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Abstract

Since the late 1970s, the design of chemical processes has evolved towards highly

integrated operations that can increase plant efficiency. Advances in the design of

chemical processes include energy and mass integration and use of recycle streams,

among others. Although such plant-wide integration offers substantial opportunities

to improve the performance of the entire plant, it often results in large-scale systems

that are challenging to control.

In the context of industrial processes, the term ‘large-scale system’ is used to

describe the plant, which includes a number of processing units (subsystems) that

are linked to each other as a result of shared or interacting variables. Optimal control

of large-scale systems is a non-trivial task. Distributed control, which has attracted

increasing attention in recent years, is seen as a promising new strategy for control

of large-scale systems. This thesis focuses on a class of distributed control schemes,

which is referred to as coordinated-distributed control. The coordinated-distributed

control schemes proposed in this work use a coordinator that exchanges information

with local controllers. This exchange of information allows the coordinator to

iteratively adjust (coordinate) the optimal control problem for each of the local

subsystems to drive their solutions toward the plant-wide optimal performance

operations.

In this work, coordinated-distributed control schemes are formulated for dynamic

linear systems that can be locally controlled by linear quadratic controllers or

model predictive controllers. Two distinct methods are used for coordination of

the local controllers: the prediction-driven coordination method and the price-driven

coordination method. A common characteristic in both coordination methods is the



computation of a price vector. The price vector is a key element in the coordination

of local controllers. It is updated iteratively by the coordinator to achieve the desired

plant-wide optimal performance.

Most coordinated-distributed control schemes proposed in this work assume the

same execution rate for the local controllers. Extensions for coordination of local

controllers that are executed at different rates are also explored. In this part of the

work, different strategies for dual-rate coordination are discussed and the strategy

that is seen to provide the most performance improvement is analyzed in detail.

Several simulation examples, including benchmark processes obtained from the

literature, are used to demonstrate the effectiveness of the proposed coordinated-

distributed control schemes and their viability for dynamic interacting systems.

The proposed coordinated-distributed control strategies have significant potential

for the (re)design of industrial control systems. The coordinated-distributed control

schemes do not require a radical new configuration of the decentralized controllers.

They can be constructed with minor modifications to the existing decentralized

control systems.
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1
Introduction

1.1 Optimal Control of Large-Scale Systems

The need for more efficient process operations, which includes energy integration and

mass recycles, has lead to large-scale systems that can be highly interconnected.

Large-scale process systems are composed of a number of processing units

(subsystems) that are linked to each other as a result of shared or interacting variables.

Optimal control of large-scale systems is a challenging problem. The challenge arises

from the dependency (interactions) that exists among the different subsystems in the

plant. On one hand, controlling the entire large-scale system, in an effort to consider

the interactions between the subsystems, results in an intractable control problem.

On the other hand, controlling the subsystems independently results in disregard of

the interactions, which leads to suboptimal plant-wide operation.

There exist three approaches for optimal control of such integrated large-scale

processes: decentralized control, centralized control and distributed control. These

approaches are described in detail below. Among the three approaches, distributed

control is seen as a promising control strategy for large-scale systems because it can

overcome some of the limitations of both decentralized and centralized control. The

potential benefits of distributed control is what motivated this research work. In

1



Sec. 1.1 Optimal Control of Large-Scale Systems 2

particular, this thesis focuses on a class of distributed control, which we refer to as

coordinated-distributed control.

Decentralized Control

Control of large-scale systems such as industrial processes is typically performed in a

completely decentralized fashion. An illustration of decentralized control scheme for

a plant with two subsystems1 is shown in Figure 1.1. It can be observed in Figure 1.1

that the decentralized control scheme uses individual controllers for each subsystem

in the plant. In decentralized control, the operations of the different processing units

Process

Decentralized
Controller 1

Subsystem 1

y1u1 y2u2

interactions

Decentralized
Controller 2

Subsystem 2

Figure 1.1: Illustration of decentralized control hierarchy for a plant with two
subsystems

are optimized locally, without regard to the effects on the other processing units in

the plant. Thus, decentralized control is an ideal control framework when there exist

no interactions between the processing units in the plant. Since interactions between

the processing units are common, decentralized control often results in suboptimal

plant-wide performance and it can potentially lead to stability problems (Sun and

El-Farra, 2008; Lu, 2003; Rawlings and Stewart, 2008).

1For the purpose of illustration and without loss of generality, a plant with two subsystems are
used for the schematics in this chapter. Nevertheless, the coordinated-distributed control schemes
proposed in this thesis can be applied to plants with more than two subsystems.
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Centralized Control

Optimal plant-wide operations can be achieved if centralized control is implemented.

A centralized control scheme is formulated as a monolithic control problem, where no

real distinction is made among processing units. An illustration of centralized control

scheme is shown in Figure 1.2. It can be observed in Figure 1.2 that centralized control

relies on a single controller for the entire process. While centralized control can lead

Centralized Controller

Process

yu

Figure 1.2: Illustration of centralized control hierarchy

to significantly improved plant-wide performance, it presents some disadvantages,

which make centralized control unsuitable for optimal control of industrial processes

(Lu, 2003). Some of the disadvantages of centralized control are lack of resiliency

against equipment failure, lack of flexibility in terms of operation, and the use of a

single centralized controller, which is difficult to tune and maintain.

Since centralized control is not generally preferred by practitioners and

decentralized control might not achieve the entire plant-wide optimal performance,

there is a need for development of a new control strategy for optimal control of large-

scale systems. This new control strategy is referred to as distributed control.

Distributed Control

The distributed control scheme can be seen as an alternative to decentralized and

centralized control schemes. Distributed control gained significant popularity in

the last decade. Recently, a three-year project on hierarchical and distributed

model predictive control of large-scale systems was organized in collaboration with

researchers primarily from European universities (http://www.ict-hd-mpc.eu/, 2011).
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One of the outcomes of this European project is a compilation of reports that include a

thorough literature review of hierarchical and distributed model predictive controllers.

One observation worth noting is that distributed control schemes are available in

the literature in a wide range of approaches according to the different communication

topologies or control formulations considered (Scattolini, 2009). Nevertheless, all

the distributed control schemes proposed in the literature shared one common

characteristic. In the distributed control scheme, it is assumed that a certain amount

of information is exchanged between the local controllers. The information exchange

is required so that each local controller is aware of the other controllers’ future actions

and they can negotiate these future actions until the controllers achieve an agreement

or a general consensus.

The distributed control schemes proposed in the literature can be classified into

different categories. One classification criteria depends on the form of the objective

function to be optimized by each local controller. If the distributed controller

optimizes a local objective function and disregards the objectives of the other

controllers in the plant, the distributed control scheme consists of “independent”

algorithms (Scattolini, 2009; Li et al., 2005). It is discussed in (Venkat et al., 2006)

that such independent distributed control formulation does not always guarantee

closed-loop stability. The “independent” distributed control formulation can be

improved when each local optimization problem is adjusted to include, up to a certain

extent, the objectives of the other controllers in the plant. This improved distributed

control scheme is a cooperating control scheme and it is referred in the literature as

“cooperative” distributed control or “cooperation-based” distributed control (Stewart

et al., 2010; Venkat et al., 2006).

Another classification criteria depends on the method used to communicate with

the local distributed controllers. This method differs whether a coordinator is

included or not in the distributed control scheme. When there is no coordinator

incorporated in the distributed control scheme, the local distributed controllers

exchange information among themselves to reach an agreement or consensus (see

Figure 1.3a)). Examples of distributed control schemes that do not include a

coordinator are described in (Dunbar and Murray, 2006; Venkat et al., 2005; Venkat
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et al., 2006; Jia and Krogh, 2002; Liu et al., 2009). When there is a coordinator

included in the distributed control structure, the information exchange takes place

between the local distributed controllers and the coordinator. The control actions of

the local distributed controllers are adjusted iteratively by the coordinator to reach

a global objective (see Figure 1.3b)). The coordinator is generally designed on a

different level with respect to the local distributed controllers and for that reason,

this control scheme is also known as hierarchical distributed control. Coordination

schemes for distributed control are given in (Katebi and Johnson, 1997; Aske et

al., 2008; Negenborn et al., 2008; Cheng et al., 2007; Cheng et al., 2008). The

coordinated-distributed control schemes proposed in this thesis correspond to one

class of hierarchical distributed control schemes. The hierarchy of the coordinated-

distributed control schemes proposed in this work is shown in Figure 1.3b).

Process

Coordinator

Coordinated-
Distributed
Controller 1

Subsystem 1

y1u1 y2u2

interactions

Coordinated-
Distributed
Controller 2

Subsystem 2

Process

Distributed
Controller 1

Subsystem 1

y1u1 y2u2

interactions

Distributed
Controller 2

Subsystem 2

information
exchange

information
exchange

information
exchange

a) b)

Figure 1.3: Illustration of distributed control hierarchy for a plant with two
subsystems: a) without a coordinator; b) with the use of a coordinator

1.2 Research Scope and Contributions

This thesis is intended to make a contribution in the area of distributed control.

In particular, this thesis concentrates on the development of coordinated-distributed

control schemes. The main objective of the proposed control schemes is to optimize

and control the dynamic behaviour of large-scale linear systems that present the

following characteristics:



Sec. 1.2 Research Scope and Contributions 6

• the process systems are geographically distributed, often over large areas;

• there exist substantial interactions among processing units or subsystems

arising, for example, from multi-step processing, energy integration and recycle

streams;

• the processing units or subsystems may present different dimensions; that is, the

number of process variables and manipulated variables can vary from subsystem

to subsystem.

With regards to process modelling and control, it is assumed that:

• any plant-model mismatch is negligible;

• all the plant states are available for measurement. The construction of observers

is not pursued in this thesis, although it is conceptually possible;

• the scope and tuning of each local controller are provided. In addition, it is

assumed that the decentralized controllers existing in the plant (previous to the

design of the coordinated-distributed controllers) provide stable operations for

the entire process. In this thesis, the coordinated-distributed controllers are

designed using the decentralized controllers already operating in the plant;

• the plant-wide performance objective is the sum of the performance objectives

from the decentralized controllers. Furthermore, it is assumed that the

performance objectives of the decentralized controllers do not compete with

each other.

• For most of the coordinated-distributed control schemes proposed in this thesis,

it is assumed that the control calculations are performed by the coordinated-

distributed controllers at the same time. This means that all the coordinated-

distributed controllers in the plant are executed with the same control rate.

This assumption is required for the coordinated-distributed control schemes

proposed in Chapters 2, 3 and 4. Nevertheless, this assumption is relaxed in

Chapter 5, where a coordinated-distributed control scheme is proposed for local

controllers that are executed at two different control rates.
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In general, the development of distributed control schemes includes the following

steps:

• decomposition of the large-scale control problem into smaller subproblems that

are easier to solve. Decomposition of the large-scale problem also involves a

decomposition of the entire process model into smaller processes or subsystems;

• design and tuning of each local controller;

• coordination of the local controllers to achieve a desired performance (for

coordination-based distributed control). Alternatively, a method that allows

cooperation between local controllers can be implemented (for cooperation-

based distributed control).

The notion of “decomposition” in mathematical programming was explored in

the early 60’s by Dantzig and Wolfe (1960). Recently, Larsson and Skogestad

(2000) described different methods of decomposing high-dimensional problems. These

methods are classified as horizontal decomposition and hierarchical decomposition.

Horizontal decomposition is based on process units, while the hierarchical

decomposition considers process structure, control objectives and time scales (Larsson

and Skogestad, 2000). Additional analysis on decomposition methods can be found

in (Samyudia et al., 1994; Walid et al., 2010). The different decomposition methods

are not pursued in this thesis2. Instead, coordination methods are considered in this

thesis to adjust the solutions of the local controllers so that the centralized optimal

performance can be achieved. In particular, two coordination methods are used in this

work: the price-driven coordination method and the prediction-driven coordination

method.

In the price-driven coordination method, the coordinator computes a price vector

using a price-driven coordination algorithm and information provided by the local

controllers. The price vector is then used in the optimal control problem of each

subsystem and it is updated iteratively until a stopping criteria has been reached.

2In this work, it is assumed that the model of the subsystems (including the interactions) are
given, regardless of the decomposition method used to determine the variables associated to each
subsystem.



Sec. 1.2 Research Scope and Contributions 8

The prediction-driven method also uses a price vector as part of the prediction-

driven coordination algorithm. In addition to the price vector, the coordinator

predicts the state variables of each subsystem according to the entire plant process

model. Both the price vector and the predicted states provided by the coordinator are

used in the optimal control problem of each subsystem and are updated iteratively

until a stopping criteria has been reached.

Finally, the main contributions of this thesis can be summarized as follows:

• coordinated-distributed control schemes are proposed to achieve the centralized

optimal performance operations at all times. That is, the state and input

trajectories obtained with the coordinated-distributed controllers exactly match

the state and input trajectories obtained with the theoretical centralized

controller at all times (provided that the coordination algorithm is allowed to

iterate until its convergence is achieved). Therefore, the performance of the

coordinated-distributed controllers is equal to the performance of the centralized

controller;

• coordinated-distributed control schemes are proposed for a wide range of linear

systems. Moreover, the coordinated-distributed control schemes proposed in

Chapters 2, 3 and 4 can be used to control subsystems that are coupled through

the control inputs and the states, while some distributed control frameworks

available in the literature (e.g.: Morosan et al. (2011), Zafra-Cabeza et al.

(2011), Maestre et al. (2011)) are suitable for subsystems that are coupled

uniquely through the control inputs;

• the proposed coordinated-distributed control schemes are developed considering

minimal modifications to the existing decentralized automation systems;

• a convergence analysis is provided for the prediction-driven and the price-driven

coordination algorithms;

• stability analyses of closed-loop system under coordinated-distributed model

predictive control are provided (for local controllers executed at the same control

rate);
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• a dual-rate coordinated-distributed control scheme is provided for local

controllers executed at two different control rates. A method for extending

the dual-rate coordinated-distributed control scheme to multi-rate coordinated-

distributed control scheme is also proposed.

1.3 Thesis Outline

This thesis is structured as follows. Chapter 2 presents a state-feedback coordinated-

distributed linear quadratic (CDLQ) control scheme for large-scale continuous-

time, linear systems. The local CDLQ controllers are coordinated by means of

the prediction-driven coordination algorithm. The convergence properties of the

prediction-driven coordination algorithm are discussed. The performance of the

CDLQ control scheme and the performance of the prediction-driven coordination

algorithm presented in Chapter 2 are illustrated through computer simulations using

two evaporator systems obtained from the literature.

The coordination principles developed in Chapter 2, which include the role of

the coordinator and the local controllers, the communication flow between them

and the iterative procedure required in the coordination algorithm, are extended for

the development of a state-feedback coordinated-distributed model predictive control

(CDMPC) scheme in Chapter 3. The CDMPC controllers constructed in Chapter

3 are suitable for unconstrained linear systems, whose dynamics are represented by

discrete-time state-space models. Convergence of the prediction-driven coordination

algorithm is shown along with a stability analysis of the closed-loop system under

CDMPC control. The effectiveness of the CDMPC control scheme is also shown

using a simulation example.

One of the reasons for the success of model predictive controllers is their capability

to operate closer to constraints. Typically, process industries need to deal with

constraints as a result of environmental and safety restrictions, product specifications

and physical limitations in process equipments, among others. Therefore, limits

on the state variables, input variables and input moves are incorporated in the

formulation of the CDMPC controllers in Chapter 4. The price-driven coordination
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method is used to coordinate the CDMPC controllers. The price-driven coordination

method is used in Chapter 4, as an attempt to find a method that could potentially

speed up coordination process. The price update mechanism in the price-driven

coordination method is developed using Newton’s method and a sensitivity analysis

technique. An analysis of the CDMPC performance properties is also provided in this

chapter. Furthermore, it is shown in Chapter 4 that the price-driven coordination

algorithm is not restricted to processes whose dynamics are represented by state-

space models. The price-driven coordination algorithm can also be used for processes

whose dynamics are represented by finite step-response models. The performance

of the CDMPC controllers using state-space models and finite step-response models

are studied using two benchmark process systems: an evaporator process and a fluid

catalytic cracking process obtained from the literature.

As an extension of the price-driven method developed in Chapter 4, Chapter 5

deals with the coordination of CDMPC controllers that are executed at two different

control rates. Three distinct strategies are discussed in Chapter 5 for coordination of

dual-rate CDMPC controllers. Among the three strategies, one is seen to have the

most potential for performance improvement, thus it is further studied and developed.

Using the selected strategy, a dual-rate CDMPC control scheme is formulated based

on ideas derived from the lifting technique. The performance of the dual-rate CDMPC

control scheme is tested through computer simulations. A method for extending the

dual-rate CDMPC control scheme to multi-rate CDMPC control scheme is proposed

towards the end of the chapter.

Finally, Chapter 6 summarizes the main results of this thesis and outlines directions

for future research work.

1.4 Thesis Conventions

This section summarizes the conventions and definitions adopted throughout this

thesis.

As described in Section 1.1, the term large-scale system refers to the entire

system or entire process to be controlled. In an industrial process, the large-
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scale system consists of the entire plant-wide system. From the point of view

of modelling, the entire plant-wide system includes the local process units and the

interactions between them.

When the model of the entire process is decomposed into smaller, local process

models; these local process models are referred to as subsystems. If a distributed

control scheme is used to control the subsystems, then all the interactions or only the

most significant interactions are considered as part of the subsystems’ models. If the

decentralized control scheme is used to control the subsystems, then the interactions

are not included as part of the subsystems’ models.

The centralized control problem consists of optimizing an objective function

subject to the entire plant-wide process model and all process operating constraints.

When the centralized control problem is decomposed into smaller, local control

problems, each local control problem is referred to as the subproblem.

The terms optimal plant-wide operations and centralized optimal solution

are used interchangeably throughout this thesis to refer to the optimal solution

(i.e., optimal control inputs and optimal state trajectories) obtained with a single

monolithic centralized controller.

With regards to data sampling and control calculations performed by the local

controllers, the following terms are used in this thesis:

Sampling instant: specific time at which a continuous-time signal is sampled (see

Figure 1.4) (Chen and Francis, 1995).

21 k

Sampled signal

Sampling
instant

 

2TT t

Sampled signal
maintained constant over 

sampling intervals

Sampling
interval: 

[0,T)
 

Figure 1.4: Illustration of sampling instants and sampling intervals
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Sampling period: length of time between two consecutive sampling instants. It

is denoted by the symbol ‘T ’.

Sampling intervals: set of times: [0, T ), [T, 2T ), [2T, 3T ), .... (see Figure 1.4).

Control instant: instant in time at which the control calculations are performed.

It is assumed that the control instants are the same as the sampling instants.

Control interval: period between two consecutive control calculations. It is assumed

to be the same as the sampling interval.

Finally, any other convention or term used in this thesis is explained in the

corresponding chapter as needed.



2
Coordinated-Distributed LQ Control

This chapter presents a state-feedback coordinated-distributed linear quadratic (CDLQ)

control scheme for large-scale continuous-time, linear dynamic systems. The proposed

CDLQ control scheme incorporates a coordinator that manages the control actions in

each local CDLQ controller to achieve the centralized optimal operation. The coor-

dinator in CDLQ control scheme uses a coordination algorithm that is derived from

the Interaction Prediction Principle (Mesarovic et al., 1970). The convergence prop-

erties of the prediction-driven coordination algorithm are discussed. Furthermore, a

quadratic prediction error term is implemented in the local CDLQ control problems

to ensure convergence of the prediction-driven coordination algorithm. Finally, two

illustrative examples are used to show the effectiveness of the CDLQ controllers and

the behaviour of the prediction-driven coordination algorithm1.

1Parts of this chapter are published in (Dallagi, A., N.I. Marcos and J. F. Forbes, 2008).

13
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2.1 Background

The standard linear quadratic (LQ) control is the cornerstone of modern control

theory. A number of advantageous properties are attributed to the standard LQ

controllers. Firstly, the controller is optimal with respect to a meaningful performance

functional. Secondly, the control input in the LQ regulator is formulated as a

state-feedback control law that can stabilize processes that are open-loop unstable.

Thirdly, the LQ optimal controller is linear in the state variables, which is a

convenient feature for performance analysis and implementation purposes (Anderson

and Moore, 1971; Lewis and Syrmos, 1995). These reasons have motivated the

formulation of a CDLQ control scheme, which is the work presented in this chapter.

In this work, we propose a CDLQ control scheme, where the coordinator uses

a prediction-driven coordination algorithm. The prediction-driven coordination

algorithm is derived from the Interaction Prediction Principle (Mesarovic et al., 1970).

The Interaction Prediction Principle is very efficient for coordination of linear

dynamic systems and it is used in (Cohen, 1977) to coordinate LQ regulators.

The main contributions of this chapter can be summarized as follows:

• In this chapter, state-feedback CDLQ tracking controllers are formulated for

large-scale continuous-time, linear systems. We extended the work published in

(Cohen, 1977) for CDLQ regulators. The CDLQ tracking controllers proposed

here are a generalization of the CDLQ regulators presented in (Cohen, 1977).

While the CDLQ regulators in (Cohen, 1977) can only drive the desired state

variables to the origin, the CDLQ tracking controllers formulated in this chapter

can track any desired trajectory (or steer controlled variables to their set-points)

in an optimal fashion.

• The trade-off between the CDLQ controllers’ performance and the coordination

algorithm performance is discussed. In some cases, these two performance

criteria tend to compete with each other. In some CDLQ control problems,

tuning the weighting matrices to achieve zero-offset from the set-points, limits

the ability of the coordination algorithm to converge to the centralized optimal

solution. A quadratic prediction error term, referred in the literature as
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‘proximal term’ (Rockafellar, 1976; Chen and Teboulle, 1994), is incorporated

in the objective function of each subproblem to ensure both convergence of the

coordination algorithm and zero-offset from the set-points. The proximal term

was suggested by Cohen (1977) for CDLQ regulators and it is also included in

this chapter for the CDLQ tracking control problem.

• Finally, the effect of a tuning parameter γ in the proximal term is studied and

tested through computer simulations on a benchmark process system.

The CDLQ tracking control scheme proposed in this chapter has significant benefits

for large-scale interacting systems. The CDLQ tracking controllers achieve the plant-

wide (centralized) optimal performance, while providing a certain degree of flexibility

and autonomy.

2.1.1 Optimal Control Theory

Before presenting the CDLQ control problems considered in this chapter, we introduce

the background required to solve a general optimal control problem based on calculus

of variations theory (Naidu, 2003).

Let us consider the finite-time optimal control problem, where we want to minimize

the general objective function:

J = Vf (x(tf ), tf ) +

∫ tf

t0

V (x(t), u(t), t)dt, (2.1)

for the entire system or plant described by:

ẋ(t) = f(x(t), u(t), t), (2.2)

with the following boundary conditions:

x(t0) = xinit is fixed, t = tf is fixed and x(tf ) is free. (2.3)

Optimal control problem (2.1)-(2.3) can be solved using calculus of variations with

a Hamiltonian formalism (Naidu, 2003). Let us transform optimal control problem

(2.1)-(2.2) by defining the Hamiltonian function as follows:

H(x(t), u(t), λ(t), t) = V (x(t), u(t), t) + λT (t)f(x(t), u(t), t), (2.4)
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where the vector λ(t) in (2.4) is the Lagrange multiplier vector.

Optimizing problem (2.1)-(2.3) is equivalent to optimizing problem (2.4) subject

to the boundary conditions (2.3). The optimality conditions for problem (2.4) with

boundary conditions (2.3) are referred to as the Pontryagin optimality conditions and

are given by (Naidu, 2003):

∂H
∂λ

∣∣∣∣
∗

= ẋ∗(t), state equation, (2.5)

∂H
∂x

∣∣∣∣
∗

= −λ̇∗(t), costate equation, (2.6)

∂H
∂u

∣∣∣∣
∗

= 0, control equation, (2.7)

with the initial and final conditions:

x(t0) = xinit and
∂Vf
∂x(tf )

∣∣∣∣
∗

= λ∗(tf ). (2.8)

The symbol ‘∗’ in equations (2.5)-(2.8) indicates the optimal value for the decision

variables.

To summarize, optimal control problem (2.1)-(2.3) can be solved by following steps

(1)-(5) described below (Naidu, 2003):

1. define the Hamiltonian function;

2. obtain the optimal control u∗(t) from equation (2.7);

3. assume a form for the Lagrange multiplier λ(t) in terms of the state variables

x(t);

4. solve the costate equation (2.6) and state equation (2.5), with initial and final

conditions (2.8);

5. obtain the closed-loop optimal control u∗(t).

2.1.2 Linear Quadratic Control

The linear quadratic control problem can be solved using the Hamiltonian approach

described in Section 2.1.1. The term ‘linear’ in linear quadratic control refers to
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the fact that the system to be controlled is a linear system. The term ‘quadratic’

indicates that the objective function in the control problem is a quadratic function

of the decision variables (Ray, 1981).

Let us consider the following LQ tracking control problem for the entire plant:

min
x,u

Jcen =
1

2

∫ tf

t0

(
(ysp − y)TQ(ysp − y) + uTRu

)
dt (2.9)

subject to : 
ẋ = Ax+Bu, (2.10a)

x(t0) = xinit, (2.10b)

y = Cx, (2.10c)

where x ∈ Rn and u ∈ Rq denote the vector of state variables and input variables

(or manipulated variables), respectively. The vector y ∈ Rm denotes the controlled

variables. The vector ysp represents the vector of desired trajectories or set-points to

be tracked in the entire process. In (2.10a)-(2.10c), the pair (A,B) is assumed to be

controllable and the pair (A,C) is assumed to be observable. As discussed in Chapter

1, the construction of observers is not pursued in this thesis. Therefore, all the state

variables are assumed to be measured; that is, C = In, where In is the identity matrix

of dimensions n× n.

In the objective function (2.9), the weighting matrix Q is symmetric positive semi-

definite and the weighting matrix R is symmetric positive definite. The objective

function (2.9) represents a trade-off between the control effort and the deviation of

the controlled variables with respect to their desired value ysp. Equation (2.10c) can

be used to write the objective function (2.9) in terms of the state variables, leading

to the following centralized LQ tracking control problem:

min
x,u

Jcen =
1

2

∫ tf

t0

(
(ysp − Cx)TQ(ysp − Cx) + uTRu

)
dt (2.11)

subject to :{
ẋ = Ax+Bu,

x(t0) = xinit.
(2.12)

The Pontryagin optimality conditions (2.5)-(2.8) applied to the centralized control
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problem (2.11)-(2.12) results in the following system of equations:{
ẋ = Ax+Bu,

x(t0) = xinit,
(2.13)

{
λ̇ = −ATλ+ CTQ(ysp − Cx),

λ(tf ) = 0,
(2.14)

0 = Ru+BTλ. (2.15)

2.2 Problem Description

A monolithic centralized LQ tracking controller can be obtained by solving optimal

control problem (2.11)-(2.12). Due to the disadvantages of the centralized control

scheme (see Section 1.1), a single centralized LQ tracking controller is not designed

in this work. Instead, the centralized control problem (2.11)-(2.12) is partitioned into

smaller subproblems that are easier to solve. It is proposed in this work the use of

local CDLQ controllers that together produce the same optimal solution as the one

obtained with the theoretical centralized controller.

To design the CDLQ controllers, it is assumed that the process model for the

entire plant, equations (2.10a)-(2.10c), is partitioned into N subsystems. That is, it is

assumed that the vector of state variables, input variables and controlled variables are

partitioned into N components: x = [xT1 , . . . , x
T
N ]T with xi ∈ <ni ; u = [uT1 , . . . , u

T
N ]T

with ui ∈ <qi and y = [yT1 , . . . , y
T
N ]T with yi ∈ <ni . Then, the dynamics of each

subsystem i (i = 1, . . . , N) are represented by the following state-space model2:

ẋi = Aiixi +Biiui + vi,

xi(t0) = xiniti ,

yi = Ciixi,

vi =
∑
j 6=i

(Aijxj +Bijuj) .

(2.16)

2It is assumed that the state variables xi, the input variables ui and the controlled variables yi
are the variables associated to the local decentralized controller i existing in the plant, previous to
the implementation of the CDLQ control scheme.
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The matrices Aii, Bii and Cii in (2.16) represent the local dynamics of subsystem i,

for i = 1, . . . , N . In this work, it is assumed that the pair (Aii, Bii) is controllable

and Cij = 0. The variables vi in (2.16) are interacting variables and they represent

the effect of the states xj and the inputs uj on the local subsystem i, where j 6= i.

It can be noted that the total number of state variables in the plant is n =
∑N

i=1 ni

and the total number of input variables in the plant is q =
∑N

i=1 qi.

2.3 Coordinated-Distributed LQ Control

In this section, the local CDLQ controllers are designed. The first step in designing the

local CDLQ controllers is to formulate the optimization problem for the subsystems.

The following optimization problem is proposed for each subsystem:

min
xi,ui

Ji =
1

2

∫ tf

t0

(
(yi sp − Ciixi)TQi(yi sp − Ciixi) + uTi Riui

)
dt+∫ tf

t0

(∑
j 6=i

ps
T

j

(
Ajixi +Bjiui)

)
dt

subject to : (2.17)
ẋi = Aiixi +Biiui + vi,

xi(t0) = xiniti ,

vi =
∑

j 6=i
(
Aijx

s
j +Biju

s
j

)
.

The weighting matrix Qi is symmetric positive semidefinite and the weighting matrix

Ri is symmetric positive definite. The objective function in optimal control problem

(2.17) consists of two main terms. The first term represents a trade-off between the

local control effort and the deviation of the local controlled variables with respect

to their desired value yi sp. The second term, ‘
∫ tf
t0

(∑
j 6=i p

sT

j

(
Ajixi + Bjiui)

)
dt’, is

included in the objective function Ji for coordination of the local CDLQ controllers.

This second term is required so that the coordinator can manage the optimal solutions

in the local subsystems and drive them towards the centralized optimal solution. The

vector psj , for j 6= i, is a price vector and it is computed by a coordinator based on

the price update algorithm described in Section 2.3.2.

The superscript ‘s’ used in optimal control problem (2.17) denotes the iteration

step in the coordination algorithm. It is appended to the vectors pj, xj and uj, for
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j 6= i, to indicate that these vectors are computed by a coordinator at iteration step

‘s’ (see Sections 2.3.2 and 2.3.3).

2.3.1 CDLQ Controllers

The CDLQ tracking controllers for each subsystem can be designed by following the

procedure described in Section 2.1.1 for a general optimal control problem.

A Hamiltonian for each optimal control problem (2.17) is defined as follows:

Hi =
1

2

(
(yi sp − Ciixi)TQi(yi sp − Ciixi) + uTi Riui

)
+∑

j 6=i

ps
T

j

(
Ajixi +Bjiui) + λTi (Aiixi +Biiui + vi). (2.18)

Then, the Pontryagin optimality conditions for each subproblem become:

∂Hi

∂λi
= ẋi, =⇒ ẋi = Aiixi +Biiui + vi, (2.19)

∂Hi

∂xi
= −λ̇i, =⇒ λ̇i = −ATiiλi + CT

iiQi(yi sp − Ciixi)−
∑
j 6=i

ATjip
s
j , (2.20)

∂Hi

∂ui
= 0, =⇒ 0 = Riui +BT

iiλi +
∑
j 6=i

BT
jip

s
j , (2.21)

with initial and final conditions:

xi(t0) = xiniti and λi(tf ) = 0.

The control input can be obtained from equation (2.21) as:

ui = −R−1
i

(
BT
iiλi +

∑
j 6=i

BT
jip

s
j

)
. (2.22)

Next, the Lagrange multiplier is defined for each subsystem as follows:

λi = Pixi + ri + zi, (2.23)

where the matrix Pi and the vectors ri and zi are yet to be determined. The vector

ri is included in equation (2.23) to let the controller track the desired trajectory yi sp.

The vector zi is included in equation (2.23) to let the coordinator drive the optimal
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solutions of the subsystems towards the centralized optimal solution.

Equation (2.23) can be then differentiated to give:

λ̇i = Ṗixi + Piẋi + ṙi + żi. (2.24)

Equation (2.23) can be used to eliminate the vector λi from equations (2.22) and

(2.20). Then, equations (2.19), (2.20), (2.22) and (2.24) can be arranged to obtain

the following differential Riccati equation:{
Ṗi = −PiAii − ATiiPi + PiBiiR

−1
i BT

iiPi − CT
iiQiCii,

Pi(tf ) = 0,
(2.25)

and the following differential equations:{
ṙi =

(
PiBiiR

−1
i BT

ii − ATii
)
ri + CT

iiQiyi sp,

ri(tf ) = 0,
(2.26)


żi =

(
PiBiiR

−1
i BT

ii − ATii
)
zi − Pi

(∑
j 6=iAijx

s
j +Biju

s
j

)
+

PiBiiR
−1
i

(∑
j 6=iB

T
jip

s
j

)
−
∑

j 6=iA
T
jip

s
j ,

zi(tf ) = 0.

(2.27)

The control input for subsystem i can be obtained by substituting equation (2.23)

into equation (2.22) as follows:

ui = −R−1
i

(
BT
ii (Pixi + ri + zi) +

∑
j 6=i

BT
jip

s
j

)
. (2.28)

In control law (2.28), the matrix Pi, and the vectors ri and zi are obtained by solving

equations (2.25), (2.26) and (2.27), respectively; the vector psj , for j 6= i, is provided

by the coordinator (see Section 2.3.2).

Remark 2.3.1 The affine state feedback control (2.28) consists of four terms. The

first term includes the linear state feedback; the second term in (2.28) includes the

vector ri that is required by the local CDLQ controller to track the desired trajectory

yi sp; the last two terms include the vectors zi and psj and they are required for

coordination. Whereas the term that includes the vector ri is required in the CDLQ

tracking controllers, it is not necessary in the CDLQ regulators. Thus, by setting

yi sp = 0, the CDLQ regulators in (Cohen, 1977) can be obtained.
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2.3.2 Prediction-Driven Coordination Algorithm

In this section, the prediction-driven coordination algorithm is presented. The

prediction-driven algorithm includes two types of calculations, which are performed

by the coordinator at each iteration step ‘s’. In the first type of calculations, the

coordinator predicts the subsystems’ state variables using the entire plant process

model. In the second type of calculations the coordinator updates the price vector.

The price vector is required by the subsystems to solve their own optimal control

problems.

Prediction of the state variables:

The subsystems’ state variables are predicted by the coordinator according to the

entire plant process model: {
ẋs = Axs +Bus,

xs(t0) = xinit,
(2.29)

where the input vector is defined as us = [us
T

1 , us
T

2 , . . . , us
T

N ]T and it is equal to the

optimal values calculated by each CDLQ controller; that is, usi = ui, for i = 1, ..., N .

The vector xs in (2.29) is defined as xs = [xs
T

1 , xs
T

2 , . . . , xs
T

N ]T , where xsi is the value

predicted by the coordinator for the local state variables xi, for i = 1, ..., N .

Price update:

To coordinate the CDLQ controllers, the coordinator calculates a full price vector

λscoor . The full price vector λscoor is computed by the coordinator by integrating:{
λ̇scoor = −ATλscoor + CTQ(ysp − Cxs),
λscoor(tf ) = 0.

(2.30)

The elements in the full price vector are arranged as: λscoor = [ps
T

1 , ps
T

2 , ..., ps
T

N ]T , where

psi has dimensions ni × 1, for i = 1, . . . , N . The elements psj (for j 6= i) are used in

the optimization problem of each subsystem i (for i = 1, ..., N).

Remark 2.3.2 It can be observed that differential equation (2.30) resembles

differential equation (2.14). Thus, the full price vector λscoor is an approximation of
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the Lagrange multiplier vector for the centralized control problem (2.11)-(2.12). When

the prediction-driven coordination algorithm converges, the inputs us are equal to the

centralized optimal inputs u∗ (see Theorem 2.4.1), the predicted states xs are equal to

centralized optimal states x∗ and the full price vector λscoor is equal to the centralized

Lagrange multiplier vector λ∗.

2.3.3 Implementation of the CDLQ Controllers

In this section, the implementation of the CDLQ controllers is described. In order to

implement the CDLQ controllers, some calculations can be performed off-line while

some online computation is required. The calculations that can be computed off-line

are the ones that do not depend on the state variables, input variables or prices. For

example, given the fixed time tf and the vector yi sp, the differential Riccati equation

(2.25) and the differential equation (2.26) can be integrated for each subsystem off-

line to obtain the matrix Pi and the vector ri, respectively. The calculations that need

to be computed on-line involve the variables that are changed by the coordination

algorithm.

In the prediction-driven coordination algorithm, the coordinator exchanges

information with the local CDLQ controllers. As a result of this information exchange,

the coordinator iteratively adjusts the price vector λscoor to drive the optimal solution

of the subsystems to the centralized optimal solution. The information exchanged

on-line between the coordinator and the local CDLQ controllers is shown in Figure

2.1.

Coordinator

... CDLQ
controller N

uN

CDLQ
controller 1

    u1
xj

s, uj
s, pj

s

  j ≠ 1
xj

s, uj
s, pj

s

  j ≠ N

Figure 2.1: Communication between the coordinator and the CDLQ controllers
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The implementation of the CDLQ controllers is carried out according to the

following steps:

1. Initialization (s = 0): The coordinator provides initial predictions for the

inputs u0
i , for i = 1, . . . , N . For initialization, the elements of the vector u0

(with u0 = [u0T

1 , u
0T

2 , . . . , u
0T

N ]T ) can be set to zero. Next, the coordinator

predicts the state vector x0 = [x0T

1 , x
0T

2 , . . . , x
0T

N ]T based on the initial inputs

u0, and the entire process model (2.29). Using the predicted state vector x0 and

price update algorithm (2.30), the coordinator calculates an initial price vector

λ0
coor , with λ0

coor = [p0T

1 , p
0T

2 , ..., p
0T

N ]T . The coordinator sends the predicted state

variables x0
j, the inputs u0

j and the prices p0
j, with j 6= i, to each local CDLQ

controller3.

2. Calculation of control inputs ui: Each CDLQ controller computes the vector

zi (see equation (2.27)) and control inputs ui (see equation (2.28)) based on

the matrix Pi and the vector ri calculated off-line, and the predicted states,

inputs and prices provided by the coordinator. The control inputs calculated

by each CDLQ controller, ui, are communicated back to the coordinator, for

i = 1, . . . , N .

3. Price update: The iteration counter ‘s’ is incremented. The coordinator

collects the information from each CDLQ controller and calculates a new

prediction for the state variables, according to the entire process model (2.29)

and with usi = ui, for i = 1, . . . , N . Then, the coordinator determines the new

price vector λscoor , and transmits the predicted states xsj , the inputs usj and the

prices psj , with j 6= i, to each CDLQ controller i.

4. Iteration until convergence: Steps (2)-(3) are repeated until the

prediction-driven coordination algorithm is terminated. The prediction-driven

coordination algorithm is terminated once ‖us+1−us‖ ≤ ε, where ε is a specified

error tolerance.

3Alternatively, the prediction-driven algorithm can be initialized using λ0
coor = 0, x0 = 0 and

u0 = 0. This is recommended for open-loop unstable systems.
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5. Implementation of the control inputs: Once the prediction-driven

coordination algorithm is terminated, each CDLQ controller implements their

optimal control input ui, for i = 1, . . . , N .

2.4 Coordination Algorithm Convergence

Analysis

In the optimal control problems considered in this chapter, the CDLQ controllers

are required to achieve zero-offset from the set-points within a given time horizon.

Nevertheless, tuning the CDLQ controllers to achieve a desired performance can

sometimes conflict with the coordinator’s behaviour. In some cases, tuning the

weighting matrices to achieve zero-offset limits the ability of the coordination

algorithm to converge to the centralized optimal solution. In this section, the

convergence properties of the coordination algorithm are analyzed.

Theorem 2.4.1 is presented in this section to describe the convergence behaviour of

the prediction-driven coordination algorithm. A convergence condition is provided

in Theorem 2.4.1. This condition can be computed off-line to ensure that the

coordination algorithm converges for the selected controller tunings. The objective

functions Jcen(u) and Φ(u, v) are required to compute the convergence condition.

They are defined in the following.

The centralized objective function Jcen is defined in the centralized control problem

(2.11)-(2.12). By writing the state variables in the centralized control problem as

x = S(u), the centralized objective function in problem (2.11)-(2.12) can be expressed

as a function of the input variables as follows:

Jcen(u) =
1

2

∫ tf

t0

((
ysp − CS(u)

)T
Q
(
ysp − CS(u)

)
+ uTRu

)
dt. (2.31)

The objective function Φ is defined as:

Φ =
N∑
i=1

Φi, (2.32)

where Φi is given as:

Φi =
1

2

∫ tf

t0

(
(yi sp − Ciixi)TQi(yi sp − Ciixi) + uTi Riui

)
dt.
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It can be observed that Φi is the term in the objective function Ji (2.17), which is

not affected by the price vector.

The state variables in subproblem (2.17) can be expressed as: xi = Si(ui, vi), for

i = 1, ..., N . Then, the objective function Φi is written in terms of the control inputs

as follows:

Φi(ui, vi) =
1

2

∫ tf

t0

(
(yi sp − CiiSi(ui, vi))TQi(yi sp − CiiSi(ui, vi)) + uTi Riui

)
dt. (2.33)

From (2.32) and (2.33), the objective function Φ can be expressed as a function of

the input variables as follows:

Φ(u, v) =
1

2

N∑
i=1

∫ tf

t0

(
(yi sp−CiiSi(ui, vi))TQi(yi sp−CiiSi(ui, vi))+uTi Riui

)
dt. (2.34)

Finally, the objective functions Jcen(u) in (2.31) and Φ(u, v) in (2.34) are

differentiated to obtain:

Ψ = D2Jcen(u), (2.35)

Ω = diag(Ωi), (2.36)

with: Ωi = D2Φ(ui), for i = 1, ..., N. (2.37)

where Jcen and Φ are assumed to be twice Fréchet differentiable and the input u

belongs to a Hilbert space. The derivatives D2Jcen(u) in (2.35) and D2Φ(ui) in (2.37)

denote the second Fréchet derivatives of the functionals Jcen and Φ, respectively4. The

operators Ψ in (2.35) and Ω in (2.36) are used to compute the convergence condition

C1 in Theorem 2.4.1.

Theorem 2.4.1 Consider that the prediction-driven coordination algorithm (2.29)-

(2.30) is used to coordinate CDLQ controllers, and let us assume that:

C1 : W =
(
Ω− Ψ

2

)
is coercive5.

4The Fréchet derivative of a functional G at u0 , denoted by DG(u0), is defined as:
lim||h1||→0(||G(u

0
+ h1) − G(u

0
) − DG(u

0
)h1||/||h1||) = 0. By defining DG(u)h1 = H(u)h1, the

second Fréchet derivative is given by: lim||h2||→0(||H(u
0
+h2)−H(u

0
)−D2G(u

0
)(h1, h2)||/||h2||) = 0

(Guay, 1996).
5K is a coercive operator iff ∃ c > 0 and ∀x, 〈Kx, x〉 ≥ c ‖x‖2.
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Then:

• the objective function Jcen(us) decreases monotonically as the number of

iterations ‘s’ increases;

• as the number of iterations ‘s’ → ∞, the control inputs us converge to the

centralized optimal control inputs u∗. Thus, the solutions obtained with the

CDLQ controllers are equal to the centralized optimal solution.

Proof : Theorem 2.4.1 was presented and proved in (Cohen, 1977) assuming that the

objective functions Jcen and Φ are twice Fréchet differentiable and convex in u. The

proof presented in (Cohen, 1977) can be followed to prove the convergence behaviour

of the prediction-driven coordination algorithm when it is used to coordinate CDLQ

tracking controllers.

Remark 2.4.1 Condition C1 in Theorem 2.4.1 can be computed off-line and it

depends on the properties of the entire plant, as well as the weighting matrices; that

is, Ψ = Ψ(A,B,C,Q,R) and Ωi = Ωi(Aii, Bii, Cii, Qi, Ri).

If condition C1 in Theorem 2.4.1 is not satisfied for the proposed coordinated-

distributed control formulation, this problem can be overcome by modifying the

objective function Ji in (2.17). The modification can be accomplished by including

the following quadratic ‘prediction error term’ in the objective function Ji of each

subsystem:

1

2

∫ tf

t0

(
(xi − xsi )TγMi(xi − xsi ) + (ui − usi )TγRi(ui − usi )

)
dt, (2.38)

where γ is a positive scalar and Mi is a symmetric positive definite matrix.

Quadratic terms similar to the integrand in (2.38) have been used in the static

optimization literature and they are referred to as the ‘proximal term’ (Rockafellar,

1976; Chen and Teboulle, 1994). The term (2.38) was also proposed in (Cohen, 1977)

to ensure that the optimal solutions obtained with the local linear quadratic regulators

achieve the centralized optimal solution.
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2.4.1 Proximal Method to Ensure Convergence of the
Coordination Algorithm

When the term (2.38) is included in subproblem (2.17), the modified objective

function becomes:

Ji =
1

2

∫ tf

t0

(
(yi sp − Ciixi)TQi(yi sp − Ciixi) + uTi Riui

)
dt+∫ tf

t0

(∑
j 6=i

ps
T

j

(
Ajixi +Bjiui)

)
dt+

1

2

∫ tf

t0

(
(xi − xsi )TγMi(xi − xsi ) + (ui − usi )TγRi(ui − usi )

)
dt.

(2.39)

The term (2.38) in modified objective function (2.39) has the purpose of penalizing

the deviation of the optimal solutions calculated by the CDLQ controllers from the

solutions predicted by the coordinator at each iteration step. As a result, the solutions

calculated by the local CDLQ controllers and the ones predicted by the coordinator

evolve in the same direction, which ensures convergence of the coordinated-distributed

optimal solutions to the centralized optimal solution. The effect of the parameter γ

on the prediction-driven coordination algorithm is discussed in Section 2.5.2 along

with a method to tune the parameter γ.

CDLQ Control with Modified Objective Function

When the term (2.38) is included in the optimization problem of each subsystem, the

CDLQ controllers as well as the information exchanged between the CDLQ controllers

and the coordinator need to be adjusted. When subproblem (2.17) is solved using

the modified objective function (2.39), it leads to the following differential Riccati

equation:{
Ṗi = −PiAii − ATiiPi + PiBii

(
(1 + γ)Ri

)−1
BT
iiPi − (CT

iiQiCii + γMi),

Pi(tf ) = 0,
(2.40)
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the following differential equations:{
ṙi =

(
PiBii

(
(1 + γ)Ri

)−1
BT
ii − ATii

)
ri + CT

iiQiyi sp,

ri(tf ) = 0,
(2.41)


żi =

(
PiBii

(
(1 + γ)Ri

)−1
BT
ii − ATii

)
zi − Pi

(∑
j 6=iAijx

s
j +Biju

s
j

)
+

PiBii

(
(1 + γ)Ri

)−1
(
−γRiu

s
i +
∑

j 6=iB
T
jip

s
j

)
−
∑

j 6=iA
T
jip

s
j + γMix

s
i ,

zi(tf ) = 0.

(2.42)

and the following control input:

ui = −
(
(1 + γ)Ri

)−1
(
BT
ii (Pixi + ri + zi) +

∑
j 6=i

BT
jip

s
j − γRiu

s
i

)
. (2.43)

The steps in the implementation of the CDLQ controllers (see Section 2.3.3) need to

be adjusted as follows:

• The calculations performed off-line by each CDLQ controller involve integrating

the differential Riccati equation (2.40) and the differential equation (2.41).

• With respect to the information exchanged between the coordinator and the

CDLQ controllers, the coordinator needs to communicate xsi and usi to each

CDLQ controller i, apart from xsj and usj and psj (see steps 1 and 3 of the

implementation of CDMPC controllers, Section 2.3.3).

• In step 2 of the implementation of the CDLQ controllers, the vector zi can be

obtained by integrating differential equation (2.42) and the inputs computed by

each CDLQ controller, ui, are given by (2.43).

2.5 Illustrative Examples

In this section, simulation studies are performed on two benchmark process systems

to demonstrate the performance of the CDLQ controllers and the performance of the

prediction-driven algorithm. The first illustrative example considers the evaporator

process system described in (Fisher and Seborg, 1976) and it is used to show the

performance of the CDLQ tracking controllers. The second illustrative example

considers a simplified model of the evaporator process and it is used to show the effect

of the proximal term parameter γ on the prediction-driven coordination algorithm.
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2.5.1 Illustrative Example I

In this illustrative example, we consider the evaporator process system described in

(Fisher and Seborg, 1976). A diagram of the evaporator process is shown in Figure

2.2.
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FC

Product
B2
C2
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Figure 2.2: Evaporator process

The evaporator process includes five state variables, three input variables and three

disturbance variables. The variables in the evaporator process are given in Table 2.1.

Set-point tracking performance is evaluated in this illustrative example. For the

simulations performed in this section, it is assumed that all the state variables

are measured and there are no disturbances entering the evaporator process. The

dynamics of the evaporator are represented by the state-space model (2.10a)-(2.10c)
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Table 2.1: Evaporator variables

State variables Input variables Disturbance variables

Solution holdup ‘W1’ [lb] Bottom flow rate ‘B1’ [lb/min] Feed flow rate ‘F ’ [lb/min]

Solute concentration ‘C1’ [wt%] Steam flow rate ‘Sf ’ [lb/min] Solute concentration ‘Cf ’ [wt %]

Liquid enthalpy ‘h1’ [Btu/lb] Bottom flow rate ‘B2’ [lb/min] Liquid enthalpy ‘h1’ [Btu/lb]

Solution holdup ‘W2’ [lb]

Solute concentration ‘C2’ [wt%]

with:

x = [W1, C1, h1, W2, C2]T , u = [B1, Sf, B2]T , y = x,

A =


0 −0.00156 −0.1711 0 0
0 −0.1419 0.1711 0 0
0 −0.00875 −1.102 0 0
0 −0.00128 −0.1489 0 0.00013
0 0.0605 0.1489 0 −0.0591

,

B =


−0.143 0 0

0 0 0
0 0.392 0

0.108 0 −0.0592
0.0486 0 0

, C = I5.

It is also assumed that the evaporator process consists of two subsystems. The

parameters used in this simulation study are listed in Table 2.2.

Table 2.2: Parameters used in illustrative example I

Subsystem 1 Subsystem 2

State variables x1 = [W1, C1]T x2 = [h1, W2, C2]T

Input variables u1 = B1 u2 = [Sf, B2]T

Controlled variables y1 = x1 y2 = x2

Initial conditions x1(0) = [0, 0]T x2(0) = [0, 0, 0]T

Weighting matrices
Q1 = diag(2, 0) Q2 = diag(0, 2, 2)

R1 = 2 R2 = diag(5, 5)
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A set-point change of magnitude 1.0 in controlled variable ‘W2’ was performed at

the initial time, while the set-points for the remaining controlled variables were left

at the origin; that is, y1 sp = [0, 0]T and y2 sp = [0, 1, 0]T . Figure 2.3 - Figure 2.5 show

the simulation results based on 100 minutes simulation. The simulation results are

shown in deviation variable form.

Figure 2.3 shows the trajectories of the controlled variables ‘W1’, ‘W2’ and ‘C2’,

and the input variables obtained with the CDLQ controllers. It can be observed

in Figure 2.3 that the CDLQ controllers drive the controlled variables ‘W1’, ‘W2’

and ‘C2’ to their desired set-points. It can also be observed in Figure 2.3 that the

trajectories obtained with the CDLQ controllers are equal to the ones obtained with

a centralized controller6. Therefore, the performance of the CDLQ controllers achieve

the performance of the centralized controller. Convergence of the CDLQ solutions to

the centralized optimal solution is also shown in Figure 2.4.
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Figure 2.3: Trajectories of the controlled variables ‘W1’, ‘W2’ and ‘C2’, and the input
variables obtained with the CDLQ controllers (solid line), and with a centralized
controller (circles); desired set-points (dashed line)

6The simulations obtained with a centralized controller were performed with the same initial
conditions used for the CDLQ controllers and with the simulation parameters provided in Table
2.2. Nevertheless, the centralized controller was designed by solving the centralized control problem
(2.11)-(2.12).
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Figure 2.4: Relative errors in the input variables, in the controlled variables and in
the objective function

Figure 2.4 shows the relative errors in the input variables, in the controlled

variables and in the objective function through the iterations. These relative errors

are calculated as: (‖us − u∗‖ / ‖u∗‖) for the input variables, (‖ys − y∗‖ / ‖y∗‖) for

the controlled variables and (‖Jcen(us)− Jcen(u∗)‖ / ‖Jcen(u∗)‖) for the objective

function. The centralized optimal solutions are denoted with the superscript (*).

It can be observed that the errors decrease as the number of iterations increase.

Moreover, it can be observed that the prediction-driven coordination algorithm

converges within 20 iterations. This indicates that, at convergence, the performance

of the CDLQ controllers resulted in the centralized optimal performance.

Finally, Figure 2.5 shows the prices of the prediction-driven coordination algorithm

at convergence. The number of components in the price vectors psi are equal to

the number of state variables xi in each subsystem i. Therefore, the vector ps1 has

two components (ps1 1 and ps1 2), as shown in Figure 2.5a) and vector ps2 has three

components (ps2 1, ps2 2 and ps2 3), as shown in Figure 2.5b). Both price vectors ps1 and

ps2 converge to the origin at the end of the simulation time, as given by the final
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Figure 2.5: Prices ps1 and ps2: a) ps1 1 (blue) and ps1 2 (red); b) ps2 1 (blue), ps2 2 (black)
and ps2 3 (red)

condition in the price update mechanism (2.30).

2.5.2 Illustrative Example II

To show the effect of the proximal term parameter γ on the prediction-driven

coordination algorithm, a simulation experiment was performed using a simplified

model of the evaporator process7. The simplified model of the evaporator process is

given in (Newell and Lee, 1989) and it includes three input variables (product flow rate

‘F2’, steam pressure ‘P100’, cooling water flowrate ‘F200’), three state variables to

be controlled (separator level ‘L2’, product composition ‘X2’, and operating pressure

‘P2’) and five disturbance variables (circulating flow rate ‘F3’, feed flow rate ‘F1’, feed

concentration ‘X1’, feed temperature ‘T1’ and cooling water inlet tmperature ‘T200’).

In this illustrative example, it is assumed that there are no disturbances entering the

evaporator process. Thus, the dynamics of the evaporator with no disturbances are

7The simulation results in illustrative example II have been presented and published in (Dallagi,
A., N.I. Marcos and J. F. Forbes, 2008).
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represented by state-space model (2.10a)-(2.10c) with:

x = [L2, X2, P2]T , u = [F2, P100, F200]T , y = x,

A =

[
0 0.10445 0.37935
0 −0.1 0
0 −0.10340× 10−1 −0.54738× 10−1

]
,

B =

[
−0.1 0.37266 0
−0.1 0 0

0 0.36914× 10−1 −0.75272× 10−2

]
, C = I3.

(2.44)

It is assumed that the evaporator process consists of two subsystems. The parameters

used in this simulation study are listed in Table 2.3.

Table 2.3: Parameters used in illustrative example II

Subsystem 1 Subsystem 2

State variables x1 = [L2, X2]T x2 = P2

Input variables u1 = [F2, P100]T u2 = F200

Controlled variables y1 = x1 y2 = x2

Weighting matrices Q1 = diag(1, 1), R1 = diag(100, 100) Q2 = 1, R2 = 100

In this illustrative example, the regulation problem is considered; thus, y1 sp =

[0, 0]T , y2 sp = 0. The initial conditions for the state variables are: x1(0) = [1, 1]T

and x2(0) = 1. The proximal term (see equation (2.38)) was included in the objective

function of each subsystem to ensure convergence of the prediction-driven algorithm.

The effect of the parameter γ on the coordinated-distributed control problems was

studied for the evaporator process (Newell and Lee, 1989) and the simulation results

are shown in Table 2.4.

For the given weighting matrices Q, R and simulation time tf , there is a set of

parameters γ ≥ γ0, which ensures convergence of the prediction-driven coordination

algorithm. Any positive value for γ smaller than γ0 will not satisfy condition C1 in

Theorem 2.4.18. A simple method for tuning the parameter γ is by ‘trail and error’.

A small value for γ can be selected initially and convergence condition C1 should

8Each objective function Φi in (2.33) needs to be modified to include the proximal term (2.38).
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be checked for this initial value of γ. If condition C1 is not satisfied, the value of γ

should be increased until a value of γ that satisfies condition C1 is found.

It is shown in Table 2.4 that for γ ≤ γ0 = 0.5 the coordination algorithm diverges.

Furthermore, it can be observed in Table 2.4 that as the value of γ increases, the

prediction-driven coordination algorithm requires more iterations to converge9.

Table 2.4: Effect of the parameter γ on the prediction-driven coordination algorithm

Parameter γ Number of Iterations
< 0.5 algorithm diverges

1 29
2 45
5 85
10 145

The effect of the parameter γ on the prediction-driven coordination algorithm can

be interpreted by analyzing the objective function (2.39). It was discussed in Section

2.4 that the term (2.38) in the objective function (2.39) has the purpose of penalizing

the deviation of the optimal solutions calculated by the CDLQ controllers from the

solutions predicted by the coordinator at each iteration step. As the parameter

γ increases, the CDLQ controllers will compute their optimal solutions with small

deviations with respect to the predictions performed by the coordinator. Therefore,

as γ increases, the coordination algorithm becomes more sluggish and it requires more

iterations to converge to the centralized optimal solution. This effect should be taken

into account when choosing the value for the parameter γ.

2.6 Summary

In this chapter, a CDLQ control scheme is proposed and developed for large-scale

continuous-time, linear dynamic systems. This work extends the control scheme

presented in (Cohen, 1977) to formulate CDLQ controllers that steer controlled

variables to their desired set-points. In the CDLQ control scheme, local CDLQ

controllers are coordinated using a prediction-driven coordination algorithm.

9The simulation results in Table 2.4 are taken from (Dallagi, A., N.I. Marcos and J. F. Forbes,
2008).
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Convergence properties of the prediction-driven coordination algorithm are studied,

and a convergence condition for the coordination algorithm is provided. If the

convergence condition is satisfied, the following results are obtained:

• convergence of the prediction-driven coordination algorithm is guaranteed;

• the objective function Jcen(us) decreases monotonically as the number of

iterations ‘s’ increases;

• as the number of iterations ‘s’ → ∞, the control inputs us converge to the

centralized optimal control inputs u∗. Therefore, the performance of the CDLQ

controllers is equal to the centralized controller’s performance.

If the convergence condition is not satisfied, there exists a remedy for this problem.

A proximal term can be incorporated in the objective functions of each subsystem

to ensure convergence of the coordination algorithm. One of the tuning parameters

in the proximal term is the constant scalar γ. It is shown with a benchmark process

system that there exist a minimum value γ0, such that for any γ ≥ γ0 the convergence

condition is satisfied. The effect of γ on the coordination algorithm is also discussed.

It can be observed from the simulation results in Section 2.5.2 that as the value of

γ is increased above γ0, the coordination algorithm is slowed down. Understanding

this effect is beneficial in order to tune the parameter γ.

Overall, the results and discussions presented in this chapter indicate that CDLQ

control is a promising strategy for control of interacting dynamic systems. The CDLQ

control scheme can lead to the centralized optimal operations and still maintain a

flexible control framework. For example, the proposed CDLQ control framework can

switch from the coordinated-distributed scheme to the decentralized control scheme,

if needed. This can be done by setting the prices pi and the interacting variables

xsi and usi to be equal to zero, and by interrupting the communications between the

coordinator and the local CDLQ controllers. Similarly, the local CDLQ controllers

can be individually removed from or added to the coordination loop.



3
Coordinated-Distributed MPC via

Prediction-Driven Coordination

This chapter presents a state-feedback coordinated-distributed model predictive con-

trol (CDMPC) scheme for discrete-time, unconstrained linear dynamic systems. In

the proposed CDMPC control scheme, local CDMPC controllers are coordinated via

the prediction-driven method. The prediction-driven coordination algorithm pro-

posed in this chapter is obtained by adapting the coordination algorithm presented

in Chapter 2. Convergence of the coordination algorithm is shown along with a sta-

bility analysis of the closed-loop system under CDMPC control. Finally, a simulation

example is used to illustrate the effectiveness of the proposed coordinated-distributed

control scheme.

3.1 Model Predictive Control: Background

Model predictive control (MPC) is a model based optimal control technique that has

been successfully implemented in process industries and has received a considerable

38
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amount of interest among academic researchers for more than three decades. Model

predictive control techniques use a model of the process to predict the future plant

behaviour. The aim of the MPC control calculations is to determine a sequence of

control moves so that the predicted process variables achieve their desired values or

set-points in an optimal manner (Garcia et al., 1989; Rossiter, 2005; Maciejowski,

2002). To determine the optimal control moves, an objective function is optimized

over a specified time horizon. The objective function in MPC generally takes the form

of a quadratic function that penalizes the control efforts and the difference between

the output trajectories from their desired set-points.

The basic idea of MPC is shown in Figure 3.1 for a single-input single-output

process (Seborg, 1989). Four key variables are shown in Figure 3.1: the measured

output variable y, the predicted output variable ŷ, the past input u applied to the

process and the calculated input variable û. At the current sampling instant ‘k’,

the MPC controller computes a set of Hu values of the input {û(k + l − 1|k), l =

1, 2, .., Hu}. The input is held constant after the Hu control moves. The inputs are

calculated so that a set of Hp predicted outputs ŷ = {ŷ(k + l|k), l = 1, 2, .., Hp}

reaches the set-point in an optimal manner. The number of control moves Hu is

referred to as the control horizon and the number of predictions Hp is referred to as

the prediction horizon (Seborg, 1989).

One characteristic of an MPC control strategy is its receding horizon nature.

Although a sequence of Hu control moves is calculated at each sampling instant,

only the first control move of the calculated sequence is applied to the process,

while the rest of the calculated control moves are discarded. At the next sampling

instant, the optimization is repeated with current measurements to calculate a

new sequence of control moves, but again only the first calculated control move is

implemented. This procedure is repeated at every sampling instant (Camacho and

Bordons, 1999; Maciejowski, 2002).

The benefits of MPC technology are well proven. The main advantages of MPC

can be summarized as follows (Maciejowski, 2002; Qin and Badgwell, 2003):

• it handles multivariable control problems;
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Figure 3.1: Model predictive control strategy

• it drives some process variables to their desired set-points, while maintaining

other process variables within specified ranges;

• it allows operation closer to constraints, which frequently leads to more

profitable operation;

• it can take actuator limitations into account.

Although MPC has been widely accepted, its application is often limited to single

process units or a single piece of processing equipment. Plant-wide applications of

MPC are not common due to their lack of flexibility and lack of resiliency. The

development of schemes that use MPC controllers to achieve plant-wide optimal

performance is highly desirable. Such development can help process industries

improve plant-wide performance operations significantly, increase economic benefits,

and, most importantly, ensure environmental and safety conditions. One control

scheme that uses MPC technology and can lead to plant-wide optimal performance

is proposed in this chapter and it is referred to as coordinated-distributed model

predictive control (CDMPC). An illustration of the CDMPC control hierarchy for a

plant with two subsystems is shown in Figure 3.2.
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Figure 3.2: Illustration of CDMPC control hierarchy for a plant with two subsystems

The CDMPC control scheme is constructed using a coordinator and with

minor modifications to the standard local MPC controllers. A prediction-driven

coordination method is used in the proposed CDMPC control scheme. In the

prediction-driven method, the coordinator predicts future values for the subsystems’

state variables. In addition, the coordinator computes a price vector, which is required

for the coordination of the CDMPC controllers. Note that in this chapter, the price

vector is computed as an approximation of the Lagrange multipliers of the centralized

optimization problem. Examples of hierarchical control schemes using local Lagrange

multipliers as prices can be found in (Cohen, 1977; Jamshidi, 1983) for linear quadratic

regulators and in (Negenborn et al., 2008) for multi-agent MPC controllers applied

to transportation networks.

The main contributions of this chapter can be summarized as follows:

• First, a novel state-feedback CDMPC control scheme is formulated for discrete-

time, linear unconstrained dynamic systems. The prediction-driven method

used in this chapter is an extension of the method presented in Chapter 2 to

discrete-time dynamic systems.

• Then, a convergence analysis for the prediction-driven coordination algorithm

is provided. In the convergence analysis, the behaviour of the coordination

algorithm is shown and convergence of the coordinated-distributed optimal

solutions to the centralized optimal solution is proven.



Sec. 3.2 Problem Description 42

• Finally, closed-loop stability under CDMPC control is shown to be guaranteed

even when the coordination algorithm is stopped before the algorithm

convergence is achieved. To the best of our knowledge, this is the first study

where stability of the closed-loop system under coordinated-distributed control

has been proven. While the bulk of the work in the area of distributed control

considers cooperative distributed control schemes, and stability of the closed-

loop system using cooperative distributed controllers has been proven (e.g.,

Venkat et al. (2006)), no work has been done to prove stability of the closed-

loop system when distributed controllers communicate with a coordinator.

3.2 Problem Description

Let us consider the entire large-scale system or plant, which is adequately modeled

by a linear discrete-time state-space representation:

x(k + 1) = Ax(k) +Bu(k),

x(0) = xinit,
(3.1)

where x(k) ∈ <n and u(k) ∈ <q denote the vector of state and input variables at

time step ‘k’, respectively. A typical approach for control of a large-scale system such

as (3.1) is to partition the entire process model into smaller subsystems and control

each subsystem using a local decentralized controller. If the entire process (3.1) is

partitioned into N subsystems, the dynamics for each subsystem i can be represented

by:

xi(k + 1) = Aiixi(k) +Biiui(k) +
∑
j 6=i

(
Aijxj(k) +Bijuj(k)

)
,

xi(0) = xiniti ,

(3.2)

where xi(k) ∈ <ni and ui(k) ∈ <qi . The matrices Aii and Bii in (3.2) represent the

local subsystem dynamics, for i = 1, . . . , N . It is assumed that the pair (Aii, Bii) is

controllable. The term ‘
∑

j 6=i
(
Aijxj(k) + Bijuj(k)

)
’ in (3.2) represents the effect of

the interactions; that is, the effect of the state variables and the input variables from

subsystems j (with j 6= i) on the local subsystem i. It can be noted that the total

number of state variables in the plant is n =
∑N

i=1 ni and the total number of input

variables in the plant is q =
∑N

i=1 qi.
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The CDMPC controllers proposed in this work can be constructed with minor

modifications to the local decentralized controllers. Thus, a decentralized MPC

control formulation for subsystem (3.2) is presented in Section 3.3 as an initial step

for the development of the CDMPC controllers in Section 3.4.

3.3 Unconstrained Decentralized MPC Control

Let us assume that the true dynamics of subsystem i (for i = 1, . . . , N) are represented

by model (3.2). For the decentralized control formulation, it is further assumed that:

• the length of the prediction horizon (Hp) is the same for all the subsystems.

This is also assumed for the control horizon (Hu), with Hu ≤ Hp;

• the same control intervals are used in all the MPC controllers in the plant;

• the optimal values for the variables xi and ui are calculated by the local MPC

controller i;

• the decentralized controllers existing in the plant (previous to the design of

the coordinated-distributed controllers) provide stable operations for the entire

process;

• at time ‘k’, all the states xi(k) are measured for i = 1, . . . , N .

In the decentralized control scheme considered in this work, it is assumed that all of

the information available at time ‘k’ can be used to predict the future values for the

local state trajectories. Current measurements of the state variables xj(k) and past

values of the input variables uj(k− 1), for j 6= i, are used as feedforward information

by the local MPC controller i. The feedforward action is included in the decentralized

MPC control scheme in an effort to minimize the unavoidable losses of performance

associated with the decentralized approach.

Based on the assumptions previously stated, the variables predicted by

decentralized MPC controller i along the prediction and control horizons are given
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by:

x̂i(k + l + 1|k) = Aiix̂i(k + l|k) +Biiûi(k + l|k)+∑
j 6=i
(
βiAijxj(k) +Bijuj(k − 1)

)
, for l = 0, ..., Hp − 1,

x̂i(k|k) = xi(k),

βi = 1, for l = 0,

βi = 0, for l = 1, ..., Hp − 1,

(3.3)

with:{
ûi(k + l|k) =

∑l
ν=0 ∆ûi(k + ν|k) + ui(k − 1), for l = 0, ..., Hp − 1,

∆ûi(k + l|k) = 0, Hu ≤ l ≤ Hp − 1.
(3.4)

Process model (3.3) and (3.4) can be arranged in a matrix form for the entire

prediction and control horizons as follows:

GiiZi(k) = gi, (3.5)

Zi(k) = [Xi(k)T ,∆Ui(k)T ]T , (3.6)

where the vectors of predicted states and predicted input moves are defined as:

Xi(k) = [x̂i(k + 1|k)T , x̂i(k + 2|k)T , ..., x̂i(k +Hp|k)T ]T ,

∆Ui(k) = [∆ûi(k|k)T ,∆ûi(k + 1|k)T , ...,∆ûi(k +Hu − 1|k)T ]T .

The matrix Gii is defined as:

Gii =


Ini 0 0 . . . 0 −Bii 0 0 . . . 0
−Aii Ini 0 . . . 0 −Bii −Bii 0 . . . 0

0 . . .
. . .

... . . . . . .
. . .

...
0 . . . 0 −Aii Ini −Bii −Bii . . . −Bii −Bii

 , (3.7)

︸ ︷︷ ︸ ︸ ︷︷ ︸
GA ii GB ii

where the dimensions of GA ii and GB ii are ((Hp · ni)× (Hp · ni)) and

((Hp · ni)× (Hu · qi)), respectively. The matrix Ini in (3.7) is the identity matrix

of dimensions ni × ni. The vector gi in equation (3.5) is defined as:

gi =


∑N

j=1Aijxj(k) +Bijuj(k − 1)∑N
j=1 Bijuj(k − 1)

...∑N
j=1 Bijuj(k − 1)

 }
repeated
(Hp − 1) times,

(3.8)
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and it includes measured data, such as the effect of current state variables and past

input variables from the plant.

Assuming that the vector of desired state values to be tracked in each subsystem

(Xi sp) is provided, then the decentralized MPC control problem can be formulated

for each subsystem i as follows:

min
Xi,∆Ui

Φi =
1

2

((
Xi sp −Xi(k)

)TQi(Xi sp −Xi(k)
)

+ ∆Ui(k)TRi∆Ui(k)
)

subject to : (3.9)

GiiZi(k) = gi.

The matrices Qi and Ri in (3.9) are defined as Qi = diag(Qi(1), Qi(2), . . . , Qi(Hp))

and Ri = diag(Ri(0), Ri(1), . . . , Ri(Hu − 1)), where the weighting matrices Qi(.) ∈

<ni×ni
+

and Ri(.) ∈ <qi×qi+
are positive definite matrices with their off-diagonal

elements equal to zero.

3.4 Unconstrained Coordinated-Distributed MPC

Control

In this section, the CDMPC control scheme is formulated. In Section 3.4.1, the process

models used in the decentralized MPC controllers are modified to incorporate the

effect of the interactions between the subsystems. In Section 3.4.2, the decentralized

objective function is augmented by an extra term, which includes a price and is

required for coordination of the subsystems. The price update mechanism is presented

in Section 3.4.3 along with the implementation of the CDMPC controllers in Section

3.4.4.

3.4.1 Process Models used in the CDMPC Controllers

In order to design the CDMPC controllers, equations (3.3) and (3.5) need to be

modified. Process model (3.3) is modified to include the interactions between
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subsystems as follows:

x̂i(k + l + 1|k) = Aiix̂i(k + l|k) +Biiûi(k + l|k)+∑
j 6=i
(
βiAijxj(k) +Bijuj(k − 1)

)
+ v̂i(k + l|k),

for l = 0, ..., Hp − 1,

x̂i(k|k) = xi(k),

βi = 1, for l = 0,

βi = 0, for l = 1, ..., Hp − 1,

(3.10)

where ûi(k + l|k) is defined as in equation (3.4). The variables v̂i in (3.10) represent

the effect of predicted x̂sj and ∆ûsj on the local subsystem i, where j 6= i. The variables

v̂i are not decision variables in the local optimization problem of each subsystem i

and they are given by:

v̂i(k + l|k) =
∑

j 6=i βiAijx̂
s
j(k + l|k)+∑

j 6=iBij

(∑l
ν=0 ∆ûsj(k + ν|k)

)
, for l = 0, ..., Hp − 1,

βi = 0, for l = 0,

βi = 1, for l = 1, ..., Hp − 1,

∆ûsj(k + l|k) = 0, Hu ≤ l ≤ Hp − 1.

(3.11)

The superscript ‘s’ denotes the iteration step in the coordination algorithm as the

algorithm converges to a solution during a control interval. It is appended to x̂j

and ∆ûj to indicate that these variables are predicted by a coordinator at iteration

step ‘s’ (see Section 3.4.3 and Section 3.4.4). Finally, the model for the variables in

local subsystem i, including the predicted effect of the interactions from the other

subsystems, can be obtained from (3.10) and (3.11) as follows:

GiiZi(k) = gi − Vi(k),

where Zi(k), Gii and gi are defined in (3.6), (3.7) and (3.8), respectively and

Vi(k) =
∑
j 6=i

GijZ
s
j (k), (3.12)

Zs
j (k) = [Xs

j (k)T ,∆U s
j (k)T ]T . (3.13)

The state variables predicted by the coordinator are given by:

Xs
j (k) = [x̂sj(k + 1|k)T , x̂sj(k + 2|k)T , ..., x̂sj(k +Hp|k)T ]T ,
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and the vector of input control moves ∆U s
j (k) is given by:

∆U s
j (k) = [∆ûsj(k|k)T ,∆ûsj(k + 1|k)T , ...,∆ûsj(k +Hu − 1|k)T ]T .

The matrix Gij is defined as:

Gij =


0 0 0 . . . 0 −Bij 0 0 . . . 0
−Aij 0 0 . . . 0 −Bij −Bij 0 . . . 0

0 . . .
. . .

... . . . . . .
. . .

...
0 . . . 0 −Aij 0 −Bij −Bij . . . −Bij −Bij

 , (3.14)

︸ ︷︷ ︸ ︸ ︷︷ ︸
GA ij GB ij

where the dimensions of GA ij and GB ij are ((Hp · ni)× (Hp · nj)) and

((Hp · ni)× (Hu · qj)), respectively.

3.4.2 Formulation of CDMPC Controllers

The CDMPC controller for each subsystem i (i = 1, ..., N) is formulated as follows:

min
Xi,∆Ui

Ji = Φi + ps
T

i Θi[Xi(k)T ,∆Ui(k)T ]T

subject to : (3.15)

GiiZi(k) = gi − Vi(k),

where the objective function Φi is defined in (3.9). The objective function in optimal

control problem (3.15) differs from the objective function in (3.9) by the term

‘ps
T

i Θi[Xi(k)T ,∆Ui(k)T ]T ’. This term is only a minor modification to the objective

function of decentralized control problem (3.9) and it is needed to coordinate the

optimal solutions of the local subsystems in order to achieve the centralized optimal

solution (see proof of Theorem 3.5.1). The elements of the price vector ‘psi ’ are

computed by a coordinator based on the price update mechanism described in Section

3.4.3.

The matrix Θi in (3.15) takes into account the effect of the local decision variables
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on the other subsystems. For example, for i = 1, i = 2 and i = N , Θi becomes:

Θ1 =



0

G21

. . .

GN1


, Θ2 =



G12

0

. . .

GN2


and ΘN =



G1N

G2N

. . .

0


. (3.16)

The matrices Gji in (3.16), with j 6= i, can be constructed by inverting the subscripts

‘j’ and ‘i’ in equation (3.14). Finally, optimal control problem (3.15) can be

reformulated in a compact form for each subsystem i as follows:

min
Zi
Ji =

1

2

(
Zi(k)TΥiZi(k)

)
+
(
φTi + ps

T

i Θi

)
Zi(k)

subject to : (3.17)

GiiZi(k) = gi − Vi(k),

where Υi = diag(Qi,Ri) and φTi = −[XT
i spQi, 0, ..., 0︸ ︷︷ ︸

1×(Hu×qi)

].

3.4.3 Prediction-Driven Coordination Algorithm

In this section, a prediction-driven algorithm is developed to coordinate local CDMPC

controllers. The prediction-driven algorithm formulated in this section is adapted

from the prediction-driven coordination algorithm derived in Chapter 2. As discussed

in Chapter 2, the prediction-driven algorithm includes two types of calculations, which

are performed by the coordinator at each iteration step ‘s’. In the first type of

calculations, the coordinator predicts the subsystems’ state variables using the entire

plant process model. In the second type of calculations, the coordinator updates

the price vector. The price vector is required by the subsystems to solve their own

optimal control problems.

Prediction of the state variables:

The states Xs
i (k) for the subsystems are predicted by the coordinator according to
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the mathematical model for the entire process:
GA 11 . . . GA 1N

GA 21 . . . GA 2N

. . .
. . .

...

GA N1 . . . GA NN



Xs

1(k)

Xs
2(k)

. . .

Xs
N (k)

 =


g1

g2

. . .

gN

−


GB 11 . . . GB 1N

GB 21 . . . GB 2N

. . .
. . .

...

GB N1 . . . GB NN




∆Us1 (k)

∆Us2 (k)

. . .

∆UsN (k)

 , (3.18)

where the control moves ∆U s
i (k) in (3.18) are equal to the optimal control moves

∆Ui(k) calculated by each CDMPC controller i, for i = 1, ..., N . The matrices GA ii,

GB ii, GA ij and GB ij in (3.18) are defined in equations (3.7) and (3.14).

Price update:

To coordinate the control problems for the subsystems, a coordinator calculates the

full price vector λscoor . The price vector psi required in optimization problem (3.17) is

a subset of the full price vector λscoor . The price vector λscoor is calculated by solving

the set of linear equations:

GTλscoor = −
(

ΥZs
coor(k) + φ

)
, (3.19)

provided that the entire system has been modeled to ensure that the matrix G is full

rank. Equation (3.19) is an approximation of equation (3.24) and it is required in

the coordination algorithm to ensure that the centralized optimal solution is achieved

(see proof of Theorem 3.5.1).

Matrix G in equation (3.19) is constructed by arranging the model coefficients of all

the subsystems, as follows:

G =


G11 G12 . . . G1N

G21 G22 . . . G2N

. . .
...

. . .
...

GN1 GN2 . . . GNN

 .

The matrix Υ and the vector φ in (3.19) are denoted as Υ = diag(Υ1,Υ2, ...,ΥN) and

φ = [φT1 , φ
T
2 , . . . , φ

T
N ]T , respectively. The vector Zs

coor(k) in (3.19) is defined as:

Zs
coor(k) =

[
Xs

1(k)T ,∆U s
1 (k)T , Xs

2(k)T ,∆U s
2 (k)T , ..., Xs

N(k)T ,∆U s
N(k)T

]T
. (3.20)
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The coordinator’s tasks at each iteration step ‘s’ (for s ≥ 1) can be summarized as

follows1:

1. the coordinator predicts the value of the state variables Xs
i (k) according to

equation (3.18) and the input moves calculated by the subsystems (∆U s
i (k) =

∆Ui(k)), for i = 1, ..., N ;

2. the coordinator constructs the vector Zs
coor(k) using the predicted states Xs

i (k)

and the input moves ∆U s
i (k), for i = 1, ..., N ;

3. the coordinator computes the full price vector λscoor by solving the set of linear

equations (3.19). The vector λscoor is arranged as λscoor = [λs
T

1 , λs
T

2 , ..., λs
T

N ]T ,

where the elements λsi have dimensions ((Hp · ni)× 1), for i = 1, . . . , N ;

4. the coordinator calculates the price vector psi for each subsystem i, for i =

1, ..., N . The price psi is then communicated to each subsystem, where it is used

to solve the local optimization problem (3.17). The price psi required in the

local optimization problem (3.17) includes all the elements of the price vector

λs, except the components λsi . For example, for i = 1, i = 2 and i = N , psi

becomes:

ps1 = [0
T

, λs
T

2 , ..., λs
T

N ]T ,

ps2 = [λs
T

1 , 0
T

, ..., λs
T

N ]T , and

psN = [λs
T

1 , λs
T

2 , ..., 0
T

]T .

(3.21)

Steps 1 to 4, described above, include all the calculations carried out by the

coordinator at each iteration step in order to update the price vector psi for each

subsystem. In Section 3.4.4, all the steps in the coordination algorithm are described

along with the implementation of the CDMPC controllers.

3.4.4 Implementation of the CDMPC Controllers

As described in Section 3.1, one of the features of the MPC control is its receding

horizon approach. For the implementation of a standard MPC controller, a sequence

1Step s = 0 is the initialization step in the prediction-driven algorithm and it is described in
Section 3.4.4.
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of Hu control input moves is calculated at each sampling instant by optimizing an

objective criterion over a specified time horizon. Only the first control input move of

the calculated sequence is applied to the process. Then, a new sequence is calculated

at the next sampling instant, after new measurements become available; only the

first control input move is implemented. This procedure is repeated at each sampling

instant (Camacho and Bordons, 1999; Maciejowski, 2002).

In CDMPC control, the implementation steps of standard MPC are kept, but the

coordinator imposes an additional step. During a single control interval and before

the first calculated control input move is implemented, the coordinator exchanges

information with the local CDMPC controllers. During this data exchange, the

coordinator iteratively adjusts the price vector to drive the calculated optimal solution

of the subsystems to the centralized optimal solution. The information exchanged

between the coordinator and the local CDMPC controllers is shown in Figure 3.3. The

implementation of the CDMPC controllers is carried out according to the following

steps:

1. Initialization2 (s = 0): The coordinator sets an initial value for the vector

Z0
coor(k) (see equation (3.20)) and for the full price vector λ0

coor . For initialization,

the elements of the vectors Z0
coor(k) and λ0

coor can be set to zero. The coordinator

sends the predicted variables Z0
j (k), with j 6= i (see equation (3.13)), and

the corresponding price vector p0
i (see equation (3.21)) to each local CDMPC

controller.

2. Optimization performed by each local CDMPC controller: Based on

the information provided by the coordinator, each local CDMPC controller

calculates the interacting variables Vi(k) (see equation (3.12))3, and solves

the local optimization problem (3.17). The optimal control input moves

2Initializing the prediction-driven algorithm with Z0
coor(k) = 0 and λ0

coor = 0 allows the solutions
obtained with the CDMPC controllers at iteration step s=0 to be equal to the solutions obtained
by the decentralized controllers. Recall that the existing decentralized controllers are assumed to
provide stable operations for the entire process.

3Alternatively, the interacting variables Vi(k) could be computed by the coordinator, rather than
being computed by each local CDMPC controller. If the variables Vi(k) were computed by the
coordinator, model maintenance would be easier. Nevertheless, it would increase the computational
load of the coordinator.
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calculated by each CDMPC controller i, ∆Ui(k), are communicated back to

the coordinator.

3. Price update: The iteration counter ‘s’ is incremented. The coordinator

collects the control input moves ∆Ui(k) calculated by each CDMPC controller.

Then, the coordinator predicts the states Xs
i (k) for each subsystem based on

the control input moves ∆U s
i (k) = ∆Ui(k), with i = 1, . . . , N , and using

the entire process model (3.18). Next, the coordinator constructs the vector

Zs
coor(k) (see equation (3.20)). Using Zs

coor(k) and price update mechanism

(3.19), the coordinator calculates the full price vector λscoor . The coordinator

sends the predicted variables Zs
j (k) with j 6= i (see equation (3.13)), and the

corresponding psi to each local CDMPC controller.

4. Iteration until convergence: Steps (2)-(3) are repeated until the

prediction-driven coordination algorithm is terminated. The prediction-driven

coordination algorithm is terminated when ‖∆U s+1(k) − ∆U s(k)‖ ≤ ε, where

ε is a specified error tolerance and the vector ∆U s(k) is defined as ∆U s(k) =[
∆U s

1 (k)T ,∆U s
2 (k)T , ...,∆U s

N(k)T
]T

.

5. Implementation of the first calculated control move: Once the

prediction-driven coordination algorithm is terminated, the first calculated

control input moves ∆ûi(k|k) are implemented in each subsystem i, while

the rest of the calculated control input moves are discarded. The iteration

counter ‘s’ in the coordination algorithm is reset to zero and the coordinated

optimization problems (steps (1)-(4)) are initiated again for the next receding

horizon.

3.5 Coordination Algorithm Convergence

Analysis

In this section, a convergence analysis for the proposed prediction-driven coordination

algorithm is presented. Theorem 3.5.1 shows that at convergence, the solutions
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Figure 3.3: Communication between the coordinator and the local CDMPC
controllers

obtained with the CDMPC controllers are equivalent to the centralized optimal

solution. Theorem 3.5.2 describes the behaviour of the prediction-driven method

as the coordination algorithm evolves throughout the iterations.

3.5.1 Coordination Algorithm Accuracy

In this section, the ability of the CDMPC controllers to achieve the centralized optimal

solution is shown. This can be accomplished by first defining the centralized control

problem. The centralized control problem can be formulated as:

min
Z
Jcen =

N∑
i=1

Φi

subject to : (3.22)

GZ(k) = g,

where Φi is defined in (3.9). The vector g is defined as g = [gT1 , g
T
2 , . . . , g

T
N ]

T
and the

elements of the vector Z(k) are arranged in the same order as the elements in Zs
coor(k)

(see equation (3.20)).

Theorem 3.5.1 Consider that the entire process system (3.1) is controlled by

N coordinated-distributed MPC controllers (3.17) that are coordinated using

the prediction-driven coordination algorithm (3.18)-(3.19). When ‖∆U s+1(k) −

∆U s(k)‖ → 0, then the optimal solutions obtained with the CDMPC controllers

converge to the centralized optimal solution.

Proof :
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Centralized control problem:

For the purpose of this proof, and to compare the centralized optimal solution with

the solutions obtained with the CDMPC controllers, let us re-write centralized control

problem (3.22) as follows:

min
Z
Jcen =

1

2

(
Z(k)TΥZ(k)

)
+ φTZ(k)

subject to : (3.23)

GZ(k) = g.

The Lagrangian Lcen for the centralized control problem (3.23) can be formulated as:

Lcen =
1

2

(
Z(k)TΥZ(k)

)
+ φTZ(k) + λT

(
GZ(k)− g

)
.

Then, the first-order optimality conditions can be written as:

ΥZ∗(k) + φ+GTλ∗ = 0, (3.24)

GZ∗(k)− g = 0, (3.25)

where Z∗(k) and λ∗ represent the optimal values for Z(k) and λ, respectively.

In equation (3.24), the matrix G can be written as: G = Ḡ + Θ̄, with Ḡ =

diag(G11, G22, . . . , GNN) and Θ̄ = [Θ1 | Θ2 | . . . | ΘN ]. Then, equation (3.24)-(3.25)

can be re-written as:

ΥZ∗(k) + φ+ ḠTλ∗ + Θ̄Tλ∗ = 0, (3.26)

ḠZ∗(k) + Θ̄Z∗(k)− g = 0. (3.27)

Coordinated-distributed control problems:

Next, let us calculate the first-order optimality conditions for the subproblems. The

Lagrangian Li for subproblem (3.17), for i = 1, . . . , N , is:

Li =
1

2

(
Zi(k)TΥiZi(k)

)
+
(
φTi + ps

T

i Θi

)
Zi(k) + λTi

(
GiiZi(k) + Vi(k)− gi

)
.

Therefore, the first-order optimality conditions for subproblem i becomes:

ΥiZi(k) + φi + ΘT
i p

s
i +GT

iiλi = 0, (3.28)

GiiZi(k) + Vi(k)− gi = 0. (3.29)
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The first-order optimality conditions (3.28)-(3.29) can be written for all the

subproblems as:

ΥZ
CDMPC

(k) + φ+ ḠTλ
CDMPC

+ Θ̄Tλscoor = 0, (3.30)

ḠZ
CDMPC

(k) + Θ̄Zs
coor(k)− g = 0, (3.31)

where Z
CDMPC

(k) =
[
Z1(k)T , Z2(k)T , . . . , ZN(k)T

]T
and λ

CDMPC
=
[
λT1 , λ

T
2 , . . . , λ

T
N

]T
.

The coordination algorithm converges once ‖∆U s+1(k)−∆U s(k)‖ has been driven

to zero. Due to the structure of the prediction-driven algorithm (3.18)-(3.19) and

optimal control problem (3.17), when the coordination algorithm converges, the

variables predicted by the coordinator are equal to the centralized optimal solutions.

That is: λscoor = λ∗ and Zs
coor(k) = Z∗(k). Then, equations (3.30)-(3.31) become:

ΥZ
CDMPC

(k) + φ+ ḠTλ
CDMPC

+ Θ̄Tλ∗ = 0, (3.32)

ḠZ
CDMPC

(k) + Θ̄Z∗(k)− g = 0. (3.33)

It can be shown from equations (3.26)-(3.27) and (3.32)-(3.33) that Z
CDMPC

(k) =

Z∗(k) and λ
CDMPC

= λ∗, provided that the entire system has been modeled to ensure

that the column-rank(ḠT ) = dim(λ∗). As a result, the optimal solutions obtained

with the CDMPC controllers achieve the optimal solutions obtained with a centralized

controller. This proves that, in order to achieve the centralized optimal solution, the

term ‘ps
T

i ΘiZi(k)’ is required in the optimal control problems of the subsystems, using

psi for the price vector in the local control problems, and λscoor as the full price vector.

2

3.5.2 Coordination Algorithm Behaviour

Theorem 3.5.2 is presented in this section to describe the behaviour of the prediction-

driven coordination algorithm throughout the iterations. A convergence condition

is provided in Theorem 3.5.2 and it can be computed off-line to verify whether the

coordination algorithm will converge for the selected controller tunings. The objective

functions Φ(∆U(k), V (k)) and Jcen(∆U(k)) are required to compute the convergence

condition in Theorem 3.5.2, and they are defined as shown below.
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The objective function Φ is defined as:

Φ =
N∑
i=1

Φi, (3.34)

where Φi is given in (3.9). The predicted states in subproblem (3.17) for the specified

prediction and control horizons can be expressed as: Xi(k) = Si(∆Ui(k), Vi(k)), for

i = 1, ..., N . Then, the objective function Φi is written in terms of the control input

moves as follows:

Φi(∆Ui(k), Vi(k)) = 1
2

((
Xi sp − Si(∆Ui(k), Vi(k))

)TQi

(
Xi sp − Si(∆Ui(k), Vi(k))

)
+

∆Ui(k)TRi∆Ui(k)
)

.
(3.35)

From (3.34) and (3.35), the objective function Φ can be expressed as a function of

the control input moves as follows:

Φ(∆U(k), V (k)) = 1
2

∑N
i=1

((
Xi sp − Si(∆Ui(k), Vi(k))

)TQi

(
Xi sp − Si(∆Ui(k), Vi(k))

)
+

∆Ui(k)TRi∆Ui(k)
)

.
(3.36)

Let X
CDMPC

(k) be the vector that contains all the predicted state variables Xi(k)

from the distributed control problem (3.17), for i = 1, ..., N . That is, X
CDMPC

(k) =

[X1(k)T , X2(k)T , . . . , XN(k)T ]
T
. Then, the vector X

CDMPC
(k) can be written as:

X
CDMPC

(k) = S(∆U(k), V (k)), with ∆U(k) =
[
∆U1(k)T ,∆U2(k)T , ...,∆UN(k)T

]T
and V (k) =

[
V1(k)T , V2(k)T , ..., VN(k)T

]T
. Let K be the mapping from the set of

∆U(k) to the set of interacting variables V (k), that is V (k) = K(∆U(k)). Then, the

vector of all predicted states can be written as:

X
CDMPC

(k) = S(∆U(k), K(∆U(k))). (3.37)

Let us, also, express the predicted states for centralized control problem (3.22) as a

function of the control input moves for the specified prediction and control horizons,

as follows:

X(k) = S(∆U(k)), (3.38)

where the elements of the vector X(k) are arranged in the same order as the elements

of the vector X
CDMPC

(k). Next, the centralized objective function Jcen in (3.22) can

be expressed in terms of the control input moves as:

Jcen(∆U(k)) = 1
2

((
Xsp − S(∆U(k))

)TQ(Xsp − S(∆U(k))
)

+ ∆U(k)TR∆U(k)
)
, (3.39)
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where Xsp = [XT
1 sp, X

T
2 sp, . . . , X

T
N sp]

T , Q = diag(Q1,Q2, . . . ,QN) and R =

diag(R1,R2, . . . ,RN). Finally, the objective functions Jcen(∆U(k)) in (3.39) and

Φ(∆U(k), V (k)) in (3.36) are differentiated to obtain:

Ψ =
d2Jcen
d∆U(k)2

, (3.40)

Ω = diag(Ωi), (3.41)

with: Ωi =
∂2Φ

∂∆Ui(k)2
, for i = 1, ..., N.

The matrices Ψ in (3.40) and Ω in (3.41) are used to compute the convergence

condition C1 in Theorem 3.5.2.

Theorem 3.5.2 Consider that the prediction-driven coordination algorithm (3.18)-

(3.19) is used to coordinate CDMPC controllers, and let us assume that:

C1 : W =
(
Ω− Ψ

2

)
is positive definite.

Then:

• the objective function Jcen(∆U s(k)) decreases monotonically as the number of

iterations ‘s’ increases;

• as the number of iterations ‘s’ →∞, the control input moves ∆U s(k) converge

to the centralized optimal control input moves ∆U∗(k).

Proof4:

It can be shown from equations (3.37) and (3.38) that for any given ∆U(k):

S(∆U(K)) = S(∆U(k), K(∆U(k))). (3.42)

Then, from equations (3.36), (3.39) and (3.42), we obtain5:

Jcen(∆U(k)) = Φ(∆U(k), V (k)), (3.43)

4Theorem 3.5.2 is developed in this chapter as an extension of the convergence analysis provided
in (Cohen, 1977) for coordination of continuous-time linear quadratic regulators. The proof for
Theorem 3.5.2 could be inferred from (Cohen, 1977). Nevertheless, all the steps in the proof are
included in this chapter because some of the intermediate results in the proof are required for the
stability analysis presented in Section 3.6.2.

5To compute the centralized objective function Jcen(∆U(k)) in (3.43) and the CDMPC objective
function Ji(∆Ui(k)) in (3.45), the reduced space of their decision variables is considered.
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and:

dJcen/d∆U(k) = ∂Φ/∂∆U(k) + (∂Φ/∂V (k))(dV (k)/d∆U(k)). (3.44)

The objective function Ji for each CDMPC control problem (3.15) can be written as:{
Ji(∆Ui(k)) = Φi(∆Ui(k), Vi(k)) + Λi(∆U

s(k))∆Ui(k),

Λi(∆U
s(k)) = (∂Φ/∂V (k))(∂V (k)/∂∆Ui(k))|∆Us(k),

(3.45)

where Λi(∆U
s(k))∆Ui(k) = ps

T

i Θi[Xi(k)T ,∆Ui(k)T ]T for optimization problem

(3.15). Note that for a given ∆U s(k), the optimal solution for each subproblem with

objective function (3.45) is ∆Ui(k) = ∆U s+1
i (k). That is, dJi/d∆Ui(k)|∆Us+1

i (k) = 0.

Next, let us perform a Taylor series expansion6 of the centralized objective

function Jcen(∆U(k)) in (3.39) around the centralized optimum ∆U∗(k). By taking

J ′cen(∆U(k)) = dJcen/d∆U(k), we obtain:

(J ′cen(∆U(k)))T = Ψ(∆U(k)−∆U∗(k)), (3.46)

where Ψ = d2Jcen/d∆U(k)2. We can then evaluate J ′cen(∆U(k)) at ∆U(k) for

iteration step ‘s’ to obtain:

(J ′cen(∆U s(k)))T = Ψ(∆U s(k)−∆U∗(k)). (3.47)

Let us perform a Taylor series expansion of the subsystems’ objective function Ji
around optimum ∆U s+1

i (k). Then, by taking J ′i (∆Ui(k)) = dJi/d∆Ui(k), we get:

(J ′i (∆Ui(k)))T =
d2Ji

d∆Ui(k)2
(∆Ui(k)−∆U s+1

i (k)). (3.48)

It can be observed from (3.45) that d2Ji/d∆Ui(k)2 = d2Φi/d∆Ui(k)2. Let us define

Ωi = d2Φi/d∆Ui(k)2 = ∂2Φ/∂∆Ui(k)2. Then, equation (3.48) becomes:

(J ′i (∆Ui(k)))T = Ωi(∆Ui(k)−∆U s+1
i (k)).

Next, we can evaluate J ′i (∆Ui(k)) at ∆Ui(k) for iteration step ‘s’ to obtain:

(J ′i (∆U s
i (k)))T = Ωi(∆U

s
i (k)−∆U s+1

i (k)). (3.49)

6In this section, the Taylor series expansions include up to the quadratic term because they
are used to approximate quadratic objective functions. The remainder term in the Taylor series
expansion is neglected.
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Let us express objective function JCDMPC as the objective function that includes the

contributions from all the subsystems. That is, JCDMPC =
∑N

i=1 Ji. Then, using

equation (3.49) for i = 1, ..., N , we can calculate J ′CDMPC(∆U s(k))) as follows:

(J ′CDMPC(∆U s(k)))T = Ω(∆U s(k)−∆U s+1(k)), (3.50)

where Ω = diag(Ω1,Ω2, ...,ΩN). Then, from equations (3.44), (3.45), (3.47) and

(3.50), we get:

∆U s(k)−∆U s+1(k) = Ω−1Ψ(∆U s(k)−∆U∗(k)). (3.51)

Finally, let us perform a Taylor series expansion of the centralized objective function

Jcen(∆U(k)) around control input move ∆U s+1(k), and let us use equation (3.46)

evaluated at ∆U s+1(k) and equation (3.51) to obtain:

Jcen(∆Us(k))− Jcen(∆Us+1(k)) = (∆Us(k)−∆U∗(k))T ΨΩ−1
(

Ω− Ψ
2

)
Ω−1Ψ(∆Us(k)−∆U∗(k)).

(3.52)

If W = (Ω− Ψ
2

) is positive definite, then Jcen(∆U s(k)) decreases monotonically with

the number of iterations ‘s’ for ∆U s(k) 6= ∆U∗(k). In addition,

Jcen(∆U s(k))− Jcen(∆U s+1(k)) ≥ σmin(W )‖Ω−1Ψ(∆U s(k)−∆U∗(k))‖2, (3.53)

where σmin(W ) > 0 is the minimum eigenvalue of the positive definite matrix W .

Then, as s → ∞, ∆U s(k) → ∆U∗(k). Furthermore, as s → ∞, Jcen(∆U∞(k)) =

Jcen(∆U∗(k)) and inequality (3.53) has an upper bound given by:

Jcen(∆U s(k))− Jcen(∆U∗(k)) ≥ Jcen(∆U s(k))− Jcen(∆U s+1(k)).

2

Remark 3.5.1 Condition C1 in Theorem 3.5.2 can be computed off-line and it

depends on the properties of the entire plant, as well as weighting matrices; that

is, Ψ = Ψ(A,B,Q,R) and Ωi = Ωi(Aii, Bii,Qi,Ri).

If condition C1 in Theorem 3.5.2 is not satisfied for the proposed coordinated-

distributed control formulation, this can be overcome by modifying the objective
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function Ji in (3.17). The modification can be accomplished by including the following

quadratic ‘prediction error term’ in the objective function Ji of each subsystem:

1
2

(
(Xs

i (k)−Xi(k))T γQi(X
s
i (k)−Xi(k)) + (∆Us

i (k)−∆Ui(k))T γRi(∆U
s
i (k)−∆Ui(k))

)
, (3.54)

where γ is a positive scalar.

As discussed in Chapter 2, quadratic terms similar to (3.54) have been used in

the static optimization literature and they are referred to as the ‘proximal term’

(Rockafellar, 1976; Chen and Teboulle, 1994). A term similar to (3.54) was also

proposed in (Cohen, 1977) to ensure that the optimal solutions obtained with the local

linear quadratic regulators achieve the centralized optimal solution. The term (3.54)

has the same effect in the prediction-driven coordination algorithm as discussed in

Chapter 2 and the method for tuning the parameter γ described in Chapter 2 also

applies for the parameter γ in the proximal term (3.54).

When the proximal term (3.54) is included in the optimization problem of each

subsystem, the information exchanged between the CDMPC controllers and the

coordinator needs to be adjusted. If the term (3.54) is included in the objective

function (3.17), the coordinator needs to communicate Zs
i (k) to each subsystem apart

from Zs
j (k) and psi (see steps 1 and 3 of the implementation of CDMPC controllers,

Section 3.4.4).

3.6 Stability Analysis

In this section, the stability of the nominal closed-loop system under state-feedback

coordinated-distributed control is studied. The term nominal system refers to the

case when there are no disturbances affecting the process, and the process dynamics

are perfectly represented by the process model. For simplicity and without loss of

generality, the regulation control problem will be used, where the set-point Xi sp = 0,

for i = 1, . . . , N , and the state variables in each subsystem i are driven to the origin.

Two distinct cases are considered for the stability analysis. The first case shows

the stability of the closed-loop system when the coordination algorithm is allowed

to iterate until its convergence is achieved (Section 3.6.1). The second case studies
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the stability of the closed-loop system when the coordination algorithm is stopped

before it converges and the optimal solution obtained with the CDMPC controllers is

confined to a set that belongs to a neighborhood of the centralized optimal solution

(Section 3.6.2).

3.6.1 Stability upon Convergence of the Coordination
Algorithm

In this section, the stability of the entire closed-loop system under state-feedback

coordinated-distributed control is studied for the case when the prediction-driven

coordination algorithm is allowed to iterate within each control interval until

convergence is achieved.

First, an infinite (or sufficiently long) prediction horizon is considered for the

formulation of the CDMPC controllers. Then, it is shown that for subsystems with

a particular form of interactions, the formulation of the CDMPC controllers using

infinite prediction horizon can be written as a finite horizon problem with a terminal

penalty.

3.6.1.1 Infinite prediction horizon

Here, the stability of the entire closed-loop system under state-feedback

coordinated-distributed control is shown for the CDMPC controllers constructed

using an infinite prediction horizon. An infinite prediction horizon implies a prediction

horizon sufficiently long to ensure that the optimal solutions calculated by the local

CDMPC controllers do not change from one sampling instant to the next one. This

idea invokes Bellman’s principle of optimality (Bellman, 1957), which states that the

“tail” of any optimal trajectory is itself the optimal trajectory from its starting point

(Maciejowski, 2002).

Theorem 3.6.1 Consider that the entire process system (3.1) is controlled by

N coordinated-distributed MPC controllers (3.17) that are coordinated using the

prediction-driven coordination algorithm (3.18)-(3.19). Let us assume that the

following conditions are satisfied:
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C1 : A is stable;

C2 : weighting matrices Qi(.) = Qi and Ri(.) = Ri are positive definite and constant

throughout the prediction and control horizons, for i = 1, . . . N ;

C3 : the control interval is sufficiently long to ensure that the prediction-driven

coordination algorithm converges.

Then, the entire closed-loop system under CDMPC control is asymptotically stable.

Proof : As defined in Section 3.5.2, the objective function JCDMPC includes the

contributions from all the subsystems. That is, JCDMPC =
∑N

i=1 Ji. Let J ∗CDMPC(k)

be the optimal value of objective function JCDMPC(k) at time ‘k’. To prove stability

under coordinated-distributed control, it is sufficient to show that J ∗CDMPC(k) is a

Lyapunov function for the entire closed-loop system.

If conditions C1, C2 and C3 in Theorem 3.6.1 are satisfied then, within each control

interval, the optimal solutions obtained with the coordinated-distributed control

scheme converge to the centralized optimal solution. Considering the nominal case,

the objective function J ∗CDMPC(k) can be written for the regulatory control problem

as:

J ∗CDMPC(k) =
1

2

N∑
i=1

( ∞∑
l=1

||x̂∗i (k + l|k)||2Qi +
Hu∑
l=1

||∆û∗i (k + l − 1|k)||2Ri
)
, (3.55)

where x̂∗i and ∆û∗i denote the optimal values for the predicted state variables x̂i and

predicted control moves ∆ûi, for i = 1, ..., N .

At time ‘k + 1’ the new optimization problem is solved for the CDMPC control

scheme, with initial condition xi(k+ 1), for i = 1, ..., N . The nominal process models

are considered in this stability study; thus, xi(k + 1) = x̂∗i (k + 1|k), for i = 1, ..., N .

At time ‘k + 1’, we get:

J ∗CDMPC(k + 1) ≤ J ∗CDMPC(k)− 1

2

N∑
i=1

(
||xi(k + 1)||2Qi + ||∆ui(k)||2Ri

)
,

J ∗CDMPC(k + 1) < J ∗CDMPC(k).

(3.56)

It can be observed from (3.55) that J ∗CDMPC(k) ≥ 0, and J ∗CDMPC(k) = 0 only

if (x̂∗i ,∆u
∗
i ) = (0, 0) for i = 1, ..., N . Moreover, from equation (3.56), we get:
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J ∗CDMPC(k + 1) − J ∗CDMPC(k) < 0 for (x̂∗i ,∆u
∗
i ) 6= (0, 0) for i = 1, ..., N . Thus,

J ∗CDMPC(k) is a Lyapunov function for the entire closed-loop system, which shows

in turn that the nominal closed-loop system under state-feedback CDMPC control is

asymptotically stable.

2

3.6.1.2 Finite horizons

Here, it is shown that the CDMPC formulation using an infinite prediction horizon

in Section 3.6.1 can be relaxed for subsystems that are coupled only through the

control inputs. This means that the interacting variables v̂i(k+ l|k) in equation (3.11)

are defined as: v̂i(k+ l|k) =
∑

j 6=i

(
Bij

∑l
ν=0 ∆ûsj(k+ ν|k)

)
, for l = 0, .., Hp− 1, with

∆ûsj(k + l|k) = 0 for Hu ≤ l ≤ Hp − 1.

Theorem 3.6.2 Consider that the entire process system (3.1) is controlled by

N coordinated-distributed MPC controllers (3.17) that are coordinated using the

prediction-driven coordination algorithm (3.18)-(3.19). Let us assume that the

following conditions are satisfied:

C1 : matrix A = diag(A11, A22, . . . , ANN), where Aii is stable for i = 1, . . . , N ;

C2 : weighting matrices Qi(.) = Qi and Ri(.) = Ri are positive definite and constant

throughout the prediction and control horizons, for i = 1, . . . N ;

C3 : the control interval is sufficiently long to ensure that the prediction-

coordination algorithm converges.

Then, the entire closed-loop system under CDMPC control is asymptotically stable.

Proof : If conditions C1, C2 and C3 in Theorem 3.6.2 are satisfied then, within

each control interval, the optimal solutions obtained with the coordinated-distributed

control scheme converge to the centralized optimal solution. Furthermore, equation



Sec. 3.6 Stability Analysis 64

(3.55), can be re-written as:

J ∗CDMPC(k) =
1

2

N∑
i=1

( ∞∑
l=Hu

||x̂∗i (k + l|k)||2Qi +
Hu−1∑
l=1

||x̂∗i (k + l|k)||2Qi
)

+

1

2

N∑
i=1

( Hu∑
l=1

||∆û∗i (k + l − 1|k)||2Ri
)
.

(3.57)

For the regulatory control problem, ûi(k + l − 1|k) = 0 for l ≥ Hu. As a result,

equation (3.57) can be simplified as:

J ∗CDMPC(k) =
1

2

N∑
i=1

(
||x̂∗i (k +Hu|k)||2

Qi

+
Hu−1∑
l=1

||x̂∗i (k + l|k)||2Qi
)

+

1

2

N∑
i=1

( Hu∑
l=1

||∆û∗i (k + l − 1|k)||2Ri
)
,

(3.58)

where Qi is the terminal penalty for each subsystem and it is the solution to the

Lyapunov equation A
T

iiQiAii − Qi = −Qi for i = 1, . . . , N . The rest of the proof

follows as in Section 3.6.1.1 with J ∗CDMPC(k) given by equation (3.58).

2

Remark 3.6.1 If some (or all) of the local subsystems in condition C1, Theorem

3.6.2 are open-loop unstable, the closed-loop stability under coordinated-distributed

control can also be shown using a finite prediction horizon as in Section 3.6.1.2.

Nevertheless, the following additional conditions need to be taken into account when

formulating the local optimization problems for the unstable subsystems:

• a terminal equality constraint for the unstable modes needs to be included in the

optimal control problem of the unstable subsystems. The reason for including

these equality constraints is to force the unstable modes to be zero at the end of

the control horizon;

• terminal penalty Qi for each unstable subsystem needs to be calculated based

on the Lyapunov equation, which includes only the stable modes in the local

unstable subsystem.
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The terminal equality constraint for the unstable modes and the terminal penalty can

be calculated as follows:

• First, the matrix Aii in the unstable subsystems needs to be written in terms of

the stable and unstable modes by using, for example, an eigenvalue-eigenvector

decomposition (Maciejowski, 2002): Aii = EiPiE
−1
i , where: Ei = [Ei u, Ei s];

Pi = diag(Pi u, Pi s); and E−1
i = Ẽi with:

Ẽi =

[
Ẽi u
Ẽi s

]
;

• Then, the unstable modes (ξi u) and stable modes (ξi s) for the local subsystems

can be obtained from the transformation: ξi = E−1
i xi, where ξi = [ξTi u, ξ

T
i s]

T .

The terminal equality constraints on the unstable modes are given by: ξ̂i u(k +

Hu|k) = Ẽi u · x̂i(k +Hu|k) = 0.

• Finally, the terminal penalty Qi is calculated as: Qi = ẼT
i sΣiẼi s, where Σi is

the solution of the Lyapunov equation: Σi − P T
i sΣiPi s = ET

i sQiEi s.

3.6.2 Stability upon Premature Termination of the
Coordination Algorithm

Premature termination of the coordination algorithm occurs when the coordination

algorithm is stopped at iteration step ‘s’ before convergence is achieved within

each control interval. Premature termination of the coordination algorithm could

be the result, for example, of poorly chosen termination criteria or selection of an

insufficiently long control interval. Since the coordination algorithm is prematurely

terminated, the number of iteration steps will probably differ between the different

control intervals. In this section, the superscript ‘sk’ is used to denote the iteration

step associated with time ‘k’.

Theorem 3.6.3 Consider that the entire process system (3.1) is controlled by

N coordinated-distributed MPC controllers (3.17) that are coordinated using the

prediction-driven coordination algorithm (3.18)-(3.19). Let us assume that the

following conditions are satisfied:
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C1 : depending on the form of the process interactions, the weighting matrices

Qi(.) and Ri(.), as well as the prediction horizon Hp are selected as described

in Sections 3.6.1.1 and 3.6.1.2;

C2 : the prediction-driven coordination algorithm is stopped before it converges and

the solutions obtained with the CDMPC controllers are confined to a set which

belongs to a neighborhood of the centralized optimal solution (δk);

C3 : the bound δk does not increase as the time ‘k’ increases.

Then, the entire closed-loop system under CDMPC control is asymptotically stable.

Proof : To show stability of the entire closed-loop system under coordinated-

distributed MPC control, we propose Jcen(∆U sk(k)) defined in (3.39) as a Lyapunov

function candidate, and we rely on the convergence properties of the prediction-

driven coordination algorithm. It is shown in Section 3.5.2 that the objective

function Jcen(∆U s(k)) decreases as the number of iterations increase. Moreover,

from equations (3.51) and (3.52), we get:

Jcen(∆U sk(k))− Jcen(∆U sk+1(k)) = (∆Usk(k)−∆Usk+1(k)))TW (∆Usk(k)−∆Usk+1(k)),

= ‖(∆U sk(k)−∆U sk+1(k))‖2
W ,

Jcen(∆U sk+1(k))− Jcen(∆U sk+2(k)) = ‖(∆U sk+1(k)−∆U sk+2(k))‖2
W ,

. . .

Jcen(∆U sfk−1(k))− Jcen(∆U sfk(k)) = ‖(∆U sfk−1(k)−∆U sfk(k))‖2
W .

(3.59)

By adding the objective functions in (3.59) and taking iteration step sfk → ∞, we

can calculate Jcen(∆U s(k))− Jcen(∆U∗(k)) at time ‘k’ as:

Jcen(∆U sk(k))− Jcen(∆U∗(k)) =
∑∞

m=sk
‖(∆Um(k)−∆Um+1(k))‖2

W . (3.60)

Let δk =
∑∞

m=sk
‖(∆Um(k) − ∆Um+1(k))‖2

W , which denotes the difference between

Jcen(∆U sk(k)) and the optimal centralized objective function at time ‘k’. Then,

equation (3.60) becomes:

Jcen(∆U sk(k))− Jcen(∆U∗(k)) = δk. (3.61)
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Similarly, at time ‘k + 1’, we get:

Jcen(∆U sk+1(k + 1))− Jcen(∆U∗(k + 1)) = δk+1. (3.62)

From equation (3.61) and (3.62), we obtain:

Jcen(∆Usk+1(k + 1))− Jcen(∆Usk(k)) = Jcen(∆U∗(k + 1))− Jcen(∆U∗(k)) + δk+1 − δk. (3.63)

If condition C1 in Theorem 3.6.3 is satisfied, then it can be shown that:

Jcen(∆U∗(k + 1))− Jcen(∆U∗(k)) < 0. (3.64)

Moreover, from condition C3 in Theorem 3.6.3 there exists an iteration step ‘sk+1’ at

time ‘k + 1’, such that:

δk+1 − δk ≤ 0. (3.65)

Then, it follows from equations (3.63)-(3.65) that:

Jcen(∆U sk+1(k + 1))− Jcen(∆U sk(k)) < 0. (3.66)

It can be observed from equations (3.39) and (3.66) that Jcen(∆U sk(k)) is a

Lyapunov function for the entire closed-loop system, which shows in turn that the

nominal closed-loop system under state-feedback CDMPC control is asymptotically

stable. Therefore, if the prediction-driven coordination algorithm is stopped before

convergence is achieved, asymptotic stability of the closed-loop system is guaranteed

(provided that the optimal solutions obtained with the CDMPC controllers are

bounded by a set which belongs to a neighborhood of the centralized optimal solution

and this bound does not increase as the time ‘k’ increases).

2

3.7 Illustrative Example

In this section, a numerical example is presented to show the effectiveness of the

proposed coordinated-distributed control scheme. The dynamics of the entire process
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are given by equation (3.1), where the dimensions of the state vector x and input

vector u are n = q = 15. The matrix A is given by:

A = (3.67)

0.5 0 0 0 0 0.5 0 0 0 0 0 0.2 0 0 0
0 0.4 0 0 0 0 1.2 0 0 0 0 0 0 0 0
0 0 -0.1 0 0 0 0 -0.25 0 0 0 0 0 0 0
0 0 0 0.35 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.15 0 0 0 0 0 0 0 0 1 0

-0.1 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 0
0.01 0 0 0 0 0 0.35 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.45 0 0 0.3 0 0 0 0
0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -0.2 -0.5 0 0 0
0 -1.5 0 0 0 0 0 0 0 0 0 0.32 0 0 0
0 0 0 0 -0.2 0 0 0 0 0 0 0 -0.2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -0.8 0
0 0 0 0 0 0 0 1.5 0 0 0 0 0 0 -0.65


,

and the B matrix is given by:

B = (3.68)

0.25 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0
0 0.0875 0 0 0 0 -0.25 0 0 0 0 0 0 0 0
0 0 -0.5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.025 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.55 0 0 0 0 0 0 0 0 0.25 0

0.0375 0 0 0 0 -0.025 0 0 0 0 0 0 0 0 0
0.0025 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 -0.075 0 0 0 0
0 0 0 0 0 0 0 0 0.175 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.0875 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -0.075 0.1875 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.025 0 0 0
0 0 0 0 0 -0.0625 0 0 0 0 0 0 -0.125 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0875 0
0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 -0.075


.

In this example, the process is considered to consist of three interacting subsystems.

The first subsystem includes the first 5 state variables and the first 5 input variables

from the process model; the second subsystem includes the next 5 state variables and

the next 5 input variables from the process model; and finally, the third subsystem

includes the last 5 state variables and last 5 input variables from the process model.

To be able to identify the individual states and inputs in each subsystem, a subscript

is appended to each element of the state and input vectors, respectively. For

example for subsystem 1, the 5 components of the state vector x1 are defined as:

x1 = [x1 1, x1 2, x1 3, x1 4, x1 5]T and the 5 components of the input vector u1 are

defined as: u1 = [u1 1, u1 2, u1 3, u1 4, u1 5]T . Similarly for subsystems 2 and 3.

The following parameters are used in the simulation study: weighting matrices

Q1(l + 1) = diag(5, 1, 1, 1, 1) for l = 0, ..., Hp − 1, Qi(l + 1) = I5 for i = 2, 3 and

l = 0, ..., Hp−1; and Ri(η) = 20·I5, for i = 1, 2, 3 and η = 0, ..., Hu−1. The prediction
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horizon Hp was selected as 20 and the control horizon Hu was selected as 5. To show

the performance of the CDMPC controllers, a set-point change of magnitude 1.0 in

state variable x1 1 was simulated at time t = 0, while the targets for the remaining

state variables were kept at the origin7. The simulations were performed in Matlab

7.6, in an Intel Core Duo machine with 2 GHz of processor speed and 2 GB of RAM

memory. The results of the computer simulation are presented in Figure 3.4 and

Figure 3.5.

A comparison between the performance obtained with the CDMPC controllers

and the performance obtained with a centralized controller was carried out for this

simulation example. For ease of presentation, only the first two state trajectories

and the first two input trajectories in each subsystem are shown in Figure 3.4. It

can be observed in Figure 3.4 that the trajectories obtained with CDMPC controllers

are equal to the trajectories obtained with a centralized controller. Therefore, the

CDMPC controllers achieve the performance of a centralized controller. For the

states and inputs not shown in Figure 3.4, the same result is observed. That is,

the trajectories obtained with the CDMPC controllers exactly match the trajectories

obtained with a centralized controller.

Convergence of the solutions obtained with the CDMPC controllers to the

centralized solutions can also be observed in Figure 3.5. Figure 3.5 shows the

percentage error in the overall objective function8 for the first control interval (without

loss of generality). It can be observed from Figure 3.5 that the error in the overall

objective function decreases monotonically. Moreover, the error in the objective

function is kept below a specified tolerance error (10−3) after 7 iterations of the

coordination algorithm. This indicates that, at convergence, the performance of the

subsystems resulted in the centralized optimal performance.

The computational time was calculated for the CDMPC controllers and the

centralized controller for the first control interval. The computational load for the

CDMPC control scheme involved the time required for the coordinator’s calculations

7The same simulation study was performed using a centralized controller and decentralized
controllers.

8The percentage error in overall objective function is calculate as:(
|Jcen(∆Us(k))− Jcen(∆U∗(k))|/Jcen(∆U∗(k)) · 100%

)
.
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Figure 3.4: Comparison between CDMPC trajectories (solid line) and centralized
trajectories (circles). a) Set-point for x1 1 (dashed line), states x1 1 (blue) and x1 2

(red); b) states x2 1 (blue) and x2 2 (red); c) states x3 1 (blue) and x3 2 (red); d) inputs
u1 1 (blue) and u1 2 (red); e) inputs u2 1 (blue) and u2 2 (red); f) inputs u3 1 (blue)
and u3 2 (red)
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and the time required to solve the optimization problem for the three subsystems

(including all the iterations until the coordination algorithm converged within the

first control interval). The computation load resulted in 0.91[s] for the centralized

controller, and 1.53 [s] for the CDMPC controllers and the coordinator’s calculations.

It can be observed that the computation load is comparable for both control

schemes. Nevertheless, it should be noted that the optimization problem for the three

subsystems were solved in series with only one processor. A faster computational time

for the CDMPC control problems is expected if they are solved in parallel computing.

Next, a comparison between the performance obtained with the CDMPC

controllers and the performance obtained with decentralized controllers was carried

out for this simulation example. The decentralized control formulation for each

subsystem is given by equation (3.9). The improvement of the CDMPC controllers

with respect to the decentralized controllers can be quantified using the following

performance index:

Π =
|Jdec − JCDMPC |
JCDMPC

× 100%, (3.69)

where

J
(.)

=
1

2

N∑
i=1

tf−1∑
k=0

(
||xi sp − xi(k + 1)||2Qi + ||∆ui(k)||2Ri

)
,

and tf is the simulation time. For the simulation studies performed on this illustrative

example, the performance index Π indicates that the CDMPC controllers outperform

the fully decentralized controllers by approximately 6.82% (based on a 60 [min] closed-

loop simulation).

Finally, different decompositions were simulated and the performance index (3.69)

was calculated. The decomposition strategies simulated involved partitioning the

entire process (3.67)-(3.68) into different subsystems and performing a set-point

change of magnitude 1.0 in state variable x1 1 at time t = 0. The simulation results

are shown in Table 3.1. It can be observed in Table 3.1 that the optimal solutions

obtained with the CDMPC controllers are equal to the centralized solution regardless

of the decomposition strategies selected. As discussed in Section 3.5.1, this shows

the ability of the coordination algorithm in reaching the centralized optimal solution.

Moreover, it can be observed in Table 3.1 that different decomposition strategies
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result in different performance indexes with respect to the decentralized controllers.

Due to the effect of the interacting variables, distinct decomposition strategies can

lead to different levels of decentralized performance, which leads to different degrees of

improvement between the decentralized MPC controllers and the CDMPC controllers.

Table 3.1: Performance index for different decomposition strategies

Decomp.
Subsystems

Decomp. of Decomp. of |Jcen−JCDMPC |
JCDMPC

· 100%
|Jdec−JCDMPC |
JCDMPC

·100%
strategy state vector x input vector u

1
1 first 2 states first 2 inputs

0 6.79
2 last 13 states last 13 inputs

2
1 first 6 states first 6 inputs

0 3.982 next 3 states next 3 inputs
3 last 6 states last 6 inputs

3

1 first 3 states first 3 inputs

0 6.82
2 next 3 states next 3 inputs
3 next 4 states next 4 inputs
4 last 5 states last 5 inputs

4

1 first 9 states first 9 inputs

0 1.82
2 next 2 states next 2 inputs
3 next 2 states next 2 inputs
4 next state next input
5 last state last input

3.8 Summary

In this chapter, a state-feedback CDMPC control scheme is proposed for discrete-

time, linear unconstrained systems. It is shown that the CDMPC controllers

are built by modifying existing decentralized MPC controllers. This allows the

CDMPC controllers to maintain some of the desired properties of the decentralized

MPC controllers such as autonomy and resiliency against equipment failure or

shut-downs. In addition, if the communication between the coordinator and the

CDMPC controllers is stopped, the CDMPC controllers transition to the original

MPC decentralized controllers.

Convergence properties of the prediction-driven coordination algorithm are

discussed in this chapter. It is shown that when the convergence condition is satisfied,

the proposed prediction-driven algorithm improves monotonically with the number

of iterations. That is, each iteration in the coordination algorithm produces a better

solution than the previous iteration step. Furthermore, it is shown that when the

coordination algorithm converges, the CDMPC solutions are equal to the plant-wide

optimal solution.
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Stability of the closed loop system under CDMPC control is also analyzed in this

chapter. Two distinct cases are considered in the stability analysis. The first stability

case considers CDMPC controllers with sufficiently long control interval which allows

the coordination algorithm to iterate until convergence. The second case shows the

stability of the closed-loop system when the coordination algorithm is prematurely

stopped. In both cases, stability of the closed-loop system under CDMPC control is

guaranteed provided that controller tuning conditions and coordination performance

conditions are satisfied.



4
Coordinated-Distributed MPC via

Price-Driven Coordination

This chapter presents a coordinated-distributed model predictive control (CDMPC)

scheme for discrete-time, constrained linear dynamic systems. A price-driven method

is used to coordinate the local CDMPC controllers in order to achieve the optimal

plant-wide operations. In the price-driven method, the price vector is updated us-

ing Newton’s method along with a sensitivity analysis technique. The flexibility of

the CDMPC scheme is shown in the sense that CDMPC controllers can be imple-

mented using state-space models as well as step-response models. An analysis of the

CDMPC scheme’s performance properties is also provided. Finally, the performance

of the CDMPC controllers is shown using two benchmark process systems: an evap-

orator process and a fluid catalytic cracking process1.

1Parts of this chapter are published in (Marcos et al., 2008) and in (Marcos et al., 2009).

74
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4.1 Background

In Chapter 3, a CDMPC control scheme was developed for large-scale unconstrained

systems, in which local CDMPC controllers are coordinated using the prediction-

driven method. In this chapter, a CDMPC control scheme is formulated to include

constraints on the state (or output) variables and the input (manipulated) variables.

In addition, a new coordination method is employed. The price-driven coordination

method is used in this chapter as an attempt to develop a price-update mechanism

that can speed up the coordination process. As opposed to the prediction-driven

method (see Chapters 2 and 3), the price-driven method does not require the

coordinator to predict the state variables in the entire system, resulting in a faster

price-update algorithm.

In the price-driven method considered in this chapter, a price vector ‘p’ is computed

by the coordinator and updated based on Newton’s method. A coordination method

using a price was proposed in (Jose and Ungar, 1998; Jose and Ungar, 2000) to solve

algebraic optimization problems such as resource allocation or auction problems. In

(Jose and Ungar, 2000), a general large-scale optimization problem of the form:

max
z1,...,zN

N∑
i

Φi(zi)

subject to:
N∑
i

Ri(zi) ≤ R̄, zi ∈ Ωi

(4.1)

is considered, where zi ∈ <ni is the vector of decision variables, Φi is the objective

function for subproblem i, Ri is the vector of resource demands for subsystem i (for

i = 1, ..., N), and the vector R̄ represents the availability of shared resources. The

large-scale optimization problem (4.1) can be decomposed into N subproblems:

max
zi∈Ωi

Φi(zi)− (p+ qRi(zi))
>Ri(zi). (4.2)

In subproblem (4.2), ‘p’ represents the price vector, and the variable q is a nonnegative

scalar that can be assumed to be zero for quadratic programming problems. It is

shown in (Jose and Ungar, 2000) that, when the subproblems (4.2) are based on

concave objective functions and compact convex feasible sets, they can be coordinated
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successfully. Moreover, at equilibrium, the following condition is satisfied:

∆R(p, q) =
∑

iRi(p, q)− R̄ ≤ 0,

with pT (∆R(p, q)) = 0. The price-driven method proposed in (Jose and Ungar, 1998;

Jose and Ungar, 2000) was adapted and implemented in (Cheng et al., 2007) to

solve MPC steady-state target calculation problems. In this chapter, the price-driven

method described in (Cheng et al., 2007) is used to solve MPC dynamic optimization

problems.

The main contributions of this chapter can be summarized as follows:

• First, a state-feedback CDMPC control scheme is formulated for constrained

process systems whose dynamics are modeled in a state-space representation.

The price-driven algorithm considered in this chapter uses Newton’s method

as a price update mechanism and it has been adapted from the price-driven

algorithm presented in (Cheng et al., 2007) for coordination of algebraic

optimization problems.

• Then, the performance properties of the CDMPC scheme are evaluated. The

performance of the price-driven algorithm is studied, followed by a discussion

of the stability of the closed-loop system under CDMPC control.

• Finally, the price-driven coordination algorithm developed using state-space

models is extended so that it can be used for processes whose dynamics are

represented by finite step-response models. This shows that the proposed price-

driven coordination algorithm is flexible, since it can be implemented using

state-space models as well as input-output models obtained from step-test data.

4.2 Problem Description

The model used to describe the dynamics of the entire process and the models used

by the decentralized MPC controllers have been previously presented in Chapter 3.

These models are described again in Sections 4.2 and 4.3 for ease of presentation of

the CDMPC problems solved in this chapter.
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It is assumed that the large-scale system can be modeled by a linear discrete-time

state-space representation:

x(k + 1) = Ax(k) +Bu(k),

x(0) = xinit,
(4.3)

where x(k) ∈ <n and u(k) ∈ <q denote the vector of state and input variables at time

step ‘k’, respectively.

As described in Chapter 3, a practical approach consists of using decentralized

controllers to control each subsystem in the plant. The dynamics of each subsystem

i are assumed to be represented by the following state-space model:

xi(k + 1) = Aiixi(k) +Biiui(k) +
∑
j 6=i

(
Aijxj(k) +Bijuj(k)

)
, (4.4)

xi(0) = xiniti ,

where xi(k) ∈ <ni and ui(k) ∈ <qi . The matrices Aii and Bii in (4.4) represent the

local subsystem dynamics, for i = 1, . . . , N . The term ‘
∑

j 6=i
(
Aijxj(k)+Bijuj(k)

)
’ in

(4.4) represents the effect of the interactions. It can be noted that the total number

of state variables in the plant is n =
∑N

i=1 ni and the total number of input variables

in the plant is q =
∑N

i=1 qi.

The CDMPC controllers can be built on existing decentralized MPC controllers.

A decentralized MPC control formulation for subsystem (4.4) is presented in Section

4.3, followed by the development of the CDMPC controllers in Section 4.4.

4.3 Decentralized MPC Control

In the decentralized MPC, the variables predicted by the local MPC controller i along

the prediction horizon Hp and control horizon Hu are given by:

x̂i(k + l + 1|k) = Aiix̂i(k + l|k) +Biiûi(k + l|k)+∑
j 6=i
(
βiAijxj(k) +Bijuj(k − 1)

)
, for l = 0, ..., Hp − 1,

x̂i(k|k) = xi(k),

βi = 1, for l = 0,

βi = 0, for l = 1, ..., Hp − 1,

(4.5)
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with:{
ûi(k + l|k) =

∑l
ν=0 ∆ûi(k + ν|k) + ui(k − 1), for l = 0, ..., Hp − 1,

∆ûi(k + l|k) = 0, Hu ≤ l ≤ Hp − 1.
(4.6)

All the assumptions described in Chapter 3 with respect to the decentralized MPC

controllers (see Section 3.3) are applicable to the decentralized MPC controllers

considered in this chapter.

Typically, process industries need to deal with constraints on the process variables,

input variables and input moves. The limitations on the subsystems’ variables are

expressed as inequality constraints in each decentralized control problem, as follows:
xi min ≤ x̂i(k + l + 1|k) ≤ xi max,

ui min ≤ ûi(k + l|k) ≤ ui max,

∆ui min ≤ ∆ûi(k + η|k) ≤ ∆ui max,

for l = 0, . . . , Hp − 1, and η = 0, . . . , Hu − 1.

(4.7)

Assuming that the vector of desired set-points (Xi sp) is provided, then the

decentralized MPC control problem for each subsystem i (i=1,...,N) can be formulated

as:

min
Xi,∆Ui

Φi =
1

2

((
Xi sp −Xi(k)

)TQi(Xi sp −Xi(k)
)

+ ∆Ui(k)TRi∆Ui(k)
)

subject to : (4.8){
Equality constraints (4.5)− (4.6) and

Inequality constraints (4.7),

where the vectors Xi(k) and ∆Ui(k), for i = 1, ..., N , are defined as:

Xi(k) = [x̂i(k + 1|k)T , x̂i(k + 2|k)T , ..., x̂i(k +Hp|k)T ]T ,

∆Ui(k) = [∆ûi(k|k)T ,∆ûi(k + 1|k)T , ...,∆ûi(k +Hu − 1|k)T ]T .
(4.9)

The matrices Qi and Ri in (4.8) are defined as Qi = diag(Qi(1), Qi(2), . . . , Qi(Hp))

and Ri = diag(Ri(0), Ri(1), . . . , Ri(Hu − 1)), where the weighting matrices Qi(.) ∈

<ni×ni
+

and Ri(.) ∈ <qi×qi+
are positive definite matrices with their off-diagonal

elements equal to zero.

4.4 Coordinated-Distributed MPC Control

In this section, the CDMPC control scheme is formulated. In Section 4.4.1, the process

models used in the decentralized MPC controllers (see Section 4.3) are modified to
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incorporate the effect of the interactions between the subsystems. In Section 4.4.2,

the decentralized objective function is augmented by an extra term, which includes a

price and is required for coordination of the subsystems.

4.4.1 Process Models used in the CDMPC Controllers

To design the CDMPC controllers, equation (4.5) needs to be modified. Process

model (4.5) is modified to include the interactions between subsystems as follows:

x̂i(k + l + 1|k) = Aiix̂i(k + l|k) +Biiûi(k + l|k)+∑
j 6=i
(
βiAijxj(k) +Bijuj(k − 1)

)
+ v̂i(k + l|k),

for l = 0, ..., Hp − 1,

x̂i(k|k) = xi(k),

βi = 1, for l = 0,

βi = 0, for l = 1, ..., Hp − 1,

(4.10)

where ûi(k + l|k) is defined as in equation (4.6). In the proposed control scheme, v̂i

are decision variables in the local CDMPC control problem2. It is shown in Section

4.4.3 and Section 4.4.4, that the coordinator is formulated to ensure that the following

equation is satisfied for each subsystem i, for i = 1, ..., N :

∆ei(k + l|k) =

v̂i(k + l|k)−
(∑

j 6=i βiAijx̂j(k + l|k) +
∑

j 6=iBij

∑l
ν=0 ∆ûj(k + ν|k)

)
= 0,

for l = 0, ..., Hp − 1,

βi = 0, for l = 0,

βi = 1, for l = 1, ..., Hp − 1,

∆ûj(k + l|k) = 0, Hu ≤ l ≤ Hp − 1.

(4.11)

2It can be noted that in this chapter, the variables v̂i are considered as decision variables in the
local CDMPC control problem. In Chapter 3, the variables v̂i are not decision variables in the local
CDMPC control problems and they are calculated based on the data predicted by the coordinator.
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4.4.2 Formulation of CDMPC Controllers

The CDMPC controller for each subsystem i (with i = 1, ..., N) is formulated as

follows:

min
Xi,∆Ui,Vi

Ji = Φi + ps
T

Θi[Xi(k)T ,∆Ui(k)T , Vi(k)T ]T

subject to : (4.12){
Equality constraints (4.6), (4.10) and

Inequality constraints (4.7),

where the objective function Φi is defined in (4.8).

The vector of predicted states Xi(k) and predicted input moves ∆Ui(k) are defined

in (4.9). The vector Vi(k) is defined as:

Vi(k) = [v̂i(k|k)T , v̂i(k + 1|k)T , ..., v̂i(k +Hp − 1|k)T ]T .

The objective function in optimal control problem (4.12) differs from the objective

function in (4.8) by the term ‘ps
T
Θi[Xi(k)T ,∆Ui(k)T , Vi(k)T ]’. The price vector ‘ps’

is computed by a coordinator, based on the price update mechanism described in

Section 4.4.3. The matrix Θi in (4.12) is a coefficient matrix that takes into account

the effect of the interactions between the subsystems. The matrix Θi is defined in

Appendix 4.9.1.

For simplicity, the optimal control problem of each subsystem (4.12) can be

reformulated in a compact form as:

min
Zi
Ji =

1

2

(
Zi(k)TΥiZi(k)

)
+
(
φTi + ps

T

Θi

)
Zi(k) (4.13)

subject to :{
Geq
i Zi(k) = geqi ,

Gineq
i Zi(k) ≤ gineqi ,

(4.14)

where the vector of decision variables Zi(k) is given by: Zi(k) =

[Xi(k)T ,∆Ui(k)T , Vi(k)T ]T .

The system of relations (4.14) can be obtained by arranging equations (4.6), (4.10)

and inequalities (4.7) in a matrix form for the entire prediction horizon Hp and control

horizon Hu. In (4.14), Geq
i is the coefficient matrix for the decision variables in the



Sec. 4.4 Coordinated-Distributed MPC Control 81

equality constraints (4.6) and (4.10). The vector geqi includes known data, such as

the effect of current measured state variables and past input variables from the plant.

The matrix Gineq
i is the coefficient matrix in the inequality constraints (4.7), and the

vector gineqi represents the upper and lower limits for the decision variables in the

local subsystem i.

4.4.3 Price-Driven Coordination Algorithm

In this section, an efficient coordination method is proposed to ensure convergence of

the coordinated-distributed optimal solutions to the centralized (plant-wide) optimal

solution. Coordination of subproblems (4.13)-(4.14) to achieve the centralized optimal

solution can be performed by using a price-update technique, such as Newton’s

method. Based on Newton’s method, the price vector can be updated as follows

(Cheng et al., 2007):

J· ps+1 = J· ps − α ∆Es(k), (4.15)

provided that the matrix J is full rank (see equation (4.18)).

In price update mechanism (4.15), the superscripts ‘s’ and ‘s + 1’ denote two

consecutive iteration steps and α is the step size in Newton’s method. The task of

the coordinator is to iteratively adjust the price ps according to equation (4.15) until

∆Es(k) is driven to zero. The interaction error vector ∆Es(k) concatenates the error

variables ∆ei in (4.11) for all the subsystems. That is, the vector ∆Es(k) is arranged

as:

∆Es(k) = [∆e1(k + 1|k)T , ...,∆e1(k +Hp − 1|k)T , ...,∆eN (k + 1|k)T , ...,∆eN (k +Hp − 1|k)T ]T ,

where ∆ei(k+ l|k), for l = 0, ..., Hp−1, is defined in equation (4.11). The interaction

error vector ∆Es(k) can be written in terms of the decision variables Zs
i (k) as follows:

∆Es(k) =
N∑
i=1

ΘiZ
s
i (k), (4.16)

where Zs
i (k) are the solutions calculated by each CDMPC controller, Zi(k), at

iteration step ‘s’.
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The Jacobian matrix J in price update (4.15) is defined as:

J =
d∆Es(k)

dps
. (4.17)

Then, from equations (4.16) and (4.17), the Jacobian matrix J becomes:

J =
N∑
i=1

Θi
dZs

i (k)

dps
. (4.18)

It can be observed that the sensitivity matrix dZs
i (k)/dps, for i = 1, ..., N , is required

to compute the Jacobian matrix J in equation (4.18). That is, in order to efficiently

adjust the price vector, the coordinator should be aware of how the price affects the

decision variables Zi(k) at each iteration step ‘s’.

A sensitivity analysis was proposed in (Wolbert et al., 1994) for an algebraic

optimization of a process flowsheet, and was extended in (Cheng et al., 2007) for

the MPC steady-state target calculation. This approach can be used to calculate

dZs
i (k)/dps and solve problem (4.18). The sensitivity matrix dZs

i (k)/dps can be

computed for each subsystem as follows:

First, the Lagrangian Li can be formulated for optimization problem (4.13)-(4.14)

as:

Li
(
Zi(k), λi, µi, p

s
)

=
1

2

(
Zi(k)TΥiZi(k)

)
+ φTi Zi(k) + ps

T

ΘiZi(k)+

λTi

(
Geq
i Zi(k)− geqi

)
+ µTi

(
Gineq
i Zi(k)− gineqi

)
,

where the vectors λi and µi denote the Lagrange multipliers for the equality and

inequality constraints in (4.14), respectively. The first-order optimality conditions

are:

∇
Zi(k)
Li
(
Zi(k), λi, ACµi, p

s
)

=

ΥiZi(k) + φi + ΘT
i p

s +GeqT

i λi + ACG
ineqT

i ACµi = 0,

Fi

(
Zi(k), ps

)
= Geq

i Zi(k)− geqi = 0,

ACfi

(
Zi(k), ps

)
= ACG

ineq
i Zi(k)− ACg

ineq
i = 0,

IN fi

(
Zi(k), ps

)
+ INσi = ING

ineq
i Zi(k)− IN g

ineq
i + INσi = 0.

(4.19)

In (4.19), the vector INσi represents the slack variables associated with the inactive

inequality constraints. The subscript ‘AC’ indicates the inequality constraints that
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are active, whereas the subscript ‘IN ’ indicates the inequality constraints that are

inactive. The optimality conditions (4.19) can be then differentiated as in (Cheng et

al., 2007), to obtain the following system of equations:

∇2
Zi(k)Zi(k)

LidZi(k) +∇2
Zi(k)p
Lidps +∇

Zi(k)
F T
i dλi +∇

Zi(k)AC
fTi dACµi = 0,

∇
Zi(k)

FidZi(k) +∇pFidp
s = 0,

∇
Zi(k)AC

fidZi(k) +∇pACfidp
s = 0,

∇
Zi(k)IN

fidZi(k) +∇pIN fidp
s + dINσi = 0.

Finally, the sensitivity matrix dZs
i (k)/dps = ∇pZi(k) can be calculated by solving the

following system of equations, provided that Γi is full rank:

Γi


∇pZi(k)
∇pλi
∇pACµi
∇pINσi

 = −


ΘT
i

0
0
0

 , (4.20)

where

Γi =


Υi GeqT

i ACG
ineqT

i 0
Geq
i 0 0 0

ACG
ineq
i 0 0 0

ING
ineq
i 0 0 I

 , (4.21)

and where ∇pλi, ∇pACµi and ∇pINσi in (4.20) denote dλi/dp
s, dACµi/dp

s and

dINσi/dp
s, respectively.

4.4.4 Implementation of the CDMPC Controllers

As described in Chapter 3, during a single control interval and before the first

calculated control input move is implemented, the coordinator exchanges information

with the local CDMPC controllers. During this data exchange, the coordinator

iteratively adjusts the price vector to drive the calculated optimal solution of the

subsystems to the centralized optimal solution.

The implementation of the CDMPC controllers are summarized in the following

steps:

1. Initialization (s=0): The coordinator sets up an initial price vector ps for the

interacting variables (ΘiZi(k), ∀i = 1, ..., N). For initialization, the elements
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of the vector ps can be set to zero. The coordinator transfers the information

to every local CDMPC controller.

2. Optimization performed by each local CDMPC controller: Based

on the price provided by the coordinator, each CDMPC controller solves

the local optimization problem (4.13)-(4.14) and calculates the sensitivity

matrices according to equations (4.20)-(4.21). The calculated optimal solution

Zi(k); the sensitivity information ∇pZi(k), ∇pACµi and ∇pINσi; as well as the

Lagrange multipliers ACµi and the slack variables INσi are communicated to the

coordinator.

3. Price update: The iteration counter ‘s’ is incremented. The coordinator

gathers the information from each CDMPC controller. The coordinator

calculates ∆Es(k) using equation (4.16) and with Zs
i (k) = Zi(k), for i = 1, ...N ;

and it calculates J using equation (4.18). Next, the coordinator determines the

step size α, with 0 < α ≤ 1, as the smallest positive value that causes an

individual constraint change its activity (see Cheng et al. (2007) for a detailed

description on how α is calculated based on the sensitivity information, the

Lagrange multipliers ACµi and the slack variables INσi of the subsystems).

Then, the coordinator updates the price vector as per equation (4.15). The new

price vector is informed to each local CDMPC controller.

4. Iteration until convergence: Steps (2)-(3) are repeated until the price-driven

coordination algorithm is terminated. The price-driven coordination algorithm

is terminated when ‖∆Es(k)‖ ≤ ε, where ε is a specified error tolerance.

5. Implementation of first calculated control action: Once the price-driven

coordination algorithm is terminated, the first calculated control input moves

∆ûi(k|k) are implemented in each subsystem i, while the rest of the calculated

control moves are discarded. The iteration counter ‘s’ in the coordination

algorithm is reset to zero and the coordinated optimization problems (steps

(1)-(4)) are initiated again for the next receding horizon.
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4.5 Analysis of the CDMPC Performance

Properties

In this section, a discussion of the CDMPC performance properties is presented. An

analysis of the price-driven coordination method is shown in Section 4.5.1, followed

by a discussion of the stability of the closed-loop system under CDMPC control in

Section 4.5.2.

4.5.1 Price-Driven Coordination Algorithm Analysis

The performance of the price-driven coordination algorithm is analyzed in this section.

First, it is shown that when the coordination algorithm converges, the price vector

is equivalent to the Lagrange multiplier vector for the equality constraints in the

centralized control problem. Next, the behaviour of the coordination algorithm (as it

evolves throughout the iterations) is shown with a small illustrative example.

Interpretation of the Price

Theorem 4.5.1 Consider that the entire process system (4.3) is controlled by N

coordinated-distributed MPC controllers (4.13)-(4.14). Suppose that the CDMPC

controllers are coordinated using a price-driven coordination algorithm, where the

price ps is computed using price update mechanism (4.15). When ‖∆Es(k)‖ → 0,

the price vector ps is equivalent to the Lagrange multiplier vector λ for the equality

constraints in the centralized control problem.

Proof : For simplicity, and without loss of generality, the inequality constraints

in the CDMPC control problems are not considered in this study. Theorem 4.5.1

can be proved by first defining the centralized MPC control problem for the entire

process and calculating the first-order optimality conditions for the centralized MPC

control problem. The first-order optimality conditions of the centralized MPC control

problem are then compared to the first-order optimality conditions of the CDMPC

control problems to show that at convergence ps = λ.

Centralized MPC control problem:
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The centralized MPC optimal control problem3 can be written as:

min
Z
Jcen =

1

2

(
Z(k)TΥZ(k)

)
+ φTZ(k)

subject to : (4.22)

GeqZ(k) + ∆E = geq,

where the matrix Υ is defined as Υ = diag(Υ1,Υ2, ...,ΥN), the vector φ is

defined as φ = [φT1 , φ
T

2 , ..., φ
T
N ]

T
. The matrix Geq in (4.22) is defined as: Geq =

diag(Geq
11, G

eq
22, ..., G

eq
NN) and the vector geq is defined as: geq = [geq

T

1 , geq
T

2 , ..., geq
T

N ]
T
.

The vector ∆E is defined in equation (4.16), but it can also be expressed as:

∆E = Θ̄Z(k), (4.23)

where Θ̄ = [Θ1 | Θ2 | . . . | ΘN ]. From (4.22) and (4.23), the centralized MPC control

problem can be written as:

min
Z
Jcen =

1

2

(
Z(k)TΥZ(k)

)
+ φTZ(k)

subject to : (4.24)

GeqZ(k) + Θ̄Z(k) = geq.

The Lagrangian Lcen for the centralized control problem (4.24) can be formulated

as:

Lcen =
1

2

(
Z(k)TΥZ(k)

)
+ φTZ(k) + λT

(
GeqZ(k) + Θ̄Z(k)− geq

)
.

Then, the first-order optimality conditions can be written as:

ΥZ∗(k) + φ+GeqTλ∗ + Θ̄Tλ∗ = 0,

GeqZ∗(k) + Θ̄Z∗(k)− geq = 0,
(4.25)

where Z∗(k) and λ∗ represent the optimal values for Z(k) and λ, respectively.

Coordinated-distributed MPC control problems:

Next, let us calculate the first-order optimality conditions for the subproblems4. The

Lagrangian Li for subproblem (4.13)-(4.14), for i = 1, . . . , N , is:

Li =
1

2

(
Zi(k)TΥiZi(k)

)
+
(
φTi + ps

T

Θi

)
Zi(k) + λTi

(
Geq
i Zi(k)− geqi

)
.

3The inequality constraints are not considered in this analysis.
4The inequality constraints are not considered in this analysis. Thus, in subproblem (4.13)-(4.14),

it is assumed that Gineq
i = 0 and gineqi = 0.
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Therefore, the first-order optimality conditions for subproblem i becomes:

ΥiZi(k) + φi + ΘT
i p

s +GeqT

i λi = 0,

Geq
i Zi(k)− geqi = 0.

(4.26)

The first-order optimality conditions (4.26) can be written for all the subproblems as:

ΥZ
CDMPC

(k) + φ+GeqTλ
CDMPC

+ Θ̄Tps = 0,

GeqZ
CDMPC

(k)− geq = 0,
(4.27)

where Z
CDMPC

(k) =
[
Z1(k)T , Z2(k)T , . . . , ZN(k)T

]T
and λ

CDMPC
=
[
λT1 , λ

T
2 , . . . , λ

T
N

]T
.

The price-driven coordination algorithm converges once ‖∆Es(k)‖ → 0, with

∆E = Θ̄Z
CDMPC

, and the solutions obtained with the CDMPC controllers Z
CDMPC

(k)

are equal to the centralized optimal solution Z∗(k). Then, it can be shown from

equations (4.25) and (4.27) that λ
CDMPC

= λ∗ and ps = λ∗, provided that the

entire system has been modeled to ensure that the column-rank([GeqT Θ̄T ]) =

dim(λ
CDMPC

)+dim(ps). As a result, the price vector ps is equal to the Lagrange

multiplier vector λ∗ for the equality constraints in the centralized control problem.

2

Coordination Algorithm Behaviour

As the coordination algorithm iterates in the price-driven coordination method, the

coordinator is searching for the value of the price that will lead to the centralized

optimal solution. To show the behaviour of the price in the CDMPC control scheme,

let us consider a simple discrete-time system whose dynamics are represented by

model (4.3), with:

A =

[
0.5 0
0 0.3

]
, B =

[
0.2 0.5
0 1

]
, (4.28)

and initial conditions x(0) = (0, 0)T . It is assumed that process (4.28) consists of

two subsystems. Subsystem 1 includes the first state and the first input; subsystem

2 includes the second state and the second input. The parameters used in this

simulation example are: prediction horizon Hp = 20; control horizon Hu = 1 and

weighting matrices Q1 = Q2 = 10 and R1 = R2 = 2; |xi| ≤ 10 and |∆ui| ≤ 1 for

i = 1, 2. Here, we selected a simple system and a control horizon Hu equal to 1
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for illustration purposes only, because under these conditions, the price reduces to a

scalar value.
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Figure 4.1: Price-driven algorithm convergence behaviour for system (4.28):
unconstrained system (•); upper limit for ∆û1 is active (N).

Figure 4.1 shows the interaction error ||∆Es(k)|| as the coordination algorithm

progresses within the first control interval. Overall, it can observed from Figure

4.1 that the proposed coordination method converges quickly. In particular, it

can be observed in Figure 4.1 that the coordination algorithm converges at the

second iteration for the unconstrained subsystems. When there is a change in

the active constraint set of the subsystems, more iterations may be required to

achieve convergence of the price-driven algorithm (within a control interval). This

behaviour can be observed in Figure 4.1, where it is shown that the price-driven

method converges within 4 iterations as the variable ∆û1 became active. The fast

convergence behaviour of the price-driven coordination method can also be observed

for the illustrative examples in Sections 4.6 and 4.7.3.

4.5.2 Stability of the closed-loop system under CDMPC

The stability of the closed-loop system under CDMPC control can be proved as in

Section 3.6.1 in Chapter 3. In particular, for the constrained CDMPC control scheme

proposed in this chapter, the following conditions are assumed:

C1 : feasibility of the CDMPC optimization problems at the first iteration step,
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s = 0, in the coordination algorithm (within each control interval). In general,

feasibility in MPC implies that, for the current measured states, the constraints

specified in the MPC optimization problem are satisfied. See comment below

regarding infeasibility in MPC.

C2 : The control interval should be sufficiently long to ensure that the price-driven

coordination algorithm converges.

If condition C1 is satisfied (within each control interval), then:

• feasibility of the CDMPC optimization problems at the first step in the

coordination algorithm guarantees that the CDMPC objective functions can

be minimized at each iteration step of the coordination algorithm. Thus, the

CDMPC optimization problem is feasible within each control interval.

If conditions C1 and C2 are satisfied, then:

• within each control interval, the solutions obtained with the CDMPC controllers

are equal to the optimal solution obtained by a centralized controller. Thus, the

trajectories obtained with the CDMPC controllers are equal to the trajectories

obtained with a centralized controller at all times. The stability of the closed-

loop system under CDMPC control can be then proved as in Section 3.6.1.

Comment regarding infeasibility in MPC :

“Infeasibility” is defined as the inability to satisfy all the constraints simultaneously

(Rossiter, 2005). Infeasibility is likely to arise in any constrained MPC application.

Many situations can cause infeasibility in MPC. For example, a disturbance or a

large set-point change can force process variables outside their limits, making the

MPC algorithm unable to satisfy all the hard constraints. The first step in dealing

with infeasibility in MPC is to identify its cause. By understanding the cause of

infeasibility, one is in a position to propose strategies for dealing with it.

Many suggestions have been published in the literature to cope with infeasibility

issues in MPC control (Camacho and Bordons, 1999). One suggestion is to drop

(if possible) the constraints on the state variables during the initial portion of the
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prediction horizon in order to make the optimization problem feasible. Another

suggestion for dealing with infeasibility is to “soften” the hard constraints on the

states variables. In this sense, the constrained control problems will be feasible

because the state constraints are allowed to violate their limits to some extent

(Camacho and Bordons, 1999; Maciejowski, 2002).

4.6 Illustrative Example I

To show that the effectiveness of the CDMPC controllers using state-space models,

a simulation study was performed on the evaporator process system presented in

(Newell and Lee, 1989). The continuous-time model used to represent the dynamics

of the evaporator process is given in equations (2.44) in Chapter 2. To implement the

CDMPC controllers, the process model (2.44) is discretized (as proposed by Newell

and Lee (1989)) with a sampling period of 1 [min], leading to discrete-time model

(4.3) with:

x = [L2, X2, P2]T , u = [F2, P100, F200]T ,

A =

 1 0.0975 0.3692
0 0.9048 0
0 −0.0096 0.9467

 ,
B =

 −0.1050 0.3795 −0.0014
−0.0952 0 0
0.0005 0.0359 −0.0073

 .
(4.29)

It is assumed that the evaporator process (4.29) consists of two subsystems. The state

and input variables considered in each subsystem are described in Table 2.3 (Chapter

2). The weighting matrices Qi and Ri in Table 2.3 are also used in this illustrative

example, with Qi = Qi(l+1), for l = 0, ..., Hp−1 and Ri = Ri(η), for η = 0, ..., Hu−1.

The prediction horizon Hp was selected as 30, and the control horizon Hu was selected

as 5. To initialize the coordination algorithm, all the elements in the price vector were

set to zero.

To demonstrate the performance of the CDMPC controllers, a change of one unit

in variable L2 was simulated at time t = 0, while the targets for variables X2 and

P2 were kept at their nominal operating conditions. Figure 4.2 and Figure 4.4 show

the results based on a 100 [min] simulation with initial conditions x1(0) = [0, 0]T and
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x2(0) = 0, and using model (4.29) for the true plant dynamics. The simulation results

are shown in normalized deviation variables. Figure 4.2a) and Figure 4.2b) show the

trajectory of the state variables (L2, X2 and P2) and the control inputs (F2, P100

and F200). It can be observed that the CDMPC controllers drive level L2 to the new

target while keeping controlled variables X2 and P2 at their desired set-points.

The state and input trajectories shown in Figure 4.2a) and Figure 4.2b) match

the trajectories obtained with a centralized controller. Convergence of the CDMPC

optimal solutions to the centralized optimal solutions can be observed in Figures 4.3a)

and 4.3b) where the errors of the predicted input moves (||∆UCDMPC − ∆Ucen||)

and predicted states (||XCDMPC − Xcen||) are shown for the first control interval.

These errors in the predicted variables are calculated as the difference between the

CDMPC optimal solutions and the optimal solutions calculated with a centralized

MPC controller. In the numerical simulations performed for the evaporator process,

the fast convergence behaviour shown in Figure 4.3 (2 iterations) was observed for

the coordination algorithm at each control interval.
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Figure 4.2: (a) Trajectories of state variables (solid line), targets for state variables
(dashed line); (b)Trajectories of control inputs.

A comparison between the performance of the CDMPC controllers with the

performance of decentralized controllers is shown in Figure 4.4. The decentralized
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Figure 4.3: a) Error in predicted input moves (||∆UCDMPC − ∆Ucen||); b) Error in
predicted states (||XCDMPC −Xcen||).
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Figure 4.4: Comparison between trajectories obtained with CDMPC controller (solid
line) and decentralized controllers (dash-dot line); targets for state variables (dashed
line).

control formulation for each subsystem is given by equation (4.8). The simulations

obtained with the decentralized controllers were performed with the same initial

conditions and simulation parameters used for the CDMPC controllers. It can be

observed in Figure 4.4 that the CDMPC controllers outperform the decentralized

controllers. As shown in Figure 4.4, the trajectories obtained with the CDMPC



Sec. 4.7 Extension: Formulation of CDMPC using Finite Step-Response Models
93

controllers are less oscillatory than the trajectories obtained with the decentralized

controllers. The improvement in the performance is possible due to the information

exchanged between the coordinator and the CDMPC controllers. Because of this

information exchange, the coordinator is aware of the future predicted control moves

in all the subsystems. Then, the coordinator assists the local CDMPC controllers in

calculating the control moves that can compensate for the interactions between the

subsystem, leading to a less oscillatory behaviour for the entire plant.

The improvement of the CDMPC controllers with respect to the decentralized

controllers can be quantified using the following performance index:

Π =
|Jdec − JCDMPC |
JCDMPC

× 100%, (4.30)

where

J
(.)

=
1

2

N∑
i=1

tf−1∑
k=0

(
||xi sp − xi(k + 1)||2Qi + ||∆ui(k)||2Ri

)
, (4.31)

and tf is the simulation time. For the simulation studies performed with the

evaporator process system, the performance index Π indicates that the CDMPC

controllers outperform the decentralized controllers by approximately 2% (based on

a 100 [min] closed-loop simulation).

4.7 Extension: Formulation of CDMPC using

Finite Step-Response Models

The CDMPC control scheme developed in Section 4.4 is extended here to use finite

step-response models. This section shows that the proposed CDMPC control scheme

is not limited only to state-space models, but it can also be implemented with other

model representations, such as input-output models obtained from step-test data.

Consider that the process dynamics for each subsystem i, for i = 1, ...N , are

represented by the following finite step-response coefficient model:

yi(k + l) =
T−1∑
h=1

N∑
w=1

Siw,h∆uw(k + l − h) +
N∑
w=1

Siw,T uw(k + l − T ), (4.32)

where yi(·) ∈ <mi denote the output variables for subsystem i; ui(·) ∈ <qi and

∆ui(·) ∈ <qi denote the input variables and input moves for subsystem i, respectively.
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The matrix Siw,h in (4.32) denotes the hth step-response coefficients for the model that

relates yi and ∆uw, for i = 1, ...N and w = 1, ...N .

4.7.1 Decentralized MPC Control

The variables predicted by decentralized MPC controller i along the prediction

horizon Hp and control horizon Hu are given by:

ŷi(k + l) =
l∑

h=1

Sii,h∆ûi(k + l − h) + ŷ0
i (k + l) + d̂i(k + l|k), for l = 1, ..., Hp, (4.33)

with:{
d̂i(k + l|k) = yi(k)− ŷi(k|k − 1), for l = 1, ..., Hp,

∆ûi(k + l|k) = 0, Hu ≤ l ≤ Hp.
(4.34)

The matrix Sii,h in (4.33) represents the step-response coefficients between the outputs

and inputs in subsystem i for the hth time step (for h = 1, ..., Hp). The vector ŷ0
i

is the vector of predicted unforced responses and it accounts for past control actions

(Seborg, 1989). The vector d̂i(k + l|k) has been included in model (4.33) to correct,

through feedback, for the discrepancies between the measured and predicted outputs.

It is assumed that the difference between the measured and predicted outputs at time

‘k’ remains constant throughout the prediction horizon. The assumption of constant

d̂i(k + l|k) throughout the prediction horizon is one of the simplest assumption for

estimation of disturbances and it has been used in the classical Dynamic Matrix

Control (DMC) algorithms (Maciejowski (2002) and the references therein).

Typically, process industries need to deal with constraints on the process variables,

input variables and input moves. The limitations on the subsystems’ variables are

expressed as inequality constraints in each decentralized control problem, as follows:
yi min ≤ ŷi(k + l|k) ≤ yi max,

ui min ≤ ûi(k + l|k) ≤ ui max,

∆ui min ≤ ∆ûi(k + η|k) ≤ ∆ui max,

for l = 1, . . . , Hp, and η = 0, . . . , Hu − 1.

(4.35)

Assuming that the vector of desired set-points (Yi sp) is provided, then the

decentralized MPC control problem for each subsystem i (i=1,...,N) can be formulated
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as:

min
Yi,∆Ui

Φi =
1

2

((
Yi sp − Yi(k)

)TQi(Yi sp − Yi(k)
)

+ ∆Ui(k)TRi∆Ui(k)
)

subject to : (4.36){
Equality constraints (4.33)− (4.34) and

Inequality constraints (4.35),

where the vectors Yi(k) and ∆Ui(k), for i = 1, ..., N , are defined as:

Yi(k) = [ŷi(k + 1|k)T , ŷi(k + 2|k)T , ..., ŷi(k +Hp|k)T ]T ,

∆Ui(k) = [∆ûi(k|k)T ,∆ûi(k + 1|k)T , ...,∆ûi(k +Hu − 1|k)T ]T .
(4.37)

The matrices Qi and Ri in (4.36) are defined as Qi = diag(Qi(1), Qi(2), . . . , Qi(Hp))

and Ri = diag(Ri(0), Ri(1), . . . , Ri(Hu − 1)), where the weighting matrices Qi(.) ∈

<ni×ni
+

and Ri(.) ∈ <qi×qi+
are positive definite matrices with their off-diagonal

elements equal to zero.

4.7.2 CDMPC Control

As described in Section 4.4, the CDMPC controllers can be designed by modifying

the decentralized MPC controllers. Process model (4.33) is modified to include the

interactions between subsystems as follows:

ŷi(k + l) =
l∑

h=1

Sii,h∆ûi(k + l − h) + ŷ0
i (k + l) + d̂i(k + l|k) +

v̂i(k + l|k), for l = 1, ..., Hp.

(4.38)

In the proposed control scheme, v̂i are decision variables in the local CDMPC control

problem. The coordinator in the price-driven method is formulated to ensure that

equation (4.39) below is satisfied for each subsystem i, for i = 1, ..., N :
∆ei(k + l|k) = v̂i(k + l|k)−

∑
j 6=i
(∑l

h=1 Sij,h∆ûj(k + l − h)
)

= 0,

for l = 1, ..., Hp,

∆ûj(k + l|k) = 0, Hu ≤ l ≤ Hp,

(4.39)

where the matrix Sij,h in (4.39) denotes the hth step-response coefficients for the model

that relates yi and ∆uj, for j 6= i.
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The CDMPC controller for each subsystem i (with i = 1, ..., N) is then formulated

as follows:

min
Yi,∆Ui,Vi

Ji = Φi + ps
T

Θi[Yi(k)T ,∆Ui(k)T , Vi(k)T ]T

subject to : (4.40){
Equality constraints (4.34), (4.38) and

Inequality constraints (4.35),

where the objective function Φi is defined in (4.36). The vector of predicted outputs

Yi(k) and predicted input moves ∆Ui(k) are defined in (4.37). The vector Vi(k) in

(4.40) is defined as: Vi(k) = [v̂i(k|k)T , v̂i(k + 1|k)T , ..., v̂i(k +Hp − 1|k)T ]T .

Optimal control problem (4.40) can be written in a compact form as problem

(4.13)-(4.14), where the vector of decision variables Zi(k) are defined here as:

Zi(k) = [Yi(k)T ,∆Ui(k)T , Vi(k)T ]T . The price ‘ps
T
’ is updated as described in Section

4.4.3. The CDMPC controllers using finite step-response models are implemented as

described in Section 4.4.4.

4.7.3 Illustrative Example II

To show that the effectiveness of the CDMPC controllers using finite step-response

models, a simulation study was performed on the fluid catalytic cracking (FCC) unit

presented in (Grosdidier et al., 1993), where a description of the FCC process, together

with the limits for the controlled and manipulated variables, is provided. A diagram

of the FCC system is shown in Figure 4.5.

In the FCC unit, gas oil is converted into hydrocarbons of shorter chains. The

model of the FCC process and the models for the regulatory control loops are given

in the Appendix 4.9.2 in Table 4.1 and Table 4.2, respectively. The continuous-time

transfer function models include seven outputs and six inputs and were obtained

through identification analysis of step-test data. The transfer function matrix for the

entire FCC process can be obtained by multiplying each transfer function model in

Table 4.1 by its corresponding input model in Table 4.2 (see Appendix 4.9.2), except

for the transfer functions that relate output y5 with input u5 (y5 − u5) and output

y6 with input u5 (y6 − u5), which do not require such multiplication (Grosdidier et
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Figure 4.5: FCC process from (Grosdidier et al., 1993)

al., 1993). The transfer functions for the output-input pairs y5− u5 and y6− u5 are

used as given in Table 4.1.

To implement the CDMPC controllers, finite step-response models were obtained

based on the process dynamics given in Table 4.1 and Table 4.2. These finite step-

response models were also used to simulate the true plant dynamics. The sampling

period used in the simulations was 1 [min]. This corresponds to the sampling period

used in (Grosdidier et al., 1993) for control of the FCC unit. It is assumed that the

FCC process (4.29) consists of two subsystems. The first subsystem includes outputs

y1 to y3 and inputs u1 to u3, while the second subsystem includes outputs y4 to y7

and inputs u4 to u6.

The following parameters are used in the simulation study: weighting matrices

Q1(l) = diag{5; 10; 5} for subsystem 1 and Q2(l) = diag{5; 5; 5; 0.001} for subsystem

2, for l = 1, ..., Hp; R1(η) = diag{100; 100; 100} for subsystem 1 and R2(η) =

diag{100; 100; 100} for subsystem 2, for η = 0, ..., Hu − 1. The prediction horizon

Hp and the control horizon Hu considered for the computer simulations are 50 and
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5, respectively. To initialize the coordination algorithm, all the elements in the price

vector were set to zero.

A set-point change of magnitude 0.5 in output variable y1 was simulated at initial

time t = 0, while the targets of the remaining outputs were kept at the origin. The

results of the simulation are presented in Figure 4.6 and Figure 4.7. The closed-loop

performance of the CDMPC controllers for subsystems 1 and 2 is shown in Figure 4.6,

where the trajectories are plotted in deviation variables. It can be seen in Figure 4.6a)

- Figure 4.6d) that the CDMPC controllers provide a good performance since output

y1 achieves the new set-point and outputs y2 to y7 are stabilized at their new steady-

state optimal values. Figure 4.7a) and Figure 4.7b) show the errors of the predicted
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Figure 4.6: a) Outputs subsystem 1: set-point for y1 (dashed line), y1 (solid line),
y2 (dotted line), y3 (dash-dot line); b) Outputs subsystem 2: y4 (dash-dot line), y5
(dashed line), y6 (solid line), y7 (dotted line); c) Inputs subsystem 1: u1 (dashed
line), u2 (dash-dot line), u3 (solid line); d) Inputs subsystem 2: u4 (dash-dot line),
u5 (solid line), u6 (dashed line).

input moves (||∆UCDMPC−∆Ucen||) and predicted outputs (||YCDMPC−Ycen||) for the

optimization performed at the first sampling instant. These errors in the predicted
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variables are calculated as the difference between the CDMPC optimal solutions and

the optimal solutions calculated with a centralized MPC controller. It is shown in

Figure 4.7a) and Figure 4.7b) that the solutions achieved with the CDMPC controllers

converge to the centralized solution within 2 iterations. In the computer simulations

performed for the FCC unit, the same fast convergence behaviour (2 iterations) was

observed at each control interval.
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Figure 4.7: a) Error in predicted input moves (||∆UCDMPC − ∆Ucen||); b) Error in
predicted outputs (||YCDMPC − Ycen||).

For the simulation experiments performed with the FCC unit, the performance

index Π, given by equation (4.30), indicates that the CDMPC controllers outperform

the fully decentralized controllers by approximately 8.15% (based on a 60 [min] closed-

loop simulation).

4.8 Summary

In this chapter, a coordinated-distributed model predicted control scheme is proposed

for discrete-time, linear constrained systems. The price-driven coordination algorithm

is used to efficiently coordinate the local CDMPC controllers. Newton’s method along

with a sensitivity analysis technique are used to update the price vector in the price-

driven coordination algorithm.

An analysis of the CDMPC scheme performance properties is provided in this

chapter. Based on this analysis and the simulation experiments performed, the

following results can be concluded:
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• When the price-driven coordination algorithm converges:

– the trajectories obtained with CDMPC controllers match the trajectories

obtained with the centralized controller. Thus, the performance of the

CDMPC controllers achieve the performance of the theoretical centralized

controller.

– the price vector is equivalent to the Lagrange multiplier vector for the

equality constraints in the centralized control problem.

• The CDMPC controllers outperform the decentralized controllers because the

coordinator is aware of the interacting variables among the subsystems and

it can iteratively adjust the calculated optimal solutions of the local CDMPC

controllers.

• A rapid convergence of the subsystems’ operations towards the optimal

plant-wide operations is achieved when using Newton-based approach as a

coordination mechanism. In particular, when there is no change in the active set

of the subproblems, the price-driven coordination algorithm converges within

two iterations.

• The proposed CDMPC control scheme is not restricted only to processes

whose dynamics are represented by state-space models. It is shown in this

chapter that the CDMPC controllers can also be implemented using finite step-

response models. This is a convenient property since many commercial MPC

products still use step-response models in their formulation. Thus, the CDMPC

controllers can be built directly on the existing decentralized MPC controllers,

without the need to convert the step-response models into state-space models.

4.9 Appendix

4.9.1 Matrices Required to Update the Price Vector

The matrix Θi (for i = 1, ..., N) required in the price update mechanism and in the

objective function of the subproblems is defined here for the CDMPC controllers
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based on state-space models. For the CDMPC controllers that are formulated using

finite step-response models, a different matrix Θi (which depends on the step-response

coefficients) is required.

The matrix Θi (for i = 1, ..., N) includes the coefficients for the interacting

variables. For example, for subsystems i = 1, i = 2 and i = N , Θi becomes:

Θ1 =



G11

G21

. . .

GN1


, Θ2 =



G12

G22

. . .

GN2


and ΘN =



G1N

G2N

. . .

GNN


. (4.41)

The matrix Gii is given by:

Gii = [0, 0, I], for i = 1, ..., N, (4.42)

where the identity matrix, I, in equation (4.42) has dimensions (Hp · ni)× (Hp · ni).

The matrices Gji required in equation (4.41) are given by:

Gji = [GA ji, GB ji, 0],
for i = 1, ..., N ,

j = 1, ..., N . with j 6= i,
(4.43)

with:

GA ji =


0 0 0 . . . 0
−Aji 0 0 . . . 0

0 . . .
. . .

...
0 . . . 0 −Aji 0

 , (4.44)

︸ ︷︷ ︸
(Hp · ni)× (Hp · nj)

GB ji =


−Bji 0 0 . . . 0

−Bji −Bji 0 . . . 0

. . . . . .
. . .

...
−Bji −Bji . . . −Bji −Bji

 . (4.45)

︸ ︷︷ ︸
(Hp · ni)× (Hu · qj)

4.9.2 Models Used in the Illustrative Example II

The model of the FCC process and the models for the regulatory control loops are

shown in Table 4.1 and Table 4.2, respectively.
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5
Dual-Rate Coordinated-Distributed MPC

This chapter addresses the problem of coordination of distributed MPC controllers

that are executed at two different control rates (i.e., dual-rate CDMPC controllers).

To the best of our knowledge, this is a first approach at solving dual-rate distributed

control problems where a coordinator is involved in the distributed control scheme.

Three strategies are discussed to give an insight of different possible methods for

coordination of dual-rate CDMPC controllers. Among these strategies, the one with

most potential to improve the controllers’ performance is further analyzed. The

proposed dual-rate coordination algorithm is an extension of the price-driven coordi-

nation algorithm described in Chapter 4 for single-rate CDMPC controllers. A case

study is used to illustrate the effectiveness of the proposed dual-rate CDMPC control

scheme. Finally, a method for extending the dual-rate CDMPC control scheme to

multi-rate CDMPC control scheme is proposed.

103
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5.1 Terminology

Some terminology, required for the understanding of the dual-rate coordinated-

distributed control problem addressed in this chapter, is defined in this section.

Sampling instant: specific time at which a continuous-time signal is sampled (see

Figure 1.4, Chapter 1).

Sampling period: length of time between two consecutive sampling instants. It is

denoted by the symbol ‘T ’.

Sampling intervals: set of times: [0, T ), [T, 2T ), [2T, 3T ), .... (see Figure 1.4,

Chapter 1).

Control instant: instant in time at which the control calculations are performed.

It is assumed that the control instants are the same as the sampling instants.

Control interval: period between two consecutive control calculations. It is assumed

to be the same as the sampling interval.

Controller execution rate (or simply control rate): rate at which a controller

performs its control calculations. For example, given two controllers: ‘controller 1’

and ‘controller 2’ that are executed every period T 1 and T 2, respectively. If T 1 < T 2,

then over a fixed time frame, ‘controller 2’ is executed at a slower rate than ‘controller

1’.

Computer clock: the individual MPC computer clock is used so that the MPC

controller can perform its calculations at specific times. In this thesis, it is assumed

that all the local controllers are synchronized across the plant by their computer clock.

5.2 Background

In previous chapters, it was assumed that the sampling period for all the measured

variables across the plant was the same. It was also assumed that the local controllers

in the plant executed their control calculations at the same control rate. In many

plants, process units can have dynamics that span a range of time scales (e.g.,

processes with different time constants and settling times). Different sampling periods

are generally used to sample the variables associated to process units with different

dynamics. In addition, the controllers used to control process units with different
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dynamics are also executed at different control rates. Figure 5.1 serves to explain this

idea. The single-input single output process in ‘subsystem 1’ has a faster dynamic

than the single-input single-output process in ‘subsystem 2’. This can be concluded

because the time constant and settling time in ‘subsystem 1’ are smaller than the

time constant and settling time in ‘subsystem 2’. The output in ‘subsystem 1’ is

expected to be sampled with a sampling period shorter than the one used to sample

the output in ‘subsystem 2’. Because the length of the control intervals is assumed

to be the same as the sampling period, ‘controller 1’ in Figure 5.1 is expected to be

executed at a faster rate than ‘controller 2’.

Controller 2

Subsystem 2Subsystem 1

Controller 1

Figure 5.1: Schematic of two subsystems with different dynamics

Coordination of distributed controllers that are executed at different control rates

is the topic of this chapter. We first explain the difference between ‘multi-rate

distributed control’ and ‘asynchronous distributed control’, since the latter term has

been used in the literature in the general sense to solve both type of problems.

Multi-rate distributed control involves communication between local distributed

controllers that are executed at different control rates; however, the control

calculations performed by the different distributed controllers are synchronized at

some specific control instants. This implies that all control rates are integer multiples

of some base rate, and that a clock time exists when all the local distributed controllers

are synchronous. The concept of multi-rate control can be illustrated in Figure 5.2. In

Figure 5.2, the control intervals for ‘controller 1’ are shorter than the control intervals

for ‘controller 2’. Nevertheless, both controllers are synchronized at certain control

instants.
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... ...Control 
instants

Controller 1

...
...

... ...

Controller 2

Control 
instants

...
...

Controllers can 
be synchronized

at this instant

Controllers can 
be synchronized

at this instant

Figure 5.2: Control instants in multi-rate control. Control input moves are
represented by dotted lines

The definition of asynchronous distributed control has been more broadly used

in the literature. Asynchronous distributed control involves communication between

distributed controllers that are not synchronized by their computer clock (e.g., Venkat

(2006)). In addition, the asynchronous distributed control schemes can include

distributed controllers that are executed at the same or different control rates (see

Figure 5.3). In Figure 5.3a), ‘controller 1’ and ‘controller 2’ are executed at the

same control rate, but they are not synchronized. In Figure 5.3b), ‘controller 1’ and

‘controller 2’ are executed at different control rates and different control instants.

Distributed control schemes including controllers that are executed at different

control rates and controllers or agents with asynchronous communications have

recently attracted the attention of many researchers (Nedić and Ozdaglar, 2007;

Mehyar et al., 2005; Androulakis and Reklaitis, 1999; Camponogara and Talukdar,

2007; Camponogara et al., 2002). Liu et al. (2010) designed distributed model

predictive controllers that take asynchronous and delayed measurements. Venkat

(2006) proposed two asynchronous distributed MPC control schemes. In the first

scheme, the frequency of information exchanged between the subsystems depends

on the required computational time of the cooperative distributed MPC controllers.
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In the second scheme, asynchronous feedback policies are used for cooperative

distributed MPC controllers that are executed at two different rates. Camponogara

and coworkers proposed some heuristics for asynchronous communication among

distributed MPC controllers (Camponogara et al., 2002; Talukdar and Camponogara,

2001). Two heuristics considered in (Camponogara et al., 2002) include: a) estimation

of neighboring agents’ actions; and b) inclusion of some resource margins to make the

constrained variables in the optimization problems more conservative. Nevertheless,

to our knowledge, there is no work published regarding asynchronous distributed

control or multi-rate distributed control where a coordinator communicates with the

local controllers. The work presented in this chapter is a first approach at solving

multi-rate coordinated-distributed control problems.

Control 
instants

Controller 1

... ...

...
...

Control 
instants

Controller 2

... ...

...
...

a)

Control 
instants

Controller 1

... ...

...
...

Control 
instants

Controller 2

... ...

......

b)

Figure 5.3: Control instants in asynchronous control: a) Same control rates, but
different control instants; b) different control rates and control instants. Control
input moves are represented by dotted lines

In this chapter, a method for coordination of CDMPC controllers that are executed

at different control rates is presented. In particular, a dual-rate case is used for the

examples and schematics. This allows us to simplify the notation and the presentation

of the problem that needs to be solved.

In the dual-rate control problem, two classes of subsystems are considered. One

class of subsystems is referred to as the ‘fast’ subsystems and it includes subsystems

with faster dynamics. The other class of subsystems is referred to as the ‘slow’

subsystems and it includes subsystems with slower dynamics. To identify the variables
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and coefficients in the subsystems with the distinct dynamics, the superscripts ‘f ’

and ‘sl’ are appended to the fast subsystems and slow subsystems, respectively. In

the fast subsystems, measurements of the process variables are available every fast

sampling period T
f

and the inputs are updated every fast period T
f
, as well. In

the slow subsystems, measurements of the process variables are available every slow

sampling period T
sl

and the inputs are also updated every slow period T
sl

. For

the dual-rate systems considered in this work, it is assumed that the slow sampling

period is a multiple of the fast sampling period; that is, T
sl
/T

f
= m, where ‘m’

is a positive integer number. Moreover, over the period [τT
sl
, (τ + 1)T

sl
], we have:

τT
sl
< τT

sl
+ T

f
< · · · < τT

sl
+ (m− 1)T

f
< (τ + 1)T

sl
.

Three possible strategies for the dual-rate CDMPC control scheme are identified

in this chapter. Among the three strategies, the one that requires fewer modifications

to the existing decentralized controllers and, at the same time, can improve their

performance is further investigated. The proposed dual-rate CDMPC control scheme

is formulated based on ideas derived from the lifting technique. Finally, an extension

of the dual-rate CDMPC control scheme to multi-rate CDMPC control scheme is

presented along with a discussion of the challenges associated to the proposed multi-

rate CDMPC control scheme.

5.3 Coordination of Dual-Rate CDMPC

Controllers

Three different strategies (i.e., strategies I, II and III ) are proposed in this section

for coordination of dual-rate distributed controllers. Among the three strategies, only

strategy III is further developed in detail and tested through computer simulations.

The strategies and computer simulations considered in this chapter are for dual-

rate controllers. An extension of dual-rate coordinated-distributed control schemes

to multi-rate coordinated-distributed control schemes is possible using the proposed

approach and it is explained for strategy III in Section 5.6.
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5.3.1 Strategy I: Fast-Rate Coordination

In this strategy, a coordinator that operates at a fast rate is included in the distributed

control scheme to coordinate the local CDMPC controllers. It is assumed that:

• the models that represent the dynamics of the fast and the slow subsystems are

provided in discrete-time form based on the fast sampling period T
f
;

• the control inputs, including the inputs from the slow subsystems are updated

every fast period T
f
.

The implementation of the coordinated-distributed control scheme using strategy I

can be summarized as follows:

• all the controllers in the plant, including the controllers for the slow subsystems

execute their control calculations at the fast rate (i.e., every fast period T
f
);

• the coordinator is also executed every fast period T
f
.

In order to coordinate all the controllers in the plant at the fast rate, the controllers

need to be executed at the fast rate as well, including the controllers from the

slow subsystems. One disadvantage of this strategy is that the inter-sample data

(i.e., the data at times: τT
sl

+ T
f
, . . . , τT

sl
+ (m − 1)T

f
) is not available for the

slow subsystems. Therefore, a data estimator is required to predict the unavailable

inter-sample data in the slow subsystems (see Figure 5.4). The data predicted by

the inter-sample data estimator can only be adjusted through feedback at the slow

sampling instants. Thus, any mismatch between the predicted inter-sample data and

the true values of the slow process variables will have an impact on the entire plant-

wide performance. This becomes a more significant problem as the fast and slow

sampling periods become considerably different (or T
f � T

sl
). Since the plant-wide

performance can deteriorate as a result of the slow subsystems’ unavailable data at

the inter-sample instants, this strategy is not further investigated in this work.

5.3.2 Strategy II: Slow-Rate Coordination

In this strategy, a coordinator that operates at a slow rate is included in the

distributed control scheme to coordinate the local CDMPC controllers (see Figure
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Coordinator  (Fast-rate Coordination)

Inter-sample 
Data 

Estimator

Fast Processes Slow Processes

CDMPC
Controller 

Fast
Subsystem 1

CDMPC
Controller 

Fast
Subsystem 2

CDMPC
Controller 

Slow
Subsystem 1

CDMPC
Controller 

Slow
Subsystem 2

Figure 5.4: Hierarchy for strategy I : Fast-rate coordination

5.5). It is assumed that the models that represent the dynamics of the fast and the

slow subsystems are provided in discrete-time form based on the slow sampling period

T
sl

. The implementation of the coordinated-distributed control scheme using strategy

II can be summarized as follows:

• all the controllers in the plant, including the controllers for the fast subsystems

execute their control calculations at the slow rate (i.e., every slow period T
sl

);

• the coordinator is also executed every slow period T
sl

.

To coordinate all the controllers in the plant at the slow rate, the controllers

need to be executed at the slow rate as well, including the controllers from the fast

subsystems. One disadvantage of this strategy is that, while it is possible to measure

the fast subsystems’ outputs at the fast sampling instants, the controllers of the fast

subsystems are executed every slow interval of length T
sl

. This can have a negative

impact on the plant-wide performance. It limits the ability to reject high frequency

disturbances in the fast subsystems, which degrades the plant-wide performance.

This problem becomes more significant as T
f � T

sl
. When the controllers in the

fast subsystems are executed at a slower rate, their effectiveness can be substantially

reduced. This results from the fact that in between the slow sampling instants, the

controller in each fast subsystem operates as an open-loop subsystem because no

control action takes place. Thus, if the control interval T
sl

is long for the dynamics of
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the fast subsystems, the performance of the controllers in the fast subsystems clearly

deteriorates, affecting the entire plant-wide performance.

Although strategies I and II can provide a feasible solution to the dual-rate

coordinated-distributed control problem, they might not result in the best possible

performance for the entire plant due to the selected optimization rate. A third

strategy (strategy III ) for solving dual-rate distributed control problems is presented

in the next section. This strategy has the most potential to improve the entire plant-

wide performance because it consists of a trade-off between strategy I and II.

Coordinator  (Slow-rate Coordination)

Fast Processes Slow Processes

CDMPC
Controller 

Fast
Subsystem 1

CDMPC
Controller 

Fast
Subsystem 2

CDMPC
Controller 

Slow
Subsystem 1

CDMPC
Controller 

Slow
Subsystem 2

Figure 5.5: Hierarchy for strategy II : Slow-rate coordination

5.3.3 Strategy III: Dual-Rate Coordination

Strategy III is another alternative for solving dual-rate distributed control problems.

This strategy takes advantage of both controller execution rates: the controllers in the

fast subsystems perform their calculations at the fast rate, while the controllers in the

slow subsystems perform their calculations at the slow rate. The hierarchy for strategy

III can be represented by Figure 5.6, where the coordinator has dual coordination

modes. Due to the interactions between the fast and the slow subsystems, the

subsystems include mixed-rate variables. The lifting technique (see Section 5.4.1) is

used in this work as a tool to obtain the mixed-rate models for the slow subsystems.

The implementation of the coordinated-distributed control scheme using strategy

III can be summarized as follows:
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• each controller in the plant is executed at its own control rate. That is, the

controllers of the fast subsystems are executed every fast period T
f

and the

controllers of the slow subsystems are executed every slow period T
sl

;

• the coordinator is executed every fast period T
f

and it has a multiple

coordination modes that vary according to the current control instant. For

example, every slow period T
sl

, all the controllers in the plant are coordinated,

including the controllers from the fast and the slow subsystems (see control

instants: ‘τT
sl

’ and ‘(τ + 1)T
sl

’ in Figure 5.7). Nevertheless, every fast period

T
f

and between two consecutive slow control instants, only the controllers

from the fast subsystems are coordinated (see control instants: ‘τT
sl

+ T
f
’

and ‘τT
sl

+ (m− 1)T
f
’ in Figure 5.7).

Among the three strategies, strategy III is seen as the most promising. It does not

require the controllers to alter their execution rate because each controller optimizes

the local subsystem according to their designed control intervals. Moreover, strategy

III does not degrade the entire plant-wide performance because it takes advantage

of the existing dual-rate control strategy. Since strategy III offers a potential

improvement of the entire plant-wide performance, a mathematical framework for

strategy III is derived in Section 5.4.2, and its performance is tested through computer

simulations in Section 5.5.

Coordinator  (Dual-rate Coordination)

Fast Processes Slow Processes

CDMPC
Controller 

Fast
Subsystem 1

CDMPC
Controller 

Fast
Subsystem 2

CDMPC
Controller 

Slow
Subsystem 1

CDMPC
Controller 

Slow
Subsystem 2

Figure 5.6: Hierarchy for strategy III : Dual-rate coordination
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... ...Control 
instants

Control actions 
from fast 

subsystem
...

... ...

Control actions 
from slow 
subsystem

Control 
instants

...

All controllers 
are coordinated 
at this instant

All controllers 
are coordinated 
at this instant

Controllers from 
fast subsystems 

are coordinated at 
these instants

τ Tsl (τ+1) Tsl

τ Tsl+(m-1)Tf (τ+1) Tslτ Tsl τ Tsl+ Tf

Figure 5.7: Dual coordination mode in strategy III

5.4 Dual-Rate CDMPC Control

In this section, the mathematical framework for the dual-rate distributed MPC

controllers is derived based on strategy III. The lifting technique, which is used as

a tool to obtain the models for the slow subsystems, is described in Section 5.4.1.

The models for the slow and the fast subsystems are given in Section 5.4.2. The

distributed control problem for each subsystem in the plant is formulated in Section

5.4.3. Finally, a price-driven algorithm used for coordination of the dual-rate CDMPC

controllers is proposed in Section 5.4.4 along with the implementation of the dual-rate

CDMPC controllers in Section 5.4.5.

5.4.1 Lifting Technique

One of the standard methods for solving multi-rate control problems is the so-

called lifting technique (Chen and Francis, 1995; Sheng et al., 2002; Rossiter et

al., 2005; Sheng et al., 2001). The lifting technique consists of grouping (or ‘lifting’)
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the fast-rate signals together to create slow-rate signals of higher dimension (Chen

and Francis, 1995).

To understand the lifting technique, let us consider the single-input single-output

sampled-data system shown in Figure 5.8. The system shown in Figure 5.8 is a

dual-rate sampled-data system because the input updating instants and the output

sampling instants occur at two different rates. The discrete-time input signal z is

updated at a fast rate with period T
f

and the output signal is sampled at a slow rate

with period T
sl

, where T
sl

= mT
f
. The fast-rate input signal is shown in Figure 5.8

with fast frequency dots and the slow-rate output signal is shown with slow frequency

dots.

Hold 
Operator

Ideal
Sampler

Continuous-time
Process

Discrete-time
input signal z

Discrete-time
output signal

Figure 5.8: A single-input single-output dual-rate sampled-data system

Let the discrete-time input signal z be: z = [z(0), z(1), z(2), . . . ]. For the positive

integer m, the m-fold lifted signal z is defined as:

z =




z(0)
z(1)

...
z(m− 1)

 ,


z(m)
z(m+ 1)

...
z(2m− 1)

 , . . .
 .

Note that the lifted signal is underlined and that the dimension of the lifted signal

z equals m times the dimension of signal z (Chen and Francis, 1995). In this work,

the lifting technique is used to derive a discrete-time state-space models for the slow

subsystems from their continuous-time models (see Section 5.4.1).

Lifted Models for Systems with Slow Dynamics

Let us consider a continuous-time system modeled by the state-space representation

as follows:

ẋ
sl

(t) = A
sl

c x
sl

(t) +B
sl

c u
sl

(t) +D
sl−f

c u
f

(t), (5.1)
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where the states x
sl ∈ <nsl , the inputs u

sl ∈ <qsl and the inputs u
f ∈ <qf . As shown

in Figure 5.8, dual-rate systems consists of systems where the input updating instants

and the output sampling instants occur at two different rates. Let us assume that

in system (5.1), the states x
sl

are sampled every slow period T
sl

, the inputs u
sl

are

updated every slow period T
sl

and the inputs u
f

are updated every fast period T
f
.

For the dual-rate system considered here, it is assumed that the slow sampling period

is a multiple of the fast sampling period. That is, T
sl
/T

f
= m, where m is a positive

integer. Thus, for the period T
sl

shown in Figure 5.9, it is assumed that:

Subsystems with fast dynamics

Subsystems with slow dynamics

Input 
updated at 
fast-rate

Output 
sampled at 
slow-rate

... ...

...τ Tsl+Tf ...τ Tsl

τ Tsl

... ...

τ Tsl+(m-1)Tf τ Tsl+mTf

(τ+1) Tsl

Figure 5.9: Example of output sampling and input update scheme for a dual-rate
system

• over the interval [τT
sl
, (τ +1)T

sl
), the control signals u

f
are updated at the fast

time instants: τT
sl

, τT
sl

+ T
f
, . . . , τT

sl
+ (m− 1)T

f
;

• over the interval [τT
sl
, (τ + 1)T

sl
), the control signals u

sl
are updated at the

slow time instant τT
sl

and the states (or outputs) are available at the slow time

instant τT
sl

.

Continuous-time model (5.1) can be discretized to give:

x
sl

(τ + 1) = A
sl

x
sl

(τ) +B
sl

u
sl

(τ) +D
sl−f

uf (τ), (5.2)
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where the matrices A
sl

and B
sl

in equation (5.2) are defined as:

A
sl

= eA
sl
c ·T

sl

, (5.3)

B
sl

=

∫ T
sl

0

(
eA

sl
c ·t
)
B
sl

c dt. (5.4)

The lifted matrix D
sl−f

and lifted vector uf (τ) in equation (5.2) are obtained following

the lifted modeling technique in (Sheng et al., 2002) as:

D
sl−f

= [D
sl−f

(0) D
sl−f

(1) . . . D
sl−f

(m− 1)],

D
sl−f

(σ) =

∫ (1− σ
m )T

sl

(1−σ+1
m )Tsl

(
eA

sl
c ·t
)
D

sl−f

c dt, σ = 0, ...,m− 1,

uf (τ) =


uf (τT

sl
)

uf (τT
sl

+ T
f
)

. . .

uf (τT
sl

+ (m− 1) · T f
)

 .
Equation (5.2) can be arranged in terms of the lifted input moves ∆uf (τ) as follows:

x
sl

(τ + 1) = A
sl

x
sl

(τ) +B
sl

u
sl

(τ) +Dsl−f
∆uf (τ) +Dsl−f

(0)uf (τ − 1/m), (5.5)

where A
sl

and B
sl

are given by equations (5.3) and (5.4), respectively, and

Dsl−f
= [Dsl−f

(0) Dsl−f
(1) . . . Dsl−f

(m− 1)],

Dsl−f
(σ) =

∫ (m−σm )T
sl

0

(
eA

sl
c ·t
)
D

sl−f

c dt, σ = 0, ...,m− 1, (5.6)

∆uf (τ) =


∆uf (τT

sl
)

∆uf (τT
sl

+ T
f
)

. . .

∆uf (τT
sl

+ (m− 1) · T f
)

 .
5.4.2 Models for the Slow and Fast Subsystems

To formulate the dual-rate CDMPC controllers, it is assumed that the entire plant

consists of two sets of subsystems: slow subsystems and fast subsystems.

With regards to the interactions, it is also assumed that the slow subsystems are

coupled to the fast subsystems through the control inputs only. As discussed in
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Section 5.3.1, the state variables in the slow subsystems are measured every slow

sampling period T
sl

. At the fast sampling instants τT
sl

+ T
f
, . . . , τT

sl
+ (m− 1)T

f
,

the state variables in the slow subsystems are not available and they need to be

estimated. Estimation of unavailable data is not pursued in this thesis. Therefore, in

this chapter it is assumed that the interactions between the slow subsystems and the

fast subsystems represent the effect of the input variables only.

Model dynamics for slow subsystems:

It is assumed that the continuous-time model (5.1) is available for the slow subsystems

and it is discretized as shown in Section 5.4.1. The notation and the mixed-rate

models used in the lifting technique can be applied to obtain the discrete-time model

for all the slow subsystems as in equation (5.2). Next, model (5.2) can be partitioned

into N
sl

slow subsystems. The discrete-time process model for each slow subsystem

is given by:

x
sl

i (τ + 1) = A
sl

iix
sl

i (τ) +B
sl

iiu
sl

i (τ) +
∑
j 6=i

(
A
sl

ijx
sl

j (τ) +B
sl

iju
sl

j (τ)
)

+

N
f∑

w=1

D
sl−f

iw u
f

w(τ), (5.7)

x
sl

i (0) = xinit sli , for i = 1, ..., N
sl

,

where N
sl

is the total number of slow subsystems; N
f

is the total number of fast

subsystems; x
sl

i (τ) ∈ <nsli and u
sl

i (τ) ∈ <qsli . The total number of state variables in

all the slow subsystems is n
sl

=
∑N

sl

i=1 n
sl

i , and the total number of input variables in

all the slow subsystems is q
sl

=
∑N

sl

i=1 q
sl

i .

The matrices A
sl

ii and B
sl

ii represent the local dynamics for the slow subsystem i

(for i = 1, ..., N
sl

), and the matrices A
sl

ij and B
sl

ij represent the effect of the slow

subsystems j (with j 6= i) on the slow subsystem i. The lifted matrix D
sl−f

iw accounts

for the effect of the lifted inputs u
f

w on the slow subsystem i, where i = 1, ..., N
sl

and

w = 1, ..., N
f
.
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Model dynamics for fast subsystems:

It is assumed that the discrete-time model for each subsystem with fast dynamics is

given by:

x
f

i (k + 1) = A
f

iix
f

i (k) +B
f

iiu
f

i (k) +
∑
j 6=i

(
A
f

ijx
f

j (k) +B
f

iju
f

j (k)
)

+

N
sl∑

w=1

D
f−sl

iw u
sl

w(k), (5.8)

x
f

i (0) = xinit fi , for i = 1, ..., N
f

,

where x
f

i (k) ∈ <n
f
i and u

f

i (k) ∈ <q
f
i . The total number of state variables in all the

fast subsystems is n
f

=
∑N

f

i=1 n
f

i , and the total number of input variables in all the

fast subsystems is q
f

=
∑N

f

i=1 q
f

i .

The matrices A
f

ii and B
f

ii represent the local dynamics for fast subsystem i (for

i = 1, ..., N
f
) and the matrices A

f

ij and B
f

ij represent the effect of the fast subsystems

j (with j 6= i) on the fast subsystem i. The matrix D
f−sl
iw accounts for the effect of

inputs u
sl

w on the fast subsystem i, where i = 1, ..., N
f

and w = 1, ..., N
sl

.

It can be noted that the total number of slow and fast subsystems in the plant

are equal to N
sl

+ N
f
; the total number of state variables in the plant are equal to

n
sl

+ n
f
; and the total number of input variables in the plant are equal to q

sl
+ q

f
.

5.4.3 Formulation of Dual-Rate CDMPC Controllers

In this section, the formulation of the CDMPC controllers is presented for the slow

and the fast subsystems. The price-driven method described in Chapter 4 is extended

to coordinate the dual-rate CDMPC controllers. In the price-driven coordination

method, the price vector used in the local optimization problems is updated based

on Newton’s method.

Slow-rate CDMPC controllers

Consider the dynamics of the slow subsystems i (for i = 1, ..., N
sl

) represented by

model (5.7). The variables predicted by the CDMPC controller of each slow subsystem
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i along the prediction horizon H
sl

p and control horizon H
sl

u are given by:

x̂
sl

i (τ + l + 1|τ) = A
sl

ii x̂
sl

i (τ + l|τ) +B
sl

ii û
sl

i (τ + l|τ) + v̂
sl

i (τ + l|τ)+∑
j 6=i
(
β
sl

i A
sl

ijx
sl

j (τ) +B
sl

iju
sl

j (τ − 1)
)
+∑N

f

w=1D
sl−f
iw (0)ufw(τ − 1/m), for l = 0, .., H

sl

p − 1,

x̂
sl

i (τ |τ) = x
sl

i (τ),

β
sl

i = 1, for l = 0,

β
sl

i = 0, for l = 1, .., H
sl

p − 1,

(5.9)

with:{
û
sl

i (τ + l|τ) =
∑l

ν=0 ∆û
sl

i (τ + ν|τ) + u
sl

i (τ − 1), for l = 0, ..., H
sl

p − 1,

∆û
sl

i (τ + l|τ) = 0, H
sl

u ≤ l ≤ H
sl

p − 1.
(5.10)

In the proposed control scheme, v̂
sl

i are decision variables in the CDMPC control

problem of each slow subsystem i. The coordinator is formulated to ensure that the

following equation (5.11) is satisfied for each slow subsystem i, for i = 1, ..., N
sl

:

∆e
sl

i (τ + l|τ) = 0 =

v̂
sl

i (τ + l|τ)−
∑

j 6=i

(
β
sl

i A
sl

ijx̂
sl

j (τ + l|τ) +B
sl

ij

∑l
ν=0 ∆û

sl

j (τ + ν|τ)
)

+

−
∑N

f

w=1 β
sl

i D
sl−f
iw (0)I

f

w

∑l−1
ν=0 ∆û

f

w(τ + ν|τ)+

−
∑N

f

w=1D
sl−f

iw ∆û
f

w(τ + l|τ), for l = 0, .., H
sl

p − 1,

β
sl

i = 0, for l = 0,

β
sl

i = 1, for l = 1, .., H
sl

p − 1,

(5.11)

with:

∆ûfw(τ + l|τ) =


∆ûfw(τ + l|τ)

∆ûfw(τ + 1
m

+ l|τ)
. . .

∆ûfw(τ + m−1
m

+ l|τ)

 , for w = 1, .., N
f
,

l = 1, .., H
sl

p − 1,

I
f

w = [ I
q
f
i
, I
q
f
i
, ..., I

q
f
i︸ ︷︷ ︸

I
q
f
i

repeated m times

],

and where I
q
f
i

is the identity matrix of dimensions q
f

i × q
f

i . The lifted matrix Dsl−f

iw is

defined as:

Dsl−f

iw = [Dsl−f

iw (0),Dsl−f

iw (1), ...,Dsl−f

iw (m− 1)]. (5.12)
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The elements Dsl−f
iw (σ) in equation (5.12), for σ = 0, ...,m − 1, represent the effect

of the input moves ∆ûfw from the fast subsystem w (for w = 1, ..., N
f
) on the slow

subsystems i (for i = 1, .., N
sl

). The matrix Dsl−f
iw (σ) can be obtained by partitioning

the matrix Dsl−f
(σ) given in equation (5.6), for σ = 0, ...,m− 1.

Typically, process industries need to deal with constraints on the process variables,

input variables and input moves. The constraints on the variables of the subsystems

can be the result of environmental and safety restrictions, product specifications and

physical limitations in process equipment. The limitations on the slow subsystems’

variables are expressed as inequality constraints in the optimization problem of each

slow subsystem, as follows:
x
sl

i min ≤ x̂
sl

i (τ + l + 1|k) ≤ x
sl

i max,

u
sl

i min ≤ û
sl

i (τ + l|k) ≤ x
sl

i max,

∆u
sl

i min ≤ ∆û
sl

i (τ + ν|k) ≤ ∆u
sl

i max,

for l = 0, ..., H
sl

p − 1, and η = 0, ..., H
sl

u − 1.

(5.13)

The optimal control problem of each slow subsystem encompasses the local process

variables. Therefore, for each slow subsystem i (with i = 1, ..., N
sl

), we propose the

following optimization problem:

min
X
sl
i ,∆U

sl
i ,V

sl
i

J sl

i =
1

2

((
X

sl

i sp −X
sl

i (τ)
)TQsl

i

(
X

sl

i sp −X
sl

i (τ)
)

+ ∆U
sl

i (τ)TRsl

i ∆U
sl

i (τ)
)

+(
Λ
sl

i

)T [
X

sl

i (τ)T ,∆U
sl

i (τ)T , V
sl

i (τ)T
]T

subject to : (5.14){
Equality constraints (5.9)− (5.10) and

Inequality constraints (5.13),

where the vectors X
sl

i (τ), ∆U
sl

i (τ) and V
sl

i (τ), for i = 1, ..., N
sl

, are defined as:

X
sl

i (τ) = [x̂
sl

i (τ + 1|τ)T , x̂
sl

i (τ + 2|τ)T , ..., x̂
sl

i (τ +H
sl

p |τ)T ]T ,

∆U
sl

i (τ) = [∆û
sl

i (τ |τ)T ,∆û
sl

i (τ + 1|τ)T , ...,∆û
sl

i (τ +H
sl

u − 1|τ)T ]T ,

V
sl

i (τ) = [v̂
sl

i (τ |τ)T , v̂
sl

i (τ + 1|τ)T , ..., v̂
sl

i (τ +H
sl

p − 1|τ)T ]T .

In the objective function (5.14), the block-diagonal matrices Qsl

i and Rsl

i are defined

as:
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Qsl

i = diag(Q
sl

i (1), Q
sl

i (2), . . . , Q
sl

i (H
sl

p )) and Rsl

i = diag(R
sl

i (0), R
sl

i (1), . . . , R
sl

i (H
sl

u −

1)), where the weighting matrices Q
sl

i (l + 1) and R
sl

i (η), for l = 0, ..., H
sl

p − 1 and

η = 0, ..., H
sl

u − 1, are positive definite matrices of appropriate dimensions with their

off-diagonal elements equal to zero. The vector Λ
sl

i is provided by the coordinator.

The construction of the vector Λ
sl

is shown in Section 5.4.4.

For simplicity, the optimal control problem (5.14) can be formulated in a compact

form as:

min
Z
sl
i

J sl

i =
1

2

(
Z
sl

i (τ)TΥ
sl

i Z
sl

i (τ)
)

+
(
φ
sl

i

)T
Z
sl

i (τ) +
(
Λ
sl

i

)T
Z
sl

i (τ) (5.15)

subject to : {
Geq sl
i Z

sl

i (τ) = geq sli ,

Gineq sl
i Z

sl

i (τ) ≤ gineq sli .
(5.16)

The system of relations (5.16) can be obtained by arranging equations (5.9), (5.10) and

inequalities (5.13) in a matrix form for the entire prediction horizon H
sl

p and control

horizon H
sl

u . In (5.16), Geq sl
i is the coefficient matrix for the decision variables in the

equality constraints (5.9)-(5.10) and, the vector geq sli includes known data, such as

the effect of current measured state variables and past input variables from the plant.

The matrix Gineq sl
i is the coefficient matrix in the inequality constraints (5.13), and

the vector gineq sli represents the upper and lower limits for the decision variables in

each slow subsystem i.

Fast-rate CDMPC controllers

Let us consider that the dynamics of the fast subsystems i (for i = 1, ..., N
f
) are

represented by model (5.8). The variables predicted by the CDMPC controller of

each fast subsystem i along the prediction horizon H
f

p and control horizon H
f

u are

given by:

x̂
f

i (k + l + 1|k) = A
f

iix̂
f

i (k + l|k) +B
f

iiû
f

i (k + l|k) + v̂
f

i (k + l|k)+∑
j 6=i
(
β
f

i A
f

ijx
f

j (k) +B
f

iju
f

j (k − 1)
)
+∑N

sl

w=1D
f−sl
iw uslw(k − 1), for l = 0, .., H

f

p − 1,

x̂
f

i (k|k) = x
f

i (k),

β
f

i = 1, for l = 0,

β
f

i = 0, for l = 1, .., H
f

p − 1,

(5.17)
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with:{
û
f

i (k + l|k) =
∑l

ν=0 ∆û
f

i (k + ν|k) + u
f

i (k − 1), for l = 0, ..., H
f

p − 1,

∆û
f

i (k + l|k) = 0, H
f

u ≤ l ≤ H
f

p − 1.
(5.18)

In the proposed control scheme, v̂
f

i are decision variables in the CDMPC control

problem of each fast subsystem i. The coordinator is formulated to ensure that the

following equation (5.19) is satisfied for each fast subsystem i, for i = 1, ..., N
f
:

∆e
f

i (k + l|k) = 0 =

v̂
f

i (k + l|k)−
∑

j 6=i

(
β
f

i A
f

ijx̂
f

j (k + l|k) +B
f

ij

∑l
ν=0 ∆û

f

j (k + ν|k)
)

+

−Df−sl
iw

∑l
ν=0 ∆û

sl

w(τ + ν/m|τ), for l = 0, ...,H
f

p − 1,

β
f

i = 0, for l = 0,

β
f

i = 1, for l = 1, .., H
f

p − 1.

(5.19)

It can be noted that the inputs û
sl

w, for w = 1, ..., N
sl

are computed by the slow-rate

CDMPC controllers and updated every control interval of length T
sl

. A zero-order

hold is assumed for the inputs û
sl

w within the slow control intervals; thus, if ‘ν/m’ in

equation (5.19) is not an integer number, then ∆û
sl

w(τ + ν/m|τ) = 0. In addition, the

time counter τ in equation (5.19) is incremented every slow control interval of length

T
sl

.

As with the slow subsystems, there may exist some limitations on the fast

subsystems’ variables. These limitations are expressed as inequality constraints in

the optimization problem of each fast subsystem, as follows:
x
f

i min ≤ x̂
f

i (k + l + 1|k) ≤ x
f

i max,

u
f

i min ≤ û
f

i (k + l|k) ≤ x
f

i max,

∆u
f

i min ≤ ∆û
f

i (k + η|k) ≤ ∆u
f

i max,

for l = 0, ..., H
f

p − 1, and η = 0, ..., H
f

u − 1.

(5.20)

The optimal control problem of each fast subsystem encompasses the local process

variables. Therefore, for each fast subsystem i (with i = 1, ..., N
f
), we propose the
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following optimization problem:

min
X
f
i ,∆U

f
i ,V

f
i

J f

i =
1

2

((
X

f

i sp −X
f

i (k)
)TQf

i

(
X

f

i sp −X
f

i (k)
)

+ ∆U
f

i (k)TRf

i ∆U
f

i (k)
)

+(
Λ
f

i

)T [
X

f

i (k)T ,∆U
f

i (k)T , V
f

i (k)T
]T

subject to : (5.21){
Equality constraints (5.17)− (5.18) and

Inequality constraints (5.20),

where the vectors X
f

i (k), ∆U
f

i (k) and V
f

i (k), for i = 1, ..., N
f
, are defined as:

X
f

i (k) = [x̂
f

i (k + 1|k)T , x̂
f

i (k + 2|k)T , ..., x̂
f

i (k +H
f

p |k)T ]T ,

∆U
f

i (k) = [∆û
f

i (k|k)T ,∆û
f

i (k + 1|k)T , ...,∆û
f

i (k +H
f

u − 1|k)T ]T ,

V
f

i (k) = [v̂
f

i (k|k)T , v̂
f

i (k + 1|k)T , ..., v̂
f

i (k +H
f

p − 1|k)T ]T .

In the objective function (5.21), the block-diagonal matricesQf

i andRf

i are defined as:

Qf

i = diag(Q
f

i (1), Q
f

i (2), ..., Q
f

i (H
f

p )) and Rf

i = diag(R
f

i (0), R
f

i (1), ..., R
f

i (H
f

u − 1)),

where the weighting matrices Q
f

i (l + 1) and R
f

i (η), for l = 0, ..., H
f

p − 1 and

η = 0, ..., H
f

u − 1, are positive definite matrices of appropriate dimensions with their

off-diagonal elements equal to zero. The vector Λ
f

i is provided by the coordinator.

The construction of the vector Λ
f

is shown in Section 5.4.4.

For simplicity, the optimal control problem (5.21) can be formulated in a compact

form as:

min
Z
f
i

J f

i =
1

2

(
Z
f

i (k)TΥ
f

iZ
f

i (k)
)

+
(
φ
f

i

)T
Z
f

i (k) +
(
Λ
f

i

)T
Z
f

i (k) (5.22)

subject to : {
Geq f
i Z

f

i (τ) = geq fi ,

Gineq f
i Z

f

i (τ) ≤ gineq fi .
(5.23)

System of relations (5.23) can be obtained by arranging equations (5.17), (5.18) and

inequalities (5.20) in a matrix form for the entire prediction horizon H
f

p and control

horizon H
f

u . In (5.23), Geq f
i is the coefficient matrix for the decision variables in the

equality constraints (5.17)-(5.18) and, the vector geq fi includes known data, such as

the effect of current measured state variables and past input variables from the plant.
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The matrix Gineq f
i is the coefficient matrix in the inequality constraints (5.20), and

the vector gineq fi represents the upper and lower limits for the decision variables in

each fast subsystem i.

5.4.4 Price-Driven Coordination Algorithm

In this section, a price-driven coordination algorithm is presented to coordinate

the dual-rate CDMPC controllers. The price vector is adjusted according to dual

update modes that depend on the current control instant. The dual update

modes are required in the price update algorithm because different sets of CDMPC

controllers are coordinated at the different control instants. At control instants

‘k = mτ ’, occurring every slow control interval, the CDMPC controllers from the

fast subsystems and slow subsystems are executed. Thus, the coordinator updates

the price vector to coordinate all the controllers in the plant. At control instants

‘k 6= mτ ’, occurring every fast control interval, only the CDMPC controllers from the

fast subsystems are executed. Therefore, the coordinator updates the price vector

to coordinate only the fast-rate CDMPC controllers. For the problem formulation

considered in this work, the price vector is updated according to the following dual-

rate method:

ps+1 = ps − Ξmode. (5.24)

The superscripts ‘s’ and ‘s + 1’ in (5.24) denote two consecutive iteration steps and

the vector Ξmode is defined as:

Ξmode =

α
dual (Jdual)−1

∆Es(k, τ), for k = mτ, (5.25a)

α
f (Jf )−1

∆Es(k), for k 6= mτ. (5.25b)

The task of the coordinator is to iteratively adjust the price p according to equation

(5.24) until ∆Es(k, τ), for k = mτ (or ∆Es(k), for k 6= mτ) is driven to zero.

The positive parameters α
dual

and α
f

are the step sizes in the dual price update

algorithm (5.24), where each step size can be calculated as described in Chapter 4.
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The Jacobian matrices Jdual and Jf in (5.25a) and (5.25b) are defined as:

Jdual =
N
f∑

i=1

Θ
f

i

dZsf

i (k)

dps
+

N
sl∑

i=1

Θ
sl

i

dZssl

i (τ)

dps
, (5.26)

Jf =
N
f∑

i=1

M
f

Θ
f

i

dZsf

i (k)

dps
, (5.27)

where the matrices Θ
f

i for i = 1, ..., N
f
, and Θ

sl

i for i = 1, ..., N
sl

are given in Appendix

5.8.1 and the matrix M
f

is defined as:

M
f

=
[
I 0

]
. (5.28)︸︷︷︸

(H
f
p ·n

f
)×(Hsl

p ·n
sl )

The interaction error vectors ∆Es(k, τ) and ∆Es(k) in the price update algorithm

are defined differently according to the control instants. For k = mτ , ∆Es(k, τ) is

defined as:

∆Es(k, τ) =
N
f∑

i=1

Θ
f

iZ
sf

i (k) +
N
sl∑

i=1

Θ
sl

i Z
ssl

i (τ), (5.29)

and for k 6= mτ , ∆Es(k) is defined as:

∆Es(k) =
N
f∑

i=1

M
f

Θ
f

iZ
sf

i (k). (5.30)

In Chapter 4, the coordinator calculates the price vector ps and sends that information

to the local CDMPC controllers. To simplify the calculations performed by the local

CDMPC controllers in the dual-rate distributed control scheme, the coordinator does

not provide the price vector to each CDMPC controller, but it provides the vector Λ
f

i

and Λ
sl

i to the fast-rate CDMPC controllers and the slow-rate CDMPC controllers,

respectively. For the fast-rate CDMPC controllers, the vector Λ
f

i is computed by the

coordinator as follows:(
Λ
f

i

)T
=


(
ps
)T

Θ
f

i , for k = mτ and i = 1, ..., N
f

, (5.31a)(
ps
)T
M

f

Θ
f

i , for k 6= mτ and i = 1, ..., N
f

. (5.31b)

For the slow-rate CDMPC controllers, the vector Λ
sl

i is computed by the coordinator

as follows: (
Λ
sl

i

)T
=
(
ps
)T

Θ
sl

i , for k = mτ and i = 1, ..., N
sl

. (5.32)
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In Section 5.4.5, the implementation of the dual-rate distributed controllers is

described, including the steps of the coordination algorithm that take place within

the different control intervals.

5.4.5 Implementation of Dual-Rate CDMPC Controllers

The implementation steps described in this section have been adapted from the

implementation of the single-rate CDMPC controllers described in Chapter 4. The

main difference between the implementation of the single-rate CDMPC controllers

and the dual-rate CDMPC controllers is the dual mode of the coordination algorithm.

In the dual coordination mode, the price vector is computed differently whether the

fast-rate CDMPC controllers and the slow-rate CDMPC controllers are coordinated,

or only the fast-rate CDMPC controllers are coordinated. The dual nature of the

coordination algorithm is described below for control instants k = mτ and k 6= mτ .

A. Control instants k = mτ :

At control instants k = mτ , the CDMPC controllers in the fast and the slow

subsystems are executed. Therefore, all the CDMPC controllers in the plant

need to be coordinated. At control instants k = mτ , the coordination algorithm

and the implementation of the dual-rate CDMPC controllers are summarized

according to the following steps:

A.1 Initialization (s=0): The coordinator sets up an initial price vector ps.

For initialization, the elements of the vector ps can be set to zero. The

length of the price vector is equal to H
f

p ·n
f
+H

sl

p ·n
sl

. Next, the coordinator

computes the vector Λ
f

i and Λ
sl

i according to equations (5.31a) and (5.32),

and transfers the information to every local CDMPC controller.

A.2 Optimization performed by each local CDMPC controller: With

the information provided by the coordinator, each CDMPC controller

solves its own optimization problem. The slow-rate CDMPC controllers

solve optimization problem (5.15)-(5.16) and the fast-rate CDMPC

controllers solve optimization problem (5.22)-(5.23). The CDMPC

controllers also calculate their sensitivity information as described in
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Chapter 4. The calculated optimal solutions from the slow subsystems

Z
sl

i (τ), for i = 1, ..., N
sl

, and fast subsystems Z
f

i (k), for i = 1, ..., N
f
, as

well as their sensitivity information are communicated to the coordinator.

A.3 Price update: The iteration counter ‘s’ is incremented. The coordinator

gathers the information from each CDMPC controller; it calculates

∆Es(k, τ) according to equation (5.29), and Jdual as given by equation

(5.26). Next, the coordinator determines the step size α
dual

, with 0 <

α
dual ≤ 1 for the dual-rate price update algorithm. Then, the coordinator

updates the price vector p as per equation (5.24), with the vector Ξmode

given by equation (5.25a), and it calculates the vectors Λ
f

i and Λ
sl

i ,

according to equations (5.31a) and (5.32). The vectors Λ
f

i and Λ
sl

i , are

communicated to the corresponding CDMPC controllers.

A.4 Iteration until convergence: Steps (A.2)-(A.3) are repeated until

the price-driven coordination algorithm is terminated. The price-driven

coordination algorithm is terminated when ‖∆Es(k, τ)‖ ≤ ε, where ε is a

specified error tolerance.

A.5 Implementation of first calculated control action: Once the price-

driven coordination algorithm is terminated, the first calculated control

moves are implemented in each subsystem, while the rest of the calculated

control moves are discarded. Therefore, for the fast subsystems the

first input moves ∆ûfw(τ |τ) in the lifted input vector are implemented,

for w = 1, ..., N
f
. In the slow subsystems, the input moves ∆ûsli (τ |τ)

are implemented, i = 1, ..., N
sl

. Then, the iteration counter ‘s’ in the

coordination algorithm is reset to zero. The optimization problem (steps

(A.1)-(A.4)) is solved every control instant k = mτ .

B. Control instants k 6= mτ :

At control instants k 6= mτ , only the CDMPC controllers in the fast subsystems

are executed and therefore coordinated. At instants k 6= mτ , the coordination

algorithm and the implementation of the fast-rate CDMPC controllers are
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summarized according to the following steps:

B.1 Initialization (s=0): The coordinator sets up an initial price vector

ps. Here again, the elements of the vector ps can be set to be zero,

where the length of the price vector is equal to H
f

p · n
f
. Next, the

coordinator computes the vector Λ
f

i for the fast subsystems according

to equation (5.31b) and it transfers that information to every fast-rate

CDMPC controller.

B.2 Optimization performed by each fast-rate CDMPC controller:

Using the vector Λ
f

i provided by the coordinator, each fast-rate CDMPC

controller solves its own optimization problem (5.22)-(5.23). The fast-

rate CDMPC controllers also calculate their sensitivity information as

described in Chapter 4. The calculated optimal solutions from the fast

subsystems Z
f

i (k), for i = 1, ..., N
f
, as well as their sensitivity information

are communicated to the coordinator.

B.3 Price update: The iteration counter ‘s’ is incremented. The coordinator

gathers the information from each fast-rate CDMPC controller; it

calculates ∆Es(k) according to equation (5.30), and Jf as given by

equation (5.27). Next, the coordinator determines the step size α
f
, with

0 < α
f ≤ 1. Then, the coordinator updates the price vector p as per

equation (5.24), with the vector Ξmode given by equation (5.25b), and it

calculates the vector Λ
f

i for the fast subsystems, according to equation

(5.31b). The vectors Λ
f

i is communicated to each fast-rate CDMPC

controller.

B.4 Iteration until convergence: Steps (B.2)-(B.3) are repeated until

the price-driven coordination algorithm is terminated. The price-driven

coordination algorithm is terminated when ‖∆Es(k)‖ ≤ ε.

B.5 Implementation of first calculated control action: Once the price-

driven coordination algorithm is terminated, the first calculated control

moves ∆ûfi (k|k) are implemented in each fast subsystem, while the rest of

the calculated control moves are discarded. Then, the iteration counter ‘s’
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in the coordination algorithm is reset to zero. The optimization problem

(steps (B.1)-(B.4)) is solved every control instant k 6= mτ .

5.5 Illustrative Example

In this section, an illustrative example is presented to demonstrate the performance

of the dual-rate CDMPC controllers formulated with strategy III. For this illustrative

example, two fast subsystems and two slow subsystems are considered. The model

dynamics of the fast and the slow subsystems are given in Appendix 5.8.2. The

sampling period for the fast and the slow subsystems are T
f

= 1 [min] and

T
sl

= 2 [min], respectively. The parameters used in the simulation study are listed

in Table 5.1.

Table 5.1: Parameters used in simulation study

Subsystems Weighting matrices Control and prediction

horizons

Fast Q
f

1 (l + 1) = diag(10, 5, 1, 1, 1), R
f

1 (η) = diag(10, 50, 50, 50, 50), H
f

p = 30 H
f

u = 6

subsystem 1 for l = 0, ..., H
f

p − 1 for η = 0, ..., H
f

u − 1

Fast Q
f

2 (l + 1) = I5, R
f

2 (η) = 50 · I5, H
f

p = 30 H
f

u = 6

subsystem 2 for l = 0, ..., H
f

p − 1 for η = 0, ..., H
f

u − 1

Slow Q
sl

1 (l + 1) = diag(20, 1, 1, 1, 1), R
sl

1 (η) = diag(50, 400, 50, 50, 50), H
sl

p = 30 H
sl

u = 6

subsystem 1 for l = 0, ..., H
sl

p − 1 for η = 0, ..., H
sl

u − 1

Slow Q
sl

2 (l + 1) = I5, R
sl

2 (η) = diag(400, 50, 50, 50, 50), H
sl

p = 30 H
sl

u = 6

subsystem 2 for l = 0, ..., H
sl

p − 1 for η = 0, ..., H
sl

u − 1

The performance of the dual-rate CDMPC controllers was compared with the

performance of four decentralized controllers and the performance of four CDMPC

controllers that are coordinated by two single-rate coordinators (single-rate CDMPC

control), as shown in Figure 5.10. It can be observed in Figure 5.10 that one of the

coordinators operates at the fast rate to coordinate the CDMPC controllers for the

fast subsystems, while the second coordinator operates at the slow rate to coordinate
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Coordinator  
(Fast-rate Coordination)

Fast Processes Slow Processes

CDMPC
Controller 

Fast
Subsystem 1

CDMPC
Controller 

Fast
Subsystem 2

CDMPC
Controller 

Slow
Subsystem 1

CDMPC
Controller 

Slow
Subsystem 2

Coordinator  
(Slow-rate Coordination)

Figure 5.10: Hierarchy of CDMPC control scheme using two single-rate coordinators
(single-rate CDMPC)

the CDMPC controllers for the slow subsystems.

A set-point change of magnitude 1.0 in the first state variable of the vector x
f

1 and

a set-point change of magnitude 0.5 in the first state variable of the vector x
sl

1 were

simulated at time t = 0, while the targets for the remaining state variables were kept

at the origin. The results of the computer simulations are summarized in Table 5.2.

It can be observed in Table 5.2 that for the simulation studies carried out, the

performance of the dual-rate CDMPC controllers using strategy III is superior to

the performance of the decentralized controllers and also to the performance of the

single-rate CDMPC controllers. The performance of the different control schemes in

Table 5.2 are calculated as:

J
(.)

=
1

2

N
f∑

i=1

tf−1∑
k=0

(
||xfi sp − x

f

i (k + 1)||2
Q
f
i

+ ||∆ufi (k)||2
R
f
i

)
+

1

2

N
sl∑

i=1

tf−1∑
τ=0

(
||xsli sp − x

sl

i (τ + 1)||2
Q
sl
i

+ ||∆usli (τ)||2
R
sl
i

)
,

(5.33)

where tf is the simulation time. The performance improvement of the dual-rate

CDMPC with respect to the other control schemes in Table 5.2 is given by the index

Π [%].

In the dual-rate CDMPC, the predicted values for the interacting variables are

taken into account in the local optimization problems. The interacting variables
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Table 5.2: Control schemes applied to dual-rate subsystems: controllers’ performance

Control schemes J
(.)

calculated
Π =

|J(·)−JDR−CDMPC |
JDR−CDMPC

· 100%

as in (5.33)

Dual-rate CDMPC JDR−CDMPC = 48.19 —-
(Strategy III )

Single-rate CDMPC JSR−CDMPC = 50.83 5.5

(Figure 5.10)

Decentralized MPC Jdec = 85.16 76.7

in the dual-rate CDMPC scheme include the effect of the interacting variables

between subsystems optimized at the same rate and between subsystems optimized

at different rates. In the decentralized control problems, the predicted values for all

the interacting variables are neglected. Thus, a significant improvement of the dual-

rate CDMPC over the decentralized controllers can be obtained. For this illustrative

example, the performance improvement is approximately 76.7% (see index Π in Table

5.2).

In the single-rate CDMPC control scheme shown in Figure 5.10, the predicted

values for the interacting variables between the fast subsystems and the slow

subsystems are neglected. For the simulations performed in this illustrative example,

the dual-rate CDMPC controllers outperformed the controllers in the single-rate

CDMPC control scheme by approximately 5.5% (see index Π in Table 5.2). This

value indicates that when the interactions between the fast subsystems and the slow

subsystems are significant, considering these interactions in the subproblems helps

improve the entire plant-wide performance.

5.6 Extension of Strategy III for Multi-Rate

Coordination

The dual-rate coordination strategy proposed in strategy III can be extended for

multi-rate coordination problems. It is assumed that there exist more than two sets
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of controllers in the plant, where each set includes controllers that are executed at

the same control rate. For example, assume there are three sets of controllers in the

plant. In the first set, the controllers are executed every control interval of length

T
r1

. In the second set, the controllers are executed every control interval of length

T
r2

. In the third set, the controllers are executed every control interval of length T
r3

.

The superscripts ‘r1’, ‘r2’ and ‘r3’ indicate different controller execution rates. Here

again, at certain control instants some sets of controllers are synchronized as shown

in Figure 5.11.

... ...Control 
instants

Controller 
executed 
at rate r1 ...

inst3 inst4inst1 inst2

... ...Control 
instants

Controller 
executed 
at rate r2

...

... ...

Controller 
executed 
at rate r3

Control 
instants

...

Figure 5.11: Multiple coordination mode for strategy III

In the multi-rate coordination, the price update algorithm has multiple

coordination modes because at different control instants, the coordinator needs to

coordinate a different set of controllers. According to Figure 5.11, at control instant

‘inst1’, the coordinator has to coordinate all the controllers in the plant; at control

instant ‘inst2’, the coordinator has to coordinate the controllers that are executed

at control rates ‘r1’; at control instant ‘inst3’, the coordinator has to coordinate the

controllers that are executed at control rates ‘r1’ and ‘r2’ and at control instant

‘inst3’, the coordinator has to coordinate the controllers that are executed at control

rates ‘r1’ and ‘r3’.
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One of the challenges of the proposed multi-rate coordination is the complexity of

the coordination of multiple sets of controllers. There exists a trade-off between

performance improvement and complexity of the coordinated-distributed control

scheme. Therefore, the coordination strategy that is more suitable for the plant

to be controlled, should be selected. For example, the options for coordination of

multi-rate distributed controllers can include: a) designing a unique coordinator

with multiple coordination modes for all the controllers in the plant, or b) designing

coordinators with dual-rate coordination modes and a number of coordinators with

single-rate modes, or c) any feasible combination between single-rate, dual-rate and

multi-rate coordination. The possibilities for coordination increase with the number

of controller execution rates, so one should opt for the coordination strategy that is

more appropriate for the plant to be controlled.

5.7 Summary

In this chapter, coordination of dual-rate distributed controllers is investigated. This

is a first attempt to solve multi-rate distributed control problems when a coordinator

is used in the distributed control scheme.

Three strategies (strategy I, II and III ) are discussed, where each strategy involved

different coordination rates. Strategy III, which includes a dual-rate coordination

mode, is studied in detail and tested using computer simulations. A case study is

used to illustrate the effectiveness of the proposed dual-rate CDMPC control scheme.

The performance of the dual-rate CDMPC controllers is compared to the performance

of decentralized controllers and the performance of CDMPC controllers coordinated

by two single-rate coordinators. Finally, an extension of strategy III for multi-rate

coordination is presented. One of the challenges of multi-rate coordination is that

the complexity of the coordination modes increases with the number of controller

execution rates. In that case, the strategies for coordination of multi-rate distributed

controllers can be adapted to include a combination of multi-rate and single-rate

coordinators.

Another issue to investigate is the performance of the multi-rate CDMPC
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controllers when the ratio between the fast and the slow sampling periods, m,

increases. It is explained in Section 5.4.5 that at k = mτ , the slow-rate CDMPC

controllers and the fast-rate CDMPC controllers are coordinated. Then, the first

calculated input moves from the slow and the fast subsystems are implemented.

Within the slow control interval, the fast-rate CDMPC controllers are executed ‘m−1’

more times. Therefore, the optimal input moves from the fast subsystems calculated

at k 6= mτ (within the slow control interval) can be different from the optimal values

calculated at k = mτ 1. As the ratio ‘m’ increases, the performance of the slow-rate

CDMPC controllers is expected to worsen. The magnitude of the ratio ‘m’ represents

an open research challenge. A further analysis on this issue is required to extend the

current results to the design of multi-rate CDMPC control strategies.

5.8 Appendix

5.8.1 Matrices Required to Update the Price Vector

The matrices Θ
sl

i and Θ
f

i required in the price update mechanism and in the objective

function of the subproblems are defined in this section. The matrix Θ
sl

i is the

coefficient matrix for slow subsystem i, with i = 1, ..., N
sl

. For example, for slow

subsystems i = 1, i = 2 and i = N , Θ
sl

i becomes:

Θ
sl

1 =



G
f−sl

11
...

G
f−sl

N
f

1

G
sl

11
...

G
s

Nsl1


, Θ

sl

2 =



G
f−sl

12
...

G
f−sl

N
f

2

G
sl

12
...

G
s

Nsl2


, Θ

sl

Nsl =



G
f−sl

1Nsl

...

G
f−sl

N
f
Nsl

G
sl

1Nsl

...

G
sl

NslNsl


. (5.34)

The matrix G
sl

ii
in equation (5.34) is given by:

G
sl

ii
= [0, 0, I], for i = 1, ..., , N

sl

. (5.35)

where the identity matrix, I, in equation (5.35) has dimensions (H
sl

p ·n
sl

i )× (H
sl

p ·n
sl

i ).

The matrices G
sl

ji include the coefficients that represent the effect of the variables

1Only if infinite horizons and perfect models are considered in the optimization, the calculated
input moves for the fast subsystems will be the same at subsequent optimizations.
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Zsl
i (k) on the interacting variables V sl

j (k), for j = 1, ..., , N
sl

and j 6= i. The matrices

G
f−sl
wi include the coefficients that represent the effect of the variables Zsl

i (k) on the

interacting variables V f
w (k), for w = 1, ..., N

f
.

Similarly, the matrix Θ
f

i is the coefficient matrix for fast subsystem i, with

i = 1, ..., N
f
. For example, for fast subsystems i = 1, i = 2 and i = N

f
, Θ

f

i

becomes:

Θ
f

1 =



G
f

11
...

G
f

N
f

1

G
sl−f

11
...

G
sl−f

Nsl1


, Θ

f

2 =



G
f

12
...

G
f

N
f

2

G
sl−f

12
...

G
sl−f

Nsl2


, Θ

f

N
f =



G
f

1N
f

...

G
f

N
f
N
f

G
sl−f

1N
f

...

G
sl−f

NslN
f


. (5.36)

The matrix G
f

ii
in equation (5.36) is given by:

G
f

ii
= [0, 0, I], for i = 1, ..., N

f

. (5.37)

where the identity matrix, I, in equation (5.37) has dimensions (H
f

p · n
f

i )× (H
f

p · n
f

i ).

The matrices G
f

ji include the coefficients that represent the effect of the variables

Zf
i (k) on the interacting variables V f

j (k), for j = 1, ..., N
f

and j 6= i. The matrices

G
sl−f
wi include the coefficients that represent the effect of the variables Zf

i (k) on the

interacting variables V sl
w (k), for w = 1, ..., N

sl
.

5.8.2 Models Used in the Illustrative Example

In this section, the process models for the illustrative example used in Section 5.5 are

provided. The models for the slow and fast subsystems in the illustrative example are

given in this section in continuous time. The continuous-time models are discretized

and then partitioned into the corresponding subsystems to obtain the discrete-time

models required for the formulation of the dual-rate CDMPC controllers.

Model dynamics for the slow subsystems:

The dynamics of the slow subsystems in continuous-time are given by equation (5.1)
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with:

A
sl

c =



-1 0 0 0 0 0 0 0 0 0
0.1 -1.2 0 0 0 0 0 0 0 0
0 0 -0.5 0 0 0 0.1 0.05 0 0
0 0 0.6 -1.2 0 0 0 -0.2 0 0
0 0 0 0 -2.2 0 0 0 0 0
0 0 0 0 1 -2.5 0 0 0 0
0 0 0 0 0 0 -0.8 0 0 0
0 0 0 0 0 0 0.35 -1.2 0 0
0 0 0 0 0.8 0 0 0 -2.4 0
0 0 -0.3 -0.5 0 0 0 0 0 -0.9000


,

B
sl

c =



0.1 0 0 0 0 0.75 0 0 0 0
0 0.65 0 0 0 0 -0.25 0 0 0
0 0 0.8 0 0 0 0.2 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.3 0 0 0 0 0
0 0 0 0 0 -0.2 0 0 0 0
0 0.5 0 0 0 0 -0.1 0 0 0
0 0 0 -0.3 1 0 0 1.5 0 0
0 0 0 0 0 0 0 0 0.75 0
0 0 0 0 0 0 0 0 0 -1.5


,

D
sl−f

c =



-0.001 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.1 0 0 0 0
0 0 0 0 0 -0.3 0 0 0 0
0 0 0 0 0 0 -0.8 0 0 0
0 0 0 0 0 0 0 -0.005 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0 0 0.2 0 0 0 0 0 0
0 -0.25 0 0 0 0 0 0 0 0
0 0 0 0 0.002 0 0 0 0.005 0
0 0 0 0 0 0 0 0 0 0.015


,

(5.38)

where the vector of initial conditions x
sl

(0) for the slow subsystems is the zero vector

of dimension n
sl

= 10. The continuous-time model described by equations (5.38) is

discretized as in Section 5.4.1. The discrete-time model for the slow subsystems is

then partitioned into two slow subsystems: slow subsystem 1 and slow subsystem 2.

The number of states and input variables in each slow subsystem are: n
sl

1 = 5, q
sl

1 = 5

for the slow subsystem 1; and n
sl

2 = 5, q
sl

2 = 5 for the slow subsystem 2. The slow

subsystem 1 included the first five state variables of vector x
sl

and the first five input

variables of vector u
sl

. The slow subsystem 2 included the last five state variables of

vector x
sl

and the last five input variables of vector u
f
.

Model dynamics for the fast subsystems:

The dynamics of the fast subsystems in continuous-time are given by:

ẋ
f

(t) = A
f

cx
f

(t) +B
f

c u
f

(t), (5.39)
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with:

A
f

c =



-5 0 0 0 0 0 1 0 0.3 0
0 -9 0 0 0 0 0 0 0 0
0 0 -2.25 0 0 0 0 -0.4 0 0
0 0 2.25 -12.5 0 0 0 0 0 0
0 0 0 0 -10 5 0 0 0 0
0 0 0 0 1.75 -5.4 0 0 0 0
0 0 0 0 0 0 -2.5 0 0 0

-1.5 0 0 0 0 0 -0.6 -1.25 0 0
0 0 0 0 0 0 0 0 -7.5 0
0 0.8 1.5 0 0 0 0 0 0 -2.4


,

B
f

c =



0.8 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0.2 0
0 0 1.6 0 0 0.4 0 0 0 0
0 0 0 0.4 0 0 0 0 0 0
0 0 0 0 -3 0 0 0 0 0
0 0 0 0 0 0.6 0 0 0 0
0 2 0 0 0 0 3 0 0 0
0 0.3 -0.45 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 -0.3 0
0 0 0 0 0 0 0 0 0 0.6


,

(5.40)

where the vector of initial conditions x
f
(0) for the fast subsystems is the zero vector

of dimension n
f

= 10. The continuous-time model described by equations (5.39)-

(5.40) is discretized at the fast sampling period T
f

to give the discrete-time model

for the fast subsystems. The discrete-time model is then partitioned into two fast

subsystems: fast subsystem 1 and fast subsystem 2. The number of states and input

variables in each fast subsystem are: n
f

1 = 5, q
f

1 = 5 for the fast subsystem 1; and

n
f

2 = 5, q
f

2 = 5 for the fast subsystem 2. The fast subsystem 1 included the first five

state variables of vector x
f

and the first five input variables of vector u
f
. The fast

subsystem 2 included the last five state variables of vector x
f

and the last five input

variables of vector u
f
.



6
Conclusions and Recommendations

6.1 Conclusions

In today’s global and competitive market, process industries are looking for

alternatives to increase their profits, while using the least amount of resources

possible. Therefore, in order to compete, grow and satisfy environmental and safety

restrictions, industrial companies seek for ways to improve their business operations

by using, for example, new and advanced technologies and more efficient control

strategies.

Distributed control has attracted increasing attention in recent years. It is

considered a ‘state of the art’ control and it is seen as a promising strategy for

control of large-scale systems. This thesis is concerned with the design of coordinated-

distributed control schemes for optimal control of large-scale linear dynamic systems.

This work is intended to make a contribution in the area of distributed control,

which is currently one of the most active areas of process control. The coordinated-

distributed control strategies proposed in this thesis benefit from using local

controllers that can be coordinated to achieve optimal plant-wide performance. The

three main advantages of the coordinated-distributed controllers developed in this

thesis are:

138
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• guaranteed performance. Convergence of the coordination algorithm allows

the coordinated-distributed controllers to achieve the theoretical centralized

optimal solution;

• simplicity in the design of the coordinated-distributed controllers.

The coordinated-distributed controllers can be constructed with minor

modifications to the existing decentralized controllers;

• flexibility in the operation. The coordinated-distributed control schemes can

switch to the original decentralized control scheme, if needed. In addition, in

case of equipment/communication failure or partial shutdowns, the coordinated-

distributed controllers can be individually removed from the coordination loop

and switched to the original decentralized control scheme.

The aforementioned properties of the coordinated-distributed controllers can be

quite appealing to practitioners. A general practice in industry is to evaluate the

potential return on investment of new technologies. The coordinated-distributed

control schemes proposed in this thesis guarantee the centralized optimal performance,

which is the “best” achievable performance for a given controller tuning. In addition,

the coordinated-distributed control schemes proposed in this thesis do not require

radical new configuration of the existing decentralized controllers. Thus, minor capital

investment is required to implement the coordinated-distributed controllers.

The effectiveness of the coordinated-distributed control schemes and coordination

algorithms are shown in this thesis using computer simulations for various illustrative

examples, including benchmark processes obtained from the literature. Conclusions

drawn from this research and recommendations for future work are provided below.

In Chapter 2, a state-feedback coordinated-distributed linear quadratic (CDLQ)

control scheme is developed for large-scale continuous-time, linear dynamic systems.

The local CDLQ controllers proposed in this chapter are coordinated using the

prediction-driven method. Significant insight into coordination of local distributed

controllers is gained from the development of the CDLQ control scheme and the

analysis of the prediction-driven algorithm. Convergence properties of the prediction-

driven coordination algorithm are studied. A trade-off between convergence of the
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prediction-driven coordination algorithm and offset-free performance is identified and

a remedy to tackle this issue is given. This remedy consists of including a proximal

term in the objective function of each subproblem. The effect of the proximal

term on the speed of convergence of the prediction-driven coordination algorithm

is investigated. Furthermore, a method for tuning the parameter γ in the proximal

term is proposed. The coordination principles developed in Chapter 2 served as the

foundation for the design of the CDMPC controllers in Chapter 3.

In Chapter 3, a state-feedback coordinated-distributed model predictive control

(CDMPC) scheme is proposed for unconstrained linear systems whose dynamics are

represented by discrete-time state-space models. A prediction-driven algorithm is

used for coordination of the local CDMPC controllers. Convergence properties of the

prediction-driven coordination algorithm are shown. The proposed prediction-driven

algorithm is shown to improve monotonically with the number of iterations until

convergence to the centralized optimal solution is achieved. A stability analysis for

the closed-loop system under CDMPC control is also provided. To the best of our

knowledge, this is the first work that proves stability of the closed-loop system when

a coordinator communicates with local CDMPC controllers.

Constraints handling is one of the desired features of the standard MPC controllers.

Therefore, constraints are incorporated in the CDMPC control scheme developed in

Chapter 4. In this chapter, the CDMPC controllers are developed using state-space

models as well as finite step-response models. This is another convenient feature of the

proposed CDMPC controllers since many commercial MPC products still use step-

response models in their formulation. The price-driven method is used to coordinate

the local CDMPC controllers. Newton’s method and a sensitivity analysis technique

are used to update the price in the price-driven method. A discussion of the price-

driven algorithm performance is also given, followed by a study on the stability of the

closed-loop system under CDMPC control.

It can be noted that both Chapter 3 and Chapter 4 deal with coordination of local

CDMPC controllers. Nevertheless, different coordination methods are employed in

these two chapters. By comparing the performance of both coordination methods, it

can be observed that:
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• The price-driven method in Chapter 4 exhibits fast convergence. In particular,

when there is no change in the active set of the subproblems, the price-driven

coordination algorithm converges within two iterations. As opposed to the

price-driven method, the coordinator in the prediction-driven method predicts

the state variables in the entire system in order to update the price vector.

As a result, more iterations of information exchange between the coordinator

and the local CDMPC controllers may be required until convergence of the

prediction-driven algorithm is achieved.

• The full price vector in the prediction-driven method, λscoor , is calculated as an

approximation of the Lagrange multiplier vector of the centralized optimization

problem, λ∗. The price vector in the price-driven method, ps, is updated

using Newton’s method. When both coordination algorithms converge, their

corresponding price vector is equivalent to the Lagrange multiplier vector of

the centralized optimization problem used as performance benchmark. That

is, in the prediction-driven method, λscoor becomes λ∗ and in the price-driven

method, ps becomes λ∗.

Finally, Chapter 5 addresses the problem of coordination of distributed MPC

controllers that are executed at different control rates. The work proposed in

Chapter 5 is a first attempt to solve multi-rate distributed control problems where

a coordinator is involved in the distributed control scheme. In particular, three

strategies are discussed to deal with coordination of local CDMPC controllers that

are executed at two different control rates (dual-rate CDMPC controllers). A

coordination algorithm for dual-rate CDMPC controllers is proposed and tested

through computer simulations. The results obtained from the simulation experiments

show that the proposed dual-rate CDMPC controllers outperform the existing

decentralized controllers significantly. A method for extending the dual-rate CDMPC

control scheme to multi-rate CDMPC control scheme is proposed towards the end of

the chapter.
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6.2 Recommendations for Future Work

A number of challenges remain in the development and application of coordinated-

distributed control schemes. Some directions for future research work are outlined

below:

• In most of the coordinated-distributed control schemes proposed in this thesis, it

is assumed that full state measurements are available at every sampling instant1.

It is often the case in process industry that some process variables cannot be

measured on-line on frequent sampling instants (for example, as in the case

of some product concentrations). It is even possible that no measurements are

available at all for some process variables. In such situations, an observer should

be constructed (if possible) to estimate the unmeasured variables (Ogunnaike

and Ray, 1994; Goodwin et al., 2001).

• In Chapter 3, it is assumed that the predicted variables Z0
coor(k) and full price

vector λ0
coor are set to zero for initialization of the prediction-driven coordination

algorithm within each control interval (see Section 3.4.4). In order to reduce

the number of iterations within each control interval, different possibilities for

initialization of the prediction-driven algorithm can be studied. For example,

one alternative for initialization of the prediction-driven algorithm is to use

the control input moves calculated by the CDMPC controllers at the previous

sampling instant. If the CDMPC calculations do not change significantly from

one control interval to the next one, then a reduction in the number of iterations

in the prediction-driven algorithm is expected.

• A complexity study for both the price-driven method and the prediction-driven

method is recommended. A complexity study for the price-driven method is

presented in (Cheng, 2007) for algebraic optimization problems. A similar

complexity study can be performed for the dynamic optimization problems

considered in this thesis in Chapter 4.

1In Chapter 4, a CDMPC control scheme is developed using input-output models obtained from
step-test data. Thus, an observer is not required in this case.
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With respect to the prediction-driven coordination method, it is shown

in Chapter 2 and Chapter 3 that when the prediction-driven coordination

algorithm converges, the solutions obtained with the coordinated-distributed

controllers are equal to the centralized (or plant-wide) optimal solution.

Convergence to the centralized solution is shown regardless of the decomposition

strategy (and as long as a convergence condition is satisfied). Nevertheless,

different decomposition strategies can have an impact on the speed of

convergence of the prediction-driven coordination algorithm. It is recommended

to perform a complexity study that includes evaluating the speed of convergence

of the prediction-driven algorithm when it is used for:

– subsystems that have similar dimensions (such as similar number of states

and inputs in each subsystem across the plant) vs. subsystems that have

different dimensions across the plant;

– plants with small number of subsystems vs. plants with a considerably

larger number of subsystems;

– subsystems with different number of interacting variables;

– subsystems with interactions as a result of recycle streams vs subsystems

only unidirectional interactions as a result of serial operations.

To summarize, the structure and dimension of the subsystems and the

interactions can be exploited to provide some recommendations that aim

at reducing the speed of convergence of the prediction-driven coordination

algorithm.

• In Chapter 5, a dual-rate coordinated-distributed control scheme is proposed.

A method for extending the dual-rate CDMPC control scheme to multi-rate

control scheme is also provided. Multi-rate coordinated-distributed control is

an open research topic with great potential for future development. One of the

assumptions of the dual-rate CDMPC control scheme proposed in Chapter 5 is

the fact that all the local CDMPC controllers are synchronized across the plant

by their computer clock. A multi-rate coordination algorithm to coordinate
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local controllers that are executed asynchronously or with information delays is

highly desirable.

Another assumption of the dual-rate CDMPC control scheme developed in

Chapter 5 is the fact that subsystems controlled at different rates are coupled

through the control input variables. That is, the control inputs from the slow

subsystems affect the fast subsystems, and vice versa2. The control scheme

proposed in Chapter 5 can be extended to include fast and slow subsystems

coupled through the state variables, as well. In that case, the unavailable data

(e.g., measurements of the slow subsystems’ states at the fast sampling instants)

needs to be estimated.

Finally, as described in Chapter 5, the positive integer ‘m’ represents the ratio

between the slow sampling period T
sl

and the fast sampling period T
f

in the

dual-rate CDMPC control scheme. As the ratio ‘m’ increases, the performance

of the dual-rate CDMPC controllers is expected to degrade. Investigation of

the effect of ‘m’ on the performance of the dual-rate CDMPC controllers should

be undertaken. An analysis on this issue can benefit the design of the dual-rate

CDMPC control strategies.

2In Chapter 5, only subsystems controlled at different rates are considered to be coupled through
the control input variables. Subsystems controlled at the same rate are considered to be coupled
through the control input variables as well as the state variables.
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