it follows that rx .(a) < Cgx (a) for all a G c0o- Moreover, applying the 

same argument to X*, we also get rx (a) < Cgx *(a), and hence by duality, 

fx(o)  > (1 /C)gx *(a). These estimates prove the left hand inequalities in each 

statement.

To prove the remaining inequalities, let a =  (a;) G coo and {xi} G {X } d be 

arbitrary. Then there exists an asymptotic space {ej} G {X }m for some m  such 

that for all i =  1,2,. . . ,  Xi =  YljeAi ai ej f°r some partition {At} of {1,2, . . . ,  to}. 

Now by Lemma 2.3.1, there exist permissible vectors {yj}f^i G X  satisfying 

{ej}j=i and permissible functionals {gj}™=i € X* and scalars {bj} 

such that || X)j=i bj9j\\ < 1 +  £ with gj(xi) =  0 for i ^  j  and

(Note that we have applied Lemma 2.3.1 to {ej}™=1 and the sequence of scalars 

(dj)'lJl=l where dj =  a^aj for all j  G Ai and z =  1 ,2 ,__)

E«*(E %%) || < (i + £ ) (E*(E Oi jVj

For each z =  1,2, . . . ,  let Wi — '}2jeAi tygj and ||wjj|| = q . Then note that

< (1 +  £)||£i|| < 1 + £,
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and clearly Wi(Y^jeAk djVj) =  0 for i ^ k .  

Now it follows from above that

II -  (1 + e ) S l a<c«l

< (1 + £)2^ |a iC i |
i

< (1 + s)2gdx »{c)gdx,{a),

where we set c =  (c*).

But

Thus, we have obtained that

II 5 ^aiSi|| < (1 +e)4gdx*(a)-

Now taking the supremum over all {xi} € {X } d we get, since e > 0 was 

arbitrary, that r^(a) < g^- (a) for all a G Coo-

Again applying the same argument to X*, we obtain that r^-,(a) < (a),

3.4 A Characterization of A sym ptotic-^  Spaces

In this section, we prove a characterization for asymptotic-^ spaces. Our start­

ing point is the following consequence of the results proved in [KOS].

Suppose that for a Banach space X  there exists a constant K  > 0 such that 

for all n and permissible vectors {xi}”=1 in X  we have
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and by duality (a) > gx(a), which finishes the proof of the all inequalities.

□

n
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Then X  is an asymptotic-^i space.

Let us note that although this result is not stated in [KOS] as we formulated 

above, this is a consequence of Propositions 6.7 and 6.8 proved there, and we 

will provide a proof of this statement (see Corollary 3.4.3).

The above result shows that asymptotic-^i spaces can be fully characterized 

by the £i-behavior of its normalized permissible vectors on constant coefficients. 

A natural question in this context is whether this remains true in general. We 

formulate the question for 1 < p < oo.

P rob lem  Let 1 < p < oo. Suppose that there exists a constant C so that for 

all n and for all permissible vectors {xi}”=1 in a Banach space X  we have

Is X  an asymptotic-^, space?

We can also restate this problem in terms of the envelope functions. Let 

X  be a Banach space and suppose that there is 1 < p < oo and a constant K  

such that for all n, gx( 1,1, . . . ,  1) ~  n1/,p ~  rx(l ,  1, . . . ,  1). Does it follow that 

9x(a) ~  ||a||p ~  rx (a) for all a e  c00?

We will see in the next section that the answer to this problem is negative 

in general, even for spaces with an unconditional basis. However, we will show 

here that this is true if we replace the envelope functions gx and rx  in the 

assumption with the disjoint- envelope functions g% and r^ .  This was also our 

initial reason to introduce the disjoint-envelope functions.

The main result of this section is the following characterization for asymptotic- 

£p spaces.

T heorem  3.4.1 Let X  be a Banach space with asymptotic unconditional struc­

ture. Suppose that there exist 1 < p < oo and constant K  > 0 such that for all
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n  €  N  and fo r  all { Xi} ”_ !  €  { X } ^  we have

^ < | | X > | | < i ^ .
i= l

Then X  «5 an asymptotic-£p space.

For the proof, we will require the following characterization of the unit vector 

basis of £p, which is of independent interest. The idea of the proof of the next 

theorem is inspired by the proof of the Proposition 6.9 in [KOS].

Theorem  3.4.2 Let X  be a Banach space with a subsymmetric and uncondi­

tional basis (Xi). Suppose that there exist 1 < p < oo and a constant K  > 0 such 

that for all n 6 N and for all disjointly supported normalized vectors {t/i}?= i 

X , we have
1/d n

^ - < | | E H I  iKn'/r-
i—1

Then (re*) is equivalent to the unit vector basis oflp.

P ro o f Without loss of generality, we may (and will) assume that the basis is 

1-subsymmetric and 1-unconditional.

We need to show that there is a constant C > 0 so that for all a — (af) e  coo, 

we have

^ ( E w ”) 17'’ ^  I I E H I £ c{T,Mr)',P-
First we give the proof of the left hand inequality. Suppose to the contrary 

that the lower £p-estimate fails. That is, for all e > 0 there exists a — (aj)f=1 

such that || Yli=i aixi\\ < £ while |a*|p =  1. By unconditionality of the 
basis (Xi) we can assum e that all afs  are positive.

Fix e < —alx/p, and let (a,) be as above. Since the af  s are positive, we 

normalize by taking the pth root and rewrite our assumption in the form,

E t i ai = 1 while IIT L i a\ lPxiW < £ < k w -
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By a slight perturbation, if necessary, we assume that a^s are positive ra­

tional and we write a* =  ^  for 1 < i < k, where N  are natural numbers. 

Put also N  — riirrii +  ki, 0 < ki < rii, 1 < i < k. Now consider the vector 

x = Y]t=\aillpYJj=ix)i where x) =  »(*_i)N+j for 1 < i < k and 1 < j  < N. 

i.e., x is of the form x  =  (a^p, . . . ,  a\^p, a<lP, . . . ,  a%p' , a]/p, . . . ,  a]\JP) with 

respect to (xi, X2, . . . ,  XkN), where each block consists of N  constant coefficients 

a j p. First, we estimate the norm of x  from below.

For each 1 < i < k, since N  = ki(rrii + l) + (ni — ki)mi, we may fix a partition

k% Tii ki
{1> • • • > N} — ( J ^ U  | J  Bv>t

ti=l W=1

where \A ^ i \  =  rrii + 1 for each fx =  1, . . .  ,k i  and \BV̂ \ =  rrii for each v =  

1 , . . . ,  rii — ki. Then we have

= l l E ^ E ^ H f e ^ B ;
i= l  j = l=1 j=l

k ki rii—ki

i=1 n=1 j e A ^ i  v= i

Now, using the assumption, we estimate the norm of each of the disjoint 

blocks appearing in (3.2).

For each n = l , . . . , k i ,  since =  rrii + 1, we have

q )1/p E
jSLApj

(rrii +  l)Vp m ]llv

^  (riimi +  nj)1/p ^  1

AntvK ~ K '

For each v =  1, . . . ,  rii — ki, since |£„)tj =  rrii, we have

q)1,r E *51
jeBVii

> rii1/p mi1/p > 1

m /p  k 21/pK '
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By the unconditionality of the basis and by the above estimates for the blocks 

uj, and wi appearing in (3.2), we obtain that the expression (3.2) is greater than 

or equal to

k ki k%

^ i n £ < + 5 > o i i  ( 3 -3 )i— 1 /i=l w=l

The blocks u1 and w\ are disjointly supported (in fact, note that the partition 

can be chosen so that they become successive) and normalized, therefore by the 

assumption, (3.3) is greater than or equal to

1 V / p -  Nl/P
2^/pK2 ”V ”  21/pK2'

We have used that 1 =  Y%=i ai =  H i=i • Thus, we have obtained that

TV1/?
W  *  2W P -  ( 3 -4 )

On the other hand, letting yj = X^i=i a^ Vx%j f°r 1 < j  < -W, by subsymmetry

of the basis (x^  and the assumption, we have \\yj\\ < s. Thus, since {yj} are

disjointly supported, by the assumption we have

11*11 =  =  | |X > ;||  s e K N ' /p■ <3-5)
i=l j=1 j=1

Comparing two estimates in (3.4) and (3.5), we arrive at a contradiction by

taking e small enough. Hence there exists C < oo (C > K 321//p) so that

II J2i aix i\\ > ( ! /^ ) (E i  k l p)1/p, for all (ai).
The proof of the upper t v estimate is similar. Suppose to the contrary 

that for all M  > 1 there exists a positive scalar sequence (aj1//p) |=1 such that
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H E L i ^ ^ I I  >  M  while YH=i°>i =  !• Fix M > 21/P^ 3 and find (a*1/p)L i 

satisfying the above. With the same set up as in the first part of the proof, we 

estimate the norm of the vector x in (3.2) from above. Thus,

k N
||]>r aii/p ^ 2 xj ^  k 22i/pn i/p.

i=i j=i

On the other hand, as in (3.5), using the assumption again we have

N

E ^ E * ;
i=1 j=1

> M N V p 
K  ‘

But this is a contradiction by the choice of M. Hence there exists an absolute 

constant C > 1 (C > 21/pK 3) such that

^ d i X i  < C ( ^ 2 \ai\p^ /P,

for all scalars (aj). The proof is now complete. □

Let us remark that the above proof uses only the disjointly supported vectors. 

In particular, the conclusion of the theorem holds for more general functions 

(e.g. for the lower disjoint-envelope gj>) than the norms, which satisfy the 

conditions.

P ro o f of Theorem  3.4.1 Clearly it is sufficient to show that both g% and rdx  

are equivalent to ||.||p. The assumption already implies that

n l Ip
< s t ( E e<) -  r i ( E ''•} - K n l'"'

K

where (e*) is the unit vector basis of coo-

Let {ui} and {uij} be arbitrary successive blocks of c0o with <7̂  (it*) =  1 and 

rx ( wi) =  1 for alH =  1, 2, . . .  respectively. From the multiplicativity properties
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of the disjoint envelopes, Lemma 3.2.2, and Lemma 3.2.3, it follows that

=£ < A  (E«.) < A  (E “.) < A  (E «.) < KnV>
8 = 1  8 = 1  8 = 1

and

< 9 x ( i z ei)  -  rx { i L w0 - r̂ (x̂ ei) - K n i / p - 
8 = 1  8 = 1  8 = 1

That is, g x(^A =\ ui) ~  «1/p and rx {Y^= i wt) ~  ^ 1/p for all successive normal­
ized block bases (uf) and (Wi) of (c00, gdx ) and (c00, rdx ) respectively. Moreover, 

since both gx  and rdx  are also 1-symmetric, the same estimates hold for all dis­

jointly supported normalized sequences in ( c 0o, gx) and ( c 0o, rx ) respectively. 

Thus, by Theorem 3.4.2, both gx  and rx  are equivalent to ||.||p with a constant 

which depends only on K. Therefore X  is an asymptotic-^ space.

□

As we remarked at the beginning of the section, for p =  1 this result can be 

considerably improved.

Corollary 3.4.3 Suppose that for a Banach space X  there exists a constant 

K  > 0 such that for all n and permissible vectors {£*}”= x in X  we have

n

| |X ^a'i H — n / K -
i—1

Then X  is an asymptotic-t\ space.

Proof (Sketch) It is sufficient to show that the lower (original) envelope function 

satisfies gx(o) > c||a||i, for some constant c. (The upper estimate trivially 

follows from the triangle inequality.)

The proof follows the same lines in the first part of the proof of Theorem 

3.4.1, so we only indicate the few differences.

With the same setup as in the first part of the proof of Theorem 3.4.1, as­

sume that the above estimate fails and consider the vector x  in (3.2). Then the
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estimate, gx{%) > 55̂  (3-4) holds because , as we remarked there, the blocks

appearing in (3.3) can be arranged to be successive. On the other hand, the up­

per estimate gx(%) < eKN, in (3.5) simply follows from the triangle inequality 

for gx on disjointly supported vectors. Thus we arrive at a contradiction. □

3.5 Tirilman Spaces

In this section, we deviate somewhat from the general theme of the thesis, and 

turn our attention to a particular class of Banach spaces, called the Tirilman 

spaces.

To complement the main result of the previous section, we show here that 

the characterization of asymptotic-^ spaces given in Theorem 3.4.1 cannot be 

strengthened further as stated in the problem discussed there. Namely, we show 

that for all 1 < p < 00, there is a Tirilman space X  with the property that for 

all n and permissible vectors {£j}"=1 in X, we have || Ya=i x i\\ ~  n ^ P f°r some 

constant independent of n, and yet X  is not an asymptotic-^ space.

Additionally, as a consequence of Theorem 3.4.2 of the previous section, we 

also obtain a solution to a conjecture of Casazza and Shura on the Tirilman 

spaces.

The Tirilman spaces are introduced and studied by Casazza and Shura [CS]. 

Their definitions depend on a slight modification of the original spaces con­

structed by L. Tzafriri [T] (The name ‘Tirilman’ comes from the Romanian 

surname of L. Tzafriri.)

We recall now the definition and few properties of these spaces, which we 

shall use.

Let 1 < p < 00. Fix 0 < 7 < 1. As in the case of Tsirelson’s and 

Schlumprecht’s spaces, the norm is defined on c0o implicitly. For all a — (a*) G 

coo, let
f  11 11 E j U  \\Eja\\ ^||a|| =  max j  Halloo, 7sup  • - j ,

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where the inner supremum is taken over all finite successive intervals of natural 

numbers 1 < E\ < £2 < • • • < ■£* and all k, and 1/p + 1/q =  1.

The Banach space (coo, ||.||), which is defined with the parameters p and 7 , 

is called a Tirilman space and denoted by Ti(j,p).

It is not difficult to show that such a norm indeed exists. Also, it is im­

mediate from the definition that the unit vectors {ej}?^ form a normalized 

1-subsymmetric 1-unconditional basis for Ti{p(,p).

We shall also use the following results proved in [CS].

T heorem  3.5.1 Let 1 < p < 00. There exists 0 < 7 < 1 such that the following 

hold for Ti(p, 7 ).

(1) For any normalized successive blocks {xj}f=1 of the basis {e*},, we have

n

7nl/p < || J ^ - l l  < 31/qn ^ p. 
j = 1

(2) Ti(p, 7) does not contain isomorphs of any lp (1 < p < 00) or of cq. In 

particular, Ti(p, 7) is a reflexive space.

Observe that the left hand side inequality in the first part of the Theorem 

easily follows from the definition of the norm. Indeed, let {Xj}”=1 be a normal­

ized successive block sequence of the basis. For each 1 < j  < n, let Ej be the 

smallest interval containing the support of Xj. Then,

1 1 | | ^  E j= i ll^i*ill ^  n
H ^  ^ ^  V r f  =  r * /p-

j = 1

For the proof of other statements see Lemma X.d.4 and Theorem X.d.6 of [CS] 

(Note that in [CS] the proof of these statements are given for p = 2 only, 

appropriate modifications are necessary for the general case).

Exam ple 3.5.2 Let 1 < p < 00. Then there exists 0 < 7 < 1 such that the 

Tirilman space Ti(p, 7 ) has the property that for all n and all permissible vectors
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{ X j } ] =  1, we have || Ya=i ®i|| ~  n1//p, where K  depends on 7  and p only, and yet 

Ti(p, 7 )  i s  not an asymptotic-lv space.

P ro o f By Theorem 3.5.1, there exists 0 < 7 < 1 such that the Tirilman space 

Ti(p, 7 ) has the property that for all n and successive blocks { x j } ^  of the 

basis, we have 7n 1̂  < || Y T j= 1 x j II — 31/,?n1/p. In particular, the same estimates 

hold for all permissible vectors. On the other hand, since the basis {e*} is 

subsymmetric, if Ti(p, 7) was asymptotic-^, this would imply that the basis 

{ei} is equivalent to the unit vector basis of £p. However, this contradicts the 

part (2) of Theorem 3.5.1. □

Moreover, Casazza and Shura conjectured that Ti(2,7), where 0 < 7 < 1CT6, 

has a symmetric basis (Conjecture X.d.9, [CS]). (As it is shown in [CS], for 

0 < 7 < 10-6 the conclusion of Theorem 3.5.1 holds.) However, this is not the 

case, as the next theorem shows.

Theorem  3.5.3 Let 1 < p < 00 and let 0 < 7  < 1 be as in Theorem 3.5.1. 

Then Tiijp,^) contains no symmetric basic sequences.

P ro o f To the contrary, suppose that there is a symmetric basic sequence {27}°^ 

in Ti(p, 7). By Theorem 3.5.1, Ti(p, 7) is reflexive, thus {27} is weakly null and 

by so-called sliding hump argument there exists a subsequence which is equiv­

alent to a block basis of the unit vector basis (e*) of Ti(p, 7) (cf. Proposition 

l.a.12 of [LT]). Since the sequence {27} is symmetric, it is equivalent to all 

of its subsequences, in particular, {27} itself is equivalent to a block basis of 

{ej}. Now it follows from the first part of Theorem 3.5.1 that for all n and all 

normalized successive blocks {ui}"=1 of {27}, we have

n

7n1̂  < || 5 > | |  < 2>llqn llp.
i- 1

By symmetry of {27}, the same estimates hold for all disjointly supported nor­

malized vectors {«i}”=1. Thus by Theorem 3.4.2, {27} must be equivalent to
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the unit vector basis of lp, which contradicts the second part of Theorem 3.5.1.
□

The definition of Ti(p, 7) in [CS] has been modelled on spaces constructed 

by Tzafriri in [Tz]. This definition was fully analogous to that of the Tirilman 

spaces, except that in the implicit equation of the norm the inner supremum is 

taken over all disjoint subsets Ej of the natural numbers (rather than successive 

ones) [Tz]. In this case, as it is easily seen, the unit vectors form a symmetric 

basis for the space. In the literature of the Tsirelson-like spaces, the Tzafriri 

spaces are the modified Tirilman spaces (cf. [CS]).

It is well known, for instance, that the modified Tsirelson space is canonically 

isomorphic to the Tsirelson space, i.e., the unit vector bases are equivalent.

A natural question then was raised in [CS] (see X.D. Notes and Remarks 3) 

whether the same holds for the Tirilman spaces. It follows immediately from 

Theorem 3.5.3 that the answer is negative. In fact, Theorem 3.5.3 implies the 

following

C orollary 3.5.4 Let 1 < p < 00 and let 0 < 7 < 1 be as in Theorem 3.5.1. 

Then the Tzafriri space with these parameters p and 7 does not imbed into 

Ti(p, 7).

3.6 Envelopes and Reflexivity

In this section, we return to the original envelope functions and use them to 

give an application relating the asymptotic structure of a Banach space to its 

infinite-dimensional subspace structure.

Recall that a classical result of James (cf. [LT]) asserts that a Banach space 

with an unconditional basis is either reflexive or has a subspace isomorphic to 

Co or l\. Using the envelope functions we prove the following asymptotic analog 

of this result for Banach spaces with asymptotic unconditional structure.
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T heorem  3.6.1 Let X  be an infinite-dimensional Banach space with asymp­

totic unconditional structure. Then either £ { X } n or £ {-^}n for all n 

or X  contains an infinite-dimensional reflexive subspace.

This result is an immediate consequence of Propositions 3.6.2 and 3.6.3 

proved below. Also observe that the Proposition 2.4.1 implies that for every 

Banach space X  the lower envelope gx is equivalent to ll-lloo if and only if its 

power type is q = oo, and the upper envelope rx  is equivalent to ||.||i if and 

only if its power type is p = 1.

Recall that a Banach space with a basis {a:*} is reflexive if and only if {x^} is 

both shrinking and boundedly complete. The property of shrinking is equivalent 

to the fact that for every x* £ X*, the norm of the restriction of x* to span[xj]^n 

tends to zero as n tends to infinity. A basis {x;} is boundedly complete provided 

that whenever the sequence i is bounded, then it is convergent

(cf. [LT]).

The next proposition which is stated in terms of the power types of the 

envelope functions is a simple generalization of 4.2 of [MMT], where it was 

proved for stabilized asymptotic-^ spaces. In the proof, we shall make use of 

the stabilization result due to Milman and Tomczak-Jaegermann [MT1], which 

we recall now.

Let X  be a Banach space and let B be a family satisfying the filtration 

conditions. There exists a subspace Z  C X  with a basis {zi} such that

(i) for all n £ N and e > 0 there exists N  = N(n, s) such that for any normal­

ized successive blocks z^  < Wi < . . .  < wn of {^} there exists E  £ { X } n 

such that {nq, . . . ,  wn} ^  E.

(ii) for every n £ N and every space E £ {X }n the following is true for every

e > 0 :

VMi 6 N > Mi VM2 > Mi 3m2 > M2 . . .

. . .  VMn > Mn_i 3mn > Mn {zmi, . . .  ,^mn} ~  E.
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Moreover, for k E N, the basis constant of {zi}i>k is less than or equal to 1 +  £&, 

for some sequence e* J, 0.

We will call this subspace Z  a stabilizing subspace of X .  In the language 

of games, (i) means that the winning strategy of the subspace player S in a 

subspace game in Z  is very simple. For every e > 0 and n E N, S may always 

choose the same tail subspace Z x  =  span{^}i>Ar, where N  — N(n, e), regardless 

of the moves of V. And the part (ii) says that the winning strategy for the vector 

player V is also simple. For every E  E {X }n and e > 0, the vector player V 

can restrict its moves only to basis vectors {zi} as his winning strategy.

P roposition  3.6.2 Let X  be a Banach space and let q and p be power types 

of gx and rx  respectively. I f  1 < p, q < oo, then X  contains an infinite­

dimensional reflexive subspace.

P ro o f Let Z  C X  be a stabilizing subspace with basis {zi}. Fix e > 0 for the 

rest of the proof. Then for all n E N there exists N  =  N (n ,e ) such that any n 

successive blocks supported (with respect to {zi}) after N  are (1 +  e)-equivalent 

to some asymptotic space E  E {A}n.

We will show that {^} is both shrinking and boundedly complete, hence Z  

is reflexive.

Since the power type p of rx  satisfies p > 1, by Proposition 2.4.1, for any 

fixed p > r > 1 there exists a constant Cr (which depends on r only) such that 

rx{a) < CVlNIr for all a =  (ai) E coq. This, in particular, implies that for all 

n E  N and {ej}”=1 € { X } n, we have || ICILi a*e*ll ^  C7r ||a||r . Now if {z^} was 

not shrinking, then there exists 2* E Z* with ||z*|| =  1 and 5 > 0 for which 

there is a normalized block sequence {iq}* of {z^} such that z*(ui) > 8 for all 

i — 1,2,—  But for all n E  N, there exists N  — N(n,e) such that whenever 

N  < u i < .. .un, then {uj}”=1 is a permissible sequence. Hence,

n n

Cr(l + e)nllr > || 5 > | |  > * • ( $ > ) >  "A
i=1 i= 1
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Since r > 1, this is a contradiction for a large enough n. Therefore { z ^  must 

be shrinking.

Also {Zi} is boundedly complete. Indeed, since the power type q of gx  

satisfies q < oo, by Proposition 2.4.1, for any fixed q < s < oo, there exists 

cs such that gx (a) >  cs||a||s for all a G c0o- In particular, for all n G N and 

{ej}"=1 G {AT}n, we have that || ]C!Li a*e*ll ^  cslMls- Suppose to the contrary 
that {zi} is not boundedly complete. Then there exists a normalized block 

basis {uj} of {^} such that supn || — M  < oo. But for all n, there

exists N  = N (n ,e ) such that if k is such that N  < Uk, then the sequence 

N(n, e) < uk+1 < . . .  < uk+n is permissible. Hence,

k+n k+n
2M  > 2|| > || ^  Mj|| > c,(l + e)n1/s.

i—1 i—k+1

Since s < oo, this is a contradiction for large enough n. Thus { z ^  is boundedly 

complete, and the proof is completed. □

P roposition  3.6.3 Let X  be a Banach space with an asymptotic unconditional 

structure. Then

(i) gx{ ) is equivalent to || •Hoc if and only if for all n, ^  G {X } n,

(ii) rx (-) is equivalent to ||.||i if and only if for all n, £” G {A"}n.

P ro o f The proof of part (i) is easy. If gx  is C-equivalent to ||.||oo for some 

C > 0, then for all n G N, there exists {ej}"=1 G {A}„ such that || Y)a=i e*ll ^  

2^x(15 1, ■ ■ •, 1) < 2C. The unconditionality of the basis {ej}”=1 then implies 

that {ej}"=1 is 4C2-equivalent to the unit vector basis of The constant 

4C2 is independent of n, and now by well known standard blocking argument 

of James, for all n and e > 0, one can find blocks of { e i } ^  for large

enough m  such that {:£*}”= x ^  Since {a:,}"=1 G {A}n, the result follows.

The converse implication is trivial.

To prove the second part, assume that rx  is equivalent to ||.||i. By Propo­

sition 2.4.1, necessarily rx (.) ~  ||.||i. (However this is not important for
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the proof.) Fix n € N and pick an asymptotic space E  € {X }n with the 

natural basis {e;}”=1 such that ||X liLie*ll — (l/2)r^r(l, . . . ,  1) > n / 2. Pick 

x* <E E* with ||a;*|| =  1 and £*(]>]"=1ej) =  ||X^"=ie»ll- Consider the set 

I  = {i : |£*(ej)| > 1/4}. Since (e»)| < 1 for all i, a standard argument 

shows that the cardinality k of I  satisfies k — |/ | > n / 3. For an arbitrary scalar 

sequence a — (ai), let Si — sgnaiX*(ei) for i € I. Then

II ^ S i d i e i W  >  ^  kll®*(e<)| >  (1 /4) k | .
iel i&I i&I iel

This shows that {ej}je/ is 4C'-equivalent to the unit vector basis in £\, by the 

unconditionality of the basis (with constant C). Clearly, a subsequence of the 

basis in asymptotic space spans an asymptotic space and again by James block­

ing argument we reduce the constant to 1 +  e. i.e., l \  £ {X}*, and the result 

follows. □

It was a famous open problem in Banach space theory whether every infinite­

dimensional Banach space contains a subspace which is either reflexive or iso­

morphic to c0 or £x. Gowers [G] solved this in the negative by constructing a 

counterexample. Gowers’ example contains £"’s uniformly, i.e., for all n £ N and 

s > 0 there exists a sequence in the space such that { x i } ^  X~  £x. Gow­

ers then suggested the existence of infinite-dimensional Banach spaces which 

does not contain s uniformly and without infinite-dimensional reflexive sub­

spaces (see also Q5 in [O]). The following consequence of Theorem 3.6.1 implies 

that if there is such a space X ,  then X  cannot contain a subspace with asymp­

totic unconditional structure.

C orollary 3.6.4 Let X  be an infinite-dimensional Banach space which does 

not contain ’s uniformly. I f  X  has asymptotic unconditional structure, then 

X  contains an infinite-dimensional reflexive subspace.

Indeed, it is well known and easy to see that if X  does not contain £”’s uni­

formly, it cannot contain ^ ’s uniformly either. In particular, X  does not have
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asymptotic spaces isomorphic to £\ or for all n, so the conclusion follows 

from Theorem 3.6.1.

3.7 Finite Represent ability of Envelopes

Recall that we have shown in Proposition 3.6.3 that for a Banach space X  with 

asymptotic unconditional structure, if gx is equivalent to ||.||oo (respectively 

rx  ~  ||-||i)> then^o £ {X}n  (respectively^ £ {^}n) for all n G N. An identical 
proof shows that the same remains true if we replace the envelope functions with 

the disjoint envelopes gx  and rx  (in this case of course £\, £^ G (X }d).

A natural question, which we consider in this section, is whether for every 

Banach space X  with asymptotic unconditional structure, lg, If G {X }n (If, If G 

(A }d) for all n G N, where q and p are the power types of gx and rx  ( gx and 

rx ) respectively.

Quite remarkably, the disjoint envelopes case of the problem has an affirma­

tive answer. Namely, we will prove the following theorem.

Theorem  3.7.1 Let X  be a Banach space with asymptotic unconditional struc­

ture. Let 1 < p < q < oo be the power types of rx  and gx  respectively. Then 

Ip, lg G { X } d for all n G N.

The proof of this theorem is non-trivial but the ideas were already known 

since the 70’s. This theorem can be viewed as a ‘disjoint-block’ version of 

the classical Maurey-Pisier Theorem ([MP], see also [MS]). Such a ‘disjoint- 

block’ version was already proved by Milman and Sharir [MiS] in a different 

formulation. They have defined the notion of ‘asymptotic block type and cotype’ 

and showed, analogously to the Maurey-Pisier Theorem, that if q is the infimum 

of asymptotic block cotype and p is the supremum of asymptotic block type of 

the space X  with an asymptotic unconditional structure, then £g and £p are 

‘disjointly’ block finitely representable in X .
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Although they make use of different notions, Theorem 3.7.1 in spirit is equiv­

alent to Milman-Sharir’s result. However, our proof here, which is based on a 

recent presentation of the proof of the Maurey-Pisier Theorem given by Maurey 

[M], is somewhat shorter than that of [MiS].

An important ingredient of the proof, as in the proof of the Maurey-Pisier 

theorem, is Krivine’s theorem. We will use the following statement which is 

actually a corollary of Krivine’s theorem, as stated in [M].

K rivine’s Theorem  Let r,s  > 1, let X  be a Banach space. Suppose that 

for some k  > 0 and for every n > 2, X  contains a normalized (suppression) 

unconditional sequence y ^  =  (y^ , . . . ,  y ^ )  such that

i e c

for every subset C C {1, . . . ,  n}, or such that

ii 5 > ; n)ii < K id1/*
iec

for every subset C  C {1, . . . ,  n}. Then for some p < r (or p > s) and for every 

k > l , e  > 0, there is N (k ,e ) such that whenever n > N(k,e), it is possible 

to form k successive blocks of yW  that are (1 +  e)-equivalent to the unit vector 

basis of £p.

P roof o f Theorem  3.7.1 Without loss of generality we will assume that the 

asymptotic unconditionality constant is C =  1 (in the general case the estimates 

in the proof should be multiplied by C).

Qx Case. Let q be the power type of g^. If q =  1, since Qx < gx, then the 

power type of gx is also equal to 1. Thus it follows immediately from Krivine’s 

theorem that € {A"}™ for all n. (This fact does not require the asymptotic 

unconditionality assumption.)

Now suppose that q > 1. Let 1 < s < q and for all n G N, let <j>{n) be the
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smallest real number for which

^ HnYŴ aiXiW3
i— 1 i=1

for all {xi}i=1 e  {X}d and scalars { a j.

Since the power type of gdx  is q and s < q, it follows that 4> is not bounded 

as a function of n, and it is easy to see that it is increasing.

We will refer to the following argument as ‘the exhaustion’ argument.

Fix 0 < e < 1/2 and pick {Xi}"=1 e  and scalars {a*} such that

Y h=i N s = 1 and

n

1 > (1 -  £)(l>(n)s\\ (3.6)
i=1

Let (B a)aei be a maximal family of mutually disjoint subsets of {1,2, . . . ,  n}, 

possibly empty, such that

^ 2  H *  -  e ll S  a^*lls- (3-7)
i€.Ba i£,Ba

Let B  be the union of the sets Ba, B  = Uae/ ^a, and let m  be the cardinality 

of the index set I  (note that m < n because \Ba\ > 1). Then

= YjYI ^2aiXi\\S
ieB a£l ieBa ael ieBa

n

< £(/)(m)s||
«G/ieBa

here the second inequality uses the definition of 4>{m) applied to vectors {uQ}™=1 e 

{X}d, where ua =  n* |̂| for all a  e  I, and the last inequality uses the

unconditionality of {x^} and the fact that 4>(rn) < (f>(n).
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Let A  denote the complement of B  and for every j  > 0 let 

Aj = {i G A  : 2_j_1 < |aj| < 2~j }.

Then from (3.6) and (3.8) it follows that

n
|aj|s > (1 -  2e)(j>{n)s\\ o^H*. (3.9)

i= 1

Let j i  be the smallest j  > 0 such that Aj is non-empty, and let k = \Aj0 \ be 

the cardinality of the largest set Aj0 among all A f s. Then by (3.9),

OO OO

* E 2"<S *  E j - ^ i s E w
3=31 3=31 ieA

n

> (1 -  2e)(f)(n)s\\ ^  diXi\\s > (1 — 2e)4>{n)s2~^s~s.
i= l

This shows that k is large when (j>(n) is large, i.e., since </>(n) increases to infinity 

with n, so does k.

Now by maximality of B ,

^ | a i | s > e H ^ a ^ H * ,
iec iec

for every non-empty subset C C Aj0. Since 2_J0_1 < |a* | < 2- -70 for every 

i G Aj0, it follows that

|| J > | |  < 2 (l/e )1̂ |C |1/> < 2(l/e)|C |1",
iec

for all C C Aj0.

Therefore we have obtained that there exists a constant k =  2(l/e) such 

that for all k G N there exists {xj}^=l G {X}d such that || ^  k\C\1/s

for all C C { 1 ,..., A;} and s < q.
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Now by Krivine’s theorem, there is q' > s such that G {A}rf for all n. 

But since s < q was arbitrary and q is the power type of gx , it follows that 

q' = q, hence the proof of this case is completed.

rdx  Case. The proof of this case is similar but there are slight differences.

Let p be the power type of rx . If p =  oo, since rx  < rx , then the power

type of rx  is also equal to infinity. Again it follows immediately from Krivine’s

theorem that G {A-},! for all n. (This does not require the asymptotic 

unconditionality assumption.)

Now suppose that p < oo, and fix p < r. For each n > 1, let ip(n) be the 

smallest constant such that

i i E ^ i r  < 4>{n)r i ir ,

i=1 i=1

for all {Xi}”=1 G {A}d and scalars {a*}.

Since the power type of rx  is p and p < r, it follows that ip(n) increases to 

infinity.

Fix 0 < e < 1/2 and pick {rrj}"_1 G {X}d and scalars {o*} such that

J2i=1 ~  1 aild

n

|| Y ^ aiXi\\r > i1 ~  £)^ (nY- (3-10)

Let (Ba)aei be a maximal family of mutually disjoint subsets of {1,2, . . . ,  n} 

such that

n

l l £ ^ i r < ; £ £ N r- (3.ii)
i=1 i£Ba

Let B  be the union of the sets B a, B  = Ua<=/ and m  be the cardinality
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of the index set I. Then

i iE â iir = ii ai îr
ieB a€ l i£Ba

< ip(m)r ^ 2 \ \ ^ 2 a ixi \\r (3.12)
ae l ieBa

< e i p ( m ) r EE |a*|r < e%l)(ri)r.
a£l ieBa

Let A  denote the complement of B  and for every j  > 0 let

Aj  =  {i <E A  : 2~j ~ l < |di| < 2~j } .

Then A  = (J°l0 Aj  because Y^=i \ai \ r  ~  1- Let k =  maxj \Aj\ denote the

maximal cardinality of the sets {A;}j>o- Then,

OO

i i E ^ n  =  i i  E E
ieA j - 0 ieAj

OO OO
<  £ i i £ * * i i <  * £ * - '  =  2 * .  ( 3 - 1 3 )

j = 0 ieAj j=0

Hence, using (3.10), (3.12) and (3.13), we obtain

(1 - e ) 1/ri/>(n) < | | E a^ l l
*=i

< iiE ^ I I  + I I E ^
ieB ieA

< exlrij)(n) +  2k,

which shows that k is big when ip(n) is big. Let j 0 be such that \Aj0\ =  k. By 

maximality of B  we obtain that for every non-empty subset C  of Aj0, we have

5 > * , i r  > e £ N r - e2 (jo+1)ric,i-
ie c  iec
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It follows that

Since we can find such vectors {xi}^=l G {X}d for all A; G N, the result 

follows again from Krivine’s theorem, i.e., £” G {X}d for all n G N.

We now give the proof the remaining part of Proposition 3.2.4, as was 

promised in section 3.2.

P roof o f Proposition 3.2.4 (gx  Case) We have already shown using the 

super-multiplicativity of gx  that there exists 1 < q < oo such that for all e > 0 

there exists a constant ce > 0 such that for all n, we have

2— 1

We first show the lower estimate for the envelope, i.e., for all e > 0 there 

exists c'e such that gx (a) > c^j|a||g+e.

For every £ > 0 and n G N, let 4>e(n) be the smallest constant such that

for all disjointly supported vectors {£j}”=1 such that gx (x i) = 1 for all i, and 

scalars a G c0o-

If for every e > 0, supn </>£(n) < oo, then there is nothing to prove.

Suppose that for some e0 > 0, supn <t>£o(n) =  oo. Then, it follows from the 

exhaustion argument as in the proof of Theorem 3.7.1 {gdx  Case) that there 

exists a constant k > 0 such that for all n, there exists disjointly supported 

vectors {xi}f=1 such that gx (%i) — 1 for all i, and

□

n

n

< Kn1/q+s°
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Now fix ei < £0. Then, there exists csi such that for all n, we have 

c£1n1/q+Sl < 9 x ( j 2 ei) < 9x(j> 2xi) < Kn1/q+eo.
i=1 i=1

When n is large enough, this is a contradiction. Therefore, for every e > 0, 

there exists l/d e =  supn <fie(n) < oo such that gx (a) > c(||a||g+e, as desired.

For the upper estimate, note that by Theorem 3.7.1, £™ G {A}d for all n G N. 

This immediately implies that gx (a) < ||a||9, for all a G c0o- The proof is now 

completed. □

We end this section with a few remarks concerning the finite representability 

problem for the (original) envelope functions case.

First, we observe that the answer to this problem is negative in general. For 

instance, if (e*) is the summing basis for X  — c0, then rx  is equivalent to ||.||i, 

where the asymptotic structure is with respect to the summing basis (e*), but 

£i 0 {X}n for all n. Moreover, a non-reflexive Banach space X  constructed in 

[KOS], Example 6.4, has the property that for all n, there exists G {X }n

such that || 5X 1CU = 1, in particular, gx  ~  ||.||oo, and yet Co is not block 

finitely representable in X , in particular, £ {X}n for all n.

In these examples, the asymptotic structures are (necessarily) not uncondi­

tional. As it has been shown in Proposition 3.6.3, for a Banach space X  with 

asymptotic unconditional structure, if the power type of gx  is q = oo (respec­

tively the power type of rx  is p =  1), then i 1̂  G {X}n (resp. l \  G {X}n) for all 

n. Also, if q =  1 (resp. p =  oo), then regardless of the asymptotic uncondition­

ality assumption, Krivine’s theorem yields that G {X}n (resp. G {A}„) 

for all n.

It is likely that there are also examples of Banach spaces with asymptotic 

unconditional structure with power types of the envelopes satisfying 1 < p, q < 

oo and yet £™ £  {X}n. However we do not know how to construct such 

examples. We do not even know if there are such spaces without asymptotic
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unconditional structure. For instance, for every 1 < p < oo, one can define a 

new norm in a natural way on the space X  of [KOS] mentioned above to obtain 

reflexive X p spaces without asymptotic unconditional structure. However, these 

natural ‘p-versions’ of X  do not seem to provide such examples. Finally, we do 

not know if reflexivity plays a role in this problem. This question was raised in 

[KOS], Problem 6.5.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Part II 

Spreading Models of Orlicz 

Sequence Spaces
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Chapter 4 

The Structure of The Set of 

Spreading Models of Orlicz 

Sequence Spaces

4.1 Introduction

It is a well known consequence of Ramsey theorem that for every normalized 

basic sequence (y i) in a Banach space X  and for every (en) \  0 there exists a 

subsequence (a:*) of (yi) and a normalized basic sequence (x^ in some Banach 

space X  such that: For all n 6 N, (aj)”=i £ [—1, l]n and n < k\ < . . .  < kn

The sequence (x^  is called the spreading model of (x^ (or a spreading model 

of X )  and it is a suppression 1-unconditional basic sequence if (yi) is weakly 

null. The subsequence (Xi) is called a good subsequence of (yi) which generates 

the spreading model (xi) and it has the property that every further subsequence 

of (x^ generates the same spreading model (£*). However (yi) might have many 

good subsequences, each generating a different spreading model.

n n
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In general, a spreading model of a Banach space X  behaves better than 

X . For example, it is shown in [R] that one can always find a 1-unconditional 

spreading model of X . It is well known, however, that unconditional basic 

sequences need not exist in X  [GM]. On the other hand, some of the classical 

conjectures which have been proved to fail for an arbitrary Banach space X  fail 

for spreading models as well. There are examples of Banach spaces for which 

no spreading model (Xi) is equivalent to unit vector basis of c0 or lv for some 

1 < p < oo [OS2]. It is not true even that every Banach space X  admits a 

spreading model which is either isomorphic to Cq or t x or is reflexive [AOST].

In a more general context, given a Banach space A”, it is also of interest to 

study the set (or a particular subset) of all spreading models of X . One such 

approach due to Androulakis, Odell, Schlumprecht and Tomczak-Jaegermann 

[AOST] is following. Consider the set SPU(X), the partially ordered set of all 

spreading models (£*) generated by normalized weakly null sequences in X . 

The partial order is defined by domination: (x^  > (yi) if for some K  <  0 0 , 

KW YtW iW  >  || aiVi\\ for all scalars (oj). And identify (5j) and (y i)  in 

SPW(X) if (xi) > (yi) and (yi) > (x^. What can be said about the structure of 

the partially ordered set SPU(X)7

The following theorem proved in [AOST] says that every countable subset 

of SPu(X) admits an upper bound in SPU(X).

Theorem 4.1.1 (AOST) Let (Cn) C (0,00) such that ]T)n C~x < 00 and let X  

be a Banach space. For all n € N, let (x^)i be a normalized weakly null sequence 

in X  having spreading model (x f) i . Then there exists a semi-normalized weakly 

null basic sequence (yi) in X  such that (yi) Cn-dominates (x")j for all n G N.

The purpose of this chapter is to study the structure of the set SPM(X) 

when X  is an Orlicz sequence space. In this case the above quoted theorem 

takes a simple form and it is particularly well illustrated. One of our main 

observation is the following. If an Orlicz sequence space X  admits a spreading 

model (x^  which dominates (but is not equivalent to) the (symmetric) unit
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vector basis of X , then SPU(X) contains an uncountable increasing chain. As a 

consequence, we give a description of the structure of the set of spreading models 

of reflexive Orlicz sequence spaces X  which have only countably many mutually 

non-equivalent spreading models. We show that in this case the set SPU(X) 

has a very special form: it contains both the upper and the lower bounds and 

moreover the upper bound is the space X  itself and the lower bound is some £p 

space.

4.2 Preliminaries in Orlicz Sequence Spaces

We recall the basics of Orlicz sequence spaces following the book [LT], with 

which our notation is consistent.

An Orlicz function M  is a real valued continuous non-decreasing and convex 

function defined for t > 0 such that M (0) =  0 and lim^oo M(t) = oo. If 

M(t) =  0 for some t > 0, M  is said to be a degenerate function.

To any Orlicz function M  we associate the space £m of all sequences of 

scalars x  =  (01, 02, . . . )  such that -^(lan|/p) < 00 f°r some p > 0. The 

space £m is equipped with the norm

OO
I M I = i n f { p > 0 : ^ M ( |a „ |/p )  < 1},

n = l

which makes £m into a Banach space called an Orlicz sequence space.

The subspace Hm of £m consisting of those sequences x  =  (oi, a2, .. .) G £m 

for which Af(|an|/p) < 00 for every p > 0 is closed and the unit vectors 

{en}^_i form a symmetric basis of Hm -

It is easy to verify that if M  is a degenerate Orlicz function then £m — £00 
and tiM — Co. Since we will not be interested in these spaces, all the Orlicz 

functions appearing in this chapter will be assumed to be non-degenerate, unless 

otherwise stated.
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An Orlicz function M  is said to satisfy A2-condition at zero if

lim sup t->o

It is easily checked that the A2-condition at zero implies that, for every

condition).

Some other conditions, each of which is equivalent to A2-condition (Propo­

sition 4.a.4, [LT]), are :

b) £m does not contain a subspace isomorphic to £qq

c) The unit vectors form a boundedly complete symmetric basis of i M- 

In particular, if Im (or Iim ) is reflexive, then M  satisfies A2-condition.

for all 0 < t < t0- When Mi or M2 satisfies A2-condition then they are 

equivalent (at zero) if there exist constants K  > 0 and to > 0 such that 

K ~l < M i(t)/M 2(t) < K  for all 0 < t < t0. This is the case if and only if 

£mi and £m2 consist of the same sequences i.e. the unit vector bases in £mi and 

£m2 are equivalent.

For an Orlicz function M  consider the following subsets of the Banach space 

C(0, | )  of all real valued continuous functions on (0, |) ;

where the closure is taken in the norm topology of (7(0, |) .  Then E M,i, EM,

positive number Q, lim^ 0 sup < oo (this condition is called the Aq-

a) Im — hM

Two Orlicz functions Mi and M2 are equivalent at zero if there exist positive 

constants K ,k , t0 such that

K - 1M2(k~1t) < Mi(t) < K M 2(kt)

Cm,i — convZ^i and Cm =  cows Em
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Cm,l and Cm are non-empty norm compact subsets of <7(0, ^) consisting entirely 

of Orlicz functions (Lemma 4.a.6, [LT]).

The importance of these sets is due to the following result (Proposition 4.a.7 

and Theorem 4.a.8, [LT]).

T heorem  4.2.1 For every Orlicz function M  the following assertions are true.

i) Every infinite-dimensional subspace Y  of Hm contains a closed subspace 

Z  which is isomorphic to some Orlicz sequence space hpj.

ii) Let X  be a subspace of hM which has a subsymmetric basis {a;*}. Then 

X  is isomorphic to some Orlicz sequence space hjy and {x^} is equivalent to the 

unit vector basis of h^. Moreover the function N  belongs to the set Cm,i -

Hi) An Orlicz sequence space h^ is isomorphic to a subspace of hM if and 

only if N  is equivalent to some function in Cm,i -

By (ii) of the above theorem, every subsymmetric basic sequence in an Orlicz 

sequence space is symmetric.

Finally we recall that every Orlicz sequence space hM contains isomorphic 

copies of some £p or cq. Moreover the set of p’s for which lp is contained in hM 

is a closed interval (Theorem 4.a.9, [LT]).

4.3 Spreading M odels of Orlicz Sequence Spaces

By Theorem 4.2.1, the set Cm,i ‘coincides’ (i.e. there is a one-to-one correspon­

dence) with the collection of all subspaces of Hm which have a subsymmetric 

( or a symmetric) basis. The following proposition shows that the collection 

SPw{hM) of all spreading models of hM generated by weakly null basic se­

quences is also ‘contained’ in the set Cm,i • The proof is a simple generalization 

of the argument given in [LT] (Proposition 4.a.7).

P roposition  4.3.1 Let M  be an Orlicz function. Let (£i) be a spreading model 

generated by a weakly null sequence (xf) in hM- Then there exists N  £ Cm,i
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such that (£i) is equivalent to the unit vector basis of hN. Moreover, (xi) is 

equivalent to a subsequence of (xi).

P ro o f Let (yi) be the good subsequence of (xi) which generates (f*). Since (x^ 

(and hence (yi)) is weakly null by passing to a further subsequence if necessary 

we can assume that (yi) is a block basic sequence of the unit vector basis of hM- 

For each i =  1,2, . . .  let 3/* =  YJiLm^+i ciei- To every vector we associate 

the function Mt(t) =  M (\ci\t)- Since y{ is normalized, £ ”Lni_ 1+1 M (\ci\)
1 and hence the functions as elements of C(0, |) ,  belong to the set CM,i-

Now by the norm compactness of Cm,  1 (in C(0, |) ) , there exists a subse­

quence { M ^ } ^  of {Mi} and an Orlicz function N  G C m ,i,  which might be 

degenerate, so that \Min(t) — iV(t)| < 2_n for 0 < t < 1/2 and n =  1,2,—  

Assume for simplicity of notation that the subsequence {Min}™=1 coincides with 

the whole sequence {Mi}.

Now for any a = (a i ) ^  G Cqoj we have

|l>
i=l

Xi =  lim . . .  lim«l->00 km-¥ ooll^-^i=l
m

= lim .. .  lim infjp : ^  M ki( \a i \ /p )  <  l }

k\ —>-00 km—* OO k Ji=1
m

=  infjp : ^ N ( \a i \ /p )  < l j

m
=  \ \ j 2 ai

i- 1

i=1

Moreover, the above argument yields that (xi) is actually equivalent to a 

subsequence of (xi). Indeed, since \Min(t)—N(t)\ < 2~n for 0 < t < 1/2 and n = 

1, 2, . . . ,  it follows that Y^= i Min(\an\) < 00 if and only if N (|an|) < 00, 

provided that N  is non-degenerate. Hence the corresponding subsequence (yin) 

is equivalent to unit vector basis of hN (Proposition 4.a.7, [LT]). If N(t) = 0  

for some t > 0, then (zn) is equivalent to unit vector basis of c0 which, in this 

case, is isomorphic to h^. □
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Obviously, by Theorem 4.2.1, for every N  € Cm,i> h^  is a spreading model 

of hM- Hence, with some abuse of notation, we can write

SPu(h„) C Cm,i C

where SP (hM) denotes the set of all spreading models of hM-

P roposition  4.3.2 Let Mi and M2 be two Orlicz functions. Then the unit 

vector basis of hMx dominates the unit vector basis of Hm2 if a,nd only if there 

exist constants K  > 0, k > 0 and to > 0 such that M2(t) < KM \{kt) for all 

0 < t < t o.

P ro o f Suppose that the unit vector basis of hMx dominates the unit vector 

basis of hMi- Let || Y%=i e i \ \ hMl  = Pn- We may assume that pn /*  00. In­

deed, otherwise both hMx and hM2 are isomorphic to Co and the conclusion is 

trivial. By assumption, in particular, there exists a constant K  > 1 such that 

II Ya=\ e i \ \ hM2 < K \\ E "=1 e i \ \ hMl  for all n € N. Then by definition of the norms, 

^ 2(1 / Pn) < K M i(l/p n) for all n G N. Now let 0 < t < 1 be arbitrary and 

suppose that for some n we have l /p n+i < t  < 1 /  pn- Also let k =  supn pn+i/Pn 

(note that k < 2). Hence M2(t) < M2(l//?n) < K M \{\jp n) < KM \{kt).

Conversely, suppose that M2(t) < KM i(kt) for all 0 < t  < to- Let (0̂ , o2, ...) 

be an arbitrary scalar sequence such that |aj| < to- Then

k\\Y^aiei\\hM2 =  inf{p : Y^M2(k\oi\/p) < 1}
i i

< inf{p : Mi(\ai\/p) < 1/ K }
i

= AT|| ^  ] Qiei|UMi
i

Moreover the assumption |aj| < t0 is not a restriction. Since the inequality 

we have just proved is homogeneous, by rescaling we can always assume that 

M  < t0. □
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D efinition 4.3.3 Let N\ and N2 be two Orlicz functions. We say that Ni 

dominates N2 and denote by N2 < N\ if there exist constants K  > 0, k > 0 and 

t0 > 0 such that N2(t) < K N i(kt) for all 0 < t < t0. We write N2 < Ni if 

N2 ^  but N\ ^  -/V2.

We shall occasionally also write Ni > N2 instead of N2 < Ni. Obviously, 

N2 < Ni and Ni < N2 means that Ni is equivalent to N2. Hence by Proposition 

4.3.2, we have

N2 < Ni if and only if hNi < hNl,

where the latter relation means that the unit vector basis of h^  dominates the 

unit vector basis of hjv2.

As mentioned earlier, it is shown in [AOST] that for an arbitrary Banach 

space X  every countable subset of SPW(X) admits an upper bound in SPU(X). 

When X  is an Orlicz sequence space, the corresponding result becomes an easy 

observation. Before stating this result we need the following easy lemma which 

will be used in the sequel.

Lem m a 4.3.4 Let M  be an Orlicz function. The unit vector basis (ef) of 

hM is weakly null if and only if Hm is not isomorphic to l\  if and only if 

limt_*o M (t)ft = 0. In particular, hjy G SPu(hM) if and only if N  € Cm, 1 

and lim^o — 0.

P ro o f The first equivalence follows from standard known results; if hM is 

isomorphic to l\, since l \  has unique symmetric basis, then the unit vector 

basis (e*) of hM is equivalent to the unit vector basis of l \  and hence it is not 

weakly null. Moreover, if (e*) is not weakly null, since it is symmetric, it is 

equivalent to the unit vector basis of l\  (cf. Proposition 3.b.5, [LT]).

For the second equivalence, first we note that for every Orlicz function M, 

lim^o M (t)/t  exists. This follows from the fact that the function M (t)/t is 

monotone. Indeed, by convexity of M, for all 0 < t < s, we have M(t) < 

(■t/s )M (s) +  (1 — t / s ] ' — (t/s )M (s). i.e., M (t)/t < M (s)/s.
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Moreover, for all n, by definition of the norm of Ji m , we have

I I E U e . l k ,  i  m n)
n nM _1(l/n) tn ’

where M _1 is the inverse function of M  and for all n, M ~l (l/n )  =  tn. (Note 

also that tn tends to zero.) It follows that, lim^oo || Ya =i ei\\hM/ n ex^ s as we^- 
Now recall the well known fact that a subsymmetric unconditional basis (yi) is 

equivalent to the unit vector basis of l\  if and only if lim^c*, || YTi=1 Vt\\/n > 0 

(cf. [BL]). Since the unit vector basis (e,) of hM is symmetric, in particular, it is 

subsymmetric, consequently it follows that the unit vector basis (e*) of hM is not 

equivalent to the unit vector basis of l\  if and only if limn_̂ oo || Ym =\ ei\\hM/ n = 0 

if and only if lim^o M (t)/t = 0.

Finally, if hN G SPu(hM), then by the remark following Proposition 4.3.1 

the unit vector basis of hN is equivalent to a subsequence of the generating 

weakly null basic sequence in hM, therefore it is weakly null and by above 

limt_>0 N (t) /t  = 0.
□

Remark It follows from the above Lemma and the remark following Proposition 

4.3.1 that if an Orlicz sequence space hM does not contain an isomorphic copy 

of l\, then the sets SPw(hM) and Cm,i coincide, i.e., 5,Pa,(/iM) =  Cm,i-

P roposition  4.3.5 Let M  be an Orlicz function. Suppose that h ^ ^ h ^ , . . .  £ 

SPu(hM)- Then there exists hjv0 € SPw(hM) such that hjy0 dominates h ^  for 

every i G N.

P ro o f By Lemma 4.3.4, N i,N 2, . . .  G Cm,i and limt_*0N i(t)/t = 0 for all 

i. Define N0(t) =  ^~lNi(t), then clearly N0 G Cm,i- For every i G N,

No(t) > 2~%Ni(t) for all t > 0. Hence hx0 dominates for every i G N. It 

remains to show that limt_+o N0(t)/t =  0.

By uniform boundedness of Cm,i 0(0, |) ,  the sequence { }  C Cm ,i is 

uniformly bounded on (0,1/2) (in fact it is bounded by 1, cf. Lemma 4.a .6
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of [LT]). i.e., supi Ni(t) < 1 on (0,1/2). In particular, since, as in Lemma 

4.3.4, N i(t)/t non-decreasing, we have N i(t)/t < 2iVj(l/2) < 2 for ali i  e  N and 

0 < t < 1/ 2.

Let e > 0 and m e  N such that 2-m < e/4.  Since lim^o N i(t)/t = 0 for all 

i, there exists te > 0 such that for all 0 < t < t£, Xwli 2_l^ p  < e/2. Then for 

all 0 < t < te,

We have seen by Proposition 4.3.1 that every spreading model (xi) of an 

Orlicz sequence space hM generated by a weakly null sequence in hM corresponds 

to a function N  in Cm,i- This reduces the study of the partially ordered set 

SPu(hM) to the study of the partially ordered set Cm,i- Hence our next results 

are on the structure of the set Cm,i •

We start with an easy observation which will be used frequently in the sequel.

Lemma 4.3.6 Let M  be an Orlicz function satisfying the A2-condition. Then 

for all N  e Cm,i, there exists a sequence (Gn) of Orlicz functions which belong 

to the equivalence class of M  in Cm,i such that (Gn) converges uniformly in the 

norm topology of C(0, ^) to N.

P ro o f By the definition of the set Cm,u clearly, for every N  e Cm,i there exists 

a sequence (Gn), where Gn = YLiean f°r some finite subset an e  N
\  i  )

and scalars Oif  ̂with ^2ietTn =  1 and 0 < Aj < 1/2 such that (Gn) converges 

uniformly to N  in norm topology of (7(0, |) ,  due to the norm compactness of

OO
< e/2  +  2 V  2-i < e.

Consequently, limt_>o-^o(^)A =  as desired.
□

CM,i in C(0, |) .
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To show that Gn is equivalent to M  for every n G N, it is sufficient to show 

that the functions (0 < A < 1/2) are equivalent to M. Since M  satisfies 

A2-condition, so does every function in C m ,i (with the same constant). Hence,

M (t) V  M(X)M(t)lim =  lim —tt t t - t— =  K M (  A),t->o M(Xt)/M(X) t->o M(Xt)

where K  is the A2-condition constant. Also due to the A2-condition, M  is 

not degenerate, hence M( A) ^  0. Hence it follows that the functions and 

hence Gn are equivalent to M,  for every n G N. Note that, if N  is not equivalent 

to M,  then the equivalence constants grow to infinity as n increases.

□

Before stating an important result on the structure of the set Cm,i, first 

we need also the following lemma which is a reformulation in our context of 

Proposition 3.7 of [AOST].

Lemma 4.3.7 Let C C C m ,i be a non-empty subset satisfying the following two 

conditions:

(i) C does not have a maximal element with respect to domination.

(ii) For every (Ni) C C there exists N  € C such that Ni < N  for every 

i G N.

Then for all ordinals a < oji there exists N a G C such that if a < ft < uq 

then N a < N&.

Sketch o f the P roof We use transfinite induction. Suppose that N a have 

been constructed for a < /3 < u \ . Then N& is chosen using (i) if /? is a successor 

ordinal and (ii) if /3 is a limit ordinal. □

The following theorem gives an important criterium on the structure of the 

set Cm , i-

Theorem  4.3.8 Let M  be an Orlicz function satisfying A2-condition. Suppose 

that there exists No G Cm,i such that Nq M. Then the set Cm,i contains an 

uncountable increasing chain of mutually non-equivalent Orlicz functions.
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P r o o f  We will show that there exists a subset C  of C m , i  which satisfies the 

conditions (i) and (ii) of Lemma 4.3.7.

First, we observe that the assumption implies that there exists N q € C m ,i  

satisfying Nq £  M  which is, additionally, of the form

M(Xit)
^ CiJT (A j ’

for some c* > 0 with c* =  1, and for 0 < A* < 1.

Indeed, let (Gn) be a sequence in the equivalence class of M  which converges 

uniformly to N0 (Lemma 4.3.6). Since Nq ^ M,  there exists a sequence (tk) \  0 

such that for all fceN ,
M(tk) 1 
N0(tk) k2k ’

For every k, let nk be such that Gnk{tk) > ( l /2)N0(tk), and put N^ t )  — 

2 - kGnk(t) £ C M,i.  Then,

Â o(h)  > 2~kGnk(tk) > 2 ~ ^ N 0(tk) > (k/2)M(tk).

That is, lim sup^Q = oo and hence Nq ^  M.  And clearly,

w  = E>X(*) =
k - 1 k i M Vi )

_ M(Xit)
~ y

for some c* such that JT  Ci — 1 and 0 < A* < 1.

For convenience of notation we denote Nq by N0 again. So suppose that 

No(t) — Yli ci • Observe that c* ^  0 for infinitely many €s, due to the 
assumption that N0 ^  M.
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For all n , let sn be the normalized partial sum,

sn(^) — T , Ci"
£ 2=1 ci u  1 M (A,) •

Then sn £ Cm,i• Let k0 £ N such that Yhi=1c* — V 2- Then for all n > k0, we 

have sn(t) < 2N0(t) for all 0 < t < 1. Let us relabel the sequence {sn}£Tfco and 

denote it again by {sn}^T1.

Now let

OO
C = { A f £  Cm,i : M{t) = n(t), for some bn > 0 and y ^ b n =  l | .

n = l  n

First, we remark that for all A/" £ C, we have N0 ^  A 7. Indeed, let A/" =  

£ iH i bnsn(t) € C for some bn > 0 with bn =  1 and let e > 0 be arbitrary. 

Let m £ N such that Y^= m+ibn < e/4. Using the fact that Y ^ = ibnsn(t) is 

equivalent to M  and No ^  M, we pick te > 0 such that bn < e/2.

Then, since sn(t) < 2N0(t) for all n and t, we have

A/*(^g) _  sn(te) Y  u Sn(te)
m . )  ~  h i  " N o M  j ^ +, ” jv„(t«)

OOe
<  o  +  2  y  bn < e.

n=m+ 1

i.e., lim inf^o =  0 ,  and N0 % N.

Now we check the conditions (ii) and (i) of Lemma 4.3.7 for the set C.

(ii) If Ni(t)  =  £ n & n^sn ( t )  £ C  for some b$  > 0  with = 1 a n d

i =  1, 2, . . . ,  then we put A f(t) =  2 - * A /i( t) .  Then,

jvw = y , 2~'y,bn]sn(t)=ycnSn(t),
i n  n

where cn > 0 with J2n cn = 1- i-e-; A/- € C.  Moreover, for all i, we have M  > A/i.

8 4
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(i) Suppose that there is a maximal element M. € C. Then M(t )  = 

Y^n^nSn(t) for some bn > 0 such that =  1- By the above remark,

N0 <tM,  and hence there exists a sequence (tk) \  0 such that for all k,

M{ t k) J _  
iVo(t*) k2k '

Since the partial sums sn converge to N0, for all k we may choose (nk) such that 

Snk(h) > {l /2)N0(tk). Let M 0(t) =  S fc2"*sB4(i) G C. Then for all k,

M 0(tk) > 2~ksnk(tk) > 2~ ^ N 0(tk) > (k/2) M( t k).

i.e., limsupt_̂ 0 =  oo and M q ^  M ,  a contradiction. Therefore, C does 

not contain a maximal element.

The proof is now complete by Lemma 4.3.7. □

Remark. Recently, it has been shown in [FPR] that the set S P ( X ) of all spread­

ing models of a Banach space X  is either countable (up to equivalence) or has 

cardinality continuum. Using this together with Theorem 4.3.8 we immediately 

obtain the following

C orollary 4.3.9 Let M  be an Orlicz function which satisfies A2-condition. 

Suppose that hM admits a spreading model hjv generated by a normalized weakly 

null sequence such that the unit vector basis of hM does not dominate the unit 

vector basis of hn .

Then the set SP{hM) has (up to equivalence) cardinality continuum.

Finally, we end this chapter with the following consequence of Theorem 

4.3.8, which gives a description of the set of spreading models of reflexive Orlicz 

sequence spaces with only countably many spreading models.
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C orollary 4.3.10 Let Hm be reflexive Orlicz sequence space. Suppose that 

SPw(hM) is countable, i.e., the number of mutually non-equivalent spreading 

models generated by weakly null sequences in hM is countable. Then

(i) hM is the upper bound of SPw(hM),

(ii) i p for some 1 < p < oo is the lower bound of S P ^ m )-

P ro o f Since hM is reflexive, M  satisfies A2-condition (see the remark following 

the definition of A2-condition in section 4.2 and also Proposition 4.b.2, [LT]). 

Also by the remark following Lemma 4.3.4, we have S'Pw(/im) =  Cm ,i- (Note 

that by reflexivity, 5Pw(^m) also coincides with the set S'P(Zim) of all spreading 

models of hjv-)

(i) By Proposition 4.3.5, the upper bound exists. Suppose that there exists 

N  £ Cm ,i such that N  is not equivalent to M  and h ^  is the upper bound 

for 5Pw(/im)- It follows that N  M  and by Theorem 4.3.8, Cm,i contains 

uncountable mutually non-equivalent Orlicz functions, and thus SPu{hM) is 

uncountable, a contradiction. Therefore hM must be the upper bound.

(ii) Since the set of p’s for which tp embeds into hM is a closed interval 

(Theorem 4.a.9, [LT]), it follows from the assumption that this set is singleton. 

Hence there exists a unique 1 < p < oo such that lv £ SPw(hM)• Moreover 

it follows from Theorem 4.2.1 that hM is ^-saturated, i.e., every subspace of 

hM has a further subspace which contains an isomorphic copy of i p. For Orlicz 

sequence spaces, by Theorem 4.2.1, i p embeds into hM if and only if tp £ Cm,i-  

In particular, for all N  £ C m ,i, the function tp belongs to C n,\-  Moreover, 

the assumption that M  satisfies A2-condition implies that N  also satisfies A2- 

condition for all N  £  Cm,i-

If i p is not the lower bound of STL^/im), then there exists N  £ Cm, 1 such 

that tp ^  N.  But, by the above, tp £ C n,i, hence it follows from Theorem 4.3.8 

that C n,i C Cm, 1 is uncountable. This implies that SPw(hM) is uncountable, a 

contradiction. Therefore i p must be the lower bound of SPw(hM)-

□
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