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Abstract

The present work deals with the development of a direct simulation strategy for solv-

ing the motion of spherical particles in non-Newtonian liquids. The purely viscous

(non-elastic) non-Newtonian liquids are described by Bingham and thixotropy models.

Validation of the strategy is performed for single phase (lid driven cavity �ow) and two

phase �ows (sphere sedimentation). Lid driven cavity �ow results illustrate the �ow

evolution of thixotropic liquid and subtle di�erences between thixotropic rheology and

pseudo Bingham rheology. Single sphere sedimentation in Bingham liquid is shown to

be in�uenced by the yield stress of the liquid. Time-dependent properties such as ag-

ing prominently a�ect the settling of a sphere in thixotropic liquid. The hydrodynamic

interactions between two spheres are also studied at low and moderate Reynolds num-

bers. In thixotropic liquid, an intriguing phenomenon is observed where the separation

distance between the spheres �rst increases and then rapidly decreases.
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Chapter 1

Introduction

1.1 Project concept

Multiphase �ows represent a wide range of �ow conditions and applications in present

world. They can be classi�ed according to the physical state of the components such

as liquid-gas, solid-gas and solid-liquid. Slurry �ows, hydrotransport, sedimentation,

�uidization and particulate conveying are the prime examples of solid-liquid multiphase

�ows. Other examples of solid-liquid �ows found in nature include quicksand, silt carried

by a river and avalanches. Gravitational settling, used as method of separation, is an

important aspect of many industrial processes. Sometimes the objective is to recover

the solid particles from liquid and other times to extract the liquid (such as water) so

that it can be reused in the process.

There are ample applications of solid-liquid suspensions in oil sands industry. The

hot water process, most general process used in industry to extract bitumen from the oil

sands, involves the use of hot water which has a tendency to activate the clay particles

originally found in oil sand [1]. These activated clay particles combine together and make

a card house like structure. This card house like structure coupled with water gives rise

to a network which exhibit complex rheological behavior similar to time-dependent non-

Newtonian liquids. This multiphase mixture possesses a yield stress which in�uences

the design, operation and e�ciency of oil sands processing, especially in those parts of

1
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Figure 1.1: Schematic of the oil sands tailings suspensions (Mikula et al. [2])

the process related to separation and to tailings (process residuals).

The process residuals dumped to tailings pond contain sand particles, clay, water

and residual bitumen mainly. When the tailings stream is dumped, the coarse solid

particles segregate quickly and form a dyke and beach (refer to Figure 1.1), while the

remaining slurry consisting of �ner particles and residual bitumen �ows over the already

formed beach. For initial few days, a faster settling of particles takes place, creating a

free water zone at the top. However after initial rapid settling, the suspension develops a

consistency with time exhibiting non-Newtonian properties (Sheeran [2]). This suspen-

sion is usually known as mature �ne tails (MFT) which has very high viscosity with high

yield stress (Mackinnon [3]). If the net gravity force acting on the �ne particles are not

enough to overcome the yield stress, sand particles and/or bitumen droplets are trapped

into the clay network hindering the gravity based separation. In practical conditions,

consolidation rate of MFT is very slow therefore it remains in that state for decades

(Kasperski [4]) which is a major environmental issue due to the problem associated with

land reclamation and recovery of water .

The present work is motivated by the issues related to clay network formation and

hindered gravity based separation occurring in oil sands process and concentrates on

the motion of particles in non-Newtonian liquids. In order to mimic the network with

stable consistency, the clay-water mixture is treated as non-Newtonian liquid. The inert
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particles (usually sand particles) are considered explicitly and their sedimentation in

the clay network is the focal point of this thesis. In the simulations, the physics of

a solid particle is governed by the net gravity and hydrodynamics forces (particularly

drag) acting on it. Throughout this work, the particles are treated as solid spheres for

convenience.

1.2 Literature review

The sedimentation of particles through Newtonian liquid has been exhaustively re-

searched with theoretical, experimental and numerical studies easily available in lit-

erature. However research activities concentrating on sedimentation of multi-particles

and of clusters of particles in non-Newtonian liquids are a matter of few studies. The

past three to four decades have seen an increased interest in research activities related

to non-Newtonian solid-liquid suspensions due to two basic reasons. First is the devel-

opment of various industries like polymer, oil sands and petroleum where behavior of

non-Newtonian solid-liquid suspensions is critical to the growth of respective industry.

The second reason is the tremendous growth in computing power coupled with develop-

ment of ingenious numerical methods. Here, �rst we provide a brief overview of studies

based on solid-liquid suspensions with viscoelastic liquids and later we explore the same

with purely viscous liquids.

In 1977, Caswell [5] theoretically examined the sedimentation of two spheres in a

viscoelastic liquid and reported that attraction or separation of two spheres depends

upon the chosen liquid's parameters and initial separation distance between the spheres.

This behavior was experimentally con�rmed by Riddle et al. [6]. Allen and Uhlherr

[7] conducted an experimental study of sedimentation of particles in moderately shear-

thinning viscoelastic �uids and reported the aggregation of settling particles. Similar

results were reported by Bobro� and Phillips [8] who experimentally examined the sedi-

mentation of concentrated, non-colloidal suspensions in viscoelastic �uids in the viscous

�ow regime. They observed that apart from catalyzing the aggregative sedimentation,

shear-thinning and elastic properties of liquids could cause time-dependent settling ve-
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locity. Joseph et al. [9] studied the sedimentation of two spheres with small side-by-side

separation distance and reported an attraction between the spheres which resulted in

chaining of spheres. Qualitatively similar chain formation of particles sedimenting in

non-Newtonian viscoelastic media have been reported by Singh et al. [10] and Patankar

and Hu [11]. Recently Phillips and Talini [12] proposed an asymptotic theory based

on multipole expansions to represent weak hydrodynamic interactions between widely

separated particles sedimenting in a viscoelastic liquid and predicted that the distant

particles above, below and at similar vertical positions attract each other during settling

process.

Moving on to solid-liquid suspension studies with purely viscous liquids, Kawase and

Ulbrecht [13] predicted the settling velocity of suspensions of spheres in power-law �uids

by employing free surface cell model. However as pointed out by Chabbra [14], their

solution obtained with n = 1 deviated from the well-established results for Newtonian

�uids. Chabbra et al. [15] experimentally examined the hindered settling velocity of

particle suspensions in power-law liquids as a function of particle size, concentration,

and the liquid rheology (n ≥ 0.8). Jaiswal et al. [16] used free surface cell model to

obtain the theoretical solution of creeping �ow of power law liquids through assemblages

of spherical particles. Their theoretical predictions of the total drag coe�cient were

satisfactory in the range of 1 ≥ n ≥ 0.6. Other notable studies related to solid-liquid

suspension in power law based shear-thinning liquids include Zhu and Clark [17], Daugan

et al. [18, 19], Zhu et al. [20] and Huang et al. [21].

Hydrodynamic interaction of two or more particles in non-Newtonian liquids pos-

sessing yield stress is a matter of recent research and was tackled numerically by Liu

et al. [22] and later Merkak et al. [23], Peng et al. [24] and Yu et al. [25], all using

time-independent rheologies. Similarly the motion of solid particles through thixotropic

liquids has received extensive attention in recent experimental/numerical work (Ferroir

et al. [26], Gueslin et al. [27, 28], Yu et al. [29] and Tabuteau et al. [30]) which demon-

strate the sedimentation velocities of spherical particles as a function of time or distance

traveled and the hydrodynamic interaction between the spherical particles.
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1.3 Thesis outline

Chapter 2 provides an introduction to the numerical �ow solver (lattice-Boltzmann

method) and non-Newtonian liquid models used in this research. We describe the consti-

tutive equations and implementation of lattice-Boltzmann method and non-Newtonian

liquid models.

Chapter 3 is devoted to the validation of numerical procedure by testing it against two

benchmark problems, namely channel �ow and lid driven cavity �ow. Since thixotropic

liquid exhibits a complex time-dependent rheological behavior, initially the simulations

were performed for comparatively easier to understand time-independent Bingham rhe-

ology. Later in the chapter we extend the scope of study by performing the simulations

with a thixotropic liquid.

In chapter 4, we test our simulation tool for two phase systems, studying the sed-

imentation of a single spherical particle in non-Newtonian liquids. In order to build

credibility, �rst the validation is done for sphere sedimentation in a Newtonian liquid.

Further we study the cases of Bingham liquid �ow past a �xed sphere and the sedimen-

tation of a sphere in Bingham liquid. The last study in this chapter discusses single

sphere sedimentation in a thixotropic liquid. In this we study the e�ect of aging and

Reynolds number on the sedimentation of a sphere.

Taking the complexity of two phase system to next level, we then examined the

motion of two spheres (one above the other) in Newtonian and non-Newtonian liquids

at low and moderate Reynolds numbers (chapter 5). The �rst study in this chapter is

devoted to the hydrodynamic interaction of two spheres sedimenting in a Newtonian

liquid at low and moderate Reynolds number. At low Reynolds numbers two spheres

are found to move with equal velocity while at moderate Reynolds number, the trailing

sphere moves faster than the leading sphere. Further we consider the sedimentation

of two spheres in Bingham liquid at low and moderate Reynolds numbers and show

the same qualitative behavior as observed with Newtonian liquid. Finally the study of

two spheres sedimentation in thixotropic liquid is performed with two di�erent Reynolds
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number and an intriguing behavior is observed with both Reynolds numbers. We explain

this intriguing behavior by considering the e�ect of various properties of thixotropic

liquids (yield stress, memory and shear-thinning) at di�erent time periods.

The �nal chapter of this thesis is devoted to concluding remarks and consists of a

brief discussion of results and proposed directions for future work.
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Chapter 2

Methods and techniques

2.1 Lattice-Boltzmann method

2.1.1 Introduction

Lattice-Boltzmann method (LBM) is a well established and frequently used method for

simulating liquid �ows. It has a second order accuracy and particularly regarded an

e�cient �ow solver for �ows involving interfacial dynamics and complex geometries [1].

The development of LBM is based on molecular dynamics approach where focus is on

microscopic level properties. In other numerical methods, like �nite element and �nite

di�erence, liquid �ows are solved by directly discretizing the Navier-Stokes equations

while in molecular dynamics each particle is followed. The basic idea of the LBM

is to construct a simpli�ed kinetic model which incorporates some essential features

of microscopic processes so that the macroscopic averaged properties obey the desired

macroscopic equations [1].

LBM is originated from lattice gas automata theory in which particles are distributed

on a lattice of nodes. Each particle has certain directions of velocities at each node. At

each time step a particle is involved in two sequential processes: streaming and collision.

In the streaming process, the particle moves from one node to the nearest node in the

direction of its velocity and in collision it interacts with other particles reaching at the

node and changes its velocity as per collision rule (see Figure 2.1). For computation many

10
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possible lattices can be used, which are discretized over time and space. Hardy et al.

[2] proposed a square lattice for studying the �ow properties of liquids. Frisch et al.[3]

employed a symmetrical hexagonal lattice after �nding the importance of symmetry

of the lattice for the recovery of Navier-Stokes equations. LBM di�ers with lattice

gas automata by neglecting individual particle motion and particle-particle correlations

and focusing on average macroscopic behavior in which dimensionless mass densities

are distributed along the velocity directions [4]. This modi�cation also eliminates the

problem of statistical noise su�ered by lattice gas automata method.

2.1.2 Lattice-Boltzmann equations

We consider a 4D face-centered-hyper-cubic (FCHC) lattice and a 3D projection of that

lattice is shown in Figure 2.2. This lattice has 18 possible velocity directions (D3Q18

model). Since it is a 3D projection of a 4D lattice, a weight factor is associated with

some of the directions. Dimensionless mass densities can be described by a real function

Ni(x, t) and they are associated with velocities ci where the subscript i indicates the

velocity direction the mass density is traveling in, x is the position on the lattice and t

is the time. The evolution equation of the mass densities is given by

Ni(x + ci, t+ 1) = Ni(x, t) + Ωi(N) (2.1)

The mass density at position x moves to the position x + ci with each time step where

collision can modify its mass density. Here Ωi(N) is the collision operator which repre-

Figure 2.1: Demonstration of some possible streaming (pre-collision) and post-collision
states.
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Figure 2.2: 3D projection of a 4D FCHC lattice

sents the rate of change of mass densities from collision. This collision operator depends

upon the all components of mass densities and is required to satisfy conservation of mass

and momentum at each lattice:

∑
i

Ωi(N) = 0 (2.2)

∑
i

ciΩi(N) = f (2.3)

where f is optional external force (e.g. gravity) that drives the �ow.

Frisch et al. [5] has reported that Equation 2.1 is equivalent to Navier-Stokes equa-

tions when Ω assures convergence of lattice-Boltzmann scheme to the following equilib-

rium solution:

Ni =
miρ

24
[ 1+2ci · u+3{cici : uu− 1

2(uu)}−6ν{(ci · ∇)(ci·u)− 1
2∇·u}+O(u3, u∇u) ]

(2.4)
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where mi is weight factor for ci, u is the velocity vector while ρ and ν are the density

and kinematic viscosity, respectively. Before going further, it is worth mentioning here

that in lattice-Boltzmann scheme, the units of distance and time are unit lattice space

and unit time step, respectively. All the liquid properties and �ow variables are scaled

to dimensionless quantities with in certain ranges (e.g. ρ ∼ 8, 0.25 > ν > 10−5) [6]. All

the parameters de�ned by LB units in this work are considered as dimensionless and

scaled in this way. Now momentum and density can be calculated by notions

ρ = ρ(x, t) =
∑
i

Ni(x, t) (2.5)

ρu = ρu(x, t) =
∑
i

ciNi(x, t) (2.6)

Substituting Equation 2.4 into,2.1 carrying out the summation over all i, �nally using

the constraint given by Equation 2.2 and symmetry properties of the FCHC lattice, we

obtain the following equation for mass conservation:

∂ρ

∂t
+∇ · ρu = 0 (2.7)

To recover momentum balance equation, we substitute Equation 2.4 into Equation

2.1 multiplied by ci, summate over i and use the constraint given by Equation 2.3 and

symmetry properties of the FCHC lattice. Carrying out all this leads to the following

equation:

∂

∂t
(ρu) +∇ · ρuu = −∇P +∇ · ρν(∇u + (∇u)T )−∇(1

2ρν∇ · u) + f (2.8)

The Equation 2.8 is Navier-Stokes equation only in incompressible limit. Since the

velocity range considered in lattice-Boltzmann scheme is |u| < 0.2 [6] for incompress-

ibility limit (the speed of sound in the lattice-Boltzmann scheme is of the order of one),

the higher order terms represented by O(u3, u∇u) in Equation 2.4 have been neglected.
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Consideration of these terms would have caused some additional terms in Equations 2.7

and 2.8 giving obvious deviation from the Navier-Stokes equations.

2.1.3 Implementation of lattice-Boltzmann method

There are various possible implementations of LBM. In present work, we make use of

the formulation by Eggels and Somers [6], which is described in this section.

Time evolution of mass densities is described in Equation 2.1, however a proper

de�nition of Ω(N) is still required so that lattice-Boltzmann scheme converges to an

equilibrium solution. To achieve this, Eggels and Somers rede�ne Equation 2.1 as (stag-

gered formulation of the LB equation):

Ni(x + 1
2ci, t+ 1

2) = Ni(x− 1
2ci, t− 1

2) + Ωi(N) (2.9)

By doing a �rst order Taylor expansion around x and t and neglecting higher order

terms

Ni(x± 1
2ci, t± 1

2) = Ni(x, t)± 1
2ci · ∇Ni(x, t)± 1

2∂tNi(x, t) (2.10)

we �nd

Ωi(N) = Ni(x + 1
2ci, t+ 1

2)−Ni(x− 1
2ci, t− 1

2) (2.11)

= ci · ∇Ni(x, t) + ∂tNi(x, t)

and now substituting Ni(x, t) from Equation 2.4, we get

Ωi(N) =
miρ

12
((ci · ∇)(ci·u)− 1

2∇ · u) +
mi

12
ci·f (2.12)

Combining the Equations 2.10 and 2.11, we obtain

Ni(x± 1
2ci, t± 1

2) = Ni(x, t)± 1
2Ωi(N) (2.13)
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Substituting the value of Ni(x, t) and Ωi(N) from Equations 2.4 and 2.12, respectively

into the Equation 2.13 we obtain

Ni(x± 1
2ci, t± 1

2) =
mi

24
[
ρ(1 + 2ci · u + 3cici : uu− 1

2(uu)− 6ν(ci · ∇)(ci·u)

−1
2∇.u)± ρ((ci · ∇)(ci·u)− 1

2∇ · u) + ci·f ] (2.14)

which can be rewritten in terms of a n× n matrix Eik and a solution vector β±k as

Ni(x± 1
2ci, t± 1

2) =
mi

24

n∑
k=1

Eikβ
±
k (x, t) (2.15)

where n is the number of velocity directions. β±k , the solution vector contains liquid

properties such as the density and velocity. For D3Q18 scheme (n = 18) which is used

in this work , the matrix Eik and solution vector β±k are given by

Eik =



1, 2cix, 2ciy, 2ciz, 3(c2ix − 1
2), 6cixciy, 3(c2iy − 1

2),

6cixciz, 6ciyciz, 3(c2iz − 1
2), cix(3c2iy − 1), ciy(3c2ix − 1),

cix(2c2iz + c2iy − 1), ciy(2c2iz + c2ix − 1), ciz(3c2ix + 3c2iy − 2),

ciz(c2iy − c2ix), 3(c2ix − c2iy)2 − 2, (c2ix − c2iy)(1− 2c2iz)


(2.16)

and

β±k (x, t) =



ρ, ρux ± 1
2fx, ρuy ±

1
2fy, ρuz ±

1
2fz,

ρ(uxux) + ρ(
±1− 6ν

6
)(2∂xux),

ρ(uxuy) + ρ(
±1− 6ν

6
)(∂xuy + ∂yux),

ρ(uyuy) + ρ(
±1− 6ν

6
)(2∂yuy),

ρ(uxuz) + ρ(
±1− 6ν

6
)(∂xuz + ∂zux),

ρ(uzuy) + ρ(
±1− 6ν

6
)(∂zuy + ∂yuz),

ρ(uzuz) + ρ(
±1− 6ν

6
)(2∂zuz),

T±1 , T
±
2 , T

±
3 , T

±
4 , T

±
5 , T

±
6 , F

±
1 , F

±
2



(2.17)
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with T±1 , T
±
2 , T

±
3 , T

±
4 , T

±
5 , T

±
6 are six third-order terms while F±1 , F

±
2 are two fourth-

order terms. See appendix A for the sequential time step procedure of Equation 2.15.

2.1.4 Boundary conditions in the LBM

Boundary conditions are the constraints speci�ed to model interactions between liquid

and objects as well as between the always �nite lattice and its surrounding. In the

following two types of commonly used boundary conditions are presented; bounce-back

boundary condition and periodic boundary condition.

Every time the interaction between an object and liquid �ow is of interest, no-

slip boundary condition comes into the picture. Wolfram [7] and Lavallee et al. [8]

used a particle distribution function bounce back scheme to mimic no-slip boundary

conditions at plane walls. In this scheme, the particle distribution is re�ected back to

the node it comes from. Applying the bounce back scheme at a curved boundary is

not that straightforward since the points of the curve may not coincide with lattice

nodes. Therefore some sort of interpolation and extrapolation is required. The detailed

explanation of this technique can be seen in appendix B.

Periodic boundary condition is important for dealing with the �niteness of the mod-

eled system. This condition is implemented by connecting the edges of the simulated

lattice with their opposites. This results in a system shaped like a hyper-torus. The

implementation of this type of boundary condition is very easy, it is only necessary to

copy particle distributions leaving the lattice at one side to the other side of the lattice

cube resulting in an incoming particle distribution.

2.2 Non-Newtonian liquid models

Under the conditions of steady �ow, if the shear stress (τ) needed to maintain the �ow of

the liquid is proportional to the shear rate (γ̇) , the liquid is termed as Newtonian liquid.

The proportionality constant is known as dynamic viscosity or simply viscosity (µ) of the

liquid which is independent of shear rate. Many liquids do not appear to follow the linear
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Newtonian stress-strain relationship under normal conditions (τ 6=µγ̇). Their viscosities

vary with di�erent parameters such as shear rate and time. These types of liquids are

termed as non-Newtonian liquids. Non-Newtonian liquids can be broadly classi�ed into

two categories:1) Viscoelastic liquids 2) Purely viscous liquids. Viscoelastic liquids whose

�ow properties are the combination of elastic and viscous behavior, are not considered

in present work. A liquid model is a mathematical expression which represents the

essential �ow properties of liquid. A brief insight into the general theoretical models of

some purely viscous non-Newtonian liquids is provided through Table 2.1. The time-

independent models mentioned in Table 2.1 are graphically depicted on shear rate-shear

stress axes in Figure 2.3.

It is obvious from this discussion that mimicking non-Newtonian liquids poses a

tougher challenge due to the variable apparent viscosity. In this work, solid particle mo-

tion behavior is studied in Bingham liquid and thixotropic liquid. Some of the theoretical

models given in Table 2.1 are modi�ed to accommodate them feasibly with computer

algorithm.

2.2.1 Bingham model

Bingham liquids, a special subclass of viscoplastic liquids (n = 1, refer Table 2.1), possess

a yield stress (τ0) which must be exceeded before the �uid shows any signi�cant defor-

mation. Bingham model is one of the simplest mathematical models which is used to

describe the �ow properties of liquid with yield stress. Qualitatively Bingham model

can be characterized by a �ow curve which has an intercept τ0 at shear stress axis and

slope µp (Figure 2.4). The shear rate remains zero and the material behaves like a solid

until shear stress exceeds yield limit of the liquid. Once the liquid is yielded, it �ows

with a net shear stress of τ − τ0. In a generalized manner, constitutive equations for

Bingham model can be written as

τij = 2(
τ0
γ̇

+ µp)dij |τ | > τ0 (2.18)
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Purely viscous (non-elastic) non-Newtonian liquids

Time-independent Time-dependent

Viscoplastic liquid

µa(γ̇) =
τ0
γ̇

+K(γ̇)n−1 , n > 0

Thixotropic liquid
Shear-thinning liquid µa = f(γ̇, t)

µa(γ̇) = m(γ̇)n−1 , 0 < n < 1

Shear-thickening liquid
µa(γ̇) = m(γ̇)n−1 , n > 1

µa: apparent viscosity

Table 2.1: Rheological models of purely viscous non-Newtonian liquids.

Figure 2.3: Graphical demonstration of time-independent theoretical models in Table
2.1 with a: viscoplastic liquid, b:shear-thinning liquid, c: shear-thickening liquid. The
straight line represents a Newtonian liquid.
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Figure 2.4: One dimensional representation of Bingham model

dij = 0 |τ | < τ0 (2.19)

In the above expressions, τij is deviatoric part of whole stress tensor σij , γ̇ is the defor-

mation rate (
√
dijdij), dij is the rate of deformation tensor [1/2((∂ui/∂xj)+(∂uj/∂xi))],

µp is the plastic viscosity and |τ | is magnitude of shear stress (√τijτij).

One of the di�culties encountered in implementing the Bingham model with com-

puter code is its non-di�erentiable form. Moreover, in perspective of computational �uid

dynamics it is an unusual situation to compute the shear stress to determine the yielding

where one typically solves the velocity component �rst and then shear rate. Approaching

this problem another way, one can think of estimating the state of no-deformation by

computing the zero shear rate. However this approach is ruled out due to the numerical

noise which always produces some shear rate whatsoever small it may be. Therefore

it becomes highly di�cult to locate the state of absolute rigidity. There are mainly

three approaches; dual viscosity model [9, 10], regularization methods [11, 12] and vari-

ational inequality based methods [13, 14] which have been used in literature to counter

these problems. First two methods approximate the Bingham model by considering the

solid region as a highly viscous material. Therefore the �ow curve transits from solid

(high viscosity) state to yielded liquid (low viscosity) state without having discontinuity.
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Figure 2.5: One dimensional representation of dual viscosity Bingham model

The variational inequality method, rigorously equivalent to original Bingham model, is

implemented by introducing Lagrange multiplier.

In this study, dual viscosity model is used to mimic Bingham liquids because of its

less complex structure and easy implementation with lattice-Boltzmann scheme. In this

model the region around zero shear rate is characterized by a highly viscous material

with viscosity µ0. Actual Bingham rheology is represented by a low viscosity µp. One

dimensional dual viscosity Bingham rheology is shown in Figure 2.5. The transition

(from high to low viscosity) point gives the critical shear rate (γ̇c) at shear rate axis.

Mathematically, critical shear rate can be expressed by the notion

γ̇c =
τ0

µ0 − µp
(2.20)

When shear rate (γ̇) becomes greater than critical shear rate, material is considered to

be yielded. Thus the criterion of yielded and unyielded regions is de�ned as

γ̇ > γ̇c → yielded (2.21)

γ̇ ≤ γ̇c → unyielded (2.22)
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In this modi�ed Bingham model, apparent viscosity (µa) and shear stress (τij) of the

material can be read as

µa = µ0 γ̇ ≤ γ̇c (2.23)

µa = µp +
τ0
γ̇

γ̇ > γ̇c (2.24)

τij = 2µadij (2.25)

2.2.2 Thixotropy model

Prior to discuss the modeling approach for thixotropy, a brief introduction to thixotropy

is required. The �ow behavior of many liquids can not be explained with a simple stress-

strain curve. Apparent viscosities of these liquids not only depend on the shear rate, but

also on the time for which liquid has been subjected to shearing. If a thixotropic liquid

is subjected to a constant shear rate, its apparent viscosity decreases with time and it

increases in absence of shear. Change in apparent viscosity with time at a constant

shear rate can be linked with structural changes with in the liquid. Constant shear

breaks down the liquid network. Conversely, as the structure breaks down, Brownian

motion of the broken units tend to re-form the network. Both, the structure breakdown

and structure build-up processes keep going together , so that eventually a state of

dynamic equilibrium is reached when the network breaking and building rates are equal.

The modeling aspects of thixotropy have been reviewed earlier by Mewis [15], Barnes

[16] and more recently by Mujumdar et al. [17]. Over the period of decades, researchers

have used basically three approaches: phenomenological, direct micro structural and

indirect micro structural. In the phenomenological models, researchers simulated the

thixotropic liquid by modifying macroscopic parameters in constitutive equations of

liquid models [18, 19, 20, 21]. The shortcoming of phenomenological models is the

absence of direct connection with structure breakdown-build up processes which are
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responsible for thixotropic behavior. Direct micro structural approach overcomes this

problem by introducing kinetic equation which de�nes the break up and build up of

bonds. This approach was �rst formulated by Goodeve [22] and then used in several

other studies [23, 24]. Moore [25] was the �rst to explain the thixotropic �ow behavior

by introducing a scalar structure parameter (indirect micro structural approach). As

pointed out by both, Mewis [15]and Mujumdar et al. [17], the ultimate objective of both

the direct or indirect approach is to couple the structural kinetics with the rheology of

liquid.

In present work, the thixotropy model adopted is based on the early work by Storrey

and Merrill [23], Moore [25], recently by Mujumdar et al. [17] and Ferroir et al. [26].

In this model, the structure (or network) of thixotropic liquid is de�ned by a scalar

parameter λ whose value varies from 0 to 1. λ = 0 indicates complete network breakdown

while λ = 1 signi�es fully build up network. The transport equation of λ reads as:

∂λ

∂t
+ ui

∂λ

∂xi
= −k1γ̇λ+ k2(1− λ) (2.26)

where ui is the ith component of the liquid velocity vector and γ̇ =
√

2dijdij is the

shear rate. The �rst term on the right hand side of Equation 2.26 is responsible for

break up of the network due to shear while the second term is responsible for build-up.

The constants k1 and k2, an inverse of liquid time scale, are considered as breakdown

and build-up parameters, respectively. To couple the structural kinetics with rheology,

scalar parameter λ should be related to a macroscopic �ow property. This is achieved

by relating λ with apparent viscosity µa according to the purely viscous model used by

Ferroir et al. [26] which reads

µa = µ∞(1 + αλ) (2.27)

The steady state (
∂λ

∂t
= 0) solution of Equation 2.26 with a homogeneous shear �eld

(
∂λ

∂xi
= 0) reads:
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λss =
k2

k1γ̇ + k2
(2.28)

If γ̇ → ∞, λss = 0 which means no network in presence of high shear. Conversely,

λss = 1 (fully developed network) when γ̇ → 0 which is consistent with the de�nition of

λ. The steady state viscosity can be derived by combining Equations 2.27 and 2.28.

µss(γ̇) = µ∞(1 + α
k2

k1γ̇ + k2
) (2.29)

Again calculating the steady state viscosity at limiting values of shear rate, we �nd that

µss(γ̇) =

 µ∞ γ̇ →∞

µ∞(1 + α) γ̇ → 0
(2.30)

Therefore µ∞ is the in�nite shear viscosity and thixotropic parameter α can be derived

from Equation 2.30 as:

α =
µss(0)
µss(∞)

− 1 (2.31)

A typical representation of steady state thixotropic rheology is shown in Figure 2.6. It

is interesting to observe that steady state thixotropic rheology shows some similarity

with dual-viscosity Bingham model explained in subsection 2.2.1. Comparing the Equa-

tions 2.24 and 2.29, a relation between yield stress of Bingham liquid and thixotropic

parameters can be formed (assuming k1γ̇ >> k2) as:

τ0 = µ∞α
k2

k1
(2.32)

Once the network build-up time scale 1/k2 is chosen, rest of the parameters of the

thixotropic liquid can be �xed to simulate the liquid which, in steady state, exhibits

Bingham behavior in the γ̇ → 0 and γ̇ → ∞ asymptotes. So the relations between

thixotropic and Bingham parameters read

µ∞ = µp (2.33)
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Figure 2.6: Steady-state rheology. Solid straight line: Bingham liquid with yield stress τ0
and slope µp. Dashed line: very high viscosity (µ0) in dual-viscosity model. Dash-dotted
curve: steady-state behavior of thixotropic liquid.

α =
µ0

µp
− 1 (2.34)

k1 = µpα
k2

τ0
(2.35)

It is worthwhile to check the validity of the assumption (k1γ̇ >> k2) made for this

analysis. Rewriting the assumption

k1γ̇ >> k2 (2.36)

and substituting the value of k1 from Equation 2.32 into the Equation 2.36, we obtain

µ∞αk2
γ̇

τ0
>> k2 (2.37)

γ̇ >>
τ0
µ∞α

≈ τ0
µss(0)

(2.38)

Equation 2.38 shows that assumption made is valid in the region where shear rate is

higher than τ0/µss(0). In case of high viscosity ratio (µ0

µp
) in dual viscosity implementation,
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which is usually the case, Equations 2.38 and 2.20 can be compared with each other which

con�rms the similarity shown by two models in Figure 2.6.

γ̇c =
τ0

µ0 − µp
≈ τ0
µss(0)

(2.39)

2.3 Contribution of present work

Lattice-Boltzmann scheme described in section 2.1 has been coded with Fortran pro-

gramming language and the computer code used in this work is inherited from existing

code. In addition, computer codes (based on LB scheme) exist for 1) two spheres motion

in a shear �ow (Newtonian liquid) 2) Bingham liquid �ow in a channel and in a lid driven

cavity and 3) thixotropic liquid �ow in a lid driven cavity. In present work, the major

contribution (in terms of programming) is to couple the single phase non-Newtonian

rheology code with single sphere and two spheres code.
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Chapter 3

Benchmark cases for

non-Newtonian liquids

Prior to present and analyze the results of solid-liquid suspension (the main focus of this

work), it is necessary and desirable to validate the numerical solution procedure discussed

in the preceding chapter. Validation of this procedure is accomplished by benchmark-

ing the numerical results against the available reliable numerical, experimental and/or

analytical predictions for the analogous problem. We illustrate this by appealing to two

important benchmark problems in non-Newtonian �uid mechanics, namely channel �ow

and lid driven cavity �ow.

3.1 Channel �ow

The steady laminar channel �ow between two �xed parallel plates is also known as

plane Poiseuille �ow. It is a standard benchmark used by researchers over several years

to validate a procedure.

3.1.1 Description of the problem

A 2-D projection of the geometry for this benchmark test is seen in Figure 3.1 (a). An

external body force f0 drives the �ow between two plates at a mutual distance of H.

Body force produces a shear stress with linear pro�le

29
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Figure 3.1: (a) 2D projection of the geometry of the channel �ow (b) sketch showing
yielded/unyielded boundaries at steady state.

τzx = −f0z (3.1)

We de�ne yield stress and plastic viscosity of Bingham liquid as τ0 and µp, respectively.

Since the external force is one dimensional, the �ow velocity lies in the x direction and

is a function of z alone. This velocity Ux can be derived from the notion

∂Ux
∂z

= −f0z

µp
(3.2)

No-slip boundary conditions are imposed on �xed walls, while periodic boundary condi-

tions are applied for inlet and outlet of the channel.

3.1.2 Analytical solution

Before presenting the simulation results, we analytically derive the velocity expression

for the problem depicted in subsection 3.1.1. In the system de�ned by Figure 3.1 (b),

the shear stress has maximum value close to the walls (z = H/2 and −H/2) while it

decreases towards the center (z = 0 ). Let us de�ne a distance |z0| for which |τzx| = τ0

(i.e. τ0 = f0|z0| ). Therefore we get three regions which are mathematically de�ned as

z0 < z < H/2→ ∂Ux
∂z
6= 0→ yielded region
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−z0 < z < z0 →
∂Ux
∂z

= 0→ unyielded region

−H/2 < z < −z0 →
∂Ux
∂z
6= 0→ yielded region

First we derive the velocity expression for region −H/2 < z < −z0 by integrating the

Equation 3.2

Ux = −1
2
f0

µp
z2 − τ0

µp
z + c (3.3)

where c is an integration constant. Applying the no-slip boundary condition Ux = 0 at

z = −H/2 with Equation 3.3 we obtain the integration constant c as

c =
1
8
f0

µp
H2 − τ0H

2µp
(3.4)

Replacing the value of constant c from Equation 3.4 to Equation 3.3, we obtain

Ux =
f0

2µp
(
H2

4
− z2)− τ0

µp
(
H

2
+ z) (3.5)

The Equation 3.5 is valid for region −H/2 < z < −z0. The velocity of unyielded region

at z = −z0 is obtained by replacing z with −τ0/f0 in Equation 3.5 which results in

expression

Ux|−z0 =
1
µp

(
f0H

2

8
+

τ2
0

2f0
− τ0H

2
) (3.6)

The unyielded liquid in the region −z0 < z < z0 moves with a constant velocity given

by Equation 3.6. Since the �ow is symmetric about center line, velocity expression for

region z0 < z < H/2 can be derived using similar procedure.
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Figure 3.2: Steady state velocity pro�le of a Bingham liquid in a channel �ow.

3.1.3 Simulation

For this problem we used a lattice grid of size 41× 1× 21 (x, y, z) �lled with Bingham

liquid of density ρ = 8.0 and plastic kinematic viscosities being ν0 = 0.5, νp = 0.004, all

in lattice-Boltzmann (LB) units. One can refer subsection 2.1.2 to get the idea of LB

units. The simulation is performed with f0 = 0.0001 and a comparison of the steady

state velocity in x direction with the analytical solution can be seen in Figure 3.2.

The velocity is made dimensionless using a characteristic velocity Uc which is steady

state velocity of Newtonian liquid in channel �ow with same conditions and physical

properties (Newtonian liquid ν = νp). The velocity pro�le of channel �ows features a

velocity gradient (see Equation 3.2) which decreases towards the center of the channel.

Hence the shear stress transmitted by a liquid layer also decreases towards the channel

center. For the reason that Bingham liquids become solid when the applied shear stress

falls below the yield stress it is obvious that the Bingham liquid will become solid in the

center layers of the channel. There a solid plug moves within the �ow, illustrated by

the �at pro�le of Figure 3.2. Looking at Figure 3.2 we observe an excellent agreement

of simulation result with analytical solution.
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3.2 Lid driven cavity �ow (Bingham liquid)

3.2.1 Introduction

In computational �uid dynamics �eld lid driven cavity �ow is a widely used test case

for benchmarking incompressible iso-thermal liquid �ows. This is a model for �ow in

a cavity where the upper boundary moves tangentially, and thus causes a rotation in

the cavity. Due to the simplicity of cavity geometry, applying a numerical method on

this �ow problem is fairly easy and straight forward. Despite its simple geometry, the

driven cavity �ow retains a rich �uid �ow physics manifested by recirculating region(s).

For Newtonian liquids, this problem has been extensively studied by researhcers [1, 2, 3]

over several decades. However research activities on lid driven cavity �ows with non-

Newtonian liquids caught the pace with the improvements in computational algorithms

and power. These include studies on viscoelastic liquid [4, 5, 6], power law liquid [8] and

Bingham liquid [9, 10, 11, 12].

Considering moderate inertial in�uence (Re = 1), Bercovier and Engleman [9] pro-

vided a �nite element analysis of lid driven cavity �ow with Bingham liquid using a

mesh of square (10 × 10) elements. They illustrated the e�ect of di�erent liquid yield

stresses on the yielded/unyielded zone inside the cavity. Using �nite element method

(40 × 40 grid size) coupled with regularized constitutive law, Mitsoulis and Zisis [10]

qualitatively con�rmed the results obtained by Bercovier and Engleman [9] at creeping

�ow conditions. Also they observed that center of the primary vortex travels towards

moving lid with increasing yield stress of liquid. Vola et al. [11] used the combination

of characteristic/Galerkin method with Fortin-Glowinsky decomposition/coordination

method (80 × 80 mesh size) to solve the lid driven cavity �ow with Bingham liquid

at low as well as high Re. Yu and Wachs [12] examined the problem at low Re us-

ing �ctitious domain method (256 × 256 mesh size). In present work, lid driven cavity

�ow with purely viscous Bingham liquid is solved through dual-viscosity method using

lattice-Boltzmann as numerical tool.
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Figure 3.3: Lid driven cavity �ow geometry and coordinate system

3.2.2 Flow de�nition and dimensionless numbers

Flow de�nition and coordinate system for lid driven cavity �ow is de�ned in Figure

3.3. A Bingham liquid, contained inside a square cavity is set into motion by the upper

wall which slides at constant speed. The velocity of the upper wall u0 and the cavity

depth H are taken as characteristic velocity and length, respectively. Originally a three-

dimensional grid is used for simulating the �ow, applying no-slip boundary conditions

(using bounce-back scheme) at east-west, north-south. Periodic boundary conditions

are imposed at front and back walls e�ectively making it a two-dimensional problem.

Based on characteristic velocity and length, we introduce two non-dimensional numbers

namely Reynolds number (Re) and Bingham number (Bn) which are de�ned by notions:

Re =
ρu0H

µp
(3.7)

Bn =
τ0H

µpu0
(3.8)

3.2.3 Veri�cation of numerical method

To establish the qualitative credibility of results obtained by a numerical method, it is

desirable to verify the method with di�erent numerical parameters. This is achieved
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by varying a certain numerical parameter and keeping all other unchanged. In this

study, two parameters are investigated for the purpose of veri�cation. One is the grid

size of �ow domain and other being the ratio of zero shear viscosity to plastic viscosity

(µr). Previous researches have shown [10, 11, 12] that the location of primary vortex

formed in lid driven cavity �ow is appreciably in�uenced by the yield stress of Bingham

liquid at low inertial e�ects (it moves closer to the moving lid as Bn increases). This

appreciable change in location makes it an easily observable quantity. Therefore we

monitor the vertical position (z coordinate) of primary vortex center to observe the

qualitative credibility of our results. The center of primary vortex is the point having

the minimum value of stream function (ψ) which is calculated through integration of

velocity �eld (ux =
∂ψ

∂z
, uz = −∂ψ

∂x
)

In a number of previous �nite element studies of dual-viscosity Bingham model,

researchers [13, 14] have found their results insensitive to very large values of viscosity

ratio ( µr > 1000). Beverly and Tanner [15] reported the highest accuracy for an axis-

symmetric problem when µr = 1000. For present work, di�erent values of viscosity ratio

(µr = 250, 1250, 5000, 10000, 15000) are chosen to measure the sensitivity of vertical

position of primary vortex center. For each value of µr, simulations are performed over

a range of liquid's yield stress (Bn = 2, 5, 10, 20, 50, 100, 200, 500) and the position of

primary vortex (z coordinate) is monitored. Sensitivity of primary vortex position with

yield stress (i.e. Bn) of liquid for each viscosity ratio is shown in Figure 3.4.

For the range of investigation (2 ≤ Bn ≤ 500), primary vortex moves closer to the

moving lid on increasing the Bn only when µr > 1250. However simulations with lower

µr (≤ 1250) fail to deliver the expected results. This discrepancy can be attributed

to the misleading velocity �elds which can be generated from dual-viscosity model, if

shear stresses or shear rates developed are very low compared to yield stress (τ0) or

critical shear rate (γ̇c), respectively. By decreasing the viscosity ratio, we increase the

magnitude of critical shear rate. When yield stress of liquid is high (Bn > 50), developed

shear rates are very low and may fall below the critical shear rate for lower viscosity

ratios which in turn lead to the failure of dual-viscosity model. Figure 3.4 shows that
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Figure 3.4: Sensitivity of z-coordinate of the primary vortex center with viscosity ratio
(µr); grid size: 81× 2× 81

after reaching a certain value, increase in viscosity ratio does not alter the position of

primary vortex. We obtain approximately same results with µr = 10000, 15000 (refer

Table 3.1). Therefore we choose the value of viscosity ratio as 10000 which will be used

in all Bingham liquid simulations of this chapter.

Bn 10 20 50 100 200 500

z/H (µr = 10000) 0.8746 0.9000 0.9271 0.9441 0.9570 0.9655

z/H (µr = 15000) 0.8747 0.9000 0.9272 0.9442 0.9570 0.9664

% di�erence 0.01 0 0.01 0.0001 0 0.09

Table 3.1: Sensitivity of z-coordinate of primary vortex with µr = 10000, 15000

Choosing a appropriate grid to mimic the lid driven cavity problem is important

in terms of accuracy and computational e�ort. Researchers have used di�erent grid

sizes for di�erent methods to achieve satisfactory results (refer subsection 3.2.1). In this

study, a comparison of results obtained through simulations based on various grid sizes is

provided. Detailed quantitative comparison with literature is given in subsection 3.2.4.

Keeping all other numerical parameters unchanged, simulations are performed with �ve

di�erent grids and the results are shown in Figure 3.5. Approximately same results
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Figure 3.5: Sensitivity of z-coordinate of the primary vortex center with grid size (x ×
y × z);µr = 104

are observed for all grids with low Bingham numbers (Bn ≤ 50) except 21 × 2 × 21

grid, however they start to di�er with higher Bingham numbers. For whole range of

investigation (2 ≤ Bn ≤ 500), the results obtained from grid size 81 × 2 × 81 di�er

little from those obtained from grid size 101× 2× 101 (see Table 3.2). Since a �ner grid

(101× 2× 101) does not o�er any signi�cant contribution, we adhere to the grid size of

81× 2× 81.

Bn 10 20 50 100 200 500

z/H (81× 2× 81 grid) 0.8746 0.9000 0.9271 0.9441 0.9570 0.9655

z/H (101× 2× 101 grid) 0.8744 0.8999 0.9283 0.9456 0.9570 0.9667

% di�erence 0.02 0.01 0.13 0.16 0 0.12

Table 3.2: Sensitivity of z-coordinate of primary vortex center with grids 81 × 2 × 81
and 101× 2× 101

3.2.4 Validation of numerical method

Based on veri�cation of numerical method, viscosity ratio and grid size are chosen 104

and 81×2×81, respectively for mimicking the lid driven cavity �ow with Bingham liquid.

Simulations are performed with various values of Bingham number (2 ≤ Bn ≤ 500)
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keeping Reynolds number constant (Re = 0.5). Streamlines coupled with yielded (white)

and unyielded (shaded) regions (de�ned by Equations 2.21 and 2.22) inside cavity at

Bn = 2, 5, 20, 50, 200 and 500 are displayed in Figure 3.6. The unyielded regions in the

cavity can be divided in two categories: a) lower unyielded region (close to the bottom

wall) b) upper unyielded region (close to moving lid). Since the lid (top wall) is the

only source to generate shear stress, e�ect imparted to lower region is not su�cient

to yield the liquid. The formation of upper unyielded region takes place due to the

existence of primary vortex where deformation rate is very small. It is easily observed

that both the unyielded regions grow with the increase of Bingham number. In this

study (2 ≤ Bn ≤ 500) the liquid is always yielded between upper unyielded region and

lower unyielded region and moving lid and upper unyielded region.

At this juncture, it is interesting to observe the streamlines inside a cavity which

are shown in Figure 3.6. Ideally, unyielded regions are solid regions and they should

be quiescent . In present study we observe the streamlines passing through unyielded

regions which indicates that these regions are not solid. In fact, the shear rate in these

regions is so small that it makes them fall in the category of unyielded liquid de�ned by

the criteria mentioned in Chapter 3.

Other quantities of interest are position of primary vortex and vortex intensity at its

center. Vortex intensity is de�ned as −ψ∗min at the center of the vortex where ψ∗ denotes

dimensionless stream function. In the present work dimensionless stream function is

evaluated from the notion:

ψ∗ =
ψ

u0H
(3.9)

Position of primary vortex can be determined as explained in subsection 3.2.3. A com-

parison of these quantities from this study with the literature can be seen in Figure 3.7.

It is obvious that the position of primary vortex is a distinct function of the Bingham

number. As yield stress (τ0) of the liquid increases, it restricts the �ow zone close to the

moving lid, making regions away from the lid less active. This is con�rmed by the Figure

3.6 too. The physical concept of stream function (ψ) is associated with the volumetric

�ow rate of liquid. With the increase of Bingham number, the liquid's resistance to lid
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Figure 3.6: Yielded (white)/unyielded(shaded) regions together with streamlines for lid
driven cavity �ow of a Bingham liquid with di�erent Bingham numbers at Re = 0.5
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Figure 3.7: left: z-location of the vortex center as a function of Bn at Re=0.5, right: Vor-
tex intensity at vortex center as a function of Bn at Re=0.5; comparison with literature
results (Mitsoulis and Zisis [10]; Yu and Wachs [12])

motion increases which decreases the volumetric �ow rate at vortex center.

3.2.5 High Reynolds number study

This work is started with the aim of achieving the steady state solution of lid-driven

cavity �ow at high Reynolds number. First we validate our numerical method with the

results available in literature for Bingham liquid �ows. The grid size is same as with

low Reynolds number study i.e. 81 × 2 × 81. We start the simulations with di�erent

Bingham numbers as done in previous subsection, at Re = 1000 and the comparison

of results with literature are presented in Figure 3.8. Then in Figure 3.9 the plots of

the streamlines and the rigid zones with various Bingham numbers are shown. It can

be observed that vortex intensities obtained from our simulations agree well with those

reported by Vola et al.[11]. While comparing the results of vertical position of primary

vortex center, we see a deviation of around 3% and 1% with Vola et al. [11] at Bn = 20

and Bn = 500, respectively. Comparison of horizontal position data is also in close

agreement with in the range of 2 ≤ Bn ≤ 100. Near the range of Bn = 20, there seems

to be a large deviation, however by looking the �gure carefully, we can attribute this

deviation to the less data points obtained by Vola et al. [11].
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Figure 3.8: z-location (left) and x-location (center) of the vortex center as a function
of Bn at Re = 1000; right: Vortex intensity at vortex center as a function of Bn at
Re=1000; comparison with literature result (Vola et al. [11])

Figure 3.10 shows the positions (horizontal, vertical) of primary vortex center with

di�erent Bingham numbers, at Re = 0.5, 10, 50 and 1000. Vertical position of the

vortex does not change signi�cantly till Re = 50 (0.1% change from Re = 0.5 with

Bn = 2). However an appreciable change in vertical position is observed with low

Bingham numbers at Re = 1000. When inertial e�ects are highly dominating, Bingham

liquid behaves like a Newtonian liquid. The value of vertical position of primary vortex

center with Bn = 2 ( z/H = 0.5772) obtained by this study is signi�cantly close to

the value of same quantity (z/H = 0.5652) observed by Botella and Peyret [16] with

Newtonian liquid. As the yield stress of liquid increases, the inertial e�ects are softened

and region away from the moving lid is less active, drawing vortex closer to the lid and

we obtain similar results to that of low Reynolds number.

Horizontal position of primary vortex is signi�cantly e�ected with low yield stress

liquids as Reynolds number goes beyond 10. Till Re ≤ 50, a de�nite trend is observed

in the variation of horizontal position with Bingham number. At Re = 1000, again we

observe a huge deviation from the trend. With in the range of Bn ≤ 20 the vortex center

travels into the direction of moving lid irrespective of the increase of yield stress. As

yield stress further increases, inertial e�ects are softened and horizontal position follow

the trend observed at low Re. It is interesting to note here that horizontal position of

primary vortex center is more sensitive (as compared to vertical position) to Reynolds
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Figure 3.9: Yielded(white)/unyielded(shaded) regions together with streamlines for lid
driven cavity �ow of a Bingham liquid with di�erent Bingham numbers at Re = 1000

number. Moreover, there seems to be a critical Bingham number (i.e. yield stress)

related to liquid at a particular Reynolds number where it abruptly changes its �ow

behavior. In present study, this critical Bingham number is found to lie in the range of

20 ≤ Bn ≤ 50 at Re = 1000.

3.3 Lid driven cavity �ow (Thixotropic liquid)

Having tested the numerical procedure with Bingham liquid, it is applied to a more

complex (rheological) medium i.e. thixotropic liquid. This work is build up on a recently
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Figure 3.10: z-location (left) and x-location (right) of the vortex center as a function of
Bn at Re = 0.5, 10, 50 and 1000.

published paper by Derksen and Prashant [17] which investigates the thixotropic e�ects

on liquid's behavior by varying various thixotropic parameters.

3.3.1 Flow de�nition and dimensionless numbers

The �ow de�nition of lid driven cavity �ow with thixotropic liquid is same as with

Bingham liquid (see Figure 3.3). Lid velocity u0 and cavity depth H are taken as

characteristic velocity and length, respectively. We de�ne four dimensionless numbers

(Reynolds number, Bingham number, Deborah number and viscosity ratio) which govern

the �ow in consideration. Reynolds number (Re) is based on characteristic quantities

de�ned above.

Re =
ρu0H

µ∞
(3.10)

The other dimensionless numbers involved in the LDC �ow with thixotropic liquid are

based on the liquid's asymptotic, steady state analogy with Bingham liquids. As men-

tioned in subsection 2.2.2, yield stress is related to thixotropic parameters according to

τ0 =
µ∞αk2

k1
. Using this notion of yield stress the (pseudo) Bingham number (Bn) can

be de�ned as
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(pseudo)Bn =
αk2H

k1u0
(3.11)

Deborah number (Db) is the ratio of liquid time scale (1/k2) to �ow time scale (H/u0) while

viscosity ratio (α+ 1) is the ratio between the zero-shear and in�nite-shear viscosity.

Db =
u0

Hk2
(3.12)

α =
µ0

µ∞
− 1 (3.13)

3.3.2 Veri�cation of numerical method

In the recent study [17] it has been shown that vertical position of the primary vortex

center is a�ected by dimensionless numbers such as Db, Bn and α. In present work, an

attempt is made to describe the variation of vertical position of the primary vortex center

with di�erent Bingham numbers (Bn = 2, 5, 10, 20, 50, 100, 200, 500). The dimensionless

numbers Re, Db and α are kept constant for all numerical experiments. We choose

Re = 0.5, Db = 1 and α = µr−1 where µr is the viscosity ratio chosen (after veri�cation)

with Bingham liquid simulations. Therefore the value of α turns out to be 9999.

The grid consists of 81×2×81 (x×y×z) cells, no-slip boundary conditions at the four

planar walls, and periodic conditions in the third (y) direction. The lid is set to move

with velocity u0 starting from a zero �ow �eld. Results of these numerical experiments

at steady state are shown in Figure 3.11. At steady state, the results of thixotropic

rheology can be compared with Bingham rheology. In the case of the Bingham liquid,

vertical position of primary vortex center increases with increase of Bingham number.

The results shown in Figure 3.11 behave in the same manner until Bn ≤ 200. The vortex

center moves away from the lid at Bn = 500. This type of deviation has been observed

while verifying the numerical technique with Bingham liquid (see Figure 3.4). As done

in the subsection 3.2.3, the value of µr (i.e. α) is increased (α = 24999). The di�erence

in the result (vertical position of vortex center) at Bn = 500 with two di�erent values
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Figure 3.11: Vertical position of the primary vortex center z as a function of Bingham
number

of α is obvious from Figure 3.11. Vortex center moves towards the moving lid with

the increase of α. By keeping all other dimensionless numbers (Re,Bn,Db) constant,

increment in α implies a high viscosity ratio. By keeping a high viscosity ratio, it is

made sure that shear rates developed in the �ow �eld are higher than the critical shear

rate (refer Equations 2.35 and 2.36). This avoids the generation of wrong velocity �elds

which leads to the calculation of incorrect stream functions.

3.3.3 Comparison of results (Thixotropy vs. pseudo Bingham rheol-

ogy)

Numerical experiments are performed for a detailed study of lid driven cavity �ow prob-

lem with thixotropic liquids. To concentrate on the thixotropic e�ects rather than the

inertial in�uence, Reynolds number is set to a low value (Re = 0.5). Deborah number

and viscosity ratio are set to �xed values: Db = 1, α = 24999. We start the simulations

keeping network parameter λ = 0. Due to the network build up with time, liquid o�ers

more resistance to moving lid which drives the vortex center closer to moving lid. A

quantitative aspect of this phenomenon can be viewed in Figure 3.11 with α = 24999.

By keeping all other dimensionless numbers constant, Bn can be increased by decreasing

k1 (breakdown parameter) only. Reducing k1 implies reducing the −k1γ̇λ term in the
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Figure 3.12: left: z-location of the vortex center as a function of Bn at Re = 0.5 and
Db = 0 and 1, right: Vortex intensity at vortex center as a function of Bn at Re = 0.5
and Db = 0 and 1.

network parameter transport equation (Equation 2.26) which impacts the rate of change

of λ making the �ow evolution slower.

In the Figure 3.12(a) results are shown for Db = 0 and Db = 1. A Deborah number

with zero value implies that the liquid time scale is very small in comparison to �ow

time scale i.e. the liquid properties are time independent (e.g. Bingham liquid). As

Deborah number increases, liquid's �ow response to external force decreases. This can

be veri�ed by comparing the vertical position of vortex center at two di�erent Deborah

numbers (Figure 3.12). For Bn ≤ 50, liquid with higher Deborah number responds

slowly to moving lid which draws the vortex center closer. As the Bingham number

approaches higher values (Bn > 50), thixotropic rheology (Db = 1) results approach

pseudo Bingham rheology (Db = 0) results. High reduction of k1 results in quick build

up of network, reaching to steady state very fast which is comparable to Bingham �ow

system. Other measurable quantity, vortex intensity, is also compared and shown in

Figure 3.12(b).
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Chapter 4

Single sphere sedimentation

Sedimentation is a process in which a particle settles to the bottom of a container (�lled

with liquid) in which it is entrained. It is important to understand the behavior of

particles settling in the viscous liquids to solve the problems involving �uidization, sed-

imentation and �ow through packed beds. Moreover several engineering applications

directly involve the settling of particles. A few examples include mineral ore processing,

industrial crystallization, biological science, particle size analysis and fuel research. Sed-

imentation behavior of particles vary with many parameters such as size and shape of

the particles, nature of liquid, size of container. To understand the mechanics of particle

sedimentation, it is useful to start with hydrodynamics systems consisting single particle

and consider the multi-particle systems later. In this chapter, we study the motion of a

spherical particle in purely viscous Newtonian and non-Newtonian liquids. After having

an insight into the motion of single sphere, a study of motion of two spheres is presented

in chapter 5.

4.1 Sedimentation in Newtonian liquid

The theory of low Reynolds number Newtonian �ow, also known as creeping �ow has

applications to various industries and natural phenomena involving small length and

velocity scales and/or extremely viscous liquids. Stokes was the �rst to give a solution

for the creeping �ow problem around a sphere in Newtonian liquid of unbounded region.

49
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Figure 4.1: Flow de�nition of a sphere motion in a cylinder of square cross-section
(L × L); (a) Front view of cylinder (b) Top view of cylinder taken at cross-section
marked by dashed line in (a).

A sphere falling under the e�ect of gravity is resisted by the drag (D) and buoyancy

force and in equilibrium drag force is obtained by

D =
4
3
π(
d

2
)3(ρs − ρl)g (4.1)

with ρs, ρl, d and g being the density of sphere, density of liquid, sphere diameter

and the acceleration due to gravity, respectively. In case of small inertial e�ect Stokes

derived the drag force expression which is read as

D = 3πdµU∞ (4.2)

where µ is the liquid viscosity while U∞ is the terminal velocity of sphere settling in a

medium of in�nite size. We obtain the expression for terminal velocity U∞ by combining

the Equations 4.1 and 4.2.

U∞ =
d2(ρs − ρl)g

18µ
(4.3)
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Figure 4.2: Time series of falling velocity of a single sphere settling in Newtonian liquid
with L/d ratios (a) 5.0 and (b) 1.43 at Re = 0.001.

However in practical circumstances, motion of a sphere falling under gravity is retarded

by the �nite boundaries. In literature this e�ect has been often quanti�ed as the wall

factor which is de�ned as the ratio of the terminal velocity of a sphere in a bounded

medium to that in an unbounded medium (Uw/U∞).

In this section, we aim to achieve the wall factors for a single sphere settling in

a square cylinder of di�erent cross-section sizes �lled with Newtonian liquid and then

compare them with experimental/numerical studies available in literature. The �ow

de�nition is shown in Figure 4.1. The numerical experiments are carried out with dif-

ferent values of d/L ratios and the steady state settling velocities (Uw) are measured

for each of them. We use a sphere of diameter d = 12 and density ρs = 32.0. The

grid size (nx × ny × 213) varies with L/d ratio as sphere diameter is �xed for all the

simulations and nx− 1 = ny − 1 = L. The physical properties of Newtonian liquid are;

density ρl = 8.0, viscosity µ = 0.8. All the properties and parameters are de�ned in

lattice-Boltzmann (LB) units. The sphere is released at the center of the cross-section

of the cylinder with zero velocity. Throughout the numerical experiments, the Reynolds

number is kept very low (Re = 0.001) and it is de�ned by the notion

Re =
ρsU∞d

µ
(4.4)

The velocity time series of a falling sphere for L/d = 5.0, 1.43 is plotted in Figure 4.2.
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Figure 4.3: Wall factor as a function of sphere diameter to square cross-section side ratio
at Re = 0.001; comparison with literature results (Miyamura et al. [1], Hai-Ping and
Shi-Yi [2])

The velocity of sphere falling in a grid with L/d = 1.43 starts settling with a sharply

increased velocity which gradually decreases and reaches steady state. This behavior is

di�erent from the one observed with L/d = 5.0. When sphere starts settling in the grid

with L/d = 1.43, it initially falls with a greater velocity because the �ow �eld is not fully

developed and the interaction with walls is partial. Once the �ow develops with time,

strong friction due to very close walls decelerate the sphere. The sphere moves with

steady state velocity once friction force due to walls and drag force are counterbalanced

by the net gravitational force. Figure 4.3 displays the wall factor (Uw/U∞) as a function

of L/d ratio. The terminal velocity of a sphere in bounded region is always less than

the terminal velocity of an uncon�ned sphere. The retardation e�ect of walls increases

as they come closer to the moving sphere. Our simulation results are compared with

the experimental data obtained by Miyamura et al. [1]. They used a square cylinder to

investigate the wall factors with creeping �ow of a sphere in Newtonian liquid. A close

agreement is seen between our simulation results and literature data.
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4.2 Sedimentation in Bingham liquid

4.2.1 Introduction

Many industrial processes deal with the sedimentation of particles in liquids which pos-

sess yield stress. Therefore it is of practical importance to have an understanding of

physics involved in this solid-liquid suspension. Research studies focused on the falling

of a sphere in Bingham liquids date back several decades. Volarovich and Gutkin [3]

were the �rst to report that a sphere falling in a Bingham liquid is surrounded by a

liquid envelope which separates the sphere from outer unyielded region of liquid. One of

the theoretical problems experienced in early studies was to specify the shear stresses in

the region surrounding the sphere. To handle this, Andres [4] put forth the concept of

concentric sphere of in�uence which surrounds the falling sphere, however no idea was

given to explain the e�ect of velocity of the material �ow on such a region. Valentik

and Whitmore [5] experimentally determined the terminal velocity of a sphere with an

objective of gaining better insight into the stress and velocity distribution in the region

surrounding the falling sphere. Ansley and Smith [6] postulated the shape and extents

of yielded/unyielded regions surrounding the sphere using slip line theory. Yoshika et

al. [7] con�rmed the existence of stagnation points at the front and back of the sphere

for any �nite value of the liquid's yield stress.

Using the variational formulations, Duvaut and Lions [8] proved that a unique so-

lution existed for the creeping �ow of Bingham liquids in both interior and exterior

regions. Assuming the results of Newtonian �ow problem square-integrable, they also

claimed that the solution of Bingham liquid problem approaches the Newtonian result as

the yield stress approaches zero. Beris et al. [9] pointed out the invalidity of this assump-

tion for a sphere in unbounded liquid due to the di�erent results suggested by variational

studies. Some of the earlier studies [6, 10, 11] concentrated on measuring the drag coef-

�cient for a falling sphere as a function of yield stress and plastic viscosity of liquid. In

a classical work, Beris et al. [9] numerically determined the velocity �eld, pressure �eld,

shape of the yield surfaces and drag coe�cient for the creeping �ow around a sphere
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in an unbounded Bingham liquid. More recently Atapattu et al. [12, 13] extensively

investigated the wall e�ects and their e�ects on drag coe�cient. Blackery and Mitsoulis

[14] reported the drag coe�cients for di�erent tube/sphere diameter ratios. Liu et al.

[15] and Yu and Wachs [16] obtained the shape and extents of yielded/unyielded regions

and compared their results with literature.

In subsequent subsections, a numerical solution of a sphere settling in Bingham liquid

is presented using lattice-Boltzmann scheme as numerical tool.

4.2.2 Flow de�nition and dimensionless numbers

The interaction of a single sphere with Bingham liquid inside a cylinder has been dealt

with two ways. In the �rst manner the sphere is assumed stationary while the liquid and

the cylinder walls move with a constant velocity (�ow past �xed sphere). This scheme is

easier to implement since it eliminates the time dependence associated with the problem

of a moving sphere. In other scheme, the liquid and cylinder walls are stationary while

sphere falls in the cylinder under the in�uence of an external force. We study both of

the cases here and their �ow de�nitions are shown in Figure 4.4.

The �ow is governed by two dimensionless numbers namely Reynolds number and

Bingham number which are displayed by the notions

Re =
ρlUcd

µp
(4.5)

Bn =
τ0d

µpUc
(4.6)

where τ0, µp are yield stress and plastic viscosity of Bingham liquid, respectively. The

symbol Uc is the characteristic velocity which is de�ned di�erently for both cases. In case

of �xed sphere problem, the terminal velocity of the sphere V is taken as characteristic

velocity and dimensionless numbers are su�xed with letter T .

ReT =
ρlV d

µp
(4.7)
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Figure 4.4: Flow de�nition of a sphere motion in a cylinder of square cross-section
(L×L) �lled with Bingham liquid; (a) The liquid and cylinder walls move with velocity
V , sphere is �xed (b) The sphere falls under the in�uence of gravity; the liquid and
cylinder walls remain stationary.

BnT =
τ0d

µpV
(4.8)

While handling the problem with a moving sphere, the characteristic velocity is

calculated using Equation 4.3 (with viscosity µ = µp) and dimensionless numbers are

su�xed with letter S.

Res =
ρlU∞d

µp
(4.9)

Bns =
τ0d

µpU∞
(4.10)
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4.2.3 Results - Fixed sphere case

Prior to demonstrate the results, we revisit the �ow de�nition depicted by Figure 4.4

(a). A sphere, considered as frame of reference, remains �xed inside a three dimensional

square cylinder which moves along with Bingham liquid with a uniform velocity V .

This velocity V is taken as terminal velocity of sphere in Bingham liquid. The boundary

conditions are, uniform velocity V along the cylinder walls and at inlet-outlet while

no-slip at the surface of sphere.

Once V and other liquid parameters (ρl, µp and τ0) are �xed, one can set the �ow

governing dimensionless numbers ReT and BnT (Equation 4.7 and 4.8). In a number

of previous studies [9, 14, 16] researchers have measured the ratio of Stokes velocity

to terminal velocity (termed as Stokes drag coe�cient by Beris et al. [9]) with yield

stress of Bingham liquid at very low inertial e�ects. In this case too, for the sake of

comparison, we solve for the drag force (D) exerted on sphere by the liquid and further

calculate the Stokes velocity (U∞) using the Equation 4.2 (with viscosity µ = µp). To

avoid the con�ict with the classical drag coe�cient de�nition, we refrain from using the

term Stokes drag coe�cient and call it a velocity ratio which is de�ned as

vr =
U∞
V

(4.11)

To mimic creeping �ow, the Reynolds number chosen is very small (Re = 0.001)

and we use a square cylinder (L/d = 4, d = 12) �lled with Bingham liquid of density

ρl = 8 (ρs/ρl = 4), plastic viscosity µp = 0.032 and viscosity ratio µr = 105. The three

dimensional grid size is 49 × 49 × 73. The simulations are performed over a range of

liquid's yield stress (BnT = 0.1, 1, 5, 10, 20, 50, 100, 200) and the velocity ratio (Equation

4.11) is calculated for each case. A pictorial depiction of the e�ect of yield stress of liquid

is presented in Figure 4.5. The unyielded regions progressively grow with the increase of

yield stress and the interaction of yielded Bingham liquid with cylinder walls decreases.

These results qualitatively agree well with the results reported by Blackery and Mitsoulis

[14]. The occurrence of black polar caps with BnT = 50 (two unyielded regions at
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stagnation points), observed by both Beris et al. [9] and Blackery and Mitsoulis [14],

and solid regions on each side of sphere with BnT = 5, 50 proposed by Ansley and Smith

[6] con�rms the validity of our results.

A quantitative comparison of our results with literature is shown in Figure 4.6. When

we increase the yield stress (i.e. BnT ) of the liquid, the viscous forces dominate and they

assist the resistance o�ered by the �xed sphere to the motion of the liquid. Since the

liquid travels with a constant velocity V in all the simulations, the drag force exerted on

sphere increases with increase of yield stress of liquid. This increased drag force leads to

the increased Stokes velocity (Equation 4.2), therefore increased velocity ratio, which is

con�rmed in the Figure 4.6. There is a slight di�erence between the �ow de�nitions used

by us and Blackery and Mitsoulis [14]. They used a cylinder with circular cross-section

whose diameter is four times the diameter of sphere while we have used a cylinder with

square cross-section whose one side is four times the diameter of sphere. Obviously in

square cylinder the retardation e�ect of walls should be less pronounced than the circular

cylinder and we should expect smaller velocity ratios (U∞/V ) than those obtained by

Blackery and Mitsoulis [14]. One can question the apparent excellent agreement of results

obtained by both the studies which are shown in Figure 4.6, however it is important to

note that both the axes are logarithmic which hide the minor deviation in the results.

The actual deviations between the results shown in Figure 4.6 can be seen in Table 4.1.

Miyamura et al. [1] performed experiments to calculate the wall factors of single solid

sphere settling in a square cylinder �lled with a Newtonian liquid and then compared

them with the wall factors obtained with circular cylinder [17] keeping other parameters

unchanged. They reported that the retardation e�ect on the terminal velocity due to

wall proximity is less severe with square cylinder and the sphere settles with a greater

terminal velocity which is around 5% higher than that measured with circular cylinder.

Close to the Newtonian limit (BnT = 0.1), we too observe a 6.6% lesser velocity ratio

(i.e. 6.6% higher terminal velocity) which is in close agreement with the results reported

by Miyamura et al. [1]. Once the yield stress of liquid is appreciably high (BnT > 0.1),

unyielded region around sphere grows progressively (refer Figure 4.5) which restricts the
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Figure 4.5: The yielded (white) and unyielded (black) regions for �ow of a Bingham
liquid around a �xed sphere contained in a square cylinder with 4 : 1 ratio of L/d
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Figure 4.6: Velocity ratio (vr) as a function of Bingham number (BnT ) at Re = 0.001;
comparison with literature results (Blackery and Mitsoulis [14])

interaction of �ow �eld with walls. Therefore in this scenario (higher yield stress), it

can be expected that di�erence in cylinder geometry does not in�uence our results from

literature considerably. This is well supported by the minor deviations (shown in Table

4.1) observed with higher yield stress �ow simulations.

4.2.4 Results - Moving sphere case

Having solved the creeping �ow problem of a sphere in Bingham liquid using a compar-

atively easy approach, we turn our attention to mimic the same problem with a di�erent

�ow de�nition where sphere falls in a stationary square cylinder �lled with Bingham

liquid under the in�uence of gravitational force (refer Figure 4.4 (b)). A zero velocity

boundary condition (for details refer appendix C) is imposed along the walls of cylinder

and no-slip boundary condition is considered for surface of the sphere. For this case, we

use the set of dimensionless numbers de�ned by Equations 4.9 and 4.10. The numerical

parameters and grid size used in this case remain same as with �xed sphere approach.

It is important to mention here that in this case our objective is to obtain the terminal

velocity V of the sphere settling in Bingham liquid. The gravitational force (i.e. g) is
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BnT 0.1 1 10 20 50 200
vr (Blackery and Mitsoulis) 2.24 3.92 18.04 33.13 74.11 250.25 R1

vr (Present work) 2.10 4.06 18.84 33.47 74.77 252.96 R2

% di�erence (
R2−R1
R2

× 100) -6.66 3.45 4.25 1.02 0.88 1.07

Table 4.1: Velocity ratio (vr) as a function of Bingham number (BnT )

Figure 4.7: Time series of settling velocity and distance traveled in Bingham liquid with
Bns = 0.21 (left) and 0.53 (right) at Res = 1.

set in such a way that Reynolds number Res = 1. The primary reason of choosing this

comparatively higher Reynolds number is literature work with which our simulations

are validated for moving sphere case. Also, by choosing Res = 1, the e�ective Reynolds

numbers (based on the terminal velocity of sphere) are in the order of 10−1 to 10−2

which are fairly low Reynolds numbers.

The simulations are performed with various values of yield stress of the liquid (Bns =

0.05, 0.21, 0.36, 0.53, 0.60, 0.66, 0.72). The settling velocity and distance traveled by a

sphere, falling in Bingham liquid with Bns = 0.21, 0.53, are plotted in Figure 4.7 as

a function of time. Clearly, the terminal velocity decreases with increase in the yield
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stress of the Bingham liquid. The unyielded and yielded regions coupled with steady

state velocity vectors are shown in Figure 4.8. As observed previously (Figure 4.5),

con�nement of sphere by unyielded region increases progressively with the increase of

liquid's yield stress. The shape and extent of these regions are in qualitative agreement

with Beris et al. [9], Blackery and Mitsoulis [14], Liu et al. [15] and Yu and Wachs [16].

The recirculating regions observed on both sides of the sphere are consequences of the

�nite size of square cylinder. It is clear that the centers of recirculating regions shift

closer to the sphere with the increase of Bingham number (i.e. yield stress) which is

qualitatively similar to the results reported in literature [9, 13, 14]. We observe polar

cap (black) with Bns = 0.36, 0.53 only at trailing point of sphere. Since the stagnation

point does not exist at leading side of the moving sphere, no polar cap is observed at

leading side of the sphere.

A quantitative comparison of our results with literature is shown through the vari-

ation of velocity ratio (U∞/V ) with Bingham number (Bns) in Figure 4.9. The results

obtained by us deviate from available literature results at moderate to high Bingham

numbers (Bns > 0.36). The possibility of considerable in�uence due to square cylinder

is quite unlikely at high Bingham numbers (Bns = BnT /vr; Bns = 0.36 corresponds to

BnT = 2.4) as discussed previously in subsection 4.2.3. The discrepancy in the results

with moderate to high Bingham numbers can be caused by di�erent numerical methods,

however the exact reason remains indeterminate so far. An attempt is made to demon-

strate these results in Figure 4.10 which plots velocity ratio as a function of Bingham

number BnT . In this �gure, all the studies are found to be in good agreement with each

other due to the presence of terminal velocity V in both abscissa and ordinate which

supposedly cancels out the di�erences while plotting.
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Figure 4.8: Yielded (white)/unyielded (black) regions together with velocity vectors for
a sphere settling in a square cylinder �lled with Bingham liquid.
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Figure 4.9: Velocity ratio (vr) as a function of Bingham number (Bns) at Res = 1;
comparison with literature results (Blackery and Mitsoulis [14], Yu and Wachs [16])

Figure 4.10: Velocity ratio (vr) as a function of Bingham number (BnT ); comparison
with literature results (Blackery and Mitsoulis [14], Yu and Wachs [16])
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4.3 Sedimentation in thixotropic liquid

4.3.1 Introduction

Thixotropic liquids are usually known by change in their viscosity with time due to the

change of internal structure caused by shear. Apart from this, they often exhibit yield

stress and shear-thinning behavior. Clays or muds are very good examples of thixotropic

liquids. In the mining industry, a viscous mud is used to remove the rock cutting from

the bottom during drilling process. The other major functionality of this viscous mud

is to hold the solid particles in suspension when injection of mud is stopped. The mud

develops a network with time of rest which hinders the settling of solid particles. This

behavior is usually termed as aging of the liquid.

A number of early experimental studies [5, 6] of liquids showing yield stress raised a

major concern regarding the poor reproducibility of settling data. Atapattu et al. [13]

performed a rigorous experimental study on creeping sphere motion in the liquids, which

exhibit yield stress and shear-thinning behavior, and reported a poor reproducibility of

settling data without releasing 4 to 10 spheres with very small time di�erence. Same

problem was noticed by Hariharaputhiran et al. [18] in their study of settling of spheres

in viscoplastic liquids. Recently Ferroir et al. [23] pointed out that consideration of time-

dependent properties of liquids could be the main reason of the problems reported above.

They examined the e�ect of thixotropy on the settling of solid objects in pasty materials

possessing yield stress and concluded that settling behavior of the object depends upon

the initial state of the material and Reynolds number of the �ow system. Chafe and

de Bruyn [25] conducted the sphere settling experiment with bentonite clay suspension

and measured the steady state drag force on the sphere. They reported the increment

in drag force with the aging time of the suspension. Gueslin et al. [26] used particle

image velocimetry technique (PIV) in the experiments to measure the �ow �eld of a

spherical particle in Laponite clay suspension. They showed that apparent yield stress

and shear thinning properties of a Laponite clay suspension are direct function of aging

time. Tabuteau et al. [27] used a clay suspension, showing yield stress and rheological
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aging, to qualitatively con�rm the results obtained by Chafe and de Bruyn [25].

4.3.2 Flow de�nition and dimensionless numbers

The �ow de�nition of sphere sedimentation with thixotropic liquid is same with moving

sphere sedimentation in Bingham liquid (see Figure 4.4 (b)). The sphere falls through

the thixotropic liquid under the e�ect of gravity in a closed square cylinder. The sphere

diameter d and the Stokes terminal velocity in an unbounded medium (de�ned by Equa-

tion 4.2) are considered as characteristic length and velocity, respectively with viscosity µ

being equal to µ∞, the in�nite shear viscosity of thixotropic liquid. Based on character-

istic parameters, four dimensionless numbers Reynolds number (Re), (pseudo) Bingham

number, purely viscous Deborah number (Db) and viscosity ratio (α+ 1) are de�ned as

Re =
ρlU∞d

µ∞
(4.12)

(pseudo)Bn = α
k2d

k1U∞
(4.13)

Db =
U∞
dk2

(4.14)

α =
µ0

µ∞
− 1 (4.15)

with µ0 being zero shear viscosity while k1 and k2 are thixotropic parameters de�ned in

chapter 2 (Euqation 2.35). Zero velocity boundary conditions imposed on cylinder walls

can be seen in appendix C.

4.3.3 E�ect of aging

It has been widely observed that some liquids (e.g. drilling mud) exhibit highly viscous

behavior when not sheared. This highly viscous behavior is attributed to the develop-

ment of a network with time of rest. As long as the liquid ages, as much as the network
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integrity increases. In present study, we are using a dimensionless parameter λ to de�ne

the integrity of liquid's network. A detailed description of evolution of network param-

eter λ can be seen in chapter 2. If shear is removed (γ̇ = 0 and ui = 0) from the steady

state �ow of a thixotropic liquid, the network breakdown process stops and only the

build-up process remains in the system. Equation 2.26 can now be written as

∂λ

∂t
= k2(1− λ) (4.16)

Equation 4.16 can be solved for λ with boundary condition λ = 0 at t = 0 which

leads to the expression

λ = 1− e−k2t (4.17)

Thus the integrity of network increases with aging time and its numerical value varies

from λ = 0 at t = 0 to λ = 1 at t → ∞. From the basic knowledge of physics of

creeping �ow of a sphere, we know that the terminal velocity (V ) of sphere is inversely

proportional to the liquid viscosity µ (apparent viscosity µa in case of non-Newtonian

liquids).

V ∝ 1
µa

(4.18)

Using the apparent viscosity expression de�ned by Equation 2.27 and assuming the

proportionality constant as κ, Equation 4.18 can be written as

V =
κ

µ∞(1 + αλ)
(4.19)

In case of steady state �ow with no shear, λ can be substituted by the expression given

in Equation 4.17 resulting in following expression

V =
κ

µ∞[1 + α(1− e−k2t)]
(4.20)

Rearranging the Equation 4.20, we obtain
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(1 + α)− κ

V µ∞
= αe−k2t (4.21)

The terminal velocity can be calculated analytically at limiting values of time using

Equation 4.21 and read as

V (t) =



κ

µ∞
t→ 0

κ

µ∞(1 + α)
t→∞

(4.22)

The ratio of no network terminal velocity to complete network terminal velocity can be

derived from Equation 4.22 as

V (0)
V (∞)

= α+ 1 (4.23)

In order to systematically investigate the e�ect of aging on sedimentation of a sphere, a

number of numerical experiments are carried out with the thixotropic liquid of di�erent

ages. The aging time of the liquid is calculated using Equation 4.17 with the di�erent

values of network parameter (λ = 0.05, 0.20, 0.35, 0.55, 0.65, 0.72, 0.85). For the numeri-

cal experiments, the Reynolds number and Deborah number are set as; Re = 1, Db = 1

while the grid size is chosen as 97 × 97 × 97. It is important to point out here that

the Reynolds number (Re = 1) used in our simulations is based on the Stokes terminal

velocity (with µ = µ∞). The maximum value of e�ective Reynolds number (based on

terminal velocity V and µ∞) for each simulation is of the order of 10−2 or less. The

value of viscosity ratio is chosen in such a way that α = 99999 .

A sphere of diameter d = 12 and density ρs = 4ρl (ρl = 8) is allowed to fall due to

gravity and time series of falling velocity and distance travelled are displayed in Figure

4.11. Terminal velocity of the sphere is plotted against the aging time of liquid in Figure

4.12. The terminal velocity of sphere decreases with aging time and its variation is

loosely matched by an exponential �t (straight line) which is de�ned by the expression
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Figure 4.11: Time series of settling velocity and distance traveled in thixotropic liquid
with age (left) ta = 340 and (right) ta = 1087 Re = 1.

V = V0e
−k′2t (4.24)

with V0 and 1/k′2 being the sphere terminal velocity at t = 0 and the characteristic build-

up time for solid-liquid suspension, respectively. The idea of getting an exponential �t

is inspired by the work due to Gueslin et al.[26]. We observe some deviation between

exponential �t and our simulation data with large aging time (t > 1000). This deviation

is caused by the particular viscosity model (Equation 2.27) used in our simulations

according to which terminal velocity varies with aging time as given by Equation 4.21.

One can observe that for a �nite value of α, this viscosity model gives a non zero

terminal velocity when t→∞ (Equation 4.22) while as per Equation 4.24 V → 0 when

t→∞. We can expect a close match with exponential �t using a very large value of α.

Increasing the value of α (i.e. viscosity ratio; see Equation 2.31) means the increment in

zero shear viscosity which pushes the steady state thixotropic rheology closer to dual-
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Figure 4.12: Terminal velocity of a sphere in thixotropic liquid as a function of aging
time at Re = 1; Straight line is exponential �t to simulation data.

viscosity Bingham model (refer Figure 2.6). The idea of this whole exercise is that indeed

thixotropic liquid behaves as true yield stress liquid and by using a large viscosity ratio in

simulations, a close match can be expected between simulation data and the exponential

�t given by Equation 4.24. Also these results qualitatively agree with the experimental

observations made by Gueslin et al. [26].

It is important to note here that there is a substantial di�erence between the time

constants 1/k2 used in simulations and 1/k
′
2 extracted from exponential �tting. The

constant 1/k2 is liquid parameter alone while the constant 1/k′2 depends upon the entire

solid-liquid system and would change with the properties of settling sphere. Through

these simulations we �nd that

k
′
2

k2
≈ 3 (4.25)

which indicates that network of thixotropic liquid builds up approximately 3 times faster

with sphere settling than that with liquid alone.
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Figure 4.13: Terminal velocity of spheres in thixotropic liquid as a function of aging
time at Re = 1 and Re = 3; Straight line is exponential �t to simulation data

4.3.4 E�ect of Reynolds number

In this subsection, we study the settling behavior of a solid particle (ρs = 10ρl) which

exert higher inertial forces than those due to the solid sphere studied in previous subsec-

tion. All the dimensionless numbers are unchanged (except Reynolds number; Re = 3)

and same procedure is employed to obtain the settling velocities of sphere in thixotropic

liquid with di�erent aging times as done in previous subsection. Figure 4.13 displays

the terminal velocity of spheres (ρs = 4ρl, 10ρl) as a function of aging time, measured

separately. In this case too, terminal velocity decreases with aging time and the vari-

ation is well described by the Equation 4.24. The settling velocities of heavier sphere

are greater than those of lighter sphere at same aging time. However the ratio of heav-

ier sphere terminal velocity to lighter sphere terminal velocity is smaller at small aging

times whereas the ratio is larger at large aging times. This is in qualitative agreement

with the results reported by Gueslin et al. [26]. The characteristic build-up time (1/k′2)

for solid-liquid suspension of heavier particle is related with liquid time constant (1/k2)

as
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k
′
2

k2
≈ 0.6 (4.26)

which shows that network recovery process slows down with heavier particle. In contrast

to the case with lighter sphere, on this occasion the motion of (heavier) sphere catalyzes

the breakdown process and retards the association process.

4.3.5 Fore-aft asymmetry

The fore-aft symmetry (symmetry of �ow �eld before and after the sphere) has been a

distinguished feature of the creeping �ow of a sphere moving in a Newtonian or Bing-

ham liquid [9, 14]. In contrast to this, we observe a fore-aft asymmetry in the case of

thixotropic liquid at low Reynolds number �ows. A qualitative comparison of fore-aft

�ow �elds in a Newtonian, Bingham and thixotropic liquid is displayed in Figure 4.14.

The fore-aft asymmetry displayed with thixotropic liquid (Figure 4.14 (c)) is due to its

time-dependent behavior. As the sphere moves, the sheared liquid has lesser viscosity

than the liquid approached by the sphere. In case of Newtonian and Bingham liquids,

the viscosity remains unchanged before and after the moving sphere which makes the

�ow symmetric. To illustrate the time dependent behavior of thixotropic liquid, a con-

tour plot of ratio of apparent viscosity to in�nite shear viscosity (µa/µ∞) coupled with

streamlines is provided in Figure 4.15.It is clear that the liquid is lesser viscous in down-

stream region compared to the same area of upstream region. This contour plot is in

qualitative agreement with the viscosity contours shown by Yu et al. [31] in their nu-

merical study of particle sedimentation in shear-thinning liquids with memory. The lack

of fore-aft symmetry is consistent with the �ndings of some experimental studies [26, 32]

conducted with a yield stress shear thinning liquid.

Another feature related to yield stress shear thinning liquids reported by these studies

is the upward �ow in the sphere's wake which is also termed as negative wake. In present

study we do not observe the existence of negative wake. Exploring the literature further,

we �nd out that the existence of negative wake has been often reported by numerical

studies [33, 29, 30, 31] using viscoelastic constitutive models. Gueslin et al. [26] and Putz
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Figure 4.15: Viscosity contour plot coupled with streamlines for creeping �ow of a sphere
in thixotropic liquid

et al. [32] have also speculated that the negative wake observed in their experimental

studies resulted from the elastic e�ects of their experimental liquids; aqueous suspension

of Laponite clay and Carbopol, respectively. Since the viscosity model used in present

study is purely viscous, it can be stated that the non-existence of negative wake in our

simulations is expected and not in disagreement of experimental works.
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Chapter 5

Two sphere sedimentation

The applications involving suspensions of solid particles are abundant in industrial and

natural processes. The rheology of such suspensions depends on the hydrodynamic in-

teractions of solid particles which are subjected to a variety of forces. Moreover the

analytical and experimental analysis of these suspensions is di�cult due to the multiple

interaction e�ects and boundary conditions. A reasonable approach generally adopted

by researchers is to conduct a study of single particle motion and then taking the two

particle hydrodynamic interactions into consideration. In the present chapter, we build

up on the results of preceding chapter by considering the sedimentation of two particles

in Newtonian and non-Newtonian liquids at low Reynolds number. As a standard of

various particle shapes conceivable, identical spheres are chosen for numerical experi-

ments discussed in this chapter. Going one step further, the in�uence of inertial e�ects

at moderate Reynolds number on the motion of two spheres is also discussed.

5.1 Two sphere sedimentation in Newtonian liquid

5.1.1 Introduction

When two spheres fall one above the other, each sphere tends to move liquid down with

itself which in�uences the motion of other sphere. This mutual interaction between

the spheres depends upon the Reynolds number and the distance between the center of

77
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two spheres. In the earliest theoretical work related to low Reynolds number regime,

Smoluchowski [1] used method of re�ections to approximately determine the terminal

velocity of two spheres falling in an unbounded liquid and calculated the drag force D

on each sphere employing correction factor δ1 due to the mutual interaction of spheres.

The drag force de�ned by Smoluchowski [1] is given by

D = 3πµdUδ (5.1)

with µ, d, U being the liquid viscosity, sphere diameter and terminal velocity, respectively.

The correction factor δ is given by notion

δ = 1− 3
4
d

l
+ (

3
4
d

l
)2 (5.2)

where l is the separation distance between the centers of spheres. The drawback with

this solution is its validity only for two identical spheres falling with a center to center

distance greater than three diameters.

The �rst exact solution of creeping �ow of two spheres sedimenting with constant and

equal velocities was provided by Stimson and Je�rey [2]. They determined the Stokes'

stream functions from the motion of the liquid and deduced the forces (using Equation

5.1) required to maintain the motion of spheres. They de�ned the correction factor δ

as the ratio of the force required to maintain the motion of either sphere in the vicinity

of other to the force required to maintain its motion with the same velocity if the other

sphere were at a in�nite distance. Recalling the Stokes' law (Equation 4.2), the force

required to maintain the motion of a single sphere is directly proportional to its terminal

velocity. Therefore δ can also be de�ned as the ratio of the terminal velocity of single

sphere (U1∞) to terminal velocity of sphere doublet (U2∞). The value of δ is given by

expression

1In literature, the correction factor is usually denoted by symbol λ. However in present work the use

of λ is reserved for thixotropic network parameter, therefore symbol δ is used instead of that.
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δ =
U1∞
U2∞

=
4
3
sinhα

∞∑
n=1

n(n+ 1)
(2n− 1)(2n+ 3)

{1− 4sinh2(n+ 1/2)α− (2n+ 1)2sinh2α

2sinh(2n+ 1)α+ (2n+ 1)sinh2α
}

(5.3)

where the ratio of center to center distance to the diameter of either sphere is equal

to coshα. Faxen [3] and later Happel and Brenner [4] investigated the case of two

touching spheres and found out the value of δ = 0.645 which compares well with the

solution obtained using Equation 5.3. Kynch [5] extended the method of re�ections to

analytically solve the motion of two or more spheres. Mazur and Saarloos [6] developed

a method based on Fourier-space multiple expansion to calculate the sphere mobility

functions for four and more spheres. Their �ndings were in close agreement with those

obtained by Kynch [5].

In addition to theoretical studies, there are numerical solutions available in liter-

ature for two or more body interactions. Ganatos et al. [7] extended the collocation

technique, earlier used by researchers for bounded and unbounded multi-particle axisym-

metric Stokes �ow, to solve the non-axisymmetric creeping-motion �ows. They handled a

variety of problems and calculated the velocity and drag coe�cient of two or more closely

spaced spheres in a plane. Batchelor [8] performed a rigorous study of hydrodynamic

interactions between small rigid spheres settling under gravity through Newtonian liquid

and put forth the analytical expressions of pair distribution function and sedimentation

coe�cient for interacting spheres. Later Batchelor and Wen [9] provided the numerical

solutions of these expressions for various conditions including di�erent sizes and weights

of spheres. Other notable numerical studies for hydrodynamic interaction of two or

more spheres include Cichoki et al. [10], Ingber [11], Tran-Cong and Phan-Thien [12]

and Durlofsky and Brady [13].

Turning the focus towards experimental studies, Happel and Pfe�er [14] measured

the velocities of two identical spheres falling one above the other in a circular cylinder as

a function of the center to center distance between them at low Reynolds number. They

found a good agreement with the theoretical studies. They experimentally con�rmed the
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theoretical result that two spheres attract each other at Reynolds number greater than

0.25. Kasper et al. [15] studied the settling of chains of spheres in circular cylinders and

determined the drag, shape factors and wall correction factors. Muraoka and Kumagai

[16] conducted the experiments of two sphere sedimentation and con�rmed the results

obtained by Steinberger and Pruppach [17] that each sphere falls at di�erent velocity,

which increases with time and the velocity of leading sphere depends upon the Reynolds

number (even in low Reynolds number regime). They empirically found a close �t

expression for drag incorporating correction for Reynolds number. Zheng et al. [18]

measured the velocity of two identical falling spheres with the various ratios of diameter

of sphere to diameter of cylinder. Their results compared well with Leichtberg et al.

[19] and Stimson and Je�ery [2].

In the following study, we display the results of present work which deals with the

sedimentation of two spheres in Newtonian liquid. The spheres fall along the axis of a

cylinder of square cross-section in a direction parallel to their line of centers. Initially

the Reynolds number is kept very low (Re < 0.25) and the terminal velocity of sphere

doublet is measured. Further the dynamic behavior of two spheres is investigated at

moderate Reynolds number.

5.1.2 Flow de�nition and dimensionless numbers

The �ow de�nition for two identical spheres settling along the axis of a cylinder of square

cross-section in a direction parallel to their line of centers is displayed in Figure 5.1. The

spheres are placed at a vertical distance of W, measuring center to center and allowed to

fall under the in�uence of gravity (g). The sphere diameter d and the terminal velocity in

an unbounded medium U∞ are taken as characteristic length and velocity, respectively.

The �ow is governed by the Reynolds number which is expressed by the notion

Re =
ρlU∞d

µ
(5.4)

where ρl and µ being the density and viscosity of the Newtonian liquid, respectively.

The terminal velocity of sphere falling in an unbounded medium is de�ned di�erently
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Figure 5.1: Flow de�nition of two sphere motion in a cylinder of square cross-section
(L×L); (a) Front view of cylinder (b) Top view of cylinder taken at cross-section marked
by dashed line in (a).

for low and moderate Reynolds number cases. In case of low Reynolds number �ow, the

Stokes velocity (Us) is considered as characteristic velocity which is read as

U∞ = Us =
d2(ρs − ρl)g

18µ
(5.5)

with ρs being the density of sphere. To calculate U∞ in case of moderate inertial

in�uences, we consider the drag coe�cient expression proposed by Abraham [20] and

later used by Ten Cate et al. [21]:

Cd =
24
Re

(1 +
√
Re

9.06
)2 (5.6)

Based on drag coe�cient de�ned by Equation 5.6, U∞ is given by

U∞ =
d2(ρs − ρl)g

18µ(1 +
√
Re/9.06)2

(5.7)
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Implementation of zero velocity boundary condition can be seen in appendix C.

5.1.3 Hydrodynamic interaction at low Re

Investigation of hydrodynamic interaction of two spheres falling one above the other

is started with low Reynolds number �ow. The density and viscosity of liquid are

chosen as ρl = 8.0 and µ = 0.8, respectively. The diameter and density of each falling

sphere are de�ned as d = 12, ρs = 4ρl. The value of g is chosen in such a way that

Reynolds number is very low (Re = 0.001) and grid size chosen for these simulations is

73 × 73 × 281 (x × y × z). The numerical experiments are carried out by placing the

two spheres at di�erent center to center distances so that the hydrodynamic interaction

could be examined at various W/d ratios (W/d = 1.11, 1.43, 2.0, 2.5, 3.33). Initially,

the sphere doublet is placed along the axis of symmetry with trailing sphere's location

reading 0.5x× 0.5y × 0.6z.

Hydrodynamic interaction between two spheres is interpreted through several quan-

titative (e.g. drag force, terminal velocity) and qualitative parameters (e.g. �ow �eld,

attraction of spheres). In present work, the focus is set on the terminal velocity, �ow

�eld and attraction of spheres. The terminal velocity of single sphere falling under same

conditions (as two spheres) is also calculated for a quantitative comparison with termi-

nal velocity of sphere doublet. The velocity of falling sphere(s) with time is plotted in

Figure 5.2 to demonstrate the steady state terminal velocity in case of single and double

sphere sedimentation. It is obvious from the �gure that as the sphere starts settling, its

velocity �rst increases and then attains a constant value under the equilibrium of acting

forces (gravity force=hydrodynamic force+buoyancy force). Related to two sphere sed-

imentation, a quick observation can be made that for any d/W ratio, both the spheres

(leading and trailing) fall with the same velocity and their steady state velocities are

also equal. This concludes that irrespective of center to center distance, two spheres do

not attract each other at low Reynolds number. This is in agreement with the literary

analysis of two sphere sedimentation problem.

Figure 5.3 displays the streamlines of single and double sphere sedimentation with
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Figure 5.2: Time series of settling velocity of (a) single sphere and two spheres with
di�erent W/d ratios; (b) W/d = 3.33 (c) W/d = 2.0 (d) W/d = 1.43

di�erent values of center to center distance. When the separation distance between two

spheres is moderately high (W/d = 3.33), the hydrodynamic interaction between the two

spheres is very minor. One can observe in Figure 5.3 (b) that both the spheres move with

their own recirculating regions on either side. As the separation distance is decreased, the

�ow �elds of two spheres start interacting with each other (Figure 5.3 (c)). Decreasing

the distance further, the �ow �elds of two spheres merge with each other and now the

sphere doublet move with only two recirculating regions on either side. Therefore it is

clear that the hydrodynamic interaction between the spheres increases with decrease of

center to center distance. The direct e�ect of this hydrodynamic interaction between

the two spheres is obvious when we plot the terminal velocity of two spheres with W/d

ratio (Figure 5.4).
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Figure 5.3: Streamline �ow region for settling of (a) single sphere and two spheres with
W/d ratios (b) 3.33 (c) 2.0 (d) 1.43 .

The terminal velocity of two spheres is always equal or higher than the terminal

velocity of single sphere settling under same conditions. This phenomena is explained

by adopting a point of view when two spheres move while touching each other. With this

con�guration, the leading sphere behave as a shield to trailing sphere which experiences

a very smaller drag force as compared to leading sphere. Treating the two spheres like

a single body, the mass of whole body is doubled however the drag force on the whole

body is much less than twice the drag force experienced by single sphere. Therefore using

the Equations 4.1 and 4.2, one obtains a higher terminal velocity of sphere doublet in

comparison to that of single sphere settling in similar conditions. When the separation

between the two spheres increases, the drag force experienced by trailing sphere increases
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Figure 5.4: Velocity ratio U1/U2 as a function of W/d ratio; U1 is the settling velocity
of a single sphere in �nite size medium; U2 is the settling velocity of sphere doublet in
�nite size medium; Comparison with literature result (Zheng et al. [18])

but still less than the drag force experienced by a single sphere. When the two spheres

move with a very large separation distance, they do not a�ect the motion of each other

(no hydrodynamic interaction) and their individual motions are similar to that of single

sphere.

We compare our results (see Figure 5.4) with data obtained by Zheng et al. [18]

who used circular cylinder as container with ratio d/b = 0.17 where b was the diameter

of cylinder (we use a square cylinder with d/L = 0.17). In order to understand the

deviations between our results and those obtained by Zheng et al., we tabulate these

data in Table 5.1 along with the theoretical solutions obtained by Stimson and Je�rey [2]

using Equation 5.3. Before going further, let us de�ne parameters U1, U2, U1∞ and U2∞

�rst. U1 and U1∞ are the terminal velocities of a single sphere settling in a �nite size

medium and unbounded medium, respectively. Similarly U2 and U2∞ are the terminal

velocities of a sphere doublet settling in a �nite size medium and unbounded medium,

respectively. Considering all the studies mentioned in Table 5.1 separately, ratio of U1/U2

(or U1∞/U2∞) increases with separation distance (W/d ratio) which we have discussed

already. Now choosing a certain separation distance, say W/d ≈ 1.1, and comparing
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Stimson and Je�ery [2] Present results Zheng et al. [18]
(unbounded medium) (square cylinder d/L = 0.17) (circular cylinder d/b = 0.17)
W/d U1∞/U2∞ W/d U1/U2 W/d U1/U2

1.128 0.663 1.11 0.745 1.11 0.770

1.543 0.702 1.43 0.804 1.25 0.830

2.352 0.768 2.5 0.930 2.5 0.950

3.762 0.836 3.33 0.979 3.33 1.00

Table 5.1: Ratios of terminal velocity of single sphere to terminal velocity of sphere
doublet (in similar conditions) presented by various studies.

the results of Stimson and Je�rey [2] and Zheng et al. [18], it is observed that as the

wall e�ects increase, ratio of terminal velocity of single sphere to that of two sphere (in

similar conditions) also increases (U1/U2 > U1∞/U2∞). Similar observation is made for

other W/d ratios. This indicates that retardation e�ect due to walls is much stronger

for two spheres settling one above the other. The force balance equation for a single

sphere settling in a �nite size container is written as

FG = FD + FB + FW (5.8)

where FG, FD, FB, and FW are gravitational force, drag force, buoyancy force and

force due to wall e�ects on a single sphere, respectively. In case of two identical spheres

(one above the other) sedimentation, force balance equation is

2FG = F
′
D + 2FB + F

′
W (5.9)

with F
′
D and F

′
W being the drag force and force due to walls, respectively on sphere

doublet. Combining the Equations 5.8 and 5.9 we obtain

F
′
W = 2FW + 2FD − F

′
D (5.10)

If the two spheres are not very far from each other, the drag force on sphere doublet

F
′
D is less than the twice of drag force on single sphere, i.e. 2FD − F

′
D > 0. Replacing

this condition in Equation 5.10 we �nd that
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F
′
W > 2FW (5.11)

Therefore it is concluded that each sphere of a sphere doublet, settling in a �nite

size container, experiences a higher retardation e�ect in comparison to a single sphere

sedimenting alone in same conditions. This implies that the value of U1/U2 increases

with stronger wall e�ects. Since we use a square cylinder with d/L = 0.17, the wall e�ects

should be slightly milder in our numerical experiments in comparison to the experiments

conducted by Zheng et al. [18] with circular cylinder. This is well supported by the fact

that our values of U1/U2 are approximately 3% (on average) lower than the experimental

data.

5.1.4 Hydrodynamic interaction at moderate Re

To investigate the hydrodynamic interaction of two settling spheres at moderate Reynolds

number, we keep the physical properties of liquid and identical spheres unchanged. The

Reynolds number (Re = 6.2) for this study is based on the terminal velocity U∞ given

by Equation 5.7. The center to center distance between the spheres is de�ned by W/d

ratio and the grid size used is 49× 49× 1000 (x× y × z). The spheres are placed along

the axis of the symmetry with trailing sphere being at location 0.5x× 0.5y × 0.7z.

In this study, the focus is set on the hydrodynamic interaction between two spheres,

initially placed at a separation distance of 2d (W/d = 2.0) , which are allowed to sediment

under the in�uence of gravitational acceleration (g). The time series of settling velocity

and distance of both the spheres are displayed in Figure 5.5. Contrary to the low

Reynolds number study, there exists a attraction between spheres at moderate Reynolds

number. Initially the trailing sphere moves with same velocity as that of leading sphere,

however after a while it starts moving faster and ultimately collides with the leading

sphere. Figure 5.5 (b) shows the position of bottom point of trailing sphere and top

point of leading sphere (de�ned by point A and B, respectively in Figure 5.1) with

time. Various studies available in literature (e.g. Happel and Pfe�er [14]) have reported

that the trailing sphere approaches leading sphere when Re > 0.25. Therefore our
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Figure 5.5: Trajectory of (a) velocity and (b) traveled distance of two settling spheres
in Newtonian liquid with d/W = 0.5 at Re = 6.2.

observations are in agreement with literature.

The attraction of spheres at moderate Reynolds number is due to the interaction of

the trailing sphere with the wake of the leading sphere. Figure 5.6 displays the velocity

contour plots of a single sphere sedimenting in low and moderate Reynolds number �ow.

At moderate Reynolds number, the wake is stronger which results in a low pressure

region behind the leading sphere. The trailing sphere is sucked into this low pressure

region, that is why it accelerates faster than leading sphere.

The �ow �elds (in terms of velocity vectors) of two spheres sedimenting in a Newto-

nian liquid at moderate Re are displayed in Figure 5.7. Initially when the two spheres

are at a distance of 2d (5.7 (a)), they move with their own �ow �elds interacting little

with each other. Recirculating regions at either side of both the spheres are reminiscent

to those observed in Figure 5.3 (c). At this moment (t = 100), both the spheres settle

with equal velocity. Due to the low pressure region, the trailing sphere approaches to-

wards the leading sphere resulting in the merger of their �ow �elds (Figure 5.7 (b) and

(c)).
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Figure 5.6: Velocity contour plot of a single sphere settling in Newtonian liquid; (a)
Re = 0.001; (b) Re = 6.2.

Figure 5.7: Velocity vectors of the two spheres settling in a Newtonian liquid at moderate
Reynolds number; (a) t = 100 (b) t = 2400 (c) t = 3800.
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5.2 Two sphere sedimentation in Bingham liquid

5.2.1 Introduction

The hydrodynamic interaction of two or more spheres in viscoplastic liquids plays a vi-

tal role in handling the various industrial processes involving gelled liquids like slurry.

Therefore it is important to understand the basic mechanism of hydrodynamic interac-

tion between spheres at low as well as high Reynolds number. Though there are nu-

merous studies available in literature related to two sphere sedimentation in Newtonian

liquids (refer subsection 5.1.1), one �nds few results for viscoplastic liquids, probably

due to the complexity associated with two sphere motion coupled with discontinuous

nature of viscoplastic liquid models.

Liu et al. [22] numerically investigated the creeping �ow of two identical spheres

falling collinearly along the axis of a circular cylinder in Bingham liquid. They calculated

the yield surfaces as a function of ratio of center to center distance to the radius of

sphere and further predicted a plug like (unyielded) region between the two spheres

along the symmetry axis. They also investigated the case of two approaching spheres

falling in a line and predicted qualitatively di�erent yield surfaces. In their experimental

work, Merkak et al. [23] reported an appreciable hydrodynamic interaction between two

spheres falling one above over other. They proposed the drag coe�cient correlations and

showed that yield e�ect of viscoplastic liquids reduces the degree of interaction compared

to sedimentation in Newtonian liquid. Jie et al. [24] used �nite element method coupled

with regularization model to determine the yield surfaces and drag force on two or

more spheres placed co-axially in a viscoplastic liquid. Yu and Wachs [25] examined the

motion of two spheres translating along the axis of tube at low Reynolds number and

predicted the faster velocity of two spheres than a single sphere due to the hydrodynamic

interaction.

In the studies related to bubbles and drops, Potapov et al. [26] investigated the

motion of multiple deformable Newtonian drops in a tube �lled with Bingham liquid.

They concentrated on the shape and extent of yielded region along with velocities and
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deformation of the drops and predicted a substantial increased yielded region and accel-

erated motion due to the hydrodynamic interaction of drops. In their numerical work,

Singh and Denn [27] demonstrated that the yield e�ect of Bingham liquid is softened

due to the hydrodynamic interaction of multiple drops which is similar to the results

reported by Yu and Wachs [25]. In the following study, we investigate the hydrodynamic

interaction between the two spheres falling along the axis of symmetry at low and mod-

erate Reynolds number. Hydrodynamic interaction is interpreted in terms of settling

velocity, �ow �eld and attraction between the spheres.

5.2.2 Flow de�nition and dimensionless numbers

Flow de�nition for two sphere sedimentation study with Bingham liquid remains same

as with Newtonian liquid (see Figure 5.1). The �ow is governed by two dimensionless

numbers namely Reynolds number and Bingham number which are based on the terminal

velocity (U∞) in an in�nite medium. The de�nition of Reynolds number is given by

Equation 5.4 while the Bingham number is expressed by the notion

Bn =
τ0d

µpU∞
(5.12)

where τ0 and µp are the yield stress and plastic viscosity of the Bingham liquid, respec-

tively. For low and moderate Reynolds number, U∞ is de�ned by Equations 5.5 and 5.7

(with µ = µp), respectively. Zero velocity boundary conditions are applied on cylinder

walls. A detailed explanation can be seen in appendix C.

5.2.3 Hydrodynamic interaction at low Re

This subsection deals with the sedimentation of two spheres translating along the axis

of square cylinder �lled with Bingham liquid. The inertial e�ects are considered low

i.e. Re = 1. We use the identical spheres with physical properties similar to those

used with Newtonian liquid study. Bingham liquid is de�ned by the properties; density

ρl = 8.0, plastic viscosity µp = 0.8 and viscosity ratio µr = 105. The yield stress (τ0)

of liquid is related to the Bingham number which has a (arbitrarily chosen) �xed value
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Figure 5.8: Time series of settling velocity of the two spheres settling in a Bingham liquid
with di�erent W/d ratios; (a) W/d = 1.5 (b) W/d = 2.0 (c) W/d = 2.5 (d) W/d = 3.0

(Bn = 0.36) and the grid size chosen for simulations is 49×49×199 (x×y×z). Initially

the spheres are placed along the axis of symmetry with trailing sphere's location reading

0.5x× 0.5y × 0.6z.

To examine the hydrodynamic interaction, the numerical experiments are performed

with a range of center to center distance (W/d = 1.0, 1.25, 1.5, 2.0, 2.5, 3.0, 3.5) between

the two spheres. The settling velocity of falling spheres is plotted against time in Figure

5.8 for some W/d ratios to demonstrate the steady state condition. It is obvious from

the �gure that both the spheres initially accelerate with equal rate and ultimately move

with equal terminal velocity. Therefore it is concluded that both the spheres maintain

the initial distance throughout their motion and the trailing sphere does not approach

the leading sphere. Though the spheres do not attract, their �ow �elds interact with

each other and the interaction depends upon the separation distance. Figure 5.8 also
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Figure 5.9: Velocity ratio as a function of W/d ratio; U1 is the settling velocity of a
single sphere; U2 is the settling velocity of sphere doublet; Comparison with literature
result (Yu and Wachs [25])

reveals that the terminal velocity of spheres becomes higher as their separation distance

decreases. A quantitative depiction of hydrodynamic interaction (in terms of terminal

velocity of two spheres) with W/d ratio is shown in Figure 5.9 where U1 and U2 are the

terminal velocities of single sphere and two spheres, respectively settling in a �nite size

container �lled with Bingham liquid under same conditions. When the two sphere are

at a large distance (W/d > 3.5) , they hardly interact with each other and the terminal

velocity of either sphere is equal to the terminal velocity of single sphere settling in

same conditions. Our results show the same pattern as observed by Yu and Wachs [25].

The deviations appearing in the �gure are due to the di�erence in geometry. Yu and

Wachs [25] used a cylinder with circular cross-section whose diameter is four times the

diameter of sphere while we have used a cylinder with square cross-section whose one

side is four time the diameter of sphere. Due to this geometry di�erence, we observe less

pronounced wall e�ects. As discussed in subsection 5.1.3, the value of U1/U2 is greater

with stronger wall e�ects (circular cylinder). The average deviation observed in this

study (7%) is relatively higher than that observed with Newtonian liquid.

In Figure 5.10 we display the steady state velocity vectors coupled with yielded and
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unyielded regions for various W/d ratios. When the two spheres are at distances of 2.5d

(Figure 5.10 (c)) and 3d (Figure 5.10 (d)), the �ow �eld and yielded envelope around

a sphere is quite similar to those observed with single sphere (Figure 4.8). Apart from

the islands of unyielded regions appearing on either side of a sphere, there are other

unyielded regions noted in the yielded envelop. They include the regions along the mid

plane; along the axis of symmetry between the spheres and on the poles of the spheres.

The unyielded regions along the mid plane and symmetry axis are caused due to the

re-circulation which is essential for mass conservation with in the yielded envelope. The

re-circulation zones, being generated due to motion of two spheres have been shown

in Figure 5.3 (b). We do not observe the polar caps on both side of spheres which

are expected because of the stagnation points. Liu et al. [22] and Yu and Wachs [25]

also reported the disappearance of polar caps in their numerical results. The reason, as

pointed out by Liu et al. [22], may be that the polar caps region are too small to be

detected in the simulations with present grid size. Use of a �ner grid size may shed some

insight into the problem. The size of unyielded regions along the planes decreases with

the decrease of separation distance. The unyielded regions situated between the spheres

along the axis of symmetry also decreases in size with decreasing separation distance.

However, it becomes larger after bringing the spheres closer after a certain limit (e.g

Figure 5.10 (a)). The small islands of unyielded regions at either side of spheres vanish

with decreasing separation distance. The terminal velocity of spheres with less separation

distance is higher (see Figure 5.9), they are con�ned by a larger unyielded region. In

other way, the yielded envelope around the spheres reduces in size with decreases of

separation distance. The �ow �eld and yielded/unyielded regions reported in present

work are in good agreement with the results obtained by Liu et al. [22] and Yu and

Wachs [25].

5.2.4 Hydrodynamic interaction at moderate Re

The physical properties of liquid and solid spheres remain unchanged for study with mod-

erate inertial in�uences. The characteristic velocity (U∞) is determined using Equation
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Figure 5.10: Steady state velocity vectors coupled with yielded (white)/unyielded (black)
regions for settling of the two spheres in a Bingham liquid with di�erent W/d ratios at
Bn = 0.36 and low Reynolds number; (a) W/d = 1.5 (b) W/d = 2.0 (c) W/d = 2.5 (d)
W/d = 3.0



5.2. Two sphere sedimentation in Bingham liquid 96

Figure 5.11: Time series of (a) settling velocity and (b) traveled distance of the two
spheres settling in a Bingham liquid with W/d = 2.0.

5.7 (µ being equivalent to µp) and the Reynolds number for this case is 6.2. The Bing-

ham number is 0.36 and the grid size used is 49 × 49 × 1000 (x × y × z). The two

spheres, placed initially at a center to center distance of 2d along the axis of symmetry

fall in Bingham liquid under the in�uence of gravity. The starting position of the trailing

sphere is kept as 0.5x× 0.5y × 0.7z. The trajectories of settling velocity of spheres and

distance covered by them are displayed in Figure 5.11. It is obvious from the �gure

that trailing sphere moves faster than the leading sphere at moderate Reynolds number.

However the trailing sphere takes signi�cantly greater time to touch the leading sphere

in comparison to Newtonian liquid study (Bn = 0). The reason of this is attributed

to the yield forces which retard the motion caused by the inertial forces. Therefore the

attraction rate of spheres, falling along the axis, decreases with the increase of yield

stress of Bingham liquid.

The velocity vectors coupled with yielded/unyielded regions are drawn at three di�er-

ent times (t = 100, 5900, 11250) and shown in Figure 5.12. Initially (t = 100) the spheres

move with identical velocity and as the time progresses (t = 5900, 11250), the velocity

of trailing sphere increases gradually and it approaches the leading sphere. During the

initial stages (e.g t = 100) when �ow is partially developed and spheres are far from each

other, the unyielded regions appear along the mid plane, along the axis of symmetry

between the spheres and at either side of each sphere. As the �ow develops, the yield
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Figure 5.12: Velocity vectors coupled with yielded (white)/unyielded (black) regions for
settling of the two spheres in a Bingham liquid at moderate Reynolds number.

e�ects are softened due to the inertial forces and the unyielded regions along the axis of

symmetry and either side of sphere vanish. At this moment this system behaves like two

sphere sedimentation in Newtonian liquid where the low pressure region in the vicinity

of leading sphere's wake draws the trailing sphere towards itself. In case of low Reynolds

number study with Bingham liquid (Figure 5.10), there exists an unyielded region along

the axis of symmetry between the spheres which prevents the trailing sphere to approach

leading sphere.

5.3 Two sphere sedimentation in thixotropic liquid

5.3.1 Introduction

An understanding of particle interaction in thixotropic liquid is necessary since it is

involved in many industrial processes such as oils sands processing and drilling liquids, an

important parameter in successful completion of oil and gas wells. It has been observed

in some polymeric liquid studies that two identical spheres settling one above the other,

form an aggregate due to the shear-thinning property of the liquid in which �rst sphere

leaves a corridor of reduced viscosity behind itself (Riddle et al. [28], Liu and Joseph
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[29], Joseph et al. [30]). There are few studies available in literature which probe the

multi-particle sedimentation in thixotropic liquid exhibiting memory/time dependency,

yield and shear-thinning together. In a experimental study of two or more particle

sedimentation in a shear-thinning liquid (Carbolpol), Gheissary et al. [31] reported that

the interaction between two particles not only depends upon the bulk rheology of liquid

but also considerably in�uenced by the time of observation. They predicted the time

e�ects due to the non-homogeneity of liquid structure.

Yu et al. [32] coupled Carreau model with thixotropic model (to include memory

e�ect) to numerically investigate the multi-particle sedimentation in a shear-thinning

liquid at low Reynolds number and they found memory of shear-thinning liquid ac-

countable for the aggregation of settling spheres. Gueslin et al. [33] investigated the

qualitative behavior of two identical spheres of two di�erent materials settling along

their line of center in a Laponite suspension which predominantly exhibits yield stress,

shear-thinning and memory e�ect. They reported that two spheres of same material

aggregate with their initial separation distance less than 15 radii and the phenomenon

of negative wake is predicted to be dependent on particle Reynolds number. They also

observed a side-by-side movement of the settling spheres in presence of negative wake.

In the present work, we study the sedimentation of two spheres in a thixotropic liquid

which exhibits memory, yield stress and shear thinning properties.

5.3.2 Flow de�nition and dimensionless numbers

The system of two spheres sedimenting along the axis of a square cylinder has been

shown in Figure 5.1. In this study the cylinder is �lled with a thixotropic liquid whose

viscosity model has been de�ned by Equation 2.27. The �ow is governed by a number

of thixotropic parameters (k1, k2, µ∞, α and λ) which are combined together to express

dimensionless numbers such as Reynolds number, Deborah number, (pseudo) Bingham

number and viscosity ratio. The Reynolds number (Re) is de�ned by Equation 5.4 with

viscosity µ being equal to in�nite shear viscosity µ∞. Purely viscous Deborah number

(Db), pseudo Bingham number and viscosity ratio are de�ned by notions
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Db =
U∞
dk2

(5.13)

(pseudo)Bn = α
k2d

k1U∞
(5.14)

α =
µ0

µ∞
− 1 (5.15)

with U∞ being the terminal velocity of a sphere in in�nite medium (calculated with

µ = µ∞), µ0 and µ∞ being the zero and in�nite shear viscosity, respectively. Zero

velocity boundary conditions imposed on the cylinder walls can be seen in appendix C.

5.3.3 Hydrodynamic interaction in thixotropic liquid

The studies available in literature (Yu et al. [32], Gueslin et al. [33]) concerning the

hydrodynamic interaction between two spheres sedimenting in time dependent shear-

thinning liquid or yield stress-shear thinning liquid suggest that two spheres aggregate

irrespective of the inertial forces exerted by them. Once the trailing sphere enters the

corridor of reduced viscosity created by the motion of leading sphere, it starts moving

faster and eventually collides with the leading sphere. To compare our results with

experimental study done by Gueslin et al. [33] (who dealt with two systems of di�erent

Reynolds number of same order with one being slightly higher than other), we investigate

the two systems whose Reynolds numbers are 0.83 and 2.25, respectively. The value of

thixotropic parameter k2, also the inverse of characteristic build up time scale, is chosen

as 6.944× 10−7. The Deborah numbers for these systems turn out to be 825 and 2210,

respectively. By choosing such a low value of k2 (i.e. a high build up time scale), it is

made sure that the trailing sphere reaches the region of low viscosity with in a adequate

time period before this region becomes highly viscous due to the aging of the liquid.

Speculatively we write that

W

Vtr
<

1
k2

(5.16)
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where W is the initial separation distance between the spheres and Vtr is the average

settling velocity of trailing sphere. The initial value of network integrity parameter is

arbitrarily set to λ = 0.25. The value of breakdown parameter k1 is 400 which results in

pseudo Bingham numbers 0.25 and 0.08 for Re = 0.83 and Re = 2.25 systems, respec-

tively. The viscosity ratio is α = 99999 while the grid size used for these simulations

is 97 × 97 × 1000 (x × y × z). Initially, the sphere doublet is placed along the axis of

symmetry with separation distance being 2d and location of the trailing sphere reads

0.5x× 0.5y × 0.7z.

Figure 5.13 displays the time series of various quantities (settling velocity, separation

distance and distance travelled) related to two systems (Re = 0.83 and Re = 2.25).

The qualitative behavior of mentioned quantities is same for both the systems except

the fact that drafting and kissing mechanism happen faster in case of higher Reynolds

number system. In both the systems, initially spheres move with equal velocity, thereby

maintaining a constant separation between them. After a certain time period (depending

upon Reynolds number) the velocity of the leading sphere becomes higher than that of

the trailing sphere. This is in contrast to the behavior observed with Newtonian liquid as

well as Bingham liquid where the velocity of the leading sphere is either equal (initially)

or less than that of the trailing sphere (refer Figures 5.5 (a) and 5.11 (a)). Due to this

unexpected phenomenon, the separation distance between the spheres also increases and

it becomes substantially higher than initial separation distance of 2d (Figures 5.13 (b)

and (e)).

To explain this phenomenon, �rst of all we divide the total time period of numerical

experiments in two parts; t ≤ t
′
and t > t

′
where t

′
is the time when the bottom most

point of the trailing sphere (point A in Figure 5.1 (a)) reaches the very initial position of

upper most point of the leading sphere (point B in Figure 5.1 (a)). The time t′ is shown

in Figures 5.13 (c) and (f) too. Since the qualitative behaviors of both the systems

are same, the focus is set on the system with Re = 2.25 only (t
′

= 31000). Initially,

when the �ow is partially developed, both the spheres move with equal velocity. Since

the thixotropic liquid considered in this study possesses the yield e�ects, we expect an
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Figure 5.13: Time series of settling velocity (top panel), separation distance (mid-
dle panel) and traveled distance (bottom panel) for settling of the two spheres in a
thixotropic liquid at Re = 0.83 (left) and 2.25 (right).
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Figure 5.14: Viscosity contour plots for settling of the two spheres in a thixotropic liquid
at time periods (a) t = 25000, (b) t = 28000 and (c) t = 31000.; Re = 2.25

unyielded region along the axis of symmetry between the spheres due to re-circulation

as observed in case of Bingham liquid. It is important to point out here that in true

manner this unyielded region is a highly viscous region. Apart from this as the time

increases, the viscosity of the liquid region between the spheres increases due to aging.

These two e�ects combine together and make the liquid region in front of the trailing

sphere highly viscous.

On the other hand, the liquid region in front of the leading sphere is a�ected by aging

only. Due to this di�erence in viscosity, the settling velocities of two spheres di�er and

the leading sphere moves faster than the trailing sphere. The contour plot of viscosity at

di�erent time periods (t = 25000, 28000, 31000) are shown in Figure 5.14. It is obvious

from the �gure that there exists a region of high viscosity (µa > 13µ∞) along the axis of

symmetry between the spheres. The size of this region decreases with time because the

trailing sphere approaches the region of low viscosity created by the motion of leading

sphere. The shear thinning property of the liquid starts negating the combined e�ect of

liquid aging and yield e�ects. However the region in front of the trailing sphere is still

highly viscous as compared to the region confronted by leading sphere. Therefore the

leading sphere moves faster and the separation distance increases.

As the trailing sphere reaches the initial position of leading sphere (t = t
′
), the
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Figure 5.15: Viscosity contour plots for settling of the two spheres in a thixotropic liquid
at time periods (a) t = 33000, (b) t = 36000 and (c) t = 37800.; Re = 2.25

shear thinning properties of liquid become more pronounced. There starts a competi-

tion between the yield+aging (tend to make system more viscous) and shear-thinning

properties (tend to make system less viscous) and soon their e�ects counterbalance each

other. At this juncture the velocity of both the spheres become equal and separation

distance remains constant (momentarily). Further this point, the yield+aging e�ects are

dominated by shear-thinning e�ects and the trailing sphere accelerates in low viscosity

region. On the other hand, the upstream liquid region of leading sphere is compara-

tively more viscous now. Figure 5.15 displays the contour plots of viscosity at various

time steps (t = 33000, 36000, 37800). The range of viscosity displayed in this �gure

is narrowed down to demonstrate the minor variations in viscosity of di�erent regions

around the spheres. The �ow �elds in terms of velocity vectors are shown in Figure 5.16

and their behavior qualitatively agree with the viscosity contour plots (Figure 5.14 and

5.15). Having a close look at Figure 5.16 suggests that �ow �elds in thixotropic liquid

are closer to the moving spheres in comparison to Bingham liquid. Though both the

spheres in�uence each others motion, they posses their own recirculation zones at either

side.

The attraction of two spheres settling along the symmetry axis is observed in this

study and this is in qualitative agreement with literature (Yu et al. [32], Gueslin et
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Figure 5.16: Velocity vectors of the two spheres settling in a thixotropic liquid at time
periods (a) t = 25000, (b) t = 28000, (c) t = 31000, (d) t = 33000, (e) t = 36000 and
(f) t = 37800; Re = 2.25.
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al. [33]). Gueslin et al. [33] reported a lateral movement of settling spheres whenever a

negative wake is observed in the �ow �eld. Since the existence of negative wake has been

largely reported in literature with liquids possessing elastic properties, it is not expected

from our purely viscous model to exhibit negative wake. Therefore lateral movement not

observed in our numerical experiments is not in disagreement with Gueslin et al. [33].
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Chapter 6

Concluding remarks

6.1 Summary of results

The primary goal of this research project is to develop a direct simulating strategy for

solving the motion of spherical particles in non-Newtonian liquids under the in�uence

of gravity and validate the simulation tool with available experimental/numerical data

of single/multi sphere sedimentation. We develop the simulating strategy step by step,

�rst validating the simulation tool for single phase and then proceeding to two phase

systems (solid-liquid). The summary of results is given in pointwise manner starting

from single phase to two phase systems.

6.1.1 Single phase results

• The channel �ow test is done with Bingham liquid and pro�le of steady state ve-

locity at the center of channel is obtained through simulation. The result obtained

through simulation is found in excellent agreement with the analytical solution.

• In the case of lid driven cavity �ow with Bingham liquid, the �ow is governed

by the yield stress of the liquid at low Reynolds number. Primary quantities

of interest, position of primary vortex and vortex intensity at vortex centers, are

distinct functions of Bingham number (i.e. yield stress of liquid). At high Reynolds

number, the �ow behavior is di�erent due to the high inertial forces. However as

110
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the yield stress inceases, inertial e�ects are softened and behavior shows the similar

trend as observed with low Re.

• The �ow evolution of thixotropic liquid in a lid driven cavity is studied with two

di�erent Deborah numbers (Db = 0, 1). As Deborah number increases, the liq-

uid time scale (1/k2) also increases resulting in slower �ow response. Position of

primary vortex and vortex intensity at vortex centers, are distinct functions of

pseudo Bingham number. The results obtained with thixotropic liquid (Db = 1)

at low Reynolds number were compared to pseudo Bingham rheology (Db = 0)

and variations in position of primary vortex and vortex intensity were consistent

with theoretical explanations.

6.1.2 Two phase (single sphere sedimentation) results

• The terminal velocity of a sphere, settling in a �nite size container, is in�uenced

by the retardation e�ects due to walls. In study with Newtonian liquid, the wall

factors are determined for settling of a sphere in cylinders of di�erent square cross-

sections at low Reynolds number. As the walls come closer to settling sphere, its

terminal velocity decreases due to the increasing retardation e�ects.

• The interaction of a sphere with Bingham liquid at low Reynolds number is strongly

a�ected by the yield stress of the liquid. The drag force calculated in case of

Bingham �ow past a �xed sphere increases with increase of yield stress. Similarly

terminal velocity of a sphere settling in Bingham liquid is a distinct function of

liquid's yield stress. It decreases with the increase of yield stress.

• In study with thixotropic liquid, we examine the e�ect of aging and Reynolds

number on the sedimentation of single sphere.

• The settling velocity of a sphere depends upon the age of liquid. It decreases

with liquid's age as the liquid gains higher network strength with time. A heavy

particle settles faster in comparison to a lighter particle. Higher inertial forces

(higher Re) soften the aging e�ects of liquid which results in increased settling
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velocity. Irrespective of liquid's age and Reynolds number, the fore-aft symmetry

is found to be broken at creeping �ow of a sphere in thixotropic liquid.

6.1.3 Two phase (two sphere sedimentation) results

• In study with Newtonian liquid, the hydrodynamic interaction between the spheres

increases with decrease in separation distance between their centers at low Reynolds

number. The spheres maintain a constant distance and move with equal settling

velocity which is always equal or greater (depending upon the separation distance

between two spheres) than the settling velocity of single sphere sedimenting in

same conditions.

• Two spheres (one above the other) sedimenting in a Newtonian liquid at moderate

Reynolds number were found to attract each other due to the interaction of trailing

sphere with the wake of leading sphere.

• Low Reynolds number study of two sphere sedimentation in Bingham liquid sug-

gests the increased hydrodynamic interaction with decrease in separation distance

between their centers. There exists an unyielded region between the two spheres

due to which the spheres do not approach each other. The spheres move with

equal settling velocity which is always equal or greater (depending upon the sep-

aration distance between two spheres) than the settling velocity of single sphere

sedimenting in same conditions.

• With the increase of inertial forces (higher Re), the unyielded region between the

two spheres sedimenting in Bingham liquid vanishes and due to the interaction

with wake, the trailing sphere approaches the leading sphere.

• In study with thixotropic liquid, an intriguing behavior is observed in which the

leading sphere moves faster than the trailing sphere. This e�ectively increases the

separation distance beween the spheres. This behavior is due to the yield e�ects

of thixotropic liquid. After a certain time period, the leading sphere decelerates

while the trailing sphere starts accelerating due to the memory and shear-thinning
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behavior of thixotropic liquid. Finally the trailing sphere approaches the lead-

ing sphere irrespective of the Reynolds number. This peculiar behavior helps in

demonstrating the aging, yield, memory and shear-thinning behavior of thixotropic

liquid in a single experiment.

6.2 Future directions

In Chapter 5, we have demonstrated the drafting and kissing of two spheres sediment-

ing in thixotropic liquid. It would be interesting to implement a collision model which

allows for a proper resolution of particle-particle interaction and then examine the tum-

bling behavior of the two spheres whether they aggregate or not. Another interesting

case study would be to investigate the hydrodynamic interaction between two particles

initially placed side by side along the mid-plane.

The hydrodynamic interaction between more than two particles is a desirable condi-

tion to asses the role of multi-particle interactions on the settling velocity. Therefore it

is required to carry out the simulations with more than two particles with di�erent ori-

entations. Further as a generalization of numerical tool, various particle shapes can be

considered and the impact of their hydrodynamic interactions over the setting velocity

can be determined.



Appendix A

Simulation procedure

The simulation procedure, based on the formulation of lattice-Boltzmann scheme given

by Eggels and Somers [1], is timeloop of following sequential steps considering Equation

2.15.

• Determine solution vector β−k (x, t) from the known distribution of dimensionless

mass densities Ni, using the inverse of matrix E (EI).

β−k (x, t) =
n∑
i=1

EIkiNi(x− 1
2ci, t− 1

2) (A.1)

• Determine β+
k from β−k using the di�erence between the two vectors which is

known. The third-order terms displayed in Equation 2.17 are manipulated in such

a way that T+
s = −γ3T

−
s (s = 1.....6) where γ3 is a relaxation factor of order unity

(γ3 = 0.8 in present work). This approach is used to suppress the deviation caused

by third-order terms. Since the magnitudes of fourth-order terms are small, we

impose F+
1,2 = 0 in simulations. The solution vector β+

k now reads as
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β+
k (x, t) =



ρ, ρux + 1
2fx, ρuy + 1

2fy, ρuz + 1
2fz,

ρ(uxux) + ρ(
+1− 6ν

6
)(2∂xux),

ρ(uxuy) + ρ(
+1− 6ν

6
)(∂xuy + ∂yux),

ρ(uyuy) + ρ(
+1− 6ν

6
)(2∂yuy),

ρ(uxuz) + ρ(
+1− 6ν

6
)(∂xuz + ∂zux),

ρ(uzuy) + ρ(
+1− 6ν

6
)(∂zuy + ∂yuz)

ρ(uzuz) + ρ(
+1− 6ν

6
)(2∂zuz)

−γ3T
−
1 ,−γ3T

−
2 ,−γ3T

−
3 ,−γ3T

−
4 ,−γ3T

−
5 ,−γ3T

−
6 , 0, 0



(A.2)

• Determine the distribution of dimensionless mass densities Ni(x + 1
2ci, t+ 1

2) with

the help of Equation 2.15.

• Impose boundary conditions (see appendix B and C).

• Shu�e dimensionless mass densities such that Ni(x + 1
2ci, t + 1

2) associated with

position x becomes Ni(x− 1
2ci, t− 1

2) associated with position x + ci for the next

time step.

• Solve scalar transport equation for thixotropic liquids

∂λ

∂t
+ ui

∂λ

∂xi
= −k1γ̇λ+ k2(1− λ) (A.3)

The discrete version of this equation is written using Euler explicit scheme. Right

hand side is treated semi-implicitly.

λ(t+1) − λ(t)

4t
+
(
ui
∂λ

∂xi

)t
= −k1γ̇

(t)λ(t+1) + k2(1− λ(t+1)) (A.4)

The network parameter λ is associated with apparent dynamic viscosity of thixotropic

liquid µa as

µa = µ∞(1 + αλ) (A.5)

The apparent kinematic viscosity νa, determined by expression µa/ρ, is used to

calculate various elements of solution vector β (Equation A.2) with ν = νa.



Chapter A. Simulation procedure 116

• Apply external force on the liquid.

• Update velocity of the solid sphere(s) using force balance expression

m
dv
dt

=
∑

F (A.6)

with m being the net mass of sphere, v is velocity vector of sphere, and
∑

F is the

net force vector acting on the sphere. In our simulations, a sphere geometry is de�ned

by control points (surface of sphere) and the sphere contains liquid inside. The net mass

of sphere in presence of internal liquid is given by notion

m = (ρs − ρl)V (A.7)

where ρs is the density of solid sphere, ρl is the density of liquid and V is the volume of

sphere. The velocity of a sphere is obtained by writing Equation A.6 in discrete form as

v(t)= v(t− 1) +4t[Fext + Fb + Fh

(ρs − ρl)V
] (A.8)

Fext,Fb, Fh are the external force (e.g. gravity), buoyancy force and hydrodynamic

force vectors, respectively,

• Update position of the solid sphere(s).

P(t) = P(t− 1) + v(t)4t (A.9)

P is the position vector of center of solid sphere.



Appendix B

Boundary condition for a curved

geometry

Bounce-back boundary condition is a general scheme to approximate the no-slip bound-

ary condition at a solid boundary. However, to obtain a satisfactory approximation

of no-slip boundary condition using bounce-back scheme, it is required that bounce-

back collision takes place at the location one-half lattice spacing (∆ = 1
2) outside of

a boundary node. The implementation of this technique is straightforward with sim-

ple boundaries parallel to the lattice grid. However for a curved geometry, placing the

boundary halfway between the lattice nodes will change the actual geometry. To over-

come this problem, Derksen et al. [2] developed a method for Eggels and Somers LB

scheme to simulate the spheres on a cubic grid. This method is known as adaptive

force-�eld technique and based on work by Goldstein et al. [3].

In this method the geometry of a sphere at time t is represented by a set of M

control points rj(t) (j = 1, 2, ......M). These points do not coincide with lattice nodes

necessarily and can be anywhere in the lattice grid (see Figure B.1 for a 2D represen-

tation). The velocity of control points vj(t) is calculated using the translational and

rotational velocities of sphere. For a no-slip boundary condition, the velocity of liquid

(at control points) should be the same as that of control points. The di�erence dj(t)

between the velocities of a control point and liquid velocity at control point is computed
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Figure B.1: 2D representation of a sphere de�ned by a set of control points (red dots)
on top of a cubic grid (black dots)

by the expression

dj(t) = vj(t)−
k∑
1

ckuk(t) (B.1)

where the sum represents an interpolation of the liquid velocity of nearby lattice

points weighted by coe�cients ck which are di�erent for every control point.

For a satisfactory implementation of no-slip boundary condition, the di�erence dj(t)

should be as least as possible. To reduce dj(t), a force is applied on the �uid at points

near the curve boundary using force vector f(x, t) which is already included in lattice-

Boltzmann scheme. This force is determined by the expression

fk(t) = φfk(t− 1) + ψ

j∑
1

cjdj(t) (B.2)

The constants φ and ψ are relaxation factors which determine how fast the di�erence

is reduced. The default values of these relaxation factors used in present work are

φ = 0.95 and ψ = 1.8.



Appendix C

Boundary condition for cylinder

walls

In present work, square cylinders with varying dimensions are used as containers to

study the sedimentation of spherical particles. To consider a cylinder e�ectively a closed

container, all of its walls should be stationary (i.e. zero velocity) with no-slip condition.

This can be achieved by imposing bounce-back boundary condition at walls. However

during the initial stages of this work, the results obtained with single sphere sedimen-

tation in Bingham liquid having bounce-back boundary conditions deviated a lot from

literature. Therefore an alternative method is employed to obtain the satisfactory results

with desired boundary conditions.

A 2D projection of 3D grid is displayed in Figure C.1. The physical wall (dotted

line) is considered at one-half lattice spacing (4) outside of actual �ow domain (black

dots). The lattice-Boltzmann scheme used in present work contains a solution vector

β consisting n = 18 elements (D3Q18 scheme) which are various properties of liquid.

In order to explain conveniently, here we consider D2Q9 scheme (shown in Figure C.2)

for 2D grid. Now solution vector β contains 9 elements out of which 2nd and 3rd

elements of solution vector treats the velocities in x and y directions, respectively. While

programming in Fortran, the structure of solution vector reads as β: beta(q, i, j) where

q runs from 1 to 9. We explicitly set the velocities (linked to 2nd and 3rd elements of
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Figure C.1: 2D projection of a 3D cubic grid; black dots represent actual �ow domain;
red dots are virtual points; dotted lines denote physical walls.

Figure C.2: D2Q9 scheme

β) zero at four boundaries of �ow domain (shown by Figure C.1) by doing following

operation

do j =1,ny

i=1

beta (2 , i , j )=0

beta (3 , i , j )=0

i=nx

beta (2 , i , j )=0

beta (3 , i , j )=0

enddo



Chapter C. Boundary condition for cylinder walls 121

do i =1,nx

j=1

beta (2 , i , j )=0

beta (3 , i , j )=0

j=ny

beta (2 , i , j )=0

beta (3 , i , j )=0

enddo

with nx and ny being the number of grid points of �ow domain in x and y directions,

respectively. In order to obtain the zero velocity at physical walls, the virtual points

(red dots) outside of physical walls are used to apply the zero gradient condition over

mass density vector N at walls such that

dN
dn̂
|
wall

= 0 (C.1)

where n̂ is the unit normal vector. In perspective of Figures C.1 and C.2, Equation C.1

is coded as

do j =1,ny

i=0

beta (6 , i , j )=beta (6 , i +1, j )

beta (3 , i , j )=beta (3 , i +1, j )

beta (7 , i , j )=beta (7 , i +1, j )

i=nx+1

beta (5 , i , j )=beta (5 , i −1, j )

beta (1 , i , j )=beta (1 , i −1, j )

beta (8 , i , j )=beta (8 , i −1, j )

enddo

do i =1,nx
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j=0

beta (7 , i , j )=beta (7 , i , j +1)

beta (4 , i , j )=beta (4 , i , j +1)

beta (8 , i , j )=beta (8 , i , j +1)

j=ny+1

beta (6 , i , j )=beta (6 , i , j−1)

beta (2 , i , j )=beta (2 , i , j−1)

beta (5 , i , j )=beta (5 , i , j−1)

enddo
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