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Abstract

This thesis addresses the problem of automatic real-timee8Bnstruction of general scenes from
monocular video. Whereas many impressively accurate staartion techniques exist in the multi-
view stereo literature, most are slow offline batch methaasighed to work in highly calibrated
settings. Real-time reconstruction opens doors for iga-applications. This thesis presents a
swift but approximate incremental method based on visjhdind free-space constraints. “Free
space” refers to the observation that lines of sight betypdenographed surfaces and their observing
cameras must be empty; otherwise the surfaces would bedmztluOur approach begins with a
sparse reconstruction from online Structure from Motiod arterpolates the resulting points in
a free-space aware manner to produce a physically consiste@se 3D model. We validate our
algorithms on real and synthetic data, perform complexitglysis proving the real-time quality,

and demonstrate the algorithms’ usefulness for improviagalization in a tele-robotics context.
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Chapter 1

Introduction

This thesis addresses the central yet difficult problem mpmater vision that is the automatic re-
covery of 3D shape from camera imagery. Specifically, givenlkection of photographs or video
frames redundantly observing a scene in our three dimealsigorid, and taken from multiple dis-
tinct viewpoints, the problem is to compute and reconstsoate representation of the geometry of
that scene such as a conventional 3D graphics mesh.

Many techniques have been devised in an attempt to solverbidem, however all solutions
thus far entail limiting assumptions, approximations, anthpromises within their respective for-
mulations. No known solution is general enough to tadywethe problem for all cases and appli-
cations (and our method is no exception). The primary foduke@research community has been
on attaining the most detailed accurate and complete gegpmetsible given the inputs.

The multi-view stereo literature conveys the common apghipwhich is to use all the texture
and color information in the images to contribute to theneation of shape: the assumption is that
each point of the scene geometry should look the same froninaayed viewpointj.e., have the
same local image color and texture. This notion is calledgloonsistency (and.g it is violated
for mirrors or specular objects that do not look the same fdistinct viewpoints). Many algo-
rithms centred on this reconstruction cue have been deséltizat achieve impressively accurate
3D reconstructions from just handfuls of images. Howevem aesult of optimizing geometry us-
ing texture and color information densely, almost all psitdid methods result in slow, offline batch
operation, requiring many minutes to hours of processimg tior just tens of input images [95].
A few recently developed exceptions exist that can operateal time, but they require extreme
computational horsepower and parallelized (GPU) hardWw&fe80]. This can be a problemg
for robotics applications where onboard hardware is lichit&e review multi-view stereo and other
techniques for 3D reconstruction in Chapter 3.

This thesis develops and explores a method for 3D recornigtnuwith an emphasis on speed

over geometric detail. The approach relies on differentiagdions from the multi-view stereo

1Texture, in this context, refers to the pattern of brighsnesluminosity on an imaged surface. This is related toleacti
texture, as distinct bumps or gratings on a surface will poeda corresponding distinct contrast when that surfadgedad
viewed.



norm, is comparably lightweight and provably real-timed am this way attempts to broaden the
applicability of 3D reconstruction to new domains.

Our approach begins with a Structure from Motion (SFM) stgrpoint. Structure from Motion
refers to the problem of estimatirgparse usually point-wise, 3D geometry from corresponding
image features that are photo-consistently matched anrossthan one view. Rather than a dense
3D model, the output is a point cloud that samples the sceriace&s. The geometry of imaging
is well studied and directly applicable [46], and robustlt&ae solutions to the SFM problem
exist [61]2 From a single moving camera, real-time SFM computes a seDasc@ne points, a
camera-pose track, and visibility information relatingigfhpoints were visible from each camera
vantage point. This problem is fundamentally easier tharse&D shape estimation because only
the most reliably estimable features need be matched andseacted. Ambiguous regions such
as mirrors or textureless parts of monotone walls need nobhsidered. We summarize Structure
from Motion in Chapter 2 and review real-time solutions ina@ter 3.

We take the points, camera track, and visibility informafimm SFM as input to our algorithms,
thus the method inherits a sparse feature-based approaehaldorithms coherently “connect the
dots” to output a dense interpolative 3D surface reconstmicinterpolation is achieved by using
the visibility information to reason about where the scaméage can and cannot be. The concept
is called “free space,” [35, 49, 103] and it is presented inti®a 4.1. Essentially, we know that
the space between photographed surfaces and their olgpearimeras must be empty, because oth-
erwise the surfaces would have been occluded. This geanvetnistraint is the method’s primary
reconstruction cue. Combining free space with the righptida spatial discretization results in a
favourable impact on the viewpoint or visibility samplirgguirements as well as the computational
complexity of our algorithms. We introduce the Delaunayditization in Chapter 2 and review its
known properties with respect to surface reconstructidddation 3.1.4.

Since real-time SFM is an online process, as new video fréomesme available, our algorithms’
inputs continuously change online. Therefore, more pedgisur algorithms take small incremental
changes to the point cloud, camera track, and visibilityngsif. These incremental changes can be
classified as one of several evergsy, the SFM system’s addition of a new keyframe Viewr
the deletion of an outlier point. The method encompasses af $&ve algorithms to handle five
general types of changes in an incremental and event-dfastion. The incremental nature of
the algorithms offers the speed necessary for real-timenstouction from video sequences. The

algorithms are presented in Chapter 4, Method and Algosthm

2|n the robotics literature, Simultaneous Localization Mtapping, or SLAM for short, effectively reduces to the same
real-time problem when the robot's sensor is a single camera

3A keyframe is just a video frame chosen from a video sequestcspkcial use. The selection scheme varies from system
to system. Keyframes can be selected periodicallg, every30 frames, or at spatially disparate locatioesy when the
camera has moved a threshold distance away from all prekeyfsame camera positions.



1.1 Motivation

The motivation for real-time reconstruction can be foundtsnpotential applications. From the
perspective of utility, solving even the offline version bétproblem is of great interest. Whenever
an artist would need to undergo the labour-intensive poésreating a 3D model of a real-world
object or scene, such as for the games or cinematographsgtigdthe labour could be saved and
automated away. For example, vision-based reconstrubtienbeen used for special effects in
films like The Matrix [26], and it has been used for digitallyeperving and capturing historical
and archaeological sites or artefacts [86, 104]. Howe¥automatic modeling can be performed
quickly enough, real-time applications become possible.

An example is augmented reality, where renderings of Vidbgects are mixed with real-world
footage [6]. To realistically meld in virtual objects, a 3Dpdel of the real-world scene allows for
correct mutual occlusions when rendering them, and itifatéls physical interaction and contact
in animation. In the absence of a priori scene models, mea-modeling enables pick-up and
go augmented reality as demonstrated in [80]. Other agpits of real-time modeling include
improving 3D visual modeling itself. Typically multi-viewtereo reconstructs the object or scene
of interest from images captured separately at an eanfie. tilf the images taken did not observe
the subject’s surfaces everywhere sufficiently or did netec@nough variety in viewpoints, one
may have to repeat the interleaved processes of image eagtuk computation until the image
sampling suffices. This is laborious, especially when thgesat is a far distance away from the
computer. Real-time modeling with visualization givesinalfeedback regarding whether the image
sampling is adequate, and images captured with such fekedbade used for more accurate offline
reconstruction later, when computational power is lessiogsd [91, 93].

Real-time 3D modeling is generally useful whenever 3D geon@annot be known in advance.
Robotic operation in unknown environments is one such ingmoicase. For example, 3D modeling
of the environment’s obstacles, and specifically the ekpistimation of where obstacles are not
(i.e., free space), can supply constraints for autonomous rahagation and motion-planning algo-
rithms. We have applied the method developed in this thegsddictive display for tele-robotics,
and experiment with this application in Chapter 5. Teleetods refers to the scenario where a
human directly operates a distant remote robot. Such retatgeoperation lends itself to many
sub-applications where it would be dangerous or impraldiica human to perform the robot’s task
directly. Space and marine robotics, tele-surgery, anetetmomb defusal are just a few examples.
Because of the distance, both operator commands and sdasdhack need to be transmitted, and
latency on the order of a fraction of a second in this transimisloop can be detrimental to the flu-
idity and performance of such a system [96, 47, 33, 36]. @ndapture of the robot’s environment
enables undelayed predictive rendering for the operatisisal feedback. We discuss such predic-

tive display at greater length in Chapter 3, The Literatasayell as in Chapter 5, Experiments.



1.2 Contributions and Contents

The remainder of this thesis is organized as follows, andctrgributions of each part are high-
lighted.

Chapter 2, Background, introduces the very basics of hovbtai three dimensional informa-
tion from two dimensional imagery. This section does nottamna novel contribution in and of
itself, but rather provides a quick primer on the requisttartinology and geometry of shape recov-
ery. In particular, we describe Structure from Motion. Weoatlefine the Delaunay triangulation
here, a spatial decomposition that is intimately fused withmethod developed in this thesis.

Chapter 3, The Literature, surveys what is most relevartisathesis. Our work relates strongly
to those on 3D reconstruction from imagery, or multi-viearsb, as it is essentially this problem that
we are concerned with, but with an added constraint on eimctime. These works are reviewed
to situate our own, and particular attention is paid to thgzarse few that consider free space or
are real-time. Additionally, this chapter reviews worksthe related Shape from Points literature
which speaks about the Delaunay triangulation and why onewaat to use it for shape estimation.
Since the thesis’ algorithms rely on online Structure fromtidn or Simultaneous Localization and
Mapping (SLAM), we cover these as well. Finally, we recountks on online visual modeling as
it applies to predictive display and tele-robotics, beeahss is a setting that we experiment with.

Chapter 4, Method and Algorithms: Incremental Free-Spaawiig, presents in full the pri-
mary contribution of this thesis that is the shape recoveeghwd and its implementation. We
formalize the inputs and the problem and discuss free sgaageconstruction cue in general. We
present a regularization scheme, as well as our heuristicagproximations. This chapter addition-
ally analyzes the method’s computational complexity. Imbaation with timings from the next
chapter, the complexity results solidify the claim that thethod is real-time.

Chapter 5, Experiments, exhibits online reconstructidstaioed from our method and system.
We presenttimings, as well as evidence that a heurististb@mploy for speed-up implies minimal
sacrifice with respect to reconstruction quality. Usingtbegtic data and corresponding ground truth,
we explore the method’s behaviour on inputs of varying qualnd sampling properties. Also, we
present a prototype tele-robotics system which uses thdimea modeling for predictive display.
Here, we document two small-scale human-factors expetsyprformed with this system.

Chapter 6, Conclusions, closes the thesis by summarizireg was done. This part identifies
the important caveats and limitations of this thesis’ cbations, and discusses potential routes for
future work to address these lacks.

Finally, the Appendix completes the complexity proofs far algorithms.



Chapter 2

Background

This chapter covers the requisite basics of geometric ceenpision that are necessary to under-
stand the remainder of this thesis. After reading this draghe reader should have a general
understanding and vocabulary regarding basic estimafiB® @cene structure and camera position
from 2D photographs. This is a brief and selective primegpegthmic and algebraic details and
alternatives for computing the discussed quantities ageha outside the scope of this thesis. Most
content in this chapter is influenced by portions of Hartleg Zisserman’s excellent book on this
topic [46]. We refer the reader to this resource for moreitletethe geometry of computer vision.
Because we use the Delaunay Triangulation heavily in tlgsish this chapter also reviews this

geometric entity. The chapter contains the following magstions:

e “Camera Model” explains the linear pinhole camera modetluseomputer vision.

e “Triangulation and Structure from Motion” describes howetstimate 3D structure from 2D

image matches.

¢ “Delaunay Triangulation” presents the 2D and 3D Delaunmngulation, which are combi-

natorial structures connecting sets of points in space.

2.1 Camera Model

To estimate 3D information from 2D photographs, we first nieeghderstand and model the image
formation process before we can attempt to invert it. Thepkst and most common image for-
mation model is the linear pinhole camera. A pinhole camegessentially just a box with a small
aperture or pin prick on one face, as in Figure 2.1. Scenectsb@mit and reflect rays of light,
and those rays directed at the camera will pass through tusp and fall onto the inside of the
opposite box face. Consider this box face the camera’s filmthis way, an image of the scene
is projected onto a planar film, or so-called image plane. éodamera lenses approximate the

aperture.



Image

[ Focal Length ] |
Image / Ray
P
1 .-""Rays |
N e |
%{}‘ Aperture S o %‘ Z

Figure 2.1: Pinhole camera projection. Left: Rays of ligiftected off scene objects pass through
the pinhole aperture into the camera onto the image facditRitne geometry of a pinhole camera.
The aperture is at optic centéx. The image plane can equivalently be considered a focathefig
in front of O instead of behind. The intersection of the image plane vaiyts from any scene point
P through the optic cent&p defines the position of the image poitit

Figure 2.1 identifies some important geometric featuregurilaole camera. First, the aperture’s
position in the 3D world is called the optic center, which wendte ag0. A coordinate frame is
affixed to this camera center, therefore the notafiois also suggestive of the origin. The distance
between the camera center and the image plane is calledadakléogth,f. We can see from the
figure that a pinhole camera image is vertically flipped wéhpect to the world. To abstract away
the flip, we can equivalently consider a virtual image pldreesame distancgin front of the optic
center, as in the right-hand part of the figure.

LetP = (X,Y,Z)T be a three dimensional point on a scene surfacepard(x,y)” be its
projected image position. Then, by similar triangles inUfeg2.1, the projection process follows the
following equation:%; = 4 — y = £, and equivalently for the coordinate = ZX.

It is mathematically convenient to use homogeneous coatelnfor projective geometry. In-
finity is handled elegantly, and equations can be writtennedr form. In homogeneous coordi-
nates, a 3D poinP is represented by 4&coordinate vector up to an arbitrary scale factor. That is,
P=(X,Y,Z,1)T ~ (AX,\Y,AZ,\)T, where~ denotes equivalence w.r.t. projective scaldn
homogeneous coordinatd®,~ (X,Y, Z,1)T andp ~ (z,y,1)T, and we can write the projection

equation as a simple linear matrix multiplication with ajpation matrixC.

f 000
p~CP=|0 f 0 0|P
0010

This projection matrix does not consider pixel to world4eig mm) scaling, nor that the center
of the image may not be at the image coordinate frame’s gregiop considering the top-left pixel
of an image to be the image origin is common. Therefore, thgeption matrix can be written more
generally as:

p~CP =K|[I0]P,

fz s ¢z
K= 0 fy ¢y
0 0 1

Here, f,, and f, are the focal length scaled to account for the pixel size indvooordinatesi.e.

f= is the focal length in units of pixel widths, and,,c,)” specifies the pixel location of the



principle point which is the intersection of the camera dimaite frame’sZ axis with the image
plane, ideally at the center of the image. The parametepresents a skew to account for non-
perfectly rectangular pixel grids. Generally, the skewagligible in real cameras and considered
zero.[I|0] is the3 by 4 matrix with its left3 by 3 part as the identity, and the rest as zeros.

To model cameras that don’t have their optic ceat the world’s origin, and that don’t look
down the world’s z-axis, we need to add a rotation and tréinsi¢o the projection equation to align

world coordinates with the canonical camera coordinates:
p ~ K [R|t] P.

Here, R is a3 by 3 rotation matrix andt is a3 by 1 translation vector. Now we can see the
reason whyK was separated out of the projection mattlxwhich we redefine to b€ = K [R[t].

K speaks only ofntrinsic camera parameters such as the focal length and principhe, @oid is
therefore called the intrinsic camera matiiR.|t] defines thextrinsicparameters which situate the
camera in world space, and is called the extrinsic cameraxnalhen we speak of intrinsic or

extrinsic camera calibration, we refer to estimation onkieaige ofK or [R|t] respectively.

2.2 Triangulation and Structure from Motion

Now we have the complete form of the camera projection egnatnder a linear pinhole cam-
era model. With this we can mathematically simulate prajectout what of inversion? What of
recovering a 3D poinP from its projectiornp and from camera knowleddge? Note thaiC is a non-
square matrix and thus it is not directly invertible. Inwgating its pseudoinverse or just referring
to Figure 2.1 leads us to the conclusion that projection isddestructive process. All points on
the ray of projection between the optic center &dlso project to the same image pontAll that
we can determine about the positiondfs that it lies on somewhere on this ray framthroughp.
This is true, unless we consider more than one image.

Projections of same world poilR in two separate images are related. Suppose we can solve
the image matching problem that is to identify in two or moreges where the same world point
projects, given just the images. For example, we might pmibhtvhere in the images a certain table
corner is:p1, po,-..,Pv- Humans are good at this because they are good at undersiahei
composition and context of visual scenes. Automatic apgreagenerally forgo image understand-
ing and consider color and texture similaritg. photo-consistency, often in small local windows of
pixels around hypothesized match points; we refer the read&4, 7, 70, 94] for a small starting
point on the vast literature related to image matching. Naveican solve the image matching prob-
lem, and if we have calibration for images taken from mudtigistinct viewpoint€),, O, ..., Oy,
then we can estimaf@ as the intersection point of all the known rays of projectidhis process
is called triangulation, and estimati®from image matches and camera calibrations is called the

triangulation problem.



Image 1 Image 2

Figure 2.2: The triangulation problem. We wish to find theimjpi pointP* given camera knowl-
edge and image correspondenpesps, . . . . Therefore we find the poif® that minimizes the total
reprojection error, which is the sum of pixel distances leetweaclp; andp;.

Because of imperfect calibration as well as noise in the hiagcprocess due to pixel grid
discretization, poor image feature localization, misrhag;etc, the rays will not perfectly align
and intersect in three dimensional space for such simg@edtilation. To find the optimal estimate
of P for triangulation under match noise, the best [46] appraattminimize the total reprojection

error and find the 3D poir®®* most consistent with the data:

M
P = argminz |p; — C;P|?
P

i=1

Figure 2.2 illustrates reprojection error and triangwatiMinimizing this error can be done us-
ing a variety of numerical optimization techniques suchraslgnt descent or Newton-like methods.
We left implicit in the above equation a detail for computthg norm)|| - ||. This norm denotes the
Euclidear2-norm distance with respect to imagey coordinates between a detected feature match
p: and the projection of the hypothesized world pgiat= C,;P. Therefore the fact that we use
homogeneous coordinates in the equation needs to be takearitount.

Structure from Motion is related to triangulation. It is@khe problem of computing 3D struc-
ture, but it goes a step further. The problem is to comjmatiy the 3D structure of several world
pointsP, Ps, ..., Py andall the camera matriceS,, C,, ..., C); from just the image matches
{pijli=1...M,5=1...N}. SFM plus image matching entails a complete solution foaioitg
sparse 3D scene information from nothing but 2D images.ntx@aoptimally solved by minimizing

total reprojection error, just as with triangulation [48his algorithm is called bundle adjustment:
M N

{P*},{C"} = ?ll;gminzz Ipi; — CiP;|?

ACHi=1 j=1
2.3 Delaunay Triangulation

Solutions to the Structure from Motion problem compute anparse reconstruction consisting of

a set of points, and not a dense 3D model. The differenceusstifited in the two left subfigures



Figure 2.3: 3D Delaunay triangulation. Far Left: A three dimsional object: a cup with a handle.
Middle Left: Points sampling the cup’s surfaced as from SFM). Middle Right: A 3D Delaunay
triangulation of those points; the tetrahedra are drawnireframe. Far Right: A tetrahedron, the
volume element and simplex of the 3D Delaunay triangulation

Figure 2.4: 2D Delaunay triangulation. Far Left: Points psed from a curve. Middle Left: The
2D Delaunay triangulation of the points. Middle Right: Ttaerse Delaunay triangulation, with an
empty circumcircle shown. Far Right: The Voroni diagramnisiel in green.

of Figure 2.3. This thesis proposes a method that uses SFM ploiuds to interpolate a dense
3D surface reconstruction. To interpolate, we take a vottmapproach; we first discretize space
using the 3D Delaunay triangulation of the SFM point clout ¢éhen carve out a 3D model using
free-space constraints.

Formally, a triangulation of a set of poin{d®} is a partition of the convex hull of P} into a
connected set of simplices, which are triangles in two dsi@rs and tetrahedra in three. This defi-
nition is not to be confused with the triangulation probleitsection 2.2. A Delaunay triangulation
is a triangulation that satisfies the empty circumspherpgmnty,i.e. the interior of every simplex’s
circumsphere contains no vertices frqtR}. See Figures 2.4 and 2.3 for an illustration of the 2D
and 3D case.

Also depicted in Figure 2.4 is the Voroni diagram which is ldoahe Delaunay triangulation.
The Voroni diagram is a partition of space into a set of Vousiis, each associated to its own point
in { P} called the cell's Voroni vertex. A Voroni cell is a polygon2® and a polyhedronin 3D. Itis
the set of space consisting of all points (not only frof}) that are nearer to its associated Voroni
vertex than to any other point gfP}. While not used explicitly in the method of this thesis, we
occasionally refer to Voroni diagrams.

Observe from the figures that the Delaunay triangulationadfifs sampled from a surface, or
equivalently from a curve in 2D, iadaptive This is true in more than one sense. First, note that
sections of space with fewer points ©P} contain fewer but larger simplices. Places denser w.r.t.

{P} contain more numerous finer simplices. This is importantdier discretization choice not



only in terms of computational efficiency, but also in termigkowing our method to operate with
sparser samplings of free space. Second, note that it egbp@dthe Delaunay triangulation contains
within it a good approximation of the original surface orweirThis is important for reconstruction.
We can see the wireframe of Figure 2.3’s cup showing throsg subset of the wireframe of the
Delaunay triangulation. We can see a likely curve conngdtie points of Figure 2.4 as a subset of
the lines of that Delaunay triangulation. This observatonot coincidence, and there is theory in
the literature on this point [2, 3, 29, 75]. However, the daseot so simple when there is noise in
{P} w.r.t. sampling the surface, and there is always noise in Bt clouds. We refer the reader
to the review on Delaunay-based Shape from Points in Se8tlod that highlights this property of

the Delaunay triangulation.
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Chapter 3

The Literature

This chapter surveys the literature most related to ouragar for 3D reconstruction from 2D im-
ages. Chapter 2 covered the fundamentals behind spardewisehgeometric reconstruction from
2D image information. Our method begins with these samedomahtals, but the implementation
is real-time; we review online Structure from Motion and SUASimultaneous Localization and
Mapping) systems here.

Our method however also connects the sparse 3D structueearttty to form a dense 3D surface
estimate by geometrically reasoning about occlusions es&ldpace in the imaged scene. Before
covering real-time SFM and SLAM, we discuss dense recocistiu and review the multi-view
stereo literature. Our survey has a particular focus ontne and free-space based methods. In
addition, we review works on the Shape from Points problehene one would like to infer dense
3D geometry only from a sparse 3D point-wise reconstructithout occlusion information or
color and texture from images. Much of the Shape from Poitesature explicitly or implicitly
makes use of the same discretization of space that we do,hanefére some theoretical results
from this literature are notably of interest.

A potential application for real-time reconstruction thet have experimented with is improving
visualization for remote-controlled or tele-robotics. ¥éeclude by reviewing works on “predictive

display” that apply computer vision to this goal.

3.1 3D Shape Reconstruction From Images
3.1.1 Offline Reconstruction

While Structure from Motion addresses the problem of retansng sparse 3D scene information
from 2D images, two-view and multi-view stereo addresses tvoobtain dense 3D from images.
In stereo, the pose and calibration of each image’s camersuially assumed known and given as
input.

Two-view stereo considers reconstruction from just twabcated views, one of which is des-

ignated as the reference view. The 3D representation usadliscrete per-pixel mapping from
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image space to camera-relative scene depth w.r.t. theerefeimage. This representation is called
a “depth map.” The two-view problem boils down to finding thgtimal depth map via dense
image-matching and triangulation. In this way, it is simila feature-based Structure from Mo-
tion but with a match generated for every pixel rather thaspatsely detected feature points. Depth
maps are often referred to as a 2.5D representation bedsyseéd not encode connectivity between
depth estimates. For example, if simply assuming 8-comrngdietween neighbouring depth pixels
to generate a back-projected surface, foreground objatit;eorrectly join with the background
of the scene. There are several algorithms and formulaticarying primarily in terms of the
texture-based matching cost, spatial regularizationgempdth-map optimization scheme. For a good
summary, we defer the reader to the two-view Middleburyesieeview and benchmark [94].

This section instead concentrates on multi-view reconsbm from more than 2 images. The
multi-view stereo literature is vast. While an exhaustieeiew would be excessively lengthy and
peripheral to this thesis, it is important to situate ourkvorrelation to this body of research. Both
our work and stereo have a similar goal: to reconstruct a 3dahfstom a set of input images.
While a multitude of methods with differing properties éxes common trend is that they compete
to find a reconstruction that is as accurate and completessiig@. This emphasis can be seen in the
very popular Middlebury multi-view benchmark dataset and/sy [95], which collects impressive
results from the state of the art. As a result of this focus wality, most multi-view methods are
designed to operate on small sets of images (on the order of tehundred), and they can take up to
hours to process such datasets. Real-time reconstruotionMideo is rare; we cover a selection of
these works in more detail in Section 3.1.3. In contrastéaidrm, this work attempts to reconstruct
more approximate models, but in real time.

Commonly, stereo methods are cast as an optimization proleere a representation of the
3D scene or object to reconstruct is fit to the image data. Ppecaches vary and are distinct from
each other broadly in terms of the optimization framewolR,@rametrization, and cost function
or functional to optimize.

The objective function invariably contains some form ofauee-based photo-consistency match-
ing cost. This measures how well the recovered 3D surfagejegtions match between the input
images based on scores derived from color or intensityréiffees, such as Normalized Cross Corre-
lation (NCC) scores used in[15, 39, 43, 48, 64, 98], or the 8L@yuared Differences (SSD) as used
in [44, 45] and others. Photo-consistency is the primargmstruction cue in stereo. Other common
terms in the objective function relate to secondary reecansbn cues such as silhouette constraints
(in the case of reconstruction of a single object segmemté@unage space) [5, 13, 48, 64, 98], vis-
ibility (enforcing correctness when optimizing the phatmasistency with respect to occlusions in
the images) [27, 40], and spatial regularization or smoegkmpriors.

Optimization of the chosen objective can be performed ugingmber of standard techniques,

which include iterative derivative-driven numerical opization €.g gradient descent for surface
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deformation or level-set evolution [27, 99, 40, 48] or caygte gradient for surface-patch refine-
ment [39]) and discrete combinatorial optimization suctwék graph cuts [66, 52, 98, 17]. The
choice of optimization procedure influences propertiehefrhethod such as convergence, recon-
struction quality, initialization, and speed. The apgitity of a given optimization procedure also
depends on both the form of the objective and the paramttnizar representation of the reconstruc-
tion. For instance, graph-cut optimization can efficiefitig global minima for a restricted class of
objective functions in polynomial time [65], and it does metjuire any specific initialization. On
the other hand, local gradient-driven surface evolutigmpsuts more general objective functions
and regularization schemes, but it can require a closalizition to the optimal reconstruction to
prevent convergence to local minima. In the case of objemdrstruction via surface evolution,
Shape from Silhouettes (SFS) [69] can provide an approxnmatial surface by back-projecting
the (segmented) object’s silhouettes to form generaliegs in 3D space and then computing the
volumetric intersection of all such cones [5, 48]. For scemnstruction where silhouettes cannot
directly apply, initialization is a limitation.

Generally, the 3D representation used by a stereo algofahisnunder one of four categories:
a volumetric discretization of space, an implicit or explgurface representation, a collection and
fusion of depth maps, or a set of small disjoint surface patements called surfels [95].

Volumetric approaches discretize a subset of space in vthilobject or scene to reconstruct
is known to reside. They then label the discretized volureenehts as either belonging inside or
outside the surface to reconstruct. The reconstructianpdicitly defined by the boundary between
inner and outer volume elements. Usually the spatial digett#on is a regular grid of cubic volume
elements, called voxels,g as usedin [67, 15, 43, 52, 66, 109, 103]. Simple reconstnusthemes
can simply carve away photo-inconsistent voxels one at a [##]. More complex schemes per-
form optimization on objective functions including smoiotipterms using.g graph-cuts for global
optimization [66, 52, 98, 17]. Voxel-based approachesmoliéed themselves to a straightforward
graph structure, but suffer from a trade-off between regmiwf the voxel grid and computational
slowdown. Additionally, tight bounds on the location andesof the scene must be known a pri-
ori. While more adaptive irregular volumetric discretipats have been used for 3D reconstruction,
e.g [98, 68, 82], they are not common. In this thesis, we utitze 3D Delaunay Triangulation
for adaptive discretization and efficient reconstructida.reviewed in Section 3.1.4, the Delaunay
triangulation has properties that make it conducive to slrapovery.

Surface-centric approaches can express the reconstrgticer explicitly,e.g as a triangular
mesh [48, 27, 5], or implicitly via level sets [40, 99, 64]. &husually employ iterative gradient-
decent based surface deformation until an objective isvopéid. In the level-set formulation, a
scalar functiory mapping some region d¢* — R implicitly defines a surface at its zero crossings.
Usually, the function is discretely sampled and evolved @aveoxel grid, and thus level sets inherit

similar limitations to volumetric approaches in terms «fattion versus cost trade-offs. For evolu-
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tion of explicit meshes, while optimization drives and dégges the mesh vertices, topology changes
can occure.g when the surface evolves to intersect itself or when thi@limation mesh does not
have the same genus as the real-world obj@apology change becomes a complex issue to handle
correctly [87] and is sometimes ignored or heuristicallpyemted [48, 5]. In the implicit level-set
approach, topology changes during the evolution are hdrncdasparently because the topology is
only recovered and output after the level set convergesaétimal limitation for these approaches is
that they expect a fair initialization surface, which, asyiously mentioned, may be hard to obtain
for open scenes or for online reconstruction of unknownremments.

Alternative to performing optimization on a single worlgage 3D representation, several au-
thors opt to perform consecutive independent depth-mapatibns between nearby camera views
and then merge the resulting 2.5D depth maps into a single &hiji3, 15, 43, 44, 71, 109, 110].
This approach requires a high degree of overlap in the imagaence so that depth maps may
be recovered, and is therefore best applied to video-likeieseces. While most methods based
on depth-map fusion are not designed for real-time use (anesise a voxel grid for depth-map
fusion as only a final step [15, 43, 109, 110]), they trendefastn times, and a few reviewed in
Section 3.1.3 have shown real-time or near real-time resultive video.

The surfel approach estimates a set of small oriented sugfatches with normals. Surfels can
be circular discs as in [45] or rectangular as in [39, 17]. ©an initial set of photo-consistent
surfels is recovered, the set is iteratively expanded \dallphoto-consistent region growing, and
the patch position and orientation parameters are refined psoto-consistency optimizatioa,g
using conjugate gradient as in [39] or other numerical tesphes. Visibility and occlusion detection
for deletion of erroneous patches is typically handled asmisterleaved with the surface growing.
Once the surfel reconstruction is dense enough and compheteesult is still an oriented set of
patches instead of a single surface with topology inforamatiWhile such a reconstruction can
be directly rendered, some applications prefer a convetsia conventional triangle mesh. This is
often done in the literature using a Shape-from-Pointsldadnals method, such as Poisson Surface
Reconstruction, which is reviewed in Section 3.1.4 [39,. 4Surfel-based methods are typically
computationally intensive, solving multiple photo-catency optimizations for every patch, the
results of which can be thrown out due to deletion or re-esiion of patches occluded by newly
grown surfels inducing new visibility information. Theywever can produce very good results on
both objects and open scenes without the requirement ofrayearface initialization from SFS or
otherwise. Furukawa’s popular PMVS reconstruction systsaexemplary [39].

In the following two subsections on free-space and onligemstruction, we present a selective

sample of the most related multi-view methods in more depth.

1The genus of an object’s surface refers to the number of liolésat object. For example, a donut has a single hole,
therefore its surface has genlisA coffee mug has a hole at its handle, therefore its surfimetes genus.
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3.1.2 Free-Space Methods

As just reviewed, multi-view stereo for 3D reconstructismiost commonly cast as optimization
over dense photo-consistency. The use of dense textureramarypreconstruction cue necessitates
that alarge amount of pixel data per input image is processed. This ehoiaense information
cue, while powerful for reconstruction, naturally leadsstow run times. Additionally, methods
that rely on a texture-based cue without imposing stronglegzation or other constraints on the
geometry may fail in areas with low texture informatieng when modeling a wall painted with a
single color. This section concerns itself with methods &éxloit the idea of using visibility plus
occlusion reasoning.e. information about the empty free space around and out$itteescene or
object to be recovered, as an explicit and central recoctgtrucue.

The idea of free space for reconstruction can be summarigddllaws. If a 3D feature or
surface patch is observed in a camera image, then, assuipaifyg the entire volume comprised
of the rays of projection between the 3D feature and the cameenter of projection must be
empty. This imposes an explicit constraint on the geometrige recovered, and a collection of
these constraints can be used for reconstruction. Thisigdsenilar to but distinct from Shape
from Silhouettes (SFS) [37, 38]. In SFS, silhouettes of arsaged object are back-projected from
each input image into generalized cones in 3D space, andtdrséction of these cones defines an
approximate volume bounding the object to reconstruct. &if®es everything that projects exterior
to a 2D image silhouette, whereas free-space carves eirgg\ttiat projects in front of a detected
patch. Unlike SFS, free space is applicable to scenes inianldd objects, and it can model an
arbitary level of concavity. See Section 4.1 for illustoatand a more in-depth discussion of the free
space concept.

In contrast to dense photo-consistency optimization, e-ffgace cue can make use of sparser
visibility information induced by surfels (or even degesterpoints), and thus can result in faster
reconstruction as realized in this work.

Similar to our work, there exist algorithms that infer a dgriemg model from a set of sparse or
guasi-dense features via the 3D Delaunay triangulatioeatiufe points for volumetric discretiza-
tion, plus free-space carving. Two such works are that ofjEeaset al. [35] and Gargallo [41].
Our proposed method builds on these works. It essentiaftypees the same result, but in a faster
way. More recently, Labatwdt al. developed methods that combine, via graph cuts, the 3Dubela
nay triangulation and free space with photo-consistendyragularization [68, 105]. They achieve
impressive reconstructions. Unfortunately, all of thedated methods are designed for offline batch
use. Our contribution is primarily algorithmic. We achieeal-time performance by exploiting the
incremental structure of the Delaunay algorithm to comgetit with fully incremental carving.

Independently and recently, Pahal. developed ProFORMA, a system for online reconstruc-
tion that is very similar to our own [82]. ProFORMA constrsiet 3D Delaunay triangulation, and

it carves free-space via a probabilistic voting scheme bigtains a smoother mesh. Our system,
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however, has at least two key advantages. First, ProFORM#Aliscapable of reconstructing iso-
lated objects; we support complex scenes. Second, as sigtisSection 3.1.3, the computational
complexity of their system is worse than ours, and our aljors compare favourably in terms of
speed and real-time performance.

Hilton describes a method that incrementally reconstra@&® model from sparse features with
strong run-time guarantees [49]. His algorithm performsIXaunay triangulations of the sparse
feature points in each image, and it back-projects and msdtgese triangulations into a free-space
consistent mesh. This approach is akin to estimating ajymaie depth maps by interpolating the
projections of features via the Delaunay triangulatiow, guxen stitching the resulting back-projected
triangular depth meshes together in a free-space awareamann

Tayloret al. similarly consider merging approximate depth maps coegbuia the 2D Delaunay
triangulation of a denser set of feature points [103]. Theis#ense features are obtained in terms of
depth w.r.t. each reference view via a stereo system thgtrepbrts the depth values for pixels with
high-confidence matches. Unlike Hilton, Tayletr al. interpret the space that projects in front of
each approximate depth map as free space, and they merdpenaigps using volumetric free-space
carving on a voxel grid. An approximate interpolative depip however may result in overzealous
carving if the base stereo system produces too sparse rsatmause in this case the free-space
volumes induced by these depth maps are also significanplisoajmate. (Tayloret al propose a
heuristic to attempt to correct for this.) While impressigsults were obtained, reconstruction was
only demonstrated given inputs from a well-calibratedesterg that produced fairly dense matches.

A true stereo system developed by Meredlal. and Pollefey®t al. computes photo-consistent
depth maps from video and then merges them into a triangwshmhile taking free-space into
account [77, 85]. Because their method is geared towaretirmaloperation, they opt to compute
noisy depth maps using a fast method. While depth estimetes dverlapping maps are obtained
independently, and thus can conflict, free-space consdtemrmulated with respect to the depth
maps, help to filter out the noise and guide a coherent andateawconstruction. We compare this

method’s computational requirements to our approach ifidth@ving section.

3.1.3 Real-time / Near Real-time Reconstruction

Real-timé& 3D surface reconstruction from video is a challenging peabivith relatively few pub-
lished solutions.

As previously mentioned, Merredit al. and Pollefey®t al. published a real-time method based
on fusing quick and noisy depth maps together into a freeespansistent surface mesh [77, 85].

Other near real-time approaches based on depth-map fusioroxel grids have been published,

2By “real-time”, this thesis considers a practical time-getdefinition.E.g, if a system takes video as input to perform
computation on each frame, we require that the computattomptetes at frame rate to consider it real time. We may call a
system real time in a soft sende.g., a reconstruction system can be called real time if it galyeoperates at frame rate, but
occasionally violates its budget and spends upwards of@ndean a single video frame. Frame rate is not the only budget
possible; Chapter 4's algorithms operate on inputs thatcahan event rate less than typical video frame rates.
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but their use is more limited because of the voxel represientee.g [109, 110]. The results of
Merrell et al. and Pollefeyst al’s are very impressive, and are competitive in terms of eaau
and completeness with offline stereo methods [95]. They detnate large-scale video-based fusion
at rates oR0 to 30 fps on sequences as long B&), 000 frames. Their method, however, assumes
extrinsically calibrated images as input, and they obthis ¢alibration in part from an expensive
inertial measurement system. This calibration can be ydstbbtain from vision in an online
scenario [24, 30, 61, 85], and their depth-map fusion alahaests computational resources on fast
hardware, both CPU and GPU. In contrast, our approach ataime approximate reconstructions,
butitis lightweight enough to run in parallel with SLAM foamera localization on a modest mobile
laptop CPU.

Very recently, Newcombet al. developed a real-time reconstruction system that oper@ie
video [80]. Online Structure from Motion [61] is performedth for camera pose estimation and
to reconstruct a sparse point cloud. At every new keyfrahig gparse point cloud is passed off to
an efficient Shape from Points method based on implicitesarfitting using radial basis functions
(RBFs) [81]; see Section 3.1.4. Once this approximate saifacomputed, it is used as a good ini-
tial estimate for photo-consistent refinement, which islanmented parallelized on the GPU. This
system currently represents the state of the art in rea-tiemse stereo from monocular video, and
it is capable of producing very impressive reconstructieffisiently. While this system is unlike
Merrell et al’s mentioned above, in that it is more complete, and it copaverything from vision
in real-time including the camera trajectory, this systeagmparison with our method is the same.
Our approach is certainly more approximate, but it is alsoafightweight. Newcombet al.’s sys-
tem was shown to run on a very high-end desktop architeciLoiedd-core machine circa 2010 with
two dedicated graphics cards). These heavy computingnergants limit the system’s potential
applicationsge.g in mobile robotics where computing power is more limitege Section 3.3.

Panet al’s ProFORMA system reconstructs real-time 3D meshes viathod very similar to
our own [82]. Itincorporates an online SFM system as wellnearate a sparse point cloud with visi-
bility information, and it carves away tetrahedral volunteneents that violate free-space constraints.
While their system has been shown to reconstruct isolatgattsin real time, their free-space carv-
ing algorithm is not incremental: it starts over and proesslO(N M) free-space constraints at
every keyframe, wher@&/ is the number of feature points aid is the number of keyframe views.
As a result, their per-keyframe processing tim&isv ). Unlike our method, ProFORMA's run-
time complexity suffers from free-space constraint accatinn and scales poorly in the number of
keyframes. This dependence 6h shows that ProFORMA must eventually slow below real-time
capability as the system continues to run. We show in Sedtidhat the complexity of all of our
algorithms is independent @ff/, and practically constant-time.

Hilton proves that his free-space consistent local modeging algorithm has a run time com-

plexity that is practically constant per frame [49]. As jstited, we show in Section 4.5 that our
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algorithms enjoy a similar run-time guarantee. Howeverphethod is strictly incremental in that it
only considers incorporation of new local models from refere frames as they appear. Compara-
tively, our algorithms handle a superset of events, inclgdhe incorporation of information from
new frames, as well the deletion of erroneous outliers aaddfinement of previously estimated
structure and visibility information. In this sense theg acremental and event-based. Chapter 4
describes our algorithms and the different events that¢hayhandle in more detail. But we remark
here that our approach is more flexible and can integrateciyrwith a larger variety of SLAM
and SLAM-like systems (see Section 3.2).

Depending on the application, real-time reconstructioa sfngle coherent 3D mesh may not
be necessary. Rachmielowsial. demonstrate that a fair geometry proxy for image-basedieren
ing and visualization can be obtained by simply back-ptojgca view-dependent 2D-Delaunay-
approximated depth map from sparse tracked 3D features9[H3, This is similar to Hilton's
approach, but without any model stitching involved [49]. this case, because the geometry is
view-dependent in a discontinuous way, popping artifactsuo as the visualization’s viewpoint
changes. While the goal of this thesis is to compute roughceqapate models for applications
that entail visualization, we opt instead to reconstrudhgle coherent 3D mesh that respects the
physical free-space constraints of the scene. A coherprésentation can be used for more than

visualizationg.g to aid robotic path planningtc

3.1.4 Shape From Points

From a Structure from Motion starting point, as in our appto 3D reconstruction, we have a set
of 3D points sampled from the scene or object to reconstittetrefore, although directly employ-
ing any approaches from the shape from points literaturddvignore and discard useful visibility
information, this literature is relevant to our work. We bewith the disclaimer that almost all of
the results in this body of literature have been applied twsddow-noise no-outlier point clouds,
usually obtained from laser scans. They are designed to eoikputs that differ substantially from
SFM point clouds in terms of sampling properties. While otteegorizations exise.g [76], most
methods either fall under the scope of implicit-surfacéntégues, or combinatorial methods. The
primary focus of this section is on combinatorial methodshey are most related to our work; we
use the Delaunay triangulation in our work, and in these oulit is ubiquitous. We are interested

in what we can learn about the Delaunay triangulation froisliterature.

Implicit Surface Techniques

In the implicit-surface approach, the reconstruction Edsuly the zero-contour or level set of some
scalar function defined on three-dimensional space (mgpRin— R). The function is either fit
to or defined relative to the input points such that the zetdiss on or close to the points. In this

sense, the result is not an exact interpolation of the pginte it does not have to touch the points,
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but rather it is a surface that minimizes distance to thetpdinsome sense while maintaining certain
regularization properties.

One idea is to choose the function for the level set to be asligistance function. For example,
an early and famous work is the signed-distance approachoppétt al. [51]. At every sample
point, they first assign a tangent plane to the surface byrfinttie K Nearest Neighbours (KNN)
in the point set and then fitting a plane to them using leastisgu The distance function to any
guery point in space evaluates as the distance to the ciogegtsample point’s tangent plane via
projection onto the plane. The sign of the distance funatiepends on the side of the plane that
the point falls on, and the tangent planes of nearby sampfggoare given a consistent orientation.
(This consistent orientation is achieved via a graph-badgorithm.) A voxel grid is used, and
the reconstructed surface is extracted via marching cii#sf the zero-set of the signed distance
function evaluated in voxel space. This method, while delt&ffective for dense regularly sampled
point sets as obtained from laser scans, has shortcomingsre s no noise model describing
perturbation of the sample points, and the locally estichalanes are heuristically and inexactly
computed from the KNN, thus the results are not perfect.

More recently, methods have fit signed distance or indidatustions represented by a set of ba-
sis functions, by solving for the basis function weights Imaar system of constraints derived from
the point set. Radial basis functions of different typeg (@lobal, or local and compactly supported)
have proven a powerful and popular choice, capable of exusihterpolative reconstructions from
points containing some noise and large holes of missing [@4tal6]. Once the function is fit, it
is again typically evaluated on a discretized mesh, and therzero-set isosurface is computed,
e.g using voxels and marching cubes, or as in [16] using a magebiube like marching tetrahedra
technique. While these methods were demonstrated to woaksamall amount of noise, results with
outliers are generally not presented.

A newer technique called Poisson Surface Reconstructioahfape from oriented pointse.
shape from points and normals, exhibits very detailed éeteconstructions supporting sharp
features, smooth areas, some amount of input noise, iaegaint sampling, and arbitrary surface
topology [57]. This method is popular, and has been impldateas the final stage of several
successful stereo algorithms [39, 44, 45], as well as apppas a standard technique in software
like MeshLab and libraries like CGAL [1]. Essentially, tter is that the indicator function defined
as 0 outside the mesh and 1 inside has a gradient field (cat/alith a smoothing function to be
finite) that is equal to the gradient field represented by antpged as the oriented points (convolved
with same smoothing function). Taking the divergence djpei@n both sides of this equality results
in a differential equation. The indicator function and deed field are approximated in a function
space with sparse compactly supported and approximatelgsia basis functions. Reconstructing
the indicator function becomes an optimization problemafisag a sparse linear least squares

system. The resulting isosurface of the indicator is ex¢ihwith a modification of marching cubes.
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The runtime speed is reasonable, on the order of secondsittenion dense data, although not

quite real-time.

Combinatorial Methods

The combinatorial approach to shape from points, in cohtoasnplicit-surface methods, finds a
surface reconstruction that consists of exactly the inpittgsamples, connected and interpolated
by discrete facets. Essentially, these @vanect-the-damnethods.

In the 1980s and 1990s, people began to show that for pointpled from a 3D surface, the
3D Delaunay triangulation of the points imposes structur¢éhe point set and can define the shape
of a point set [11, 32]. Boissonnat showed that by computieg3D Delaunay triangulation of the
points and carving away tetrahedra from outside the conuériward using specific topological
rules and a priority ordering, a reasonable but heuristomstruction results [11]. The topological
rules are meant to enforce the constraint that the carvddceumust be polyhedral. The carving
order depends on the observation that as point samplingtgémsreases, the relevant Delaunay
circumspheres approach tangency to the surfat®be reconstructed. This notion foreshadows a
property of every method in this literature: they requirffisient sampling density w.r.t. the curva-
ture of S to produce correct results. However, in this early work, anarete sampling conditions
are given, and no noise model is considered.

The 3D alpha shapes of Edelsbrunner and Mucke consider thegaaus question of how to
define the shape of a point set [32]. Intuitively, alpha skag@ be described by carving. To para-
phrase a common description of alpha shapes, imagingthistcomprised of some soft malleable
substance such as ice cream, as well as hard bits of chocblptethat are the points in the sample
point set. An eraser sphere or ice cream scoop of @jz&@here« is a level-of-detail parameter,
scoops all of the ice cream wherever it will fit without tousiany of the hard chocolate chips.
The remaining boundary between carved and uncarved spelodés curves and domes: straighten
each of these out into lines and discrete planar faces, amtigwe the resulting alpha shape. Alpha
shapes are intimately related to the 3D Delaunay trianiguiaas the spherical eraseris related
to the empty circumsphere property. Alpha shapes can be wiethefficiently as a subset of the
points, edges, facets, and tetrahedra of the Delaunaytriation. For dense relatively uniformly
sampled point sets, results with tunedshow that the alpha shape can remarkably resemble the
original surfaceS. However the topology of an alpha shape is not necessarilpmfold (.e., a
topologically well formed surface), and when point samg@lesspaced non-uniformly w.rd., the
quality of an alpha shape reconstruction degrades witH@psiconnectivity and incorrect carvings.
No noise model is considered in the definition or results.

Extensions of alpha shapes and related algorithms attematidress the problems of non-
uniform samplinge.g weighted alpha-shapes [31], as well as the problem of tapyok.g alpha

solids and the Ball Pivoting algorithm [9, 10]. However, gleted alpha-shapes involve assigning
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a weight to each point, and choosing these weights is clumeyual guesswork. Alpha solids,
which essentially carve via the spherical eraser only fromside the convex hull inward, as well as
the surface-growing Ball Pivoting algorithm, can guarardeopological surface. But again, these
methods are limited as the samples are assumed noiseless.

In the pivotal paper “Surface Reconstruction by Voronidfilhg,” Amenta and Bern proposed
an algorithm that is provably correct given certain samptionditions [2]. The method constructs
the 3D Voroni Diagram of the input point set, and defines thenvaximally distant Voroni vertices
of each point’s cell apoles If a Delaunay triangle contains no pole in its smallest lwng sphere,
it belongs to the “crust,” which is the reconstruction (aftermal-filtering and trimming steps). The
sampling conditions, called-sampling, are defined with respect to the medial axi§ ofvhich is
the skeletal set of points i®? with more than one closest point ¢gh The distance fron® to
the medial axis is related to the curvaturehfandr-sampling essentially states that the samples
must be denser in areas of higher curvature or detail to ocaypllithe details of the surface. This
is intuitively necessary, however there are drawbacksersghecific formulationr-sampling does
not support discontinuities such as sharp corners in tifacirwhere the medial axis touches the
surface so that the curvature and thus sampling densitfiiste

Voroni filtering says something concrete and important altloe 3D Delaunay triangulation
that the earlier methods hint at. If the points areresample from a surfacs, their 3D Delaunay
triangulation contains a subset of facets that form a sarf@lgich is point-wise and normal-wise
convergenttas asr — 0 (i.e., as the sampling density increases w.r.t. curvaturesit ishthe 3D
Delaunay triangulation is a good adaptive discretizatiogpace given a 3D point set sampled from
the surface to reconstruct.

Like Voroni filtering, the more recent Power Crust [3] coméathwhe same theoretical guaran-
tees and--sampling conditions, but additionally it is robust to niigsdata and can fill holes like
the RBF and Poisson implicit-function approaches. Therakobservation is that the Voroni poles
form a discrete approximation of the medial axis. The potesuged to reconstruct the medial axis
with medial distance or curvature information, and the rakalkis is used to compute the surface.

A common negative trend of all of these reviewed works is thay consider no noise model.
To my knowledge, the only works in combinatorial shape frayngs that explicitly consider noise
extendr-sampling and Power-Crust medial-axis estimation [29, 7H5jey identify certain noise-
affected poles for exclusion from the discrete medial axigobustify the estimate. The algorithms
are provably topologically correct and convergent givemektended noisy-sampling conditions.
Note that this is still a “connect-the-dots” approach, dretéfore the interpolant will appear bumpy,
but with correct connectivity. However, the noise modelsidared is restrictive and unrealistic; the
noise must be bounded in magnitude in proportion to the ¢ureafS (a curvature-adaptive hard
bound). Thus, noise models that include outliers, such as§kan noise, are excluded.

Outside of the Shape from Points problem, Labatual developed a multi-view stereo algo-
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rithm that produces excellent reconstruction results ashaet of the 3D Delaunay triangulation’s
facets, given a very noisy dense point cloud with a large remoboutliers [68]. This empirically

hints that outliers and more general noise may not affeaqtiadity of a Delaunay triangulation as a
discretization choice, and that proofs and algorithms mdst éor noise models more general than

noisyr-sampling.

3.2 SLAM/ Online Structure from Motion

Simultaneous Localization and Mapping (SLAM) describes pinoblem in robotics of estimating
the robot pose while creating a sparse map of the environnvéhile SLAM in the more general
sense can make use of arbitrary sensors such as sonaraladestereo camera rigs, we consider
only the case of monocular visual SLAM, that is SLAM using agbé camera as the only sensor
(not necessarily in the context of robotics). The SLAM peshlthen boils down to estimating the 6
degrees of freedom (DOF) camera pose and a representatianmldfstructure consisting of a set of
landmarks, in real time. The landmarks generally reprethentvorld sparsely: the SLAM problem
does not entail computing a dense 3D surface model of thenabevorld. While these landmarks
can include edge features as in [62] or other types of fegtuhey most commonly represent a
simple sparse 3D point cloud. SLAM therefore is synonymoustine Structure from Motion. In
this thesis’s work on real-time 3D reconstruction, we uséMlLas a starting point and triangulate
the point cloud to produce a 3D mesh.

There exists two broad categories of approaches in thatites: recursive filtering methods,

and keyframe-optimization bundle-adjustment methods.

3.2.1 Recursive Filtering

In the recursive filtering approach, variants of the Kalmberfare popular [107]. The basic Kalman
filter represents and maintains the state of the system ircvéomprised of the camera pose,
landmark positions, and often dynamical entities such ascimera’s translational and angular
velocity), as well as the uncertainty in the state in the farfra covariance matrix. The filter
statistically models the process that predicts the evaiutif the state from one video frame to
the next using a linear function. This function maps the jmew state, current control commands
(in the case of an actuated robot), and Gaussian process twothe next state. The filter also
models the measurement process as a linear function magharsgate to observations of the state,
which in this case is the projection function on landmarkt&ve Gaussian image-noise term. A
set of update equations based on these two functions pitheicturrent state given the previous
state, and update the estimate given the currentimage émedmark measurements. Because the
projection or measurement function is nonlinear in monac8LAM due to perspective division,
the Kalman filter is not directly suited to the problem. THere, monocular SLAM frequently

relies on variants designed to handle non-linearity, ssdha widely used Extended Kalman Filter
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(EKF) [107, 19, 24, 25, 20, 84], the Unscented Kalman Filté]] or others.

The first successful implementation of a real-time endrtd-mmonocular SLAM system was
done by Davisoret al. [24, 25]. It used an EKF as its base machinery, and includedigions
for adding and deleting landmarks to and from the state. Tdie sepresentation included linear
and angular camera velocities, and a constant-velocitjyom@irior was assumed. Feature detec-
tion and matching were implemented with the aid of the EKE:3h covariance ellipsoids of the
landmarks project into the image using the Kalman-predicemera pose to restrict the search for
image matches or measurements. Experiments with thissydgenonstrate real-time tracking and
mapping in room-sized workspaces, with a map size on the ofd0 landmarks. Unfortunately,
a major limitation of this and other Kalman-based approadhe¢he computational complexity of
the filter. Full covariance information is stored and upddteanO(n?) size matrix, where: de-
notes the number of landmarks. Such filters quickly dropwekmnal-time performance if too many
features are present. This computational restriction isgnurawback for our purpose, where we
are most interested in the structure of the environmertterahan in obtaining great accuracy in the
camera trajectory; we prefer a denser set of landmarks. Wartethat our algorithms have similar
bounds on run-time complexity (Section 4.5), but th@$e bounds hide unspecified multiplicative
speed constants. Additionally our computational budggtéster since our methods operate at an
event rate which is less tharga fps frame rate. We demonstrate that our algorithms are festgh
for real time operation with a large number of landmarks iotiea 5.2.

Other Kalman filtering implementations exist that attengpinhprove tracking robustness in
the case that the motion model is severely violated,under high acceleration jerky camera mo-
tion. When the motion model is violated, complete trackiaifufe can result. Civerat al. devel-
oped a SLAM system that runs multiple EKF filters in parall@hwdifferent motion models, and a
Bayesian model selection mechanism determines which rmgtieuld be active at any given point
in time [20]. The switch between filters is continuous in ttath model has a probabilistic mixing
weight with respect to the others, but in practice the silranechanism assigns sparse weights.
Chekhlovet al. use a constant position (plus noise) motion model to hacaitgera shake [18].

Particle filtering provides another statistical framewiankrecursive estimation. Instead of main-
taining full covariance information in a single matrix, pafthe variability of the state is represented
by a discrete set of weighted samples or particles, whiclyimprobability distribution. Typically,
the particles each represent hypothesized camera posedypiamics and their relative probabili-
ties, and in this way represent the camera’s distributi@aah iteration of the filter. While landmark
positions and uncertainties could also be modeled usinigdiva particle distributions, this has been
noted to be computationally too expensive for online penfamce [30].

Itis normal in particle filtering formulations for the up@atquations to be Kalman-like [30, 89].
E.g, in FastSLAM 2.0, a separate EKF filter is run on each partiteking variance information

from the particle distribution into proper account, whifgdating and resampling the particles from

23



the distribution correctly based on the variance from e (.

Eade and Drummond’s use of FastSLAM 2.0 is geared towardawipg the computational ef-
ficiency of monocular SLAM [30, 78]. FastSLAM 2.0 relies oretbbservation that if the camera
trajectory is known exactly (or hypothesized exactly) thies landmark features are conditionally
independent with respect to each other, because they areadated through the geometry of pro-
jection and back-projection. Therefore, this portion ¢ ttovariance can be dropped per particle,
and the footprint of the variance information becom¥snn), wherem is the constant number of
particles and: is the number of landmarks. Filter updates are more efficdsrd result, and real-
time SLAM was demonstrated on sequences containing séuamdked landmarks, surpassing pure
EKF filters in this regard.

Other particle filtering methods have focused on improviagking robustness. Pupilli and
Calway attempt to improve robustness in comparison to &str&KF by modeling the trajectory’s
probability distribution more generally than a Gaussiastened mean and covariance [88, 89]. The
particle filter supports a multi-modal probability distiion that can handle different competing
hypotheses of camera motion under ambiguous circumstarides computational trade-off here
is between trajectory and map estimation. Pupilli and Caldemonstrate real-time performance
using 500 camera particles, but only approximately 10 gt

Several works have sought to optimize SLAM via sub-mappig 83, 84] and other techniques
such as postponement [63]. Sub-mapping techniques dii@ernvironment into a set of slightly
overlapping size-bounded segments, and they construadt hagps using their own separate filters
for each such sub-map. Because the size of sub-maps aredihuhe per-frame operating cost of
the active filter is constant-time. However, with most ofshe@pproaches some covariance infor-
mation is dropped. As a result, the overall map is subjecpenedoop drift (and scale-drift [101])
over time. Explicit camera trajectory loop-detection v@aagnition of previously seen landmarks or
image appearance, plus an explicit loop-closure oper&inacessary to remedy this problem. Ad-
ditionally, to represent the map in a single Euclidean civatig frame, sub-maps must be registered
to each other via a set of map-to-map transformations. Tinassformations are often represented
as a graph with links the between sub-maps that overlap,fasgtaph of transformations is opti-
mized as a final post-processing step or as an online logaHastep. Such optimization does not
have constant-time complexity, but on large-scale outdeguences with several-hundred-meter
trajectories, it has performed with time-cost on the ordex second, which is acceptable for real-
time operation in a background process. In contrast, looguek is inherent in single-filter Kalman
systems, as measurements of one landmark correctly affeatritire state as prescribed by the
full covariance matrix. Sub-mapping however provides fopiessive large-scale SLAM, mapping

hundreds to thousands of points over unprecedented wagEst
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3.2.2 Online Bundle Adjustment

As an alternative to the recursive filter approach, reaetM based on bundle-adjustment opti-
mization has seen recent success. Full global bundle atpmstis computationally expensive, and
cannot operate at frame-rate on every tracked frame’s sporelences in a real-time SLAM sce-
nario. However, as a compromise between accuracy and spgadmentations can make choices
on how many iterations to perform, as well as when and whattake adjust, be it a set of spatially
disparate keyframes as in [61, 62, 79, 101], or a sliding wimén a constant number of recent
frames [34], or some combination of the two [93, 92].

A recent study by Strasdatt al provides theory, monte-carlo experiments, and discassio
comparing recursive filtering methods to keyframe-basealing in the context of monocular
SLAM [100]. The accuracy versus computational cost trafidetween the two approaches was
investigated. It was shown that generally, except in lostaacy tight computation-budget situ-
ations, bundling methods have superior accuracy per codtitianally, bundling methods were
shown to be much more efficient at handling many landmarksdirtrast to many image frames),
and the benefit of optimizing more features versus more fsaméerms of accuracy is shown to
be greater. The implication is that, from a state-of-thebandling-based SLAM system, we can
expect accurate real-time reconstruction with densentwtonds than from recursive filtering.

Klein and Murray present a system based on keyframe bundiadged Parallel Tracking and
Mapping (PTAM) [61, 62]. It performs all bundling and map-nagement (such as outlier dele-
tion) in a background thread, which prioritizes bundling tecently initialized structure and newer
keyframes over global bundle adjustments, which are onfjopmaed if there is processing time
available. This means that loop-closure is not guaranteezkplicit, but in practice the system
produces impressively accurate maps with up to approxigna@000 landmarks in room-sized
spaces.

While accurate SLAM with many landmarks is not unique to PTRM1], PTAM has the advan-
tages of being both open source and very robust, in the seatsié ¢an reliably relocalize to recover
from tracking failure if pointed at familiar landmarks. Rirese reasons, we choose PTAM as our
base SFM system for online surface reconstruction; seeoBe¢i6. On the other hand, Kalman
filtering approaches explicitly model the uncertainty indenark estimates in terms of covariance.
This uncertainty information could be usedy for soft or conservative probabilistic free-space carv-
ing, like in the work by Hiltonet al. [49]. The disadvantage of PTAM is that it does not provide us

with a direct estimate of the noise in the system.

3.3 Tele-robotics

In tele-robotics, a human operator controls a remotelytemtaobot. The operator sends control

commands to the robot to perform some task, and receivesrgefiegdback via a communication
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channel.

Communication delays are a fundamental problem. When teeatqr sends commands to the
robot, he expects sensory feedback to reflect his inputs mt@ral and transparent way. This is
essential for closing the master-slave control loop. Haxgn practice sensory feedback is delayed
by the round-trip latency of the communication channel. réfare, simple streaming of video and
haptic information typically proves insufficient. Visuatldys as small a8.3 seconds negatively
impact operator performance and produce a sense of dengtipd human’s motions from the robot,
resulting in effectively open-loop “move and wait” contféb, 47, 33, 36, 50]. This magnitude of
delay is common across the internet, and, ground-to-space tele-operation suffers unavoidably
larger delay due to the finite speed of light.

Computer vision can ameliorate the effects of visual del@aypredictive display. Predictive
display refers to rendering a visualization of the robog giirectly in response to the operator's
control commands, without waiting for delayed video. Thsualization predicts what the camera
would see, assuming no delay and given a model of the robdbaitslenvironment. The model can
either be specified offline, in the case of an a priori knownremment, or acquired online using
computer vision techniques at the robot site. From vided) a®del can be acquired and updated
in real time and sent back to the operator for immediate Visaton.

We have applied our 3D reconstruction method to online midébr predictive display. Addi-

tional detail can be found in Section 5.4, as well as in ouepam this topic [73].

3.3.1 Photo-Realistic Predictive Display

Traditionally, predictive display has been accomplisimaighly pre-calibrated settings by superim-
posing hand-modeled wire frame and solid-model overlayh@fobot manipulator and scene ob-
jects atop delayed video [96, 8, 59]. This approach suppm&aswn environment and non-moving
external camera. More recent work aims to produce photistiegpredictive display in less cali-
brated scenarios via modeling of the robot’s environmeimgusomputer vision [14, 54, 108, 90].
Our work’s application to predictive display falls into sfcategory; we do not require a 3D model a
priori. We therefore narrow this section’s review to this alework.

Image-based rendering techniques have been applied to-pbalistic predictive display, in-
cluding pure image-based synthesis [54] and hybrid geacregtproaches [22, 108]. To date how-
ever, these techniques require an offline reconstructemata lengthy online learning phase to get
a sufficiently dense image-sampling. In [54], a purely imbagsed technique synthesizes predic-
tive display for an external fixed camera observing a highFD@bot arm. From control-command
history and delayed images, an image-appearance intdyesty is learned via Principal Compo-
nent Analysis (PCA), and this basis is modulated to predittirender new robot configurations.
The method has the advantage of being completely uncaitbrand it requires no prior model of

the robot. Additionally, learning is performed online, laubng acquisition phase and dense image-

26



sampling is required to construct an adequate basis foereryl Yerexet al. present an eye-in-hand
variant of this approach that reconstructs a coarse stadgligeometry proxy for rendering using
Structure from Motion, and that computes a PCA basis in tlidelis texture space [108]. The 3D
model is however extremely coarse, therefore a dense isaggling is still required. Cobzast

al. present a system that provides a high-fidelity realistépldiy [22]. They construct a panoramic
image-and-depth model of the robot site via a rotating camaed a laser scanner. However, the
model is acquired and constructed offline, thus limitinggpial applications.

True online vision capture of a single coherent 3D model fedjctive display is almost non-
existent in the literature. However, some works attempg thi something close. Burkeet al
describe an online depth-fusion technique for predictigpldy that acquires a 3D model using a
stereo camerarig [14]. However, their system takes upwardlss to integrate each new depth map,
and it exhausts computational resources, both CPU and GHUitidnally, their implementation
lacks online localization of the camera rig. Recently, iKelt al. and Hubeet al. showed excellent
results for capture and display of the environment arourgleadperated mobile vehicle [58, 53].
However, their modeling technique is fairly specific. Theamstruction assumes that the model is
comprised primarily of a terrain height-map plus a far-tielpitlboard approximation for the sky
and distant horizon. This assumption is acceptable for tivend task, but is not a general solution.
Additionally, the technique uses a laser sensor insteadpafsaive camera for vision, as well as
an inertial navigation system for localization. Never#gss, Kellyet al’s approach provides very
impressive predictive display for driving.

Rachmielowski’s predictive display system is closely tedbto ours [90]; we build upon this
work. His system reconstructs a sparse camera set and 3D gtaioture using online SLAM.
It creates a coarse view-dependent geometry by connectojgcped 3D points and then back-
projecting the 2D mesh into a 3D model. Predictive rendeisnachieved by projective texturing
from keyframes. This method enjoys the benefits of onlindgperance, support for a moving
camera without rigorous precalibration, no need for a 3D ehadpriori, and applicability to a
variety of unknown environments. However, the integratioth a real robot was preliminary, and
thus experimental validation in [90] was performed priyaim simulation. In contrast, our 3D
modeling offers improvements. Instead of using a view-deat rendering proxy, we infer a single
coherent view-consistent proxy that respects physicat$gace constraints on the scene. Moreover,
we provide experimental evaluation on a real robot in Sedid.

In contrast to all these systems, our approach attaingirealtracking, localization, and co-
herent 3D scene reconstruction with online visualizatismg just a single camera and the low
processing requirements of a mobile laptop CPU. To the Hetbtecauthor’'s knowledge, this is a

unigue combination.
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Chapter 4

Method and Algorithms:
Incremental Free-Space Carving

As seen in Chapter 3, there exists a wide variety of ideasexfthtques for 3D reconstruction, each
with their own benefits and weaknesses. A main contributfahie thesis is the development of a
set of algorithms that encompass an approach for fast appatx 3D reconstruction. The approach
is incremental and event-driven. Unlike most methods,api@oach does not expect all of its inputs
prior to execution. Instead, it allows for incremental didalis and modifications to its inputs, and it
reuses previous computations to efficiently update thdteedun this way, the method achieves real-
time performance. The approach employs the principle e&'Bpace” as the primary reconstruction
cue. That is, reasoning about visibility and occlusiondssjeometric constraints on the scene that
the reconstruction is based on and therefore respects.

This chapter introduces the theory, algorithms, and rélateas. Additionally, it describes a
real-time software system that implements them for recanshg 3D models from live video. The

chapter consists of the following primary sections:
e “Free Space” explains the geometric principle that the ritlgms operate on.

e “Inputs and Representation” describes the inputs to theriiigns, the related restriction of
the reconstruction problem, and the volumetric represiemtahosen for the 3D model and

surrounding space.

e “Algorithms” presents the algorithms in detail, includitige overarching event-based ap-

proach, as well as a “forgetting” heuristic that enabletiege performance.

e “Isosurface Extraction and Regularization” describes tmeompute a conventional 3D mesh

from the volumetric representation.

e “Computational Complexity” proves important bounds on the-time and space require-

ments of the algorithms.

e “Software System” describes the software architecturb®fnplementation.
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Figure 4.1: Free-space constraints. (a) The general cangeramera0 observes a surface patch,
here the quadrilaterad BC'D. The pyramidal volumedBC DO must be empty; otherwise, the
patch would be occluded. (b) Our chosen discrete represamtaf free-space constraints. The
carving method considers only poinksinstead of generalized patches. Therefore our free-space
constraints are infinitesimally thin volumes, the line segts,OP. These intersect a discretized
space of tetrahedra.

4.1 Free Space

The notion of free space is briefly described in Section 3\W& elaborate further here and describe
its use. When a camera images a 3D scene surface patch, tiraevobmprised of the rays of
projection from the patch to the camera’s optic center mastdzant, and therefore consist of “free
space.” Otherwise, whatever occupies that space woulddethe patch, assuming surface opacity,
and the patch would not be imaged. Figure 4.1(a) illustréiss

To avoid the computational cost of dense per-pixel depthrrstruction, as well as the difficulties
that come withe.g textureless areas in the scene, the idea is to restrictlvessto a feature-based
approach where only the reliably estimated features in ag@are tracked and reconstructed in 3D.
Then, construct the union of the 3D free-space volumes iediby these general feature patches,
and use this volume to define a dense interpolative mesh.

This approach is distinct from Shape from Silhouettes (smti& 3.1.1) and can be thought of
as an interior carving; instead of carving away space thgépts outside an observed silhouette (or
patch feature), we carve away the known free-space thagsojpside and in front of the feature.

While exact methods to compute Shape from Silhouettes EXist38], it turns out that exact
methods for interior free-space carving in three dimersiare difficult to construct, because the
geometry is hard to reason about. The interpolation indigethe union of free-space volumes
from a discretely sampled camera track and patch set is mtudly defined. See Figure 4.2; what
are the correct interpolations, and how can we compute them?

Fortunately, if we forgo exactness and utilize discreteraxipnations, as described in the next
section, we still obtain useful interpolative meshes. Weehghosen a practical approximation to
the free-space problem: we restrict the 3D patch featurésfittitesimal point features, and we
discretize space based on this point set. In this case sfraee volumes reduce to infinitesimally
small line segments; see Figure 4.1(b). The exact unionasetltonstraints is not useful, but we
use these line segments to heuristically carve away enswmedized volume elements that inter-

sect. Because of our particular choice of discretizatioa toundary between carved and uncarved
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Figure 4.2: The exact discrete free-space problem. Candgrasbserve patcheB,. (a) The 2D
problem. The union of free-space volumes is outlined. Etengh the volume can be computed,
parts of the boundarg(g those connecting to the camera centers) project in frathieopatches, and
are undesirable for rendering from any novel viewpoint teatuated outside of the volume. The
interpolative mesh we would ideally compute consists oftieehes?; and P, plus the highlighted
part of the boundary in between them (drawn in green with sgg@ndpoints marked). (b) The 3D
problem: A frontal view of3 patches in front of two camera centers. A good interpolatayn
visualization is not obviously defined. The shaded (blaekrareas contain uncarved space of
unknown occupancy, but they are “in between” the patches.

volumes induces an interpolation that is well defined.

4.2 Inputs and Representation

Given as input a set of reconstructed 3D point feat§i@$, camera estimategD}, and visibility
lists {O P} describing which point# are visible in each view, our method connects and interpo-
lates the point set to produce a triangulated mesh that appates the scene. This restriction of the
3D reconstruction problem is not categorized as multi-\8&sveo (Section 3.1.1) because calibrated
images are not the input. The problem also does not align Stitipe from Points (Section 3.1.4).
Rather, we tackle a Shape-from-Points-and-Visibilitytdeon.

We assume the inputs are readily available from online SL2R¥| BO] or Structure from Mo-
tion [61]. Therefore, the estimates §P}, {O}, and the visibility lists are continuously changing.

The method takes a volumetric approach: it discretizesespiacthe 3D Delaunay triangulation
of the input point se{ P} which yields a set of tetrahedral volume elements that cthesispace
spanned by P}; see Section 2.3 for a description of Delaunay Triangufetiecach tetrahedral 3D
volume element has associated with it a labeling: eitherntarked as free or occupied space. The
2D boundary surface between the labelings represents updiative reconstruction.

The choice of a Delaunay discretization, as opposed to daediscretization such as voxels,
is motivated two-fold. First, it is adaptive. Because we tida discretely sampled free-space
constraints, if every volume element were small like a vowel could only carve thin burrow holes
into the model. Such a carving would produce useless resitlisa sparse sampling of free space.
The Delaunay triangulation contains many small tetrahedh@re denser clusters of surface points

are present, and it contains fewer but larger tetrahedraesere are no points in free space.
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Therefore, a sparse sampling can carve very effectively.

Second, because the Delaunay discretization is geomtackptive, the space-complexity of
the triangulationi(e. the number of simplices or volume elements) is also adaptithe size is
worst-case quadratic in the number of points{ii} [60, 97], and unlike voxels, the size is not
so directly dependent on the desired output 3D model raealuf his relation offers speed to our
algorithms: we exploit it to attain worst-case real-timengmutational complexity. See Section 4.5
for complexity analysis.

Additionally, in Section 3.1.4 we discuss an interestinggarty of 3D Delaunay triangula-
tions of points sampled from surfaces. Assuming certainpdiagn conditions are satisfied, a good
piecewise-linear approximation of the surface is guaethte be contained within the triangular

facets of the discretization.

4.3 Algorithms

The fact that our algorithms’ inputs come from an online SHdgess that continuously modifies
and appends to the input data implies two requirements fpreal-time reconstruction method
that utilizes this information. First, the method itself shyproduce intermediate outputs. Specifi-
cally, the approach should be fully incremental and geraratv meshes in real time. Second, the
method must support fine-grained event handling. Diffetygres of updates to the input data trigger
different algorithms for tailored processing.

In this section, we present a set of algorithms that satfsfge requirements. They handle five

main events that are common to SLAM and SLAM-like systems:

1. New-keyframe events, where newly initialized featumesaso added t§ P}

2. Data-association events, entailing the addition of nisitiity information

3. Data-dissociation events, entailing the deletion adrepus visibility information
4. Deletion events, where outliers are removed iy}

5. Refinement events, where subset$ B} and{O} are reestimated and moved

Figure 4.3 shows the high-level data flow of the whole methudl @ur implemented system.
Because the algorithms all operate on the same data stsctue first discuss their commonalities.
What follows is a description of each event handler. Finally propose a heuristic that brings the

method to real time.

4.3.1 Commonalities

Each event handler’s goal is to maintain and update a caofithge Delaunay-discretized space. The
algorithms prune entire tetrahedra by marking them as eifibityy intersect a free-space constraint,
as illustrated in Figure 4.1(b).
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Figure 4.3: Reconstruction system.

When an event updates a subset of the poin{ £, the Delaunay discretization of a related
subset of space changes in turn. Some tetrahedra are déletesare thus created, and new tetra-
hedra fill the holes and take their place. Therefore, ourritlyns must efficiently determine which
of the newly created tetrahedra to mark as free space.

For this purpose, we associate with each tetrahedron a sdittbke free-space constraints that
intersect it. The sets from the old tetrahedra that spandhe($) determine the minimal constraint
set that we must test against. In contrast to a batch metladvibuld redo the triangulation from
the beginning and then retest all constraints, our algmsthave time by minimally processing only
the new tetrahedra and relevant constraints.

However, this minimal processing is not enough to ensuretirea operation. As many frames
are processed, free-space constraints quickly accuminldtee tetrahedra’s constraint sets. The
size of these sets increase, and so does memory consumpti@omputation time. Thus, in Sec-
tion 4.3.6, we propose a heuristic for keeping the size bednd

Additionally, we note that some of our algorithms requiratthll the optic centergO} fall
within some tetrahedron in the triangulation. Therefogheartificial vertices are initially inserted

before all events. These vertices represent a loose bogindbe on the features and optic centers.

4.3.2 Keyframe Insertion

Upon addition of a new keyframe, we must handle two changest, Bny 3D point features that are
initialized in this keyframe add t¢P} and thus change the discretization. Second, this keyfeame’
visibility list carves the resulting discretization.

To preserve the empty circumsphere property, when a newt jinserted, the triangulation
algorithm deletes all tetrahedra that contain the pointiwitheir circumspheres and then retriangu-

lates the resulting hole. The hole is always a connectedfgetrahedra, and starrifh@ff the hole

1starring of a hole with a point means connecting the boundétige hole to that point. In 2D, each edge of the hole’s
polygonal boundary connects with the point to form a newngrila. In 3D, each triangular face of the hole’s polyhedral
boundary connects with the point to form a new tetrahedron.
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(@) Initial (b) Conflicts (c) Retriangulation (d) Final Carving

Figure 4.4: A 2D illustration of Algorithm 1, Keyframe Ingem. (a) The initial triangulation. The
blue dashed lines are free-space constraints currentheitriangulation. Shaded aquamarine cells
have not yet been carved. (b) An incoming point (red crossle RAighlighted striped cells are in
conflict with the point because it falls inside their circuroles. (c) The highlighted cells were
deleted, and the hole stared off. The red free-space caomtst@olded) belonged to the deleted
tetrahedra; they are now used to carve away two of the fourtetahedra. (d) Finally, the new
free-space constraint(s) from the current view are applied

results in a valid retriangulation [102]; see Figure 4.4.

After retriangulating holes, our algorithm determines evhof the new tetrahedra to mark as
free space. The minimal constraint set to test against iarin of the constraint sets from the old
tetrahedra that spanned the holes.

Finally, the free-space constraints induced by the cuniemt are applied. The entire process is

summarized in Figure 4.4 and in Algorithm 1.

Algorithm 1 New-Keyframe Event Handler

U <« (), the empty constraint set
forall @ € {P}.NewPoints do
C < {Cells whose circumspheres conflict wifh}
forall T € C do
U + U UT.ConstraintSet
Insert@ into the triangulation and star off the hole
Apply all constraintss U as described i§ 4.3.3
Apply constraints from the current visibility list

4.3.3 Data Association and Dissociation

Data association and dissociation events only changdlitisinformation. Association events add
visibility rays, and dissociation events remove them. Bameple, if a point is initialized in some
keyframe and then later matched also in an earlier keyfrémgetaises an association event.efgy
after a refinement event, a point’s reprojection error in sdayframe is large, the corresponding
visibility ray is likely erroneous. This may raise a dissi@mn event: that ray’s carving must then
be undone.

To handle an association event, we only need to carve. Te&@na given free-space constraint
OP with optic centerO and feature poinP, we adopt Gargallo’s traversal algorithm [41]. (This is

our only event handler that is not novel.)
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Figure 4.5: The traversal algorithm for processing a fregee constraint (dashed line). First, the
cells adjacent to the highlighted vertex are tested forgsetion with the constraint. Then, the al-
gorithm hops from cell to adjacent cell via the red facetdded) until the camera center is reached.
The carved cells are shaded.

The algorithm is depicted in Figure 4.5. The line segni@Rtstabs a connected set of tetrahedra
through their shared facets (red and bolded in the figure)s fifakes traversal possible: begin
at vertexP, and perform a series of facet-segment intersection tesietermine which adjacent
tetrahedron to traverse to. To find the initial tetraheditemate over all the tetrahedra incident/o
testing only the facet opposite # for intersection withOP. If at any time the current tetrahedron
contains poin® in its interior, the traversal is complete. We a@ to all the crossed tetrahedra’s
constraint sets.

To initially find vertex P, we maintain a vector of vertex pointers as we construct tiaa-t
gulation. We represer®P as a pair of indices, and index the vector to find the vertex((ii)
time).

For dissociation events, our event handler simply tragesdetetrahedra in the triangulation
to erase the selected constraint from their intersectits s8ee Algorithm 2. We could apply
Gargallo’s traversal algorithm instead, but the entail@gtriangle intersection test is expensive,
and Section 4.5 and Appendix A show that the worst case agjimptin time is the same for both

approaches.

Algorithm 2 Dissociation Event Handler

OP « The free-space constraint to remove
for all Tetrahedrd do L
T.ConstraintSet < T.ConstraintSet \ {OP}

4.3.4 Outlier Deletion

When a point) is marked for deletion, we remove it from boft} and the triangulation, but we
must also undo the carving of all visibility rays induced by i

Therefore, Algorithm 3 first traverses all tetrahedra toseenany constraints incident & from
their intersection sets.

Deletion of@ from a Delaunay triangulation rediscretizes space: a lsdlermed and retriangu-

lated. The hole is precisely the set of tetrahedra adjaocegp{28]. This is because point removal is
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the inverse operation of point addition; a starred off hoteuad(@ forms the set of tetrahedra adja-
centto@ (cf. Figure 4.4 and assume th@twas inserted last). A robust procedure for retriangulating
the hole is given in [28].

Algorithm 3 therefore collects a set of free-space constsdiom incident cells before removing

Q, to apply this set afterwards.

Algorithm 3 Outlier-Deletion Event Handler
U + (), the empty constraint set
Q@ + Point marked for deletion
/I Remove all constraints that referencey
for all Tetrahedrd do
T.ConstraintSet + T.ConstraintSet \ {OP | P = Q}
/I Collect constraints from incident cells
C «+ {Cellsincident toQ }
forall T € C' do
U + U UT.ConstraintSet
Delete@ from the triangulation (this retriangulates)
Apply all constraintss U as described i§ 4.3.3

4.3.5 Refinement

The refinement event handler is invoked whenever a set oftgpaimd cameras are moved. This
happens continuously in SLAM, and it corresponds to padidLll bundle adjustments in online
Structure-from-Motion.

Algorithm 4 summarizes. It is essentially a series of poisletons and insertions (akin to

Sections 4.3.2 and 4.3.4), with free-space constraintsatetl and applied only when necessary.

Algorithm 4 Refinement Event Handler
/I Collect constraints from incident cells
U < (), the empty constraint set
for all @ € {P}.MovedPoints do
C + {Cellsincident taQ}
forall T € C do
U + U UT.ConstraintSet
/I Remove the vertices (this retriangulates)
for all @ € {P}.MovedPoints do
Delete@ from the triangulation
Il Insert moved vertices while collecting constraints
forall @ € {P}.MovedPoints do
Il Qmoveq refers to Q’s new coordinates.
C «+ {Cells Delaunay-conflicting itk ,,oved }
forall T € C do
U + U UT.ConstraintSet
InsertQ.,,oveq iNto the triangulation
Remove all constraints from the triangulation that refeeamoved points, like in Algorithm 3
Apply all constraintss U as described i§ 4.3.3, using moved point and camera locations

For efficiency, we implement this handler with a slight apgmation: we partially ignore the
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Figure 4.6: The similarity of the left-hand segment w.he tight-hand segment is equaltmver
the sum of areas spanned by the gray triangles.

movement of keyframes, and thus of some visibility constsai This works due to two realistic

assumptions. First, we assume that keyframes are indgthlicurately such that they only move
slightly. Second, we rely on future events to re-discretimeremainder of space; constraints then
will be reprocessed using the moved optic centers. Thisémphtation choice allows for a better

run-time complexity that is independent of the number offi@yes in{O}; see Section 4.5.

4.3.6 Forgetting Heuristic

The heuristic is simple: retain th& least similar constraints in each tetrahedron’s condtssn
As shown in Section 4.5 and Chapter 5, the efficiency greatfyroves with insignificant impact on
reconstruction quality.

We define the similarity measure by (the inverse of) the suth@fareas spanned between the
two constraints; see Figure 4.6. By retaining fkiamost spatially distinct constraints that intersect
each tetrahedron, we hope to cover as much volume as possitilat, when a hole is retriangulated,
space is sampled well enough that the new tetrahedra cameica

This is not a true similarity measure as it is asymmetricjtiatonly a heuristic. The asymmetry
arises because the areas depend on the base segment’s|ledjth This weights longer segments
as more different, which usually is desirable.

When a set is full, an incoming constraint is inserted if6itdss similar to all the constraints than
their most similar constraint in the set. This knocks outdbiestraint with the highest (asymmetric)
similarity score.

In the caseK = 1, we simply retain the first inserted constraint and rejecb#ders. For

K = oo, the set is never full, so no similarity measures need to bepced.

4.4 Isosurface Extraction and Regularization

Given a current carving, it is straightforward to output tieeonstruction as a conventional 3D
graphics mesh. Because tetrahedral facets are trianigiesah be computed as the set of facets that
border adjacent tetrahedra with differing labels (“caf\@duncarved”). However, we adopt a more
sophisticated scheme for extracting a smoother regutanmsh that can serve as a better geometry

proxy for image-based rendering. We remark that surfagaetidn without regularization also has
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Figure 4.7: A graph with two tetrahedrhand B. Edges betweed and B carry the regularization
term; edges connecting toandt represent the data terni/ (denotes volume). The cut’s cost is the
sum of edge weights leading frosis connected component t (red edges).

its usesge.g for non-visual applications like robotic navigation whex more pure and conservative
estimate of free space is better.

Let x denote a 3D pointz, y, z)”, and letA (x) be the tetrahedron containisg Let u (x) €
{0,1} be a binary labeling denoting whethers carved or uncarved, and letA (x)) be the label-
ing for tetrahedrom\ (x) provided by our base algorithm. In essence, we minimize @dhevfing

(continuous) energy functional, but over a discrete cgruiA ):

///|“(X)_”(A(X))|dX+A///H(||VuH)dx. (4.1)

Here H is the Heaviside step function defined such tH&40) = 0, and)\ is a scalar regularization
parametef. The left-hand integral is the data term, and the right-hamelgiral evaluates to the
surface area of the isosurfacewof

Put another way, we find the optimal carvingA) that minimizes the volume that disagrees
with the original carving (A) plus a surface-area penalty term. We then extract the ifsasuofu.

To optimize, we cast the minimization as a discrete min-caph problem. We construct the
graph as follows. The vertices correspond one-to-one waith éetrahedron, except for an additional
sources and sinkt. Nodes is associated to the label= carved, and to 1 = uncarved. To encode
the data term, each node representing a tetrahefirauith original labelv (A) = 0 connects tos
by an edge with weight equal t&’s volume. Nodes with the opposite label connect similaoly t
t. To encode the penalty term, nodes corresponding to adjseteahedra connect to each other
by directed edges with weightA, where A is the area of their shared facet. See Fig. 4.7 for an
illustration.

Because the tetrahedra are four-connected, our graph bpslagy common to many graph-cut
problems in computer vision. To compute the regularizeslingru, we use an efficient algorithm

optimized for such graphs [12].

2Good values of\ were found to be betweem3 and0.75. We found these values by manually tunikgicross several
datasets, and visually inspecting the outputs.
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4.5 Computational Complexity

The run-time bounds derived in this section are not interidde tight. Instead, in conjunction with
the experiments in Chapter 5, they serve to illustrate thetnme quality of our algorithms.

First, we analyze the version that employs the forgettingrisic (X < o). Let N be the
number of input points, andf/ the number of views.

Theorem 1. The worst-case run-time complexity of carving a free-sgaretraintOP (§ 4.3.3) is
O(N?), for K < cc.

Proof. Because segmentP can intersect at mogd(N?) tetrahedra [97], and because the number
of tetrahedra incident t& is bounded byD(NN?) [60], the traversal take®(CN?) time. HereC
refers to the cost of inserting a free-space constraintarttrahedron’s constraint setf. depends
on K, and becaus& is a constantQ(C) = O(f(K)) = O(1). Thus a single traversal takes
O(N?) time. O

Theorem 2. The worst-case run-time complexity of Algorithm DigV*), for K < oo.

Proof. First, we cite some relevant properties of the 3D Delaunapgulation. In the worst case,
the number of tetrahedra in the triangulation, as well asntmaber of tetrahedra that a line can
intersect, is of ordeN? [60, 97]. Because we have a structured point set, these baredoose.
Several papers suggest or prove tighter bounds for poisissapled from smooth surfaces [4, 35].

The algorithm can be split into two phases: point insertjglns retriangulation with recarving,
and carving via the current view’s free-space constraints.

For the first phase, there are at mosvertices to insert. For each insertion, at worst(IV?)
tetrahedra conflict, and thus are deleted and starred 6ff M?) time. Locating the conflicting cells
takes no more tha®(N?) time, since even a naive enumeration of@(IV?) tetrahedra suffices.
Thus, inserting all the vertices tak&$ N?3) time.

To recarve the new tetrahedra, the constraints from theatdditedra are collected into a single
set and then applied. Sindé < oo and since the number of deleted tetrahedr@(V?), the
number of constraints to reprocessi$N?). Therefore, inserting them into a set can be done in
O(N?1og(N?)) = O(N?log(N)) time using a red-black tree. Theorem 1 shows that applying a
single constraint take®(N?) time. Since there ar®(N?) constraints, the total time for the first
phase of an iteration ©(N*).

For the second phase of an iteration, because at Mgsiints can be observed in a single view,
there are at mosV free-space constraints to apply. Therefore, the seconsethies) (V?) time.

Thus, the complete algorithm tak€$N* 4+ N3) = O(N*) time per iteration. O

The worst-case complexities of Algorithms 2, 3, and 4@t&/2), O(N*), andO(N*) respec-

tively, for K < oo. Proofs for these bounds are delegated to Appendix A.
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Also, the computational complexity of the graph-cuts istee extraction in Section 4.4 is
clearly polynomial-time in the number of graph vertices][2@hich is O(N?). Each vertex in the
graph has constant bounded degree by construction, andzthefg¢he edge-set is related in this
way.

Now for a closed bounded scene, we can assume that the avenadper of features observed
in a given view,Navg, is proportional taV [49]. Therefore, the average case complexity of all our
event handlers i@(Navg4). BecauseVavgdepends on system properties such as the camera’s field
of view and the spatial density of the tracked point set, #regvent time complexity is practically
constant [49], which is desirable for an online algorithm.

Without the forgetting heuristic{ = o), the situation is worse. In this case, there are at most
N timesM constraints in the triangulation. If, upon a point insettiall tetrahedra are deleted and
retriangulated, then just collecting the constraints et take® (N M log(N M)) time, which is
super linear inV/.

We do not provide a complete analysis fér= oo. It suffices to show that the complexity is

dependent o/, and thus not suitable for online use. Our experimentali®support this.

4.6 Software System

By integrating our algorithms with PTAM [61], a real-timer&tture-from-Motion system, we have
devised a complete system that reconstructs 3D meshes fdmo. Figure 4.3 shows the system’s
components and the flow of data. PTAM was chosen as our bagéntgesystem because it is robust
and effective; it produces a dense and accurate point cémetit reliably relocalizes to recover from
tracking failures.

PTAM consists of two main threads: the tracker and the magge mapper is responsible for
producing the information that our algorithms operate omr foutines accept this information in
the form of events, and PTAM raises all five types of evénfde current integration is far from
optimized; event handlers operate in the mapper threadtheydparse argument strings to extract
the event type and data. Ideally, the handlers should aparaéheir own thread to benefit froemg
guad-core processors. The string parsing is a relic fromifggand offline testing. In spite of this,
we still attain real-time tracking, mapping, modeling, aeddering on a several year old laptop
(Intel Core2 Duo CPU T5550 @ 1.83GHz and 3 GB of RAM).

The online visualization is straightforward. This stamhe system projects and blends tex-
tures from keyframes onto the model for rendering, using IGEBaders. The texturing scheme
is a variant of the view-dependent texture mapping desaribh¢26], where two keyframe images
are selected from poses similar to the desired visualizati@ndering pose. These keyframes are

projected onto the model and blended based on view-ray diffdeences. Instead, for simplicity,

SPTAM adds new keyframes based on both spatial disparity ievel e¢lapsed|.e., new keyframes are added only when
the tracked 3D camera pose is significantly different frohpagviously recorded keyframe posasd when a fixed number
of video frames have elapsed since the last keyframe at mimim
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we naively project and blend the four most recent keyframiéls equal contributions to the final
result. For example reconstructions produced by this nioglslystem, see the results in Chapter 5.
The tele-robotics system described in Section 5.4.1 imetdgma different visualization mode for
experimentation, where only the most recent video framedgepted onto the model for texture.

Our implementation makes use of the CGAL software packagbétaunay triangulations and
geometric intersection queries [1]. CGAL is numericallpust and fast, and it provides all the nec-
essary operations, such as Delaunay point insertion argieeffitraversals. We remark that naive
floating-point implementations of many geometric algarithand predicates can produce catas-
trophically wrong results due to the approximate numbee tyfhe numerical robustness built into
CGAL is an important consideration in practice.

Typically, the full graph-cut regularization and isoswudaextraction runs in approximately25
seconds on a single core of the same Intel Core2 Duo CPU T55b@&%Hz. In practice, to allow
other threads and processes to run, we restrict the rateiet wie refresh our isosurface modelito
Hz.

40



Chapter 5

Experiments

This thesis presented a set of algorithms for real-time 3idmstruction in Chapter 4. The current
chapter documents our experiments with the algorithms l@dhtplemented system. We demon-
strate that the system works and that it works in real time,\@a also evaluate and characterize
the results from the method on inputs with differing projgert Additionally, because the outputs
of the method are coarse and approximate, we attempt to $tatthie method is definitively useful

in some specific context. We experiment with the chosentmee-reconstruction application that

is improving visual feedback in remote-controlled robstitn this chapter, we report a small user
study involving a tele-robotics system that uses our visea@bnstruction method. The chapter has

the following major sections:

¢ “Reconstruction Results” presents several models caghtuith our real-time system running

on live video.

e “Timings and Heuristic Evaluation” validates the algonits’ theoretical run-time complexity

results via real data. This section also justifies the usbebtgorithms’ speed-up heuristic.

e “Synthetic Data Evaluation” explores the reconstructioalgy as it relates to sampling and
noise. This section seeks more comprehensive insightheta¢curacy and behaviour of the

proposed method.

¢ “Predictive Display for Tele-Robotics” details the rolmstsystem and user study, and it shows
that this use of our algorithms can positively and uniqueliiace a robot operator’s task

performance.

5.1 Reconstruction Results

Our algorithms were tested on numerous datasets, and wmethteeal-time models of multiple
environments. We present three different results in Figutethat were captured from live video
with the PTAM-integrated system of Section 4.6. Sample ifrimages along with shaded and

textured output models are shown. We refer to the datasetseifigure, from top to bottom, as
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Figure 5.1: Our algorithms’ results on three data sets widtsmoothing. Top row: “Shelves”
dataset. Middle row: “Fireplace.” Bottom row: “House.” ltefA sample input image from the
dataset. Middle: Shaded final models. Right: Offline vieypatedent texture rendering.

“Shelves”, “Fireplace”, and “House” respectively. Thessults were generated using the forgetting
heuristicK = 1 (Section 4.3.6) and without the regularization of Sectich 4n fact, all results in
this chapter us& = 1, unless stated otherwise.

The results are promising. Even a complex cluttered scémre"8helves” reconstructs well.
“Fireplace” contains specular surfaces to no detrimeigtthe metal fireplace door and glass-framed
portraits. This demonstrates the robustness of the fedased approach. Even though the method
carves the convex hull of the features using sparse vigiliilformation, the recovered geometries
closely resemble the highly concave scermeg,"House”.

The textured renderings in Figure 5.1 were generated usuagiant of view-dependent texture
mapping [26]. This variant was implemented using GLSL shedend it is different from the online
system’s texturing described in Section 4.6. Here, eacél jixendered by sampling texture from
only a single best keyframe, with different keyframes cgpanding to each pixel. The keyframe
with the camera pose most similar to the desired renderisg path respect to view-ray angles is
selected.

Reconstruction quality is however obviously not perfects édur method employs no noise

model, the meshes are noisy and include some stray uncastratiedra. However, the method
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Figure 5.2: A model of the Robotics research laboratory tanted with our system, using smooth-
ing parametei = 0.3. Left: Geometry, shaded. Right: Textured rendering, fromgame view-
points.

is intended for fast, approximate reconstruction. We aqaism this goal: the meshes are adequate
geometry proxies for image-based rendering. We exploreattiethpt to quantify the accuracy of
the method more rigorously on synthetic data in Section 5.3.

To combat the effects of noise, we employ the regularizasfd®ection 4.4. Figure 5.2 shows a
capture of our lab using the PTAM-integrated system, bsttihie run with a regularization weight
A = 0.3. From the shaded model, we can see that the reconstructidoged using regularization is
comparatively smooth. It also reprojects well: convinaiagderings of the lab are shown using this
approximate model and just a single static texture derivexah the input video using the technique
in [55]. View-dependentimage-based rendering was notired@or a coherent visualization in this
case. This reconstruction was in fact captured using teertddotic system that we experiment more

with in Section 5.4: the camera was not hand-held but moumtezirobot.
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Figure 5.3: Efficiency fork’ = 1,5, andoo on a representative dataset. Left: Mean per-keyframe
processing time as a function of the number of views proced€Rght: Number of free-space con-
straints in the triangulation (a function of the same). Cemtistic effectively bounds computation
time and memory usage.

5.2 Timings and Heuristic Evaluation

In Section 4.5, we showed that the computational complexiitthe algorithms’ are effectively
constant per real-time event. Here we provide experimevidience to reinforce that result and
show that our implementation is guaranteed real-time ak wel

Figure 5.3 compares timings, and the number of free-spagstr@ints retained, fokK = 1,

5, andoo on a typical dataset from our system. HEr= oo, as the number of views increases,
the per-keyframe processing time and memory consumptiow.gFor finite X' however {.e. the
forgetting heuristic), they are tightly bounded and quidklvel off, which supports our complexity
results. We conclude that with finit&, our algorithms do operate in real time on image sequences
of arbitrary length.

All timings were collected by running our algorithms offlina an event log. The per-keyframe
times count the time spent handling all events raised betwdg@cent keyframes. We average over
30 independent runs before computing the means, exept oo was averaged over only) due
to lengthy run-time. The challenging dataset conta2&&¥ points in178 keyframes. This is large
compared to typical output of SLAM-type systems [24, 30[] am par with PTAM [61]. The fact
that we have run the PTAM-integrated system many times witblowdown shows that the constant
per-keyframe run time reported is a small enough constamrfiine operation.

Finally, Figure 5.4 shows that the outputs fér= 1 and K = oo are almost identical (without
regularization). Thus the difference in carving-qualityem using the forgetting heuristic is almost
negligible. Note that this result compares old datasetdyred by offline Structure-from-Motion:
we artificially simulated a set of new-keyframe events talfeeour method. Online results, how-
ever, support the conclusion: carving is effective with= 1 for all event-types, see Figures 5.1
and 5.2.
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Figure 5.4: Results foK = oo (left) and K = 1 (right) on different data sets. The meshes are
similar for extremely differenk’.

5.3 Synthetic Data Evaluation

To exploratively investigate how Chapter 4's algorithm&dee on input data of varying quality,
we have created a framework for generating synthetic testw#h ground truth. Synthetic data
allows us to control the quality in terms of sampling and apishile ground truth allows us to
evaluate performance more concretely and quantitativedy possible with just inspection of the
reconstructions from our PTAM-integrated system.

We generate the test data as follows. Given an input growib-$urface in the form of a tri-
angular mesh, and given a set of user-specified camera vietspae sample a point cloud and
compute its visibility information. We perform point sarmg by first selecting a random set of
triangles from the ground truth mesh and then generatindararbarycentric coordinates in each
selected triangle. To compute visibility, we render theugnatruth mesh from each camera’s view-
point and use the OpenGL depth buffer for occlusion quefiibs.point cloud’s sampling density is
tunable from sparse to dense. We control this density byifsjieg parameters for the probability
of a triangle being selected, as well as the upper and lowandgon the random number of points
drawn from any selected triangle.

To experiment with varying data quality, after a point cldadsampled, we perturb it. Each
point’s X, y, and z coordinate is noised with a Gaussian ifgbmt is not selected to be an outlier.
We experiment by varying the probability of outlier selectias well as the standard deviation of
the Gaussian noise. Our outlier model is also Gaussian, ifluewnean at the center of the ground
truth model's bounding box and a standard deviation equti@édoounding box’s scale or radius,
defined as the distance from the center to a corner. The oditigibution was chosen to be fairly
arbitrary but with a spread matching the bounds of the meshdanstruct. Figure 5.5 depicts point
samples drawn with different parameters. We remark thatsihiieopic noise model chosen does
not match the noise we expect from visual SLAM or StructuoarfiMotion; see for example the
anisotropic covariance ellipsoids in any monocular SLANdgxs results, like in [24]. We assume
that the results we present with this noise model can gdneral

We ran experiments using data derived from three grounid surface models, which we refer to

as “Cup,” “House?2” (not to be confused with “House” from Sent5.1) and “Dog;” see Figure 5.6.
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Figure 5.5: Synthetic-data point cloud generation. Far l&fground truth mesh. Middle left: A
noiseless dense point cloud wishi% of ground truth triangles selected forto 3 point samples
each. Middle right: A noiseless sparser point cloud with; of ground truth triangles selected for
1 point sample each. Far right: A point cloud noised with a déad deviation equal t8% of the
bounding box size and 8% outlier ratio.

Figure 5.6: Ground truth meshes. Left: Cup. Middle: Hous&ght: Dog.

All of our experiments were run with identical view-sampgjiconditions: fourteen views with optic
centers approximately distributed over two rings arouraddhject, one ring in the horizontal x-y
plane, and one in the vertical y-z plane, as in Figure 5.7s Vigw sampling is very sparse, yet all
parts of the object are visible from at least one viewpoint] e have found this to be adequate.
Future work includes investigating how view-sampling citiods in relation to point cloud density
impacts the quality of our algorithms’ reconstructionsislib important since view sampling affects
the observation of free-space directly.

First, the algorithms were run without the smoothing rega#dion of Section 4.4 on noiseless
dense and sparse samples drawn from our three datasethiFexgeriment and all the subsequent
experiments in this section, dense sampling parametegs tieef to 3 points sampled per ground
truth triangle from approximately0% of triangles. Sparse sampling correspond$ fmint sam-
pled from aboufi0% of triangles. The reconstructions are shown in Figure 5i&yTdemonstrate
the correctness of our algorithms as well as the abilityegivoiseless inputs, to reconstruct isolated
objects. (In Section 5.1 we have only demonstrated reaact&tn on open scenes). However, while
the reconstructions are close to the ground truth, we obghat while our method does essentially

produce volume-correct carvings, it does not guaranteaagjrally well-behaved surfaces as out-
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Figure 5.7: View sampling conditions for all the synthetitalexperiments. Fourteen camera views
are arranged approximately over two rings around our opje horizontal and one vertical.

put. For the sparser samples, especially as shown on theataset which is our sparsest sample
and our coarsest ground truth model, the results convey #ikad’s interpolative power and show

generally smooth good approximate reconstructions. Théekvation is consistent with our expe-

rience on the comparatively sparse data that we obtain WaHPlTAM-integrated system: sparse
samples reconstruct well.

Next, we evaluate the accuracy of the method as a functioneohobise variance, and also as a
function of the outlier ratio. To quantify accuracy, we usae@asure borrowed from the Middlebury
multi-view stereo benchmark [95]. First, project pointsrfr the reconstruction onto the ground
truth mesh and determine the points’ distances to the grtuilh. Then compute the histogram
of distances and define the accuracy measure to be the thdeisimnce that exactl90% of this
sample falls within. We sample the reconstructions rangtgost as for point cloud generation.
Unlike the Middlebury benchmark, which uses the verticethefreconstruction for the distance
sample, we draw points from the interior of triangles, baesatherwise the accuracy measure would
be meaningless; in our case the free-space carving algwritake the vertices as input and do not
modify them for the output. The method essentially “conadioe dots.”

For the Cup dataset, we vary the noise’s standard deviadtween zero and ten percent of the
ground truth’s bounding box scale (ten percent being venyelpand plot the resulting accuracy.
Again, we do not use regularization for this experiment. ©hdier ratio is fixed at a realistit%.

To check that the results are not specific to this ground gatimetry, we run the same experiment
on another dataset, House2, and obtain effectively idant&sults. Ten trials per noise level are
performed, and the mean observed accuracy threshold isteeda Figure 5.10 for both Cup and
House2 under sparse and dense sampling conditions. Exaofpironstructions from highly noisy
data (std. dew2% of bounding box scale) are shown in Figure 5.9

The accuracy error is roughly a linear function of the noisgmtude. Notice that for dense
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Figure 5.8: Noiseless reconstructions. From left to rigtip, House2, Dog. From top to bottom:
Dense point-cloud sampling; sparse point-cloud sampling.

Figure 5.9: Noisy reconstructions. The point-cloud sampsitandard deviation &% of the bound-
ing box scale, with 4% outlier rate. Sampling was dense. From left to right: Cupys&2, Dog.
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Figure 5.10: Accuracy error as a function of sampling nois®m left to right: Dense point-cloud
sampling, Sparse point-cloud sampling. From top to bottGop, House2.

sampling, the slope of these graphs is almhsivhile the slope is abow20% less than that for
sparse sampling. Recall that for a Gaussian distributienetplly90% of samples will fall within
1.645 standard deviations of the mean. This means that the agceraar of our algorithms is
roughly equal to the signal noise in sparser samples, arelybaorse than that for dense samples.
Intuitively, one should not be able to do better than thiglfeiit a biased algorithm that assumes
smoothness or regularization, for instance).

We ran a very similar experiment to measure the accuracy asctidén of the outlier ratio, this
time keeping the noise level fixed to a standard deviatiah@f% of the bounding box scale. The
findings are reported in Figure 5.11. We see that for both the &hd House2 models under sparse
and dense sampling, the accuracy appears practicallyasaristiependent of the noise level, up to
a breaking point of abouw5% to 45% outliers. This breaking point is however not a meaningful
number for assessing the accuracy of the method, becausdlitectly related to the choice of
accuracy measure and tbempletenessf the reconstruction, as we discuss next. By inspecting the
reconstructions, we observe no special change at thisingepkint, but rather a gradual decline in
completeness up to this point where the accuracy measunallyfinfluenced.

The accuracy measure, while it does reflect the generalraaseof the result to the ground
truth mesh, is forgiving of up td0% outlying extraneous triangles. Additionally, it does net r
flect the notion of completeness in the reconstruction. ThddMbury benchmark uses a separate
completeness score, computed by projecting a point samie the ground truth mesh onto the

reconstruction, and determining the proportion of samghlashave their nearest point on the topo-
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Figure 5.11: Accuracy error as a function of outlier ratiaorfa left to right: Dense point-cloud
sampling, Sparse point-cloud sampling. From top to bottGop, House2.

logical boundary of the reconstruction§ at holes). Because our method can produce topologically
misbehaved meshes with stray tetrahedra and other norfattheliements, the boundary of our re-
construction is not well defined, and computation of this ptateness score is infeasible. Therefore
we assess completeness and accuracy qualitatively bycitirsgéhe results. Figure 5.12 shows sev-
eral reconstructions of the cup model for various outli¢giosa We observe that while treccuracy

of the reconstruction where it is near the ground truth appeanstant w.r.t. the outlier ratio like the
accuracy plots suggest, thempletenesdwindles as the outlier count increases. This is no surprise
since outliers induce arbitrary free-space constrairgsan drill holes through the model. We also
observe extraneous uncarved structure consisting of teaeggles that connect some outliers around
the mesh. While this structure has substantial surface bezause there are few outlier vertices at
low outlier ratios, there are few outlier triangles, andréfere the barycentric sampling used in the
computation of the accuracy score effectively down-weighis error and hides it beneath ®&%
threshold.

If the algorithms are used for applications involving vikzetion, such uncarved outlying struc-
ture can detrimentally project in front of the reconstranti Mesh incompleteness obviously de-
grades visual quality as well. We identify outliers as a gigant problem for our algorithms, which
is consistent with our experience from the PTAM-integratgstem. We conclude that the method
would benefit from some form of outlier filtering and remowad,from integration with a SLAM
system that provides robust inputs in this sense.

For the previous experiments, no regularization was eve@med so that the accuracy of the
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Figure 5.12: Dense Cup reconstruction for several outigos. Left: 5% outliers. Middle: 25%
outliers. Right:45% outliers.

raw carving was assessed. This avoids polluting the resithithe minimal surface bias induced by

the surface area penalty term. Results with regularizdtinge on the raw carving’s quality, since

the regularization computes the closest-to-raw carviaggimultaneously optimizes closeness with
the penalty term. If the base carving is significantly wrathg, regularized result will be as well.

We have experimented with regularization by manually figdire optimal weight for the penalty
term on each data set with zero noise, and then running toethign with that smoothing parameter
on samples noised with a standard deviatioh%fof the bounding box scale and & outlier ratio.
We present the results in Figure 5.13. Visual inspectioicatds that the quality gain from regular-
ization on this data is marginal at best: while some stragheidra are removed, the reconstructions
are not much smoother, and sometimes the minimal surfasechiadelete structure,g the cup’s
handle. However, in practice we have found that the regrdtidn scheme is often beneficial for the
data from the PTAM-integrated system. (See Section 5.1).ofenthorough investigation of how

the sampling properties impact the difference that thisllaization makes is left as future work.

5.4 Application: Predictive Display for Tele-Robotics

In remote-controlled or tele-robotics, a human operatonmands a robot that exists at some dif-
ferent and potentially distant location. Because the robhatbe far away, perhaps in space or at the
opposite end of the earth, transmission delays of both ¢grezammands to the robot and sensory
feedback from the robot become an important consideraletayed video for visual feedback can
be detrimental to operator task-performance, but studige bhown that the situation can improve
when augmenting or replacing delayed video with a prediatandering, or so-called “predictive
display” of the robot and/or its environment [96, 50, 90]. Wta real-time reconstructed 3D en-
vironment model can obviously be used for “display,” the€ghiction” refers to computing what
the pose of the robot and its camera would be with respectsterivironment, directly from the
operator’'s control commands under the assumption that momemication delay is present. This
predicted pose is used for rendering, and facilitates mesipe undelayed visual feedback. We re-

view visual modeling for predictive display in Chapter 3.
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Figure 5.13: Reconstructions with regularization versuthout. Top row: with regularization.
Bottom row: without regularization.

In this section we present two task-based experiments peeibwith a prototype tele-robotics
system that uses our free-space carving for model acquisatid predictive display. The system is
described in more detail in our conference paper on thitpf8]. It consists of a video camera
mounted on a robotic arm that is controlled with a joystitleldevice, and we inject simulated
delays into the system for controlled experimentation. ®xgeriment’s task is centred around
visual alignment of the arm with a physical target in the smwinent, and the other focuses on
visual inspection. The purpose is to test whether the fpase carving technique is viable and

helpful for predictive display in a real robotics set-up.

5.4.1 System

The physical system consists of a Barrett WAM robotic arm nted on a Segway RMP mobile
base. A camera is attached to the forearm of the WAM. We useANTI®@M Omni haptic device
as the operator’s joystick, and it controls the WAM via a dif@int angle mapping; see Fig. 5.14.
Currently, the Segway is not actuated; the operator hasdirdgt control of the kinematic arm. The
communication channel between the master Omni and slave VWAdvicapsulated using the PVM
software framework [42] for message passing over a wired LAN

For the vision module, we run incremental free-space cgraitd PTAM at the robot site. They
interface together as in Section 4.6, and they operate omitle® from the robot’s camera feed.

The 3D models that we obtain, the video frames, as well as P§ARmera pose track defining the
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Figure 5.14: Top: the operator tele-operates the robot tht@ocal site; the model is computed at
the remote site and transferred to the operator for prediclisplay. Bottom: system components
and data flow.
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Figure 5.15: Left: Predictive display needs input imagegeametry proxy model, and a predicted
camera pose to render from. Right: An example of an input Wieing back-projected onto a proxy
geometry and rendered from a distant predicted pose.

projective texture mapping function between the model déwedvideo frames, are all sent back to
the operator and used for predictive display.

To predict what the robot camera will see when the operatmesithe Omni, the display module
requires: images with known camera pose for texture, a 3iramwent model, and a predicted
camera pose to render from. See Figure 5.15. We have two titberequirements sent to us from
the vision process. For the third requirement, the corendering pose can be determined locally
at the operator site with forward-prediction of the robatistion based on the operator’s control
commands.

Although more elaborate schemes are possible, we have nethe most recent image and its
camera pose to texture the most recent geometric model.

Because the Omni does not have an identical joint configurati the WAM, the robot control
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scheme as well as the predictive display’s pose predicsidafined by the specific mapping between
the Omni’s joints and the WAM’s. For a fixed base, pose préamtictan be achieved easily through
a simple forward-kinematic mapping on the robot’s jointawéver, because the prototype system
only actuates the WAM while the Segway base can still be mbyexxternal forces, the relative base
motion must be determined online and used in the predictdmachieve this via visual registration
of the robot-centric coordinate frame and the world or mamgitric coordinate frame by making
use of PTAM’s visual tracking. Details on this visual regagion and the joint mapping between the

input device and the WAM can be found in the conference paf&jr [

5.4.2 Alignment Experiment

Alignment tasks are common in manipulatierg in operations like putting a wrench on a bolt. For
this experiment, we used visual targets in the scene (tteded, B, C, and D) that the user had to
align with a rendered reference in the video display. Wherréimdered target matches the real one
then the alignment s satisfied. This experiment evaluatds$ests alignment performance under our
predictive display. We compare three modes of visual feektbaon-delayed vided).3 s delayed
video, and predictive display using the free-space carvedatwith a0.3 s delay for video-derived
texture information to render with. (This texture inforroat consists of only the latest available
video frame.)

This experiment is largely inspired by and similar to the presented by Rachmielowski [90],
yet ours is conducted on a real-world robot instead of a sitedlgraphics environment. To be able
to compare the timings of several subjects, in this exparirttee 3D model was acquired once by
the vision system, and the same model was used for all ssbjastjust mentioned, texturing used
video from the robot camera, and this varied for each trial.

The experiment was conducted first by running a warm-up wtereiser familiarizes himself
with the input device and kinematics of the robot, as welltes three visual modes. After the
warm-up session, the timed experiment starts. Each usérper a total of three trials in each
of the three modes. For each trial, the display mode and soamfgguration are drawn randomly
without replacement. The scene configuration is compri§éalo targets each placed in one out of
six possible calibrated positions. The user has to firshabgget A, then B, then C and finally D.
An alignment is satisfied when the user places the robot irséipo which is close enouglio the
desired position.

The user is only allowed to look at the display and not at tlemeavhere the robot is operating.
Fig. 5.16 shows an alignment task where the user is comtgollie robot to align the rendered A
with the actual A in the scene.

Due to the time needed to arrange the physical scene cortfiurthe experiments involved

1A threshold is set on the distance from the exact alignmetiig@ctual alignment, as well a$s80 ms dwelling time.
The threshold was tuned to be reasonably challengingfiaatis, but near the limit of human precision using the opeist
control input device and th@10 x 480 video / texture feed resolution.
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Figure 5.16: Alignment task. Left: image of the setup. Rigthte camera view illustrating the
overlay (white A) which should be aligned to the real A.
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Figure 5.17: Mean normalized times to perform the tele-tioliasks. Left: Alignment task for each
target. Right: Inspection task.

only 36 alignments by each of five lab colleagues for a total & alignments. Despite the small
number of test subjects, the results were consistent witthiRalowski’'s user study wher00
alignments were performed on a simulated graphics scehewitrtual robot [90]. This experiment
shows that predictive display with our free-space modeg¢isdficial to the operator. The completion
time for the alignment task was improved by the use of thigligtive display. It helped the users
cope with both the transmission delays and the velocity acdlaration limits of the robot (which
were more strict than the kinematic limits of the controlubpevice). Fig. 5.17 reports the mean
normalized times to perform each of the alignments. Ouissiezd are normalized the same as in [90]
so that each subject contributes to the results equally.

It is important to note that even though the model is rough thedoverlaid texture does not
match in detail with the scene’s geometry, this did not seemaindicap the user. The users were
oblivious to the model not being perfect.

5.4.3 Inspection Experiment

Inspection is useful when evaluating systems’ functiapéthi remote environment®(g, determin-
ing if an electronic board is burnt or evaluating a mechaissiperability after some damage). This
last experiment’s purpose is to test the predictive disptas different task where the user does
not perform an action on the environment but instead assdisseituation from information in the
scene.

In this experiment, the robot’s environment contained taoeds with a 3x3 LED matrix on each.

In most cases, the panel would have one “damaged” unlit LEDse&Mocation is to be identified by
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Figure 5.18: An operator performing inspection. Left: ®dripcations are seen from far away.
Right: But identification of the burnt LED requires a closewi

the user €.g “top left,” “center,” etc); in other cases there was no damage, and all the LEDs were
lit. These panels were placed in two randomly selected ipasitout of five possible locations for
each trial. Two users were asked to do two trials of the ingpedtask for each visual modé¢,,

six trials per user in total). Again, the mode order was getbat random. The unlit LED in each
panel was also random in each trial. In this experiment, #ee was allowed to read the panels in
any order. Fig. 5.18 shows how the task looks from the opesatoint of view.

The experiment started with the robot in a pre-specified hpos#tion. The task was to move
the camera close enough in front of each panel to identifythié LED, if any. From afar, one can
locate the lit panels, but it is practically impossible tokman assessment of which LED is unlit.

Fig. 5.17 shows the mean normalized times for the inspec¢tisk. The results indicate that
predictive display improved the ability of the operator tipe with delay. Although our user study
was limited by its small scale and rudimentary robotic syssecapabilities (and thus task domain),
we can conclude from these experiments that our algoritmd$88® reconstructions, while approx-

imate, have merit and are very likely useful for this realld@pplication.
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Chapter 6

Conclusions

This thesis addressed the difficult open problem of recageBD geometric shape from 2D video
images in real time. While much work has been done on shapegcfrom images, most re-
search has focused on algorithms that compute the best &g possible using image-texture
information as the primary reconstruction cue. Becauseetisea great deal of texture information
to process, the literature almost invariably consists @ivahethods that are incapable of real-time
operation. In contrast to this trend, we have presentedtamative approach centred on the less
explored reconstruction cue that is free space, whichssth# visibility rays impose constraints on
the recovered geometry. The approach begins with perfar®irAM or real-time Structure from
Motion, then discretizes space using the 3D Delaunay ttiktign of the obtained point cloud re-
construction, and finally interpolates this sparse recansbon by carving a surface in a free-space
consistent manner. The end result is a lightweight methodefal-time 3D reconstruction from
video. The method is completely incremental and well suiitgdnline operation; we proved it is
real-time efficient, and this was experimentally verified.

We implemented the method and tested it on both real and syoitiata to obtain 3D recon-
structions of several scenes and objects. The results staivthe method is capable of producing
geometries that facilitate convincing renderings andalizations. We have applied the method to
the specific goal of improving visualization in remote-aged or tele-robotics, where transmission
delays in visual sensory feedback can degrade the operpformance, and a virtualized [56, 58]
visualization can help to cope with delay. Our experimehtsasthat the 3D models our method
computes provide for renderings that serve the operatteriatcompleting his tasks than the alter-
native of delayed video. We conclude that the method is ligafapplications that can benefit from
online modeling of general environments, and it is onlinaeimg that the reconstruction literature

sorely lacks.
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6.1 Limitations and Future Work

While we have developed and implemented a useful set ofithgas that reconstructs 3D geometry

from video, several points remain for future work. They urz:

¢ Improving the reconstructed geometry

Improving SLAM’s tracking by making use of the geometry

Extending the method to dynamic environments

Investigating the impact of view-sampling

Applying the method in new contexts

The reconstructed geometries from our PTAM-integratetesysire not of the same quality as
from dense offline stereo or the real-time approach of Nevioeoj80]. In Chapter 5, we have shown
that our reconstructions suffer primarily from the preseontoutliers in the SFM point cloud, and
to a lesser degree noise. The algorithms ignore noise, @ dtha violated assumption in practice.
We can improve model quality and robustness by integratimgatgorithms with a SLAM system
that keeps an explicit covariance representation of lamkmacertainty while incorporating this
covariance information in the algorithms. Faithful andmising geometric reconstructions have
been previously obtained from Delaunay-discretized feaee carving using slower algorithms [82,
68]. The system in [82] handles noise by probabilistic cagwia a model of SLAM’s landmark
variance, and both of these methods filter outliers by agdieg free-space rays as soft votes on
whether tetrahedra should be carved rather than as hart@iois[82, 68]. Our algorithms achieve
their real-time speed in part due to the forgetting heuristiSection 4.3.6 which discards redundant
visibility rays. Therefore, retaining real-time speed lghimplementing voting or some voting-like
solution remains a challenge. The regularization in Saclid attempts to mitigate the effects of
noise via explicit smoothing using a surface area penaity,tbut it was not thoroughly effective.
For improving surface geometry, an orthogonal approachdorporating noise models or voting
would be to impose more sophisticated regularization.

The PTAM-integrated system was shown to be capable of muglelpen scenes, and in Sec-
tion 5.3, our algorithms were shown to be capable of modeabotated objects on inputs inde-
pendent of PTAM. We found that PTAM could not track landmasksobjects when the camera
underwent a fulB60° trajectory around them. This is because landmarks on oreodidn object
are occluded by the reverse side from approximately halfiefcamera viewpoints. This problem
results in failed landmark measurements which classifypthiats as outliers and mark them for
removal from the point cloud. We identify that our real-ti@le models can be used within PTAM
or other feature-based SLAM systems to predict occlusiodsiorm whether or not failed land-
mark measurements should indicate an outlier, especfaliytire work results in more accurate

geometries.
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We note that a limitation of the modeling system is that ityombrks for static environments.
PTAM is robust to some moving objects in the scene. It classifheir features as outliers and
removes them, butideally we would like to track the motiomsrdime and construct a time-evolving
3D model. Fundamentally, our method supports moving sireactia the Refinement event handler,
presented in Section 4.3.5. The static-environment ot is inherited from SLAM, but SLAM-
style systems that track moving scenes are under resed®6h [1

Additionally, sufficient-sampling theory exists for Defamay-based methods that approach the
Shape from Points problem, discussed in Section 3.1.4. Ad@y speaks on requirements from
the input points in terms of sampling density to guarantegect surface reconstruction. Simi-
larly, formalizing the requirements on point density anégsepcamera trajectory density and route,
and particularly the relationship between the implied fspace and the Delaunay discretization is
important and remains undone. We have found from experithratevery sparse keyframes from
intuitive camera trajectories can effectively carve mededing our method.g see the view sam-
pling depicted in Section 5.3, and we owe this probable fa¢hé adaptiveness of the Delaunay
triangulation, but this result is not concrete.

Finally, what's left for future work is to apply this method/e have used it for predictive display,
and performed a small user study to show its merit. Extenttisgnanipulation capabilities of the
tele-robotic system is important to test its merit in moreiasting tasks. Expanding the study to
a much greater sample of users also should be done to oliaigst results. However, predictive
display is only one possibility. It remains to be seen what tiethod can offer for augmented
reality, robotic obstacle avoidance and path planninginentiew-sampling feedback for offline
visual model acquisition (as in [91, 93]), and any othelisgt that might benefit from real-time 3D

modeling and free-space estimation.
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Appendix A

Complexity Proofs

This appendix completes the set of proofs of our algoritreogiplexity claims made in Section 4.5.
As in that section, the bounds are sufficient in that they sayigh about the speed of the algorithms,
but the bounds are not intended to be tight. EKebe the value of the forgetting heuristic. the
maximum number of free-space constraints retained in egichhiedron. LefV be the number of

input points, andV/ the number of views.
Theorem 3. The worst-case run-time complexity of Algorithm DigV?), for K < oo.

Proof. Because there are at mas8{/N?) tetrahedra in the triangulation [60], looping over all the
tetrahedra and removing the constraih® from their constraint sets takéx C'N?) time. HereC
refers to the cost of deleting a free-space constraint fregtrahedron’s constraint s&f.depends on
K, and becaus& is a constant)(C) = O(f(K)) = O(1). Thus Algorithm 2 take®)(CN?) =
O(N?) time. O

Theorem 4. The worst-case run-time complexity of Algorithm ®igV*), for K < oo.

Proof. Let @ be the outlier point marked for removal. Algorithm 3 can bkt $pto four steps:
1. Iterate over all cells, and remove all the constraintsrf@rence).
2. Collect free-space constraints from cells incider@timto a unioned set/.

3. Delete) from the triangulation (and retriangulate the hole left by tells that were incident

to@.)

4. Apply the free-space constraintsiin(i.e. use them to carve, just as in an association event;
see§ 4.3.3).

For stepl, to simply loop over all the cells také3(N?) time, because there are at mG§tN?)
tetrahedra in the triangulation [60]. Becauke < oo, the humber of constraints in each cell's
constraint set is bounded by = O(1), and therefore there are a total @ N?) constraints in

the triangulation to iterate over, determine if removalesessary, and potentially remove. Testing a
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constraint for removal is af(1) operation, since it entails checking if the constraint (espnted by
a pair of indices) referenc&g. Removing a constraint from a constraint set iS¥if (X)) = O(1)
operation, becausk < oo is constant. Therefore the total cost of steg O(N?).

For step2, determining the set of cells incident @ from adjacency information take3(N?)
time, since the number of cells in the triangulation, anddf@e potentially incident ta, is
bounded byO(N?) [60]. Using this fact, and becaug€é < oo, the number of constraints to
collect from these cells and insert intd is O(N?). Using red-black trees to implement sets,
this bound on the number of constraints to insert ibtdmplies that inserting them all takes
O(N?%log(N?)) = O(N?%log(N)) time. Therefore step takesO(N2log(N)) time.

For step3, deleting vertexp from a 3D Delaunay triangulation and retriangulating thizhakes
O(fd) time, wheref is the number of tetrahedra that retriangulate the holedasdhe degree of
Q [28]. In practice, for most point setg,andd are typically small and roughly constant numbers.
However, as loose bounds, we can considef) to beO(N?), since there are not more th@{N?)
tetrahedra in the triangulation [60], ad¥{(d) to be O(N), since there are at most — 1 vertices
that@ can be incident to. Stepthen takeg)(N?) time.

For step4, as mentioned in the discussion above regarding step le tiverat mostO(N?)
constraints inJ. By Theorem 1, applying a single constraint takisV?) time. Therefore, step
takesO(N*) time to apply all the constraints.

The total time complexity for Algorithm 3is thed(N2+N2log(N)+N3+N*) = O(N*). O

Theorem 5. The worst-case run-time complexity of Algorithm ®igV+), for K < cc.
Proof. Algorithm 4 can be split into five steps:

1. Collect free-space constraints from cells incident twhgzoint that is to be movedy;, into a

unioned sel/.

2. Successively delete the to-be-moved verti@e$rom the triangulation while retriangulating

the holes.

3. Add the moved vertice@’, to the triangulation (this retriangulates) while collegithe con-

straints from Delaunay-conflicting cells into.
4. lterate over all cells, and remove all the constraintsrigf@rence any of thg;.

5. Apply the free-space constraintslih(i.e. use them to carve, just as in an association event;
see§ 4.3.3).

Because of the similarity between Algorithms 3 and 4, prgiive complexity of these steps is,
in places, similar to the proof in Theorem 4
For stepl, determining the set of cells incident to at least one ve@@ekrom adjacency infor-

mation takes no more thai(N?) time. This is because the number of cells in the triangutatod
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therefore potentially incident to each, wherei can range from to NV, is bounded by)(/N?) [60].
Using this fact, and the fact thaf < oo, the number of constraints (potentially with repetitioorfr
repeated cells) to collect from these cells and insertinis O(N?). Using red-black trees to im-
plement sets, this bound on the number of constraints tetiimte U implies that inserting them alll
takesO (N3 log(N3)) = O(N31log(N)) time. Therefore step takesO (N3 log(N)) time.

For step2, deleting each verteg), from a 3D Delaunay triangulation and retriangulating the
hole takesD( fd) time, wheref is the number of tetrahedra that retriangulate the hole daadhe
degree ofQ [28]. This equates to the loose bouGdN?) time per vertexQ;, as in the proof of
Theorem 4. Because there may be upitsuch vertices;, step2 takesO(N?) time.

For step3, there are at mos¥ verticesQ'. to insert. For each insertion, at worst &l N?)
tetrahedra conflict, and thus are deleted and stared 6ff }?) time. Locating the conflicting cells
takes no more tha®(N?) time, since even a naive enumeration of@{IN?) tetrahedra suffices.
Thus, inserting all the vertices tak@$ N ?) time. To recarve the new tetrahedra, the constraints from
the old tetrahedra are collected irffo SinceKX < oo, and since the number of deleted tetrahedra is
O(N?), the number of constraints to reproces®isV?). Therefore, inserting them intd, which
will never contain more than the origin@l(N?) constraints from the triangulation at the start of
this algorithm, can be done (N2 log(N?)) = O(N?log(N)) time.

For step4, to simply loop over all the cells and their(1)-bounded constraint sets take$N?)
time, because there are at maxtV?) tetrahedra in the triangulation [60]. Testing a constréont
removal is anO(N) operation, since it entails checking if the constraint espnted by a pair of
indices) references any of the upto();. Removing a constraint from a tetrahedron’s constraint set
isanO(f(K)) = O(1) operation, becausE < oo is constant. Therefore the total cost of steis
O(N2N) = O(N?3).

For steps, Theorem 1 shows that applying a single constraint takgg?) time. Since there are
O(N?) constraints i/, the total time for applying them all in stépis O(N*).

The total time complexity for Algorithm 4 is the@ (N3 log(N) + N* + N2log(N) + N3 +
N%) = O(N*?). O
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