
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

U niversity o f A lberta

E v o l u t i o n a r y o p t i m i z a t i o n t e c h n i q u e s a n d R e c o n f i g u r a b l e

H A R DW A RE

by

M ad h u ra P u m a p ra jn a

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree o f M aster o f Science.

Department of Electrical and Computer Engineering

Edmonton. Alberta
Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
A rchives C an ad a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque e t
A rchives C an ad a

Direction du
Patrim oine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-08159-7

Your file Votre reference
ISBN:

Our file Notre reterence
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Poojyaaya Raghavendraya Sathya Dharma Ratayacha
Bhajathaam Kalpa.vruksha.aya Namataam Kaamadhenuve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

An optimization scheme for embedded system design using hardware and software

components is presented. The goal o f suitably partitioning the system into hard­

ware and software is achieved using Genetic Algorithms (GA). The optimization

objective is to reduce the time taken and the power consumed during task execu­

tion. The suitability o f introducing a reconfigurable hardware resource over pre­

configured hardware is explored for the same objectives. Further, the procedure to

allocate optimal number o f resources based on the design objective is proposed. A

test environment is developed using randomly generated task graphs.

In applying evolutionary optimization techniques to reconfigurable architec­

tures, the design of a run time reconfigurable Fuzzy Logic Controller (FLC) is

presented. Four design strategies of implementing the FLC are presented, which

includes a feasibility analysis for the maximum design size. Further, an implemen­

tation framework for hardware-software co-design and a self-reconfiguring Fuzzy

Logic Controller is proposed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

My sincere thanks to my Supervisors Dr. Marek Reformat and Dr. Witold Pedrycz
for their support and guidance. I would also like to extend my gratitude to all my
friends for their help throughout my Master’s program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 M otivation.. 1

1.1.1 O p tim iz a tio n ... 2
1.1.2 Adaptability ... 3

1.2 A p p ro a c h .. 3
1.3 Thesis O u tlin e ... 4
1.4 Design E n v iro n m e n t... 4

2 Background 5
2.1 Hardware Software Partitioning ... 5

2.1.1 Prior Work in Design P a r ti tio n in g .. 5
2.1.2 Scheduling and A llo c a tio n ... 6
2.1.3 Co-design System Architecture ... 8

2.2 Optimization Framework: Genetic A lgorithm s... 9
2.2.1 Phenotype to G enotype.. 9
2.2.2 Initial P o p u la tio n .. 10
2.2.3 Evaluation F u n c t io n ... 10
2.2.4 R ep ro d u c tio n ... 11
2.2.5 Termination C r i t e r i a ... 11

2.3 Fuzzy A rchitectures... 11
2.3.1 Brief Introduction of Fuzzy Set T h e o r y 12
2.3.2 Fuzzy Logic C ontro ller.. 12
2.3.3 Fuzzifier .. 12
2.3.4 Inference S chem e.. 13
2.3.5 D e fu z z if ie r ... 15

2.4 Review of Fuzzy Logic C ontro llers.. 16
2.4.1 Memory based Fuzzy Logic Controller Implementations . . 17
2.4.2 Memory-less Fuzzy Logic Controller A rch itec tu res IS

2.5 FPGA a rch itec tu res ... 18
2.5.1 Virtex-II A rchitecture.. 19
2.5.2 Virtex-II P r o ..20
2.5.3 V ir te x -IV .. 21
2.5.4 Microblaze Processor A rchitecture.. 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.5 Cell Matrix 22

3 E volutionary O ptim ization based Partitioning: A pproach
3.1 Generic System M o d e l ...
3.2 Problem D e s c r ip t io n ..
3.3 Chromosomal R epresentation..
3.4 Fitness F u n c tio n ..

3.4.1 S c h e d u lin g ...
3.4.2 Time O p tim iza tio n ..
3.4.3 Power Optimization ..
3.4.4 Time and Power O p tim iza tio n
3.4.5 Optimization for Resource A llo c a tio n

3.5 Details o f GA p aram eters ...
3.5.1 Initial P o p u la tio n ...
3.5.2 R ep ro d u c tio n ..
3.5.3 Termination C r i t e r i a ..

4 E volutionary O ptim ization based Partitioning: Results
4.1 Benchmarking S cenario ...

4.1.1 Task Graphs ..
4.1.2 Design P a ra m e te rs ..

4.2 GA P a ra m e te r s ..
4.3 E xperim en ts...

4.3.1 Experiment 1 ..
4.3.2 Experiment 2 ..

4.4 R esu lts ..
4.4.1 Random Search and G A
4.4.2 Results from Experiment 1
4.4.3 Results from Experiment 2

4.5 Observation and I n f e r e n c e ..

5 Fuzzy Logic C on tro ller: FPGA Im plem entation
5.1 Hardware A rc h ite c tu re ...

5.1.1 F u z z if ic a tio n ..
5.1.2 Rule E valuation ...
5.1.3 D e fu z z if ie r ..

5.2 Software A rch itec tu re ..
5.2.1 10 c o n f ig u ra tio n ...
5.2.2 Hardware-Software A rchitecture........................

5.3 Feasibility in Virtex-II: Hardware A rchitecture..............
5.3.1 FLC : Combinatorial Rule B a s e
5.3.2 FLC: Memory-based Rule B a s e
5.3.3 Resource U ti l iz a t io n ..
5.3.4 Frequency of Operation

25
25
25
26
26
28
29
30
30
31
33
*■»

33

34
34
34
36
37
37
37
38
38
38
39
43
45

49
49
49
52
55
56
57
57
58
59
59
60
61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Observation and Inference 61

6 Reconfigurable Fuzzy Logic Controller 63
6.1 Architectural Changes .. 63

6.1.1 System In p u ts ... 63
6.1.2 Input and Output Membership functions.. 64
6.1.3 D efuzz ifica tion ..64

6.2 FPGA Configuration M e c h a n ism s ..64
6.2.1 Configuration M o d e s ..64
6.2.2 R econfiguration.. 65

6.3 Partial Run time Reconfiguration in Xilinx FPGAs 66
6.3.1 Module Based ..66
6.3.2 Difference B a s e d .. 67

6.4 Reconfigurable Fuzzy Logic Controller on an FPGA67
6.4.1 Module Based: Configuration 1 ..67
6.4.2 Module Based: Configuration 2 ..68
6.4.3 Module Based: Configuration 3 ..68
6.4.4 Difference Based R econfiguration .. 69

6.5 Reconfiguration S c h e m e s ...69
6.5.1 System ACE - CompactFlash S o lu tion ... 69
6.5.2 Internal Configuration Access P o r t .. 71

6.6 Design and Implementation on Xilinx Multimedia B o a r d 72
6.6.1 Default Configuration .. 72
6.6.2 Dynamic R e c o n fig u ra tio n ... 72

6.7 Observation and I n f e r e n c e ..73

7 Conclusions and Future Work 76
7.1 C o n c lu sio n s ...76

7.1.1 M o d e lin g .. 76
7.1.2 Partitioning and Interfacing .. 76
7.1.3 V alidation .. 77
7.1.4 Im plem entation ..77

7.2 Future W o rk ...78
7.2.1 Improvements in Hardware Software P artitio n in g78
7.2.2 Reconfigurable Fuzzy Logic Controllers: Design Alternatives 79
7.2.3 Hardware Software Co-Sim ulation.. 80
7.2.4 Reconfigurable Processor A rchitecture... 80
7.2.5 Evolvable H a r d w a r e ..SI

Bibliography 82

A Parameters to generate TGFF 87

B Parameters for Power and Time calculations 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Architectures with Variations in Design parameters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 Hardware Design C o m p o n en ts .. 2

4.1 Results for Experiment-1 Case 1: Time ...39
4.2 Results for Experiment-1 Case 1: P o w e r ...40
4.3 Results for Experiment-1 Case 1: Time & P o w e r41
4.4 Results for Experiment-1 Case 2: Time ...41
4.5 Results for Experiment-1 Case 2: P o w e r ...41
4.6 Results for Experiment-1 Case 2: Time & P o w e r42
4.7 Power Optimization with Hard D ead lin e ... 44
4.8 Simultaneous Time and Power Optimization with Hard Deadline . . 45
4.9 Time Optimization with Power L im ita tio n ..48
4.10 Simultaneous Time and Power Optimization with Power Limitation 48

5.1 Rule Base in V irtex-II... 59
5.2 FPGA Resource U tiliza tion ...60
5.3 Maximum Frequency of O p era tio n ... 61

6.1 Configuration M o d e s ... 65
6.2 Configuration M o d e s ... 66

B.l Parameters for Time ca lcu la tio n s ...88
B.2 Parameters for Power c a lc u la tio n s ... 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Device T re n d s ... 2

2.1 Algorithm for GA Im plem entation ... 10
2.2 Block diagram of Fuzzy Logic C o n tro l le r .. 13
2.3 Triangular Membership functions ... 14
2.4 Trapezoidal Membership fun c tio n s... 14
2.5 Rule M a t r ix .. 15
2.6 Method o f Inference: M in-M ax.. 16
2.7 Method o f D e fu z z ific a tio n ... 16
2.8 Virtex-II Architecture. [1] .. 19
2.9 Configurable Logic Block. [1] .. 20
2.10 Virtex-II Slice, [1] .. 21
2.11 Virtex-II Pro, [2] .. 22
2.12 M icroblaze Architecture, [3] ..23
2.13 CellM atrix Architecture, [4] ..24

3.1 Hardware-Software System A rchitecture..26
3.2 GA applied to P a r t i t io n in g ... 27
3.3 Chromosome 1 ..27
3.4 Chromosome 2 ..28
3.5 Chromosome for Resource A llo c a tio n ... 32

4.1 Task Graph with 200 n o d e s ... 35
4.2 Results o f GA v/s Random S e a r c h .. 39
4.3 Variation in the fitness function over generations...................................... 40
4.4 Optimization for Time .. 42
4.5 Optimization for P o w e r .. 43
4.6 Task distribution of tasks on Hardware / Software - Case 144
4.7 Task distribution of tasks on Hardware / Software - Case 2 45
4.8 Distribution of Hardware / Software utilization in system imple­

mentation 46
4.9 Distribution of Hardware (Preconfigured and Reconfigurable) / Soft­

ware in system im plem entation...47

5.1 Triangular Membership functions ..50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Trapezoidal Membership fu n c tio n s ... 51
5.3 Schematic for F uzzification ... 52
5.4 Detailed Schematic for F uzzification ..53
5.5 Schematic for Inference S c h e m e ... 54
5.6 Memory S truc tu re ...55
5.7 Schematic for Defuzzifier: Centre of Gravity ... 56
5.8 FLC with G P I O s .. 58
5.9 Feasibility: Combinatorial Im plem entation..59
5.10 Feasibility: Memory based Im p lem en ta tio n .. 60

6.1 Layout of Partially Reconfigurable Modules, [5] ..67
6.2 Configuration 1 ..68
6.3 Configuration 2 ..69
6.4 Configuration 3 ..70
6.5 SystemACE environment, [6] ..71
6.6 MPU setup. Configure from CompactFlash, [6] ..73
6.7 Configuration C h an g e ... 74
6.8 Sequence o f configuration ...75
6.9 Partial R econ figu ra tion ..75

7.1 Two-level G A ... 78
7.2 Partial Runtime R econ figu ra tion ...79
7.3 Design A lte rn a tiv es...80
7.4 GA M achine...81

C.l Modified A rchitecture... 89
C.2 Shared Bus Architecture .. 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

System design involves intelligent management of available resources to meet per­
formance requirements, while achieving the desired functionality. The architecture
o f the system is governed by a trade-off between a number of performance param­
eters such as time, area, weight, cost, power, reliability and flexibility. Specifically,
embedded system design necessitates the use of time and power efficient designs.
In addition to these requirements the flexibility and adaptability of the architecture
in terms of time to design, configure and reconfigure is also a major deciding factor.

1.1 Motivation
Programmable logic devices have matured from one time, off-line programmable
to runtime programmable, further to complex configurable system on chip architec­
tures. These complex reconfigurable devices allow embedded processors and mi­
crocontrollers to reside alongside programmable hardware resources on the same
chip. Such devices encourage designers to explore applications targeted towards
programmable system on chip. In this thesis we focus on the issue of optimality
and flexibility in a heterogeneous design architecture comprising o f hardware and
software elements.

Designs traditionally use one of the devices shown in Figure 1.1, restricting its
flexibility and speed to the device characteristics. Application Specific Integrated
circuits (ASIC), are customized chips for dedicated applications with very little
programmability. Field Programmable Gate Arrays (FPGAs) are programmable
structures which can be infinitely reprogrammed, but do not provide the perfor­
mance benefits as compared to ASICs. General Purpose Processors (GPPs) are
more suited for general purpose computing and are easily programmable.

The quest of self-adaptive devices and device architectures, has led to the ap­
proach of ‘Evolutionary Circuit Design’ and ‘Evolvable Hardware’ focusing on the
static and dynamic design of electronic circuits. The application of evolutionary
techniques to the field of hardware design aims at evolving the architecture. In
this thesis we focus on Digital Evolvable Hardware, mainly in applying evolution-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 1.1: Motivation

GPP

o
E

FPGA

ASIC

Speed

Figure 1.1: Device Trends

ary optimization techniques in evolving FPGA based designs. Table 1.1 lists the
existing devices and design environments available for electronic system design.

Table 1.1: Hardware Design Components

Device Application Environment
ASIC Custom designs Static
FPSOC Field Programmable System on Chip Dynamic
FPGA Field Programmable Gate Device Dynamic
FPAA Field Programmable Analog Arrays Dynamic
FPTA Multicellular System Dynamic
PLA Digital Hardware Static
CellMatrix Self-Configurable Hardware Dynamic

1.1.1 Optimization

Systems are graded in terms of their performance/watt ratio. Low power design
strategies are essential to prolong battery life, reduce packaging and cooling costs
for mobile applications and operations at high speeds. In conventional micropro­
cessors a high-speed operation often results in high power consumption, which is
undesirable. We look at an architecture made up of hardware and software elements
in a co-design framework, which addresses the issues o f performance and power

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 1.2: Approach

management. The optimization process involved in Hardware-Software co-design
may be broadly divided into two steps.

• To determine the number and type of resources required for a given design
objective

• To map the tasks into hardware and software resources such that the new
design meets the desired functionality while achieving optimization ob­
jective.

1.1.2 Adaptability

A flexible design has the capability of adapting itself to a number of factors such
as system requirements, design changes and a change in resource availability. De­
signs that are infeasible on account o f resource requirement can be accommodated
by sharing the same area and reconfiguring parts of the device that is unused. The
adaptive nature o f devices allows more than one design to reside at the same loca­
tion. In this scenario, the time to adapt is of major relevance. Fast adaptive design
architectures reduce the complexity of the system and allow a single architecture
block to be multi-functional. We take a look at reconfigurable architectures as a
method of building adaptive and evolvable hardware. Our focus is on the use of
fast reconfigurable hardware structures as a replacement to multiple preconfigured
fixed structures.

1.2 Approach
In this thesis we address the architectural issues through two different perspectives.
First, we look at Hardware-Software co-design as a possible efficient design ap­
proach. We define a general architectural model, and identify the possible methods
of optimizing such architecture. The system architecture is defined in terms of a
number of system parameters. The system architecture can be modified by manipu­
lating these parameters. Our objective is to optimize the system for both power and
time considerations. Area and cost restrictions are reflected in terms of resource
constraints. The simultaneous optimization of power and time is addressed, which
has not been widely discussed previously. We propose a scheduling algorithm that
manages simultaneous scheduling and allocation based on task priority. Cost func­
tions reflecting the design objectives are defined. These functions can be altered
as per design objectives. A test environment has been developed to analyze and
validate these optimization objectives.

To demonstrate our objectives we look at an adaptive system with devices that
are runtime reconfigurable to address the issue of flexibility and re-usability. As
an example, we look at the design and implementation o f an adaptive Fuzzy Logic
controller. Finally, the architecture o f a Self-reconfigurable Fuzzy Logic controller,
built on a hardware-software co-design platform is proposed.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 1.3: Thesis Outline

1.3 Thesis Outline
Chapter 2 co-relates the optimization approach in hardware software partitioning to
other scheduling techniques that exist in literature. First, a review o f existing ap­
proaches to solve the problem of partitioning and an introduction to our optimiza­
tion framework is looked into in this chapter. After which, an introduction to Fuzzy
Logic and Fuzzy Logic Controllers is followed by a review of existing implemen­
tations in Fuzzy Logic Controllers. Finally, a section on the existing reconfigurable
hardware architectures is provided.

Chapter 3 details our approach o f solving the partitioning issue and Chapter 4
discusses the experimental framework and the results obtained.

Chapter 5 discusses the software and hardware architectural issues involved in
implementing a Fuzzy Logic Controller on an FPGA. The methods o f reconfigura­
tion and our approach to arrive at a configuration solution are discussed in Chapter
6.

Finally, conclusions are drawn in Chapter 7. An area o f future research, which
includes a design solution for an adaptive Fuzzy Logic controller in a co-design
environment, is proposed. This approach acts as the bridge for the two objectives
o f optimality and flexibility.

1.4 Design Environment
Following is the design environment for the experimental setup.

• FORTE Developer: Blade 1000

• Xilinx

- Virtex-II Multimedia Board

- ISE 6.2

- Embedded Design Kit 6.2

• ModelSim 5.4SE

• Windows Platform from CMC

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

In this chapter, a review of existing optimization techniques and their direct rel­
evance to the problem of hardware software partitioning is presented. The first
section of this chapter addresses the design considerations in a Hardware-Software
co-design environment. This section includes a review on the approaches consid­
ered by other researchers in addressing the issue. We have addressed the problem of
Hardware-Software partitioning using Genetic Algorithms. The fundamental con­
cepts o f Genetic Algorithms are reviewed in the next section.

The third section of the chapter provides a brief introduction on Fuzzy Set The­
ory and elaborates the fundamentals o f a Fuzzy Logic Controller (FLC). This is
followed by a review and classification of existing FLCs. A review of the architec­
tural description of existing Xilinx FPGAs is included in the final section. A short
introduction to the concept o f ‘Cell Matrix’ is also included as a preview to future
prospective devices for Evolvable hardware.

2.1 Hardware Software Partitioning
Partitioning in Hardware-Software co-design is the process of distributing the tasks
in an application onto the existing hardware and software resources.

2.1.1 Prior Work in Design Partitioning

A number o f heuristics have been explored to optimize the process of design parti­
tioning in hardware software co-design [7], [8], [9]. Many of these heuristics aim at
multi-objective optimization, with conflicting objectives for hardware and software
design units [10], [11], [12], [13], [14]. A comparison to these existing techniques
is difficult due to the absence of well-defined benchmarks in terms of architecture
and functionality, for co-designs. However, the concept o f replicable randomly gen­
erated task-graphs [15], used here, encourages future comparisons. The test graphs
described represent the system at task-level granularity.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.1: Hardware Software Partitioning

In [9] the functional partitioning in hardware software co-design is carried out
using three heuristic search algorithms: Simulated Annealing, Tabu Search and
Genetic Algorithms. A shared bus architecture with an ASIC (or an FPGA without
reconfiguration capabilities) and a soft processor is considered for the co-design en­
vironment. The objective is to optimize the design for speed, when subject to area
constraints. The comparative study, suggest that Tabu Search is optimal in terms
of computation time and the quality of the result. In [16], the multi-objective crite­
rion o f minimizing time and the energy-delay product is addressed. Another study
[12] compares the partitioning of knowledge based systems and circuit-partitioning
using Simulated Annealing, Kemighan & Lin and Hierarchical clustering. With
the introduction o f hardware elements in an all-software implementation, an ob­
servation o f an overall improvement in the speed o f operation is made [13]. This
is achieved by moving repetitive operations, such as loops in a task graph on to
hardware.

In [17], reconfigurable hardware resources with finite reconfiguration times
have been introduced in the hardware architecture. Genetic Algorithms is used
to optimize the speed of application. The fitness function measures the speed im­
provement achieved using hardware-software co-design over an all-software im­
plementation. The advantage of introducing partially reconfigurable resources in
hardware to enhance resource utilization has also been used in [16] and [18].

Predominantly, most power optimization techniques focus on fabrication-related
issues, such as voltage scaling [19], reducing clock speeds and introducing gated
clocks [20]. Multi-objective GA fo r Hardware-Software Co-synthesis (MOGAC)
[10] aims at multi-objective partitioning criteria for optimization in power and costs,
with time constraints. Power calculation is based on predefined values for peak
power dissipation, idle power consumption and power efficiency for each hardware
resource. This calculation is based on obtaining energy and ignores the additional
power consumed due to the switching activity between them. Also, the GA formu­
lation requires a complicated technique of clustering and validation to obtain only
valid structures. MOGAC does not assume any limitation in the number o f hard­
ware or software elements in its architecture. This is quite contradictors' to practical
applications.

2.1.2 Scheduling and Allocation

The process of partitioning involves scheduling and allocation o f heterogeneous
resources.

Scheduling determines the exact time instance at which a task is executed. It is
classified on the basis of its constraints, such as time and resources. In time con­
strained scheduling, bound by a hard-deadline, the algorithm computes the optimal
combination of resources required to meet this timing requirement. In resource
constrained scheduling, with a restriction in the number o f resources available for
the task computation, scheduling decides the best time instance to execute a task.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.1: Hardware Software Partitioning

to minimize the total computation time. The As Soon As Possible (ASAP) and the
As Late As Possible (ALAP) algorithms compute task schedules for unconstrained
graphs. They are primarily used to determine the upper and lower bounds for the
schedule times [21].

Allocation is the procedure of determining the task to resource mapping, i.e., it
decides the assignment of a task to a resource. Optimization procedures are adapted
in allocation to maximize the utilization ratios of the resources.

2.1.2.1 Applications of Scheduling and Allocation

A similar approach o f scheduling and allocation has been addressed in operations
research, heterogeneous computing, multi-processor scheduling and high-level syn­
thesis.

Heterogeneous computing employs a collection o f machines with varying ar­
chitectures. Each of these machines are optimized to perform computationally di­
verse applications. The scheduling procedure performs a task to machine mapping
for the sequence o f tasks with the intention of minimizing time, cost or both. A
comparative study is made using eleven different heuristics to optimize the system
implementation in [22]. This concept closely resembles the approach of mapping a
task to a resource in Hardware-Software partitioning.

Operations Research addresses scheduling in the classical example of the Trav­
eling salesm an’s problem (TSP). Here, the optimization involves minimizing the
total time taken by the salesman. This problem of scheduling arrives at a sequence
which takes the least amount of time for execution. There are no fixed constraints
of precedence relation, which makes it different from the problem addressed here.
Apart from this, there are three shop scheduling techniques which resemble parti­
tioning and scheduling. They are open shop, job shop and flow shop scheduling.
All these techniques aim at minimizing the total make span o f the schedule. Open
shop scheduling, like TSR does not consider any predefined sequence of operation.
Whereas, job-shop and flow shop scheduling have a predefined sequence of opera­
tions to be scheduled. Flow' shop scheduling is a special case o f job shop scheduling
w'ith a fixed task to resource mapping. The objective is to arrive at a sequence of
operation which reduces the total makespan. [23]. The absence o f heterogeneous
resources and dissimilar tasks makes these shop scheduling problem s different from
partitioning and scheduling in co-design.

In high-level synthesis, a register-transfer level netlist is derived from the be­
havioral or structural hardware description [24], This netlist is then scheduled and
allocated based on the number and type of available hardware resources. This prob­
lem of scheduling in high-level synthesis resembles the case o f multi-processor
scheduling, which is a well known NP-Complete problem [25].

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.1: Hardware Software Partitioning

2.1.3 Co-design System Architecture

The computational sequence of tasks in an embedded system are represented by
Control and Data flow graphs (CDFG). For a System on a Chip (SoC) application,
these tasks can be distributed both on hardware as well as software resources. Re­
sources termed as hardware can be Application Specific Integrated Circuits (ASIC)
or a reconfigurable device, such as a Field Programmable Gate Array (FPGA).
The devices commonly referred to as ‘software’ are General-Purpose Processors
(GPP) or Digital Signal Processors (DSP). On account of customization in hard­
ware, ASICs have a very large design time, but have a significantly high perfor­
mance. However, ASICs are not always suitable due to their enormous design
times and lack o f reconfiguration capability. FPGAs, on the other hand, are readily
reconfigurable devices and hence chosen as ‘hardware’ in our architecture. These
devices play a major role in co-design in order to enhance the resource utilization
of the system with their reconfigurable capabilities. With the advent of runtime re­
configuration, FPGAs provide the ability to adapt to the design requirement. This
stands as a significant advantage com pared to customized ASICs. Although they
are time-efficient, FPGAs are expensive in terms of area and power. Also, introduc­
tion o f reconfiguration adds time and power overheads. In the absence of runtime
reconfiguration, the FPGA architecture is limited to its pre-defined fixed configura­
tion. FPGAs provide task execution at higher speeds than most GPPs, but are not
power-efficient. GPPs are relatively less time-efficient but provide a low-cost, low
power additional resource to explore parallelism, as compared to FPGAs. Also,
they are not restricted by their configuration options since there is no reconfigura­
tion overhead. A slow speed, hence low power GPP is chosen as ‘software’ in the
architecture under consideration.

Allocating all the tasks on the same hardware resource for speed enhancement
complicates the scheduling procedures. Similarly, forcing all the tasks on software
drastically overshoots the time deadline. Hence, for a time and power optimal ap­
plications, it is efficient to utilize parallelism by splitting the design on to multiple
processing elements (FPGAs and GPPs). The advantages of introducing FPGAs to
enhance the speedup has been detailed in [26].

2.1.3.1 Hardware and Software characteristics

There exists a fundamental difference in the task execution by the two types of re­
sources. Number of tasks that can be executed concurrently on an FPGA depends
on the number of system units that can be configured on the device. This is not
applicable in software, since tasks mapped to software are executed sequentially.
Due to the absence of concurrency in software, the number o f tasks that can be exe­
cuted at any given time is restricted to the number of GPPs available. Consequently,
with respect to execution times, it is assumed that a task implemented in software
takes greater number of clock cycles than that on hardware. Partial run-time re­
configuration on FPGAs, allows part of the device to be reconfigured while rest of

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.2: Optimization Framework: Genetic Algorithms

the device functions normally [5]. Introduction of partial run-time reconfigurable
capabilities increases resource utilization by allowing reconfiguration o f the unused
resources to adapt according to the system resource requirement, encountered dur­
ing scheduling. However, reconfiguration involves an additional cost of time and
power.

In time constrained scheduling, with a set hard-deadline, the resources required
to satisfy these timing constraints constitute the target architecture for the system
implementation. Resource allocation and utilization has been only partially ad­
dressed in the case o f Hardware-Software co-design. In [27], experiments are car­
ried out to compare the improvement in system performance by increasing the num­
ber of dynamically reconfigurable logic elements and varying the reconfiguration
time. However, there is no established method for determining the optimal number
of resources required for a given system based on the design objective. Most co­
design approaches consider resource-constrained architectures. Such architectures
may have under-utilized resources which add to idle power and unused area in turn
affecting the system efficiency.

In our discussion, for time optimization the quality o f partition is determined
by the total time required for task execution based on the cumulative latencies at
the nodes. The additional overheads account for the inherent delays incurred at
edges o f the graph. For power, it is the summation of the power consumed by
each of the graph nodes. In addition, the inter-processor communication overheads
add to the switching activity in the system. These overheads are incurred only in
heterogeneous multi-processor systems.

2.2 Optimization Framework: Genetic Algorithms
GA is a powerful and widely used stochastic search based algorithm [28]. It is an
effective technique to solve combinatorial optimization problems, which are known
to be non-deterministic in nature and are associated with a large combination o f fea­
sible solution space or search space. It has been demonstrated that GA is effective in
avoiding the local optimal solution and achieves results close to the global optima.

Genetic algorithms are based on the theory of evolution. Unlike other ap­
proaches to optimization, GA encodes the design parameters to arrive at the best
solution, than actually manipulating the parameter. In contrast to evaluating a sin­
gle point, GA works on a set of solutions and evaluates them based on a predefined
objective. The evaluations are based on a probabilistic approach rather than a de­
terministic rule. Figure 2.1 shows the logical flow for the implementation of GAs,
[29]. The key issues in the GA formulation are described in the following sections.

2.2.1 Phenotype to Genotype

Representation is a key issue in Genetic Algorithms. As the DNA structure reflects
the individual physical characteristics, the physical traits of the solution are replaced

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.2: Optimization Framework: Genetic Algorithms

by an internally coded representation. The possible solutions to the problem under
consideration are encoded as a string of finite length, referred to as a chromosome.
Each element of the chromosome is called an allele. The allele could be represented
as a real or a binary number. When used with real values, it is termed as Real
Coded GAs (RCGAs). Real Coded GAs are used primarily in continuous domain
optimization problems. Binary coded GAs have been very widely used in literature.

Initial Population

New Population

MutationE valuate F itness

C rossover

Term ination
Criteria ?

Select
ch rom osom e

No

Yes

Final Solution

Figure 2.1: Algorithm for GA Implementation

2.2.2 Initial Population

GA works on processing probable set of solutions. This first set o f potential solu­
tions is called the initial population. This set of solution is randomly initialized for
diversity in the search space. These diverse set of solutions are then fine tuned on
the basis o f probabilistic evaluation and application o f the genetic operators.

2.2.3 Evaluation Function

The quality of each chromosome is assessed by an evaluation function. The evalu­
ation based on the desired objective is termed as the ‘fitness* of the chromosomes.
Often, the fitness function has to be scaled to enable selection of individuals in the
entire population with selective discrimination. In other words, a wide difference in
the best and worst case fitness values in a given generation may lead to elimination
of a large set of chromosomes with good genes but lower fitness values.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Fuzzy Architectures

2.2.4 Reproduction

Based on the fitness of the individual, the next generations of possible solutions are
created in the process o f reproduction. Stochastic transformations are introduced to
form new individuals. This probabilistic approach creates a wide space of possible
solutions. Adhering to the theory of the survival of the fittest, the process o f repro­
duction retains the ‘good’ individuals and tried to suppress the “not so good' set of
solutions.

2.2.4.1 Selection

The two common techniques o f selection are the Roulette wheel and the Tourna­
ment selection criteria. In the Roulette Wheel technique the probability of selecting
an individual is directly proportional to its fitness function. The tournament selec­
tion criterion picks a few chromosomes and then selects the winner among these
chromosomes based on the best fitness value. In addition, the elitist criterion selec­
tively retains the best solution in every generation. This ensures that the best results
are not lost in the process of reproduction.

2.2.4.2 Modification

Two main operators for modifying the population after selection are crossover and
mutation. Crossover creates new individuals by copying parts of two other individ­
uals. Mutation introduces random transformations to the existing chromosome and
creates a new individual. Mutation operation widens the search space, and avoids
restriction of the solution to the local minima. These operations are probabilistic
and are decided based on parameters termed as probability o f crossover (Pc) and
probability o f mutation (Pm).

2.2.5 Termination Criteria

The algorithm terminates when the fitness function stabilizes after iterating over a
predetermined number of generations. The end point of the algorithm is determined
based on two frequently used techniques. The first uses a fixed number of genera­
tions (usually fixed by experimenting), after which the result so obtained is the near
optimal result. In the second method, the iterative computation continues till the
variation in the best value of the solution, between two consecutive iterations, is
very little or almost zero.

2.3 Fuzzy Architectures
The concept o f Fuzzy Set Theory was introduced by L. Zadeh in 1965, as a means
of generalizing the classical set theory. This theory of applying fuzzy linguistic

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Fuzzy Architectures

description to process control has resulted in the design of fuzzy logic based con­
trollers. These controllers provide a mechanism to describe complex structures in
terms of simple linguistic variables instead of the complex mathematical process
model. On account of the simplicity and ease of implementation, these controllers
have been used in a variety o f applications. Fuzzy logic controllers have been used
in the design of proportional-integral-derivative (PID) controllers for adaptive con­
trol and optimization of the controller gains.

2.3.1 Brief Introduction of Fuzzy Set Theory

Classical set theory defines a fixed Boolean relationship to determine the associa­
tivity of an element to a set. For example, an element x can have the following
membership with respect to the set A, [30]

In contrast to the classical set theory, the Fuzzy set theory associates more than
one degrees of membership. It maps every element of the universe o f discourse X
to the interval [0 ,1], which can be expressed as.

For a system, fuzzy set theory associates the antecedents (inputs) to the conse­
quents (outputs) based on a fixed set o f rules, called the inference scheme.

2.3.2 Fuzzy Logic Controller

The generic structure of a N-input 1 -output Fuzzy Logic Controller (FLC) is shown
in Figure 2.2. The functionality may be divided into three basic building blocks: the
Fuzzifier, the Inference Scheme and the Defuzzifier. The functional description of
each of these blocks is detailed in the following sections.

Fuzzification is the process of mapping the real-world (crisp) inputs to fuzzy sets
based on the input membership functions. The commonly used membership func­
tions are triangular, trapezoidal or Gaussian in nature.

Figure 2.3 and Figure 2.4 shows the membership function with an overlap of
two and the degree of association represented as p which lies between 0 and 1.
Every input is associated with one or more fuzzy sets (membership functions). The

(2 . 1)

This may be represented as,

* * (*) :* -{ 0 ,1} (2 .2)

p A(x) : X -* [0,1] (2.3)

2.3.3 Fuzzifier

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Fuzzv Architectures

I2

I.

Fuzzifier

Fuzzifier

Fuzzifier

Fuzzifier Inference

Scheme

Fuzzy

DeFuzzifier Output

Figure 2.2: Block diagram of Fuzzy Logic Controller

crisp input is mapped to these fuzzy sets. In the Figure 2.3. any x input may be
associated with one or more values of the triangular membership functions. The
intersecting value o f x with the fuzzy sets determines its association or fuzziness to
that particular set. Since, we have assumed a degree o f overlap of two; an x input
can be associated with two fuzzy sets at the most.

2.3.4 Inference Scheme

The rule base determines the output on the basis of the inputs combinations and a
pre-determined set o f rules. A rule, in the ‘if (input) ... then (output)’ form is set
for every possible input combination. The degree of overlap determines the number
of valid rules evaluated for a single input combination. The number of valid rules
evaluated is given by the Equation 2.4.

= { I n p u 's } ^ ™ « (2.4)

Figure 2.5 shows the mapping of the input to output membership functions. A
degree o f a membership is associated with every input which contributes to the
rule evaluated. Since there could be more than one rule active for a given input, a
method to combine the result o f these active rules is essential. Two most commonly
used methods o f aggregation are described.

2.3.4.1 M in-M ax

The ‘M in-M ax’ algorithm combines the consequent for each rule, based on the in­
tersection of the degree o f association. Thus, the degree of membership for the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Fuzzy Architectures

Member 1
Member2

Degree 1
X Degree2

0

Figure 2.3: Triangular Membership functions

1

xInputs

Figure 2.4: Trapezoidal Membership functions

output is the intersection (minimum) of that o f the inputs. The output is the aggre­
gate (maximum) of all the consequents. Figure 2.6 shows the logical representation
of the algorithm.

Based on Fuzzy operators, ‘M in’ operation is carried out at the input, which
is a minimum of the two inputs in Figure 2.6. At the output a ‘M ax’ operation is
performed, which combines the ‘Min* operations for the two cases. Finally, the
aggregate output is defuzzified to obtain the final crisp output.

2.3A2 Product-Sum

As the name suggests the Product-Sum algorithm uses the product operator to com­
bine the implication and sum to aggregate the rules.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3: Fuzzy Architectures

K i ^v2

1

V X1 K

. . .

<4—*
3
CL
c

. . .

. . .

1
. . .

Input 2

O u tp u t M em ber

Figure 2.5: Rule Matrix

2.3.5 Defuzzifier

The defuzzifier combines the fuzzy outputs, as chosen by one or more combina­
tions of rules to a crisp output, which forms the final stage of the system. The
defuzzifier works on the results obtained from the active rules. The discussion on
defuzzification is limited to the two most common algorithms.

2.3.5.1 Centre of Gravity

This type of defuzzifier implements Equation 2.5 to determine the average value of
the outputs obtained from the active rules.

output = ^ ------- (2.5)

i=0

Where, 0/ is the degree of association for the fuzzified input X,

2.3.5.2 First of Maxima Criterion

This algorithm searches for the location of the maximum value among the evaluated
rules. It returns the first searched value with the maximum degree of association.

The relative positioning of the output resolved using the two methods of de­
fuzzification is illustrated in Figure 2.7.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.4: Review o f Fuzzy Logic Controllers

Min Max

Figure 2.6: Method of Inference: Min-Max

First o f Maxima

Centre o f Gravity

Figure 2.7: Method of Defuzzification

y

2.4 Review of Fuzzy Logic Controllers
The main design concern while integrating Fuzzy Logic controllers in embedded
system applications is its response time in terms of the speed of inference, the area
occupied and the power consumed, [31]. This section looks at some o f the existing
architectures for the FPGA implementation of a Fuzzy Logic controller.

The implementation of Fuzzy logic controllers have been explored for many
control dominated and consumer applications to speedup the process of the in­
ference scheme. Among the implementation techniques, they can be classified as

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.4: Review o f Fuzzy Logic Controllers

analog and digital controllers. In [32], the authors discuss the implementation of
fuzzification and defuzzifications schemes using analog and digital hardware strate­
gies. Trapezoidal and triangular membership functions are generated using analog
and digital components. Further, two analog VLSI implementations o f defuzzifi­
cation circuits are presented. These circuits can be easily embedded within other
systems for fuzzy implementations. Apart from using dedicated hardware. Micro­
controllers and DSPs have also been used to implement FLCs. DSPs turn out to be
a effective in terms o f cost and speed [33]. In [34] a reduced instruction set (RISC)
architecture processing unit is proposed, to extend the general purpose computing
to achieve high fuzzy processing performance. A significantly high performance
improvement is achieved with a minimal increase in chip area.

The fuzzy inference scheme has been a focus in many implementations tech­
niques. On the basis o f the inference scheme, FLCs may be broadly classified as
memory-based and memory-less systems.

2.4.1 Memory based Fuzzy Logic Controller Implementations

Memory-based or off-line technique of FLC implementations stores pre-computed
values o f the input and output combinations. As a dedicated memory (usually exter­
nal) stores all the values in the form of a look up table, there are very few limitations
in terms of the flexibility of the design, [31].

In [35] a fuzzy logic controller is designed for a trigger system for High Energy
Physics Experiment, which requires a fast fuzzy processor. This fuzzy processor is
composed o f RAM-based lookup tables to store the membership functions of the
input variables and the possible rule contributions. An active rule selection block
was designed to reject as many no-contribution rules as possible. The design also
allows four modes o f operation, allowing the design to be modified according to
the application. This design supports four combinations of inputs and outputs was
realized on l.Qum CMOS technology, up to 100 Mega Fuzzy Inference Per Second
(MFIPS). The Yager inference defuzzification method is chosen to reduce hardware
implementation.

In [33], a comparison is made between the speed limits in synchronous and
asynchronous design techniques. A synchronous pipelining configuration is sug­
gested to overcome the delay and achieve an improvement in speed and reliability.
The input and output membership functions are pre-computed and stored in mem­
ory to allow flexibility in deciding the type o f membership function. The rule base
is a combination of multiplexers feeding a memory table. The delay due to the di­
vider at the defuzzification stage is replaced by a multiplier, the input to which is
reciprocal pre-computed and store in memory. The entire FLC is implemented as a
feed forward layered structure.

In [36] a generic structure of a field programmable logic device-based fuzzy
logic system is described. The architecture is made flexible by storing the member­
ship functions (input and output) and the inference rule base in dedicated memory

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

locations. A finite state machine or a dedicated processor acts as the main con­
trol unit. The resulting architecture operates at a frequency of 15 M Hz and allows
distribution o f resources on hardware and software.

2.4.2 Memory-less Fuzzy Logic Controller Architectures

Memory-less or online Fuzzy Logic controllers avoid storing the pre-computed
fuzzy values. Dedicated hardware resources provide online computation of the
membership functions.

A CMOS O.l/jm design of a parallel, pipelined digital fuzzy processor is de­
scribed in [37], Here, a parallel pipelined architecture is proposed to allow fast
selection of active fuzzy rules, which takes 20ns to execute and the chip operates
at a maximum frequency o f 50 MHz. Circuits generating trapezoidal membership
functions are provided in the premise block and store in the memory banks. Then,
the degree of association or 0 is computed by another circuit block. The fuzzifi­
cation unit generates the rule addresses to determine the active rules. The Sugeno
zero order defuzzification circuit is pipelined to allow fast computation.

Since the use o f RAM-based design is expensive in terms of area, in [38] and
[39], the authors propose a dynamic rule configuration using programmable logic.
Membership function generators were used to perform the input fuzzification and
these antecedents were fed to a rule evaluation circuit in a programmable fashion.
Finally, the centre o f gravity defuzzification circuit computes the output.

In [40], the authors describe the implementation o f the fuzzy logic controller
on a Virtex-II FPGA using VHDL. The modular design o f the FLC consists of a
fuzzifier unit, an inference unit and a defuzzifier with 8-bit resolution. Only the
fuzzy inference scheme is stored in an external memory. The design was pipelined
to increase the data throughput of the system by avoiding any wait states. The
design was tested as a Proportional Fuzzy Logic controller and was observed to op­
erate at a maximum frequency of 21.66 MHz. In [41] an FPGA implementation of
FLC is discussed where pre-computed values for the input membership functions
are stored in LUTs. The major disadvantage in FPGA based architectures is iden­
tified as the limitation in resource capability. The authors overcome this drawback
by introducing runtime reconfiguration and selectively configuring the FPGA with
different subtasks. They also propose the idea of using multiple FPGAs to partition
the design separate FPGAs.

2.5 FPGA architectures
A trend in the use o f FPGA for fuzzy logic controllers can be attributed to the speed
of operation and easy reconfiguration in FPGAs in place of general purpose mi­
croprocessor and microcontrollers. The advantages o f using FPGAs in system was
discussed earlier in Section 2.1.3. FPGAs have advanced from the rapid prototyp­
ing environment to the reconfigurable computing scenario. The new generation of

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

FPGAs provided soft and hard embedded cores for design applications. Following
are some applications:

• Reconfigurable Computing

• Hardware Reuse

• High Speed processing

• Adaptive architectures

• Fast prototyping

Following is a brief summary o f currently existing FPGA architectures from
Xilinx.

2.5.1 Virtex-II Architecture

Figure 2.8 gives the architectural overview of the Virtex-II FPGA from Xilinx. The
FPGA architecture comprises of configurable logic blocks (CLB), dedicated mem­
ory blocks, embedded multipliers and a digital clock manager.

/ Programmable I/Os

/ Digital Clock ManagerGlobal Clock MUX

" t i d □ □ ' □

Multiplier

■Block RAM

Configurable Logic Blocks

Figure 2.8: Virtex-II Architecture, [1]

2.5.1.1 Configurable Logic Blocks

The FPGA architecture comprises o f a collection o f configurable logic blocks in­
terconnected through a routing matrix. Each configurable logic block is made up
of four slices, as shown in figure 2.9 which constitute the distributed memory. The

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

distributed memory can be configured as a look-up table (LUT), Random access
memory (RAM) or a Read only memory (ROM) or a Shift Register (SRL), as illus­
trated in figure 2.10.

Connecting to
Neighbours

Slice
X0Y1

Slice
X0Y0

Slice
X1Y1

Slice
X IY 0

Switch
Matrix

Figure 2.9: Configurable Logic Block, [1]

2.5.1.2 Embedded Block RAM

The dedicated memory blocks are 18 Kbit synchronous dual port SelectRAM blocks.
The configuration of these memory blocks can be varied in terms o f the address and
data bus widths as the aspect ratios. They can also be configured as single port and
dual port synchronous memory banks.

2.5.1.3 Multipliers

In the Virtex-II architecture has a number o f 18bit X 18bit unsigned embedded mul­
tipliers. These multipliers are optimized for high speed and low power operations.

2.5.2 Virtex-II Pro

Virtex-II Pro is built on the Virtex-II architecture, but has certain additional en­
hanced features. It has up to two IBM PowerPC RISC processor blocks. Also,
it includes up to twenty RocketlO(tm) or RocketIO X embedded Multi-Gigabit
Transceivers (MGTs). The Figure 2.11 shows the location map o f the hard-processor
cores in the FPGA.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

RAM 16
SRL16

LUTG

RAM16

SRL16

LUTF

ORCY

0
P mUXF

REGISTER

ORCY

0
p.MUXF

REGISTER

Figure 2.10: Virtex-II Slice, [1]

2.5.3 Virtex-IV

These are the newest generations of FPGAs from Xilinx. These FPGAs offer a max­
imum operating speed of 500 MHz with about 200,000 logic cells. The performance
and density offered is twice the capabilities of other FPGA families at half the power
consumption. This family comprises of 17 independent FPGAs customized to meet
three specific applications. Like Virtex-II Pro, Virtex-IV also has embedded Pow­
erPC cores suited for embedded applications. Additionally, it includes ultra high
performance Digital Signal processing features with the XtremeDSP slice. These
slices allow high performance at very low power.

2.5.4 Microblaze Processor Architecture

Figure 2.12 depicts the block diagram of the Microblaze soft processor. It is a
reduced instruction set (RISC) embedded processor, optimized for implementation
in Xilinx FPGAs. The embedded processor has thirty-two 32 bit general-purpose
registers. The instruction word is 32 bit wide and has two addressing modes.

2.5.4.1 Bus Architecture

Separate 32-bit instructions and data buses exist which conform to IBM's On Chip
peripheral Bus specification. Also separate 32-bit instruction and data bus exists
which connects the on-chip block RAM through a Local Memory Bus (LMB). The

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

Processor

A

□ □ n n □ □nn / nn \ nn□n w on ■ gyjt nn
M ultip lier uu uu □□□□ □□ □□□□ □□□□ □□ nn
3 lock RA M □□ I □□ \ □□uu uu uunn nn .SSS6 -. nn□□ □□ □□□□

\
□□

J— i—
□□

j

\ ! /
Configurable Logic Blocks

Programmable I/Os

Figure 2.11: Virtex-II Pro. [2]

LMB provides single-cycle access to the on-chip dual port RAM. The On chip
peripheral bus (OPB) provides access to both on and off chip memory and provides
synchronous access for efficient block RAM transfers. It provides a guaranteed
performance of 125 MHz for local memory subsystem. Apart from these buses.
Microblaze also has eight-input and eight-output Fast Simplex Links (FSL). These
links are 32-bit wide, unidirectional point-to-point data streaming interfaces for
control and data transmission.

2.5.5 Cell Matrix

Cell Matrix defines a self-configurable hardware and software architecture, which
implements circuits and systems, [4]. This architecture so developed is computa­
tionally complete and can be used to build any digital circuit or system. It is a
multidimensional physical structure built using special cells. The hardware struc­
ture is homogeneous and is made up of these special cells, interconnected to each
of its nearest neighbor. The so formed structure is capable of configuring itself, by
each cell configuring its nearest neighbor.

The building block of this structure is a cell. These cells are programmable, gate
level processors, each connected to its nearest neighbor. These cells perform logic
functions on their inputs and forward the outputs on their ‘n’ sides. The function
performed by the cell is dictated by the memory that holds the truth table corre­
sponding to the n desired functions. The functionality o f the cell can be changed
by any of the neighbors by merely reprogramming the truth table in the configura-

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

A d d / Sub
IOPB C DOPBProgram

Counter
Shift/
Add

BUSMultiply MFSL0..7
BUS

Instruction
SFSL0..7

Decode
Instruction

ILMB
Buffer DLMB

D ata-sideInstruction-side
Bus interface Bus interface

Figure 2.12: Microblaze Architecture, [3]

tion mode (C mode). It functions as a data processor in the data mode (D mode).
Following are some of the structure that could be conceptualized using these cells.

This structure o f the cell makes it fault tolerant, scalable, distributed and mas­
sively parallel. W ith these features Cell Matrix can be used to build circuits that
are highly parallel circuits or self-modifying, self-assembling or self-organizing.
These features make it most suitable to be used in evolvable hardware algorithms
that could be cast in the Cell Matrix hardware.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.5: FPGA architectures

D ata Data

ConfigurationC onfiguration

D ata

C onfiguration

Data

Configuration

Data

C onfieuration

D ata

Configuration

Figure 2.13: CellMatrix Architecture. [4]

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Evolutionary Optimization based
Partitioning: Approach

This chapter gives a detailed description of the system under consideration and the
problem governing the process o f optimization. A section is dedicated to the ar­
chitecture and the reasoning behind the choice. The remaining part o f this chapter
describes the procedure for solving the problem of partitioning using Genetic Al­
gorithms.

3.1 Generic System Model
The system block diagram is shown in Figure 3.1. The architecture under consid­
eration comprises o f both preconfigured and reconfigurable hardware resources on
an FPGA. software resources on GPPs and a shared memory (Multi-port RAM).
The reconfigurable hardware resource allows partial reconfiguration at run-time.
The software resource does not require any reconfiguration time for a change in
functionality of the system resource requirement. A single large memory allows
independent access to both the hardware and software resources. This is in contrast
to other architecture previously considered in [18]. The main purpose of this archi­
tectural approach is to avoid bus-contention and arbitration for memory access.

Also, there exists an additional local memory which is accessible by the re­
sources of the same type. This organization enforces the communication time be­
tween resources o f the same type to be less than the communication time between
the two different types of resources.

3.2 Problem Description
The application to be executed on this architecture comprises of a sequence of func­
tionally varying tasks. With a set number of resources available, GA is used to opti­
mize the system performance in terms of the execution time, power consumed and

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.3: Chromosomal Representation

j R i j I

1- - - - - - ' H j j
i

! 1 1 W
, , ! x

{ S j

FPGA

Shared Memorv

GPPs

^ o r[S ; Software

! R I Reconfigurable
I 1
| h 1 Preconfigured

Figure 3.1: Hardware-Software System Architecture

the multi-objective optimization of time and power.
The mapping of the partitioning problem to genetic algorithms is summarized

in the Figure 3.2.

3.3 Chromosomal Representation
The total number of tasks (nodes) in the task graph determines the length of the
chromosome. A binary chromosome as shown in Figure 3.3 represents a system
to classify tasks between hardware and software, since there are two types of pos­
sible resources. A task implemented on hardware is represented by ' 1' and that
on software is represented by ‘O'. A chromosome with trinary values as shown in
Figure 3.4 is used to classify tasks on hardware, reconfigurable hardware and soft­
ware. A ‘O' represents software, ‘ 1' represents hardware with fixed configuration
and a ‘2 ’ represents reconfigurable hardware, classifying tasks between software,
reconfigurable hardware and fixed preconfigured hardware.

With this chromosomal representation, all possible combinations that can be
represented are valid. Hence, there is no further process of validation required even
after any manipulation o f the chromosomes in terms of crossover and mutation.

3.4 Fitness Function
Partitioning determines the type of resource allocated to each task. The quality of
the partition is determined by the scheduling operation (described in Section 3.4.1).
For optimization in time the total execution time determines the fitness. The total

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.4: Fitness Function

Set of initial assignment
of resources

i
Objective Function

End of generations

N

Y

Optimized
Task - Resource

Mapping

Modify
Allocation

Select
Allocation

Figure 3.2: GA applied to Partitioning

0 1

Figure 3.3: Chromosome 1

execution time is the time at which the last scheduled task completes execution.
For power optimization, the total power consumed by all the resources determines
the fitness. The product of the two fitness functions (time and power) is used for
simultaneous power and time optimization.

With the introduction of inter-processor communication overhead, the addi­
tional time and power incurred on account of multi-processor allocation is cal­
culated. The time overhead is on account of memory-FPGA and memory-GPP
communication, which is absent in case o f all-hardware and all-software design
approaches. Similarly, the power overhead in the system is on account of the addi­
tional switching activity between memory and the resources.

Further, reconfiguration requires additional time and power to reconfigure the
resource. A resource is reconfigured, when the configuration o f the reconfigurable
resource does not match that of the task to be scheduled. Once reconfigured, the ac­
tual execution time on a reconfigured hardware unit is the same as its pre-configured
counterpart. Hence, it is preferred to minimize the number o f reconfiguration and

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.4: Fitness Function

0 1 • • • • • • • • 2

Figure 3.4: Chromosome 2

utilize the configuration for the maximum number of tasks.
In the case o f resource allocation, the tasks are scheduled by varying the number

o f resources. In this process the number of resources allocated is forced to be the
minimum possible.

3.4.1 Scheduling

A resource constrained scheduling algorithm is proposed. This is based on priori­
tizing tasks, explained in the following section.

3.4.1.1 Criteria for setting Task Priority

The earliest and the latest possible time instance, at which a task can be scheduled
without any resource constraints, are termed as the AsapTime and the AlapTime
respectively. These are set using ASAP and ALAP algorithms. Since these algo­
rithms are applicable only to unconstrained resource scheduling, these values define
the number of tasks occurring before and after a given task, in the sequence of tasks
in our experiments. Initial nodes of a task graph are assumed to start at time zero.
The finish time for a task is given by the sum of the start time and the execution
time for that operation based on the type of resource allocated. The actual start time
for each task is determined by the sum of the finish time of the preceding task and
the communication delay associated between the two tasks. The task with the least
(zero) number of preceding tasks is assigned the highest priority, since there are no
preceding tasks that need to be performed prior to this task. The priority is based
on the readiness of the task to be executed. The slack determined as the difference
between AsapTime and AlapTime resolves the priority between tasks with the same
start times.

3.4.1.2 Resource Constrained Scheduling

After the task priority is determined, the tasks are scheduled based on resource
availability. A task is postponed when the assigned resource is in use by some pre­
ceding task. On completion of the assigned task, the resource is released for reuse
by the proceeding tasks, with a lower priority. Incase of reconfigurable hardware,
the execution time is decided based on its configuration and the configuration of the
assigned task. In case o f mismatch the resource may be reconfigured. Additional
time and power is consumed to reconfigure the resource.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.4: Fitness Function

Hence this algorithm incorporates resource allocation along with scheduling.
The task to resource mapping is defined within the same algorithm. The optimiza­
tion is achieved by maximizing a function representing the design objectives, called
the fitness function.

Maximize (Fit ness) (3.1)

The fitness function for Equation 3.1 is defined in the following sections.

3.4.2 Time Optimization

To minimize the total time taken, the fitness function f tme. is defined as

ftime = , , j . (3.2)
* * * norm

Where, Tnorm is the normalized time and is given by,

Tnorm = ^ (3.3)
* max

Ttoiai is the time at which the last task in the priority list completes execution.
Tmax is the maximum schedule time for a given task graph. In this context, the
execution time is the maximum when all the tasks are mapped to software.

Ttotal is used to assess the quality o f the partition. The inherent latencies for
the resource is the execution time for a task on hardware (0,). software (ts) and
reconfigurable hardware (tr).

Apart from the inherent latencies o f the design units, additional delay is inferred
in a multiprocessor environment. This has been integrated to emulate a practical
system. The additional time incurred accounts for the delays due to inter-processor
communication times at the edges of the task nodes.

The fitness function for time optimization, with the additional communication
delay is given by,

1 1
fc tim c ~ "j T 'T * T ~ r (J -4)

1 T tnorm ‘ ' v-norm

Where, Cn0rm is the normalized communication delay and is given by.

r _ Cdel ay , , _N
^norm — *

^ delay max

Where, Cdelay *s the total communication delay due to hardware-hardware (/*/,),
hardware-software (r^), software-hardware (r.v/,) or software-software (/„) commu­
nication overheads. Cdeiaymax is the maximum communication delay. This is expe­
rienced when the delay due to communication is the most for each possible case.
This is when there is hardware to software communication, or vice versa, at every
operation.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.4: Fitness Function

3.4.3 Power Optimization

The fitness function for optimization in power, f power is expressed as

fpower = ■: — (3.6)
1 * *norm

Where P norm is the normalized Power and is given by,

Pnorm = ^ (3-7)
* max

Where, Ptotai is the sum of power consumed by all the elements in the task
graph, with the given partition. Pmax is the maximum power that can be consumed
for a given task graph.

Power rating for each of the node depends on the type of resource and the
type o f operation. They are, power rating for hardware (P/,), software (Ps) and
reconfigurable hardware (P r). Maximum power is consumed when all the tasks are
implemented on hardware (or reconfigurable hardware), since hardware resources
consume higher power compared to software.

In a multiprocessor environment additional power consumed is due to the switch­
ing activity in the system on account variation in resource allocation between con­
secutive tasks.

For power optimization,

* _ 1 1 o\Jspower — * . , c (j-8)
1 ■ r norm * • O norm

Where, Snorm is the normalized switching activity and is given by.

STOr„ = § 2 5 ' (3.9)
^max

Where, Stotai is the total switching power due to inter-processor communication.
Smax is the maximum switching power experienced.

Maximum switching power is consumed when tasks alternate between hard­
ware and software resource allocation, resulting in memory access at every node.
The activities are hardware-software (P ^) and software-hardware (Ps/,) interac­
tions. resulting in the switching activity at the memory interface bus. The hardware-
hardware (Phh) and software-software (Pss) interaction avoids these overheads. Here,
hardware represents both preconfigured and reconfigurable hardware.

3.4.4 Time and Power Optimization

To minimize both Time and Power, the fitness function for the multi-objective op­
tim iz a tio n ,/^ ,,^ , is defined as:

fPandT ~ flim e * fpow er (. 10)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.4: Fitness Function

W here, f , ime and fpower are given by equation (3.2) and equation (3.6) respec­
tively.

For simultaneous optimization in power and time with the additional overheads
o f communication delays and switching power, the fitness function is given by,

fPandTAdd ~ fctime * fspower (3.11)

W h ere ,/nwe and fpower are defined in equation (3.4) and equation (3.8) respec­
tively.

The fitness function attempts to compete with two conflicting objectives. The
time optimization attempts to minimize the total time by forcing all operations to
hardware (and reconfigurable hardware), where as the power-aware system tries to
avoid hardware resources. These orthogonal objectives result in hardware-software
solutions, with hardware resources in time critical paths. To obtain a balance in
both the objectives, the fitness function for the multi-objective optimization is the
product of the two fitness functions. This results in simultaneous minimization of
the two objectives.

3.4.5 Optimization for Resource Allocation

This problem of hardware software partitioning is extended to allocate optimal
number of resources to proportionally allocate resources with high utilization and
reduce the number of under-utilized extra resources.

Design considerations limit the numbers o f resources that can be used by the
given application. These limitations exist on account of area and cost constraints.
Hence it is appropriate to perform task scheduling based on resource availability.
However, among the resources allocated, not all are effectively utilized. GA is used
to arrive at the best number of resources o f each type. The architecture under con­
sideration comprises of three types of resources, namely, preconfigured hardware,
reconfigurable hardware and software. Resource allocation is effective when all the
resources allocated are completely utilized.

The objective of resource allocation is to arrive at the optimal combination of
resources to allow efficient utilization of system resources. The architecture under
consideration has resources with varying system parameters. The utilization ratios
o f these resources vary with design objectives. Hence for a given design objective,
GA is used to determine the type and number of resources suited to meet the de­
sign requirements. Optimal resource allocation mainly avoids resources which are
unused or under-utilized by penalizing those combinations. This reduces the idle
power consumption in unused resources and also the additional area occupied by
resources that are not used efficiently.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.4: Fitness Function

N3

Figure 3.5: Chromosome for Resource Allocation

3.4.5.1 Chromosomal representation

For optimizing resource allocation additional fields tracking the number o f resources
o f each type are appended to each chromosome, as shown in Figure 3.5. The num­
ber of types of resource determines the number of additional alleles, here N l, N2
and N3. The value of the allele varies from a minimum of one resource to the
maximum number of resource available for that particular type of resource.

N l N20 ?

3.4.S.2 Penalty for Time

The fitness function adds penalty for violating a deadline. This deadline is set based
on the AsapTime calculated for the task graph. A penalty comes into existence
whenever the resulting schedule exceeds the time deadline.

f o . if T < D

(a * (/ — D), otherwise

Where, T is the time taken for the execution of a task graph. D is the hard-
deadline set for a task graph, a is a constant, which determines the amount of
penalty applied to the violation.

3.4.S.3 Penalty for Power

The fitness function adds penalty when the maximum power consumed in the sys­
tem exceeds the set requirement. This limitation is set based on the maximum
power consumed by the task graph.

i f P < P j «
P\ = < n ' , _ . (3.13)

* {P ~ Pset) ? otherwise

Where. P is the power evaluation for the given combination of resources. Psel is
the set maximum power limitation o f the system. 3 is a constant, which determines
the penalty applied to avoid the violation.

3.4.S.4 Penalty for Resource Utilization

An additional penalty is added to limit the number of resources used to avoid unused
resources. This directs the search process to avoid under utilization o f resources.

The Penalty function is given by.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.5: Details o f GA parameters

I 1, if "̂ Unused = 0
P-> = { ' (3.14)

[Tunused, otherwise

Where, T unused is the total number of unused resources.
*f Unused = S Unused R Unused H 1 Unused + ^2U nused-
SUnused = Unused software.
Runused = Unused reconfigurable hardware.
U\ Unused = Unused preconfigured hardware typel (defined later in Section 4.1.1).
HlUnused = Unused preconfigured hardware type2.(defined later in Section 4.1.1).

The resulting fitness function which meets the required deadline with optimal
resource allocation while optimizing power is given by,

1 1
Jallocate — fcalc* , D * 1 T d- (3.15)

I T m 1 + * 2
Where, f caic represents objective as defined earlier in equation 3.4, equation

3.8 and 3.11. Pi is defined in Equation 3.12 for Time or Equation 3.13 for Power
optimization.

3.5 Details of GA parameters

3.5.1 Initial Population

The GA partitioning tool starts with random assignments for the alleles. This as­
signment randomly partitions the system into hardware and software. For the case
of resource optimization, a random number (within the range specified) is assigned.

3.5.2 Reproduction

A single point crossover is adapted. Mutation operation, in case o f partitioning,
moves a task randomly from hardware to software or reconfigurable hardware, ory O '
vice versa. For resource allocation, mutation introduces a random number of re­
sources.

The selection procedure randomly chooses between Roulette wheel and Tour­
nament type o f selection. Reproduction retains the best chromosome in each gen­
eration, using the elitist selection criteria [28].

3.5.3 Termination Criteria

GA terminates after executing a predetermined number o f iterations (generations).
In our experiments this number was arrived at, after running a few running a few
trial runs. It is seen that, towards the end o f these fixed generations the fitness
function has almost stabilized.

•-» ->JO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Evolutionary Optimization based
Partitioning: Results

In this chapter, the first section describes the set up for the experiments. The next
section provides a detailed description of the experiments performed to demonstrate
the performance of the optimization procedure adapted for hardware software par­
titioning. A section on the parameters assumed for the set o f experiments is listed.
This is followed by a detailed discussion on the results.

4.1 Benchmarking Scenario
The absence of well-defined benchmarks in Hardware Software co-design restricts
the true performance comparison of the implementation techniques and architec­
tures. On this account we have chosen randomly generated task graphs to represent
the sequence of events in embedded system architecture. Future work may be com­
pared to these results, by regenerating the same task graphs based on the parameters
listed in Appendix A. These task graphs were generated using Task Graphs For Free
(TGFF), described in [15]. They provide the sequence of operations in a system.
This in tum provides the precedence relationship between tasks. A sample task
graph is illustrated in Figure 4.1.

4.1.1 Task Graphs

A set of five task graphs with a node count of 200 (on an average, with a variance
of one) was generated. The nodes in the task graph were restricted to two types,
based on the number of inputs to each node. The variation in the number of input
to the nodes is mapped as a variation in the task functionality. A two input node
is considered to be functionally different from a one input node (for e.g. two input
node corresponds to an adder and a one input node corresponds to a multiplier).
Attributes such as execution time, cost, area and power may also be added to each
of the tasks to be randomly assigned.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.1: Benchmarking Scenario

Figure 4.1: Task Graph with 200 nodes

System resources have predefined execution time and power rating for resources.
Individual task deadlines are ignored. To accommodate two types of tasks, two
types of resources are required (typel and type2). Consequently, on the variation
in the functionality the two nodes differ in terms o f the execution time and power
consumed. Reconfiguration allows change in functionality between the two types,
at the cost of an additional overhead o f the reconfiguration time and power.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.1: Benchmarking Scenario

4.1.2 Design Parameters

The design parameters entirely determine the system architecture. Simple varia­
tions in the timing parameters can change the architecture of the system from a
uniform shared memory architecture to a non-uniformed shared memory architec­
ture, (illustrated in Appendix C). For our experiments we consider shared memory
architecture.

These assumptions are made only for illustrative purposes, in order to logically
evaluate the algorithm used. These parameters may be changed according to the
actual architecture o f a real application. The comparative relations between can be
expressed as follows:

ts = \ 0 * t h (4.1)

th = tr (4.2)

Where, ls is the execution time of a task on a software resource and t/, is the
execution time of the same task on a preconfigured hardware resource. Similarly, tr
is the execution time on a reconfigured hardware resource.

The inter-processor communication is expressed as:

tsh = ths (4.0)

Where, tsh = tsm + thm , is the communication delay between the software to
hardware via the shared memory. tsm and tmh are the software access time to mem­
ory and hardware access time from memory respectively. This assumption leads to
the following relations,

thh < lsh (4-4)

th h = hs (4.5)

Where, tss is the communication time between two consecutive tasks on soft­
ware resources. Similarly, is the communication time between to consecutive
hardware tasks.

Similarly for power.

Ps < Ph (4.6)

Where, Ps is the inherent power consumed by a task when implemented on a
software resource and Ph when implemented on a hardware resource.

The additional power consumed can be expressed as follows:

Psh = Phs (4.7)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.2: GA Parameters

Phh > Pss (4.8)
Considering the activity during inter-processor communication, leads to the as­

sumption that Psh and P)u are higher than Pss and Phh respectively. Where, Psh is the
power consumed when communicating between software to hardware resources
(and Phs viceversa).

These parameters were assumed in accordance with [16].

4.2 GA Parameters
After performing a series o f experiments the GA parameters were fixed. A popula­
tion size of 4000 was set for all the experiments. The initial population was created
randomly. GA was set to evolve over 200 generations. The reproduction parameters
were set as Pc = 0.9 and Pm - 0.005. The time and power parameters assumed for
the experiments is listed in Table B .l and Table B.2 in Appendix B.

4.3 Experiments

4.3.1 Experiment 1

To validate the assumptions made in Section 4.1.2 and to confirm the consistency,
the proposed algorithm was executed multiple times (10), with each run initialized
with a randomly generated seed. Further, a comparative study was conducted to
observe the variations of the results obtained with the introduction o f runtime re­
configuration.

4.3.1.1 Case 1: Software and Hardware (Only Preconfigured)

The system under consideration comprises of two types of resources, they are soft­
ware and hardware. The hardware resources are assumed to be fixed and precon­
figured. To accommodate the two functionally diverse nodes, the FPGA has two
resources of each type, pre-configured. An equal number o f software resources
are assumed to exist in the system. Thus, for this configuration the architecture
comprises of one FPGA with four preconfigured resources and four GPPs.

4.3.1.2 Case 2: Software and Hardware (Preconfigured and Reconfigurable)

Run time reconfiguration o f hardware resource is introduced in this architecture.
Consequently, to maintain the same ratio of resources, there are four hardware re­
sources available on the FPGA. Two of these resources have fixed configurations
(preconfigured) and the other two can be reconfigured at runtime. The same num­
bers of software resources are retained, as in Case 1. This system architecture
comprises of an FPGA and four GPPs, as in Case 1.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

Case 1 and Case 2 are compared for the design objectives of time, power and
simultaneous optimization o f time and power.

4.3.2 Experiment 2

Along with the design objective o f optimization in time and power, GA is used
to determine the optimal number of resources required for the implementation of
task graph. Three kinds o f resources are assumed to exist concurrently in the system
architecture, namely, software resources, fixed preconfigured hardware and runtime
reconfigurable hardware resources.

43.2.1 Case 1 - Time Constraint

A hard-deadline is set, to introduce a time constraint. The penalty function is appli­
cable whenever there is a time violation. This was experimented for optimization
in power and the multi-objective optimization of time and power.

To determine the hard deadline, a parameter called Hcriiical was introduced.
H C ritic a l was set on the basis of the calculation of the AsapTime (described in Sec­
tion 3.4.1.1), with only hardware resources. Based on this value, the algorithm
was executed with a hard-deadline of Hcriticah 1 -5 * Hcritical and a deadline of
2 * H c r in c a l-

43.2.2 Case 2 - Power Constraint

A restriction in power is introduced, with a power constraint. Similar to the hard-
deadline in Case 1, a penalty function was introduced to limit the maximum system
power. This case of power constraining was experimented for the optimization
objective o f time and the multi-objective optimization o f time and power.

The maximum power limitation was determined based on the maximum power
consumed by the system, defined by Pmax and Smax in Equation 3.7 and Equation
3.9. The experiments were repeated for a power limitation of {Pmax -rS max)/3 .
(Pmax + S max) /4 and {Pmax "hSmax)/&■

4.4 Results

4.4.1 Random Search and GA

The plot in Figure 4.2 compares the execution times and power consumed for vary­
ing values o f Pc and Pm. The values to the extreme left. Pc = 0 and Pm = 1) represent
a case of Random search. This, when compared to the values appearing at the cen­
ter of the graph {Pc = 0.9 and Pm = 0.01) and towards the extreme right {Pc = 0.9
and Pm = 0.005), show a very large variation. This illustrates the significance of the
optimization procedure adapted.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

1000 1

900 -

800 -

700 -

I 600 -

f » ■
o 400 -
o
E 300 -

H 200 -

100 -

0 - ■

Pc=0 Pm=1 Pc=0.9 Pc=0.9 Pc=0.9

Pm=0.1 Pm=0.01 Pm=0.005

Pc and Pm

Figure 4.2: Results of GA v/s Random Search

Table 4.1: Results for Experiment-1 Case 1: Time

Task Graphs Time Power
Task200-5-1
Task200-5-2
Task200-5-3
Task200-5-4
Task200-5-5

434.30+/-1.70
422.60+/-2.75
427.50+/-1.71
436.70+/- 3.26
411.90+/-8.10

728.70 +/- 2.49
734.90+/-3 .14
718.70+/-3.97
721.80+/- 2.69
745.50 +/- 8.92

The plot o f the fitness function for the maximization objective determined for
one of the experiments is shown in Figure 4.3. The plot shows the best and the aver­
age obtained over a range o f generations. The fitness function stabilizes towards the
end of the predefined number o f generations (200 in this case), indicating optimal
results. The increase in the average value also indicates that the entire population
gradually improves towards the best solution.

4.4.2 Results from Experiment 1

Table 4.1, Table 4.2 and Table 4.3 summarize the performance for the optimization
in time and power individually and the combined optimization of the two objectives.
These results are for the resource constraints described in Section 4.3.1.1.

Table 4.4, Table 4.5 and Table 4.6 shows the performance variation with the
introduction of run-time reconfiguration on hardware. The resource constraints are

39

 Time

_ » _ Power

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

Avg

0.5 -

0.4
09 a)
C9
c 0.3 -

0.2 -

2001

Number of Generations

Figure 4.3: Variation in the fitness function over generations

Table 4.2: Results for Experiment-1 Case 1: Power

TaskGraphs Time Power
Task200-5-l
Task200-5-2
Task200-5-3
Task200-5-4
Task200-5-5

1677.20+/- 14.52
1662.00+/- 13.37
1653.20+/- 18.16
2154.50+/- 5.05
1654.90+/- 14.53

229.20 +/- 2.97
250.20 +/- 1.75
24630 +/- 3.19
245.50 +/- 1.64
249.20 +/- 2.97

as mentioned in Section 4.3.1.2.
Following sections describe the inferences made for the results obtained.

4.4.2.1 Consistency of GA

The results in Table 4.1 (and Tables 4.2, 4.3, 4.3, 4.4, 4.5, 4.6) are tabulated in
{ mean +/- standard deviation }. It is seen that GA arrives at the similar set of
results for all the ten random executions of the algorithm. This validates the fitness
function employed. Also, on close observation it is seen that the variation is less
than 1 % of the mean, which demonstrates that the algorithm employed is consistent
at arriving at the optimal values repeatedly.

4.4.2.2 Time Optimization

For time critical applications it is seen that run-time reconfiguration enhances sys­
tem performance slightly. This improvement is seen even in the presence of the
additional reconfiguration overhead. The results for timing optimization so ob-

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

Table 4.3: Results for Experiment-1 Case 1: Time & Power

TaskGraphs Time Power
Task200-5-l
Task200-5-2
Task200-5-3
Task200-5-4
Task200-5-5

436.70 +/-1.70
427.70 +/- 4.16
432.60 +/- 5.46
445.70 +/- 8.17
445.70 +/- 7.77

700.50 +/- 5.75
703.80+/- 5.94
683.00+/- 9.64
680.10 +/-12.23
709.40+/- 6.51

Table 4.4: Results for Experiment-1 Case 2: Time

TaskGraphs Time Power
Task200-5-l 420.90 +/- 2.96 1496.10+/- 9.39
Task200-5-2 418.10 +/- 3.54 1509.50+/- 6.09
Task200-5-3 413 30 +/- 2.49 1212.30+/- 9.70
Task200-5-4 418.60 +/- 3.80 1219.00+/- 6.28
Task200-5-5 429.00 +/- 4.29 1301.40+/- 14.69

tained with reconfigurable hardware resources are better than the results with pre­
configured hardware. Fig 4.4 shows the variation in time in the two cases, for all
the design objectives.

4.4.2.3 Power Optimization

For power optimization, the procedure almost completely avoids hardware blocks
to reduce the power consumed by the system in both the cases. The task execution
relies entirely on the software resource and all the operations are queued to this
resource. Hence, for power critical applications, the choice o f reconfiguration may
be avoided, since its introduction only deteriorates power. Figure 4.5 compares the
results obtained for power in the two cases, for all the design objectives.

Table 4.5: Results for Experiment-1 Case 2: Power

TaskGraphs Time Power
Task200-5-1
Task200-5-2
Task200-5-3
Task200-5-4
Task200-5-5

1654.80+/-22.92
1638.90+/- 19.72
1616.50+/-21.26
2101.00+/-28.99
1627.70+/- 16.36

464.10+/- 7.04
463.80+/- 9.17
553.90 +/-11.34
557.44 +/-10.08
471.50+/- 7.27

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

Table 4.6: Results for Experiment-1 Case 2: Time & Power

TaskGraphs Time Power
Task200-5-l
Task200-5-2
Task200-5-3
Task200-5-4
Task200-5-5

436.80 +/- 9.49
430.90 +/-12.14
426.40 +/-11.98
464.20 +/-12.28
438.60+/- 9.19

1093.90 +/- 8.06
1098.10 +/-13.88
1088.90+/- 9.25
1059.10+/- 9.52
1117.40+/- 9.38

1800
□ Case 1

Time Power Time and

Power

Objective

Figure 4.4: Optimization for Time

4.4.2.4 Time and Power Optimization

For the multi-objective optimization in power and time to reduce the total time and
power consumed simultaneously, both hardware and software design units are uti­
lized. From Figure 4.4 and 4.5 it is observed that, introduction of time as parameter
along with power changes achieves results similar to the individual optimization of
time.

4.4.2.5 Task Distribution

Figure 4.6 depicts the variation in the resource utilization in hardware and software
elements, depending on the objective applied. As can be observed, an all-hardware
implementation is best suited for time optimization. The software units utilized
in this process merely provide an additional resource for parallel operation. Sim­
ilarly, for power optimization, the procedure almost completely avoids hardware
blocks to reduce the power consumed by the system. The result so obtained is the
best combination for a power-optimal solution, but unacceptable for time critical

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

Time Power Time and

Power

Objective

Figure 4.5: Optimization for Power

applications.
For the multi-objective optimization in power and time, the influence of inter­

processor communication is insignificant. To reduce the total time and power con­
sumed both hardware and software design units are utilized. This results in a solu­
tion better than pure-software or pure-hardware implementation.

A similar observation may be made for the reconfigurable hardware architec­
ture, shown in Figure 4.7. Among the hardware resources utilized, the reconfig­
urable resources outnumber preconfigured hardware.

Figure 4.8 and Figure 4.9 summarize the variation in performance objective as
seen on the distribution o f tasks and resources. The timing optimization objectives
individually illustrate the influence o f communication delay. Similarly, the power
optimization results are expressed separately for inherent power and the influence
of switching power.

4.4.3 Results from Experiment 2

4.43.1 Results with Hard Deadline

Table 4.7 summarizes the results obtained for the optimization o f power, while
meeting a hard-deadline. Table 4.8 lists the results obtained for the optimization
of time and power for a set hard-deadline. Limiting the execution time, implements
a power efficient design well within the specified deadline. This is implemented
with the minimum number o f resources.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4: Results

□ Software

■ Hardware

Objective

Figure 4.6: Task distribution of tasks on Hardware / Software - Case 1

Table 4.7: Power Optimization with Hard Deadline

AsapTime AsapTime * 1.5 AsapTime * 2
Deadline 260 390 520
Time 295 390 515
Power 1183 1105 1031
Software Resources 4 4 4
Reconfigurable Resources 4 0 2
Hardware Resources o f Type 1 4 4 4
Hardware Resources o f Type2 4 "> j
Tasks on Software 8 18 32
Tasks on Reconfigurable Hardware 60 47 46
Tasks on Hardware 134 137 124

4 .43.2 R esults w ith Pow er L im itation

Table 4.9 summarizes the results obtained for the optimization o f time, while meet­
ing the maximum power constraint. Table 4.10 lists the results obtained for the
optimization of time and power for a set maximum power requirement. The varia­
tion in resource allocation and task mapping causes a variation in time and power.
The penalty introduced to restrict the power consumption, limits the search space.
Hence, this results in timing optimization while meeting the maximum power re­
quirement.

From these results it is seen that, as the number of tasks m apped on a resource
type increases, the resource count is proportionally kept high. Similarly for low
resource utilization, the resource count is kept to the minimum required. This indi-

44

Time and Power

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.5: Observation and Inference

250

200
0

X
00h 150

100

50 -

Time

j&r£
Is!
1

Power

Objective

□ Software

B Hardware

■ Reconfig

Time and Power

Figure 4.7: Task distribution of tasks on Hardware / Software - Case 2

Table 4.8: Simultaneous Time and Power Optimization with Hard Deadline

AsapTime AsapTime * 1.5 AsapTime * 2
Deadline 260 390 520
Time 294 319 449
Power 1194 1145 1082
Software Resources 4 4 4
Reconfigurable Resources 2 2 1
Hardware Resources o f Type 1 4 4 4
Hardware Resources o f Type2 j 4 j
Tasks on Software 6 12 27
Tasks on Reconfigurable Hardware 60 43 41
Tasks on Hardware 136 147 134

cates usage of software elements in time critical applications only for tasks which
do not affect the total execution time. Similarly, resource count on hardware is re­
stricted to the minimum possible for power optimal solutions. The multi-objective
optimization of power and time arrives at a distributed resource allocation.

4.5 Observation and Inference
A consistency in the quality of the results obtained using GA is observed over a
wide range of design examples. The analysis in terms o f the mean and variation
ranges establishes the dependability of GA in the problem addressed. Retaining
the same scheduling algorithm, the fitness function can be modified to redesign the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.5: Observation and Inference

200

nardware

i— i Software

2500 — Time

2000 Power
k

1500 I
, 0
a

1000 ^
E500 jZ

Time Time and Power Power and Time and Time &
Delay Switching Power Power &

overheads

Objective

Figure 4.8: Distribution of Hardware / Software utilization in system implementa­
tion

system objective. Thus, the proposed optimization technique for time and power
can be extended to other design parameters such as area and cost of silicon. The
suitability of using objective-specific resources is clearly observed in the resource
utilization ratios.

Resource allocation using GA provides information to build the most suited
target architecture for a system application. With this approach, the number of
unused resources and under-utilized devices are reduced to a minimum possible.
Hence, for a given application, with set design objectives, GAs arrive at the most
suited resource allocation and scheduling for the system. In short. GA evolves the
design o f the system. Additionally, with the introduction of penalties for time and
power, the power optimization keeps a limit on the execution time. Also, the time
optimization maintains power below the maximum threshold.

To introduce weights for the objective functions with a greater priority, the fit­
ness function may be transformed as follows:

F itn e S S = ftim c x fpow er (4 * 9)

Fitness = f$ me * f $ ower (4.10)

Where a and (3 represent the weights which prioritize the objective. When a is

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.5: Observation and Inference

-■2000

■■1500 o

- 1000 o

Time Time & Power Power & Time& Time &
Delay Switch Power Power &

overheads

Objective

K351 Hardware

i— i Software

H Reconfig

— Time

Power

Figure 4.9: Distribution of Hardware (Preconfigured and Reconfigurable) / Soft­
ware in system implementation

> 1, the value of f ttme has a greater significance than with a < 1. Similarly for p,
applicable to fpower-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.5: Observation and Inference

Table 4.9: Time Optimization with Power Limitation

(P max^’̂ m ax)/6 (Pmax'F Smat)/4 (Pmat+Sm axV 3
MaxPower 400 600 801
Power 467 600 793
Time 1 6 7 8 1 4 0 4 1 0 0 4

Software Resources 4 4 4
Reconfigurable Resources 1 1 1
Hardware Resources o f Type 1 1 1
Hardware Resources o f Type2 1 1 1
Tasks on Software 194 156 99
Tasks on Reconfigurable Hardware 2 16 29
Tasks on Hardware 6 30 74

Table 4.10: Simultaneous Time and Power Optimization with Power Limitation

(P/mu+Sma*)/6 (Pma.r'*"Sm<xv)/4 (P/TJiXŶ S/ruy;)/3
MaxPower 400 600 801
Power 4 5 7 5 0 3 5 3 7

Time 1 7 0 3 1 5 7 7 1 5 2 3

Software Resources 4 4 4
Reconfigurable Resources 1 1 1
Hardware Resources o f Type 1 1 2 1
Hardware Resources o f Type2 1 1 1
Tasks on Software 199 179 172
Tasks on Reconfigurable Hardware 1 4 6
Tasks on Hardware 2 19 24

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Fuzzy Logic Controller: FPGA
Implementation

In this chapter, the design approach to implementing a Fuzzy Logic Controller on
an FPGA is described. The first section details the approach to implementing the
FLC entirely on the FPGA (Hardware Architecture). Strategies o f designing a FLC
are proposed in the same section. The second section details the option o f using
an embedded processor on the FPGA (Software Architecture), in contrast to the
conventional approach. Finally, a section on the feasibility analysis puts forth the
architectural limitation in the current implementation using the hardware architec­
tural approach.

5.1 Hardware Architecture
The conventional Hardware Description Language (HDL) implementation method­
ology is used to design and implement a FLC on the FPGA. The design modifica­
tions incorporated to work around certain hardware issues are illustrated in this
section.

5.1.1 Fuzzification

This thesis limits the discussion to only triangular and trapezoidal membership
functions, as they can be constructed with very little resources. Figure 5.1 and
Figure 5.2 illustrate the structure of the membership functions and the character­
istic key-points. These key points are the only values to be stored in registers to
perform the fuzzification, hence amount to very little resources. The process of
fuzzification was introduced earlier in Section 2.3.3.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1: Hardware Architecture

x
<
oou.COO
Q

CJJD
5
2

(L e f tTH e ig h t) (L e fu H e ig h t)

' A A ‘

/ /________________________
(L ettpO) (L e f t ,0) (R igh t ,0) (R ig h t ,0)

Inpu t sp ace (x)

Figure 5.1: Triangular Membership functions

5.1.1.1 Triangular Membership function

The triangular membership functions are represented in terms of the co-ordinates
of the base, the co-ordinates of the peak and the slope. For e.g.. in Figure 5.1,
the points are (L e ft\.0) ,(R ig h t\,0) and (L efti,H e ig h t), with a slope of Slope]
(or — Slope\). For any input (say I]), the fuzzified value A(x) is determined using
Equation 5.1, for triangular membership functions.

f H e 'S h ' * U 0 £ k - i fL e f" - h - L e f' 2
i f U f t 2 < h < Right i (5.1)

I 0, otherwise

5.1.1.2 Trapezoidal Membership function

The fuzzy computation for a triangular membership function can be extrapolated
to a trapezoidal membership function represented in Equation 5.2. Or vice versa.
Equation 5.2 for a trapezoid. reduces to Equation 5.1 when TRight = T L e ft.

A(x) = <

Height r u f Ĵ -u fTi •

Height,
Height — — n e ig n i TRighll_ Righll •

0.

i f Left \ < h < TLeft]
i f TLeft\ < I] < TRight]

i f TRight] < / 1 < Right]

otherwise

(5.2)

5.1.1.3 Assumptions to simplify FPGA implementation

• All the numbers (Fuzzy and Crisp) have an 8-bit representation. The val­
ues ranse from 0 to 2s- 1.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1: Hardware Architecture

(TLef^ .Height) (TRight ̂ Height) (TLeft,,Height) (TRight.,Height)

(LeftfO)

Input space (x)

Figure 5.2: Trapezoidal Membership functions

• A(x) also defines the degree of membership. This assumption avoids all
floating (or fixed) point arithmetic units.

• The degree of membership is represented as an integer ranging from 0 to
28- l , instead of a floating point value with a range from 0 to 1.

5.1.1.4 Resources required

• Comparators: To determine the overlapping membership functions and to
locate the point of intersection.

• Multipliers and Subtractors: To perform Equation 5.1 (or Equation 5.2)
for each intersecting membership functions.

Figure 5.3 shows the block level representation of the Fuzzifier. A detailed
schematic which includes the operators inferred is shown in Figure 5.4. The type
and number of hardware resources required for the fuzzification may be approxi­
mated with the following relations.

TmuI: x Odeg* Inputs

TSubtr x @deg * I t tp u tS

T"Comp 06 Mbits

(5.3)

(5.4)

(5.5)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1: Hardware Architecture

Inpu t 1

S cale 1

S cale2
Input2

M em ber 1
Input3

M em ber2

M em bersInputN

2 Scale

: C om para to rs i
i >=

C L B s !

Figure 5.3: Schematic for Fuzzification

Where, TmuIi • Tsubtr and Tc„mp are the total number o f multipliers, subtractors
and comparators respectively. Odeg is the degree of overlap and M ^ls is the number
of bits required to represent the membership functions.

5.1.2 Rule Evaluation

The inference scheme has two possible implementation options. The combinatorial
implementation maps the rules onto the CLBs, which results in a large amount
of area occupied. Alternately, the rules can be mapped to the embedded Block
RAMs in the FPGA. This option frees the CLBs and can be used to implement
other resources.

5.1.2.1 Combinatorial Implementation

The output is defined for all possible combinations of the input fuzzy sets. Since the
output is made up o f fixed number fuzzy sets, the inputs to the system act as inputs
to multiplexers choosing one of the possible outputs. Hence, CLBs are utilized to
combine the inputs and infer a logic structure (multiplier), which defines the output.
Figure 5.5 shows the internal schematic for the combinatorial implementation.

Consequently, the CLB resource utilization depends on the number o f rules
defined. The number of rules defined depends on the inputs to the system and the
number of fuzzy sets associated with each input. The relationship is defined as in
Equation 5.6

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1: Hardware Architecture

! M em b er!

S lo p eComparators
R ic h t

L eft

S ca le !
..Centre

ComparatorsInput
S cale2

Figure 5.4: Detailed Schematic for Fuzzification

Total number o f rules = {Number o f Fuzzy Sets}^,npuls ̂ (5.6)

Thus, the total number o f slices utilized (Tsuccs) increases exponentially with
the increase in the number o f inputs to the fuzzy controller.

Tsuces x Total number o f rules (5.7)

{Number o f Fuzzy Sets}^lnputs ̂ (5.8)

5.1.2.2 Block RAM im plem entation

Another technique of implementing the rule base is by using the existing Block
RAMs in the FPGA. The memory address locations are defined by the combination
of numbers identifying all the input Fuzzy Sets (membership functions). These
memory locations store locations of the output Fuzzy Sets (membership functions).
Hence, the combination of the input membership functions defines the depth of the
memory block and the possible output member locations define the width of the
memory required. The total memory required for the Fuzzy rule base is defined by

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1: Hardware Architecture

Member 11

Members

Member42

Scale
' M in - M ax

>=.<=

Combinatorial

Y16

Fisure 5.5: Schematic for Inference Scheme

the membership functions at the input and bit-resolution o f the output membership
functions. This organization is shown in Figure 5.6.

In Figure 5.6, Width = 2 °members and Depth = 2lmemhtri. Where, Imembers is the
number o f bits required to represent all the possible input membership functions.
Also, Omembers is the number of bits required to represent all the output membership
function locations, which is defined by the resolution o f operation.

For example, consider a system with of 7 input and output membership func­
tions, with a 8-bit number resolution. The total number o f addressable locations are
27. Each o f these location stores an 8-bit number, which stores the centre-point of
the 7 output membership functions. Thus the total memory required is given by. 27
* 23 = 2 10 = 2K bits for all the possible rules.

This relation can be aeneralized as follows:

Size o f memory = 2,mr"’brr5 * 2^memheri
— 0 1 T .c r r ix r s S ' 0 rr,crr,hcr?,

 9 Bit length

(5.9)

(5.10)

(5.11)

Where,
B i t l e n g t h = 1 Bits "F iM Bits T 0 members (5 - 1 2)

Where Ibus are the number of inputs to the system. I Mbits is the number of bits
used to represent the input membership functions. Omembers is fixed to 3, for a 8-bit
representation.

The Block RAM approach shows a direct influence on the size of memory re­
quired based on the membership functions. This number is shared between the

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1: Hardware Architecture

M e m b e r 1
&

\

M e m b e r2
&

M e m b e r3
&

In p u t A d d re s s

M e m b e rN

O u tp u t M e m b e r

< - W id th - >

L o c a t io n
o f C e n tre

Figure 5.6: Memory Structure

total numbers o f input fuzzy sets and the resolution of the output membersip func­
tions. The memory size can be adapted to change this number by making suitable
adjustment in the aspect ratio.

With this technique, there is delay of one clock associated with every rule.
Hence a delay equal to the number of active rules is incurred. To minimize this
delay, the copy of the rule base can be replicated for every active rule.

5.1.3 Defuzzifier

5.1.3.1 Centre of Gravity

The Figure 5.7 shows the logical implementation of the Centre o f Gravity (COG)
algorithm. As inferred from Equation 2.5, the hardware resources required are
multipliers, adders and a divider. The multiplier computes the products and the
adders compute the numerator and denominator. The divider performs the final
division operation. This resource count (of adders, multipliers and the divider)
increases exponentially as the number of active rules. The resource utilization may
be expressed in the following relations

f 'i tu h x fActive Rules (5 . 1 a)

Tedders 06 ^Active Rules (5.14)

All the operations are combinatorial, except the division operation, which is
synchronous. This operation incurs a delay equal to the width of the divider. Con­
sequently, this operation is the main bottleneck in circuit operation.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.2: Software Architecture

Y16

Degree 1

Degree 16

Denominator

Addition Addition

Division

M u lt ip l ic a t io n

Figure 5.7: Schematic for Defuzzifier: Centre of Gravity

5.13.2 First of Maxima

The First o f Maxima (FOM) method searches for the first location o f the maximum
value among the active rules evaluated. The hardware implementation of this type
of defuzzifier requires comparators to search for the maxima. The number of active
rules governs the number of the comparators required. Consequently the following
relation gives the number of slices utilized,

^comparators ^ TActive Rules (5.15)

Thus, area occupied by the defuzzification unit depends entirely the number of
active rules, as in Equation 5.1.2.1.

7 Slices 0(1 fActive Rules (5.16)

5.2 Software Architecture
This section describes the implementation of the same functionality on a Microb­
laze soft processor. For this processor implementation, the following interface ports
need to be included to provide external interface to the processor.

• Four input ports for the four crisp inputs

• One output port for the crisp output

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.2: Software Architecture

5.2.1 IO configuration

External interface to the Microblaze can be configured in two possible configu­
rations, viz., through general purpose IOs or by sharing the OPB bus among the
external peripherals by defining dedicated ports through the user core template.

5.2.1.1 General purpose IOs

This section details the implementation technique using general purpose IO blocks
available in the Xilinx EDK development environment.

Each general-purpose IO port (GPIO) is configured as an 8-bit wide interface as
either inputs or outputs. The GPIO core is readily available in the EDK environment
and connects to the OPB bus. The GPIO can be configured with a maximum width
of 32 bits with two channels. It can be dynamically programmed as an input or
output port. Also, to reduce resource utilization, the ports can be configured as
dedicated input or output ports.

5.2.1.2 Fuzzy Logic Controller using General Purpose IOs

Using general purpose IOs to configure dedicated ports, four GPIOs configured
as dedicated input ports and one GPIO as dedicated ports forms the interface to
the design. Figure 5.8 shows the configuration of the software architecture, with
a processor communication to the external inputs through the general purpose I/O
ports.

With this configuration, the GPIOs each are 8 bit wide, allowing a maximum
resolution o f 28 to define the crisp inputs to the FLC. These five ports are connected
to dedicated pins on the FPGA to allow data to be written or read continuously.
Internally, the ports are shared on the OPB bus. The arbitration controller manages
the sharing of the bus for read and write between these modules. The fuzzy logic
controller code resides as a C code in the Microblaze processor memory. The pro­
cessor addresses the location as defined by the general-purpose ports to access the
crisp inputs and writes back to the ports after computation o f the defuzzified val­
ues. The processor controls the operation of the fuzzification, fuzzy inference and
defuzzification.

5.2.2 Hardware-Software Architecture

The Co-design architecture adheres to the structure defined earlier in Chapter 3. To
implement this architecture, a system with a processor interfacing a dual port mem­
ory is required. The second port of the dual port memory interfaces with the design
on dedicated hardware made of the FPGA resources. This structural implementa­
tion requires a user-defined core interfacing the dual port memory. The user-defined
core internally consists of a BRAM interface controller and the logic defined on the
hardware resources. This user defined core, interfaces with the on chip peripheral

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.3: Feasibility in Virtex-II: Hardware Architecture

Jk 1 1 ' L iL j i i i
I ^ i

-§ | -4 OPB MOM i
.a \ 1
■F i

__i LMB j
! BRAM j j

Q S5 iCNTLR BRAM
iBLOCK

— O i

s
j BRAM j
1 1

o ----GPIO I
---- jCNTLR j

2 asOe.
----1GPI02 2

----GPI03 j

----GPI04

' r i ' '
— GPI05
r 11 r i f

Figure 5.8: FLC with GPIOs

bus through a predefined bus interface called IP interface bus (IPIF). The hierarchi­
cal structure comprises of the OPB communicating with the user logic through the
IP interface. The user IP interface internally comprises of the IPIF interface com­
municating to one of the ports of the BRAM controller. Since the BRAM block is
configured as a dual port memory block, the second port can now interface with the
logic defined on the FPGA resources.

5.3 Feasibility in Virtex-II: Hardware Architecture
The design environment used is the Xilinx Multimedia board with XC2V2000FF896
The details of the board are provided in Section 6.6. In an attempt to quantify the
feasibility of implementing a Fuzzy Logic Controller on an FPGA, we have tried to
identify the upper bound or the largest design that could be accommodated on this
FPGA.

From Equations 5.3. 5.4 and 5.5 for the fuzzifier. Equation 5.1.2.1 for the rule

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.3: Feasibility in Virtex-II: Hardware Architecture

evaluator and Equations 5.13 and 5.14 for the defuzzifier, it is observed that the
resource utilization in a fuzzy logic controller increases exponentially as the inputs
to the system.

5.3.1 FLC : Combinatorial Rule Base

Figure 5.9 shows the plot of the maximum number of inputs for a variation in the
number of membership functions that can be accommodated in XC2V2000FF896.
This implementation is based on the usage o f distributed memory in the config­
urable logic blocks.

10 1 □ □ □ ■ ■ ■ D Feasible

9 - □ o □ ■ ■ ■ ■ Infeasible

8 - □ □ □ ■ ■ ■

0> 7 - □ o □ ■ ■ ■
CMV
Q 6 - □ □ □ ■ ■ ■
C3 5 - □ □ □ ■ ■ ■Q.

S L
ta 4 - □ o □ □ ■ ■
o

.0
E 3 - □ a □ □ □ ■
©
5 2 - □ □ a □ □ a

1 -

o

C 1 2 3 4 5 6

Inputs

Figure 5.9: Feasibility: Combinatorial Implementation

5.3.2 FLC: Memory-based Rule Base

Table 5.1: Rule Base in Virtex-II

FPGA Block RAM Bit Length
XC2V2000 1008 Kbits 19
XC2V3000 1728 Kbits 20
XC2V4000 2160 Kbits 21
XC2V6000 2592 Kbits 21
XC2V8000 3024 Kbits 21

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.3: Feasibility in Virtex-II: Hardware Architecture

10

9

8

7

6

5

4

3

2

0 T T T T

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.10: Feasibility: Memory based Implementation

The plot in Figure 5.10 shows the feasibility o f implementing the maximum
possible number of inputs on a given device. Table 5.1 represents the maximum
memory size available in Virtex-II FPGAs and hence the maximum feasible rules.
Bitlength is defined in Equation 5.12.

5.3.3 Resource Utilization

Table 5.2: FPGA Resource Utilization

Type Module Slices LUTs Gates IOBs BlockRAM
Combinatorial FLC1: COG 12% 67% 98182 41 0

FLC2: FOM 82% 71% 95907 41 0
Memory Based FLC3: COG 10% 7% 2212324 41 57%

FLC4: FOM 5% 5% 2139624 41 57%

Table 5.3 summarizes the distribution of resources, among the design modules
in a 4-Input Fuzzy Logic Controller, with 5-output and 4-input triangular member­
ship functions.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.4: Observation and Inference

5.3.4 Frequency of Operation

The frequency o f operation o f a fuzzy logic controller is expressed in terms of Mega
Fuzzy Inference per second (MFIPS). The following relation defines this:

Maximum f requencv o f operation _ „
M F IP S = -------------- — ■— ---------- (5.17)

T-total

The maximum frequency of operation of the circuit is defined by the FPGA on
which it is implemented and T,ota[is the total latency of the circuit. The total la­
tency of the circuit accounts for the combinatorial delay at the fuzzification and rule
evaluation stage and the pipelined delay of the divider. It is expressed in Equation
5.18.

Ttotal = Tfuzz~>r Trules ~r Tdivider (5.18)

Table 5.3: Maximum Frequency of Operation

Module Frequency (MHz) T Total MFIPS
FLC1 30.20 16 « 2
FLC2 92.20 1 %92
FLC3 49.42 32 S i 1

FLC4 145.22 16 S i 9

The Fmies for a synchronous Block RAM implementation is a one clock delay
for every active rule. However, in a combinatorial implementation this delay is
much smaller. The delay variations are summarized in Table 5.3.

5.4 Observation and Inference
Following are some inferences that can be drawn from these experimental results.

• The combinatorial implementation has very low latency, but the maxi­
mum frequency of operation and the largest design that can be accommo­
dated is the lowest.

• Block RAM based implementation has a high latency, but also a signifi­
cantly high maximum speed o f operation.

• Area (Slices) occupied by the combinatorial implementation is higher
compared to the Block RAM implementation on account of the CLBs,
spread across the FPGA.

• The feasibility analysis considers all possible combination of rules. For
all the feasible solutions, the speed of operation remains the same.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.4: Observation and Inference

• The divider in the defuzzifier adds a significant amount of latency, also
deteriorates the maximum operating frequency. Methods of pipelining
the divider could improve the overall performance.

• The latency of the divider depends on its width, which is determined by
the resolution of the numbers in the implementation.

• Although the number of rules is pre-determined for a fixed number of
inputs and the associated fuzzy sets, limiting the design to a few rules can
improve the speed of operation.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Reconfigurable Fuzzy Logic
Controller

In this chapter we look at the strategies adopted to build a Reconfigurable Fuzzy
Logic controller. With a limitation on the resources and I/Os, we look at the largest
configuration that can be accommodated on the FPGA available in the design envi­
ronment. Next, the option o f adapting partial run time reconfiguration to overcome
these constraints is addressed. In the next section the technique of arriving at a self
reconfiguring system in an attempt to design adaptive Fuzzy Logic Controllers, is
discussed.

Following are some o f the advantages of introducing reconfiguration in the de­
sign architecture.

• Adaptability to architectural changes

• Reusability

• Accommodate larger designs

• Dynamic design modification

6.1 Architectural Changes
For an adaptive architecture, it is essential for the design to be capable of re­
arranging itself in case o f environmental changes affecting the architecture of the
system. The impact of architectural changes for a Fuzzy Logic Controller is listed
in the following sections.

6.1.1 System Inputs

The inputs to the system dictate the number o f fuzzification units, the number of
rules and consequently the number of active rules, (as seen from Equations 2.4 and

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.2: FPGA Configuration Mechanisms

5.6), affecting all the modules in the design. A change in system inputs calls for a
total reconfiguration o f the FPGA.

6.1.2 Input and Output Membership functions

The number of membership functions associated with each input decides the input
to the rule evaluator. Thus, a change in the number membership functions at the
input changes the number of rules defined.

The number of output membership functions defined for the output o f the FLC
decides the contents o f the rule base. Hence, a variation in the number of output
membership functions will alter the rule base.

A reconfiguration o f the rule base is necessary for a change in the number of
output membership functions. By fixing a limit on the maximum number of mem­
bership functions that can be defined, the change in the number o f membership
functions can be integrated without any architectural change.

6.1.3 Defuzzification

A change in the defuzzification method calls for a re-design of the defuzzifier,
which is an isolated module. Reconfiguring the defuzzifier can incorporate this
design change.

Although the resource utilization varies with change in the method of defuzzi­
fication, the maximum number o f inputs to the fuzzy logic controller that can be
packed in an XC2V2000FF896 FPGA stays the same.

6.2 FPGA Configuration Mechanisms
The entire set o f bits configuring the FPGA is called a configuration bitstream.
These bits are grouped by columns, which are termed as frames. Loading the con­
figuration frames into the internal configuration memory of the FPGA can configure
the Virtex-II FPGA. This is a four-stage procedure, which involves, clearing the in­
ternal memory, initializing it by setting the mode of operation and then loading the
configuration data. Finally the device is operated in the startup sequence of execu­
tion.

6.2.1 Configuration Modes

Dedicated pins on the FPGA, MO, M l and M2 decide the mode of configuration,
as shown in Table 6.1. The configuration modes of the FPGA can be classified as
Serial and Parallel, based on the width of the configuration port. The following
sections discuses the classification.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.2: FPGA Configuration Mechanisms

Table 6.1: Configuration Modes

Modes MO M l M2
Serial JTAG 1 0 1

Master Serial 0 0 0
Slave Serial 1 1 1

Parallel Master SelectMAP 1 1 0
Slave SelectMAP 0 1 1

6.2.1.1 Serial Configuration Modes

The Joint Test Action Group (JTAG) has the standard IEEE 1149.1 for Test Access
Port and boundary scan architecture. It complies with IEEE 1532, the standard for
boundary scan based in system configuration of programmable devices. Dedicated
pins TDI, TDO, TMS and TCK are used for this is serial mode of configuration. The
JTAG pins are always available for configuration irrespective o f the mode selected
on the pins. However, the mode may be forced by explicitly making the selection
on the mode pins.

In the M aster and Slave Serial Modes, the FPGA receives the configuration
data in a serial mode from an external serial Programmable Read Only Memory
(PROM). One bit is loaded for every configuration clock (CCLK). with the Most
Significant Bit (MSB) written first. In the Master serial configuration mode, the
FPGA drives the CCLK, while in serial configuration; the external source drives
the CCLK.

6.2.1.2 Parallel Configuration mode

The SelectMAP mode provides a bidirectional 8-bit configuration data interface. A
data byte is loaded every rising clock edge of CCLK, which makes it the fastest
mode of configuration. The master mode drives the CCLK and in the slave mode it
is driven by an external source. With this mode of configuration, multiple FPGAs
can be configured simultaneously. Once the process of configuration is complete,
the SelectMAP pins can be re-used as user I/Os.

6.2.1.3 Comparative Speeds

Table 6.2 summarizes the relative speed of configurations for the various configu­
ration modes.

6.2.2 Reconfiguration

Reconfiguration allows modifications to the existing design. The FPGA is recon­
figured by reloading the internal configuration memory with a new bitstream, using
one of the configuration modes. With this, part or whole of FPGA is cleared of

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.3: Partial Run time Reconfiguration in Xilinx FPGAs

Table 6.2 : Configuration Modes

Mode Data Width (bits) Operating Speed (MHz) Download time (ms)
JTAG 1 33 206.13
Serial Mode 1 50 136.05
SelectMAP 8 50 17.01

it previous configuration and reloaded with the new design. The amount of time
taken to reconfigure depends on the length o f the bitstream. When the entire FPGA
is reconfigured, it is termed as total reconfiguration or full reconfiguration.

Partial reconfiguration of the FPGA is supported only by boundary scan (JTAG)
or Serial SelectMAP configuration modes. Only the bitstream which corresponds to
the portion o f the design to be reconfigured is directed to the FPGA. This approach
is advantageous in terms of the reconfiguration time as compared to the case of total
reconfiguration.

6.3 Partial Run time Reconfiguration in Xilinx FPGAs
The Virtex, Virtex-II , Spartan-II or Spartan-IIE family of FPGAs have the
ability to reconfigure portions of the FPGA while the rest continues to function
normally. This capability encourages further investigation of partial run time re­
configuration.

6.3.1 Module Based

Module based design involves partitioning the design into separate column-wise
dedicated locations of the FPGA. This implies that any or all the functionality of
these locations can be modified using this technique. However, the inter-modular
communication has to necessarily remain fixed. Bus macros are used to isolate
modular designs. This enables normal operation of the fixed modules during partial
reconfiguration.

Module based partial reconfiguration has certain design considerations. Par­
tially reconfigurable modules are necessarily selected column-wise for the entire
height of the device. The minimum width is four slices and the maximum being the
entire device width. All the resources that lie in this width encompass the ‘frame’ of
the bitstream. The resources included are Tristate Buffers (TBUFS), slices. Block
RAMs, multipliers, IOBs and the routing resources. Figure 6.1 shows the layout of
the reconfigurable module. Bus macros are used for communication between these
modules. The routing between these modules has to remain fixed. In Virtex-II
FPGAs each row of CLB allows four bits of bus macro.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.4: Reconfigurable Fuzzy Logic Controller on an FPGA

Possible 1/ Os

Partially Partially
Fixed

Reconfigurable

ModuleModuleModule

Inter-M odule com m unication

Figure 6.1: Layout of Partially Reconfigurable Modules. [5]

6.3.2 Difference Based

Difference based partial reconfiguration involves allows for modifications to the ex­
isting bitstream. These include modifications to the Look-up equations, re-writing
the block RAM contents and changing the IOB characteristics. The changeable el­
ements include MUXes, slices, Block RAMs, Flip-Flop initializations, and change
in pull-up and pull-down elements that do not directly change the internal rout­
ing of the FPGA. These changes can be made directly using the FPGA Editor and
then a new bitstream stream is generated which only includes the difference in the
previous configuration file.

6.4 Reconfigurable Fuzzy Logic Controller on an FPGA

6.4.1 Module Based: Configuration 1

This configuration, shown in Figure 6.2, demarcates the Fuzzifier, Inference scheme
and Defuzzifier as individual modules. This allows modifications within the mod­
ule. while retaining the interconnection between the modules. In terms of fuzzi­
fication, this structure accommodates the change in the type of fuzzy membership
functions (say triangular, trapezoidal or Gaussian). For the rule base, it allows
re-defining the rules. With respect to defuzzification, this structure allows the algo­
rithm to be partly or entirely changed. Further, the design change can accommodate

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.4: Reconfigurable Fuzzy Logic Controller on an FPGA

/r& Sw r

I*
Inference DefuzzifierFuzzifier

Scheme

Module I

Module2

Module3

Figure 6.2: Configuration 1

any change in the number of bits required for defining inputs and membership func­
tions to the system, while retaining the same routing to the inference.

6.4.2 Module Based: Configuration 2

Module 1 encompasses the fuzzifier and the rule base. The defuzzifier alone is
partitioned as module 2, as shown in Figure 6.3. This configuration nullifies the
interface between the fuzzification unit and the rule base. With this configuration,
changes in the interface between the fuzzification and the rule base can be acco­
modated. However, the routing between the rule base and the defuzzifier is fixed.
With this structure, changes in the number and type of input membership functions
can be incorporated by reconfiguring module 1. However, the same number of ac­
tive rules has to be retained for the fixed interface between modules 1 and 2. The
defuzzification unit can be changed entirely.

6.4.3 Module Based: Configuration 3

This defines the entire design as a single module, allowing any and all possible
combinations of modifications to be incorporated in the design. This essentially
requires a complete bitstream to configure the entire FLC. This scenario exists,
when the FLC itself forms a part of a larger design, shown in Figure 6.4.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.5: Reconfiguration Schemes

 ̂ • •

Inference
Fuzzifier & Ma

cro

y
SW

iS
rf-

V!
;

Defuzzifier

Scheme
•ojrfciK*

Module 1 1
-- i

i
i

Module2_____________________________ i

Figure 6.3: Configuration 2

6.4.4 Difference Based Reconfiguration

This technique is effective while making minor modifications to the original design.
Some of the possible modifications that can be included are listed below.

• Membership function parameters: Like Slope and Co-ordinates.

• Type o f membership function: For e.g. changing it from trapezoidal to
triangular by equating TRight = TLeft (from Figure 5.2).

• Modifying the rules: Changing the rules in a memory based architecture

• Modifying weights applied rules: Nullifying a rule by adding a zero
weight or adding a weight to activate a rule.

6.5 Reconfiguration Schemes

6.5.1 System ACE - CompactFlash Solution

The Advanced Configuration Environment (ACE) solution is an external reconfigu­
ration scheme, which allows managing multiple bitstreams. The environment com­
prises o f a compact flash memory module, an ACE controller and a microprocessor
interface, as shown in Figure 6.5. The Compact Flash memory module can store
one large bitstream or multiple bitstreams. The external interfaces to the ACE con­
troller are detailed in the following sections, [6].

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.5: Reconfiguration Schemes

Inference
Fuzzifier & & Defuzzifier

Scheme

t

II

M odule 1

Figure 6.4: Configuration 3

6.5.1.1 Compact Flash Interface

This allows the controller to communicate to the Compact Flash. The interface is
internally made up of an arbiter and a controller. The arbiter controls the access
between the Microprocessor (MPU) and the JTAG ports. The controller detects the
Flash memory module and allows read and write access.

6.5.1.2 Microprocessor Interface (MPU)

This interface monitors data access to and from the Flash memory module and is
not required for normal functioning of the controller. This interface allows access
to the internal registers of the controller. It is possible to alter the source o f FPGA
configuration bitstream through these internal registers. This allows dynamic recon­
figuration by selecting bitstreams to be invoked as required from the CompactFlash

6.5.1.3 JTAG Interface

This is the dedicated configuration port, as described in section 6.2.1.1.

6.5.1.4 Active Modes

The following are the active modes o f operation available for the FPGA configura­
tion.

• CompactFlash to JTAG setup : This mode configures the FPGA directly
from the CompactFlash on system Power ON through the JTAG port.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.5: Reconfiguration Schemes

CompactFlash

Configuration
Interface

MPU
MPU Interface

: ACE

(JTAG
Interface

FPGA

Figure 6.5: SystemACE environment,[6]

• CompactFlash to M PU setup: This mode allows altering the configu­
ration start through the MPU interface. Once setup, this mode allows
transfer of data from the CompactFlash to the MPU.

• MPU to CompactFlash setup: This mode sets up a communication path
to the CompactFlash device through the MPU interface. This allows the
contents o f the CompactFlash to be accessible by the MPU.

• M PU to configuration JTAG setup: This setup allows the MPU interface
to configure the FPGA via JTAG port.

The FPGA can be dynamically reconfigured based on the ACE controller set­
tings. External inputs on pins CFGADDR (configuration address) dictate the ad­
dress of the configuration file. Hence, changing the values on the CFGADDR pins
and re-asserting the configuration reset (PROG) pin on the FPGA, can reconfig­
ure the FPGA. The value o f CFGADDR is controlled by external pins as well as
the internal registers in the ACE controller. These internal registers are accessible
through the MPU interface. The control register allows over-ridding the external
pins and directs the CompactFlash to choose a different configuration file.

6.5.2 Internal Configuration Access Port

A Internal Configuration Access Port (ICAP) is located at the bottom-left comer
in every Virtex-II and Virtex-II Pro FPGAs and allows access to the internal con­
figuration memory, which allows in-circuit reconfiguration. This enables partial

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.6: Design and Implementation on Xilinx Multimedia Board

reconfiguration of its own FPGA, enabling self-reconfiguration. This communica­
tion protocol is a subset of the SelectMAP interface and allows read-write access
to all the configuration registers and memory. In the Xilinx M ultimedia board (our
board), the JTAG interface is hard-wired (M 2=l, M1=0, M l= l) . which disables the
ICAP.

As ICAP allows access to the internal configuration memory of the FPGA, it is
possible to reconfigure pan or whole of the FPGA by directing the corresponding
bitstream to this pon. Consequently, if the design is modular and its location is
fixed, it is possible to reload only pans of the design, while the rest of the FPGA
functions normally. This technique allows runtime panial reconfiguration of the
FPGA.

6.6 Design and Implementation on Xilinx Multimedia
Board

The Xilinx Multimedia board has a Vinex-II FPGA, which can be configured through
the JTAG port directly or through the CompactFlash System ACE interface. The
board design limits the settings to the use of the JTAG interface, [42]

6.6.1 Default Configuration

The board design enables selection of bitstreams through an external 3-pin switch
which is connected to the CFGADDR pins of the ACE controller. The current ca­
pacity of 16MB of flash memory can be shared between the eight configuration files.
The default configuration mode picks the configuration file from the CompactFlash
based on the CFGADDR pins and configures the FPGA through the JTAG interface.

6.6.2 Dynamic Reconfiguration

The MPU interface o f the ACE controller is wired to the FPGA; hence the internal
registers can be accessed only through the FPGA. The configuration mode used for
implementation is shown in Figure 6.6

To enable access to the registers, a MPU interface is embedded within every
configuration bitstream. Consequently a virtual MPU interface is embedded within
the FPGA. This MPU interface allows read and write access to the registers, which
allow over-ridding the external CFGADDR pins of the System ACE controller.
Once the initial configuration is loaded into the FPGA, it is now possible to switch
between configuration by writing into these registers and then initiating the recon­
figuration of the FPGA. The embedded MPU interface is self-destructing. It initi­
ates the process of reconfiguration, which reconfigures itself. It has to be noted, that
this scheme only allows for the reconfiguration of the entire FPGA. This is on ac­
count of external method of reconfiguration, which starts the configuration process

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.7: Observation and Inference

FPGA

CompactFlash

Configuration
Interface

JTAG
Interface

Figure 6.6: MPU setup. Configure from CompactFlash. [6]

by clearing the configuration memory of the FPGA. This method of configuration
is shown in Figure 6.7 and Figure 6.8.

Using the SystemACE controller along with the ICAP enables remote runtime
reconfiguration of the FPGA. In the modular design, the MPU forms the fixed logic,
which controls the reconfiguration o f the rest of the device. Since the ICAP does
not differentiate between full and partial bitstreams, the device can be reconfigured
without having to reset the rest of the FPGA or destroying the reconfiguration ini­
tiator. However, since the board is hard-wired to JTAG mode o f configuration, the
ICAP is disabled [43].

6.6.2.1 Internal Monitoring

Figure 6.9 illustrates the capability of internally monitoring the design, which in­
cludes the decision o f invoking a reconfiguration of the design through the MPU
interface.

6.7 Observation and Inference
• Minor design modifications using reconfiguration can be transparent to

the circuit operation, by using partial runtime reconfiguration.

• Resource utilization in existing FPGA architectures can be extended through
the application of self-reconfiguration and dynamic partial run time re­
configuration.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.7: Observation and Inference

I

MPU
MPU

Interface

CompactFlash

Configuration
Interface

4 JTAG
1 Interface

FPGA

CompactFlash

MPU
Interface

Configuration
Interface

JTAG
r Interface

MPU

FPGA

(a) Configuration 1 (b) Configuration 2

Figure 6.7: Configuration Change

Capability of internal monitoring system can allow online-adaptability of
the design.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 6.7: Observation and Inference

Configuration Interface

Configuration

MPU setup

Configuration 2 JTAG Interface

ACE

CompactFlash

MPU

FPGA

Figure 6.8: Sequence of configuration

Configuration Interface j

JTAG InterfaceMPU Interface

FPGA

Choice of Configuration

ACE

CompactFlash

Design

MPU

Figure 6.9: Partial Reconfiguration

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

The first section o f this chapter outlines the goals accomplished while addressing
the problem of Hardware-Software partitioning and the design strategies proposed
for the implementation o f a Reconfigurable Fuzzy Logic Controller. The second
section suggests some areas o f future research.

7.1 Conclusions
The contributions in terms of the design methodology adapted to implement a Fuzzy
Logic Controller in a Hardware Software Co-design environment are summarized
in the following sections.

7.1.1 Modeling

As a first step, a detailed model of the system architecture has been developed (see
Chapter 3). This parametric model is used to study the performance of the system in
terms of the execution time and power consumed. The model constructed is flexible
and adaptable to different architectures specific to the application. The variations in
the system architectures introduced by altering the timing parameters are illustrated
in Appendix C.

7.1.2 Partitioning and Interfacing

In this thesis, an evolutionary-based approach performs design partitioning. The
issue of partitioning has been converted to an optimization problem, which allows
evaluation of the architecture with varying performance objectives. The focus is
on the following design objectives: minimization of execution time, reduction of
power consumption and the simultaneous optimization of the two. Furthermore, a
procedure to optimize the resource allocation according to the design objective is
presented.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 7.1: Conclusions

Additionally, a heuristic technique which performs simultaneous scheduling
and allocation is proposed. This algorithm performs a priority based assignment
of time slots for every resource and simultaneously decides the task to resource
mapping.

The process of communication between the two varying resources (software
and hardware) is a critical issue - called interfacing. In this thesis, a simplified
shared-memory-based architecture is introduced in a Co-design environment. This
architecture avoids additional timing delays which can be incurred on account of
bus arbitration in shared-bus architecture.

The evolutionary technique proposed shows a consistency in the quality of the
results obtained, which establishes the dependability of the algorithm. The optimal
resource allocation avoids under-utilization of the resources.

7.1.3 Validation

To confirm the techniques proposed, this thesis validates the optimization algorithm
and the implementation architecture.

The evolutionary-based optimization procedure is verified by conducting mul­
tiple experiments for each of the performance objectives. The minimal variation in
the results obtained for different runs validate the repeatability of the experiments
(see Chapter 4).

Since the design involves both hardware and software architectures, it necessi­
tates co-simulation. Due to the absence of a co-simulation environment, the hard­
ware architecture and the software program were separately validated. The FPGA
implementation is validated by performing both Functional and Place & Route Sim­
ulations in the Xilinx Design environment (ISE). The debugger in the Embedded
Development Kit (EDK) allows validation for the software architecture.

7.1.4 Implementation

A reconfigurable Fuzzy Logic Controller is implemented using the Hardware-Software
Co-design techniques developed in this thesis.

In Chapter 5, four design options are proposed, which is followed by a feasibil­
ity analysis. The largest design that can be implemented on a Virtex-II (XC2V2000FF896)
device is estimated. The processing speeds for each of these designs, in terms of
the M ega Fuzzy Inference per second (MFIPS). has also been inferred.

In Chapter 6, the software and hardware architecture o f this application is de­
scribed. A methodology to implement partial runtime reconfiguration of a Fuzzy
Logic Controller is presented. This methodology uses the modular and difference-
based design techniques, which permits reconfiguration at runtime.

The modular design strategies suggested allow incorporation of design changes
transparent to the external interface.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 7.2: Future Work

7.2 Future Work
The focus of this thesis has been on merging the ideas o f reconfigurable architec­
tures and evolutionary algorithms. Firstly, using evolutionary techniques to achieve
optimal hardware-software partitioning and secondly, in designing a reconfigurable
Fuzzy Logic Controller. Following are some areas of possible future work proposed
as an extension to the research work in this thesis.

7.2.1 Improvements in Hardware Software Partitioning

7.2.1.1 Two-level GA

A nested GA can be formulated on the hardware resources to arrive at the best pos­
sible combination of reconfigurable hardware resources. A similar second level of
GA can be introduced to decide the resource-level granularity. The consistency in
the results obtained in Chapter 4 shows that GA can be used as a tool for future de­
sign enhancements in hardware-software partitioning. Broadly, GA as a partitioning
tool may be used in future to design adaptive system architectures by changing the
task-resource mapping.

j ; 0 : Software
 I 1: Hardware

0: Preconfigured
1: Reconfigurable

Figure 7.1: Two-level GA

Figure 7.1 shows the chromosomal representation of a two-level approach for
system partitioning. The first level o f GA identifies tasks that can be mapped on
hardware and software. The second level of GA splits the tasks identified as hard­
ware to preconfigured-fixed hardware and runtime-reconfigurable hardware. A sim­
ilar approach could be applied to decide the granularity of the partition.

7.2.1.2 Self-Reconfigurable Hardware-Software Architecture

The system comprises o f ‘hardware' and ‘software’ resources and a control engine
which performs the scheduling and allocation of the resources. The control engine

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 7.2: Future Work

is basically a GA machine, which can be implemented either on 'hardw are’ or ‘soft­
ware.’ This control engine is a ‘fixed’ module, which controls the reconfigurable
modules.

CompactFlash

Configuration Interface

ACE

JTAG Interface

Partially Reconfigurable
ModulesM2M l

ICAP

FPGA

Figure 7.2: Partial Runtime Reconfiguration

As shown in Figure 7.2, an external memory unit stores the bitstreams for the
hardware and software resources. These bitstreams are generated based on a mod­
ular design technique. The control engine ‘calls’ the resource according to the final
results of the optimization algorithm. These bitstream are directed to the ICAP in­
terface of the FPGA. The ICAP loads the bitstream to the internal configuration
memory space, thus reconfiguring the portion o f the device which requires modifi­
cation, while retaining the functionality in the rest of the device.

7.2.2 Reconfigurable Fuzzy Logic Controllers: Design Alterna­
tives

Figure 7.3 illustrates the design alternatives for a Hardware-Software combination
of a reconfigurable Fuzzy Logic Controller. The fuzzification unit can be imple­
mented on the processor or directly on the FPGA. The performance parameters of
the fuzzification unit changes based on the type of implementation. According to
the architecture under consideration (described in Chapter 3), there can be three

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 7.2: Future Work

Fuzzy Logic Controller

DefuzzifierFuzzifier Inference Scheme
Triangular----

Trapezoidal
BlockRAM :OM

Combinatorial Software COG
SoftwareSoftware

T rian gu lar/ Tripezoida|
COG FOM

Figure 7.3: Design Alternatives

possible strategies o f implementing each of the blocks o f the Fuzzy Logic Con­
troller. The fuzzifier can have triangular or trapezoidal membership functions and
can have a circuit-level implementation or can reside on the processor. The infer­
ence scheme can be implemented in three different ways. Firstly, the option of
implementing the inference scheme entirely on the FPGA using BlockRAM struc­
tures. Next, using the CLBs or lastly, using the embedded processor to set the rules
using the internal memory of the processor. The performance parameters vary for
each of the configuration. Similarly, the defuzzifier has two implementation options
based on the target resource (‘hardware' and ‘software') or based on the algorithm
of defuzzification (Centre o f Gravity (COG) or First o f M axima (FOM), to name a
few).

7.2.3 Hardware Software Co-Simulation

Commercially, tools supported for co-simulation (C and HDL) are limited. Pro­
gramming languages such are SystemC [44] and Handel-C [45] provide the capa­
bility o f building hardware architectures from a software C-like description. These
ideas have further encouraged the approach of ‘Computing without Processors'
[46], which introduces the concept of reconfigurable devices for general purpose
processing application. Future work in this area could propose a simulation tool,
capable of validating the algorithm implemented in the co-design environment with
the same ease as in a hardware (or software) environment.

7.2.4 Reconfigurable Processor Architecture

The approach of determining the optimal number of resources in terms of reconfig­
uration to allow maximum resource utilization can be extended to the design of a

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 7.2: Future Work

reconfigurable processor. This allows the processor to be reconfigured according to
the requirement o f processing elements based on the target application.

Further, the process o f optimization can be applied to arrive at the set of re­
configurable elements suitable for dynamically reconfigurable processors. Dynam­
ically Reconfigurable Processors (DRP) is a mixed architectural approach which
integrates general purpose computing and programmable logic.

7.2.5 Evolvable Hardware

Evolvable hardware is an approach to reconfigurable hardware design using meth­
ods inspired by biology. This concept differs from evolutionary circuit design due
to the dynamic nature o f the design environment. The major advantage of evolv­
able machines is its ability to evolve based on the information from the external
environment.

Machine

GA
Reconfigurable

Fabric

Figure 7.4: GA Machine

Figure 7.4 shows a high-level view of a self-evolving architecture. Such im­
plementations have a built-in optimization machine. Here. GA is used to assist the
design improvements. The fitness function acts as a feedback to aid the design to
achieve its optimization goals.

A system with in-built optimization engine, allow's adaptability to dynamic en­
vironmental changes. Implementing such systems needs investigation into the ca­
pability o f sensing such variations and fast adaptations.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Xilinx Inc., Virtex-II platform FPGAs: Introduction and Overview. Xilinx,

2004.

[2] ------ , Virtex-II platform FPGAs: User Guide. Xilinx, 2004.

[3] X. Inc., Microblaze Processor Reference Guide. Xilinx, August 2004.

[4] N. Macias, “The PIG paradigm: The design and use o f a massively par­

allel fine grained self-reconfigurable infinitely scalable architecture,” in The

First NASA/DoD Workshop on Evolvable Hardware. A. Stoica. J. Lohn, and

D. Keymeulen, Eds., Jet Propulsion Laboratory, California Institute of Tech­

nology. Pasadena, California: IEEE Computer Society, 19-21 July 1999, pp.

175-180.

[5] D. Lim and M. Peattie, "Two Flows for Partial Reconfiguration : Module

Based or Small Bit Manipulation," Application N o te: Virtex, Virtex-E, Virtex-

II Pro Families. May 2002.

[6] X. Inc., System ACE CompactFlash Solution. Xilinx, April 2002.

[7] C. Mandal, P. Chakrabarti. and S. Ghose. "Complexity of scheduling in high

level synthesis,” VLSI design Journal. vol. 7. pp. 337-346. March 1998.

[8] W. Wolf, “A Decade of Hardware/Software Codesign." IEEE Computer.

vol. 36. pp. 38-43, January 2003.

[9] Wingtong, P. Cheung, and W. Luk. “Comparing three heuristics search meth­

ods for Functional Partitioning in Hardware-Software Codesign,” Journal o f

Design Automation fo r Embedded Systems, vol. 6, pp. 425—449. July 2002.

[10] R. P. Dick and N. Jha, “MOGAC : Multiobjective Genetic Algorithm for Co-

Synthesis of Hardware Software Embedded Systems,” in IEEE/ACM Confer-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

ence on Computer Aided Design, November 1997, pp. 522-529.

[11] T. Givargis and M. Palesi, “Multi-Objective Design Space Exploration Using

Genetic Algorithms," Proceedings o f CODES 2002, pp. 67-12, May 2002.

[12] M. Lopez-Vallejo and J. C. Lopez, “On the Hardware-Software Partitioning

problem : System Modeling and Partitioning Techniques,” ACM Transactions

on Design Automation o f Electronic Systems, vol. 8, no. 3, pp. 269-297, July

2003.

[13] G. Stitt, R. Lysecky, and F. Vahid, “Dynamic Hardware/Software Partition-

ing:A First Approach,” Annual ACM IEE Design Automation Conference, pp.

250-255, 2003.

[14] V. Srinivasan, S. Radhakrishnan, and R. Vemuri, “Hardware software parti­

tioning with integrated hardware design space exploration.” in Proceedings o f

D ATE'98, February 1998, pp. 28-35.

[15] R. P. Dick, D. L. Rhodes, and W. Wolf. “TGFF : Task Graphs For Free." Pro­

ceedings o f Int. Workshop Hardware/Software Codesign, pp. 97-101. March

1998.

[16] D. N. Rakhmatov and S. B. Vrudhula. “Hardware-Software Bipartitioning

for Dynamically Reconfigurable Systems,” Proceedings o f CODES 2002, pp.

145-150, May 2002.

[17] J. Harkin, T. M. McGinnity, and L. P. Maguire, “Genetic Algorithm driven

Hardware-Software Partitioning for Dynamically Reconfigurable Embedded

Systems,” Microprocessors and Microsystems, vol. 25, pp. 263-274. August

2001 .

[18] B. Mei. P. Schaumont. and S. Vemalde, “A Hardware-Software Partitioning

and Scheduling Algorithm for Dynamically Reconfigurable Embedded Sys­

tems,” 11th ProRISC Workshop on Circuits, Systems and Signal Processing

Veldhoven, Netherlands., November 2000.

[19] A. P. Chandrakasan. R. Allmon. A. Stratakos. and R. W. Brodersen. “Design

of portable systems." Proceedings o f the IEEE 1994 Custom Integrated Cir­

cuits Conference, pp. 259-266, May 1994.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[20] J. Henkel, “A Low Power Hardware/Software Partitioning Approach for Core­

based Embedded Systems,” Proceedings o f Design Automation Conference

1999. pp. 122-127, June 1999.

[21] G. W. Grewal and T. C. Wilson, “An Enhanced Genetic Algorithm for solving

the High-Level Synthesis problems of Scheduling, Allocation and Binding,”

International Journal o f Computational Intelligence and Applications, vol. 1.

pp. 91-110, March 2001.

[22] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. Reuther,

J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A Com­

parison of Eleven Static Heuristics for M apping a Class of Independent Tasks

onto Heterogeneous Distributed Computing Systems,” Journal o f Parallel and

Distributed Computing, vol. 61, pp. 810-837, 2001.

[23] C. L. Pape and P. Baptiste, “Heuristic control of constraint-based algorithm for

preemptive job-shop scheduling,” Journal o f Heuristics, vol. 5, pp. 305-325.

October 1999.

[24] G. D. Micheli, Synthesis and Optimization o f Digital Circuits. McGraw-Hill

Inc, 1994.

[25] P. Crescenzi and V. Kann, “A compendium of NP optimization problems,"

http://wwv.nada.kth.se/theory/problemlist.html, August 1998.

[26] Z. Guo. W. Najjar, F. Vahid, and K. Vissers. “A Quantitative Analysis of

Speedup Factors o f FPGAs over Processors." 12th ACM International Sympo­

sium on Field Programmable Gate Arrays, Monterey California, pp. 162-170.

February 2004.

[27] J. Noguera and R. Badia, “Hardware-Software Codesign technique for Dy­

namically Reconfigurable architectures ” IEEE Transactions on VLSI systems,

vol. 10. pp. 399-415, August 2002.

[28] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[29] M. Gen and R. Cheng, Genetic Algorithms in search and Engineering opti­

mization. MA: Wiley Interscience Publication, 2000.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wwv.nada.kth.se/theory/problemlist.html

BIBLIOGRAPHY

[30] L. H. Tsoukalas and R. E. Uhrig. Fuzzy and Neural Approaches in Engineer­

ing. Wiley-Interscience, 1997.

[31] I.Baturone, A. Barriga, S. S. Solano, C. J. Jimenez-Femandez, and D. Lopez,

Microelectronic Design o f Fuzzy Logic-Based Systems. CRC Press, 2000.

[32] D. G. Zrilic, J. Ramirez-Angulo, and B. Yuan, “Hardware Implementation

o f Fuzzy Membership Functions Operations and Inference,” Computers and

Electrical Engineering, vol. 26, pp. 85-105, January 2000.

[33] I. Kalaykov, “New Speed Limits for the Fuzzy Logic Controller Hardware,” in

42nd Midwest Symposium on Circuits and Systems, 1999, 8-11 August 1999,

pp. 9 1 8 -9 2 1 .

[34] V. Salapura, “A Fuzzy RISC Processor,” IEEE Transactions on Fuzzy Systems,

vol. 8, pp. 781-790, December 2000.

[35] A. Gabrielli and E. Gandolfi and M. Masetti and M. Russo, “Design of a VLSI

very high speed reconfigurable digital fuzzy processor.” Proceedings o f ACM

Symposium on Applied Computing, Nashville, pp. 477 - 481, February 1995.

[36] Z. Salcic, “High-Speed Customizable Fuzzy-Logic Processor : Architecture

and Implementation.” IEEE Transactions on Systems,Man and Cybernetics-

Part A : Sytems and Humans, vol. 31, pp. 731-737, November 2001.

[37] A. Gabrielli and E. Gandolfi, “A Fast Digital Fuzzy Processor." IEEE Micro.

pp. 68-79. January/February 1999.

[38] T. Lund, A. Torralba, R. G. Carvajal, and J. Ramirez-Angulo. “A Comparison

of Architectures for a Programmable Fuzzy Logic Chip,” in Proceedings o f the

1999 IEEE International Symposium on Circuits and Systems, 1999 Volume:

5 , ISCAS '99, 30 May-2 June 1999, pp. 623 - 626.

[39] T. Lund, A. Torralba. and R. G. Carvajal, “The Architecture of an FPGA-style

Programmable Fuzzy Logic Controller chip,” in Proceedings 5th Australasian

Computer Architecture Conference, 2000. Canberra, A C T , Australia, Febru­

ary 2000, pp. 51-56.

[40] K. Singh, S.: Rattan. “Implementation of a Fuzzy Logic Controller on an

FPGA using VHDL,” in 22nd International Conference o f the North Amer-

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

ican Fuzzy Information Processing Society, NAFIPS 2003, July 24-26 2003,

pp. 1 1 0 -1 1 5 .

[41] D. Kim, “An Implementation of Fuzzy Logic controller on the Reconfigurable

FPGA system,” IEEE Transactions on Industrial Electronics, vol. 47, pp. 703-

715, June 2000.

[42] Xilinx Inc., MicroBlaze and Multimedia Development Board User Guide.

Xilinx, 2002.

[43] -------, OPB HWICAP. Xilinx, 2004.

[44] G. Amout, “SystemC standard,” in ASP-DAC '00: Proceedings o f the 2000

conference on Asia South Pacific design automation. ACM Press, 2000, pp.

573-578.

[45] S. M. Loo, B. Wells, N.Frejie, and J. Kulick. ”Handel-C for Rapid Prototyping

of VLSI Coprocessors for Real Time Systems,” Proceedings o f the Thirty-

Fourth Southeastern Symposium on System Theory. pp. 6-10, March 2002.

[46] S. C. Goldstein, “Computing without processors.” in ERSA, 2004, pp. 29-32.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Parameters to generate TGFF

Following is the input file for the TGFF generator, for the benchmark circuits in our
experiments.

tg -cnt5
task.cn t200\
p ro b -m u ltip a r t jio d es \
ta sk jd eg ree ll
period jn u l l . 1 ,1 .1 .1
tg .w rite
eps.w rite
v eg.w rite
tableJabelC O M M U N
table.cnt3
t able M t t rib priceS020
typ e .a ttr ib exec jim e5020
trans.w rite

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Parameters for Power and Time
calculations

Table B .l : Parameters for Time calculations
Parameter Unit Time
Tw 30
T/m-l j
T/nv2 4
T r j
Thh 1
T ks 2
T,, 1

Table B.2: Parameters for Power calculations
Parameter Unit Power
P.v.v 1
Psh 2

Phs 2

Phh j
Phi 2

Phi 3
Ps 1
Pr 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Architectures with Variations in
Design parameters

Control U nit

PE

PE

PE

PE

o

C3O

FPG A GPPs

Figure C. 1: Modified Architecture

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FPGA GPPs

I Control Unit !

Memorv ;

Figure C.2: Shared Bus Architecture

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

