l*. National Library Biblioth
of Canada

Acquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if  the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

(‘annﬂ'ﬁ'

395, rue Wellington
Ottawa (Ontario)

Your e Volre rélérence

Our file  Notre rélérence

AVIS

La qualité de cette microforme
dépend grandemer:t de la qualité
de la thése scumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'll manque des pages, veuillez
communiquer avec [l'université
qui a conféreé le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a [P'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c¢. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA
THE IMPACT OF DATA STRUCTURES
ON
THE PERFORMANCE OF GENETIC-ALGORITHM-BASED LEARNING

BY

LINGYAN SHU @

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of DOCTOR of PHILOSOPHY.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
FALL 1992



I+l e

Acquisitions and

Bibiiothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellinglon Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Yout hle  Vire 1élérence

Our file  Notre réérence

L’'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©-315-77336-7

Canada



UNIVERSITY OF ALBERTA

RELEASE FORM
NAME OF AUTHOR: Lingyan Shu
TITLE OF THESIS: The Impact of Data Structures on
the Performance of
Genetic-Algorithm-Based Learning
DEGREE: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the copy-
right in the thesis, and except as hereinbefore provided neither the thesis nor any sub-~
stantial portion thereof may be printed or otherwise reproduced in any material form
whatever without the author’s prior written permission.

(Signed)



UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled The Impact of Data Structures on
the Performance of Genetic-Algorithm-Based Learning submitted by Lingyan Shu in
partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ﬁr. Joe }C iberson

Dr. Curtis Strobeck

Dated ... // f&



To

my mother Zanru Shen,
the memory of my father Professor Wei-Guang Shu,
and my husband Xuefeng.



ABSTRACT

The amount of knowledge needed, and the way that available knowledge is exploited by a
search algorithm, are two important factors that influence the effectiveness and efficiency of a
search in a learning system. Blind exhaustive searches require little global information and, in
principle, are always effective in finding existing solutions. But the cost of those searches is
high. Heuristic searches are efficient but not always effective. Genetic algorithms require little
heuristic knowledge about solutions, yet are more efficient than exhaustive searches and are
more effective than the heuristic searches when sufficient information is not available.

Premature convergence, sub-solution domination, and internal rule structure establish-
ment and maintenance have been the fundamental problems in genetic-algorithm-based leam-
ing (GABL). The existing frameworks either are vulnerable to these problems, or incur a high
cost in time and space for their resolution. Recognizing the impact of the data structures in a
framewark on the resolution of the above problems, this work aims at providing better frame-
works in which the intemal rule structures are strongly supported by the data structures and
operations, and therefore solving or reducing the fundamental problems in GABL. Gaining
cooperation and stability through establishing stronger connections is the philosophy presented
in this work. Based on this philosophy, two new frameworks for GABL are designed and
implemented, in which syntactic and semantic approaches are used respectively to strengthen
the intemnal structures. The analytical comparisons between different frameworks for GABL
indicate that the new frameworks encourage co-adaptation of the sub-solutions and stable inter-
nal structures with reasonable complexity. The experimental comparisons between the the new
frameworks and the most prevalent framework for GABL, classifier systems, have shown that
the problems mentioned earlier are effectively reduced and the performance improved
significantly.

Genexi: ‘eaming is a process in which population evolves from one geireration to anothes.
In this research, the impact of initial populations on performance is discussed. Two measures
for determining how good a population is and two algorithms for selecting better initial popula-
tions are proposed. The work on the initial population issue also provides guidelines for incor-
porating heuristic knowledge into GABL and therefore adding new mechanisiss for exploiting
available knowledge.



Acknowledgements

I would like to express my sincere gratitude to my supervisor Jonathan Schaeffer
for his encouragement and valuable advice, and for his careful reading of every draft of
this dissertation, his valuable comments and suggestions. Also thanks to Jonathan
ShaeFer for his financial support.

I would like to thank my supervisor committee members Joe Culberson, Renee
Elio and Curtis Strobeck for their interest in this work and for their comments. Thanks
especially to Joe Culberson for the constructive discussions.

Thanks to the people from tie international genetic algorithm community with
whom I've had conversations and disci'sslons. To mention just a few of them, I would
like to thank Kenneth De Jong, John Holland and Gregory Rawlins for the stimulating
conversations. Especially many thanks to Kenneth De Jong for his encouragement, for
his valuable comments and suggestions on the draft of this dissertation, and for serving
as a member of my dissertation examination committee.

Thanks to the friends who have given me their support. Especially many thanks to
Steven Sutphen aiid Paul Lu for their help in proofreading and producing this disserta-
tion document.

Deep thanks to my grandmother Jie Chen for her example of being an understand-
ing, optimistic and strong person; to my parents for their support and their role model
in scientific endeavor; and to. my brothers Luchuan and Jianchuan for their encourage-
ment,

Deep gratitude to my husband and best friend Xuefeng Wang. His support and
encouragement have greatly contributed to the fruition of this dissertation.

I would like to thank the Faculty of Graduate Studies and Research for the finan-
cial support. :

Finally, I would like to thank the University of Alberta International Student
Center whose services have been very helpful in easing my homesickness when I
started my graduate studies in Alberta.



Table of Contents

Chapter 1 Introduction

1.1 Genetic Algorithms in Learning Systems

1.1.1 Terminology

1.1.2 The Role of Genetic Algorithms in Learning Systems

----------------------

1.2 Genetic-Algorithm-Based Leamning

1.2.1 Frameworks for Genetic-Algorithm-Based Learning ..........ccccoveeeeneee
1.2.2 Problems with the Michigan and Pittsburgh Approaches

1.3 Objectives of this Work

1.4 Overview of this Dissertation

1.4.1 GA Problems from the Perspective of Data Structures ..........ccceeerseee

1.4.2 Concepts

1.4.3 Hypotheses

1.4.4 The Syntactic Approach of Adding Ties

1.4.5 The Semantic Approach of Adding Ties

1.4.6 Initial Populations

1.4.7 Outline of this Dissertation

Chapter 2 Understanding the Problems

2.1 Genetic Algorithms

2.1.1 What is a Genetic Algorithm

10
11
12
13
14
15
17
17
18



Chapter 3 Impact of Initial Populations on Performance

2.1.2 The Basic Genetic Operators

2.1.3 The Basic Execution Cycle of a Genetic Algorithm

2.1.4 Performance Measures for GAs

2.1.5 Understanding the Advantages and Limitations of GAS .....cceceeeree

2.2 Genetic-Algorithm-Based Learning (GABL)

2.3 Genetic Classifier Sysiems
2.3.1 Description of Classifier Systems

2.3.1.1 Match-Activation Cycle Walk-Through

2.3.2 Properties of Classifier Systems
2.4 Problems with Classifier Systems

2.4.1 Rule Clustering Problem

2.4.2 Rule Association Problem

2.4.3 Initial Populations

2.4.4 Remarks on the Problem Issue

2.5 Comparing GABL with other Machine Leaming Paradigms ...........

3.1 Examining the Quality of an Initial Population
3.2 New Algosithms for Generating Initial Populations

3.3 Experiments

3.4 Conclusions

Chapter4 Explicit Structural Ties Approach to Classifier Systems .........

4.1 Introduction

19
21
22

23

(>4

27
30
k)|
33
33
35
36
38

49
50
55

70
3
3



4.2 Structural Ties Approach 76

4.2.1 HCS Framework 7
4.3 Reducing the Rule Clustering and Rule Association Problems .......... 78
4.4 Experiments with HCS 80
4.4.1 Implementation of the HCS Framework 80
4.4.2 Test Problems and Performance Measures 82
4.4.3 Results and Analyses 85
4.4.4 Discussion 103

4.5 Towards a Unification of tie Michigan & Pittsburgh Methods

105

4.6 Remarks on HCS 108
Chapter 5 Implicit Semantic Ties Approach to Classifier Systems .............. 111
5.1 Introduction . 111
5.2 VCS Framework oriaee 114
5.3 Properties of VCS 119
5.3.1 Uniform Representation 119
5.3.2 Expressiveness 119
5.3.3 Search Space . 120
5.3.4 Register Property 123
5.3.5 Build Structures by Building Abstra* Relations 126
5.4 Implementation of VCS 127

5.4.1 Test Problems 128




5.4.2 Experiment Results and Analyses
5.5 Concluding Remarks

Chapter 6 Conclusions

6.1 Contributions of the Dissertation

6.2 Future Research Directions

Reference

Appendix 1

Appendix 2

Appendix 3 ..

130
141
146
146
148
151
157
159

161



List of Tables

Table 1. : . 122




List of Figures

Figure 3.1: Generating a Column Controlled Population.

Figure 3.2: Generating a Column and Row Controlled Population. .................

Figure 3.3: Generating an Initial Population with Controls on Columns. .......

Figure 3.4: Gene.:ting an Initial Population with Controls on Columns & Rows.

Figure 3.5: f, performance, population size 48. ......ccvsiscrussunse

Figure 3.6 f | performance, population $ize 80. ........cceusiessssssussssssusmsessisinssssissenes

Figure 3.7: f , performance, population size 240. ..

Figure 3.8: f; on-line performance, population size 64.

Figure 3.9: f  on-line performance, population size 80. .
Figure 3.10: f ; on-line performance by population sizes. ...
Figure 3.11 f , on-line, population size 112, ..ccecvervsirssssssscssennes

Figure 4.1: f, on-line performance, ps = 240. .........

Figure 4.2; f ; on-line performance, ps = 360. .....cccesvenscssensenssens

Figure 4.3: f 5 on-line performance, ps = 720.
Figure 4.4: f 4 on-line performance.

Figure 4.5: f 5 on-line performance. -

Figure 4.6: f ; on-line performance, ps = 120.
Figure 4.7: f | on-line performance, ps = 16.

Figure 4.8: f , on-line performance, ps = 720. ...

Figure 4.9: f , instantaneous performance, ps=240.

Figure 4.10: f , instantaneous performance, ps=360.

Figure 4.11: f 5 on-line performance, ps = 120. .....

Figure 5.1: f | performance. .....cwcmimsensersissaes

56
57

59
61
62

A

. 69

87
88
89
91
92
94
95
97

100
104
132



Figure 5.2: f ; performance. .......occcesssasinns 133

Figure 5.3: Nvariable and NvariableS of f {. ....coceererrearernne 136
Figure 5.4: f, performance, ps = 64. .....cciisiinienimnmninennmsssme 137
Figure 5.5: f, performance, ps = 128. ....cvuecveinnncens 138
Figure 5.6: f , performance, ps = 64. . 139
Figure 5.7: f 4 performance, ps = 128. ....uivmissisnnmsnsnmsinsnasssssmssssssesssssesss 140
Figure 5.8: f| performance, ps = 10, ....vnmcininicssininmnenisssmsseensssssssses 142

Figure 5.9: f 4 performance, ps = 16.




Chapter 1

Introduction

This dissertation is concerned with genetic-algorithm-based machine lcarning sys-
tems. In this chapter, first, the role of genetic algorithms in leaming systems is dis-
cussed. Genetic algorithms are compared with two other representative search algo-
rithms. Then genetic-algorithm-based leaming (GABL) is discussed, focusing on the
different frameworks for GABL and their problems. Then the objectives of this

research are discussed. Finally, an overview of this dissertation is given.

1.1. Genetic Algorithms in Learning Systems

This section shows the significance of genetic-algorithm-based leaming. The dis-
cussion is focused on the performance differences between genetic algorithms and two
other search approaches in terms of efficiency and effectiveness. Informal definitions of
important terms or terms with different meanings are given first to clarify their mean-

ings in our discussions.

1.1.1. Terminology
Genetic Algorithms

Genetic algorithms are adaptive search algorithms. They are inspired by genetic evolu-
tion processes. Darwin’s "survival of the fittest" is the basic principle used. Genetic
algorithms search from a population of sample points instead of a single point. The
search is directed by the sample population. "Good individuals” in the population have
higher probabilities of producing offspring. Individuals that suit the environment stay

in the population while the ones that do not fit well into the environment would be



replaced by the offspring. Gradually, the population converges towasds a population
that is dominated by "good individuals". The evolution of the popmlation forms the
search process.

Classifier

A classifier is a production-rule-like structure. It contains a condition part and an
action part. After the condition is satisfied, the action may be activated. Usually it is
represented as a string over an alphabet and has a measure associated with it, called
strength or utility. For example a classifier may look like 011ABC/CBR111, where
011ABC is the condition part, CBB111 is the action part and ‘/’ is used to separate the

condition and action parts.
Heuristic Knowledge

Heuristic knowledge will refer to additional information about the properties of the
problem domain beyond that which is used to describe the problem [Nil83). Heuristic

rules and functions are two forms of heuristic knowledge.

Heuristic Search

Search methods applying heuristic knowledge will be considered heuristic search. In
the following discussions, heuristic search does not include genetic algorithms,
Exhaustive Search

Exhaustive search is a search process that considers all possibilities. The exhaustive
depth-first and breadth-first searches are examples of this type of search [Nil71].

Local Optima

A local optimum is a point in the search space that is better than all its neighbors but is

not the best point in the entire search space.



Plateau

A plateau is an area in the search space, within which all the points have the same

value.

1.1.2. The Role of Genetic Algorithms in Learning Systems

There are two important factors that affect the effectiveness and efficiency of a
search algorithm in a learning system. The first factor is the amount of knowledge
needed by the algorithm. The second one is how the available knowledge is exploited
by the algorithm. Exhaustive search algorithms require little knowledge about the
solution. In principle, they are always effective in finding existing solutions. How-
ever, the lack of knowledge and mechanisms for using knowledge in this kind of algo-
rithms results in poor search efficiency. This inefficiency restricts the effectiveness of
this type of search algorithm to problems with a small search space since resources in

time and space are usually limited in practice.

Heuristic search has been the most prevalent approach used in artificial intelli-
gence systems since it is more efficient [Nil83]. Heuristic hill-climbing is an example
of this kind of search [Nil83, Ric83]. In these searck algorithms, heuristic knowledge is
used to guide the search and reduce the space that needs to be examined. Two prob-
lems may occur with the heuristic searches. One is that the knowledge required by the
aigorithms is sometimes not available. For example, a hill-climbing algorithm requires
knowledge of the direction of the steepest gradient. Soar, which is an architecture for
knowledge based systems, is a more concrete example of heuristic search [RLN87]. In
SOAR, tasks are formulated as a series of goals and achieving these goals are con-
ducted as searches in the problem spaces. Therefore, knowledge about formulating
sub-goals and problem spaces is essential in SOAR.



Another problem with the heuristic search approach is that these algorithms, like
other local search algorithms, do not guarantee that the optima, or even just a good
solution, will be found. For example, a hill-climbing search is vulnerable to local
optima and plateaus. This problem could be dealt with by strategies, such as back-
tracking, at the price of reduced efficiency. However hill-climbing can be inefficient
when dealing with problems with large search spaces and many local optima or pla-
teaus.

As in exhaustive search algorithms, genetic algorithms require little initial heuris-
tic knowledge about the solution. Yet genetic algorithms have better mechanisms for
exploiting gained knowledge to guide an efficient search. Compared with heuristic
searches, genetic algorithms do not require as much information, but also do not
exploit as many different kinds of information. Hence genetic algorithms may not be
as efficient as heuristic searches when sufficient knowledge is available. However, in
the case of insufficient knowledge or problems with certain properties, such as prob-
lems with many local optima, genetic algorithms are more effective and efficient in

finding a better solution,
1.2, Genetic-Algorithm-Based Learning

1.2.1. Frameworks for Genetic-Algorithm-Based Learning

The question of how to incorporate genetic algorithms into a leaming system is
closely connected to the question of how to design or select a framework for the sys-
tem. Here we use the term of framework rather than representation to emphasize the
effects of both the representation and operations. Regarding the representation for a
genetic-algorithm-based learning system, two basic issues are considered, First, the
sentences in the representation of a framework for GABL should be order independent,



i.e. "Sentence , Sentence," has the same meaning as "Sentence,, Sentence,". Here, a
sentence is defined as a finite length string over an alphabet [HoU69]. Second, the syn-
tax of the representation should be simple. For a representation without the above two
properties, operations in genetic aléorithms can rarely produce syntactically and
semantically correct results [DeJ87].

Two kinds of frameworks that satisfy the above considerations have been used for
GABL. One is the production-system-like classifier system, also called the Michigan
Approach, in which the basic data structure is a classifier, represented as a string of
characters [Gol89a, Hol86, HHN86]. In this approach, each classifier is associated with
a strength that tells the utility of the classifier. Single classifiers are the basic operands
for the operations in genetic algorithms, meaning that classifiers are used to produce
their offspring, namely new classifiers. The other framework for GABL is the so-called
Pittsburgh Approach, in which the basic data structure is a program [DeJ88, Smi8C). A
program liere refers to a set of instructions that can perform the tasks of the system. A
program R consisting of a set of production rules is represented as:

R={R,RyR3,..Ry },

where R; (i = 1, ..., n) is a production rule or a classifier, and R can perform the tasks
of the system. For example, if ‘# means either ‘0’ or ‘1°, {#00/1, ##01/0, ##10/0,
##11/1) is a program that can be used to evaluate the four-variable Boolean function
S (xgy X1, X2, X3) = (NOTx2) AND (NOTx3)) OR (x2 AND x3). ‘# is often called the
‘don’t care’ sign. Hereafter, ‘#’ means either ‘0’ or ‘1’. In the Pittsburgh Approach,
the evaluation of "goodness", utility, is associated with the programs instead of the
individual classifiers. The utility of a program is changed by evaluating the perfor-
mance of the program on a leaming task. The basic operands for genetic operations are
programs, meaning that programs in the population are used to produce new programs,



1.2.2. Problems with the Michigan and Pittsburgh Approaches

Although genetic-algorithm-based learning shows promise, its applications are
troubled by a number of problems. Usually GABL systems are used to solve problems
where the solution consists of many classifiers. Maintaining good classifiers and the
relations that associate these classifiers to each other, while introducing new useful
classifiers into the population, has been a problem. This is usually reflected by
difficulties in generating and maintaining all the sub-solutions and necessary relation-
ships between the sub-solutions. We term the difficulties rule clustering problem and
rule association problem. The rule clustering problem refers to the problem that, as
opposed to all the sub-solutions, only a few of them co-exist in the population. This
problem occurs because during the competitions, it is possible that a sub-solution with
high strength (utility) becomes a super-pattern over the population [Gol89a]. Since
classifiers with high strengths are likely to be chosen as objects for genetic operations,
gradually the whole population will converge to classifiers with similar patterns. In
other words, the result state clusters to one sub-solution. Solving the rule clustering
problem is vital to the effectiveness of a genetic leamning system. The rule association
problem refers to the difficulty in establishing and maintaining relationships among
classifiers. The selection algorithms and the parameters used for a task may not be
able to establish nor recognize the relationships among classifiers. The behavior of the
rule association affects the robustness and stability of genetic-algorithm-based systems.
The existing frameworks either are vulnerable to the rule clustering and rule associa-
tion problems, or incur a high cost in time and space for their resolution.

The Michigan approach emphasizes low-level processing and discovering good
rules, which involves extensive exploration. However, in this approach, classifiers are

loosely related to each other. Therefore, a genetic algorithm alone is not enough to



generate and maintain those relationships among the classifiers and a credit apportion-
ment algorithm has to be used as another mechanism for generating and maintaining
those relationships. Nevertheless, the use of such algorithms complicates the systems
and introduces new, nontrivial problems. Difficulties in the emergence and mainte-
nance of sub-solution structures in the Michigan type systems have been the incentive
for introducing different selection strategies and credit apportionment algorithras, and

tuning parameters and operators.

In the Pittsburgh framework, the basic operand for genetic operations is in the
form of production programs. In other words, each string in such a system is a concate-
nation of all the classifiers that constitute a program which can perform tasks. The
sub-solutions are connected strongly by the program structure, and a genetic algorithm
is sufficient for the emergence of such a structure. Since all the sub-solutions, as single
rules, are contained in an individual (a program) of the populatica, e problem of
maintaining. these sub-solutions is no longer a difficulty and the issue of assigning
credit to single classifiers is avoided in this framework.

Since the basic operand for genetic operations in the Pittsburgh framework is a
program, the Pittsburgh approach cannot afford to have a large population of programs
due to resource limitations. This restricts the potential for exploration. Hence, the
Pittsburgh approach is useful when the emphasis is to find the correct order of a set of
rules that constitute a program rather than to find the rules themselves.

1.3. The Objectives of this Work

As discussed in the previous section, the Michigan approach and Pittsburgh
approach each have advantages over the other. The Michigan approach (classifier sys-
tems) is able to do extensive exploration and therefore pursue low-level learning, but



has difficulties in developing and maintaining all the sub-solutions. The Pittsburgh
approach has no difficulty in maintaining all the sub-solutions since there is no com-
petition among the rules contained in a program. But the Pittsburgh approach cannot
afford to do extensive exploration. Providing genetic learning frameworks that
emphasize low-level leaming ability (as classifier systems do) yet owercome the prob-
lems of classifier systems is the objective of this work. This work tries to avoid intro-
ducing new stochastic factors into the system and to reduce the dependence of a system
on the credit apportionment algorithms, selection schemes and the related parameters,
thus avoiding the difficulties involved with them. Therefore, we look into solutions to

the problems in classifier systems from the perspective of data structures.

1.4. Overview of this Dissertation

This work investigates how data structures affect the performance of a genetic
learning system. In particular, how different data structures encourage co-adaptation of
sub-solutions is studied. We suggest that the robustness of a solution structure in a
framework is significantly affected by the data structuses and operations. Two frame-
works, Variable Classifier System (VCS) and Hie:uschical Classifier System (HCS),
are designed and implemented to show how to acliieve data structures that improve the
robustness of a system. In VCS, variables are ::sed to introduce robust data structures.
In HCS, imposing hierarchies onto individuniss is proposed as a means of gaining better
data structures. The analytical comgaiiss: between different frameworks for GABL
indicate that the new frameworks encix:vage co-adaptation of the sub-solutions with
reasonable complexity. The experimental comparisons between the conventional
classifier systems and the new frameworks have shown that performance improves
significantly in these two frameworks.



Genetic leaming is a process in which a population evolves from its initial state to
a final state when a given performance stasdard has been met. In this research, the
impact of initial populations on a genetic leaming system, particularly on the problem
of rule clustering is discussed. The experimental results show performance improve-
ment of the initial populations generated by the new algorithms over the ones gen-
erated randomly. The work on the initial population issue also provides guidelines for
incorporating heuristic knowledge into GABL.

14.1. GA Problems from the Perspective of Data Structures

Logical relations and structural relations are two ways of relating classifiers to
each other. A structural relation refers to the relationship between classifiers imposed
by data structures. To see the reason that classifier systems have difficulties in estab-
lishing and maintaining the relationships among sub-solutions, we examine how sub-
solutions are related to each other in the cases of logical and structural relations respec-
tively.

A solution usually contains classifiers forming a reasoning chain in which the
action part of the preceding classifier matches the condition part of the successor. For
example, 0000/0001, 0001/0010, 0010/0011 form a reasoning chain, in which the
action part of the first classifier "0001" matches the condition part of the second
classifier and the action part of the second classifier "0010" matches the comdition part
of the third classifier. In this case, the classifiers in a chain are related to each other by
the logical relationships between them. The generation and maintenance of such a
structure in a population are strongly affected by the selection algorithms, credit
assignment algorithms and GA operations. Since many parameters are involved in
those algorithms and GA operations, the reasoning chain structure is vulnerable to the
set:.ug of the parameters,



10

A default hierarchy is another example of structures built through logical rela-
tions. In a default hierarchy, the more general classifiers cover the general situations,
whereas the more specific classifiers deal with the exception cases. For example,
classifiers ##00 /1 and 1100 /0 form a default hicrarchy in which the first classifier cov-
ers the situations of 0000, 0100 and 1000, whereas the second one deals with the
exception case 1190. It is not difficult to see that the co-existence of the two classifiers
in the default hierarchy is important for the system to perform correctly.

Now, we look at an example of structures built through structural relations. A
solution of a classifier system usually contains classifiers represented with the ‘¥’ char-
acter. A classifier, such as ##0111/0, implies classifiers 000111/0, 010111/0, 100111/0
and 110111/0. In this case, the four classifiers whose representation do not contain ‘#’s
are related to each other in the representation with ‘#’. The ‘4’ representation as a
structure links the four simgle classifiers. One can see that the fate of the four singie
classifiers is bound together by the ‘#’ representation.

In classifier systems, structures, such as chains and defau!t hierarchies, are essen-
tial to the formation of a solution. However, it is difficult to develop and maintain
these structures. It is obvious that structures built from structural relations are more
robust than the ones built by logical relations. For instance, it is easier to keep all the
classifiers related by the ‘#’ character in a population than to keep all the classifiers
related by default hierarchy relationship.

14.2. Concepts

To study the impact of data structures on the performance of genetic learning, the
following concepts are developed in this research.

Primitive Solutions



11

A primitive solution is defined as a correct response to one and only one environmentai
or intemnal state. For example, in classifier systems over the alphabet {'0’, ‘1’, ‘#’}, a
primitive solution would be a correct classifier that does not contain any ‘#’s. A correct
classifier containing ‘#’s would respond to more than one situation and therefore is not
considered as a primitive solution.

Internal Structure

An internal structure of a set of elements refers to the relations that impose constraints
on to the elements. For éxample, a vector is a relation that imposes constraints on to its
elements. For instance, "0001" and "1001" are two of the elements of vector {0001,
1001, 0000}. In this case, all the constraints imposed on to the elements of a vector
apply to "0001" and "1001". Therefore, vector is considered as the internal structure
that connects the two elements. Another example is the ‘#’ structure. "#001" is a form
of internal structure for "0001" and "1001" since "#001" implies "0001" or "1001". In
this case, the two elements are related or connected by the meaning of ‘#’.
Sub-Solution

A primitive solution or an internal structure of primitive solutions is called a sub-

solution.

143. Hypotheses

Gaining cooperation and stability by establishing stronger connections is the phi-
losophy presented in this work. We suggest that effort to resolve the problems of gen-
erating and maintaining internal stmctures should be given from the perspective of
strengthening the connections among primitive solutions through better data structures
and operations. This would reduce the dependence of the system on the credit appor-
tionment algorithms, selection schemes and the related parameters, and thus help avoid



12

the difficulties involved with them. Good data structures provide robust internal struc-
tures for sub-solutions. Different degrees of robustness of internal structures make the
systems require different degrees of support. This is illustrated by the support needed
by the Michigan and Pittsburgh approaches. In the Michigan approach, most of the
internal structures are hased on logical relations. They are not strongly supported by
the data structure. Supporting algorithms, such as the credit apportionment algorithm,
are essential to the emergence and maintenance of the internal structures. However, in
the Pittsburgh approach, internal structures are supported directly by the data structure,
namely programs, and the constraint that genetic operations are conducted only on pro-
grams. Hence, a credit apportionment algorithm for building structures is not neces-
sary. Our work aims at the evolution of the Michigan approach, i.e. providing better
frameworks in which the internal structures of the sub-solutions are strongly supported
by the data structures and operations, and therefore providing better genetic learning
frameworks which emphasize low-level processing. In this dissertation, the syntactic
and semantic approaches are proposed as two ways of adding stronger ties among sub-

solutions.

1.44. The Syntactic Approach of Adding Ties

In the syntactic approach, the structure of the conventional classifier systems is
changed. By introducing hlerarchies into the classifier systems, structural ties are
imposed onto classifiers.

The basic operand of genetic operations in the conventional classifier systems is a
classifier. Each classifier can be viewed as being independent of all other classifiers in
the population in that there are no explicit ties between them. This independence can
cause a number of problems, such as rule clustering and rule association, which cause

system instability, resulting in poor performance. By imposing structural ties between



13

classifiers, we force dependence of classifiers on each other and, as a result, coherence,
cooperation, and co-adaptation are introduced to the system. A hierarchically struc-
tured classifier system (HCS) has been designed and implemented to show the effect of
this structuring [ShS91]. In HCS, at the lowest level;' classifiers (individuals) are
grouped into families. For large and complicated problems, higher-order structures,

such as a community of families, may be needed.

This structuring has two effects. First, individuals in a family cooperating with
each other can yield a strength that is stronger than the sum of that of the individual’s.
Second, stronger individuals in a family can help the weaker ones. This results in the
effect that individuals that have not been tested enough can stay longer in the popula-

tion. Therefore, co-adaptation is supported and over-domination is discouraged.

1.4.5. The Semantic Approach of Adding Ties

In this semantic approach, ties are imposed by semantic constraints. Learning is a
process of establishing relationships. This requires a learning system to be able to
represent the emergence of these relationships or internal structures. Good data struc-
tures in a framework result in strong and stable internal structures. A variable is a data
structure whose semantics defines a relation over its instances. This characteristic of
variables makes them essential to symbolic processing. We introduce variables into
classifier systems to improve the expressiveness of the systems and strengthen the con-
nections between primitive solutions. The use of variables enhances genetic classifier
systems with the ability of symbolic leaming systems, therefore narrowing the gap
between genetic-algorithm-based learning systems and symbolic learning systems.
With variables, built-in knowledge, knowledge models and conceptual hierarchies
become possible. This enables us to combine the advantages of the symbolic learning

systems and genetic-algorithm-based learning systems. Since many solutions can be



14

expressed in a succinct way, the number of sub-solutions contained in a solution is
smaller. This implies that the connections among the primitive solutions are stronger.
Therefore, the problems of rule clustering and rule association are reduced effectively.
Variables are essential to information processing and problem solving. The lack of
variables in the neural network approach is considered a major deficiency [Nor86]. In
this work, a new framework, Variable Classifier System (VCS), is designed and imple-
mented, in which classifier systems are evolved to include variables [ShS89]. The
result is that variables act as implicit connections between the instances being
represented by them. For many problems, VCS provides stronger internal primitive
solution structures, thus allowing those problems to have their solutions expressed in a
succinct manner, reducing the amount of work required by genetic search and credit
assignment algorithms. A common characteristic of HCS and VCS is that, at early
stages of an evolution, it is hard for a single classifier to be dominant. Therefore,
classifiers containing various schemata are kept in the population. In HCS and VCS, the
probability of a schema being deleted from the population without being tested ade-

quately is small.

1.4.6. Initial Populations

Genetic learning is a process of evolving the initial population. In this research,
the impact of initial populations on a genetic learning system is discussed. Particu-
larly, we studied how more schemata can be included into an initial population. This is
examined from two perspectives. One is the "background information" contained in an
initial population, the other is the internal structures contained in an initial population.
If the background knowledge is biased to certain primitive solutions, the population
tends to converge prematurely to the sub-solutions representing these primitive solu-

tions. As well, different initial structures cost differently to evolve to the solution



15

structure. The performance using an initial population whose structures are "close" to

the solution structures would be more efficient.

To guide the selection of an initial population, two measures are defined based on
the above considerations. Two theorems are developed using these two measures.
Based on these two theorems, two algorithms are presented for generating better initial
populations to maximize the potential of a classifier system. Initial populations
influence the common genetic algorithm problems of premature convergence and rule
clustering. A bad initial population tends to either converge fast at the beginning before
the correct solutions are generated, or take a long time to generate the correct sub-
solutions. In the literature, initial populations are usually chosen randomly. Our
research suggests this may be a dangerous practice. The significance of this study can
also be seen from its function in guiding the incorporation of heuristic knowledge into
a genetic learning system. Genetic-algorithm-based learning systems are general learn-
ing systems where little domain specific heuristic knowledge is required. This property
enables genetic learning systems to be effective for problems with insufficient informa-
tion. Nevertheless, the efficiency can be improved by a good use of heuristic
knowledge. However, available heuristic knowledge would be ignored by a genetic
learning system because there is no mechanism for incorporating it into the system.
Grefenstette discussed this problem and proposed several strategies based on the con-
text of the traveling salesman problem [Gre87]. This work provides more general
guidelines on this issue. |

1.4.7. Outline of this Dissertation
This dissertation contains six chapters.

Chapter 2 provides background knowledge on genetic algorithms and genetic-



16

algorithm-based learning. Problems in genetic algorithms and genetic learning, and the
existing solutions are discussed. As well, comparisons are made among genetic-

algorithm-based learning, neural network learning and symbolic learning approaches.

Chapter 3 discusses the importance of an initial population on the performance of
a classifier system. Two new algorithms are proposed for generating good initial popu-

lations.

In chapter 4, a syntactic approach for gaining better data structures is proposed. In
this approach, structures are imposed on to classifiers which are the basic operands of
genetic operations in a classifier system. A hierarchically structured classifier system
(HCS) is designed and implemented to show the effect of this structuring [ShS91]. At
the lowest level, classifiers (individuals) are grouped into families. The relationships
between the HCS framework and the Michigan and Pittsburgh approaches for classifier

systems are discussed.

In chapter S, a semantic approach for gaining better data structures is proposed. In
this approach, variables are introduced into classifier systems. With the use of vari-
ables, many solutions can be expressed in a succinct way. This usually reduces the
number of sub-solutions needed for a solution. In this work, Variable Classifier System
(VCS), is designed and implemented, in which classifier systems are evolved to
include variables [ShS89]. VCS shows significant improvements over the conven-

tional classifier systems.

Finally, Chapter 6 makes the concluding remarks on the contribution of this

dissertation and related future research directions.



17

Chapter 2

Understanding the Problems

This chapter first provides background knowledge on genetic algorithms and
genetic algorithms based learning. Then classifier systems are described and analyzed
in detail, which include the properties of classifier systems, the problems and solutions.
Finally, relationships between genetic-algorithm-based leaming and two other learning
paradigms, symbolic learning and neural network approaches, are discussed.

2.1. Genetic Algorithms (GAs)

Genetic algorithms are search algorithms based on the mechanics of natural selec-
tion and natural genetics. Since the late 1960’s, genetic algorithms have been studied
intensively by John Holland and his colleagues [Bet81,DeJ75, Gol89a, Hol75, Hol86).
In his important book, Adaptation in Natural and Artificial System, Holland analyzed
mathematically the robustness of genetic algorithms and proposed the influential
theory of schemata [Hol75). Other theoretical work includes studies on parameters
involved in genetic algorithms, such as population sizes [Gol89b]. Other than the pure
mathematical analyses, genetic algorithms have been studied mainly in the contexts of
function optimization and adaptive learning systems. Studies have shown the superior-
ity of genetic algorithms as a function optimization tool in dealing with certain types of
optimization problems, such as multimodal and high-dimensional functions
[Bri81, DeJ75]. As a discovery mechanism, genetic algorithms have been used in many
learning systems. It has been shown that genetic leaming systems work well with
dynamic, noisy and nonlinear problems, and provide a model for low level processing
[Gol83, Rio86, ScG8S, Smi80, Wil86).



18

Genetic algorithms and their applications have drawn increasing attention from
many areas such as dynamic control, biological evolution, and artificial intelligence
[Gol89a).

2.1.1. What is a Genetic Algorithm?

Genetic algorithms are derived from a computational model of evolutionary
genetics. Darwin’s survival of the fittest is the basic principle used there. Individuals
that suit the environment stay in the population while the ones that do not fit the
environment would be replaced by new ones. The model is based on the following set
of assumptions: chromosomes are strings with a finite length /, a population contains a
fixed number of chromosomes and each chromosome has a fitness measure associated
with it, which indicates its ability to survive and produce offspring. The population is
a dynamic entity. New individuals are continually being generated to replace existing
ones. The time elapsed between two successive populations is considered a generation.
For simplicity, in our discussion, all the strings in a population have the same length of
l.

Schema is an important concept when we discuss the search properties of genetic
algorithms. A schema is a compact string representation for a set of strings. Usually,
symbol ‘**, meaning either °0’ or ‘1’ in a representation framework over alphabet {*0’,
*1°}, is used in representing schemata. For instance, "*10*" is a schema which defines
four strings: "0100", "0101", "1100" and "1101", The characteristics of a schema are
determined by its positions with fixed values, as opposed to its ‘** positions. In a
representation over alphabet {‘0°, ‘1’}, a fixed value is either ‘0 or ‘1’. Genetic algo-
rithms search for good strings through searching for schemata. This is what makes a

genetic algorithm different from an enumerative or a random search. The following



19

example shows how schemata are combined to build new ones. "1*¥1**Q" and

"0**011" are two schemata and represent the set of strings

{ 101000,
101010,
101100,
101110,
111000,
111010,
111100,
111110,
000011,
001011,
010011,
011011 }.

If we combine the first three bits of the first schema with the last three bits of the
second one, we get a new schema "1*1011", which is different from, and not included
in, the two parent schemata and represents two new strings "101011" and "111011",
The schemata work as building blocks for the construction of new strings. This exam-
ple illustrates the crossover operation of genetic algorithms, which will be discussed

next.

2.1.2. The Basic Genetic Operators

Reproduction, crossover and mutation are the basic operators used in genetic
algorithms. They are functionally sufficient in the sense that they are able to generate
all individuals of the search space. In the following, strings of length 6 over the alpha-
bet {‘1°, ‘0°} are used as examples to describe the genetic operators and their func-

tions.

Reproduction

Reproduction is an operator for copying strings (individuals) according to their
fitness from one generation to another. For example, consider the following popula-



tion:
$,:000000 (fitness 0.25)
S,:010100 (fitness 0.50)
§,:001100 (fitress 0.25)
S4: 101000 (fitness 0.00).
A reproduction operation that copies each string with a probability in proportion to its

fitness would produce the following population:

S, : 000000

S 2 010100

S,: 010100

S 3. 001100.
There are two copies of S, and no S, in the new population. It can be seen that such
reproductions favor individuals with higher fitness. Therefore, "good" individuals stay
in the population géneration after generation, and "bad" ones become obsolete and are

removed from the population eventually.

Crossover

The crossover operator is the primary operator for generating new strings and
instances of new schemata. A simple crossover operation is conducted in three steps:
first, pick up a pair of strings from the population as the parents; second, select a posi-
tion between two characters of the strings and split each string at that position into two
segments; third, swap the segments between the two strings and get two new strings as
the children. For example, strings "111000" and "011111" are selected from a popula-
tion and the position between the third bit and fourth bit is chosen. Then the strings are
split, producing segments "111" and "000" from the first string and 011" and "111"
from the second one. After swapping the segments, two new strings "111111" and
"011000" are created. This example shows how crossover produces new individuals.
It is also important to see how instances of schemata are added into a population. Con-



21

sidering schemata "*11000" and "011**1", One of the sti-:j -vied ia ¥ ubove exam-
ple, "111000", is an instance of **11000", while the »%.r string .« a5 instance of
"011**1". One of the children of the atove crossover, "011009", is another instance of
"+11000" while the other child, "111111", is not an instance of either of t:2 :chemata,
but is an instance of the new schema "1****1, This illustrates how existing sc'::iata
are reinforced and new schemata are exgplorad.

The crossover operator samples beth faroiliar and unexplored regions of the
search space. Other than the single point crossover, other variants, such as two points
crossover in which two positions are selected in a string to separate the string into three

segments, are used as well.

Mutation

The mutation operator is required since reproduction and crossover can only
manipulate what is available in the sample population. If a value at a particular string
position is missing from the population, with only reproduction and crossover opera-
tions, the search will never reach the strings with that value at that position. For exam-
ple, if value ‘0’ does not appear in the second position of any string in the population,
the search will never create instances of "#0**#*", Mutation refers to changing the
value at a random string position to another value. The result might be a new useful
string, or possibly one with little benefit to the system. Mutating a string is a back-
ground pressure that guarantees no value will be permanently lost from the "pool” of
values available to the genetic algorithm.

2.1.3. The Basic Execution Cycle of a Genetic Algorithm

There are a variety of ways to implement genetic operations. The following is a

basic genetic algorithm:



1)

2)

3)

4)

5)

Generate an initial population.
Evaluate the population. If it satisfies a given standard, stop the execution.

Carry out crossover operations with a given probability. Replace some string(s)
with low fitness in the population with the new offspring.

Carry out mutation operations with a given probability. Replace some string(s)
with low fitness in the population with the new offspring.

Go to Step 2.

The successive populations of strings designate a search trajectory through the

search space. If the reproduction rate for each string is proportional to its fitness

(strength, performance, fitness are equivalent here), the strings that remain in the sam-

ple population, over time, are those proven to be the most fit. The search trajectory is

steered toward the individuals or regions in the search space with above average

fimess. The effect of the above procedure is to emphasize various combinations of

schemata as building blocks for the construction of new good strings.

2.14. Performance Measures for GAs

Delong in his Ph.D. thesis experimentally examined the behavior of GAs

[DeJ75). Two kinds of performance measures were proposed. The first one is called
on-line performance, which is defined as

T
XS (S)

=]
T

P=

The second performance measure is called off-line performance, defined as

T 1@
Ztgmxf ;)
P= gt =1

v ——
.



3

Here T is the current generation, S, is the string generated in generation t, and f(S,) is
the function evaluation for S;. By the definitions, it can be seen that the on-line perfor-
mance emphasizes the whole process, while the off-line performance emplissizes the
maximum valve achieved. On-line performance is usually the more important measure
in learning systems.

2.1.5. Understanding the Advantages and Limitations of GAs

Recombination of building blocks (schemata) is an important characteristic of
genetic algorithms. Genetic systems <za respond to any situation by recombining a set
of relevant strings. The recombination enables genetic algorithm systems to avoid
using a distinct string for each sitnation. This is an important property for induction
systems dealing with large search spaces. In those situations, the systems work on sam-
ples of the search spaces, and it is impossible or costly to represent every point in the
search space beforehand.

It has been shown that in a genetic-algorithm-based classifier system with M
rules, as the genetic algurithm generates new rules, it is effectively selecting amongst
more than M building blocks [Hol86). The following discussion shows how genetic
algorithms work effectively and efficiently,

To see the advantages of the genetic algorithms, it is vital to understand the so-
called implicit parallelism. Assume C represents the space of all possible strings with
length ! over the alphabet {°0, ‘1°}. A genetic algorithm always considers a sample
subset of C at one time. It uses the reproduction according to fitness in combination
with certain genetic operators to generate new strings generation after generation. In
each generation, the genetic algorithm works on a different sample subset of C, the
result from the previous generation. This process progressively biases the sampling



24

procedure towards the use of combinations of building blocks with above-average
fimess. This means that the genetic algorithm prefers to use strings that contain good
building blocks to generate new strings. It has been proven that the number of trials
allocated to the observed best schemata (building blocks with high performance
fitness) is an exponential function of the number of trials allocated to structures which
have less performance fitness [Hol75). Surprisingly, in a sample subset of size M, the
algorithm effectively exploits some multiple of M> combinations in exploring C
[Hol86], meaning that in each generation, through only M strings being processed,
O (M?3) building blocks are involved. Based on the belief that good building blocks
constitute good strings, the difference between M and M> makes possible a high
speedup in the rate of searching C . Holland called this implicit perallelism. Moreover,
because a genetic algorithm uses the entire sample population as the source to generate
new strings, the new strings would be the points in the search space C with different
properties. This can reduce the probability of a population converging to a wrong
point. In terms of function optimization, the implicit parallelism makes the genetic
algorithms capable of handling difficulties, such as local minimum (maximum) and
discontinvity [Hol86).

The stochastic process of genetic algorithms is determined by factors such as the
size of the sample population, the crossover rate and mutation rate. However, so far
there is no concrete rule that can be used to select these factors for a particular system,
The so-called genetic disruption problem, good building blocks being disrupted by the
genetic operations, is another problem of genetic algorithms, This problem is con-
nected with the crossover and mutation rates. Many studies have shown that it is
harmful to the stability of a system to use a high genetic operation rate, especially a
high mutation rate.



Premature convergence is another important problem when using genetic algo-
rithms. This problem refess to the situation that all the strings in a population are con-
structed with similar pattems (schemata) before good strings are found. When this
happens, the crossover operator will not add any new suingtothepbpulation and the
mutation operator is usually not strong enough to change the trend of the convergence.
The distribution of the fitness in a population determines when and where the popula-
tion converges. f, at the early stages of a run, the fitness of a few strings in the popula-
tion is much higher than that of the rest of the population, these 2 few strings would
dominate the selection process and result in a premature convergence. On the other
hand, if, at the later stages of a run, the average fitness of the population is close to the
best fitness, the selection tends to wander. To over come the above difficulties, fitness
scaling was introduced in the context of function optimization. Instead of using the
values of the function which is being optimized (hereafter called objective function) as
theﬁtness,aﬁmsﬁmctionisusedtoscaleupordownthevalmoftheobjecﬁve
function. Scaling is necessary for keeping appropriate levels of competition
throughout a process of optimization. At early stages, the values of the objective func-
tion would be scaled back to prevent takeover of the population by some individuals
with greater values. At later stages, when the population has largely converged, com-
petition among population members is less strong, the values of the objective function
would be scaled up to enlarge differences between population members, so the best
ones would still be rewarded. Three kinds of scaling methods have been used: linear
scaling [DeJ75), sigma(0) trancation [For85), and power law scaling [Gil85].

2.2. Genetic-Algorithm-Based Learning (GABL)
The first implementation of a genetic-algorithm-based learning system was Cog-
nitive System Level One (CS-1) reported by Holland and Reitman in 1978



26

[Gol89a, HoR78]. The system was trained to learn two maze-running tasks. The per-
formance system of CS-1 contains a message list and pool of string rules called
classifiers. The learning mechanisms used were genetic algorithms and a simple credit
assignment algorithm. Since then, many GABL systems have been built (for example,
[Gol83, Smi80, Wil86]). These systems can be classified into two frameworks: the
Michigan Approach and the Pittsburgh Approach [DeJ88]. In the Pittsburgh Approach,
production programs are the objects of genetic operations. The evaluation of "good-
ness" is associated with the programs instead of the individual rules. Smith’s Poker
Player is an example of this approach [Gol89a, Smi801. In the Michigan Approach,
each rule is associated with a strength that tells the utility of the rule, and genetic
operations are based on individual rule. Systems falling into the Michigan approach
are called classifier systems. Since the individuals in a classifier sy:iem are single
rules (classifiers) instead of complete programs as in the Pittsburgh Approach,
classifier systems have much lower computational complexity than the Pittsburgh
Approach systems have. Therefore classifier systems can afford to do extensive
exploration at lower levels, such as some cognitive process levels. This dissertation
concerns genetic-algorithm-based learning models that emphasize low-level processing
and discoveries, hence classifier systems are used as the primary foundation.

2.3. Genetic Classifier Systems

Genetic classifier systems are general-purpose, inductive machine learning sys-
tems which use genetic algorithms as the discovery mechanism. They learn syntacti-
cally simple striuig rules called classifiers to guide their performances in an environ-
ment [Gol89a). Since CS-1, many systems have been developed in various fields
[Gol89a). A classifier system is a kind of production system, but it differs from con-
ventional production systems in many ways. The most important differences are its



21

low-level representation and processing. Usually, little prior heuristic knowledge about
solutions is built into such systems. As a result of adaptation, classifier systems work

well with insufficient information and noise.

2.3.1. Description of classifier systems

A classifier system consists of three main components: the classifier and message

system, credit apportionment system, and genetic algorithm.
Classifier and Message System

A classifier is a production rule in a string form. It includes two parts: a condition
part and an action part. The classifier and message system contains a classifier pool,
which is a set of classifiers, and a message list, which is used to hold the messages
from either the external environment or the internal classifier activations. Once a
classifier is activated, it gets the right to post its action string as a message to the mes-
sage list, or as an action to the environment. In the latter case, new messages reflecting
the changes of the environment are posted to the message list from the environment.

In either case, the new messages are used to invoke other classifiers in the next cycle.

In a classifier system defined over the alphabet {‘1°, ‘0, ‘#’}, formally, a condi-
tion or an action part of a classifier is defined as:

<by, by, ., bp>,b; € {'1, 0, ¥}

where k is the length of the condition or action string and ‘#’ means either ‘0’ or ‘1°.

A message is formally defined as

<my, my, my, .., m>, m; € {1, 0"}

Note that symbol ‘4’ is not used in messages.

Matching messages against the conditions of classifiers is a simple process. Let m

=<my, my, ., mp>, m; € {'1°, °0°), be a message, c=<cy, €5, .y > ¢ € {'1’,



28

‘0’, ‘#'}, be a condition of a classifier, @ = <a,, a,, ..., a;>, a; € {'1’, ‘0’, ‘#'}, be
the action of the classifier. m and ¢ are said to be matched if the following conditions

are satisfied:
1) m;=c;, ifc;='0"or ¢; ="1"
2) m=0o0rm;="1 ifc;="%#.

Message passing is a feature of classifier systems. Messages on the message list
would be "passed" through the active classifiers to form new messages. When a
classifier matches message m and is chosen to be activated, m will be "passed" through

the action of the classifier a to form a new message. The new message m'=<m '1, m'z,

. 12 ;> has the values:
1) m=aq if a=10r0.
2) miy=m; if a;="4.

In brief, if a message satisfies the condition of a classifier and the classifier is
chosen to be activated, a new message is generated from the action portion of the
classifier by using the ‘1’s and ‘0’s of the action part and passing through the bits of

the satisfying message at the ‘#’ positions of the action part. This new message would
be either used to change the environment or posted to the message list.
Credit Apportioning System

The credit apportioning system is used to rank or rate individual classifiers
according to a classifier’s role in achieving reward from the environment. Apportion-
ment of credit is a difficult task faced by most inductive systems. It is easy to deter-
mine that a triple jump in checkers is a useful maneuver, but it is much harder to deter-
mine which earlier actions made the jump possible [Hol86]. For rule-based systems,

the credit apportionment task involves determining which rules in a sequence of acuve



29

rules have played an important role in determining success. The most prevalent

method used in classifier systems is the so-called bucket brigade algorithm [Gol89a].

The bucket brigade algorithm is best described in terms of an economic analogy.
The algorithm treats each rule in a reasoning process (a reasoning chain) as a kind of
‘middleman’ in a complex economy. A rule only deals with its ‘suppliers’, the rules
sending messages satisfying its conditions, and its ‘consumers’, the rules with condi-
tions satisfied by the messages sent by this rule. Whenever a rule wins a bidding com-
petition, it initiates a transaction in which it pays out part of its strength to its suppliers.
As one of the winners of the competition, it becomes active, serving as a supplier to its
consumers and receiving payments from them in turn. If a rule receives more from its

consumers than it paid out, it has made a profit; that is, its strength increased.

The bucket brigade can be described as follows: when the condition part of a
classifier ¢ is satisfied, it makes a bid
Bid(c,t)=k x S(c) X Strength(c,t)
where Bid(c, t) is the bid made by classifier ¢ at time ¢, S(c) is the specificity, which
equals to the number of "non-#"s in the condition part of ¢ divided by the length of the

condition, Strength(c, t) is the strength of ¢ at time ¢, and k is a constant less than 1.

The winning bidders place their messages on the messhge list and have their
strengths reduced by the amount of the bid (they are paying for the right of posting a
new message to the message list):

Strength(c, t+1) = Strength(c,t) - Bid(c, t)
for a winning classifier c. The classifiers {c'} that sent the messages matched by this

winner have their strengths increased by the amount of part of the bid:

Strength (c', t+1) = Strength(c',t) +Bid(c,t)/ a



30

where a is the number of the members of {c'}.

It can be seen that the bucket brigade algorithm assures that stage-setting

classifiers receive credit if they make possible later rewarding acts.
Genetic Algorithms in Classifier Systems

Genetic algorithms and credit apportionment algorithms, such as the bucket bri-
gade, constitute the learning component of classifier systems. The role of the genetic
algorithms in a classifier system is discovering new classifiers. Assigning strengths to
the offspring of genetic operations is another credit assignment related problem in
classifier systems that affects the behaviors of the systems. Generally, it is more
difficult to deal with the problems of genetic algorithms, such as premature conver-
gence, genetic disruptions, in the context of classifier systems than in function optimi-
zation systems since the dynamics of classifier systems are more complicated and the
solutions in such systems usually are sets of classifiers with interrelationships. More

discussion on this can be found in section 2.4.

2.3.1.1. Match-Activation Cycle Walk-Through

The match-activation cycle here includes matching, conflict resolution and mes-
sage posting or action activation. Usually, the match-activation is done in the following
steps:

1. Initially, environmental messages are put onto the message list.

2. Messages on the message list match against the condition part of each classifier in

the population.

3. Conflict resolution is done among all the classifiers that match the same message.
Usually, classifiers with higher bids are chosen for message posting or action

activation.



31

4. Old messages are then deleted form the message list. New messages are gen-
erated from the action part of the classifiers chosen from the conflict resolution.
The new messages would either be posted to the message list or used to change
the environment. In the latter case, the changed environment places new messages

onto the message list.

5. The strengths of the classifiers are changed according to a credit apportioning
algorithm.

2.3.2. Properties of Classifier Systems

Classifier systems differ from the conventional production systems in several

important ways.

Genetic classifier systems are low-level computation models which can be used to
implement low-level processes such as some cognitive processes. This property allows
a classifier system to start with primitive data, in other words, a rich domain theory is
not required for this learning method. One application of classifier systems is automat-
ing knowledge acquisition, which is a bottleneck in using knowledge-based-system
technology. The low-level representation and processing also endow classifier systems
with the property of implicit parallelism. Each classifier in the system is an instance of
at least 2' schemata (/ is the length of the classifier). Therefore processing on one
classifier affects all the schemata of which it is an instance. On the other hand, whether
a classifier would be generated is determined by the existence in the population of good
building blocks (schemata) which can be used to construct the classifier.

One of the main obstacles to learning in a conventional symbolic model has been
complex rule syntax. In such a system, generating new rules involves grammatical con-
structions and it is hard to do the matching efficiently. To accelerate the matching pro-



32

cess, the Rete match algorithm was proposed and used in symbolic production systems
OPS interpreters [For82, Jac86]. To use this algorithm, the left hand sides of the rule
base must be compiled into a tree-structured network. The initial compilation, and its
update later on in a changing environment, are not trivial. The algorithm avoids many
redundarcies in the matching process, but the speed is still of O (n), assuming n is the
number of the production rules being matched. Classifier systems overcome the above
problems by using basic representation primitives, ‘0°, ‘1°, ‘#’, and rule strings over
these primitives, In a binary string coded classifier system, it is trivial to build an
ordered binziry tree of the left hand sides of the classifiers and the update of such a tree
is not so costly. In this case, the match speed is of O (logyn ), where n is the size of the
classifier pool, The tree structure is used in our experiments which are discussed in
later chapters.

Classifier systems have not only the implicit parallel search property but also the
explicit parallelism. Large numbers of classifiers can be active at the same time. By
doing this, classifier systems permit multiple activities to be coordinated simultane-
ously. Decision making is postponed until a conflict resolution is necessary. This usu-
ally happens in the following two circumstances. First, the candidate actions are mutu-
ally exclusive. Decisions must be made on which actions would be carried out.
Second, the number of new messages is greater than the size of the message list. In this
case, decisions must be made on which messages would be posted onto the message
list.

In classifier systems, rules generated by the inductive mechanisms need not be
universally correct because of the competition and the way in which a new classifier is
generated, Therefore, the computationally overwhelming requirements for global con-
sistency of rules are avoided. For example, in a default hierarchy (this concept wxll be



33

explained later), specific rules, exceptions of the general rules, coexist with the general
rules. In the competition process, the specific rules would usually win, This example
shows that although the general rules may not be completely correct if examined, the
entire rule set can still be correct based on a good competition balance between the
general and specific rules. This illustrates the fact that it is not necessary in a classifier

system that every rule is completely correct.

24. Problems with Classifier Systems

Although classifier systems show the promising properties, their applications are
troubled by a number of problems. Compared with genetic algorithm function optimi-
zation systems, where the solution usually contains only one (or a few) string(s), and
the information about the utility of a string can be obtained from the objective func-
tion, classifier systems solve problems where the solution(s) consist of many classifiers
and it is hard to evaluate the utility of a classifier at each step precisely. Maintaining
good classifiers and classifier structures, while introducing new useful classifiers into
the system, has been a problem. This usually results in difficulties in generating and
maintaining all the sub-solutions and necessary rule relationships (such as default
hierarchies) in a population. Often the result is poor and unstable system performance.
This is reflected by the fundamental problems of rule clustering and rule association.

24.1. Rule Clustering Problem

The rule clustering problem occurs because it is possible that a string with high
strength (utility) becomes a super-pattern over the population [Gol89a). Since strings
with high strengths are likely to be chosen as objects for genetic operations, gradually
the whole population will converge to strings with similar patterns. In other words, the
result state clusters to some sub-solutions. This problem can happen in two situations:



34

when the result state includes more than one independent classifier as part of the solu-

tion, and when several related classifiers constitute one solution.

A similar problem has been pointed out with genetic algorithms being used for
function optimization [DeJ75]. This problem is more serious when genetic algorithms
are used in learning systems. Usually the goal states of a learning are a set of related
rules, which means, to be effective, the system must find all the rules and the relation-
ships among the rules. Also, in classifier systems, the difficulty in determining
correctly the strengths of the offspring of genetic operations makes it harder to remove
"bad" classifiers generated by genetic operations.

DeJong has proposed a method called crowding to limit the number of strings for
each sub-solution in the population [DeJ75]. Instead of deleting individuals at random,
a small subset of the population is randomly selected. The individual in that subset
most similar to the new individual is then chosen for deletion. After a certain point,
new individuals begin to replace their own kind and the proliferation of a species (sub-
population) is limited. DeJong experimentally showed that system performance
improves with crowding. The application of this method in classifier systems involves
the questions of how to define the similarity between the individuals and how to
choose the size of the subsets for comparison. The answers to the above questions are

important, especially when the patterns of the sub-solutions are similar.

Booker proposed a method called restricted mating strategy to solve the rule clus-
tering problem which includes the problem of sub-solutions’ competing with each
other [Boo82]. In restricted mating, only those strings that belong to the same exam-
ple patterns will be allowed to conduct genetic operations with each other. The exam-
ple pattern here refers to the examples of each sub-solution or some characteristic
description of each sub-solution. Booker used this strategy in his GOPHER-1 system



35

[Boo89]. In GOPHER-1, classifiers that are excited by the same message are called a
classifier cluster. The genetic operations are restricted to classifiers in the same cluster.
This reduced the clustering problem in the sense that, globally, clasgiﬁers for different
messages would not disrupt each other. However, locally, in each classifier cluster,
premature convergence could be a serious problem when the search space is much

larger than the sample space.

24.2. Rule Association Problem

The other major difficulty with classifier systems is the rule association problem,
achieving cooperation among a set of rules. Cooperation includes rule chains and rule
default hierarchies. In the rule chain situation, a set of rules form a reasoning chain.
Chaining is considered an important strength of classifier systems. Default hierarchies
refer to rule hierarchies ordered by subordinate or superordinate relations [HHN86).
Rules that are more general are derived from conclusions based on incomplete infor-
mation about a world. Therefore these general rules contain some default hypotheses
about the world. However, these hypotheses or expectations can be overridden by
more specific evidence introduced later on. Hence the more specific rules based on
more knowledge about the world can complement the general ones. Thus the general
and specific rules cooperate to model the world correctly. Since the rule population
contains only a small part of the entire possible rule space, the problems in rule associ-

ation are how to generate and maintain the rule associations.

Rule clusters, rule chaining and default hierarchies are important phenomena in
genetic-algorithm-based systems. They are closely connected with the concept of solu-
tion formation, category formation, rule (concept) generalization, and specialization.
The common characteristic of these phenomena is rule association. The behavior of the
rule association affects the robustness and the stability of genetic-algorithm-based



36

systems. However, conventional classifier systems lack effective mechanisms for
forming and maintaining rule associations. For example, several efforts have been
made to solve this problem in conjunction with default hierarchies. One way to form
and maintain default hierarchies is to favor more specific classifiers when bidding to
fire classifiers [Rio89]. However this scheme encourages the survival of more specific
classifiers over more general ones. For example, "#000/0" and "#100/0" would survive
over "#00/0", or, even worse, classifiers with no ‘#’s, such as "0000/0", "0100/0",
"1000/0" and "1100/0" would survive over the classifiers with ‘#’s. This phenomenon
is described as starving the generals [Rio89, Wil88). The recent scheme of necessity
auction and separate priority factor has not solved the above problem either [SmG90].
The difficulty here lies in the lack of a strong relationship among the exception
classifiers and default classifiers, Therefose, there is no distinction between a real
exception classifier and a more specific classifier that is covered by the default
classifier.

2.4.3. Initial Populations

Genetic-algorithm-based classifier systems start with an initial population of
classifiers that evolve from one generation to the next. Over time, feedback on the
"goodness" of the system output is used to decide which classifiers should be main-
tained in the population and used as progenitors for the next generation. Eventually,
the system may converge on a solution set of classifiers. The initial population serves
as the "background knowledge". It influences the common genetic algorithm problems
of premature convergence and over-dominance of a few classifiers. A bad initial popu-
lation tends to either converge fast at the beginning before the correct solutions are
generated, or take a long time to generate the correct solution(s).



37

The main reason that different initial populations may give different results lies in
the types and number of the schemata contained in the population. In genetic-
algorithm-based learning, the search is based on the schemata rather than individual
classifiers. This phenomenon is called implicit parallelism by Holland [Hol86). The
more schemata contained in a population. the higher the degree of implicit parallelism.
Given that the mutation rate is asually low in a system, crossover is the main operator
that creates new schemata in genetic-algorithm-based learning, so the following discus-
sion about locating or generating useful schemata will be based on this operator. If the
initial population contains few different schemata (i.e. if many schemata duplications
exist), then the population tends to converge quickly to a wrong classification. This
means that the population reaches a point where any crossover operation would not
bring in new classifiers, but the population has not converged to a correct solution.

Another issue is that the schematz contained in the initial population may be very
different from the schemata in the solution. In this case, the system will usually take a
longer time to generate the correct schers-ta than if the schemata contained in the ini-
tial population are similar to the ones sought. For instance, to generate a schema that
contains four ‘#’s from schemata having only one ‘#’, at least two generations of cross-
over are needed. After the first crossover, a schemata containing two ‘#’s might be
generated. Another crossover on the two ‘#’s schemata may introduce a schema with
four ‘#'s. However, if we start with a two ‘#’s schemata, one with four ‘#’s could be
introduced with a single crossover operation. Conversely, if the majority of schemata
in an initial population have five ‘#'s, it may take several crossover operations to create
one with a single ‘#’. If the initial population is biased to some schemata that are not
similar to the correct ones, it may take a long time to overcome these biages. In other
words, similarity and diversity of schemata are important aspects that affect perfor-



mance and should be a consideration in selecting an initial population.

The importance of a good initial population has not been adequately studied in the
literature. The initial population is usually chosen randomly. Our research suggests
this may be a dangerous practice. Experimental results demonstrate the expected
benefits achievable from the selection of a good starting population. Our studies on the
initial population are presented in chapter 3.

24.4. Remarks on the Issue of the Problems in Genetic Learning

While discussing the problems of rule clustering and rule association in 2.4.1 and
2.4.2, we have pointed out that these two problems are associated with the difficulties
in credit apportionment. We would like to elaborate this issue here.

In genetic classifier systems, the credit apportionment is required in two situa-
tions. One is when a decision about which classifier(s) are responsible for success or
failure is made. This is usually done by the bucket brigade algorithm. However, its
effectiveness is restricted by the limitations of the algorithm [WiG89]. The other situa-
tion is when decisions about the strengths of new classifiers generated by the genetic
operations are made, This is a more difficult problem in classifier systems than in
function optimigation systems, since usually there is neither local nor global informa-
tion available for the evaluation of new classifiers before they experience trials.
Currently, assigning strengths to new classifiers is done in an ad hoc way. For example,
assigning the average strengths of the parents to their children or the average strengths
of the population to new classifiers are used.

The distribution of the strengths determines where the population evolves. Partic-
ularly, it determines if desired classifiers would stay in the population and produce
offspring, and the undesired ones be removed from the population. Since the coopera-



39

tion among classifiers is not strongly supported by the data structures in classifier sys-
tems, the performance of the credit assignments becomes vital to the resolution of the
problems of rule clustering and rule association. To reduce the dependence of the reso-
lution on the credit assignments, our work pays attention to the data structures in a sys-

tem.

2.5. Comparing GABL with other Machine Learning Paradigms

Learning ability is an important aspect of intelligence. Machine:lesming is a way
to simulate and understand the mechanism of human learning and also a powerful tool
for artificial intelligence systems to deal with the real world. In the real, complex,
unpredictable world, it is impossible to describe everything in advance, Thus learning
ability is needed so that lack of knowledge, or incomplete knowledge, can be compen-
sated by the processing of cutrent information [Tsy73). Over the years, research in
machine learning has been pursued with varying degrees of intensity, using different
approaches and placing emphasis: on different aspects and goals.

Many issues are involved in determining the characteristics of a leaming system.
Among them, the representation issue and the mechanisms of generating new
knowledge are the most important factors that affect the behavior of the system.
Different emphases can result in different ways of classification. Since different
approaches share some common aspects and there is no formal definition for the
approaches, an exclusive classification of machine leamning paradigms has not been a
trivial task. Machine learning has been classified into symbolic learning, genetic
learning and neural net learning [Mic86). A more recent classification is inductive
learning, analytic learning, genetic learning and neural net learning [Car90).

Depending on how inductive learning is interpreted, one can see that genetic



40

learning and neural net learning could be two sub-paradigms of an inductive learning.
In our discussions, the following interpretations are used. Inductive learning here
refers to the conventional inductive concept learning systems. In these systems, a (or
multiple) concept description(s) is (are) induced from a sequence of positive and nega-
tive instances. ID3 is an example of this type of leaming [Qui83]). In ID3, instances of
a known class are described in terms of a fixed collection of attributes. A classification
rule in the form of a decision tree is constructed according to the values of the attri-
butes of the instances. A recent development of ID3 is C4, in which probabilities are
used to deal with noise and unknown attribute values [Qui90). This decision tree
method requires that the attributes used are the key factors that can classify the objects
into the classes. The order in which the attributes are tested is also important for the

success of the method.

In analytic learning, built-in analysis strategies are used to generate new
knowledge, such as rules, through domain knowledge and past problem solving experi-
ence. The compiling mechanism in ACT* [And36), and chunking mechanism in
SOAR [LRN86] are examples of such strategies that are used to generate new rules.
One of the compiling strategies in ACT* is the composition strategy, in which when-
ever a sequence of producﬁon rules achieve a goal, a single rule would be formed
which will have the same effect as the set of the rules. In SOAR, the problem solving
is considered as & search through a problem space for the states that can achieve the
goal criteria. When an impasse occurs in this process, a sub-goal is generated and the
same search process is used to achieve this sub-goal. When an impasse is resolved, the
chunking mechen#g will generate a new rule or a set of rules that can be used to avoid
the same impasse in the future.

Although the analytic and inductive approaches have fundamental differences



41

between each other, a common ground shared by these two paradigms is that new
knowledge is constructed at the concept level, meaning that the processing is con-
ducted on the symbqls that represent domain concepts. This fundamental characteristic
distinguishes these two paradigms from the genetic learning and neural net learning,
Therefore, we refer, hereafter, the analytic and inductive paradigms as concept level

symbolic approach.

A neural network system consists of a set of units and links connecting the units.
Each unit is associated with an activation value and activation function. Each link is
associated with a strength. Usually a neural network has three kinds of units: input
units, "hidden units" and output units. By turning certain units on or off according to an
activation function, the systems respond to the input from the external world with the

output units [RHM86].

The dynamics of the network and the learning mechanism for adjusting the
strengths of the links are two aspects of neural networks. The former is mainly con-
trolled by the activation function, while the latter is an algorithm for changing the
strengths of the connections so as to minimize the differences between the actual out-

put and the expected ovtput during the runs of the systems.

The use of the analytic strategies requires rich domain knowledge. Therefore, this
type of systems usually contain numerous built-in conconts, knowledge structures and

domain specific constraints.

As described in previous sections, genetic classifier systems consist of production
rule-like classifiers. This representation is similar to that of symbolic production rule
systems. However, the genetic discovery is conducted at low level as opposed to the
concept level. As well, the way in which new rules are generated distinguishes genetic

classifier systems from the other paradigms.



42

It is easier to see the differences between the symbolic approach and neural and
genetic approaches than to tell the differences between the neural networks and genetic

classifier systems.

The symbolic approach has richer, clearer representation structures and is amen-
able to representing higher level and more complex knowledge. It is easier for a human
to communicate with such systems, whereas the genetic and neural approaches are less
articulate. Especially in neural network systems, the entire network is an internal
model which reflects the underlying dynamics of its environment. A single unit (node)
does not have an independent meaning, Nevertheless, the low-level representations in
genetic classifier systems and neural networks bring these systems several important
features. Massive parallelism is a distinct feature of these systems. In such systems,
each element (unit in neural networks and classifier in classifier systems) is highly
interconnected with many other elements and the processing to each element is local.
This provides a base for parallel processing. As discussed in previous sections, mas-

sive implicit parallelism is another important feature of classifier systems.

Another feature of neural networks and classifier systems is their capability for
describing cognitive processes. Many cognitive phenomena occur below the level

represented by concept level symbols [BeF88].

Genetic classifier systems and neural networks are both low level computational
models. But they use different leaming mechanisms and representation frameworks.
The adaptive learning ability of a genetic classifier system is deterinined by two learn-
ing algorithms, a credit apportionment algorithm, such as the bucket brigade, for
adjusting the strengths and a genetic algorithm for discov~:#itg new classifiers. There
is only one learning algorithm in a neural network system. More research needs to be

done to conclude the differences stemming from the different learning algorithms.



43

The dissimilarity of genetic classifier systems and neural network systems can
also be seen from representation view points. Classifier systems use production rule-
like classifiers representation. Each classifier has an independent meaning. Techniques
used in symbolic learning such as building knowledge structures, using variables, can
be naturally adopted in classifier systems [ShS89], whereas it is difficult to adopt these

techniques in a neural network system [Nor86].

Before we go into the summary part, we use the following examples to illustrate

some differences between symbolic learning approaches and genetic learning.

The first example shows the differences between genetic learning and the decision
tree method which belongs to the symbolic inductive leaming paradigm. Consider
learning the concept of "rectangle". In the decision tree method, the learning could be
conducted with the following attributes:

<length-relation, length-relation ,relation , angle , angle , angle , angle >,
where length-relation is the relation between the length of the two opposite sides and
its possible values are EQUAL or NOT-EQUAL, relation is the relationship between
the two sets of the opposite sides and its possible values are EQUAL and NOT-
EQUAL, angle is the value of each angle. A set of instances could be the following:

<EQUAL , EQUAL , EQUAL, 90, 90, 90, 90> — Non—-Rectangle
<EQUAL , EQUAL , NOT-EQUAL , 90, 90, 90, 90> — Rectangle.

Based on the value of the attributes, a decision tree can be built on a set of instances to
classify the items into different categories. In this example, the attributes length-
relation and relation are vital to the success of this method. It will not work, if instead,

the attributes are the actual lengths of the four sides.

Using the genetic method, learning can be conducted at a lower level. That is, the

concept of the relationship between the sides is not necessary. If the following attri-



butes are used:

<length, length , length , length , angle , angle , angle , angle >,
where length is the length of a side and angle is the angle between two sides, the fol-

lowing rule could be learned:

¥y V1 v, v2 9090 90 90 — Rectangle.
The condition part of the rule can be interpreted as:

1. The length of the first pair of opposite sides is v;.

2.  The length of the second pair of opposite sides is v,.
3. v,isnotequaltov,.

4.  All the angles are 90 degrees.

Another example shows the difference between the generalization and discrimina-
tion mechanisms in ACT* and the mechanisms in a genetic classifier system. Consider

the following example in language acquisition. In ACT*, if there are two production
rules:

1. If the goal is to generate the plural form of APPLE,
Then say APPLE +s,

2. If the goal is to generate the plural form of CAP,
Then say CAP +s.

The generalization mechanism would try to generate a new rule that would cover the

above two rules. The new rule would be

3. Ifthe goal is to generate the plural form of X,
Then say X +s.

When found out that nouns ending with ‘s’ do not comply with Rule 3, the discrimina-

tion mechanism would generate the following two rules:



45

If the goal is to generate the plural form of X
and X is not ended with ‘s’,

Then say X +s.

If the goal is to generate the plural form of X
and X is ended with ‘s’,

Then say X +es.

We notice here, in the application of the generalization and discrimination stra-
tegies, the conscious separation of the last letter from the rest of a word that is being
considered is important. The system must be told what to look at to generalize or

discriminate rules.

Consider the variable genetic leamning approach [ShS89]. To simplify the
representation, we use strings over the 26 English letters plus **’ to represent a noun.
Each letter in a noun is represented by two alphabets in the way that "AA" represents
‘A’, "BB" represents ‘B’ and so on. A ‘*’ combined with another letter represents a
variable, For example, "A*" and "*C" are two variables. Thus, word "“apple" would be
represented as AAPPPPLLEE and A*B*C*D*SS reads as "any five-letter word ended
with a ‘s’". To have more than one variable, at least two alphabets are needed. For
instance, A* and B* are two variables. This is the reason that two alphabets are used
to represent one letter in a word. The following set of rules can be considered as exam-

ples of classifiers.

1. AAPPPPLLEE / AAPPPPLLEESS

2. TTAABBLLEE/ TTAABBLLEESS

3. A*B*C*D*SS/ A*B*C*D*SSEESS
where classifier 1 says that the plural form of "apple" is "apples", classifier 2 says that
the plural form of "table" is "tables" and classifier 3 can be interpreted as "the plural
form for any five-letter word ended with a ‘s’ is the word plus "es"'. Through the

genetic operations, the following two classifiers may emerge:



A*B*C*D*E* -> A*B*C*D*E*SS,
A*B*C*D*SS -> A*B*C*D*E*EESS.

The first classifier is equivalent to

If the goal is to generate the plural form of a five-letter word WORD,
Then say WORD +s.

The second classifier is equivalent to

If the goal is to generate the plural form of a five-letter word WORD
which is ended with a ‘s’,
Then say WORD + es.

Using genetic classifier system approach, a system does not need to be told what
to look at for generalization and discrimination. This is because that the more general
classifiers are not derived directly from the more specific classifiers. Under the compu-
tation mechanisms, all the classifiers are the same in the sense that each of them is an
individual of the population. Hence, in such systems, there is no need to separate cons-

ciously the last letter of a word from the rest.

This example is used to illustrate the differences between the paradigms. The task
in this example is not easy for either of the paradigms. Depend on what the emphasis
@, discovering the regularity from some primitive data or extracting the regularity
based on the domain theory, each paradigm has its advantages over the other.

Although there are fundamental differences between the paradigms, they share
some common issues. Credit assignment problem is shared by the inductive models,
genetic leamning models and the inductive mechanisms used in the analytic systems.
Credit assignment algorithms based on different theories, such as probability models

and economics models, have been used with different emphases.

From functionality point of view, the symbolic learning has the advantage of

representing high-level knowledge and knowledge structures. Since the control stra-



4

tegies are applied at the concept level, systems of this paradigm can process efficiently
at high-level and it is easier to explain the behaviors of such systems. But it lacks the
ability of revealing low-level characteristics. Genetic classifier systems use the sym-
bolic level structure (production rules) with low-level representation primitives (bits)
and have both symbolic level (rule matching) and low-level (genetic algorithms on
schemata) processing while neural net systems use low-level representation and pro-
cess at a low-level only. However, the genetic and neural net learning methods lack

the mechanisms of taking advantages of heuristic knowledge.

We would like to make it clear that the ‘0’, ‘1’ or any other alphabets representa-
tion is not the fundamental characteristic that distinguishes genetic classifier systems
from the other paradigms. The fundamental difference is the learning mechanisms.
The reason that the symbolic approach is so called is not that the knowledge is
represented by symbols. It is rather because that the processing in such systems are
based on the symbols that represent domain concepts. The word "low-level" has
slightly different meanings in different situations in our discussions. When referring to
representations, it means the representations are constructed from a set of alphabets
and each individual alphabet usually does not represent a concept in the domain.
When referring to processings, it means that the processings are conducted at a level

that is below the given concepts.

In summary, each paradigm has advantages over the others in certain situaticis.
When the solution of a problem does not go beyond the built-in analysis strategies,
symbolic approach may be more efficient than the other methods. When the domain
theory is not rich enough to apply the general strategies, genetic and neural net learning
approaches may be more effective. The fundamental characteristic that distinguishes
the paradigms from each other is the mechanisms of generating new knowledge.



48

Although there exist many macline learning models, the above difference classifies
those models into the paradigms we discussed. Since the purpose of this dissertation is
not to make a detailed comparison between all existing methods, the above discussions
did not go into the sub-paradigms of each class.



49

Chapter 3

Impatt of Initia! Pepulatic::s on Performance

The importance of initial popuiations has been d:tussed in chapter 2. In this
chapter, analyses are presented on issues related to the quality of an initial population.
Two measures are defined and used to guide the selection of initial populations. New
algorithms are presented for generating better initial populations to maximize the
potential of a classifier system. Experiments comparing the performances of randomly
generated initial populations and initial populations generated by the new algorithms
were conducted. Both the theoretical analyses and experimental results show that the
problems of premature convergence and over-dominance of sub-solutions are
significantly reduced by a good choice of an initial population. Experimental results
demonstrate the expected improvements achievable from the selection of a good start-

ing population.

The system about which we are going to discuss is a four-tuple <E, C, G, K>,
where E is the environment, C is a set of classifiers, G is a set of categories and X is
the prior heuristic knowledge about the solutions:

E = {e,;}, wheree; (i =1, 2, ..., n) is an environment state,

C ={c;}, wherec; (i =1, 2, ..., m) is a classifier, and

G = {g; )}, where g; (i =1, 2, ..., j) is a category.

The classifiers are strings of / characters over the alphabet {‘0’, ‘1°, ‘#'} {. In the fol-
lowing discussion, we assume that K is null. That is, little knowledge that is beyond

1 The results generalize t0 an arbitrary aiphabet. For simplicity, the alphabet is assumed to con-
tain 3 characters, as is usual in classifier systems.



50

the description of the problem is available. Also, for our convenience, the length of a
string refers to the length of the condition part of a classifier.

3.1. Examining the Quality of an Initial Population

There have been no formal measurements for characterizing an initial population.
This makes it difficult to study the initial population problem quantitatively. Two new
measures are introduced here for examining the quality of an initial population. Con-
sider all the classifiers contained in a population P as a population array of m rows
(one for each classifier) and / columns (one for each symbol in a classifier). Let
AVG =m / c, with ¢ being the number of the symbols used in the system (usually ¢ is
3 for classifier systems). Let g; ; be the number of times that symbol j appears in
column i, maximum; = max g; ;, and minimum; =min g; ;,for j =1,2,..,,c.
Definition 1: EvenDiversity(P,i) = ED(P,i) = AVG - (maximum; - ininimum,),
where P is a population, i is the ith column of the population array.
Example: Let the population array be

00#0

Po= #100.
O##0

In this case,m =3 and ¢ =3, 50 AVG =3/3=1. ‘0’ appears twice in column 1, ‘1’
does not appear in column 1, and ‘#’ appears once in column 1. So, maximum,=2,
and minimum ,=0. ED(Pg,1)=1~(2~0)=-1. Similarly, we have ED(P g, 2) w11,
ED(Pg,3)=~1,and ED(P¢, 4) =-2.

Lemma 1: If the number of the times that each symbol agpears in a column are notdiée
same, then ED(P,i) < AVG.

Proof: If the number of times that each symbol appears in a column are not the same,



51

then A = maximum; — minimum; > 0. Therefore, ED(P,i)=AVG -A <AVG.[]
Lemma 2: The maximum value of ED (P, i) is AVG . This value is achieved when all
the symbols appear evenly in the column.
Proof: Follows immediately from the definition of ED and Lemma 1. (]
]
Definition 2: EvenDiversityPopulation(P,l1) = EDP(P,l)= Y ED(P,i) /1, where
i=1

P is the population and l is the length of the string.

In the above example,

4
EDP(Pg, 4= YED(Py,j) 14
j=t

=141+ (D) +(2)/4
=-3/4,
By the definition, the maximum value of EDP (P, ) over P of the same population

size is AVG.

The order of a schema is defined to be the number f positions with fixed values
in this schema. For example, schema "00**" has two positions with fixed values. Both
position 1 and position 2 (from left to right) has value ‘0°. Therefore it is an order 2
schema. Schema "**#*" has its third position with value ‘#’, so it is an order 1 schema
(the *** represents doesn’t matter, here it could be a ‘0°, ‘1’ or ‘#’, therefore its value is
not considered as fixed). By the definitions, we can see that the larger the EDP (P, i)
is, the more order 1 schematz are represented in population P and the more even the
distribution of the order 1 schemata is. Using the example above, it can easily be
demonstrated why having a variety of different order 1 schema in an initial population
Py is important. In Py, ‘¥ does not appear in column 4, which means schema "*#*#"
is not contained in the population. Similarly, we can find many other schemata, such



52

as "***1" and "1 *#+", that are also not part of the population. If any of these schemata
are part of the solution, it may take a long time to generate them using mutation since
the mutation rate is usually very low to maintain the stability of a system. Even with
the create operator [Wil86) or cover detector [Rio89), it is not easy to introduce
proper schemata that contain ‘#’s. Another point illustrated by P is that column 1
contains two ‘0’s, but only one ‘#’. This means that a bias (possibly unwanted) is
imposed on the population initially (for example, ‘0" has a higher chance of survival in

column 1).

Lemma 3: [f the number of the times that each symbol appears in a column are not the
same, EDP (P,1) < AVG.

Proof: This follows from the definition of EDP (P, !), Lemma 1 and Lemma 2. O

Theorem 1: When EDP(P,1)=AVG, the number of order 1 schemata reaches its
maximum for population P.

Proof: Suppose that the number of order 1 schemata contained in the population is not
the maximum number of order 1 schemata that could be contained in the population.
Then there must be an unnecessary order 1 schemata duplication. Without loss of gen-
crality, we assume that the unnecessary duplication is two "##*#"s, So, we change one
"t o "1##%" (or "O***"), If this change leads to one more new schema in the
population, "1***" must not have existed in the population before. By Lemma 3, we
have that EDP(P,l) <AVG. This contradicts the premise that EDP(P,l1)=AVG.
Thus the number of order 1 schemata in the population is the maximum number of
order 1 schemata that the population could contain. []

The number of generations of the crossover operation that are needed to create a
correct solution from the initial population is another parameter that affects perfor-
mance. There are primarily two factors that affect this number. The first, called



53

physical factor, refers to the "physical condition" of the population. It is the number of
crossover operations needed to construct a solution stting from the population assum-
ing that we always pick the most suitable strings to crossover. The second factor
includes the influences affecting the length of time needed to select proper strings, and
is called dynamic factor. 1t is obvious that the fewer the number of crossovers needed,
the better the performance of the system in both stability and efficiency. A new meas-
ure is proposed to quantify how far a population is away from the solution.

Definition 3: NonSimilarity (S, P) = NS(S, P) is the minimum number of generations
of the crossover operation that are needed to get solution S from population P. If P
has converged to a wrong solution, NS (S, P) is o,

From the definition, NS (S, P) is a measure of the distance between a population
and a solution. When NS(S, P) =, it is impossible to reach § from P, assuming no
matation operations are carried out .

Theorem 2: If EDP (P, 1) = AVG = PopulationSize / 3, NS(S, P) is not < for any
string S over {'0’, ‘I’, ‘’}. In other words, any string can be generated by several
applications of the crossover operator on proper strings in population P, assuming
that the system can keep the useful order 1 schemata around long enough to be
selected,

Proof: This car be proved by constructing an arbitrary string S from population P.
Without loss of generality, assume S ="#001". Since EDP(P,l)=AVG, every
column of the population array contains all three symbols (‘0°, ‘1° and ‘#’), which
means that schemata "#*##", "#(Qes"! "»&(#" gnd "s#%]" gre in the population. There-
fore, by crossing over on strings that contain the above schemata, we can get string

1 Even with mutations, it usually takes a very long time to overcome the trend of converging to the
wrong solutica.



54

"%001". 1
From the above discussion, a good initial population should have as memy
different schemata as possible and, if some duplications are not avoidable, they should
be evenly distributed in different schemata to avoid biases. For example, an initial
population of size 6 that contains each of "j#**#", "G***" and "1***" twice is better
than an initial population that contains four "#***"s and one each of "0***" and
"]**+" When the number of times each of ‘0’, ‘1’ and ‘#" appears in any column of
the population array are the same, by Theorems 1 and 2 we may have a good initial
population that contains a variety of schemata and is not biased. This is a characteris-

tic of an initial population that is not vulnerable to the so-called premature convergence

problem.

Next, desirable properties of the rows of an initial population are discussed. As
mentionéd previously, NS(S, P) can be considered as the distance between a solution
S and population P. To improve performance, we need to minimize NS(S, P). In the
following, a way of reducing NS (S, P) probabilistically is presented.

In a classifier system, the probability that a string is a solution or part of a solu-
tion is not the same for all the strings. A string § is included by 2¢~) strings, where
is the length of the strings and i is the number of ‘#’s in string . This means that if
any of the 2¢~) strings is included in a solution set, string S is part of the solution.
This suggests that the more ‘#’s a string has, the less probability that the string is part
of a solution. An extreme example is that the chance that "######/1" is a solution or
part of a solution is much smaller than that of "000000/1". Hence, a string without any
‘# would have the largest probability of being part of a solution. However, we want
strings that are more general and that can reveal some relationships between individual
cases, Besides, for problems with infinite number of individual cases, it is impossible



55

to solve the problems without looking at the relationships among the individual cases.
The above analyses suggest that strings that are neither too general nor too specific
should be used to minimize the distance between the initial population and the solution

set.

The desirable properties of the rows can also be seen from the view point of sche-

mata distribution.

3.2, New Algorithms for Generating Initial Populations

The above analysis indicates that diversity across each row and each column of
the population matrix is desirable. Based on this, new algorithms are presented that
can be used to generate an initial population with a high degree of diversity for
genetic-algorithm-based learning.

By Theorem I in section 3.1, when symbols ‘0°, “1” and ‘% are evenly distributed
in each column, the population contains all the order 1 schemata, This means the popu-
lation contains all the "basic information" and hence there is no bias at the beginning.

Figure 3.1 shows the code for doing this in a C-like notation.

Discussions on NS(S, P) in section 3.1 indicates that a moderate number of ‘#’s
in a row is desired to minimize the distance between an initial population and the solu-
tion set. Figure 3.2 presents the code for imposing both column and row controls in a

C-like notation.

The above algorithms are actually two groups of algorithms. The column con-
trolled algorithms reflect the idea of including a variety of allele and giving no bias to

any of them in an initial population. The column & row controlled algorithms do more



56

ColumnControl( )

/* Generate the classifiers */
for(i=0; i <PopulationSize;i=i+1)

/* Generate the condition part */
ior(j =(); j < StringLength; j=j+1)
/* Generate a symbol using column */
/* control. The more a symbol has appeared */
/* in a column, the less chance that  */
/* the symbol should be generated again, */
count the number of times each symbol
appears in column j
probability of generating a symbol is in
inverse proportion to its past frequency
of occurrence in column j
generate symbol using these probabilities
y /* Generate the action part similarly */
}

Figure 3.1: Generating a Column Controlled Population.

in generating an initial population that is closer to the solution set. The variants of the
above two algorithms, shown in Figures 3.3 and 3.4, were used in our experiments.
The difference between ColumnControl-1 and ColumnRowControl-1 is that the former
uses the number of the appearances of each symbol in the column to guide the genera-
tion of next symbol, whereas the latter uses the total number that a symbol appears in

both the column and the row.

3.3. Experiments

Learning Boolean functions was used as the tasks in the experiments. Our goal is
to show how a good initial population can reduce problems of prémature convergence

and over-dominance of sub-solutions, and improve performance. Two kinds of



ColumnRowControl( )

/* Generate the classifiers */
for(i =0; i < PopulationSize; i=i+1)

/* Generate the condition part */
ior(j =0; j < StringLength; j=j+1)

/* Generate a symbol using row and column */
/* control. The more a symbol has appeared */
/* in a column/row, the less chance that */

/* the symbol should be generated again. */
count the number of times each symbol
appears in column j

count the number of times each symbol
appears in row i

probability of generating a symbol is set
to the inverse of its past frequency
of occurrence in row i and column j

generate symbol using these probabilities

/* Generate the action part similarly */

}
}

Figure 3.2: Generating a Column and Row Controlled Population.

functions are selected. The first kind is functions whose solution set consists of many
different schemata. The second kind is functions whose solution set contain only a few

different schemata. For instance, the classifier set

{ O001#0/0,
#10114#/1,
1##001/0 }

contains various schemata in different classifiers since there are very few duplications

of schemata in the population. In contrast, the classifier set

{ OOHKHKIO,
1#0#H10,
1106000/1 }

contains fewer schemata because of the duplications, such as the repetition of schema

57



58

ColumnControl-i( }

/* Generate the classifiers */
for(i =0; i <PopulationSize;i=i+1)

/* Generate the condition part */
t;or(j =0; j < StringLength; j=j+1)

/* Generate a bit */
a[ 0 ] =PopulationSize - NumbTimes( ‘0’, j )
a[ 1 ] =PopulationSize - NumbTimes( ‘1°,j)
a[ 2 ] = PopulationSize - NumbTimes( ‘#’, j )
a=a[0]+a[1]+a[2]
randomly generate a number ‘rand’ in range 0 ... a-1
if(0<rand <a[0])
generate a ‘0’
elseif(a[0]<rand <a[0]+a[1])
generate a ‘1’
else
generate a ‘#’

)

/* Generate the action part similarly */
}
}

NumbTimes( character, which )

return the number of times ‘character’ appears in ‘which’ column

}

Figure 3.3: Generating an Initial Population with Controls on Columns.

k" in the condition parts of the first and second strings and schema "1*¥*¥#" jn
the second and third strings. Our results given later have shown that improvements
achieved by using a good initial population are more obvious for the first kind func-

tions than for the ones of the second kind.

The functions of the first category that we experimented with include the follow-
ing:

S 1(%o, X1, X, X3, X4 X5) =



ColumnRowControl-1()

/* Generate the classifiers */
for(i = 0; i < PopulationSize;i=i+1)
{

}

Figure 3.4: Generating an Initial Population with Controls on Columns & Rows.

/* Generate the condition part */
t;or(j =0; j <StringLength; j=j+1)

/* Generate a symbol using row and column */
/* control. The more a symbol has appeared */
/* in a column/row, the less chance that */
/* the symbol should be generated again. */
count the number of times each symbol
appears in column j
count the number of times each symbol
appears in row i
probability of generating a symbo! i set
to the inverse of its past frequency
of occurrence
generate symbol using these probabilities

}
/* Generate the action part similarly */

(NOT (xg) AND NOT(x,) AND NOT (x3) AND xy)

OR (NOT{x0) AND NOT (x,) AND x3 AND NOT (x3))
OR (NOT (x0) AND x, AND NOT (x2) AND NOT (x4))
OR (NOT (x) AND x, AND x3 AND x3)

OR (xy AND NOT (x,) AND NOT (x3) AND NOT (x3))
OR (xo AND NOT(x,) AND x, AND x,)

OR (xo AND x, AND NOT (x3) AND x3)

OR (xo AND x; AND x3 AND NOT(x,)),

59

/2 is a minimal Boolean function of 8 variables and is the sum of 58 products (see

Appendix for its definition).

Salxo, X1, X2, X3, X4, X5) =

(NOT (x;) AND NOT (x;) AND NOT (x5) AND x)



OR (NOT(x,) AND NOT (x3) AND x3 AND NOT (x)))

OR (NOT (x,) AND x, AND NOT (x;) AND NOT (x4))

OR (NOT (x1) AND x3 AND x3 AND x))

OR (xy AND NOT (x3) AND NOT (x3) AND NOT (xy)

OR (xy AND NOT (x3) AND x5 AND x).EQLOR (x, AND x, AND NOT (x3) AND x,)
OR (x,AND x3 AND x4 AND NOT (x,)),

where x; isO or 1. f, and f 5 are two minimal Boolean functions of 6 variables and the
sum of 8 products. Experiments were also done with two other functions f4 and f s
which are of the second category functions. f 4 and f 5 are six variables and ten vari-
ables functions respectively. For each function, different initial populations were tried,
including random (R ), column controlied (C) and column and row controlled (C&R).
Row controlled populations were not included because the number of symbols in a row
(4 to 10 in our experiments) is not large enough to leave enough room for diversity, the
probability of generating duplicate rules is very high, and it fails to maximize the

number of order 1 schemata. Most of the results were averaged over 8 runs.

Given an input string "xo x, x5+ x;", the system responds with either 1 or 0.

On-line and off-line performances are used as performance measures [DeJ75]. In our

experiments they are defined as
T
(XU
1=0
Pon-tine = ——>
and
T
Y (maxU;)
t=0 !
Pogtne ==

where U, is the number of the correct responses less the number of incorrect responses

at generation ¢, and T'is the current generation.



61

R, off-line

Perf

R, on-line

0 1200 2400 3600 4800 6000 7200
Generation

Figure 3.5: r, performance, population size 48.



62

56~ e C &R, off-line
o™ C, off-line
""" R, off-line
48-
404
.~ C&R, on-line

Perf 32+ ~— C, on-line

R, on-line

0 1200 2400 3600 4800 6000 7200
Generation

Figzure 3.6: £, performance, population size 80.



128-
.......... C &R, off-line
............................... - P i C’ Oﬁ.'line
...... — R’ 0 E.line
1124
06
80
............. wrzzrezeszteen.... C & R, on-line
’ = = C, on-line
Perf 64
R, on-line
4844
32
16
O ] ¥ 0
0 1400 2800 4200
Generation

Figure 3.7: f, performance, population size 240,

63



64-

56~

48+

Perf

0 1100 2200 3300 4400 SS00 6600
Generation
Figure 3.8: f; on-line performance, population size 64.



Perf

56+

0 1000 2000 3000 4000 5000 6000
Generation
Figure 3.9: £, on-line performance, population size 80.



66

Figure 3.5 shows the performances for f, using a population size of 48. The
maximum vertical scale value equals the number of matching trials carried out in a
generation (this applies to all the figures hereafter). Figure 3.6 shows the results for f,
when the population size is increased to 80. Figure 3.7 shows the results for f,. Since
this is a more complicated function, a larger population size was used (240) and more
trials were performed in each generation (256). Figures 3.8 and 3.9 show the on-line
performances of function f4 with population sizes 64 and 80 respectively. In all the
cases, the controlled initial populations reduced the problems of premature conver-
gence and over dominance of sub-solution and significantly outperform the random
populations. It also can be seen from Figures 3.5, 3.6 and 3.7 that the differences
between the off-line and on-line performances for the random populations are bigger
than those for the controlled populations. By the definitions of on-line and off-line per-

formances, the difference between these two kinds of performances is

T
=0 !
Po]-line = Pon-tine = T

Hence a bigger difference indicates a larger scale of vibration of the performance. So,
the bigger differences between the off-line and on-line performances with the random
populations may imply that its performance is less stable. The experiments are
intended to show the relative performances of different kinds of populations rather than

to show the absolute performance.
The experiments also illustrated the following points:

1. With a population that is too small or too big relative to the problem, none of the
initial population strategies would perform well. This was shown by the results of
all the functions experimented with. For f, and f,, when the population size is
greater than or equal to 112, the performances degrade dramatically. So do the



67

performances of f,, when the population size is less than or equal to 120. Gen-
erally, there is a population size limit for each function, within which, the perfor-
mances increase when the population size grows. Figure 3.10 shows the changes
of the on-line performances along with the changes of the population sizes. In
both the random and column & row controlled initial populations, it is shown that
the performances decreased when the population size increased to 112.

Generally, the column & row controlled initial populations perform better than
the column controlled ones. We call the results of random, column controlled and
column & row controlled initial populations for an experiment a result set. Each
result in a result set is the average of several runs. Among the 24 result sets, only
four sets show the reverse, i.e. the column controlled initial populations perform
better than the column & row ones. This is consistent with the theories proposed
in the previous sections of this chapter. According to the theories, over a large
sample of problems, on average, the distance (NS) from the solution set to a
column & row controlled initial population will be less than the distance to a

column-only controlled population.

When the population size is large, a random initial population may perform better
than a column controlled one but rarely better than a column & row controlled
one. By our theories, including more low-order schemata is the fundamental
advantage of a controlled initial population over a random one. But when the
population size is large, the probability that a random population contains as
many schemata is high. Therefore, the advantage of a controlled initial population
diminishes. This point is shown by Figure 3.11.

For the second kind of functions, i.e. functions whose solution sets do not contain

many various schemata, the results show a different scenario. In this case,



Perf

56+
48-
04 0 e C&R72
32
.................. C&R32
) ."...................::: ................... C&R112
A e Random 72
ol i ~—————_~— Random 112
28 pned
................ ..oct-‘-oco.‘oool'...'.......o...'..... C&RZO
S Random 32
s Random 20
20 240 30 #0073
Generation

Figure 3.10: £, on-line performance by population sizes.



64-

56+

48+

Perf 32-

0 1000 2000 3000 4000 5000 6000

Generation
Figure 3.11 f, on-line, population size 112,

69



70

assuming a solution set would be able to give an answer to every environment
state, the majority of the schemata in the solution set must contain many ‘#'s in
order to cover every environment state. Although random initial populations
quickly converge prematurely, they still show better performances over the other
two initial population strategies. The reason is that, in this case, only a few sche-
mata are needed to cover most of the environment states. As long as the system
converged to these schemata, it wou}d respond correctly in most situations. The
experimental results of f 5 illustrate this. f 5 is a function of ten variables. Of the
2!% instances, only 66 have the value of 1. In the experiments, the random initial
populations tended to converge to classifiers such as #Hi#HHHHHE0. By the
characteristics of the function, even if the entire population contains only
HHHEHRRR0, the performance would still be around 90%. Thus the perfor-
mances would always look better unless the controlled ones have achieved over

90% performances.

In all the experiments, the EDP s of the controlled initial populations are gen-
erally greater than those of the uncontrolled. Since the population sizes are relatively
small, the EDP's of the controlled initial population are still far less than the maximum
values they could have. This accounts for some of the unsuccessful runs with con-

trolled initial populations.

34. Conclusions

This chapter has demonstrated the importance of an initial population for the
effectiveness and efficiency of a genetic-algorithm-based incremental learning. A gen-
eral method is proposed for selecting a better initial population. A good initial popula-
tion helps prevent premature convergence and reduces the problem of over-dominance

by one or more sub-solutions. This is accomplished by encouraging the simuitaneous



7

emergence of sub-solutions. The basic idea is to include extensive "background
knowledge" in the beginning, so that biases to certain classifiers are built up “care-
fully". Using this method imposes no additional cost on a classifier system and does

not introduce any new parameters.

Two measures of the quality of a population, EDP and NS, are proposed. EDP is
used to measure the number of order 1 schemata contained in a population. This is
important for preventing convergence to wrong solution strings, and guarantees a high
degree of parallelism. NS is used to measure the distance between a population and a
solution(s), which is important for efficiency. These two measures have the potential
for being used to ¢ontrol the evolution of a classifier system population. Without any a
priori heuristic knowledge about a solution, a population that has L¢+1)/n | of
each symbol per row and m / n of each symbol per column (m being the size of the
population, / the length of the string and n the number of symbols used in representing
the condition part of the classifiers) is a better initial population than one randomly
generated. If some knowledge about the pattern of a solution is available, the rows and
the columns of the population array can be arranged using this information to minimize
NS. The algorithms given for generating initial populations with larger EDPs and
smaller NS's are based on random number generators. Since the test problems do not
require large population sizes, EDP and NS were not used as the performance meas-

ures in the experiments.

This initial population theory can be applied when using the cover operator. A
cover operator is used to generate a classifier whose condition matches the cutrent
message. This operation is useful when the population does not respond to the current
message. Usually, the number of ‘#’s contained in the new generated classifier is ran-

domly chosen. This would result in a too general or too specific new classifier, The



above theory can be used to decide the number of ‘#’s in new classifiers.

12



73
Chapter 4

Explicit Structural Ties Approach to Classifier Systems

4.1, Introduction

A good initial population (discussed in chapter 3) only provides a good starting
"background" for better performances. The dynamics of a system are more decisive on
the results. Dynamically, genetic-algorithm-based leaming classifier systems suffer
from a number of problems that cause poor performance. One of these problems is that
the presence of good classifiers and classifier structures in a population are vulnerable
to genetic operation disruptions. This difficulty is reflected by the problems of rule
clustering and rule association (see chapter 2 for details). The rule clustering problem
refers to the phenomenon that all the classifiers in a population may converge to simi-
lar patterns, but these patterns do not include all the solutions. The rule association
problem refers to the difficulty in achieving cooperation among a set of classifiers.
Cooperation includes the building of classifier chains and default hierarchies. As
poirited out in chapter 2, these problems have not been solved effectively for compli-

cated tasks.

In this chapter, a method is proposed in which structural ties are used to achieve
coherence, impose cooperation and encourage co-adaptation among classifiers. The
effects of the coherence and co-adaptation result in parallel developments of sub-
solutions, thus reducing the probability of rule clustering. Cooperation among
classifiers helps maintain established structures and relations, prevent sub-solutions
from interfering with each other and reduce the problem of genetic disruptions. A

hierarchically structured classifier system, HCS, has been implemented to show the



74

effect of imposing structural ties. At the lowest level, classifiers (individuals) are
grouped into families. If necessary, higher-order structures, such as communities of
families could be built on top of families. Hereafter, the discussions would be based on

a framework of two levels, classifier (individual) level and family level.

In HCS, members of a family cooperate to maximize both the family’s strength
and the individual member’s strength. As in conventional classifier systems, matching
is done at the classifier lcvel. However, the bid of a matched classifier is determined
not only by the strength of the classifier and its specificity, but also the strength of the
family that it belongs to. Ther~iore, the fates of the family members are bound
together. The cooperation amor;; family members are also reflected by restrictions on
genetic operations, particularly crossovers among family members. Genetic operations
are performed at the family level, meaning that the basic units for a genetic operation
are from diff:rent families. In HCS, there are two kinds of crossovers. The first one is
crossing over two classifiers from different families. This is done by first selecting two
families from the population and then selecting one classifier from each family for
crossover. The crossover of these two classifiers is the same as that in a conventional
classifier system. The second kind of the crossover operation in HCS is crossing over
two families. There are two ways of doing this, swapping family members of the two
selected families and swapping part of each family member with that of the
corresponding member in the other family.

Swapping family members is done through the following steps:
1) Select two families from the population.

2) Randomly choose a number n between 0 and the size of the families (exclusive)
as the number of family members to be swapped.



15

3) Swap the first n members of the two families.
For example, assuming the following two three-member families are selected for a

crossover operation:

family:  {  00011#/0,
114411}
family,:  {  101111/0,

010000/0,
010100/1  },

and 2 is chosen as the number of members to be swapped, meaning the first two
members in the two families are going to be swapped. A crossover between these two

families by swapping family members would produce the following two families:

family;  { 1011110,
010000/0,
114881 ),
familyg { 000110,

0011141,
010100/1 ).

Swapping part of each family member between two families is done through the
following steps:
1) Select two families from the population.

2) Randomly select a position between two characters of a classifier. Therefore the

classifier is split into two segments.
3) Swap the two segments with the correspon:iing classifier in the other family.
4) Repeat Steps 1 and 2 on every member of the families.

The following is an example of this kind of crossover. Considering families family,
and family, given above again. If the position between the third and fourth loft charac-

ters is chosen, a crossover of this kind would produce



76

family: { 10111#/0,
01011#/1,
101 ),

family g { 000111/0,

001000/0,
11#100/1 ).

By considering a family as a matrix of classifiers, the above two kinds of crossover can
be viewed as swapping rows of the selected matrices and swapping columns of the
matrices respectively.

The experimental results show significant improvements in system performance
for HCS over conventional classifier systems. The theoretical analysis shows that the
family ties in HCS enable the system to have greater resistance to the disruptions

caused by genetic operations.

The concept of a family superficially appears similar to the idea of rule sets in the
Pittsburgh method {DeJ88). The fundamental differences between HCS and the Pitts-
burgh and Michigan methods are discussed in section 4.5.

4.2. Structural Ties Approach

Establishing relationships among a collection of entities usually results in com-
mon interests and mutual benefits. Achieving coherence through ties is a universal
phenomenon. For example, in business world, merging several small companies into
one larger entity often results in a company that is collectively stronger than the sum of
the individual members. Other examples include family, group and national ties.
Family units make ghe individual members strongly related by common interests, gains
and losses. Therefare their behaviors tend to be for each other instead of against each
other. Gaining coherence through establishing structures of relationships is proposed

as a method for achieving stability in a classifier system.



71

Structuring is superimposed on classifier systems by the introduction of hierar-
chies. Hierarchical Classifier Systems (HCS) retain the basic structure of classifier sys-
tems, but join several classifiers together as a family. The operands of a crossover can
be from the same family or different families. But the probability of a genetic opera-
tion between families is much higher than that between classifiers from the same fam-
ily. The utility of a family is in direct proportion to the sum of the utilities of the
classifiers in the family. Matching and firing are still performed at classifier level.
However, the bid of a matched classifier is determined not only by the utility of the
classifier but also by the utility of the family. Hence, famlhes that contain good
classifiers and classifier structures would survive over those containing improper

classifiers.

4.2.1. HCS Framework
The syntax of HCS is defined by three-tuple <E, G, F > where:

o E={g} wheree; (i =1,2,..,n) is an environment state, which corresponds to
the condition part of a classifier. Therefore, n determines the length of a condition
string.

e G={g)} where g; (i=1,2, -+ j) is a category, which cormresponds to the
action part of a classifier. Thus j is a factor that determines the length of an action
string.

» F={f;}).,where f; (i =1,2,..,m)is a family. f; consists of a set of fs (family
size) classifiers.

A classifier contains a condition part and an action part. Both parts are strings
over the alphabet {*0’, ‘1°, ‘#’}.



78

The computational behavior of HCS is defined by the four-tuple <GA, CA, SA,

P> where:
»  GA is aset of genetic operations.
o CA is aset of credit assignment algorithms.

o SA is a set of selection algorithms used for choosing classifiers for firing, families

for deletion, and families or classifiers for the genetic operations.

* P is a set of system-dependent parameters which includes the crossover rate,

population size (ps ), the number of classifiers contained in a family (fs), etc.

In HCS, classifiers are bound into families. Mainly, families, instead of
classifiers, are the objects of genetic operations. Within a family, classifiers are related
to each other by the common fate imposed on them. Naturally, the competitions
among these classifiers are restricted, and the competitions inside a family are different
from those among the families. These characteristics of HCS make it possible to

reduce the effect of the rule clustering and rule association problems.

4.3. R:ducing the Rule Clustering and Rule Association Problems

The main causes of the rule clustering problem are the competitions among usefis:
patterns or schemata, and the disruption of useful patterns by genetic operators. For
example, assume classifiers "###1/0" and "0001/1" are members of the solution set. In
conventional classifier systems, crossover between these two classifiers may produce
children "##01/0" and "00#1/1". But "00#1/1" implies 0011/1 and therefore is not com-
patible with the solution set. However, in HCS, if the two classifiers stay in the sar:
family, genetic operations and competitions between the two classifiers would be res-
tricted, reducing the likelihood of producing incompatible classifiers. The following is

another example of the competitions among useful schemata. Suppose classifiers



79

"O0#H#/1", "10##/1", "1144#/1" and "01##/0" are the sub-solutions. Then there is a ten-
dency that the instances of schema ****/0 would become fewer and fewer in the popu-
lation, and the instances of ****/1 would become more and more. Eventually, schema
*#++/) may disappear from the population. However, in HCS, instances of schema
**+%/0 could be in the same family with instances of ****/1, therefore, co-exist with

the instances of ****/(,

Premature convergence is another reason for the clustering problem. Let ! be the
length of the classifier strings, s the size of the solution space, S the size of the search

space and ps the population size. The probability that at least one solution classifier ¢

S—-spP
S)

tional classifier system over the alphabet {‘0’, ‘1’, ‘#’} is 3!. Therefore,

is included in the initial population is p, =1 - ( . The search space in a tradi-

I_Ps
3 7 s) . If other useful classifiers appear much later, ¢ would become a

super-classifier with a much higher utility in the population. Consequently, the popula-

pe=1-(

tion tends to converge to this string prematurely. In HCS, assuming fs is the number

!
of the classifiers contained in a family, the search space is § 2 [;s ] The probability

that at least a correct family is contained in an initial population is much smaller than
p. in a conventional classifier system when fs > 1. Hence, the chance that one family
dominates the population is smaller. The point here is not to claim that larger search
space is better. Rather, we are trying to point out that it is easier to encourage co-
adaptation in HCS. This point can be seen from a different view. Suppose the proba-
bility that a classifier is a good classifier is p, then the probability that a family is a
good family is p# assuming that every classifier in a good family is a good classifier.
So, it is harder for a family to be dominant than for a classifier,



80

HCS also has the potential of reducing the rule association problem. In HCS, it is
possible to group classifiers into families by a relation r;. That is, use r; as a constraint
when forming families. By selecting proper relations r;, classifiers can be grouped into
families that contain reasoning chains or default hierarchies. Thus these associated
classifiers are bound together explicitly. Therefore, their relationships can be con-
sidered locally inside the family. For example, consider a classifier system with a bid-
ding scheme that favors the exception classifiers. With a default hierarchy of "##1/0"
and "0001/1", the system would also favor classifiers such as "0011/0" and "0101/0",
which are covered by the default classifier "###1/0". In HCS, if the bidding scheme
favors the exception classifier only locally in the default hierarchy family {"###1/0",
"0001/1"}, the starving general classifiers phenomenon (see chapter 2) would not
occur as a result of giving higher priority to the exception classifiers. It is interesting to
note that when classifier chain is used as the relation to form families, HCS is similar
to the idea of corporate classifier system proposed in [WiG89] when the concern of the
generation and maintenance of long classifier chains was addressed. However, the cor-
porate classifier system emphasizes structures existing in a task wherevers HCS
emphasizes imposing structures onto a task. In HCS, a chain, especially a long chain,
would benefit from the imposed structure even when the members of the chain do not

reside in the same family (for more discussion, see the last section of this chapter).
4.4. Experiments with HCS

44.1. Implementation of the HCS Framework
HCS has been implemented as follows:

« E=e¢,wheree (i =1,2,..,2")is the binary string representation of a number

between 0 and 2*, 1 is the length of the strings.



81

o Category G ={0, 1}.
e F=f;,wheref; (i =1,2,.., f) is a family that contains fs classifiers.

Classifiers are grouped into families randomly. The genetic operations used are
crossover and the covering operator. The covering operator replaces the condition part
of a classifier chosen from the population with the message on the message list. This
operator is used with a probability when no classifier in the population matches the
message. The covering operation is a form of mutation. The crossover operation in
HCS is different from the one in conventional classifier systems. The basic credit
assignment algorithm is used, i.e. when a classifier responded correctly, some credit is
given to the classifier. When a classifier responded incorrectly, some credit is taken
from the classifier. Two levels of credit measurements are used; the utility of 2
classifier and the utility of a family. The utility of a family is the sum of the utilities of
all the classifiers contained in the family. When any of the classifiers in a family gains,
the family gains. Whether a matched classifier would be fired is determined by its bid,
which is calculated by the following formula:

k Xu, Xus xsp
2w

bid = )

where k is a constant, u, is the utility of the classifier, u, is the utility of the family
containing the classifier and sp (specificity) is the number of the ‘non-#’s in the condi-
tion part of the classifier.

With a small possibility of operating at the classifier level (0.001 is used in our
experiments), i.e. two classifiers are selected directly from the population instead of
from two selected families. In most cases, the operands of crossover operations are
families, i.e. two families are selected first for a crossover operation and the classifiers
in a family are restricted from crossing over with each other. The so called roulette



82

wheel selection [Gol89a] is used to select candidates for crossover operations. Fami-
lies (or classifiers in the case of crossing over at the classifier level) with higher utili-
ties have a greater chance of being selected. In each generation, families with the
lowest utilities are selected as candidates for deletion.

Since the test problems we use (see section 4.4.2) do not require building up
classifier chains, no internal message is used. At the end of each match-activation
cycle, a new environmental message is generated and placed onto the message list.

The match-activation is done in the following way:

1. The message on the message list matches against the condition part of each

classifier.

2 Conflict resolution is done among all the matched classifiess. The classifier with
highest bid is chosen for activation.

3  The action part of the activated classifier is used to check against with the
environmental feedback. If the action matches the feedback, the classifier eams
positive payment from the environment, otherwise the classifier earns negative
payment.

4  The strength of the activated classifier at the end of cycle ¢ +1, §,,;, is deter-
mined by the formula: S,y = S, - Bid + Payment, where Bid is the bid of this
classifier in this cycle and Payment is the environmental payment in this cycle.
The strength of the family that contains the activated classifier is calculated by the
formula: Sf,,, = §f, - Bid + Payment, where Sf, is the strength of the family at
the end of cycle t, Bid and Payment are the same as above.

44.2. Test Problems and Performance Measures



83

HCS was tested by having the system learn Boolean functions. This domain was

chosen for the following reasons:
1) The problera can be precisely defined.
2) Itis easy to represent the problem in a classifier system.

3) The environment states can be controlied easily. The number of the states can be
determined by the number of variables in the function. The pattern of the

environment feedback can also be controlled.

4) The extent of environmental noise is controllable. It can rang: é¥om no noise to
very noisy.

5) The results of a learning is a set of classifiers with various schemata at the same
positions in the classifier strings. The degree of schemata variety and the number
of classifiers needed to form a solution set can be changed by selecting different
functions.

For example, for function

Jo(%0, X1, X2, %3) =Xxg AND xy AND X2 AND x,
the sub-solutions are

{1111/1, #HH/0},

assuming that the default hierarchy mechanism works well. For function

S (xg, X1, X2, X3) = (xg AND x1) OR (x2 AND x4) OR
(NOT (x,) AND NOT(x,)) AND (NOT (x;) AND NOT (x3)),
the sub-solutions are

{11#44/1, #:11/1, 00##/1, #400/1, #HEHHO}.

These two examples illustrate how easy it is to vary the size of a solation set and the



84

number of schemata contained in a solution set. Our goal is to improve the perfor-
mance and stability of tasks whose solution set contains various schemata at the same

positions in the classifier strings.

Many functions were used in our experiments, including the following five func-
tions used in this chapter for illustrative purposes:

S 1(xo, Xy, X2, X3) = (xg AND x,) OR (NOT (xo) AND NOT (xy)) OR
(x2AND x3) OR (NOT (x3) AND NOT (x3)).
fax, Xy, X2, X3, X4) = (xg AND x,) OR (x2 AND x3 AND x).

£ 3(Xo» X1 X2, X3, X4 X5) = (NOT (x1) AND NOT (x3) AND NOT (x3) AND x,) OR
(NOT (x,) AND NOT (x;) AND x3AND NOT(x,)) OR
(NOT (x,) AND x5 AND NOT (x3) AND NOT(x,)) OR
(NOT(x,) AND x, AND x3AND x,) OR
(x; AND NOT (x;) AND NOT (x3) AND NOT (x,)) OR
(x, AND NOT(x;) AND x3 AND x,) OR
(xy AND x, AND NOT (x3) AND x.; OR
(x; AND x5 AND x4 AND NOT(xy)).

fa(Xo, %1, X2, X3, X4, X5) = (xo AND xy AND x7) OR (x3 AND x4 AND x5) OR
(xy AND x, AND x,) OR (x9 AND x3 AND x5) OR
(xo AND x5 AND x4) OR (xo AND x; AND x,) OR
{x, AND x; AND x3) OR (x;AND x,AND x5) OR
(x2AND x3 AND xs5) OR (x3 AND x3 AND x,) OR
(xo AND x4 AND x5) OR (xo AND x3 AND x,) OR
(xg AND x; AND xs).

f 5 is the same as the f, in chapter 3, which is a minimal Boolean function of 8 vari-

ables and is the sum of 58 products (see Appendix 1 for the definition).

To see a difficulty of conventional classifier systems, consider the solution set for

£ 1. In the best situation, the solution set would contain the following five classifiers:

{00##/1, 11411, #00/1, ##11/1, #H#0}.



85

Assume that the default hierarchies work well; the exceptions can always be fired when
the input matches both the default classifiers and the exception classifiers. If the first
and second classitiers are selected for crossoveé and the crossover points are between
the first and second bits, the crossover will produce 01#4#/1 and 10##/1, which are not
compatible with the existing solution set. Since there is no effective way to guarantee
a correct credit assignment to the new classifiers generated by a genetic operation,
there is no guarantee that the disruptive classifiers would not be strong enough to com-
pete with other classifiers. Hence, when the disruptive ones survive over the good

ones, performance would be adversely affected and the system is unstable.

The experiments were done with two kinds of performance measures. The first
kind is the ever-used online performance which is the same as that defined in chapter 3,
i.e.

T
Z(C, -1)
1=1
Pontine = T
where C, is the number of the correct responses at generation ¢, /; is the number of the

incorrect responses at generation ¢ and T is the current generation. In order to describe

the instantaneous performance at each generation, the second measure is defined as

P i"s = C‘o
This measure can be used to evaluate the stability of a system in terms of the

differences between generations.

4.4.3. Results and Analyses

The performance of HCS has been examined with different family and population
sizes. The family size refers to the number of classifiers contained in a family. The

population size is the number of families multiplied by the family size. According to



86

the size of the search space of a problem, in each generation, 64 and 128 trials are car-
ried out for £, and f , respectively. 256 trials are conducted in each generation for f 5,
faand fs. As described previously, several kinds of crossover can be performed in
HCS. The experiments are first done with crossover on classifiers. In single-member
family case, this is the same as that in conventiona! classifier systems. In multiple-

member family cases, this is done in the following steps:

(1) Select two families according to their strengths, the bigger the strength, the higher
the possibility of being selected.

(2) Select one classifier from each of the selected families. This is done randomly in

the experiments.
(3) Carry out the conventional crossover.

Figures 4.1, 4.2 and 4.3 show representative performance results for learning
three of the functions given in the previous section, with faraily sizes varying from 1 to
4. Each performance line shows the average of five runs generated with different ran-
dom number seeds. The horizontal axis measures the number of generations elapsed.

The vertical scale in the figures represents the performance.

All three figures show consistent improvements with HCS (fs = 2, 3, 4) compared
with traditional classifier systems (fs = 1). These cases are representative of most of
our experimental runs. In Figures 4.1 and 4.2, the performances of family sizes 2, 3
and 4 are not significantly different. The major benefits are obtained using families of
size 2, in part because the population sizes are too big relative to the complexity of the

problem being solved. This point is addressed later in this section.

The performance for learning f 5 shown in Figure 4.3 is not as good as those for

learning f, and f; shown in Figures 4.1 and 4.2 respectively. The reason for this is



Perf

1284

122

0 10 20 30 46 50 60 70 80 90 100 110 120
Generation

Figure 4.1: £, on-line performance, ps = 240.

87



88

192-
180+
168
156-
144-
1324
120+

108-§;
Perf 96-=:

0 10 20 30 40 S0 60 70 80 90 100 110 130
Generation

Figure 4.2: f, on-line performance, ps = 360.



89

192-
180-
1684
1564

24

12-

D 10 20 30 40 S0 60 70 80 90 100 110 120

Generation

Figure 4.3: f; on-line performance, ps = 729.



90

that f s is a much more complicated Boolean function than f, and f 5 are. A popula-
tion of 720 is too small for fs given the complexity of the solution set. This point
shows that the size of a solution set (complexity of the problem being solved) and the
size of a population are important factors in determining performances. However, in
all the three figures, Figures 4.1, 4.2 and 4.3, performances relative to each family size

clearly demonstrate the significant advantages gained by using families.

The experiments show that within a range (determined experimentally per prob-
lem), the larger the population size, the better the performance of HCS. Classifier sys-
tems (fs = 1) generally show the same trend as well, but appear to be not as stable as
HCS. Figures 4.4 and 4.5 illustrate thie performance of families as a function of popu-
lation size (ps = 120, 240, 360, 720, 1440). An example of classifier system instability
is shown in Figure 4.4 where the performance of the classifier system does not neces-
sarily increase as the population size grows. For example, performance for ps =360 is

less than that for populations of size 120 and 240.

An interesting point to note is that often a smaller population of families can out-
perform a classifier system with more classifiers. For example, in Figure 4.4,a popula-
tion of 120 families (ps =240) out-performs classifier systems with up to 720

classifiers. This example is not an isolated experience.

Larger populations help reduce the premature convergence problem in the early
generations of a run. Classifier rules representing different sub-solutions can be esta-
blished in parallel, accounting for the better performance of larger populations. How-
ever, for classifier systems, in the later generations of a run, these co-existing sub-
solutions may disrupt each other. Repeating the example given earlier, if a solution set

for f is



256
246~
236~
226
216+

206+

196+

186+

Perf 176+

----------------- wWornyg
—”-—‘_
/”
rd
4
'
'
i
i
! —emm=——o-——-=zz=zzz W00
! ezl el Woe
| L#
e
]
1
0y
hy
'
',‘ ........................ OMm
B eeemseesveneseeseer
b e
” B seseseresssansneneett ettt e oney
I T
13
e peemeemer T e Wo 29
18—
.'.:( ............................ one 129
.......................................................... omm

0O 10 20 3 40 50 60 70 80 90 100 110 120

Generation

Figure 44: 1, on-line performance.

91



240
224-

192-

three .

|}

0
0 10 20 3 40 50 60 70 80 9 100 110 120

Generation

Migure 4.5: f 5 on-line performance.



93

{ OO, L1#8/1, #HO0/1, #3#11/1, #HHHO ) ,

then using the first two rules and crossing over, betws=a the first and second bits, will
result in new, undesirable rules 01##/1 and 10##/1. In HCS, if sub-solutions are con-
tained in a family, then family ties make the probability of crossover within those sub-

solutions small,

Consider two populations, one of which is relatively small and the other relatively
large in comparison to the population required to solve the problem effectively. Com-
parisons between Figures 42 and 4.6 show that in the smaller population, the
differences between the performances of larger family sizes (fs = 4, for example) and
smaller family sizes (fs = 2, for exaiple) are more significant. There are two major
reasons for this. First, when the population size is larger, as explained previously,
there is more room for sub-solutions to evolve, negating the benefits of having large
families. Second, when the pepulation size is too small, the problems of premature
convergence and genetic disruption are more severe. In this case, larger family sizes
are more effective in reducing these problems. The implication of this is that, when the
sizes of populations are restricted in practice, larger family sizes can be wred to achieve
higher performance for problems that require a big popiilation to be solved effectively

in a conventional classifier system.

Figure 4.7 illustrates that if the family size is too large relative to the population
size, the number of resources available in the population is limited and performance
degrades. In Figure 4.7, with a ps of 16, the performances decrease when fs = 5 and 6.
Another reason for the degradation is related to the parasite problem. This problem
refers to the phenomenon that a classifier w:th a low utility is able to offer a high bid
because of the high utility of the family that the classifier belongs to. This may happen

in a multiple-member family system for two reasons. First, the bid of a classifier is in



192+
180-
165
156+
144
132~
120+

124

o

94

— - o = —-
- - —
- - - — - =
- -

0

10 20 30 40 SO 60 70 80 90 100 110 120
Generation

Figure 4.6: 1, on-line performance, ps = 120.



324

28-

Perf

95

................................ four
P e e e e = = -
Pad RS
P'g R ettt two
e’ oooooooooooooooooooooooooooooooooooooo one
” -
28 secsssccsescecscnascen®
’3

124
8
4
0
0 10 20 30 40 S0 60 70 80 90 100 110 120
Generation

Figure 4.7: £, on-line performance, ps = 16.



96

direct proportion to the utility of the family it resides in, Second, the objects for dele-
tion are families instead of classifiers. Therefore, if the majority of the family
members have high utilities, some weak members would survive over the competitions
with the members of other families. This problem is more severe when the family size
is large since each family may have more than one parasite and each parasite can take

advantage of more than one family member.

As is obvious in Figure 4.7, the performances of the runs with multiple-member
families are as unstable as, or worse than, those of the runs with single-member fami-
lies. This phenomenon relates to the influence of the population size. It has been sug-
gested that a population size that is too small could cause poor performance
[Gol89b, SCE89,ZhG89]. Note that the population size in the figures presented here
are the number of classifiers in the population. This has different meanings when used
in single-member and multiple-member family systems. In the single-member family
case, a classifier is the basic structure of the system, hence the population size reflects
the number of structures as a resource available to the population. In multiple-member
family systems, the population is made up of families. Genetic operations are con-
ducted between families and the deletion action is done over families instead of
classifiers. Now the population size does not reflect the real number of structures as a

resource available to the population. The actual number of structures in the population

is —%s— In Figure 4.7, the population size is 16. Therefore, for 2-member families, the

number of structures is % =8, and for 3-member family runs, it is -1??- =~ 5. For 4-, 5-

and 6-member family runs, the numbers of structures are 4, 3 and 2 respectively. The

small nurbers of structures in the populations account for the unstable performances.

The necessity for large family sizes is problem dependent. Generally, bigger



128-
124-

tw
thr%e. four
1204

116-

n2d F
108-
104+
100-
Perf 96~
924
88-
84-
80-
76~
724

6sf
64

10 20 30 40 50 60 70 80 90 100 110 120

[T

Generation

Figure 4.8: 1, on-line performance, ps = 720.

97



98

problems (in this case, functions of more variables and more products) need larger
family sizes. However, larger families may not bring any benefits to smaller problems.
Figure 4.8, in which the performances for fs = 2, 3 and 4 are roughly identical, shows
this. In this case, larger families would increase the search space and therefore prob-

ably slow down the learning process. As pointed out previously, the search space is

l

greater than [;3, . Thus when ! =4, the search space for a system with fs =2 is
l 1

greater than (32 = 81;80 = 3240, and for a system with fs = 3, the search space is
. )
0

greater than | % = -8-1—);%3.57-9— = 85320. It is obvious that the search space increases

significantly when the family size increases only by 1. The problem of choosing an
appropriate family size, given an arbitrary problem, is an interesting future research
topic.

Figures 4.9 and 4.10 show two typical results described by the instantaneous per-
formance (P,,, ), the correct responses of a generation. Each result is the average of five
runs. The improvements of multiple-member families over single-member families are
not as significant as those in terms of on-line performance. This reveals the fact that
HCS is effective in reducing the number of incorrect responses. Since the same kind of
selection algorithms were used for both the single-member families and multiple-
member families, the main reasons for the large number of wrong responses in single-
member families are attributed to genetic disruption and premature convergence.
These two problems are related to how strengths are assigned to new classifiers (fami-
lies) generated by genetic operations since the evolution processes are guided by
strengths. In our experiments, the strength of a new classifier is calculated as follow-

ing:



128-

Perf 96~
924
88-
84-
80-
764
72
68-
64

0 10 20 30 40 SO 60 70 80 90 100 110 120
Generation

Figure 4.9: f, instantaneous performance, ps=240



Perf

256+
240+
224-
208+
192+
176+
160+
144+
128-
1124
96
80
64
48-
324
16~

four
o, three

ne

0

0 10 20 30 40 50 60 70 80 90 100 110 120

Generation

Figure 4.10: 1, instantaneous performance, ps=360

100



101

Snewcia = (Parenty's strength + Parent,'s strength)/ (2 X fs),
where Parent, and Parent 5 are the selected families.

The strength of a new family is calculated as:

SnewFam = the average strength of the families in the population.

It can be seen that the new strengths are usually at, or above the average (in the case of
classifiers). This implies that if a disruption occurs, the disrupted classifiers (or fami-
lies) would be competitive when competing for firing because of their high strengths.
Therefore incormrect responses would be generated by them. With large population
sizes, the probability of premature convergence is smaller in both HCS and the conven-
tional classifier systems. In this case, genetic disruptions would be a major reason for a
poor performance. Differences between the numbers of incorrect responses in HCS
and conventional classifier systems indicate that the disruptions were reduced in HCS.
Our experiments with both large and small population sizes (relative to the problems)

show that HCS is effective in reducing genetic disruption and premature convergence.

Next, we use a typical run for learning function f to show how the rule cluster-
ing problem is reduced in HCS. A population size of 60 is used in this run. Therefore,
in the case of the classifier system (fs = 1), there are 60 individuals in the population.
In the HCS with a family size of 2, there are 30 families. The initial populations for
the classifier system and the HCS are shown in Appendix 2 and Appendix 3 respec-
tively. All the classifiers have an initial strength of 1. All the families have an initial
strength of 2.

At the end of generation 100, the dominating classifiers in the classifier system

are.



102

11
#00#/1
. 0011/1
. O##0/1
. #1#1/0
. 011111
. #1071
. 1010/0.

The dominating families in the HCS are:

OAUN D LN

{##10/1, 1#00/1}
{0001/1, #001/0}
{1HHi1, #OH/0}
{#011/0, #000/1 }
{0011/1, #01#/0}
{11##/1, 1111/1}
{1010/0, 0114#/1}
{13H441/1,0111/1}
. {010#/1, O#0#/0}
10. {##01/1, 011#/0}.

Let’s examine the status of schema ****/0. Notice, in the initial population of the

WRNANA WD

classifier system, there are 34 instances of schema ***#/0. But, at the end of genera-
tion 100, there are only two instances (classifiers 5 and 8) cf schema ****/0 among the
dominating classifiers. In the case of HCS, there are 34 instances of schema ***#/0 in
the initial population. After generation 100, there are 7 instances of ****/0 among the

dominating families. A solution set for f; is

{
O0##/1,
1141,
#400/1,
#1111,
0101/0,
0110/0,
1001/0,
1010/0

>

It is obvious that in the conventional classifier system case, the population is dom-

inated by the pattern ****/1 and the other necessary pattem ****/0 is being replaced



103

by the dominating one. However, in the HCS, schemata ****/1 and ****/( are paired
into families, such as families 2, 3, 4, S, 7, 9 and 10 listed above. Therefore, the fate of
the two schemata are bound iogether by the family ties. This example shows how HCS

solves or reduces the rule clustering problem.

Experiments were also done with crossover on both families and classifiers in the
same runs. Crossing over the columns of the families was used. The results are con-

sistent with the above analyses. Figure 4.11 shows this.

In conclusion, a large majority of the experiments conducted showed no
anomalies. HCS (fs 22) consistently out-performed classifier systems (fs =1).
Enhancing classifier systems to support families appears to provide a significant

improvement on the performance.

4.4.4. Discussion

HCS was implemented in a simple way. Classifiers are grouped together ran-
domly. Nevertheless, HCS shows its abilities of encouraging co-adaptations and main-
taining good classifier sets. The main benefit of the structuring lies in its ability to
maintain good structures and classifier sets. Once a correct default hierarchy is built in
a family, the chance that the hierarchy is well maintained in HCS is much higher than
in conventional classifier systems. Without specifying a relation over the family
members, a system may take a long time to overcome some wrong groupings of family
members. For example, classifiers 1##0/1 and 1110/0 form a default hierarchy. But
they may be split into two families. If the other members of the families have high
utilities, these two classifiers may become parasites and disrupt performance. Specify-
ing a relation r; as a default hierarchy relation can help solve this problem because

then default hierarchies are likely grouped into the same family. Further studies on



104

1924
180-
168«

156+

— four

24

124

c ¥ | | ) | S

0 10 20 30 40 50 60 70 8 90 100 110 120

Generation

Figure 4.11: £, on-line performance, ps = 120



105

how to form up families according to a relation r; and how to maintain r; when con-
ducting the GA operations are needed.

Allowing varied family sizes in a population is another interesting issue. The
coexistence of different sized families would be amenable to building families accord-

ing to relations r; and help in reducing the parasite problem.

There are only two levels (classifiers and families) in the HCS we implemented.
For problems with large search and solution spaces, HCS can be generalized into a
hierarchy with more than two levels. The main motivation for building hierarchies is
to gain better organizations. Too many hierarchies could put an extra burden on a sys-
tem. As in a human society, a small village with only a few families probably does not

need to be divided into communities, which is common for cities.

4.5. Towards a Unification of the Michigan and Pittsburgh Methods

Since our goal is to evolve classifier systems which emphasize low-level process-
ing, the previous discussions have been focused on the comparisons between HCS and
the Michigan type classifier systems [DeJ88], where single classifiers are the basic
units for genetic operations. Here, we discuss the relatiosships between classifier sys-
tems, HCS and the Pittsburgh approach. In the Pittshurgh systems, the basic units for
genetic operations are production system programs {see Sec 1.2). A fitness measure
called strength is associated with each program ::ud used to guide the selections for
genetic operations. The strength of a progra: is changed by evaluating the perfor-
mance of the program on a learning tark. T« following is an example of a crossover
operation on two programs. Assuming

Rl = {R ll’RIZ’ ...,R n ).
and



106

Rz = {Rz,, Rzz, cory Rz' },
are two programs, where R;; is a production rule. A crossover operation on the two

programs may generate the following two sew programs:

Ry={Ry.Ryz Rz s Rom ),
and
R, ={R2;, Ry R 13, . Ryp ).

The main disadvantage of the Pittsburgh method is its computational complexity
in both time and space. As pointed out previously, the search space increases combina-
torially with the size of the production program. We use the following example to
illustrate the complexity differences between the Pittsburgh approach and HCS. Sup-
pose a solution for a task needs four classifiers and each classifier is a string of four bits
over the alphabets of {0, *1’, ‘#’}, then there are totally 3* different classifiers. An
example of a population of a HCS with a family size of 2 may look like:

{000/1, 001/0),
{0#0/1, 00#/#},

{#40/1, 0#1/0),
where classifiers in a pair of brackets constitute a family. The following is an example

of what a population in a Pittsburgh system may look like:

000/1 001/0 0#0/1 00#/# 110/#,
001/# 00#/# 011/1 O#0/1 ##1/0,

000/1 001/0 011/1 O##/0 ##1/0,
where each string is 20 bits long if we ignore the /s which separate the condition part

from the action part in a classifier. In a HCS with a family size fs of 2, the 4 solution
classifiers can be held by two families. Therefore the maximum size of the search



107

34

space in this case is [2 ] = [32240] = 524718. With the Pitisburgh approach, the
shortest length of each string in the population is 16 bits since the solution contains 4
classifiers and the string that is being searched is supposed to contain at least all the
solution classifiers. Hence, the minimum size of the search space in this method is
(39%=3'=4304672. One can see, along with the growth of the length of the
classifiers and the size of a solution space, the search space in the Pittsburgh approach
would be much bigger than that in the HCS. Since every string in the Pittsburgh
approach is the concatenation of all the classifiers in a complete program that can per-
form the tasks, the lengths of the strings are usually much longer than that of a single
classifier. The population size relative to a search space is limited due to the restriction
of resources when strings are too long. Therefore, in the Pittsburgh approach, the per-
centage of the samples out of an entire search space is much smaller, which tends to
cause the problem of premature convergence. The main advantage of the Pittsburgh
method over the Michigan method is its ability to maintain rule structures and
emphasize the cooperation among classifiers. Compared with the Michigan method,
HCS provides mechanisms to maintain structures and encourage the cooperation
among classifiers. Compared with the Pittsburgh method, HCS reduces the computa-
tional complexity dramatically by organizing classifiers into small structures instead of
complete programs.

However, the difference between the sizes of the structures, i.e. programs in the
Pittsburgh approach and families in HCS, is not the only characteristic that distin-
guishes the two methods. There are several fundamental differences between HCS and
the Pittsburgh method. In HCS, a family consists of a set of classifiers. Usually, those

classifiers do not constitute a complete program. The idea here is to organize



108

classifiers. This changes the traditional ome-level classifier system architecture
(classifiers) to the multiple-level architecture (individuals and families). Ja HCS, the
credit assignment process is based on the evaluations on individual classifiers. The
uses of credit assignment algorithms in HCS, are in the same way as those in the con-
ventional Michigan method classifier systems. Families gain credit through the gain of
family members. This allows for two levels of competition among classifiers. One is
the competition among classifiers i different families. The other is the competition
among classifiers in the same family. This illustrates one of the important differences
between HCS and the Pittsburgh method: HCS inherits the implicit parallelism of the
Michigan method in the sense that each evaluation of a classifier affects many
classifiers and their families. The evaluation process in HCS is doae through maiching
and firing individual classifiers, which is similar to what is done in a classifier system.
In the Pittsburgh approach the evaluation is done by letting the programs which are the
individuals that are being evaluated perform tasks.

In HCS, the genetic operations are based on families, which reduces the competi-
tion between family members, thus reducing disruptions. HCS inherits the computa-
tional characteristics of the Michigan method in terms of the implicit parallelism and
the lower computational complexity. When the family size is 1, HCS is just the Michi-
gan method.

4.6. Remarks on HCS

A method of achieving coherence and cooperation through imposing ties is pro-
posed. Hierarchies are used to impose structural ties in classifier systems, which
effectively reduced some fundamental difficulties of classifier systems such as the
problems of rule clustering and rule association. Using the hierarchy approach,
classifier individuals are grouped into "families". The structural family ties encourage



109

the cooperation among family members, which has the effect of enhancing the stability
of a system. The experiments with learning Boolean functions have shown significant
improvement in performance and stability of the hierarchical classifier systems over
the conventional classifier systems. HCS is a model towards a unification of the Michi-
gan and Pittsburgh approaches.

Internal message passing in HCS works in the same way as in conventional
classifier systems. However, as noted earlier, in the expe@ments with leaming Boolean
functions, there is no internal message passing and reasoning chain involved.
Although not explored in this thesis, we believe that the structural ties in HCS have the
additional potential to enhance the stability of chain structures built through the inter-
nal message passing. We expect that the family structure will help the establishment

and maintenance of chains for the following two reasons.

First, in an internal message passing classifier system with the bucket brigade
algorithm, usually there is a payoff delay to the classifiers at the beginning of a chain.
That is, the stage-setting classifiers in a chain usually do not get payoff right after they
have passed a correct internal message to the message list. The longer is a chain, the
longer the payoff delay to the beginning of the chain is. The payoff delays result in the
uneven increases of credit (utility) among the classifiers at the beginning of a chain and
those at the end of the chain. This produces a possibility for unfair competitions later
on, e.g. weaker classifiers (classifiers with less credits) may be deleted from the popu-
lation. In HCS, weaker members in a family are supported by the stronger ones, there-
fore the adverse effect of the unevenly increased credits among a chain caused by the
delayed payoff is much reduced.

Second, if the rules in a chain reside in the same family in HCS, the possibility of
GA disruptions among the chain is small since the probability of conducting GA



110

operations wit"l.ﬁn a family is small.

In HCS, chains can be generated within the family structure as well as across the
family structure since the credit assignment algorithm is based on individual rules. But
in both cases, the family structure will help the co-adaptation of the chain members.
We mentioned in section 4.3 that it is possible to group rules into the family structure
by a relation ;. If r; is specified as a chain structure, chains would be forced to form
within the family structure, therefore reducing the possibility of the chain being dis-

rupted.



111
Chapter S

Implicit Semantic Ties Approach to Classifier Systems

5.1. Introduction

In chapter 1, a primitive solution is defined as a classifier that replys correctly to
one and only one environmental or internal state. By the definition, a primitive solution
does not contain any ‘#’s. In chapter 4, hierarchies are used to introduce better data
structures into classifier systems and therefore strengthen the associations among prim-
itive solutions and improve system performance. This chapter presents a semantic
approach for strengthening the associations of the primitive solutions and improving

system performance.

In many ways, learning is a process of establishing relations. This requires a
learning system to be able to represent the emergence of these relations. For many
problems, using variables is an effective way to do this. A variable is a relation defined
over its instances. In this sense, a concept is a variable, which represents a general
idea, thought or understanding. For instance, "rectangle" is a concept of a group of
geometric objects. It can also be considered as a variable that represents figures with
four straight sides forming four right angles. Symbol processing is considered funda-
mentally a process of variable interpretation. A system without variables is limited in
its ability of symbolic processing. Lack of variables in neural nets is considered a

major deficiency of the approach [Nor86].

Classifier systems use production-rule-like classifier string representations. The

advantages of this simple representation have been discussed in chapter 2. However



112

this simple representation also implies the inadequacy of the representational capabili-
ties of the classifier system approach. Under the classifier system framework, primitive
solutions are loosely connected to each other. This simplistic representation scheme
makes it hard to manipulate knowledge and to add built-in knowledge and models
which can be used to describe features common to a problem domain. Compared with
conventional symbolic approaches, it is difficult for classifier systems to abstract and
explain events. In many cases, classifier systems are incapable of representing informa-
tion about commonly occurring patterns in a succinct way, such as what frames do in
the symbolic approach. It is difficult to build conceptual hierarchies in classifier sys-
tems. Here, the conceptual hierarchies refer to those that consist of cognitive level and
high-level (symbolic name level) concepts. Consider the example of leaming the con-
cept "rectangle”. This problem can be described in two ways. One way is to use high-
level attributes, such as "equal of two sides" and "not equal of two sides". The other is
to use low-level primitive attributes, such as the lengths of the sides. Based on the
logic that the relations over primitive data are at a higher level than the primitive data
themselves, the first description is at a higher conceptual level than the second one.
Conventional classifier systems can perform learning tasks when a problem is
described in the first way. In this case, a ‘0’ can be used to represent the "equal"” rela-
tion and a ‘1’ to represent the "not equal" relation. If a problem is described in the
second way, conventional classifier systems would have difficulties. In this case, the
relationships among the sides are not among the attributes being represented explicitly.
The system needs to build up this relationship based on the primitive data, ie. the
lengths of the sides. However, since the number of the instances of the concept "rec-
tangle" is infinite, in a finite classifier system, there is no way to represent these rela-

tionships between the explicitly represented attributes by including all the instances



113

into the population. Therefore, it is very difficult to build up the relation on the primi-
tive data. The above example illustrates the representational difficulty of classifier sys-

tems in abstracting relationships.

Variables are fundamental in symbol processing and problem solving. The lack of
variables in classifier systems results in the inadequacy of its representational ability,
which results in many difficulties in a dynamic process of leaming. First, without vari-
ables, it is difficult to narcow the gap between classifier systems and conventional sym-
bolic learning approaches in their representational abilities. Hence, it is hard for
classifier systems to adopt the merits of symbolic learning, such as built-in knowledge
and knowledge models. Second, the problems of rule clustering and rule association
are aggravated because primitive solutions or sub-solutions in a classifier system usu-
ally are loosely structured. In classifier systems, the only explicit tie for binding primi-
tive solutions is ‘#’. Hence, many relationships among the primitive solutions can not
be represented in a succinct way. Usually, many classifiers would be needed to
represent a solution. Therefore, those loosely-connected primitive solutions or sub-
solutions tend to suppress each other at early stages of a run and disrupt each other at

later stages.

In this chapter, variables are used to introduce better data structures and establish
associations between primitive solutions. A new framework, Variable Classifier Sys-
tem (VCS), is introduced in which classifier systems are evolved to include variables.
Conditions and actions in reles (classifiers) are broken into fields, each of which can be
a constant or a named variable. The result is that variables act as implicit ties between
the instances being represented by them and thus allow some problems to have their
solutions expressed in a succinct manner, reducing the amount of work required by

genetic search to solve a problem. This approach alleviates the problems of rule clus-



114

tering and rule association. As well, variables provide a way of describing an abstract
world, allowing for building of models and knowledge structures as in high-level sym-
bolic representation systems. Conceptual hierarchies can be more easily built in a vari-
able classifier system. It thus becomes possible to combine the advantages of high-
level and low-level representations into one framework. The experiments show the
expected results. When the connection degree of primitive solutions is increased by
variables, VCS shows significant improvements over the conventional classifier sys-
tem. The problems of rule clustering and rule association are shown to be reduced
effectively.

In the following sections of this chapter, the design of VCS framework is given

first. Then the properties of VCS are discussed followed by the experimental results
and analyses. Finally, problems in VCS are discussed followed by concluding remarks.

5.2, VCS Framework

Similar to a classifier system, VCS is a low-level representation framework in
which the idea of variable is introduced. VCS retains the structure of classifier sys-
tems. There are message and rule lists and, in each cycle, messages match rule condi-
tions generating new messages from matching actions. Genetic operators and the
bucket brigade operate as in CS. Rules can be negated and have multiple conditions.
The difference between VCS and CS lies in the syntax and semantics of messages and
rules.

The basic symbols in VCS are the alphabet {0, ‘1°, ‘7", “*’} and a set of logical
field placeholders. The question mark *?’ sign replaces the “# in classifier systems and
represents either don’t care or don't know sitation. The "don’t know" situation can be

used as a prompt for the user to p:ovide some information. This allows a system to



115

communicate with the external world by providing useful feedback and prompting for
useful information or instructions. The symbols ‘0’ and ‘1’ in a condition can be
matched only by ‘G’ and ‘1” in a message respectively. The ‘?’ in a condition can be
matched by ‘0’, ‘1’ or *?’. A “?” in a message can only be matched by ‘?’ in a condi-
tion. The ‘?" here and ‘#’ in classifier systems are semantically and functionally
different. In addition to the meaning of "do not care" (equivalent to ‘#’), ‘7’ also has
the meaning of "do not know". This makes the functional differences between VCS and
CS. With the "do not know" meaning of ‘1’, VCS is able to communicate with its
environment, providing information to and asking information from the environment.
This changed the situation in classifier systems where a system can change its environ-
ment only by imposing actions onto the eavironment. No changes happen to an

environment to meet some dynamic requirements of the performance of a system.

Messages, conditions, and actions are implemented as fixed length bit strings con-
sisting of a number of fields. Each field represents an attribute of the problem domain.
To distinguish the implementation (strings of ‘1’s and ‘0’s) from the semantics, field
identification placeholders are inserted in messages, conditions, and actions to identify
the contents of each field. For readability, we use the notation P oy, to name a field,
where the identifier contents is meant as a meaningful interpretation of the semantics
of that field. For brevity, we often name fields numerically {P,, P, P3, ..., P, }. For
example, consider the blocks world, an oft-cited example that many problem solving
programs use. In the VCS representation, a rule condition could consist of two fields:

P ume - the name of a block

P, .1aion - telations between this block and other blocks
and the condition could be represented as

Ppzme 10 Preiagion 0110110



116

where "10" is the name of a block and "0110110" represents its relationships with other
blocks. Removing the field names yieids a familiar classifier system notation.
As mentioned previously, the use of *?’ introduced the important interactive pro-
perty into VCS. Another major difference between VCS and classifier systems is the
inclusion of the “** operator into rule conditions and actions (but not messages). The
‘> character in a field (anywhere in the field) indicates that the content of the field
should not be interpreted as a constant but as a variable. For example, a 3-bit field
could contain "*01", "00*", or "*7%", any of which indicates that the field is to be
treated as a variable. In the following discussion, we will separate the semantics of a
representation from its implementation. While using the {0, ‘1’, ‘?", ‘**} notation for
the implementation, we prefer to use names for our variables, such as x, y, and z
(instead of "*01", "00*", "*7*") in our discussion to increase the clarity. Using the
block world example again, the condition
Prome * Pretation Y

indicates that the two fields are variables. For example, the condition
P,*00P, 71 P;0**0 P ,*00

is equivalent to
Pyx 3N PyyPyx

where P,’s x is independent of P 4’s x.

In VCS, the semantics of matching messages with rule conditions are different
from CS. A condition field containing only {‘0’, ‘1, *?'} is treated as a constant and
matches the corresponding field in a message if all the characters match (recalling the
slightly different semantics of ‘?° mentioned above). A condition field that is a vari-
able matches the corresponding field in the message, regardless of the content of that
field. As such, we view each variable field as being a parameter of the rule; matching



117

then becomes binding of values (from the message) to parameters (condiiions of the
rule).

A user of VCS must define his messages in terms of the number of fields that con-
stitute a classifier and the size of each field. Fields of the same type, i.c. with the same
name, can appear in a classifier more than once. But the sizes of these fields must be
the same. Fields with the same name have the ability to exchange information between
them through variables. If the same variable appears in a classifier more than once,
then all those appearances must be bound to the same value in all cases, otherwise the
matching fails (see example below). This feature allows the equality relationship to
hold between fields in (multiple) conditions.

Variables can also appear as part of the action of a rule. Such variables take their
values from those assigned in the condition. If a variable does not appear in the condi-
tion part, the variable in the action part will randomly take a value from the value
domain of the field. Consider the rule in which */° is used to separate condition from
action

P,11P,*0P,*01/P,01P,*01 P,*00
with semantics
P,11P,xP,y/P01Pyy Pyx.
Then the message
P,11P,101 P, 111
will match the rule, and result in the information exchange between the last two fields.
The resulting message will be
P,01P,111P,101.
Note that information exchange can only occur between the second and third fields

since they have the same name. The exchange of values between fields is not possible



118

in classifier systems, without exumerating ail the pos:¥uili: st
When using variables, some rules witk different 2jr.« wrances ay have the same

semantics. Forexample the rules

if v; and v;,, thenv;,p

ifv; and vjyy then v;,,
have the same meaning. To aveid this, oir system enforces a normilized i presenta-
tion for rules. In this representation, ¢sch rule must use the minimum namber of vasi-
ables possible, and the variable name: wus: be ordered and sequentially starting from a
fixed name (e.g., v, V2, V3. --- ). We say that the order of v;,, is higher than the onder
of v;. In a rule, a higher order variable name for a parameter can be used only after all
the lower order variables of the same parameter have been used. Under this policy,

PyvPyvy/ P vy Pyv,
is legal. But

PyvaPyvy/PyvyPy v,
is not since P, v, precedes P, v;. As a result of this enforcement, there are many ille-
gal rule combinations. The semantics of VCS insist that semantically illegal rules with
respect to variable usage are not allowed to be created. This greatly reduces the search
space of possible rules.

One last note on variables, A field may not be defined large enough to represent
all the possible variables of the field. For example, if a field is only 1 bit long, one can-
not represent the two different values of this field by using two different variables.
Such a field can represent only one variable, ***. VCS recognizes this problem and
expands fields, if necessary, so they can properly accommodate all possible values.



119

5.3. Properties of VCS

VCS keeps the low-level representation property which is vital to low-level pro-
cessing. Any point in a problem space can be represented by a permutation over a set
of primitives. VCS greatly enhances the representation capability of conventional
classifier systems. As a result, some problems of classifier systems, such as rule clus-
tering and rule association, are effectively reduced. As well, VCS provides a model that

combines the advantages of low-level and high-level processing.

5.3.1. Uniform Representation

VCS inherits the representational advantages of classifier systems. Every state of
a problem space can be generated by the genetic operators due to the uniform represen-
tation, i.e. every point in the problem space is represented by a permutation over the
primitives of {‘0’, ‘1°, ‘", **'}. This uniform representation enables VCS to avoid
constructing new rules grammatically, thus simplifying the process of generating new
rules (classifiers). As in conventional classifier systems, VCS representation supports
the important property of implicit parallelism.

5.3.2. Expressiveness

VCS can be considered as a general parameter representation framework. To use
the framework, the designers need only decide what fields are required to describe their
problems (as in CS). For example, in the “rectangle" problem mentioned previously in
this chapter, the lengihs of a geometric object may be used to describe the problem, or
at a higher level, the relationships between the sides of an object could be the parame-
ters used to describe the problem states, Compared with CS, VCS is more expressive.
One obvious example is that it is difficult for a classifier system to represent relation-

ships among fields without enumerating all possibilities. For example, the symmetric



120

relation if R(x, y) then R(y, x) and the transition relation if R(x, y) and R(y, z) then R(x,
2). In classifier system, the above relations cannot be represented by single classifiers
because there is no way to distinguish the semantics of the ‘#’ signs. But, obviously,
these relations can be represented in VCS. For example, the relation if R(x, y) then R(y,
x) could be represented in VCS as:

P, 11 P,*01 P,*00 -—-> P, 11 P,*00 P, *01
R x y —-> R y x.

However, classifier #it# #it# > ## iH## may be the best representation for this in CS.
By using multiple conditions in VCS (separated by commas), the transitive relation
could be represented as

P,xP,y,P,yPz/P1xP,z .
In classifier systems, there is no obvious way to enforce equality of fields between con-

ditions.

§.3.3. Search Space

Classifier systems use strings over the alphabet {‘0°, ‘1, ‘#’} yielding a search
space of size 3', given ! characters in a message (without losing generality, we ignore
the action part of a classifier). In VCS, the alphabet consists of {‘0’, ‘1°, ‘7", ‘*’},
yielding an upper bound of 4’ on the search space {. Normalizing the representation
greatly reduces the number of semantically correct possibilities.

What is a bound on the search space, given normalized and semantically correct
rules? An upper bound on the average search space is Sycs = 3' + N, x 3", where
N, is the number of all the legal strings that contain variables, n is the number of
+ Usually the 1" in VCS is the same as the */* in CS for the same problem. However, when the

length of a field in CS is 1, the number of characters in a message in VCS is twice of the number
of characters in 2 message in CS since the shortest length of a field in VCS is 2.



121

fields, m is the average length of the fields, and a is the average number of fields that
are constants in a legal string that contains variables. Given n fields, it is possible to
have up to n variables in a rule. We have N, =f, o) + fa.1) * - + f (n.5) Where
£ (n. 0y is the number of strings with n fields that has no variable name in the last field
and f (, ;) is the number of strings containing variables and having variable v; in the
last field. We have

No=f.0%~Sfinn)»

fao=1

fan=1

n-1

f(n,i)= 2 f((n-l).j)' i=1,..n,
j=i-1
n-1
f('l.O) = z-f((n—l).j)’ n= 1' 2’ 3' .
j=0
Table 1 gives some values of 3', 4/, N, and (3'+N,x3™)when! =10 anda =n / 2.
For those practical values of n, m and ! (I = nxm), Sycs is much closer to 3' than 4'.

Since the minimum length of a field is 2 in a VCS, the maximum value for the number

of fields, n, is 5 given ! = 10.

As in CS, a string in VCS is a representative of many schemata. Hence VCS still
retains the property of implicit parallelism of classifier systems.

Using multiple conditions in a classifier has the potential to reduce thc search
space for some problems. In a fixed length, single condition CS representation, the
condition string must include all information necessary for solving a problem. For
example, a CS representation for the game of tic-tac-toe might include all 9 squares on
the board [Sch88). However, VCS allows relationships to hold between multiple con-
ditions. This permits smaller messages to be used, using multiple conditions to bind



122

them together, In the tic-tac-toe case, one could have each message representing the
contents of one square. Then using three conditions for a rule, one can define in a sin-

gle rule the information that three in a row wins. This is not possible in classifier sys-

tems.
310 n Nn sm = 310 + Nll x3me 410
59049 | 1 | 2 59535 1048576
59049 | 2 | § 60264 1048576
$9049 | 3 | 14 | 62451 1048576
59049 | 4 | 42 | 69255 1048576
59049 | 5 | 132 | 91125 1048576
Table 1.

Consider another example. The task is to manage a terminal room according to
terminal availability and the identity of the party making request. We can use 2-bit
strings to represent the state of a terminal: occupied = 00, available = 01, and damaged
= 10. Assuming there are 6 terminals, we use 3-bit strings to represent the terminal
names: terminal 1 = 001, terminal 2 = 010, etc. Also assuming there are 6 parties
involved, we use 3-bit strings to represent the identity of the parties: party 1 = 001,
party 2 =010, etc. We want to represent a usage constraint:

if terminal x is available and party x is requesting
then open the door.
We use a terminal’s name, the terminal’s state and the requesting party’s identity as the

constraint explicitly showed in the condition part. Under such a scheme, the CS



123

representation needs at least two classifiers for each terminal. For example, the two
classifiers for terminal 1 are:

ifterminal 1 is available and party 1 is requesting
then open the door.

if terminal 1 is not available
or if the requesting party is not party 1
then do not open the door.
If we use 1 for open and 0 for not-open, the binary format of the representation is
00101001 /1
00100## / 0.
At least 2N classifiers are needed to represent the usage constraint for all the terminals,
where N is the number of terminals and the number of the parties inv::ived.

In the VCS representation, the above constraint can be represented as:

Poue X Poue 01, P, x / OpPen

NOT (Prane ¥ Page 01, Pone, x) / DOt-0pen

In contrast with CS, the solution space of VCS consists of only fivo rules.

5.34. Register Property

When genetic algorithms are used as tools of function optimization, no message
passing is involved. When applied to leaming, message passing is an important factor
that influences both the effectiveness and the efficiency of a System. The message
passing scheme of CS is not effective in some situations (see the following examples).
The effect of the field identifications and variables in VCS provides the system with a
register ability: a value stored in a variable can be used in a variety of places. The fol-

lowing examples show that in some situations, VCS can easily do what CS has



124

problems with.

Example 1

Variables allow values to move to different fields. Consider the rule
if x is on y then y is below x.
There is no simple way of representing this relation in CS with a single classifier. The
VCS solution for the above problem is:
p,01p,*0P,*1/ P, 10 P,*1 P, *0
(on) x y /(below) y x
with the values of x and y in the condition part being passed correctly to the action

part.

Example 2

In CS, message passing can cause a performance bias. Consider the rule

if object is small and moving fast |

then slow-down or ignore
A classifier representation might look like this:

1 1/1 #

(small) (fast) / (tag) (slow-down or ignore)
Only message "11" can fire this rule. Through message passing, the ‘# always gets
value ‘1°. If value ‘0’ means "ignore", then this case will never be chosen. The VCS
solution for this rule is

P10 P10/ P;*1  Fy 1l

(small) (fast) / (slow-down or ignore) (misc)

The variable P4 *1 would be bound to either "slow-down" or "ignore",



125

Consider the rule
if object is small or big
then slow-down or stop
In a classifier system, this could be represented as:
# 1/ # 1
(small or big) (fast) / (slow or stop) (misc)
Under the classifier system message passing rules, this equates to:
0 170 1
(small) (fast) / (slow) (misc)
and
1 1/ 1 1
(big) (fast) / (stop) (misc)

which is not the original meaning.

Although techniques in classifier systems, such as tagging, may solve some of the
above problems, two of the side-effects of these techniques are a larger search space

and a bigger solution set.

With the register capability in VCS, we can group some properties together to
form concepts. By assigning and changing the range of a field P;, we actually changed

the concept P;. Also, the register property allows equations to be expressed in VCS.

The VCS framework has some other potentials for inductive learning. For exam-
ple, by using a new identification sign P, or by augmenting the value field of P;, the
problem space can be augmented. Thus, a four-block world can be enlarged to a five-
block world without much change. This point is also illustrated by the example about
allocating terminals, which is used previously in this chapter. In that example, the

number of terminals considered in a problem is not a factor that affects the VCS



126

representation. Thus, knowledge gained in a six-terminal problem can be applied to a

seven-terminal problem without any change.

5.3.5. Build Structures by Building Abstract Relations

In classifier systems, existing knowledge can be incorporated into a system by an
initial classifier pool or by the input messages. However, it is hard to incorporate into
these systems the relations among the knowledge components. Structural knowledge
cannot be easily built in and manipulated. The strength of the structural knowledge
representations lies in the ability to represent relations among the knowledge com-
ponents through the representation structure itself, providing an efficient way to mani-

pulate these relations.

Frames and semantic networks are two popular structural knowledge representa-
tions. Super-ordinate (super) and sub-ordinate (sub) are two relations that appear in
these high-level structural representations. Also, they are the relations among different
levels of default hierarchies in classifier systems. These relations are partial orderings
on their domains. Therefore, for any X, Y and Z in such a domain, the following rules
are true:

if X super Y and Y super Z then X super Z

ifXsub Yand Y sub ZthenX sub Z

if X sub Y then Y super X
By including such rules in a rule base, we can build a knowledge structure into the sys-
tem. By using abstract relations, we link the corresponding knowledge together. Then
in default hierarchy situations, knowledge can be triggered in the same way as using a
high-level structural representation. Notice that the tagging method of representing
inheritance in Belew and Forrest’s work [BeF88)] cannot activate concepts with sub-

ordinate and super-ordinate relations in two directions at same time. This implies that



127

the tagging classifier representation of the semantic network is not equivalent to the
high-level semantic network representation. However, by adding in the above three
relation model rules, the representation is equivalent to the semantic network represen-

tation.

5.4. Implementation of VCS

To simplify the implementation, ‘#’ is used instead of ‘?". Two kinds of bidding

strategies are used. The first one is

where k is a constant, u, is the utility of the classifier, { is the length of the condition
part of the classifier and sp (specificity) is the number of the ‘non-#’s in the non-
variable fields of the condition part of the classifier. This bidding strategy gives more
specific classifiers priority over more general ones and supposedly supports the emer-
gence and maintenance of default hierarchy structures. The second one does not con-
sider the factor of specificity and is defined as

k Xu,
l ’

where k, u, and ! are the same as above. In our experiments, only one classifier is
activated at a time. When a conflict occurs, the matched classifier with the highest bid
is chosen to be activated and pays its bid to the environment. The action part of the
activated classifier checks against with the environmental feedback. If the action
matches the feedback, the classifier eams positive payment from the environment, oth-
erwise the classifier earns negative payment. Since learning Boolean functions is used
as the leaming tasks (see section 5.4.1), classifier chains are not required for solving

the test problems. Therefore, internal messages are not used. At the end of each



128

match-activation cycle, a new environmental message is generated and placed onto the
message list.

Classifiers without ‘#’s and variables are stored in an ordered binary tree struc-
wre. Thus, the time spent on matching these classifiers is O (log m), where m is the
number of the classifiers stored in the tree. This decreases the time for matching from

O (m ) when the classifiers are not organized into a tree structure.

The "Roulette wheel" algorithm [Gol89a] is used to select candidates for genetic
operations. That is, the probability of a classifier being selected is in direct proportion
to its strength (utility). In each generation, the classifier with the lowest utility is

replaced by a new one.

In the implementation of VCS, the names of the fields are not represented expli-
citly in classifiers. The length of a classifier is determined by the number of fields in
the classifier and the length of the fields. To represent more than one variable, the
length of a field should be at least 2 bits long.

54.1. Test Problems

Learning Boolean function is used as the test-bed for VCS. There are two con-
siderations for doing so. First the clear definitions of Boolean functions make it easy to
design the syntactic and semantic relationships among different classifiers and different
fields of a classifier, therefore to see the advantages or disadvantages of using vari-
ables. Second, leamning Boolean functions can be considered as a general task, since
many tasks can be abstracted to a task of this kind. Several kinds of functions are used

to test different facets of variables. The sample functions discussed here are:

£ %o, X1, %2, %3) = (g AND x1) OR (x3AND x3) OR (NOT (x¢) AND NOT (x,)) OR (NOT (x3) AND NOT (x4)),



129

S o{Zon X 10 X3, X3 X4, X5) = X9 AND Xy AND x3 AND x5 AND x4 AND xs,
f»is an 8 variable function (see appendix for definition), and

S dxo, Xy, X3, X3, X4, X5) = (xg AND NOT(x,) AND NOT (x3) AND NOT (x3) AND NOT (x) AND NOT (xs)
OR (IQAND NOT(II)AND XzAND NOT(IQAND X4AND NOT(x,)
OR (xo AND x, AND NOT (x3) AND NOT (x3) AND NOT (x,) AND x)
OR (xo AND x; AND x, AND NOT (x5) AND x4 AND xs).

£y is a tunction for which VCS has obvious representational benefits. The use of
variables changed the structure of the primitive solutions or the structure of the results
of learning this function and strengthened the association among the primitive solution
classifiers. A smallest solution set for £ in CS is { 00##/1, 114/1, #4#00/1, ##11/1,
#4140}, However in VCS, the classifiers in this set are connected in a different way
and represented as {*0*O#sHH#/ 1, #HHH*0%0/1, HEHHHAIO0) assuming the length of a
field is 2. The length of the classifiers is doubled in VCS. But the VCS solution set is
more succinct, which is more important for a better performance when a system is

suffering from the rule clustering problem.

£, is a function for which VCS does not provide any advantages over CS. The
connection degree of the primitive solutions is not increased in VCS. The smallest
solution set for f, in CS is {111111/1, ##H###/0}. In this case, instead of being

advantageous, VCS’s performance may be slower because of its larger search space.

f3 is a minimal function of eight variables and is the sum of 58 productions. So
the minimal size of a solution set for this function in CS is 59, of which 58 classifiers
are for the value of 1 and one classifier #H#H##H/0 is for value 0. Variables are capa-
ble of increasing connections of the primitive solutions for this function. For example,
00101#10/1 and 10111#10/1 are two classifiers in the CS solution set. In VCS, they
can be represented by one classifier *00011*011##1100/1. f is used to illustrate the



130

difference between VCS and CS when the problem is more complicated and the

representation advantage of VCS is not as obvious as in the case of f, kind functions.

f 4 is different from the above functions. Representationally, the solution set in
VCS is smaller than that in CS. The connections between the primitive solutions are
increased in VCS. The smallest solution set in CS is {10000/1, 101010/1, 110001/1,
111011/1, #4##4#/0}, whereas the smallest solution set in VCS is {11*0*100*1*0/1,
HHHHHHHEHH0Y. However, semantically, there are only 4 situations out of 64 in
which the value of f 4 is 1. This means the rule clustering problem would not appear to
be outstanding since even if the population converges to HHHHE0, the performance is
still over 90%.

5.4.2. Experiment Results and Analyses

The performance of VCS has been examined with different population sizes and
compared with the conventional classifier systems. In the following figures which
show the experimental results, the horizontal axis measures the number of generations
elapsed. The vertical scale represents the performance which is defined as

T
Z(Ct -L)
t=]

T ’
where C; is the number of the correct responses and /, is the number of the incorrect

Perf =

responses in generatior ¢. Each performance line in the figures shows the average of

five runs generated with different random number seeds.

In most of the experiments, VCS is examined with only one bidding strategy,
bid =k Xu, |1, where k is a constant, u. is the utility of the classifier and / is the
length of the condition part of the classifier. Two bidding strategies are used when

examining the performances of the conventional classifier systems (CS). There are two



131

considerations for doing so. First, in VCS, it is not as easy as in CS to determine the
value of the specificity factor (sp) of each classifier. In CS, sp equals to the number of
‘non-#’s in the condition part of a classifier. However, in VCS, classifiers with the
same number of ‘#’s may not be at the same level of specificity or generality. For
example, classifiers ##01/1 and xy01/1 both contain two "non-#"s. But ##01/1 is more
general than xy0l/1. The second reason for this is that we want to verify the
hypothesis that VCS does not rely on complicated default hierarchies because of its
higher representational "resolution”. Therefore VCS would avoid the difficulties of
building and maintaining structures such as default hierarchies, We suggest that a per-
formance that relies on default hierarchies would not achieve good results with the bid-
ding strategy without the specificity factor.

In the following figures, the performance of VCS is denoted by Wvariable, mean-
ing "with variables". The performances of CS are represented by Nvariable, meaning
"no variables", and NvariableS, meaning "no variables but with the specificity factor
considered". The population sizes used in the figures are the representitives of groups
of population sizes used in each experiment.

The experimental results illustrate the following points:

1. VCS helps reduce the dependency of a system on loosely connected internal
structures, such as the default hierarchy structure. This is illustrated by the fol-
lowing example. At the end of a process of leamning function f,, in VCS,
classifier *0*1**1*/0 is one of the dominating classifiers in the population. The
sementics of this classifier is that if the first field is not the same as the second
field and the third field is not the same as the fourth one, f (X )=0. This single
classifier covers all the situations in which the value of £, is 0. However, the

same generation of the population in the conventional classifier system has to use



132

5 T ik o % b o 4o

Generation

Figure 8.1: 1, performance



512
483-
454
425-
396~
367
3384

Perf 280-
2514

193-

48

Whariable, 256

Whariable, 192
Whariable, 320

_,Evar@able, 256
----------- .-Nvariable, 192
e, 320

srore 5 Nyariab]

NvariableS, 256
o NvariableS, 320

——~—Nvariable§, 192

0

50

100 150 200 250 300 350 400

Generation

Figure 5.2: 1, performance

133



154

the following classifiers to cover the situations in which the value of f , is 0:

1. O#1#/0
2.001#/1
3.0#111
4. #001/0
5.000V/1
6. 1#01/0
7.1101/1

Let’s examine how the above classifier set would react to an X = (xq, X, X2, X3),
where f,(X)=0. Notice that classifiers 1, 2 and 3 form a default hierarchy in
v hich classifier 1 is the general classifier that reacts to the conditions 0010, 0011,
0110 and 0111, and classifiers 2 and 3 are the exceptions that react to the condi-
tions 0010, 0011 and 011% respectively. For classifier 1 to work correctly, the
default hierarchy relationship between the general classifier and the exception
classifiers must be established and maintained. Classifiers 4 and 6 are in a similar
situation to classifier 1. For them to work correctly, classifiers 5 and 7 must work
as the exception classifiers respectively. This example shows how the succinct
representation in VCS can avoid the difficulties involved in establishing and
maintaining internal relationships among classifiers.

For problems for which VCS has representational benefits, VCS outperforms CS
in both Nvariable and NvariableS. The experimental results for f, and f, are
used to show this point. Figures 5.1 and 5.2 show two sets of representative
results. Figure 5.1 shows the performances for f, with the population sizes of 16
and 48 respectively. Figure 5.2 presents the performances for f 5 with the popula-
tion sizes equal to 192, 256 and 320.

In a certain range of population sizes, the performance of VCS increases as the
population size (ps) grows. This is shown in Figure 5.2, in which the Wvariable
with ps =256 is better than that with ps =192, But when ps =330, the



135

performance slowed down, which implies that if ps is too large, the efficiency
would be degraded.

In a larger range of ps, NvariableS increases as ps grows. This is shown in Fig-
ure 5.3. In the case of NvariableS, specific classifiers are given priority in the
process of conflict resolution (select matched classifier for activation). Therefore,
when population size is big enough, the population would converge to classifiers
not containing ‘#’. This is equivalent to using a system without ‘#’ and use one
classifier for each possible environmental state. An obvious disadvantage of this
type system is its ineffectiveness when dealing with more complicated and larger

problems, particularly, problems with infinite environmental states.

Another point shown by the experiments is that if variables cannot change the
structure of the primitive solutions, i.e. classifiers with variables are not any
better than those without variables in representing the solution, the performance
of VCS does not show much differences from those of CS. The performance
results for f, are used to illustrate this point. f, is a function for which VCS
does not have any representation advantages. Figures 5.4 and 5.5 show the results
when ps = 64 and 128 respectively. It is worth to point out that in the experi-
ments with f,, when ps is large, VCS did not show any inferiority to CS although
it has a larger search space.

The results of f 4 are used to show another point. f, is a function for which VCS
can change the structure of the primitive solutions in a positive way. However,
there is only one situation that this change is beneficial, i.e. when
11*0*100*1*(/1 is included in the population. Therefore, when leaming f,,
VCS did not show off its advantages in most situations. Figure 5.6 shows a case
when VCS outperformed CS. Figure 5.7 shows a typical result.



136

g _F

R Nvariable, 16

...~ Nvariable, 48

£ Nvariable, 128
" Nvariable$, 128

\ﬂ.-o
e Ny

™ _NvariableS, 48

0 50 100 150 200 250 300 350 400

Generation

Figure 5.3: Nvariable and NvariableS of f



137

256+

2444
22 €
2204
208

196
184+

172

Perf 1

148
1364
1244
1124
1004

88

76+

0 40 8 120 160 200 240 280 320

Generation

Figure §.4: 1, performance, ps = 64



138

256+

Nyvariable

243 _ R
£ Nvanables
240 :

2324
2244

216

208-¢
200~
Perf 192+

184~

176
168-
160
152-
1444

136-

128

0 40 8 120 160 200 240 280 320
Generation

Figure 5.5: 1, performance, ps =128



139

Wvariable
s+ Nvariable

NvariableS

b
°.r°
T N oW e

Perf 160

0 40 80 120 160 200 240 280 320

Generation

Figure 5.6: f , performance, ps = 64



140

256-
248+

2404
2324 Whariable

224

2164 >~ NvariableS

2084

“nﬂﬂﬂﬂﬂnh“'}

2

Perf 192
184

176~

168-
160
152+
144

136~

128
0 40 80 120 160 200 240 280 320

Generation

Figure 5.7: 1, performance, ps =128



141

7. The experiments for all the above functions show that when a ps is too smali rela-
tive to the problem, the performance of VCS might be worse than those of Nvari-
able and NvariableS. Figures 5.8 and 5.9 show two examples. Figure 5.8 illus-
trates the performances for f, with ps = 10. Although all the performances
shown in the figure are poor, Wvariable is worse than Nvariable. In Figure 5.9,

Wvariable is worse than both Nvariable and NvariableS.

8. Finally, we have noticed that in our experiments, NvariableS generally performs

poorly. We attribute this problem to the bidding strategy bid = ii;%i{
This bidding strategy caused the problem of "starving the generals" seriously.
Classifiers with ‘#’s have almost no chance to win the bids. Very few sub-
solution structures with ‘#’s are built up. Therefore, the disruptive problem is
more serious. This point also shows the importance of using good data structures

for stable performances.

5.5. Concluding Remarks

Variables are used to change the way in which a set of primitive solutions can be
organized. From a data structures view point, variables are usually able to add connec-
tions among primitive solutions. It has been shown that when ties among primitive
solutions are stronger, the performance is higher and more stable. VCS is a low-level
representation framework with some high-level representation capabilities. It narrows
the gap between the symbolic learning and genetic classifier system leamning in the
sense that VCS has much stronger abilities than CS in representing knowledge struc-
tures and relationships. Yet VCS still keeps the characteristics of classifier systems in
terms of learning mechanisms. Compared with the variable scheme used in Smith’s

LS-1 [Gol89a, Smi80], the VCS variable scheme is more general. More importantly,



Perf

56+
52~

36-

324 i

............ Nvariable

Wvariable

~
e eme——’

~ ANvariableS

0 80

120

Generation

Figure 5.8: 1, performance, ps = 10

160 200 240 280 320

142



143

2567
240-
2244
208+
192

176+ )
_ ————-NvariableS

- —‘—’—_‘”
1604 ™~ _—~ -

Pel'f 128- ..-’-.
ceeeeessse.Nvariable

Wvariable

0 40 8 120 160 200 240 280 320

Generation

Figure 5.9: 1 , performance, ps = 16



144

VCS provides a low-level processing framework that % capable of processing with
variables. The variable sign "*" in VCS is treated uniformly as other symbols. It is
possible to implement learning mechanisms that are used in other frameworks in VCS.
Knowledge structures can be built inic VCS applications with some model relation
rules.

VCS also has promise for use in chunked leaming. The traditional view of
chunks is that they are the compact representations of several items. A schema is an
example of a chunk. The more recent view of chunks is that they could also be data
structures representing processes or procedures. From this point of view, functions in
conventional programming languages are examples of chunks. The introduction of
variables to classifier systems makes rules begin to look like functions. Values are
bound to function parameters when a message matches a condition. The action part is
just the return value(s) from the function call. Between the condition and action parts
is a simple function body. If VCS continues to evolve, making the function describing
the mapping of input to output values more sophisticated, then these systems become
more like a conventional programming language. The only major difference is the
method used for representing values and variables. Maybe this implies that the simple
binary representations of CS and VCS should be the next area for evolution. The
implementation of chunks as functions would make the knowledge being structured as
a lattice rooted in a set of pre-existing primitives [RON86). How to detect, encode and
decode a chunk in VCS, perhaps using techniques from traditional progresuming

languages, would be an interesting research project.

Theoretically, the properties of VCS are applicable to internal message passing
systems. Although there is no internal message passing involved in the experiments in

this work, we expect that VCS will help reduce the number of chains needed because



145

of the possible succinct representation brought by variables. However, since variable
bindings are done in the scope of a classifier, there is no semantic connections between
variables in different classifiers in VCS. Therefore, variables may not be helpful in
reducing the length of the chains. Instances represented by a variable support each
other’s survival in the population. But, more study is needed to answer if variables
have the effect of encouraging co-adaptation of the individuals in a chain and how vari-

ables affect the formation of chains.



146
Chapter 6

Conclusions

This chapter contains two seciioks. 2o7ion 6.1 concludes the contributions of this

dissertation. Secti¢cn 6.2 discusses future research divc: s,

6.1. Contributions of the Dissertation

Over the years, research in machine leaming has been pursued with varying
degrees of intensity, using different approaches and placing emphasis on different
aspects and goals. As a general inductive leazning model, genetic classifier learning
systems emphasize efficient low-level learning, in which lack of knowledge or incom-
plete knowledge at the symbolic name level can be compensated by efficient process-
ing of available information. The genetic learning systems have been applied to prob-
lems, such as knowledge acquisition and dynamic control, where prior heuristic
knowledge needed for solving problems is not available and the environment is noisy.

Although genetic learning exhibits promising properties, its application has been
limited by poor performance, consequences of the rule clustering and rule association
problems, Different selection strategies and credit apportionment algorithms have been

used to solve these problems. However, the results are still not satisfactory.

This dissertation studies the impact of data structures in a framework on the per-
formance and on the resolution of the above problems, The concept of primitive solu-
tions and internal structures of primitive solutions are proposed in this research. Based
on these concepts, we suggest that data structures that support the internal structures of

sub-solutions help solve the above problems without complicating the systems, such as



147

introducing new parameters. In other words, if a data structure can represc::. many
primitive solutions or sub-solutions in a succinct way, the fates of these primitive solu-
tions or sub-solutions are tightly connected. Therefore co-adaptations are encouraged
in such frameworks. Based on the above theory, we tackle the rule clustering and rule
association problems by using data structures that would associate primitive solutions
or sub-solutions together. 'ierarchical and Variable classifier systems are designed and
implemented as two general frameworks for genetic-algorithm-based leaming. In
these frameworks, new data structures are introduced into conventional classifier sys-

tems to associate primitive solutions and sub-solutions.

In the hierarchical classifier systems (HCS), structural ties are imposed on single
classifiers and a new data structure, family, is introduced. Accordingly, the new cross-
over operators that operate on the families are introduced. In HCS, family units make
the individual members strongly related by common interests, gains and loss. There-
fore, their behaviors tend to be for each other rather than against each other. Hence the
probability of sub-solution domination or disruption of the internal structures of sub-

solutions are reduced with reasonable computational complexity.

HCS provides a framework that combines the Michigan approach and the Pitts-
burgh approach, and is a step towards the unification of those two approaches.

The Variable Classifier Systems (VCS) uses a different approach than the struc-
tural ties method used in HCS to introduce better data structures. VCS takes advan-
tages of the semantic meaning of variables. Classifiers in VCS are better data stwec-
tures than those in conventional classifier systems. They have stronger represerifition
abilities. Many solutions can be expressed in a much more succinct way, thesefore

reducing the number of classifiers needed to be found in a search.



148

VCS provides a model for combining a high-level symbolic approach and a low-
level processing approach. Compared with the conventional classifier systems, VCS is
more capable of describiug an abstract world, allowing for the building of models and
knowledge structures as in high-level symbolic representation systems. It thus
becomes possible to adopt techniques in symbolic approaches into the genetic leaming.

Performance wise, HCS and VCS provide two general genetic learning frame-
works which reduce the rule clustering and rule association problems and produce

better performance than conventional classifier systems.

From the view point of methodology, the work on HCS and VCS provides a
different perspective of looking into the fundamental problems of classifier systems.
The work tries to solve the problems by introducing better data structures. There are
two advantages to this approach. First, the introduction of better data structures
reduces the dependence of performance on the complementary mechanisms, such as
the credit apportionment algorithms, and therefore reduces the scope and complexity of
the problems and difficulties involved in the systems. Second, using better data struc-
tures does not introduce any new complementary learning mechanisms into the sys-
tems.

Another contribution of this dissertation is the study on initial populations. This
study provides several general guidelines for designing a better initial population for a
problem. Two measures are defined for determining how good a population is and two
algorithms for generating better initial populations are proposed.

6.2. Future Research Directions

Hierarchical classifier systems are proposed as an approach to provide better dafa

structures for GABL, and to impose structural ties and enforce dependence among



149

classifiers. In such systems, cooperation and co-adaptation are encouraged. When
applying this approach, we suggest that the number of hierarchies needed in a system is
problem dependent. For problems with large search and solution spaces, more hierar-
chies are needed to oifer better data structures and organizations. How to choose an

optimal number of hierarchies for a problem is an interesting research topic.

The experiment results show that bigger family sizes are needed by larger prob-
lemis to achieve better performances when only a relatively small population size is
available. However, a family size that is too big relative to the problem may have a
severe parasite problem and the efficiency would be degraded because of its larger
search space. So, rules for choosing a proper family size are important in maximizing
the potential of this approach. This dissertation only discussed the family size issue
based on the experimental results and offered several general guidelines. More work is
needed to provide concrete principles.

Allowing varied family sizes in a population is arother interesting issue. The
coexistence of different sized families would be amenable to building families accord-
ing to relations 7; and help in reducing the parasite problem.

Classifiers in the variable classifier systems are better data structures than those in
cosiventional classifier systems. The use of variables increases the symbolic processing
ability of genetic learning and makes it possible to combine symbolic and low-level
learning into one framework. Building such a framework is a significant task since to
solve a real world problem effectively and efficiently, different learning approaches are
needed at different stages of a learning [Mic86].

In this dissertation, the hierarchical approach and variable approach are studied
and implemented separately. We believe that the combination of these two approaches

is a framework that has stronger cooperation among classifiers and stronger



150

representation abilities. More work is needed to verify this.

Theoretically, the properties of HCS and VCS are applicable to internal message
passing systems. Although there is no internal message passing in the implementations
of HCS and VCS in this work, we believe that HCS has the additional potential of
increasing the stability of chains. Particularly, HCS is able to reduce the adverse effect
of the payoff delay to the stage-setting classifiers in a chain and thus is especially
beneficial to long chains. Experimental work is needed to verify this. More study is
needed to determine the impact of variables on the internal structures built through the
intemnal message passing.

Finally, from the methodology view point, further investigation is needed on how
better data structures reduce the sensitivity of the performance of genetic learning to
the control parameters and other complementary mechanisms such as credit apportion-
ment algorithms,



151
References

[And86) J.R. Anderson, Knowledge Compilation: the General Learning Mechamism,
in Machine Learning I , R. S. Michalski, J. G. Carbonell and T. M.
Mitchell (ed.), Morgan Kaufmann Publishers, Inc., 1986.

[BeF88] R. K. Belew and S. Forrest, Learning and Programming in Classifier

Systems, Machine Learning 3, (1988), 193-224, Kluwer Academic
Publishers.

[Bet81] A. D. Bethke, Genetic Algorithms as Function Optimizer, Ph.D. Thesis,
University of Michigan, 1981.

[Boo82] L. B. Booker, Intelligent Behavior as an Adaptation in the Environment,
Ph.D. Thesis, Technical Report, University of Michigan, 1982.

[Boo89] L. B. Booker, Triggered Rule Discovery in Classifier System, Third
International Conference on Genetic Algorithms, 1989, 265-274.

[Bri81]  A. Brindle, Genetic Algorithms for Function Optimization, Ph.D. Thesis,
University of Alberta, 1981.

[Car90] J. Carbonell, Introduction: Paradigms for Machine Learning, in MACHINE
LEARNING: Paradigms and Methods, J. Carbonell (ed.), MIT/Elsevier,
1990, 1-11.

[DeJ75] K. A. Delong, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, Ph.D. Thesis, University of Michigan, 1975.
[DeJ87] K. A. Delong, On Using Genetic Algorithms to Search Program Spaces,

Second International Conference on Genetic Algorithms and Their
Applications, MIT, Cambridge, MA, 1987, 210 - 216.



152

[Del88] K. A. DeJong, Learning With Genetic Algorithms: An Overview, Machine
Learning 3, (1988), 121-138, Kluwer Academic Publishers.

[For82] C. L. Forgy, Rete: A Fast Algorithm For the Many Pattern/Many Object
Pattern Match Problem, Artificial Intelligence 19, (1982), 17 - 37,

[For85] S. Forrest, A Study of Parallelism in the Classifier System and its
Application to Classification in KL-ONE Semantic Networks, Ph.D. Thesis,
University of Michigan, 1985.

[Gil85] A. M. Gillies, Machine Learning Procedures for Generating Image Domain
Features Detectors, Doctoral Dissertation, Ann Arbor, 1985.

[Goi83] D. E. Goldberg, Computer-Aided Gas Pipeline Operation Using Genetic
Algorithms and Rule Learning, Ph.D. Thesis, University of Michigan, 1983.

[Gol89a] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning, Addison-Wesley Publishing Company, 1989.

[Gol89b] D. E. Goldberg, Sizing Populations for Serial and Parallel Genetic
Algorithms, Proceedings of the Third International Conference on Genetic
Algorithms, 1989, 70-80.

[Gre87] J.J. Grefenstette, Incorporating Problem Specific Knowledge into Genetic
Algorithms, Genetic Algorithms and Simulated Annealing, 1987, 42 - 60.

[Hol75] J. H. Holland, Adaptation in Natural and Artificial Systems, The University
of Michigan Press, 1975.

[HoR78] J. H. Holland and J. S. Reitman, Cognitive Systems Based on Adaptive
| Algorithms, in Pattern Directed Inference Systems, D. A. Waterman and F.
Hayes-Roth (ed.), Academic Press, New York, 1978, 313-329.



153

[Hol86] J. H. Holland, Escaping Brittleness: The Possibilities of General Purpose
Learning Algorithms Applied to Parallel Rule-Based Systems, in Machine
Learning II, R. S. Michalski, J. G. Carbonell and 7. M. Mitchell (ed.), 1986.

[HHN86] J. H. Holland, K. J. Holyoak, R. E. Nisbett and P. R. Thagard, Induction:
Processes of Inference, Learning, and Discovery, MIT Press, Cambridge,
1986.

[HoU69] 1J. E. Hopcroft and J. D. Ullman, Formal Language and Their Relation to
Automata, Addison-Wesley, Reading, MA, 1969.

[Jac86]  Peter Jackson, Introduction to Expert Systems, Addison-Wesley Publishing
Company, 1986.

[LRN86] John E. Laird, Paul S. Rosenbloom and Allen Newell, Chunking in SOAR.
The Anatomy of a General Learning Mechanism, Machine Learning 1,
(1986), 11 - 46, Kluwer Academic Publishers.

[Mic86] Ryszard S. Michalski, Understanding the Nature of Learning: Issues and
Research Directions, in Machine Learning II, R. S. Michalski, J. G.
Carbonell and T. M. Mitchell (ed.), Morgan Kaufmann Publishers, Inc.,
1986.

[Nil71] Nils J. Nilsson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill Book Company, 1971.

[Nil83]  Nils J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co.,
1983.

[Nor86] Donald A. Norman, Reflections on Cognition and Parallel Distributed
Processing, Parallel Distributed Processing I, 1986.

[Qui83] J. R. Quinlan, Leaming Efficient Classification Procedures and their



[Qui%0)

[Ric83]
[Rio86)

[Rio89]

[RoN86]

[RLN87]

[RHM86]

[ScG85]

154

Application to Chess End Games, in Machine Learning I, R. S. Michalski,
J. G. Carbonell and T. M. Mitchet) (ed.), 1983.

1. R. Quinlan, Probabilistic Decision Trees, in Machine Learning IlI, Yves
Kodratoff and Ryszard Michalski (ed.), Morgan Kaufmann Publishers, Inc.,
1990, 140-153.

Elaine Rich, Artificial Intelligence, McGraw - Hill, Inc., 1983.

R. L. Riolo, LETSEQ: An Implementation of the CFS-C Classifier System
in a Task Domain that Predicts Letter Sequences, Technical Report,

University of Michigan, 1986.

R. L. Riolo, The Emergence of Default Hierarchies in Learning Classifier
Systems, Proceedings of the Third International Conference on Genetic

Algorithms, 1989, 322 - 327.

Paul S. Rosenbloom and Allen Newell, The Chunking of Goal Hierarchies:
A Generalized Model of Practice, in Machine Learning II , R. S. Michalski,
J. G. Carbonell and T. M. Mitchell (ed.), Morgan Kaufmann Publishers,
Inc., 1986.

Paul S. Rosenbloom, John E. Laird, Allen Newell and Robert McCarl, A
Preliminary Analysis of the Soar Architecture as a Basis for General
Intelligence, Draft: Proceedings MIT Workshop on Foundations of
Artificial Intelligence, 1987.

D. E. Rumelhart, G. E. Hinton and J. L. Mcclelland, A General Framework
for Parallel Distributed Processing, Parallel Distributed Processing I, 1986.

J. D. Schaffer and J. J. Grefenstette, Multi-objective Learning via Genetic

Algorithms, 9th International Joint Conference on Artificial Intelligence,



155

1985, 593-595.

[SCE89] J. D. Schaffer, R. A. Caruana, L. J. Eshelman and R. Das, A Study of
Control Parameters Affecting Online Performance of Genetic Algorithms
for Function Optimization, Proceedings of the Third International

Conference on Genetic Algorithms, 1989, 51 - 60.

{Sch88] D. Schuurmans, Representation and Selection Techniques for Genetic

Leaming Systems, M.Sc. Thesis, University of Alberta, 1988.

[ShS89] L. Shu and J. Schaeffer, VCS: Variable Classifier Systems, Proceedings of
The Third International Conference on Genetic Algorithms, 1989.

[ShS91] L. Shu and J. Schaeffer, Adding Hierarchies to Classifier Systems,
Proceedings of The Forth International Conference on Genetic Algorithms,
1991.

[Smi80] S. F. Smith, A Learning System Based on Genetic Adaptive Algorithms,
Ph.D. Thesis, University of Pittsburgh, 1980.

[SmG90] R. E. Smith and D. E. Goldberg, Reinforcement Leaning With Classifier
Systems, Al, Simulation and Planning in High Autonomy Systems, Los
Alamitos, 1990, 184-192.

(Tsy73] Y. Z. Tsypkin, Foundations of the Theory of Learning Systems, Academic
Press, New York and London, 1973.

[Wil86) S. W. Wilson, Knowledge Growth in an Artificial Animal, in Adaptive and

Learning Systems: Theory and Applications, K. S. Narendra (ed.), Plenum,
New York, 1986, 255-264.

[Wil88] S. W. Wilson, Bid Competition and Specificity Reconsidered., Complex
Systems 2(6), (1988), 705-723.



156

[WiG89] S.W. Wilson and D. E. Goldberg, A Critical Review of Classifier Systems,
Proceedings of the Third International Conference on Genetic Algorithms,
1989, 244-254.

[ZhG89] H. Zhou and J. J. Grefenstette, Learning by Analogy in Genetic Classifier
Systems, Proceedings of the Third International Conference on Genetic

Algorithms, 1989, 291-298.



157

Appendix 1

The following is the definition for the minimal Boolean function of eight

variables used in this work.

S (x0,%1,%2, %3, %4, X5, Xg, X7) =

(NOT (xo) AND xy AND NOT (x;) AND NOT (x,) AND x5 AND NOT (x¢) AND x;) OR
(NOT (x,) AND NOT (x,) AND NOT (x3) AND NOT (x3) AND x,AND x5 OR

(NOT (xo) AND x, AND NOT (x,) AND NOT (x3) AND x,AND x4 AND NOT (x,)) OR

(NOT (xo) AND NOT(x,) AND NOT (x3) AND NOT (x3) ANDx,AND NOT (x¢) AND x;) OR
(NOT (xo) AND NOT (x}) AND x, AND NOT(x4) AND NOT (x4) AND x4 AND x;) OR

NOT (x,) AND x, AND x3 AND NOT (x5) AND NOT (x¢) AND x,AND ) OR

(NOT (x0) AND x, AND NOT (x3) AND x,AND NOT(xs) AND x¢) OR

{xg AND x, AND x4 AND x,AND NOT (xs)) OR

(NOT (xo) AND NOT(x,) AND x, AND NOT (x;) AND NOT (xs) AND x4) OR

{xo AND NOT (x3) AND x3 AND x,AND x5 AND NOT (xs) AND NOT(x4)) OR

{xg AND NOT (x5) AND x3 AND NOT (x) AND x5 AND x4 AND NOT (x4)) OR

(xo AND NOT (x,) AND x3 AND x4 AND NOT (x,) AND NOT (x¢) AND x4) OR

{xy AND x, AND NOT (x3) AND x,AND x4 AND x,) OR

(xo AND NOT (x;) AND xy AND NOT(x) AND NOT (x5) AND NOT (xs) AND NOT (xy)) OR
(xo AND x AND NOT (x3) AND x,AND x5 AND x4 AND NOT (x4)) OR

(xo AND NOT (x,) AND NOT (x;) AND NOT (x) AND x4 AND x4) OR

(NOT (xo) AND x, AND NOT (x;) AND NOT (xs) AND x4 AND x7) OR

(NOT (xo) AND NOT (x,) AND x5 AND NOT (x3) AND x4, AND x4 AND NOT (x4)) OR

{xo AND NOT (x1) AND x3 AND x3 AND x,AND x5 AND NOT (x4)) OR

(xoAND x, AND x; AND NOT (x5) AND NOT(xg) AND x,AND ) OR

(xy AND NOT (x3) AND x4 AND NOT (x4) AND NOT (x5) AND x,) OR

(NOT (x,) AND NOT (x,) AND x4 AND x4, AND NOT (x5) AND NOT (x4)) OR

(NOT (xo) AND NOT (x,) AND NOT (x3) AND NOT (x,) AND NOT (x5) AND x4) OR

(x; AND x3AND NOT (x) AND NOT (xs) AND x4 AND NOT (x7)) OR

(xg AND NOT (x) AND x, AND x,AND NOT (x5) AND x;) OR

(xo AND x; AND NOT (x) AND NOT (xs) AND x4 AND NOT (x5)) OR

(NOT (xo) AND xy AND x; AND NOT (x3) AND x4AND x5 AND NOT (x¢) AND NOT (x5)) OR



158

(xgAND x, AND x3 AND x5 AND x5 AND NOT (x¢) AND NOT (x)) OR

(NOT (xo) AND MOT (x,) AND x; AND NOT (x3) AND

NOT (x) AND x5 AND NOT (x¢) AND NOT (x)) OR

(NOT (x,) AND NOT (x,) AND x3 AND x4 AND x5 AND NOT (x¢) AND NOT (x7)) OR
(¥o AND NOT (x2) AND NOT (xy) AND NOT (x) AND x5AND NOT (x5)) OR

(xo AND NOT(x3) AND NOT (x¢) AND x5 AND NOT (x¢) AND x,) OR

(xoAND x, AND x3 AND x3AND x, AND NOT (x¢)) OR

(NOT (xo) AND NOT(x,) AND NOT (x3) AND x,AND x5 AND x;) OR

(NOT (xg) AND x, AND NOT (x;) AND x3 AND NOT (x) AND x5 AND NOT (x¢)) OR
(xo AND NOT(xy) AND NOT (x,) AND x5 AND NOT (x6) AND x73) OR

(NOT (xo) AND xy AND x, AND NOT (x3) AND NOT (x4 AND x5 AND x4 AND NOT(x3)) OR
(NOT (xo) AND x, AND x3 AND x3 AND x4, AND x5 AND x¢ AND NOT (x5)) OR
(NOT (xo) AND x, AND x5 AND NOT(x) AND x5 AND NOT (x¢) AND x4) OR
(NOT (x,) AND x; AND NOT (x;) AND x3 AND x5 AND NOT (x) AND xy} OR

(xo AND x; AND x,AND NOT (x5) AND NOT(x¢) AND NOT (x5)) OR

(NOT (xo) AND NOT (x,) AND x3 AND NOT (x) AND x¢ AND NOT (x7)) OR

(NOT (x,) AND x, AND x, AND NOT (x3) AND

NOT (x) AND NOT (x5) AND NOT (x¢) AND NOT (xy)) OR

(x, AND x; AND x3 AND x,AND NOT (xs) AND NOT (xs) AND NOT(x)) OR
(NOT (x) AND NOT (x,) AND NOT (x3) AND x5 AND x4 AND NOT(x9)) OR

(NOT (xo) AND NOT (x3) AND x3 AND NOT(x) AND x5 AND x;) OR

(xo AND x, AND x3 AND x4 AND NOT (x,) AND x4 AND x7) OR

(NOT (x,) AND x, AND NOT(x;) AND NOT (x5) AND x,AND NOT (x5)) OR

(NOT (xo) AND NOT (x{) AND x5 AND x,AND x5 AND x4 AND x7) OR

(xo AND NOT (x;) AND NOT (x,) AND NOT (xy) AND x,) OR

(xo AND NOT (x3) AND x3 AND x,AND x5 AND x4 AND x;) OR

(NOT (xo) AND x, AND NOT (xy) AND x, AND NOT (xs) AND x;) OR

(NOT (x5) AND NOT (x,) AND x3 AND x; AND NOT (x AND NOT (x5) AND ) OR
(NOT (xo) AND NOT (x;) AND NOT (x3) AND NOT (x3) AND

NOT (x) AND NOT (xs) AND NOT(x¢)) OR

(xo AND NOT (x3) AND NOT (x5) AND NOT (xs) AND x¢ AND NOT (x7)) OR

(NOT (xo) AND x, AND NOT (x,) AND NOT (xs) AND x4 AND NOT (x,)) OR

(x; AND x3 AND x4 AND NOT (x5) AND x¢ AND x,) OR

(NOT (xo) AND NOT (x,) AND NOT(x) AND x3 AND x4 AND NOT (x5) AND x3).



159

Appendix 2

The following is an initial population for learning function s, in a classifier

system.

#i0#/1
#1111
10##/0
#11#/0
01#1/1
0#11/1
13510/0
01#1/1
1#HH1
0111/1
01##/0
#0#0/0
0001/1
#001/0
#10#/0
##0/0
111#/0
010
0#10/0
10#0/1
0#10/1
1100/0
001#/0
1410
#10/1
1#00/1
1#11/1
0111/0
#011/0
#000/1
11441
111171
#0##/0
1100/0
110



100#/1
HI1#/0
100#/0
#1#1/0
0#0#/1
11##/1
#001/0
1#HH1
HOIHH0
#400/0
0#01/1
010#/1
0#0#/0
#00#/1
#11/0
#100/0
00#1/0
0011/1
#01#/0
#01/1
011#/0
1#11/0
#111/0
1010/0
011#/1

160



Appendix 3

161

The following is an initial population for learning function #, in an HSC with a

family size of 2.

{HHORI\, 111/}
{10##/0, #114/0}
{01#1/1, O#11/1}
{1#40/0, 01#1/1}
{14###1,0111/1}
{01:##/0, #0#0/0}
{0001/1, #001/0}
{#10#/0, ##40/0}
{111#/0, OiHH#/0}
{0#10/0, 10#0/1}
{0##0/1, 1100/0}
{001#/0, 1##/0}
{##10/1, 1#00/1}
{1#11/1, 0111/0}
{#011/0, #000/1}
{11#4/1, 1111/1}
{#0#H}0, 1100/0}
{1340, 1004#/1}
{##1#/0, 100#/0}
{#1#1/0, O#0#/1 }
{11441, #001/0}
{1341, #0##0)
{##00/0, 0#01/1}
{010#/1, 0#0#/0}
{#00#/1, ##11/0}
{#100/0, 00#1/0}
{0011/1, #01#/0}
{##01/1, 011#/0})
{1#11/0, #111/0}
{1010/0, 011#/1}



