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A bstract

Pathways are crucial to our understanding of biology. The speed a t which 

new organisms are being sequenced is outstripping our ability to experimen­

tally determine their biochemical pathway information. In recent years several 

initiatives have successfully autom ated the annotation of individual proteins in 

these organisms, either experimentally or by prediction. However, to  leverage 

the success of pathways as an abstraction of complex biological processes we 

need to  autom ate their identification in the rapidly growing list of sequenced 

organisms. This dissertation presents a prototype system for predicting the 

catalysts of im portant reactions, and for organising the predicted catalysts and 

reactions into previously defined biochemical pathways. It compares a variety 

of predictors th a t incorporate sequence similarity (BLAST), hidden Markov 

models (HMM) and Support Vector Machines (SVM). It shows th a t there is 

an advantage to using different predictors for different reactions. The proto­

type is validated on 10 metabolic pathways across 13 organisms and achieves a 

cross-validation precision of 78.3% and recall of 92.6% predicting the catalyst 

proteins of the reactions.
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C hapter 1 

In troduction

Understanding the complex processes of living organisms has been a long­
standing challenge for biologists. Modern gene sequencing technologies have 
opened a new window into the biological world, which can help us under­
stand biological systems using their very own language: DNA. However, the 
vast amounts of da ta  represented by organism s’ genomes prompts a need to 
put com putational techniques to  work to help with its interpretation. This 
dissertation presents a number of contributions tha t take another step in as­
sisting biologists’ investigative work with autom ated intelligent computational 
systems.

1.1 M echan ics o f  th e  cell

In the process of life, cells perform a myriad of functions. Like m iniature 
factories furnished with assembly lines, cells are continuously assembling and 
dismantling molecules. Also like real-world assembly lines, the cell’s processes 
accomplish their tasks in series of small steps: reactions.

A biochemical reaction is a transform ation of one set of a molecules into 
another. The biochemical reactions th a t occur inside the cell tend to be differ­
ent from the chemical reactions th a t occur outside of living organisms, because 
they are often transformations th a t chemistry is not eager to perform without 
some encouragement. Yet, nature has devised delicate ways to  bring about the 
molecular transformations necessary for life, through the use of sophisticated 
catalysts.

A catalyst is a substance th a t facilitates a reaction, w ithout being trans­
formed or consumed by the process. In the biological world, catalysts normally 
take the form of proteins, or groups of proteins acting in unison as protein 
complexes. They are so essential to carrying out the cell’s reactions th a t their 
presence alone can be used to discriminate between organisms where a partic-

1
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ular reaction can exist, and ones where it cannot; this last point is im portant 
for the techniques th a t are presented in the later chapters of this dissertation.

1.2 E n zym e c lassifica tion

A particular class of catalyst proteins, known as enzymes, is responsible for 
catalysing transformations of molecules from one form to another through en­
zymatic reactions [27]. Enzyme proteins are labelled with the enzyme classes 
th a t specify the particular types of catalysis they are able to perform. There
are wide variety of enzyme classes and they have been organised by the Bio­
chemical Nomenclature Com m ittee into the Enzyme Classification (EC) sys­
tem [5]. The EC system is a nom enclature th a t organises enzyme classes in a 
hierarchy four levels high. Each class is identified by an EC number consisting 
of four numbers separated by periods, where each number identifies the par­
ticular classification at the corresponding level of the hierarchy. For example, 
the EC number 1.8.1.4 specifies an enzyme class th a t is an:

1. oxidoreductase,
8. acting on a sulfur group of donors,

1. with NAD+ or N A D P+ as acceptor;
4 specifically: dihydrolipoyl dehydrogenase.

Enzymatic reactions are also labelled with enzymatic classes. For reactions, 
the classes specify in which ways the reaction can be catalysed. There could 
be many reactions th a t fit the same enzyme class, and several enzyme classes 
can match one reaction. All metabolic reactions—i.e. the ones relating to the 
synthesis and degradation of molecules—are enzymatic, and thus can be anno­
ta ted  with at least one enzyme class. Enzyme classes provide a way to match 
enzymatic reactions w ith the proteins tha t are capable of catalysing them.

N um b er C lass nam e
EC 1 
EC 2 
EC 3 
EC 4 
EC 5 
EC 6

Oxidoreductases
Transferases
Hydrolases
Lyases
Isomerases
Ligases

Table 1.1: The top-m ost classes of the enzyme classification hierarchy [5].

2
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1.3 B ioch em ica l pathw ays

The ensemble of an organism’s biochemical processes consist of a map of chem­
ical reactions, each catalysed by special purpose proteins. The complexity of 
these systems m otivated the creation of an abstraction to provide a simpler 
view of their complex network: the pathway. Pathways are a wav to segment 
the map of the biochemical processes—metabolic, signalling, etc.—into logical 
sections of related reactions. Each pathway contains two kinds of information: 
the pathway structure and the pathway components.

The pathway structure is the topology or map th a t defines the relation­
ships between the reactions in the pathway, along w ith the compounds (small 
molecules) th a t are their reactants and products. For example, Figure 1.1 
shows the relationship between seven reactions th a t are part of the Gluconeo- 
genesis metabolic pathway [22]. Reactions are shown in the rectangular boxes, 
while passive compounds are in the ovals. For example, the reactant of reac­
tion 1 is Lipoamide and the product is Dihydrolipoamide, while the catalyst 
protein (enzyme) is a Dihydrolipoyl dehydrogenase (labelled by the enzyme 
classification number of this enzyme class, EC 1.8.1.4). Some reactions have 
more than one reactant or product. For example, reaction 3 has two reac­
tants (2-Hydroxy-ethyl-ThPP and Lipoamide) and two products (ThPP and 
6-S-Acetyl-dihydrolipoamide). O ther reactions have more than  one class of 
catalysts. In such cases, catalysts from any of these classes can catalyse the 
reaction. For instance, reaction 4 has two potential catalyst classes: Pyruvate 
dehydrogenase (EC 1.2.4.1) and Pyruvate decarboxylase (EC 4.1.1.1).

The pathway components are the specific proteins th a t catalyse each of 
the pathw ay’s reactions in a specific organism. For instance, reaction 1 is 
catalysed by protein hsa:1737(DLD)1 in the organism H. sapiens (NCBI-GI 
4557525, Uniprot P09622) and by protein cel:LLC1.3 in the organism C. el- 
egans. Sometimes more than one protein from the same enzyme class can 
catalyse the same reaction in a single organism. For example, in the organism 
A. thaliana, reaction 1 is catalysed by three proteins in the class EC 1.8.1.4: 
ath:Atlg48030, a.th:At3gl6950 and ath:At3gl7240.

Although two species may have similar metabolic pathways, evolution gen­
erates some organism-specific variations. We refer to the organism-specific 
variants of a pathway as pathway instances. Pathway instances can differ in 
their pathway components, as illustrated by the organism-specific proteins in 
a single enzyme class. In addition, pathway instances can also differ in their 
pathway structure. For example, in Figure 1.1, two of the enzyme classes de-

1The no ta tion  for pro tein  nam es is the one used by the  K yoto Encyclopedia of Genes and
Genomes (KEG G ) PATHW AY database. Each nam e consists of a th ree character organism  
identifier followed by an abbrev iated  gene nam e given by th e  original source— e.g.. NCBI, 
W ormbase, TAIR, T IG R . M IPS, etc.

3
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Pyruvate

EC 1.2.4.1
ThPP

^  (  Acetyl-CoA EC 4.1.1.1

r  6-S-Acetyl- > 
dihydrolipoamide 2-Hydroxy-

ethyl-ThPPEC 2.3.1.12 EC 1.2.4.1

LipoamideDihydrolipoamide EC 1.8.1.4 EC 4.1.1.1

EC 1.2.1.3
AcetaldehydeEC 6.2.1.1 Acetate

EC 1.2.1.5

Figure 1.1: Seven reactions from the Gluconeogenesis pathway.

noted by gray boxes (EC 4.1.1.1) are present in the pathway instance for A. 
thaliana, bu t are not present in either C. elegans or H. sapiens. The other en­
zyme class in a gray box (EC 1.2.1.5) is present in C. elegans and H. sapiens, 
bu t is not present in A . thaliana. Since there is no catalyst for reaction 5 in C. 
elegans or H. sapiens, reaction 5 is not known to  take place in either of these 
organisms so it is not part of the structure of their pathway instances.

There are different types of biochemical pathways. For instance, Figure 1.2 
shows an excerpt from the Transforming Growth Factor-/? (TGF-/?) signalling 
pathway in H. sapiens. Signalling pathways are characterised by a chain of 
protein-protein interactions—phosphorylations, methylation, activation, bind­
ing, etc. In these pathways, in addition to being the components of reactions, 
proteins are usually also the reagents and products. The excerpt of the TG F -/3 
pathway in Figure 1.2 shows reaction 9 where the Transforming Growth Factor 
beta  (TGF/3) protein activates the Transforming Growth Factor beta Receptor 
2 (TGF/? R2) (in the diagram we use “-A” to  denote an activated state). In 
turn, TGF/3 R2-A  activates member A of the RAS homology family (RhoA) 
in reaction 10. T hat protein is then active in reaction 11, catalysing the ac­
tivation of a Rho-associated coilecl-coil containing protein kinase 1 (ROCK1).
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Unlike in metabolic pathways, signalling pathways display molecules th a t are 
the products of some reactions, but are also the components of others.

RhoA
Tol ^ -----

TGF/3

f T T G F 3  R2-A ----------------------- RhoA-A

1

ROCK1-A

Figure 1.2: Excerpt of the TGF-/3 signalling pathway [17] in H. sapiens.

A m ajor goal of biology is to understand the pathway instances of all known 
organisms. Biologists who study pathways tend to approach their work in one 
of two ways. The first approach is to study a particular pathway over many 
organisms. The second is to study one organism by trying to  analyse all of its 
pathways. The current rate of knowledge acquisition prom pts a broader sys­
tems approach. Genomic and proteomic sequence data  is being generated so 
fast th a t analytical experimental methods to determine pathway structure and 
components cannot keep pace. To take advantage of this deluge of sequence 
data, an autom ated com putational approach to the prediction of organism- 
specific biochemical pathways is proposed, as it could assist the study of many 
pathways in many organisms. The thesis of this dissertation is tha t the biolog­
ical and sequence similarities between organisms can be exploited to predict 
the structure and the components of pathway instances. This dissertation 
makes four main research contributions:

1.4 T h e problem
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1. It describes Pathway Analyst, a prototype high-throughput system tha t 
predicts pathway reactions and catalysts;

2. It dem onstrates a simple but effective pathway prediction algorithm tha t 
incorporates machine learning techniques:

3. It provides empirical results th a t suggest the need for reaction-specific 
classifiers;

4. It validates the thesis tha t similarity is a powerful tool for predicting the 
structure and components of pathway instances.

1.5 W h y  pred ict path w ays by sim ilarity?

It is thought th a t all domains of life stem from a common ancestor [24], Be­
cause of their common origins, living organisms share some common traits. 
This observation leads to the hypothesis tha t it is possible to exploit the sim­
ilarities between organisms, to  project knowledge about the processes of life 
across species. More specifically, the similarities between organisms may en­
compass their biochemical pathways. Therefore, it should be possible to use 
well-understood pathway instances as models, to predict the structure and 
components of similar pathway instances in other organisms of interest.

1.5.1 Sim ilarity o f pathw ay structure across species

The structure of a pathway is relatively stable in evolution, and is often well- 
maintained even across species th a t have different phylogenies. It is a fairly 
large evolutionary step for an organism to develop a different structure in its 
metabolic system, to the point th a t the analysis of these m utations has been 
suggested as a means for investigating evolutionary trees [21],

1.5.2 Sim ilarity o f ca ta lysts across species

Unlike the relative similarity of pathway structures tha t is seen across species, 
it is very common for different species to have proteins with different primary 
structure catalysing the same reaction. The differences between these proteins 
are normally spawned by m utations in the genome over the course of evolution. 
This phenomenon is a normal part of life, and is in fact a way in which the 
evolutionary process explores the genome space to find better solutions to 
natu re’s challenges.

As two species stemming from the same ancestor diverge in evolution, their 
genomes grow more dissimilar, and so do their proteins. However, because the

6
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functional portions of a protein may be particularly im portant to the life of the 
organism, they are under greater selective pressure and thus are more likely 
than less im portant portions to be conserved over the course of evolution. 
The result is th a t the two diverging species may have homologous proteins, 
with identical functionality and similar—but not necessarily identical—amino 
acid sequences. These similarities in amino acid sequence can be detected by 
various techniques, such as BLAST [2] and hidden Markov models [8].

It should be noted th a t shared ancestry is not the only way several species 
can evolve to support the same biochemical reaction. Two species could in­
dependently evolve different proteins th a t catalyse the same reaction—i.e. in­
dependently arrive at different solutions to the same problem. This process 
is known as convergent evolution. Such proteins may be too dissimilar in pri­
mary structure for the techniques used in this dissertation to detect a common 
function.

7
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C hapter 2

Sequence C lassification  
Techniques

A binary classifier can be simply regarded as a separator in the problem’s 
input space. Elements tha t fall on one side of the classifier are in one class, 
while elements on the opposite side are in another class. There are many ways 
to formulate a separator. This chapter briefly describes the techniques th a t 
were used to classify proteins in the pathway prediction experiments explained 
later in this dissertation.

2.1 B asic  Local A lign m en t Search T ool

Comparing protein sequences in a way th a t meaningfully reflects on their func­
tion is a tricky problem. One cannot simply compare each locus of two se­
quences and see if they are identical because the function of a protein can 
be resilient to many mutations such as insertions, deletions, and substitutions 
of elements. In addition, residues can sometimes be substituted without sig­
nificant effect to the resulting protein. An approach to atta in  a meaningful 
comparison is to align the two proteins as well as possible. The alignment 
may require a number of m utations to the sequences—insertions, deletions, 
and substitutions. By assigning a cost to each of these actions, a total cost for 
aligning two sequences can be established. Then, the cost of alignment can be 
used as a similarity measure—the cheaper the alignment, the more similar the 
proteins.

W hen scoring an alignment one should consider the fact th a t not all amino 
acids are equally dissimilar, and therefore th a t not all substitutions in the 
alignment are equally undesirable. The varying compatibility between amino 
acids needs to be considered when scoring the matches and mismatches in the 
alignment. This can be achieved by using a substitution matrix. A substitution

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m atrix is a table tha t quantifies the effect of substituting one amino acid for 
another in a protein sequence. As an example, Figure 2.1 shows a section 
(amino acids A to G) of the BLOSUM-62 substitution matrix [14].

A B C D E F G . . .
4 -2 0 -2 -1 -2 0 A

6 -3 6 2 -3 -1 B
9 -3 -4 -2 -3 C

6 2 -3 -1 D
5 -3 -2 E

6 -3 F
6 G

Figure 2.1: Section of the BLOSUM-62 substitution m atrix [14]. Notice how 
the diagonal (a perfect match) always has a positive score. Most other sub­
stitutions incur a negative score on the alignment, bu t to  a varying degree. 
On the other hand, some substitutions carry a positive score—for instance, 
aspartic acid (D) and glutamic acid (E).

The Basic Local Alignment Search Tool (BLAST) [2, 3] is a practical tool 
th a t calculates the local alignment of protein sequences (or DNA sequences) 
and summarizes the alignment quality as a score. A local alignment seeks rel­
atively well-conserved regions of two proteins, even if small in comparison to 
the overall length of the protein sequences. In the context of this dissertaion, 
a local alignment is normally preferred to  the global alignment—which seeks 
to align two entire sequences from beginning to  end—since distantly related 
proteins may only be similar in a small section, perhaps near the active site. 
The standard algorithm for computing optim al local sequence alignments is 
the Smith-W aterman algorithm [32], It uses a dynamic programming approach 
to compute the alignment, and although it works well, it has significant com­
putational requirements which tend to  limit its usefulness as the number of 
proteins to be compared - i.e. the size of protein database—grows. BLAST 
directly approximates the result of the Smith-W aterman algorithm, but sig­
nificantly reduces com putational requirements.

The idea behind BLAST’S operation is the following. Given a pair of 
proteins, the BLAST algorithm searches them  for high-scoring segment pairs 
(HSPs). A segment pair is a section of the alignment, while a high-scoring 
segment pair is a locally optimal segment pair whose score cannot be improved 
by extension or trimming. The authors of BLAST made the observation tha t 
a statistically significant HSP likely contains a short high-scoring aligned word

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of about 3 residues. Therefore, they devised BLAST as the the following 
three-step algorithm.

The BLAST algorithm begins by segmenting the query protein into a list 
of query words, each of size w. By default, the size of the words is w =  3. 
It then uses the substitution m atrix (usually the BLOSUM-62 m atrix—see 
Figure 2.1) to construct a list of words th a t score above some threshold T  
when aligned with the query words.

The second step of the algorithm amounts to searching the target protein(s) 
for any of the short query words. This step can be accomplished relatively 
quickly. Any matches are stored as hits.

The final step of the process consists of extending the alignments of some 
of the hits found in the last step. The extension involves continuing the h it’s 
alignment on both sides. Since the alignment is extended w ith a dynamic 
programming algorithm, it is quite com putationally expensive. It is therefore 
desirable to only perform the extension under favourable conditions. To reduce 
the number of futile hit extensions, Altschul et al. noted th a t a high-scoring 
segment pair of interest is much longer than a single word, and may conse­
quently entail multiple hits within a short, ungapped window of the alignment. 
Therefore, a hit is extended only if one or more additional non-overlapping hits 
are found within a distance A. By carefully choosing the thresholds A  and T  
BLAST finds most significant alignments (HSPs) while requiring a fraction of 
the tim e of a full-blown dynamic programming algorithm.

Query: 7 ILLKPESTRTQIDQIIDEAKAYKSVNPTHVKYAAERLASEVLVCTVIPLG 66 
ILL PE+T + +++ +AK Y SV+P+ + L +V + V P G

Sbjct: 15 ILLTPEATHNDVAKLVADAKKYWSVSPSMLPL NLDGDVHLAVVCPSG 71

Figure 2.2: Section of BLAST’S output from an alignment between
Deoxyribose-phosphate aldolase in S. aureus (query, U niprot ID P61108) and 
P. acnes (subject, Uniprot ID Q6A65-5). The center line outlines the align­
m ent’s scoring. The residue’s letter is echoed where an exact m atch exists, 
while a ’+ ’ indicates tha t a substitution was made but its score is positive. On 
the other hand a blank indicates either a non-positive substitution (score <  0) 
or a gap.

2.1.1 Scoring

The result of an alignment computed by BLAST is a raw score S  th a t is 
calculated by summing the score in the substitution m atrix  for every aligned 
residue, plus any gap penalties incurred. The raw score is normalised to yield
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the bit score S' according to the equation

A S  — InK
S  =  <2J)

where A and K  are param eters calculated from the scoring system. More­
over, the number of HSPs with bit score of at least S' expected to be found 
when comparing two random protein sequences of sufficient lengths m  and n 
is approxim ated by the equation

T-, mTl
E  = 2 ^ -  (2-2)

W hen a protein is compared with a whole database rather than  a single se­
quence the value of n becomes the size of the entire database in residues. The
value of E  is commonly referred to as the e-value, and can be used to quantify
the similarity of two proteins; smaller e-values indicate more similarity.

2.2 H id d en  M arkov m od els

The hidden Markov model (HMM) is a statistical model of strings of elements 
from a known alphabet. It is well-suited to the problem of modelling proteins 
and DNA, which are sequences from the alphabets of the 20 amino acids and 
the four bases respectively. This section gives a brief explanation of how the 
HMM works using as an example the problem of identifying the CpG islands 
in DNA taken from Durbin et al  [8], supplemented w ith information from 
Alpaydin’s work [1], For a more complete explanation of the  properties and 
the algorithms for HMMs consult any of the numerous sources on Markov 
models. We will begin by explaining Markov chains, and then extend the 
explanation to  describe a hidden Markov model.

2.2.1 M arkov chains

A Markov chain is a stochastic system tha t at any given time t = 1, 2, 3 , . . .  
is in one of a set of states S  = {Sj ,  S 2, S s , . .. , S ^ } . The sta te  of the system 
at time t is denoted by qt . At each new time t +  1, the system moves to
its next state, which is chosen probabilistically depending on only the value
of the current sta te  qt , and irrespective of the values of any previous states. 
Therefore, the probability of the next state cyf+1 having a value Sa is:

Pi.Qt+1 — S a\qt =  Sb, q t- i  =  S c, qt - 2 =  Sd,  • • • )

=  P(q t + 1 =  S a\qt = S b) for t > 0 (2.3)
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In addition, the probabilities are independent of time, meaning tha t when­
ever the Markov chain is in state Si a transition to state Sj is always equally 
likely. We can now define transition probabilities for the Markov chain as:

The fact tha t when choosing the next sta te  of the system the past is not 
considered (only the current state m atters) is a distinguishing feature of the 
Markov chain. Such a model is also known as a first-order Markov model

Furthermore, as the Markov chain enters a state it emits a label corre­
sponding to th a t state. As the model moves from state  to sta te  its emissions 
result in a sequence of observations O, which is composed of elements of the 
m odel’s alphabet E. Because the Markov chain generates a sequence of la­
bels it is said to be a generative model. There is a one-to-one correspondence 
between labels and states, so th a t by examining the em itted sequence of la­
bels we know the Markov chain’s state  qt for any time t along the sequence. 
Consequently, the Markov chain is said to be an observable Markov model.

The Markov chain can also be viewed as a stochastic automaton [1], which is 
a state machine with a complete set of probabilistic transitions. As an example, 
a stochastic autom aton for Deoxyribonucleic Acid (DNA) is shown in Figure 
2.3. The four states labelled A, C, G, and T  correspond to the four different 
bases—adenine, cytosine, guanine, and thym ine— tha t make up DNA. The 
states a  models the s ta rt of a generated sequence, so the transitions starting 
from tha t state are assigned initial probabilities ttj tha t reflect the likelihood 
of a sequence starting at each labelled state i. On the other hand, the state to 
models the end of a sequence, so there are no transitions leaving it.

Markov chains have applications in the realm of biological sequences anal­
ysis as discriminants, or classifiers, of DNA or proteins. In this sort of applica­
tion, the Markov chain is constructed such th a t the set of states S  is labelled 
with the alphabet of the sequences being analysed—either the four nucleic 
acids, or the 20 amino acids. Durbin et al. [8] give an example describing how 
a Markov chain can be used to classify sections of DNA as CpG islands. T hat 
example is summarised in the following paragraphs.

CpG islands are sections of DNA with a higher than average concentration 
of cytosine-guanine dinucleotides. They are biologically im portant because 
they often indicate the s ta rt region for a gene. To determine whether or not 
a slice of DNA is a CpG island we can use a Markov chain like the one in 
Figure 2.3. To use the Markov chain as a discriminant it is necessary to build

P{q t + 1 =  Sfiqt =  Sfi (2.4)

subject to
N
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a chain tha t models the positive class (the CpG islands) and one tha t models
the negative class (the rest of the DNA). The positive model is built such that 
its transition probabilities reflect those seen in sections of DNA known to be 
CpG islands. On the other hand, the negative model is built such that its 
transition probabilities estim ate the average probabilities everywhere else in 
the DNA sequence. The probabilities can be estim ated from a set of training 
sequences T  using a maximum likelihood estimator:

The equation defines the transition probabilities aft from a state s to a state 
t for the positive CpG class, where cft is the number of times tha t state s is 
followed by state t in the positively labelled sequences from T. The transition 
probabilities a~t for negative model are set analogously, but counting the tran ­
sitions in the negative training samples. Similarly, the maximum likelihood 
estim ation of the initial probabilities for the positive class 7r(+ can be written 
as:

where l(z) is 1 if z is true  and 0 otherwise, and T + is the positive subset 
of the training set. This equation simply computes the fraction of training 
sequences tha t start with sta te  Vs label. Of course, the initial probabilities for 
the negative model 7q~ are com puted analogously.

Once the positive and negative Markov chains are built, we can use them 
to classify sequences as part of the positive or negative CpG island classes. 
Given a base sequence x  to  be tested, we classify it by calculating the log-odds 
ratio for x  as:

where a+(x. y ) is the transition probability function for the positive model, and 
a~(x, y)  is the transition probability function for the negative model. Finally, 
if S(x)  > 0 then the sequence x  is deemed more likely to come from the 
positive model, and thus be a CpG island. On the other hand of S(x)  < 0 
then x  is deemed more likely to  be generated by the negative model and thus 
is probably not a CpG island. For example, consider classifying the DNA 
sequence x = A G G C G C T  w ith the model shown in Figure 2.3 and initial

(2.5)

( 2 .6 )

P{x\model+)

(2.7)
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probabilities 7T,+ =  7r- =  0.2-5. Then,

S{x)  =  S (A G G C G C T )
P {AG G CG CT\m odel+)

=  log
P (A G G C G C T\m odel—}
7t4 

ZO0 —  +
7T

log—zr- +  l o g ^ -  + log^  +  / o . g ^  +  l o g ^ Ta AG  1 /  a GG  1 ;  a GC

, 0.25
log h

0.25
0.274

+log 

= 2.06,

AG LGCGG

, 0.426 , 0.375 , 0.339
logn oor +  log ono +  log-

CG

0.285

0.078
, 0.339 ,
log- 1- log

0.246 y

0.298
0.188

0.246

0.302

aGC aC T

meaning th a t the sequence is predicted to  be a CpG island.

CpG N on-C p G
a+ A C G T a A C G T
A 0.180 0.274 0.426 0.120 A 0.300 0.205 0.285 0.210
C 0.171 0.368 0.274 0.188 C 0.322 0.298 0.078 0.302
G 0.161 0.339 0.375 0.125 G 0.248 0.246 0.298 0.208
T 0.079 0.35-5 0.384 0.182 T 0.177 0.239 0.292 0.292

Figure 2.3: A Markov chain for DNA with transition probabilities for the CpG 
and non-CpG models from Durbin et al. [8].
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2.2.2 T he hidden Markov m odel

In a Markov chain there is a one-to-one correspondence between the states in 
the model and the alphabet of its em itted label sequence. This is a limiting 
factor when tackling some problems. For instance, what if we want to identify 
all the CpG islands in a long string of DNA—as opposed to the previous 
example where the task is to determine whether a given section is a CpG 
island—the simple Markov chain will not suffice. W hat is required is a model 
capable of em itting the same labels from more than one state—for example, 
emit cytosine in a CpG island state and emit cytosine outside of a CpG island 
state. T h a t model is the hidden Markov model. Indeed, the key difference 
between a  Markov chain and a hidden Markov model is th a t the hidden model 
relinquishes the one-to-one correspondence between the set of states and the 
set of s ta te  labels—i.e. elements in the alphabet. As a consequence of this 
change, it is no longer possible to positively determine the state  of the model 
given a label observation. Hence, the state of the model is no longer observable 
and is therefore said to be hidden.

An application of HMMs can be illustrated using the CpG island example. 
Conceptually, we can think of the hidden Markov model as merging multiple 
individual Markov chains th a t model disjoint states of a sequence into the 
same statistical model. For the purposes of identifying CpG islands, a DNA 
sequence can be thought to have two states: in a CpG island, and not in 
a CpG island. These states correspond to the positive class and negative 
class Markov chains described in the previous subsection. Thus, a suitable 
HMM to identify CpG islands could merge those two Markov chains, which 
become the HMM’s hidden states. W hen the Markov chains are merged, they 
are connected by the addition of transitions th a t give the model a small but 
finite chance of switching from one chain to  the other [8]. These transitions 
between hidden states typically connect all pairs of observable states, though 
inadmissible transitions can be given a probability of 0.

We now make an assumption regarding the transitions: the probability 
of transitioning into a particular observable sta te  is only dependent on the 
current hidden s ta te --n o t the current observable state. We can then replace 
the sub-models in each hidden state by the emission probability distribution 
of the labels, defined conditionally on the hidden state. The resulting hidden 
Markov model is shown in Figure 2.5.

More formally, each time a hidden Markov model A visits a sta te  it emits 
an observable label from its alphabet S. The process generates a sequence 
of observations O, while its true state  sequence Q is hidden. The HMM is 
composed of the following elements:

• A set of (hidden) states S  = {Si, S'2 , S3 , . . . ,  S ^ }
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CpG ( +  ) Non-CpG (-)

Figure 2.4: Conceptual model of an HMM of DNA with two hidden states 
outlined by the boxes. The CpG hidden state models the CpG islands in the
DNA strand, while the Non-CpG state  models the rest of the DNA. Each
hidden state  operates analogously to the individual Markov chains described 
in the  previous section. In addition, there are transitions connecting the two 
hidden states, so th a t every pair of their internal states is connected (though 
the connections are not shown for brevity).

•  An alphabet of labels E =  {rq, v2yv3, . . .  % }

•  State transition probabilities =  P(qt+ 1 =  Sj\qt =  Si)

•  Emissive probabilities =  P (O t =  m\qt =  Sj),  m  £  E

•  Initial state probabilities 7q =  P{qy =  Si)

Hidden Markov models have many applications. One of them  lies in la­
belling each element of a sequence of observations with the hidden state tha t 
generated it. In keeping with the CpG island example, suppose we have a long 
sequence of bases, and we would like to identify any CpG islands within it. We 
assume th a t the DNA was generated by a Markov process th a t is modelled 
by the HMM in Figure 2.5. Our goal is to determine for each base in the 
DNA sequence which hidden state  generated it. Although the HMM’s state 
sequence Q  is not observable, the DNA sequence O is its probabilistic output. 
Therefore, O should allow us to infer Q.  There usually are a number of paths 
through the HMM tha t generate the same observation sequence, bu t each with 
a different probability. Therefore, we would like to find the path  through the 
HMM tha t with the highest likelihood generates the given DNA sequence. 
This task is performed using an algorithm such as the V iterbi algorithm or
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CpG (+ )  Non-CpG (-)

A: e+(A) a+. 
——' " A: e (A)

C: e+(C) C: e (C)
G: e+(G) 4__  ___ G: e (G)
T: e+(T) a.+ T: e_(T)

Figure 2.5: An HMM model for CpG islands in DNA. “CpG” and “Non-CpG” 
denote the hidden states, while e+(l) and e_(Z) are the emissions probabilities 
of the labels given the positive and negative hidden states respectively.

the Forward-Backward algorithm [1, 8 ]. The deduced path  Q consists of one 
state per element in the given DNA sequence O. Therefore, we can label each 
element Oj with its corresponding s ta te  Q,: CpG, or Non-CpG.

O . G A G T C A A G G C G C T G A T A  
Q . © © 0 0 © © © © © © © © © © © © ©

Figure 2.6: An example state sequence Q corresponding to  an observed DNA 
sequence O. The bases generated by the HMM’s CpG island state are marked 
by a

Also, like the Markov chains, hidden Markov models can be used as clas­
sifiers. For instance, an HMM can be built to represent a particular family of 
proteins (the following subsection will expand on how this can be done). While 
deducing the HMM’s most probable sta te  path to generate a given protein’s 
amino acid sequence, the probability th a t the sequence was generated by the 
HMM is also computed. This probability can be used to classify the protein 
as a member or a non-member of the modelled protein family.

W hatever the application, before being used HMMs have to be trained— 
namely, we need to set its transition and emission probabilities. For this a 
training set T  of sequences of the process we intend to model is required. If 
the sequences in T  are labelled w ith their generating state sequences, then we 
can count the number of times particular transitions and emissions occur in the 
training data. Let be the number of number of times the transition from 
state i to state j  occurred in the training data, and let E i(m ) be the number 
of times state i em itted the label m. We can now use maximum likelihood
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estimators for and ei(m ) [8 ]:

( 2 . 8 )

and

eim
Ei(rri)

(2.9)

The state transition probabilities are estim ated in the same manner as for 
Markov chains. The emission probabilities are estimated by dividing the num­
ber of times the state  i em itted the label m  by the total number of emissions 
by state i found in the training data.

In the case tha t the training sequences are not labelled with their generat­
ing states there is no closed-form equation to estimate the HMM’s parameters. 
Instead, we are left to use iterative techniques. Although any standard algo­
rithm  for continuous function optimisation can be used, the standard is to use 
the Baum-Welch algorithm  [8 ]— a special case of the expectation maximisation 
(EM) algorithm.

2.2.3 Profile h idden M arkov m odels

Profile hidden Markov models are structured to take into consideration the 
positional information represented in sequences. Positional information can 
be im portant in biological applications. Evolution places different selective 
pressure on different protein residues, leading to the conservation of im portant 
sections or patterns of a protein throughout generations. These conserved 
protein sections are sometimes referred to as domains or motifs. Proteins can 
usually be classified into groups, or families , th a t exhibit the same motif. These 
groupings are im portant because as a consequence of sharing a functional 
domain the proteins are able to perform a similar function.

Motifs can be extracted from a protein family by performing a multiple 
alignment of the proteins’ amino acid sequences with a tool such as ClustalW  
[33]. The resulting consensus sequence highlights positions within the align­
ment possessing the same or functionally compatible residues. Profile HMMs 
are hidden Markov models designed to  capture the information provided by a 
multiple sequence alignment into a position-specific scoring model th a t can be 
used to recognise the presence of motifs in a given protein.

HMMER [11] is an im plem entation of a profile HMM. It is of particular 
interest in this dissertation because it was used as a classifier in a number of the 
experiments presented in the following chapters. The structure of HM M ER’s 
hidden Markov model is shown in Figure 2.8. For each column of the multiple 
alignment, the HMMER architecture includes three states: a match state  (M ),
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1 SWDFAYAGKASRRPILASVGSYGAYLADGSEYSGIYGDAGASLFGGCCRTTPSAASK
2 SS— MDDKILKKRPILASVGSYGAYLADGSEYSGIYGDAGVSLLGGCCRTTRSL--
3 SG------ HSYNRALASIGSYGAYLADGSEYSGHYGELGAKLIGGCCRTT-----
4 GG----------- LSASVGPYGAALADGSEYRGCY— AGARIVGGCCRVRPPRG—
5 GT----------- LLGSVGPYGAYLADGSEYRGDY— AGARLIGGCCRTT-----

Figure 2.7: A section of a multiple alignment of five proteins generated with 
ClustalW . The bottom  line shows the quality of the alignment at each column: 
<blank>: no match 

. ” weak match; 
strong match;

: exact match.
The length of matches along the alignment is probably a conserved, homolo­
gous section of the proteins.

an insert sta te  ( /) , and a delete sta te  (D ). The m atch state  models the 
distribution of residues seen in the column. The insert sta te  allows for the 
insertion of any number of residues between the matching column and the 
following match. Finally, the delete state allows the model to skip a particular 
residue of the pattern  and advance to the following column. The I  and D  
states allow the profile HMM to model patterns of variable length [29], In 
addition, the architecture forms a probabilistic model of both local and global 
alignments, and also accommodates repeated protein motifs within the same 
sequence.

HMMER provides a suite of programs to build profile HMMs from m ulti­
ple sequence alignments, and use those models to  search a protein database 
for matching proteins. W hen scanning a protein database HMMER uses the 
Viterbi algorithm to evaluate the likelihood of a protein being generated by its 
profile HMM [10]. The proteins it deems as possible matches are returned with 
an accompanying e-value, which is the estim ated number of false positives to 
arise from the scanned data  set with the same probability of being generated 
by the model as the proposed match. In short, this number is a measure of 
the confidence th a t the tested sequence possesses the domain modelled by the 
HMM, with smaller numbers indicating more confidence.

T h e  Pfam  d atabase

The Pfam database [4] is collection of protein families (7973 in August 2005 
[28]). Each family is complete with a multiple alignment of all its members, 
and a profile HMM th a t models it. The Pfam HMMs can be used to determine
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Figure 2.8: Architecture of HMMER’s HMM. Squares indicate m atch states, 
diamonds indicate insert states, and circles indicate silent delete states. States 
S  and T  delimit the start and end of the analysed sequence, while B  and E  
delimit the s ta rt and end of the aligning section. The transition E  —> J  —> B  
allows for the repetition of the motif along the sequence. Finally, the insertion 
states N  and C  make it possible to build a model th a t places little importance 
on sections of the sequence preceding and following the motif, much like a local 
alignment. This diagram is taken from the HMM ER manual [10].

w hether a given protein contains the domain th a t defines the family. This is an 
im portant feature extraction tool. C hapter 4 of this dissertation discusses how 
one can use knowledge about the presence of specific domains in a protein— 
generated using the Pfam databases profile HMMs—to predict biochemical 
pathways.

2.3 S u p port vector m ach ines

Like some other classification techniques, support vector machines (SVM) form 
a linear separator in the problem’s feature space. However, SVMs distinguish 
themselves in the ingenious, yet intuitive way the separating hyperplane is 
calculated. The approach taken by the SVM is to find a separator such that 
the distance between itself and the nearest training da ta  points is maximised. 
The remainder of this section summarises the derivation and application of 
SVMs as presented in the works of Alpaydin [1], Cristianini [7], and Hastie et 
al. [13].

The support vector machine’s training da ta  consists of Ar tuples 
(Ti, y i ) , . . .  , (;rjv, V n ) ,  where £; G K” is a feature vector and y t G { +  1 ,-1 }
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Figure 2.9: A small profile HMM modelling a multiple sequence alignment of 
five protein sections tha t are three columns long (example taken from Eddy, 
[9]). Each match state  is assigned an emission probability distribution over 
the HMM’s alphabet (the 20 amino acids) based on the values seen in the 
corresponding column of the multiple alignment. The insert states are also 
assigned appropriate emission distributions (not shown). On the other hand, 
the delete states are “m ute” and do not emit a letter when entered. Therefore, 
they do not have any emission probabilities.

is the corresponding class label. We define the d a ta ’s separating hyperplane 
with a normal m jO ?" and a scalar offset b G Iff as

{x : w ■ x  + b =  0 }.

If such a separator exists for the training data, we can find it by solving the 
optimisation problem

min | |rc| |
w,b

subject, to yi(w ■ x l + b) >  1, i =  1 , . . . ,  N. (2.10)

The training points closest to the separator will just satisfy their con­
straints, such tha t yt (w ■ x t + b) =  1. These points delimit the margin of the 
classifier and are known as the SVM’s support vectors. In addition, the con­
straints imply tha t the distance from the support vectors to the separator will

w  | 
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Moreover, the constraints on problem (2.10) require th a t each training 
vector be on the correct side of the separator. However, in the case where the 
d a ta  se t’s classes overlap, the above problem has no solution th a t can satisfy 
its constraints (no linear separator exists). To deal with this situation it is 
necessary to allow some of the da ta  points to fall on the wrong side of the 
hyperplane, so we introduce “slack” variables into the constraints yielding

yt (w ■ Xi + b) > 1 -  \7 & > 0 . (2 .1 1 )

As the value of £, grows, the data  point 7) is allowed to be closer to the 
separating plane than the value of C  or, when £; > 1, even on the wrong side 
of the plane resulting in a miscla.ssifica.tion. To bound the to ta l number of 
misclassifications we add an additional constraint to the problem:

N

£ & < * ■ -
j = l

The resulting definition of the support vector classifier is:

• ii -mi i • . . f Vi{w ■ Xi + b) > 1 — A Vb , n
m m ||u;|| subject to < £ > 0  (^-1 2 )

Finally, since the separator is a simple hyperplane, it follows th a t a vector 
x  could be classified using the rule

s ig n ( w - x  + b). (2-13)

2.3.1 Lagrangian (W olfe) dual form ulation
Using Lagrange multipliers it is possible to re-state the convex optimization 
problem (2.11) as the following quadratic program, known as the SVM’s La­
grangian (Wolfe) dual formulation'.

N  N  N

max £ “ . - ! E £  aiCtjyiyjixi ■ Xj) (2.14)

subject to

2
?;=l  ?;=i j = i

N

atV%
i = l

ai[yi(w ■ Xi + b) -  ( 1  -  &)] :

yt (w ■ ^  + b) -  ( 1  -  &) >  0
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o, (2.16)

o, (2.17)

0 , (2.18)

0 , (2.19)
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Figure 2.10: Geometric representation of SVMs for 2-dimensional, 2-class, 
separable (on the left) and inseparable (0 1 1  the right) da ta  sets. The decision

distance C  between a data  point and the separator. The broken lines delimit 
the margin of the classifier, and the support vectors—lying on the edge of the 
margin—are labelled v\,V 2 ,v^. On the righ t, the slack variables are added
to allow training points on the wrong side of the separator.

For the derivation of this formulation consult Hastie et al. [13]. Notice from
(2 .2 0 ) that the vector normal to the separator w is determined only from those 
training instances i for which cq > 0. Those training instances are the support 
vectors.

The dual formulation of the support vector machine is of particular im­
portance in large part because of the following development. From equation
(2.20) we can rewrite the decision function (2.1-3) as

boundary (shown as the the solid line) is placed to maximise the smallest

where

N

(2 .20 )
i = i

N

(2 .21 )
i = 1

a t =  ^  -  H i ,  v?;. (2 .2 2 )

G(v) = sign(w ■ v + b)
N

i= 1 
N

(2.23)
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W ith the revised decision function, the data vectors only appear in the dot 
products—in equations (2.14) and (2.23)—which allows us to easily replace 
the dot product w ith any operation K (x ,v ) ,  referred to  as a kernel, th a t is 
symmetric and positive semi-definite (Mercer’s conditions). The equations 
(2.14) and (2.23) revised to use a kernel function are:

N  ^ N  N

max o.o  ://./; /\ (xu Xj), (2.24)
i = 1 2 — 1 j  — 1

N

G(v) = s ig n (Y ]  a iylK (£?:, v) +  b). (2.25)
i = 1

The kernel formulation is of particular im portance for a number of reasons, 
including the decoupling of the SVM learning machine from the nature of the 
input data, and the ability to map data vectors into a space where they are 
linearly separable [7]. Some examples of kernel functions are:

•  linear: K { x ,v )  = (x ■ v);

• dth degree polynomial: K (x ,  v) = ( 1  +  x ■ v )d;

• radial basis: K (x ,  v) =  e~^x~v^2/c.
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C hapter 3 

P red ictin g  pathw ays

This chapter presents an algorithm to  predict biochemical pathways. For sim­
plicity the algorithm is explained using metabolic pathways. The chapter 
begins by describing a data model to  represent biochemical pathways in a 
way th a t makes computational prediction feasible. It then describes a general 
pathway prediction algorithm, and discusses the experiments tha t are done to 
evaluate it. Finally, Section 3.4 explains the straightforward application of the 
algorithm to other kinds of biochemical pathways—e.g. signalling pathways.

3.1 R ep resen tin g  m eta b o lic  pathw ays

From the pathway example in Figure 1.1, we can see tha t the general bio­
chemical pathway is in essence a network of reactions. Therefore, a pathway 
is represented as a directed graph. This graph has two types of nodes: reac­
tion nodes and compound nodes. In the diagrams these are distinguished by 
rectangular boxes and ovals respectively. Reaction nodes represent the reac­
tions tha t make up the pathways. They are annotated with the identifier of 
the reaction they represent. More im portantly, they are annotated with the 
one or more proteins tha t are able to  catalyse their reaction. This annotation 
states tha t any of the catalysts specified is able to catalyse the reaction. On 
the other hand, compound nodes represent a chemical compound tha t is ei­
ther consumed or produced by a reaction node. Finally, the arcs of the graph 
follow the flow of chemicals through the process, or more generally, represent 
a dependency.

Two extensions are made to the pathway data  model to enhance its expres­
siveness. First, any of the annotating proteins in a reaction node is sufficient 
for the node’s reaction to take place. However, some reactions require a protein 
complex (a set of proteins) instead of a single protein to occur. To correctly 
express these reactions a mechanism is needed to differentiate between a re-
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quirecl protein complex and a set of proteins for which any protein in the set 
can catalyse the reaction. The pathway model can be easily extended to sup­
port protein complexes by generalizing the protein list in a reaction node to 
include either individual protein or protein complexes. Secondly, reaction 2  

in Figure 1.1 highlights tha t this graph structure can fail to  distinguish the 
two sides of a reversible metabolic reaction. This issue could be addressed 
by extending the reaction node to  be have a small subgraph consisting of two 
nodes labelled as left arid right. The reaction’s compounds are then connected 
to the appropriate side thus explicitly forming the two groups of compounds.

Neither of these extensions are used in this work since the original pathway 
da ta  model suffices.

3.1.1 A  useful sim plification o f th e general pathw ay model: 
reac tion  graphs.

The general graph model for biochemical pathways just presented is very ex­
pressive at the cost of simplicity. The fact th a t the graph is comprised of two 
different types of node makes its analysis more complex. However, the p a th ­
way prediction strategies presented in this thesis are solely concerned with 
the proteins involved in the biological process—i.e. the reaction nodes. These 
analyses do not require the information provided by the compound nodes. 
Therefore, a useful simplification of the pathway model is to  represent it as a 
network of reactions only. We will refer to this data  model as a reaction graph.
In a reaction graph, the reactions th a t are connected via an interm ediate com­
pound in the general pathway graph are now connected directly. Connections 
th a t do not go through a compound remain unchanged. Figure 3.1 presents 
the reaction graph model of a section of the instance of the Gluconeogenesis 
pathway for C. elegans th a t spans reactions 1, 2 and 3 from Figure 1.1. Each 
node contains the names of the proteins in C. elegans th a t catalyse the reac­
tion. The arcs from reactions 1 and 3 to node 2 indicate th a t some chemical 
products of the reactions 1 and 3 are the reactants of reaction 2.

The reaction graph representation reduces the data  m odel’s complexity by 
using only one type of node. While this model may not be expressive enough 
for all conceivable pathway prediction strategies, it is sufficiently powerful to 
organize the d a ta  used by the techniques studied herein. Thus, the reaction 
graph will henceforth be the pathway model of choice in this dissertation.

3.2 T he p athw ay p red iction  a lgorith m

Having a data  model to represent pathways in a structured way lays the foun­
dations for an algorithm tha t can use the pathway model to  make predictions.
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EC 2.3.1.12 
CEL:C30H6.7 
CELF23B12.5 
CEL:ZK669.4

EC 1.2.4.1 
CEL:T05H10.6a

EC 1.8.1.4 
CEL:LLC1.3

Figure 3.1: The reaction graph for a section of C. elegans's instance of Gluco- 
neogensis spanning reactions 1 . 2 and 3 from Figure 1.1.

To exploit the similarity between organisms, well-studied versions of a path­
way (such as in model organisms) can be used to predict w hat the pathway 
may look like in an organism of interest, where the pathway is not as well- 
characterised. Some terminology is necessary. The target organism is the 
organism whose pathway instance is being predicted. A training pathway is a 
pathway instance th a t is given as input to the prediction algorithm. A training 
reaction is a reaction in a training pathway. A training protein is a protein 
tha t labels a training reaction. The prediction algorithm takes as input a sin­
gle training pathway1 and the proteome of a target organism. T he goal of the 
algorithm is to predict:

1 . w hether the pathway exists in the target organism and, if it exists, then

2 . the  structure of the pathway,

3. for every reaction in the pathway, its set of potential catalyst proteins.

To achieve the goal, each of the training pathway’s reactions is analysed one 
at a time. For each of these reactions, the algorithm must decide whether or not 
it exists in the target organism. The algorithm assumes th a t the reaction needs 
to have at least one protein catalyst to occur. Therefore, the algorithm can 
determine whether the reaction exists in the target organism by determining 
whether the target organism has one or more proteins capable of performing 
the same function as the training reaction’s proteins. If such candidate proteins 
are found, the reaction is added to the predicted pathway. In addition, the 
predicted reaction is annotated with the candidate proteins found in the target 
organism’s proteome. On the other hand, if no such proteins are found then

T n  the  next section th is approach is generalised to  utilize m ultiple tra in in g  pathways.
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the algorithm  predicts th a t the training reaction does not exist in the target 
organism. Finally, if none of the training reactions are predicted to  exist in the 
target organism then the algorithm decides tha t the entire pathway does not 
exist in the organism. The pathway prediction algorithm appears as pseudo­
code in Algorithm 1.

A lgorith m  1 Pathway prediction algorithm.
R equire: training_pathway 
R equire: proteome 
Ensure: prediction

prediction Pathway, new
for all reaction in training_pathway do

predicted_proteins <— reaction.hncl_able_proteins_in(proteome) 
if  not predicted_proteins.empty? th en

new_reaction <— prediction. add_node(reaction) 
new_reaction. add_proteins (predictecLprot eins) 

en d  if  
end for
if  prediction.empty? th en  

prediction <— nil 
end if
return  prediction

The prediction algorithm is quite intuitive. However, it abstracts a crit­
ical step—how to decide whether a protein from the target organism is ca­
pable of performing the same function as the training protein. The partic­
ular task is handled by a classifier and is hidden in the algorithm as the 
fin d _ ab le_ p ro te in s_ in (p ro teo m e) function call. For the purposes of this 
algorithm, a classifier is a black box with the inputs specified in Table 3.1, 
and th a t outputs the proteins from the target organism th a t are deemed to be 
functionally compatible with any of the training proteins. This design allows 
the prediction algorithm to  work for any type of pathway th a t can be repre­
sented by the general reaction graph model, as long as a suitable classifier can 
be created.

3.2.1 The classifier

The classifier is a critical component of the pathway prediction algorithm. It 
is a com putational device tha t predicts which proteins from the target organ­
ism are capable of catalysing a specified training reaction. The classifier is a 
“black box” whose inputs consist of the target proteome and a training reac­
tion. However, both these param eters are composite items, making available
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to the classifier the various bits of information summarized in Table 3.1. The 
classifier filters the target organism’s proteome, returning only those proteins 
tha t appear functionally compatible with any of the training reaction’s cata­
lysts. Therefore, the classifier in the pathway prediction problem must make a 
very specific function prediction based on a small number of positive training 
samples. In our experimental da ta  set the number of catalysts in a single re­
action of a single pathway instance varies from 1 to 17, with a mean of 1.8. In 
the next section we illustrate how the number of positive training samples can 
be increased to the range 1 to 50 with a mean of 11.-5. However, even with this 
increase, the problem is different from many other protein function prediction 
problems, such as high level Gene Ontology [12] classification, because a much 
more specialised function m ust be predicted for the target protein and the 
number of positive training samples is still very low.

R eaction
Param eter D escrip tion
Reaction identifier
Catalysts
Connections

Identifies the reaction represented by the node 
Proteins known to catalyse the reaction 
O ther reactions in the pathway th a t are 
connected to  this one (consume its products or 
produce its reagents)

Target proteom e
Param eter D escr ip tion
Protein list 

Organism

The amino acid sequences of all the target organ­
ism ’s proteins
The name of the prediction’s target organism

Table 3.1: Inputs to the protein classifier

In Chapter 4 we describe the different classifiers we have used in our pa th ­
way prediction architecture. In Chapter 5 we compare the prediction accura­
cies of these classifiers.

3.3 T he m od el p athw ay

As presented above, the pathway prediction algorithm only learns about the 
pathway of interest from a single pathway instance. There are two major prob­
lems in trying to predict the structure and components of a pathway based 
on a single pathway instance. First, we have explained th a t the structure of 
a pathway varies between organisms. Using only a single training pathway 
increases the chance tha t the training pathway has a different structure than
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the target pathway. In this case, predicting the true structure of the target 
pathway becomes impossible since no predictions would be attem pted on any 
reaction not found in the training instance. For example, if the training pa th ­
way is the Gluconeogenesis pathway in C. elegans and the target is the same 
pathway in A. thaliana then there is no chance of finding the reaction denoted 
•5 in Figure 1.1, since this reaction does not appear in the training pathway. 
Second, as indicated in the last section, if a classifier uses only a few positive 
training instances to predict the pathway components, then the classifier will 
have poor generalisation.

Our approach is to make our structure and component predictions using 
all available pathway instances. This enables the algorithm to use all of the 
diverse instances of the training pathway to m atch the structure of the target 
pathway and to predict components more accurately. To add this capability to 
the algorithm we introduce the notion of a model pathway. A model pathway is 
an abstract version of a pathway th a t combines multiple pathway instances. To 
create a model pathway we effectively take the “union” of a number of training 
pathways. At the structural level, we define the union of two pathways A  and 
B  as U = A  U B, where U is a new pathway whose structure includes all 
the reactions occurring in either A  or B. For each reaction in pathway U, if 
tha t reaction existed in both A  and B,  then the reaction’s protein catalyst 
set in U is the union of the catalyst sets from the same reaction in A  and 
B. Therefore, the reaction in U is considered to  be catalysed by any of the 
reaction’s catalysts from the two original instances.

Figure 3.2 illustrates the union of part of the C. elegans instance of the 
Gluconeogenesis pathway (left subfigure) and part of the S. pombe instance of 
the same pathway (middle subfigure). C. elegans has reaction 6  and 7, from 
Figure 1.1, but not reaction 5. S. pombe has reaction 5 and 7, but not reaction 
6 . The union pathway has all three reactions. The catalyst set for reaction 
7 contains all of the proteins th a t catalysed this reaction in either organism, 
regardless of the EC family where the protein originated. For brevity, reactions 
5  and 6  are shown w ith only one of their protein catalysts.

To use the model pathway algorithm 1 is not modified, except tha t the 
model pathway is used as the training pathway input instead of using a single 
instance pathway. By using model pathways, the pathway prediction algo­
rithm  can even predict instances of a pathway with variations in structure tha t 
were never observed in the training pathway set—and perhaps never found in 
any physical laboratory. Such emergent structures can be com putationally 
predicted before being observed.
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Figure 3.2: The union of two partial pathway instances into a model pathway.

3.4 P red ic tin g  other ty p es  o f  pathw ays

The pathway prediction algorithm was explained using only metabolic path­
ways. However, there are other types of pathways a t work in living organisms— 
for instance, signal transduction pathways. It is im portant to be able to apply 
the prediction algorithm to these types of pathways as well. Since there have 
been no particular assumptions made in the algorithm regarding any traits 
specific to  metabolic pathways, the application to  other types of pathways 
is autom atic. The only requirement is th a t the pathway be representable as 
a reaction graph. This requirement is not very restrictive since the type of 
reaction is not confined.

TGF/3
m

k. W/3 R2-A
11

RhoA-A

Figure 3.3: Reaction graph representation of the TGF-/3 signalling pathway 
excerpt from Figure 1.2. In this example, the reactions are generic protein 
activations.

3.5 E xp erim en ta l m eth o d o lo g y

To evaluate the effectiveness of our autom ated pathway prediction technique, 
we performed a cross-validation of pathway predictions to simulate the sit­
uation where the pathway instances of the target organism are completely 
unknown. We then combine the statistics from each prediction into a single 
set of statistics to evaluate the effectiveness of the algorithm and classifier.
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3.5.1 C ross-validation
Cross-validation is a method commonly used to test predictors th a t are “learned' 
from train ing data. It works by simulating the situation where part of the 
training d a ta  is unknown. The training da ta  set is partitioned into n  groups, 
or folds, numbering them / = 1 . . .  n. Then, for each evaluation i we remove 
fold i from the training set, train  a predictor with the remaining n — 1  folds, and 
use it to  predict fold i. The accuracy of the predictor can then be measured 
for each fold by comparing the predicted results to the known values.

In applying cross-validation, we began with a da ta  set consisting of n  in­
stances of the same pathway, where each instance was from a different or­
ganism. We used n — 1 organisms to build a model pathway and then used 
this model pathway to build a classifier. We used this classifier to  predict the 
remaining n th pathway instance and compared the predictions to the known 
structure and components of this n th pathway instance. We repeated this cy­
cle n  times, each time predicting the pathway instance of a different one of 
the organisms. Since our data set had 125 different pathway instances, we re­
peated this cross-validation process 125 times, once for each instance. Finally, 
we aggregated all of the results to compute overall statistics.

3.5.2 M easurem ents
The algorithm is evaluated by comparing the predicted pathway instance to 
the known pathway information—structure (reactions) and components (cata­
lysts). We computed statistics for each protein th a t catalyses each reaction in 
a pathway and called these statistics the component or catalyst scores. We also 
separately computed statistics for the existence of each reaction in a pathway, 
where a reaction is predicted to exist in a pathway if a t least one protein is 
predicted to  catalyse tha t reaction. We call these statistics structure or re­
action scores. The goal of the predictor is to find all the reactions with all 
their proteins for all the known pathways in the target organism. Also, the 
predictor should not produce any noise—false positive predictions. W ith these 
criteria in mind three basic elements to be counted are identified:

1. True p o sitive  (T P ): a positive prediction th a t matches the known 
information,

2. False p ositive  (F P ): a positive prediction th a t does not match,

3. False n egative (F N ): a negative prediction th a t does not match.

Although these counts give some insight into the effectiveness of the path­
way prediction algorithm, they leave a desire for simpler, more intuitive mea­
surements. For this reason two standard measurements based on TP, FP, and 
FN are adopted:
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1. Precision:
T P  

T P  + F P

2. R ecall:
T P  

T P  +  F N '

Recall (r) measures what fraction of the known pathway information was 
discovered by the predictor. On the other hand, precision (P) measures the 
fraction of the predictions tha t are true, thus measuring the amount of noise 
in the  predictions.

Finally, recall and precision are combined into f-measure [34] to yield a 
single value th a t can be used for easy comparison between different results. 
The experiments presented in this thesis use an f-measure th a t places equal 
weight on precision and recall. It is defined as

2  pr p = precision
  where
p -f r r — recall

Note th a t f-measure is an im portant statistic because it combines recall 
and precision. It is easy to inflate either precision or recall separately at the 
expense of the other. For example, a classifier th a t always predicts “yes” has 
perfect recall since FN =  0. A classifier th a t always predicts “no” has perfect 
precision since FP  =  0. Note also th a t we do not compute the specificity, 
which gives credit for true negatives, since in the context of this problem the 
negative set is extremely large compared to the positive set so the specificity 
would be high even for a relatively poor classifier.

3.5.3 False positives versus discoveries
The standard interpretation of true positive (TP) is the only choice in perfect 
information scenarios. However, in imperfect information situations, there is 
an alternative. In the case of pathway data  (and other biological data), we 
cannot assume th a t our testing d a ta  is complete. Usually publications report 
only positive results. Therefore, the absence of a protein from a reaction’s 
list of catalysts could indicate th a t an experiment has not been performed to 
determine whether or not th a t protein catalyses tha t reaction. Given tha t 
the data  is incomplete, it may be desirable not to penalize the algorithm for 
predicting the existence of a previously unknown catalyst for a reaction known 
to exist in the target organism. Such a prediction may not really be a false 
positive—it may be a discovery. On the other hand, every false positive could 
be treated as a discovery, so th a t a predictor tha t always says “yes” would 
have perfect precision. This is not desirable either.
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We propose a compromise. To predict pathways, an algorithm makes cat­
alyst predictions and reaction predictions. The probability of discovering an­
other protein tha t catalyses a reaction tha t is known to occur in an organism 
is higher than the probability of discovering tha t a reaction occurs in an or­
ganism, when it was previously not known to occur. In other words, small 
discoveries are more probable than  large discoveries. W hen evaluating re­
action scores, false positives should be counted in the traditional way, since 
discoveries are improbable. For example, there is no reaction 5 for C. elegans 
in the Gluconeogenesis pathway. If a predictor predicted such a reaction then 
it would be considered a false positive reaction. The predictor knows about 
reaction 5, since the model pathway contains this reaction (from S. pombe). 
Therefore, it would be possible for the classifier to predict a catalyst for it. In 
fact, to  predict such a reaction for C. elegans, the classifier would only need to 
predict th a t a single protein in C. elegans has the same function as a protein 
in S. pombe th a t catalyses reaction 5. However, this would be the first protein 
ever discovered in C. elegans th a t catalyses this reaction, making it improba­
ble. On the other hand, if a reaction is known to exist in an organism and a 
false positive occurs when predicting a catalyst for this reaction, it could be a 
discovery of another protein th a t catalyses the same reaction (many reactions 
have more than  one catalyst). This is a small discovery so it is more probable.

For a molecular biologist, a false positive on a catalyst in an organism tha t 
is known to have a reaction should be considered a “lead” for an experiment 
tha t could make a “small” discovery of a new catalyst for a known reaction 
in the metabolic pathway of this organism. A false positive on a catalyst in 
an organism tha t is not known to  have this reaction, is a “lead” for a riskier 
experiment th a t could lead to  a “large” discovery of a new reaction in the 
metabolic pathway for this organism.

In this dissertation, all of the statistics presented use the traditional (more 
conservative) definition of false positive, even though some false positives are 
probably discoveries. Therefore the actual accuracies of our classifiers are prob­
ably higher than reported. However, some specially identified statistics are re­
ported using the relaxed “false positive is a discovery” evaluation to  illustrate 
the differences th a t arise.

3.6 E xp erim en ta l d a ta  set

To perform the cross-validation experiment requires a data  set with certain 
characteristics. Namely, because of the way the prediction algorithm  works 
it requires a training instance of the pathway to End its variant in the target 
organism. Therefore, the data set has to have at least two instances of any 
pathway tha t is to  be used in cross validation. In this manner, while one
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instance can be in the withheld fold, at least one other can be in the training 
set. However, th a t num ber is only the minimum requirement for operation. To 
fairly and reliably test the utility of the pathway prediction algorithm several 
instances of each pathway must be available.

Another requirement is tha t the structure and components of the pathways 
in the experimental d a ta  set be experimentally verified, or at least manually 
curated - th a t is, not be autom atically generated by com putational means. It 
would be undesirable to  use another pathway predictor's results to  evaluate 
the quality of the predictor presented in this dissertation. In such a case, this 
predictor would be striving to model another predictor, rather than  learning 
from biology. It would score well for repeating the other predictor’s successes, 
but also for repeating the other predictor’s mistakes! Moreover, if the predic­
tors use similar techniques—sequence similarity for example— the test would 
be reduced to a self-confirmation.

In addition, the d a ta  must be available in a format tha t can be easily used 
for computation. It should also not be burdened by restrictive licenses tha t 
would limit the use and publication of any results derived from it. Finally, 
the most obvious requirement is th a t the amino acid sequences of the proteins 
involved in the pathways must be part of the da ta  set, since the prediction 
algorithm requires them  to operate.

Even with all these restrictions, one might suspect tha t given the elevated 
status of biochemical pathways in biology, finding a suitable d a ta  set would 
not be too difficult. Consider th a t pathways exist in all living cells. Further, 
the concept of a pathw ay has been understood by biologists for a relatively 
long time—for example, Hans Krebs won the Nobel Prize in medecine in 1953 
for his discovery of the  Krebs Cycle [26]. Because of these reasons much work 
has been done by biologists in this general area. Unfortunately, much of this 
work still lies in paper manuscripts, written in free text. Such information 
remains impractical to  access for the time being, and thus remains out of the 
reach of most work in bioinformatics. This restriction in particular quickly 
limited the number of candidate data  sources that, could furnish a data  set 
useful for this project.

A search of the In ternet reveals a number of potential sources of biochem­
ical pathway data—for instance, KEGG [17], M etaCyc [23], Reactome [15], 
aMAZE [25], TAIR [30]. Regrettably, most of these have shortcomings with 
respect to the listed requirements of this project, making their da ta  unsuitable 
for these experiments. Consequently, the search for an ideal testing data set 
was rather lengthy. Along the way various options were investigated. Some 
of the better ones are briefly described below, along with the reasons for their 
abandonment.
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A m algam atin g  several organ ism -centric data  sources

There are several online pathway databases th a t concentrate on a small number 
of organisms. This approach allows the database m aintainers to focus their 
efforts, producing detailed, high quality information for their model organisms. 
However, given our experimental design, a da ta  set th a t only spans one or two 
organisms is not suitable.

To address this issue, the option of integrating the data  from several of 
these focused databases was considered. Such a move should result in one 
larger data  set spanning several organisms, and thus suitable for the exper­
iments. Unfortunately, the integration problem proved to be a complicated 
one. The reason is th a t there is a lack of standardization and structure among 
the different d a ta  sources, making it very difficult to  recognize equivalent en­
tities and avoiding redundancy in any integrated data  set. Redundancy in 
the pathway d a ta  set would falsify the results of our cross-validation to some 
degree, as the algorithm could be rewarded or penalized more than once for 
the same prediction. In the end this idea was abandoned by the author of this 
work, but it is still the subject of research elsewhere [31].

U sin g  EC num bers to  an n otate  organ ism -in d ep en d en t tem p la te  p ath ­
w ays

Proteins are annotated with EC numbers when they are known to catalyse 
the corresponding class of reactions. Also, the KEGG and MetaCyc resources 
make available a number of tem plate organism -independent metabolic path ­
ways where all the member reactions are labelled with EC numbers. To create 
an organism-specific pathway one could take a tem plate pathway and annotate 
its reactions with proteins from the organism th a t have matching EC numbers, 
and then remove all reactions th a t do not have any catalysts. This technique 
wras used by earlier versions of KEGG to create their organism-specific path­
ways [16].

The feasibility of creating a data set by combining proteomes including EC 
number annotations with tem plate pathways was investigated. Unfortunately 
it had to be abandoned for two reasons. F irst, proteomes with EC annotations 
are not common. Further, the ones tha t can be found do not usually explain 
how the annotations are derived, leading to  suspicion tha t they may be at 
least in part, generated by autom ated sequence similarity techniques such as 
BLAST [2], Such data  would violate one of our requirements. Secondly, the 
EC hierarchy classes are not disjoint, meaning th a t a single reaction can have 
multiple EC numbers. In fact, some EC classes are proper subsets of others. 
This point is im portant because it introduces two possibilities for annotation 
errors:
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1. False annotation: a protein th a t only catalyses a subset class can be 
mistakenly annotated as catalysing the superset class;

2. Missed annotation: a protein th a t catalyses an entire superset is not 
labelled as a catalyst for each of the individual subset classes.

The combination of these problems was sufficient to convince the author 
to abandon this path.

T he M eta C y c  database

At first glance the MetaCyc database appears to  be the ideal source for the 
required experimental data, ft documents 445 pathway instances spanning 
158 organisms (as of 2002 [19]). Further, the information it provides is ex­
perim entally verified. Finally, its da ta  is available for download, although its 
use is subject to a license agreement which restricts the distribution of any 
derived work. But a closer look exposes a m ajor problem. A large portion 
of M etaC yc’s gene annotations (33% as of April 2005 [18]) do not include the 
corresponding DNA or amino acid sequence, nor do they provide sufficient in­
formation to form a link to an external sequence database. Since the algorithm 
presented in this thesis works from proteins’ amino acid sequences this da ta  is 
unusable in the evaluation.

3.6.1 T he final data source se lection
After scrutinizing the other sources and evaluating the alternatives, it was de­
cided th a t the Kyoto Encyclopaedia of Genes and Genomes (KEGG) PATH­
WAY [17] database is the source of da ta  best-suited for this project. The 
KEGG resource is an ensemble of databases th a t strives to integrate biochem­
ical, genomic, and pathway da ta  [17]. Their integration efforts make it an 
idea source for pathway structure information, since it comes complete with 
useful information about the reactions and the compounds th a t comprise it. 
More importantly, the data set includes the catalysts of a significant number 
of metabolic pathways, and includes the complete proteomes of 251 organisms 
(as of July 2005).

As previously mentioned, the manner in which the pathway data is derived 
is im portant to the validity of these experiments. In particular, the KEGG 
data  would not be suitable if it came directly from an autom ated predictor, 
w ithout any manual miration. Fortunately the KEGG pathway data is not 
derived in this manner. Instead, a number of organism-independent reference 
pathways are manually constructed. The reactions in these pathways are la­
belled with a special function identifier. A team  of curators then analyzes 
organism genomes and assigns a corresponding function identifier to each gene
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based on various bits of available information. These include features such as 
motifs, phylogenetic profiles, information from literature, etc. [20]. The final 
step in creating organism-specific pathways consists of associating the reaction 
in the reference pathways with the proteins possessing the equivalent function 
identifier.

Finally, the data from KEGG are made available in a format th a t is suitable 
for com putation, and are not encumbered by any restrictions on the use by 
academic users.

W ith  all its positive traits, the KEGG data  source does have a shortcom­
ing. Although the database does contain some d a ta  regarding non-metabolic 
pathways, tha t part of the collection is somewhat limited in breadth. Since 
the am ount data available is not suitable to  conduct fair and reliable tests, it 
was decided to only use metabolic pathways for the experiments presented in 
this dissertation.

S elected  pathw ays and organism s

From the KEGG PATHWAY database a selection of 10 metabolic pathways 
spanning 13 organisms—a total of 125 pathway instances—was extracted to 
create the experimental data set. The complete listing of pathways and organ­
isms are in Tables 3.2 and 3.3 respectively. Since two organisms do not have 
instances of all 1 0  pathways, only 1 1 - or 1 2 -fold cross-validation was done for 
those pathways. The missing instances are listed in Table 3.4. Consequently, 
cross-validation resulted in 125 invocations of the prediction algorithm, to ­
talling 3523 reaction predictions.

C ategory P athw ay
A m ino acid m etab olism

Alanine and aspartate metabolism
Cysteine metabolism
G lutam ate metabolism
Methionine metabolism
Urea cycle and metabolism of amino groups

C arbohydrate m etab olism
Aminosugars metabolism 
C itrate cycle (TCA cycle) 
Galactose metabolism 
Glycolysis /  Gluconeogenesis 
Propanoate metabolism

Table 3.2: The 10 pathways selected for the experimental da ta  set
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S p ec ies S tra in P ro te o m e  size
Agrobacterium tumefaciens C-58 (Cereon) 5290
Arabidopsis thaliana 28014
Bacillus subtilis 4106
Caenorhabditis elegans 21177
Chlamydia trachomatis 895
Drosophila melanogaster 16098
Escherichia coli K-12 MG1655 4208
Helicobacter pylori J99 1488
Homo sapiens 23148
Mycobacterium tuberculosis CDC1551 4178
Mycoplasma pneumoniae 689
Saccharomyces cerevisiae 5794
Schizosaccharomyces pombe 4969

Table 3.3: The 13 species selected for the experimental d a ta  set.

Species P a th w a y s
C. trachomatis 
M. pneumoniae

Galactose m.. Urea cycle 
Aminosugars m.,TCA cycle, Urea cycle

Table 3.4: Species missing test pathways
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C hapter 4 

C lassifiers

Section 3.2.1 describes the requirements placed by our pathway prediction al­
gorithm on the classifier used to  select proteins from the target organism with 
the function required by the training reaction. Several different classifiers were 
implemented, tested, and evaluated in the Pathway Analyst prototype pa th ­
way prediction system. The classifiers were based on three different technolo­
gies: BLAST, hidden Markov models (HMM) and Support Vector Machines 
(SVM). Other classification technology could be used, but these technologies 
were sufficient to  establish the utility of this approach to high-throughput 
pathway prediction. In this chapter we explore the different classifiers th a t 
were implemented and evaluated. In addition, we illustrate the operation of 
the classifiers with the the prediction of reaction 1 from Gluconeogenesis (see 
Figure 1.1) in C. elegans. For this reaction there are 3 catalysts from C. el- 
egans in the KEGG database: cel:C30H6.7 cel:F23B12.5 cel:ZK669.4. The 
model reaction is catalysed by 19 proteins from 11 organisms (listed in Table 
4.4).

4.1 B L A S T -b ased  classification

One approach to the classification problem is to compare the primary se­
quence of the training proteins—which are known to catalyse a specific reac­
tion node—to the target organism’s proteins, and select the most similar ones. 
BLAST [2] is a tool th a t performs this type of comparison. Two classifiers 
based solely on BLAST were implemented.

4.1.1 BL A ST nearest-neighbour classifier
The BLAST nearest-neighbour (NN) classifier selects the protein from the ta r­
get organism’s proteome tha t is most similar to any of the training reaction’s 
proteins (as determined by BLAST). In other words, for a given reaction and
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target proteome, the BLAST NN classifier compares all the training proteins 
to all the sequences of the target proteome, and then returns the single target 
protein with the smallest e-value (most similarity). Therefore, to predict reac­
tion 1 in C. elegans the NN classifier applies BLAST to search the C. elegans 
proteome with each of the 19 proteins from the model reaction (see Table 4.4) 
as a query. Then the classifier merges the results of each search and sorts them 
by e-value. The result of this step is shown in Table 4.1. Since the BLAST 
NN classifier chooses BLAST’S closest match, its prediction is th a t reaction 
1 exists and protein cel:F23B12.5, which has the lowest e-value, catalyses it. 
Therefore, the classifier did find one of the known catalysts, but it missed 2 
other ones (target proteins 2 and 3 in the table).

_________ M od el_________Target______e-value
~ T . hsa:1737 cel:F23B12.5 6e-128
~ 2 . bsu:BG10209 cel:ZK669.4 6e-54
3. hsa:8050 cel:C30H6.7 2e-48
4. bsu:BG12560 cel:W02F12.5 2e-46

continues...

Table 4.1: Result from searching C. elegans’ proteome for proteins similar to 
reaction 1’s model catalysts (see Table 4.4). The BLAST NN classifier predicts 
protein 1 as a catalyst.

This simplistic classifier provides a baseline for comparison with the other 
classifiers. In particular, the classifier’s lim itation of only selecting a single 
protein from the target proteome makes it impossible for the classifier to attain  
good recall scores, since it is common for several proteins in an organism to 
catalyse the same reaction. In addition, the fact th a t the BLAST NN classifier 
always makes a prediction—regardless of the dissimilarity of the best-m atching 
protein -undoubtedly harms its precision, since in some organisms certain 
reactions do not occur as the necessary protein catalysts are not present.

4.1.2 BLAST Threshold classifier
Similarly to the BLAST NN classifier, the BLAST Threshold classifier uses 
BLAST as a metric to compare each training protein to each protein of the 
target proteome. However, this classifier eliminates some of the BLAST NN 
classifier’s obvious limitations, by predicting all those proteins from the pro­
teome whose comparison with any of the training proteins resulted in an e- 
value no greater than a significance threshold e. To illustrate consider predict­
ing reaction 1 in our running example with a threshold e =  10~°°. In this case, 
the BLAST Threshold classifier selects the top two proteins in Table 4.2—i.e. 
cel:F23B12.5 and cel:ZK669.4; however, it misses cel:C30H6.7.
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M odel T arget e-value
1. hsa:1737 cel:F23B12.5 6e-128
2. bsu:BG10209 cel:ZK669.4 LO10)

<£>

3. hsa:8050 cel:C30H6.7 2e-48
4. bsu:BG12560 cel:W02F12.5 2e-46

continues...

Table 4.2: Result of searching with BLAST the proteome of C. elegans for 
proteins similar to reaction l ’s model catalysts (see Table 4.4). The BLAST 
Threshold classifier predicts proteins 1 and 2 as catalysts since their e-values 
fall below the threshold e =  10“ 50.

4.2 P rofile-H M M -b ased  classification

In cases where the functionality of a protein depends mainly on a small con­
served portion of its amino acid sequence—perhaps due to a motif- -profile 
HMMs may be more sensitive than alignment methods such as BLAST for 
identifying candidate catalysts from the target proteome. Profile hidden Markov 
models can weight similarity to these conserved regions more heavily than  sim­
ilarity to  the rest of the sequence. They are constructed to  recognize recurring 
protein segments, or motifs, tha t are common to most of the model catalysts.

To use profile HMMs for pathway prediction, we build a profile HMM 
model for each reaction in the training pathway. This process involves com­
puting a multiple alignment of all the training reaction’s catalyst proteins with 
ClustalW  [33], and then using HMMER [11] to  build a profile hidden Markov 
model. Finally, the model is calibrated w ith the hmmcalibrate tool [11] to 
empirically estim ate the its score significance.

4.2.1 Profile H M M  Threshold classifier

Our Profile HMM classifier uses HMMER to  iterate over the target organism ’s 
proteome and calculate for each protein the  likelihood of being em itted by the 
reaction’s hidden Markov model. Like BLAST, HMMER returns an e-value 
for each protein (although the e-values for the two tools do not have exactly 
the same meaning), so our predictor uses a threshold to filter out proteins that 
do not match well enough.

To dem onstrate this classifier’s operation, consider again predicting reac­
tion 1 in C. elegans. but this time using the  profile HMM classifier. The first 
step in the process consists of building and calibrating the HMM model for the 
model proteins listed in Table 4.4. Then the model is used to scan C. elegans’ 
proteome, resulting in Table 4.3. If we require an e-value of 10~°° to consider 
a proteins a catalyst, the classifier returns proteins cel:F23B12.5, cel:ZK669.4,
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Target e-value
1. c.el:F23B12.5 2.9e-221
2. cel:ZK669.4 1.5e-84
3. cel:W02F12.5 3.7e-59
4. cel:C30H6.7 •5e-26
5. cel:F26F4.7 1.1

Table 4.3: Result of searching C. elegans'' proteome for proteins similar to re­
action l ’s model catalysts (see Table 4.4). The Profile HMM classifier predicts 
proteins 1 ,2 , and 3 as catalysts, since their e-values fall below the  threshold 
e =  1(T50.

and cel:W02F12.5 (rows 1, 2, and 3 in the table). In this case the  classifier 
scores two true positives, 1 false negative and one false positive.

4.2.2 M ixing BLA ST and H M M s

The evaluation of the BLAST Threshold and the HMM classifiers show a 
significant trade-off between precision and recall. In an a ttem p t to take ad­
vantage of the strengths of each, we implemented a classifier th a t combines 
the BLAST and HMM threshold classifiers—the BLAST-HMM classifier. The 
BLAST-HMM classifier’s prediction consists of the intersection of the predic­
tion of its two component classifiers (BLAST and HMM). This classification 
rule implies a tougher standard to be met by proteins before being classified 
as catalysts, since both BLAST and HMM classifiers need to  agree. We used 
higher e-value thresholds to allow more true positive catalysts to be predicted 
by each classifier (increasing recall), while the requirement for agreement fil­
tered the extra false positives generated by the individual classifiers because 
of their higher thresholds (increasing precision).

Continuing the example predicting reaction 1 in C. elegans, we can use 
the results of the BLAST and HAIM searches shown in tables 4.2 and 4.3 to 
calculate a prediction for the BLAST-HA1AI classifier while keeping the same 
BLAST and HAIM thresholds. The BLAST Threshold classifier predicted 
cel:F23B12.5 and cel:ZK669.4 as catalysts, while the Profile HAIM classifier 
decided tha t cel:F23B12.5, cel:ZK669.4, and cel:W02F12.5 are likely catalysts. 
The intersection of these two predictions results in cel:F23B12.5, cel:ZK669.4. 
Since both of these proteins are true positives we have raised the precision of 
the prediction, although the level of recall did not change.
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4 .3  S V M -P fam -b ased  classification

A Support Vector Machine is a statistical classification technique to  compute a 
separator for a two-class data  set. Indeed, our classifier’s task is to separate the 
proteins th a t catalyse a reaction from the ones tha t do not. Unlike BLAST and 
HMMER, the SVM itself is not a sequence analysis technique. Therefore, it 
cannot work with raw amino acid sequences. Instead, it is necessary to produce 
a representative feature vector for each protein and use it for training and 
prediction. Given th a t motifs often determine enzymatic activity, the Pfam 
families [4] identify motifs tha t may be used as features for our problem. The 
feature vectors used by the SVM classifier consisted of 7673 boolean values, 
each stating  the presence of absence in the protein of the corresponding Pfam 
motif.

We computed the motifs for each of the 120,054 proteins in our 13 test 
organisms using the hmmpfam tool. The training set for the classifier consisted 
of feature vectors for all the proteins of all the training organisms. The proteins 
th a t catalyse the reaction of interest were positive examples for the training 
process while the rest were negative examples. The training da ta  set was used 
to com pute a support vector machine using LibSVM software [6]. The SVM 
was then used to predict which of the target organism’s proteins are catalysts 
for the reaction, given their Pfam motifs.

The unbalanced nature of the training set—there are far more negative 
samples than  positive samples—can be problematic in the application of SVM 
to  this particular problem. In particular, when no perfect separator can be 
found between the set of catalysts and non-catalysts, the SVM training algo­
rithm  may find it better—according to its optimization function—to take a 
small penalty for leaving the few known catalysts on the wrong side of the sep­
arator rather than leaving a larger number non-catalysts on the wrong side. To 
combat this symptom the weight associated with the positive training samples 
is raised. This change raised the penalty for placing a positive training sample 
on the wrong side of the partition, making the training algorithm  behave as if 
there were more positive samples in the training set.

To illustrate the operation of the Motif SVM classifier, we can again refer 
to the prediction of reaction 1 in C. elegans. Table 4.5 lists the model proteins 
with their Pfam m otif annotations. Each row of the table is used to form 
a feature vector for reaction l ’s positive training set. For each protein, the 
listed motifs are labelled as “present” in the feature vector, while all the other 
known motifs are labelled as “absent.” The compiled positive training set is 
then added to an analogous negative training, and is then used to  train the 
M otif SVM classifier. The trained SVM correctly predicts all three known 
catalysts for this reaction: cel:C30H6.7, cel:F23B12.5, and cel:ZK669.4. The 
correct predictions may be explained by observing th a t the common motifs
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between the model proteins (Table 4.5) and the predicted catalysts (Table 
4.6). Notice how the 2-oxoacid_dh motif is in all the model proteins, and the 
Biotimlipoyl, and E3_binding motifs appear also very often. This may indicate 
th a t these motifs are im portant to catalysing reaction 1, so the classifier weighs 
their presence heavily. Since the known catalysts also contain most of those 
im portant motifs, the classifier readily identifies them.

O rganism strain P rote in
Agrobacterium tum efaciens C58 (Cereon) atc:AGR_C_2641

atc:AGR_L_2719
Arabidopsis thaliana ath:Atlg34430

ath:Atlg54220
ath:At3gl3930
ath:At3g25860
ath:At3g52200

Bacillus subtilis bsu:BG10209 
bsu:BG 12560

Chlamydia trachom atis ctr:CT247
Drosophila melanogaster dme:CG5261-PA

dme:CG5261-PB
Escherichia coli K-12 MG1655 eco:b0115
Homo sapiens hsa:1737

hsa:8050
M ycobacterium tuberculosis CDC1551 mpn:MPN391
M ycoplasma pneum oniae mtc:MT2570
Saccharomyces cerevisiae sce:YNL071W
Schizosaccharomyces pombe spo:SPCC794.07

Table 4.4: Model proteins for predicting of reaction 1 in C. elegans (therefore, 
proteins from C. elegans are withheld).
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P rote in M otifs
ate: AG R_C-2641 

atc:AGR_L_2719

2-oxoacid_dh, BiotinJipoyl, DUF475. E3_binding, 
HlyD, S-antigen
2-oxoacid_dh, B iotinJipoyl, E3_binding

ath:Atlg34430
ath:Atlg54220
ath:At3gl3930

ath:At3g25860
ath:At3g52200

2-oxoa.cid_dh, AIRC, BiotinJipoyl, E3_binding 
2-oxoacid_dh, BiotinJipoyl, E3_binding, GCVJ4 
2-oxoacid_dh, Agenet, BiotinJipoyl, E3_binding, 
G C V Jf
2-oxoacid_dh, B iotinJipoyl, E3_binding 
2-oxoacid_dh, BASP1, BiotinJipoyl, CaudaLact, 
E3_binding, GCV_H

bsu:BG10209
bsu:BG12560

2-oxoacid_dh, B iotinJipoyl, E3_binding, GCV_H 
2-oxoacid_dh, BiotinJipoyl, ESJoinding, PYNP_C, 
STAT_alpha, SURF6

ctr:CT247 2-oxoacid_dh, B iotinJipoyl, E3_binding
dme:CG5261-PA
dme:CG5261-PB

2-oxoacid_dh, B iotinJipoyl, E3_binding 
2-oxoacid_dh, ARS2, BiotinJipoyl, E3_binding

eco:b0115 2-oxoacid_dh, B iotinJipoyl, DUF601, E3_binding, 
GCV_H, HlyD

hsa: 1737 

hsa:8050

2-oxoacid_dh, BiotinJipoyl, DNAJPPF, E3_binding, 
Extensin_2
2-oxoacid_dh, BiotinJipoyl, E3_binding

mpn:MPN391 2-oxoacid_dh, BiotinJipoyl, DEC-1JN, GCV_H, HMA, 
P T

mtc:MT2570 2-oxoacid_dh, BiotinJipoyl, E3_binding, GCV_H
sce:YNL071W 2-oxoacid_dh, BiotinJipoyl, E3_binding, GRASP55_65
spo:SPCC794.07 2-oxoacid_dh, BiotinJipoyl, E3_binding, PYNP_C, 

TolA

Table 4.5: Motifs (Pfams) of the model proteins for the prediction of reaction 
1 in C. elegans.

P rotein P ro te in  fam ilies
cel:C30H6.7
cel:F23B12.5
cel:ZK669.4

2-oxoacid_dh, E3_binding
2-oxoacid_dh, BiotinJipoyl, E3_binding, GCV_H 
2-oxoacid_dh, BiotinJipoyl, E3_binding

Table 4.6: Motifs (Pfams) of the proteins th a t catalyse reaction 1 in C. elegans.
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C hapter 5 

E xperim ental resu lts

The effectiveness of the pathway prediction algorithm using each of the classi­
fication techniques described in Chapter 4 was evaluated via the experimental 
methodology described in Section 3.5. The results of those experiments are 
presented in this section. We focus on catalyst prediction scores over structure 
prediction scores because this test is certainly the more stringent one. Good 
catalyst predictions will imply good reaction predictions, while the converse is 
not necessarily true. In fact, comparing the two measurements showed tha t for 
all of the tested classifiers the reaction prediction score was always higher than 
the corresponding catalyst prediction score. Most of the classifiers have pa­
ram eters th a t affect their performance. Over the course of these experiments 
we varied some of them in an effort to  obtain the best possible performance 
from each classifier. Results specific to each classifier type are presented in the 
following subsections, while all the classifiers’ best mean catalyst and structure 
scores are summarized together in Table 5.2 and Table 5.4 for easy compar­
ison. The mean and standard deviation statistics are calculated from the 
performance measured at each pathway instance prediction.

5.1 B L A S T  N N  and B L A S T  T hresh old

W hen testing the BLAST NN classifier, the default BLAST param eters were 
used. W ith the BLAST Threshold classifier, only the e-value threshold was 
changed. Figure 5.1 shows the mean precision, recall, and f-measure statistics 
for the pathway predictor using these two classifiers. The graph shows how 
the effectiveness of the BLAST Threshold classifier is significantly affected 
by its threshold. W ith the experimental da ta  set, the Threshold classifier 
achieves a higher mean f-measure than  the baseline NN classifier over most of 
the range of reasonable e-values (10“ 10 to  1(M112). The threshold classifier’s 
curves show tha t a reasonable threshold value needs to  be chosen to guarantee
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good performance, so tha t enough similarity is required to try  to match the 
functional parts of the protein, but enough variation is perm itted to allow for 
the divergence between species.

1.00

0.90
0.80
0.70
0.60
0.50
0.40
0.30 Threshold precision — i—  

Threshold recall
Threshold f-measure — ....

NN precision
NN recall ---------

NN f-measure ---------

0.20

0.10

0.00
1e-50 1e-100 1e-150 1 e-2001

BLAST e-value threshold

Figure 5.1: Mean statistics for catalyst prediction using BLAST classifiers.

5.2 Profile H M M

A variety of threshold e-values were used when testing the profile HMM classi­
fier. The results of the experiments are plotted in Figure 5.2. This classifier is 
more precise than its BLAST-based counterpart (>  99% certainty). However, 
the improvement in precision is balanced by a drop in recall, so th a t there is 
no statistically significant difference between the overall performance of the 
the classifiers. We see tha t both classifiers exhibit similar behavior when vary­
ing their e-value thresholds, peaking their overall performance at an optimal 
point. Therefore, choosing a reasonable threshold is also im portant for the 
HMM classifier.
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Figure 5.2: Mean statistics for catalyst prediction using HMM classifiers.

5.3 B L A S T -H M M

By intersecting the predictions of the BLAST Threshold and profile HMM 
classifiers, and lowering the threshold of the HMM classifier, this classifier 
reached the best mean f-measure of all the classifiers presented, but the vari­
ance of the results is too large to make a statistically significant comparison 
with any of the other classifiers (except the baseline (BLAST NN).

Interestingly, a close look at the results indicates th a t there probably is 
a large overlap between the true positive predictions of the two individual 
classification techniques, to the degree tha t the HMM classifier’s T P  set is a 
subset of the TP BLAST predictions. This claim is further substantiated by 
the results shown in Table 5.1, where we can see tha t at an HMM e-value of 
H T 50, the TP, FP, and FN catalyst counts for the BLAST-HMM classifiers 
are identical to the corresponding counts for the Profile HMM classifier. The 
statistics for the BLAST-HMM classifier are shown in the results summary 
Tables near the end of this chapter.

Interestingly, the speed of this classifier is comparable to  running BLAST 
only—which is significantly faster than HMMER. The reason for this perfor­
mance is tha t this classifier runs BLAST in the work pipeline before evaluating 
the proteins with the HMM model, thereby using BLAST as a filter and reduc-
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C lassifier H M M  e-value T P F P T N
BLAST-HMM 1(T50 2122 1261 1028

HMM 10-5° 2122 1261 1028

Table 5.1: C atalyst counts for the BLAST-HMM and HMM classifiers, both 
using an HMM threshold e-value of 10-o°.

ing the number of proteins th a t the HMMER has to evaluate to only a few per 
prediction. Consequently, the com putation time is dominated by the BLAST 
searches, and the BLAST-HMM is significantly faster than  the HMM classifier, 
while also improving on the quality of the HMM classifier’s predictions.

5.4 M o tif  SV M  classifier

The Motif SVM classifier was tested with a linear kernel and varying weights 
for the positive class instances. The results show tha t a slight increase in the 
weight of the positive training samples is necessary to obtain good prediction 
scores. The results of the M otif SVM classifier’s evaluation are presented in 
Figure 5.3.

It should be noted th a t some experiments were also run using a radial basis 
function kernel, bu t it did not improve the performance of the classifier.

5.5 D iscu ssion

Table 5.2 summarizes the quality of the catalyst predictions of the presented 
algorithm with its various classifiers, according to the experimental procedure 
described in C hapter 3. The numbers presented are the result of averaging 
the f-measure, precision, and recall for each individual pathway instance pre­
dicted. In addition, the standard deviation of those trials is presented in 
parentheses. The results do not conclusively establish a best classification 
technique, because the effectiveness of the predictors varies quite widely from 
pathway instance to pathway instance. This fact is shown by the relatively 
large standard deviations observed.

It is interesting however to  look at how the false positives of each classifier 
are distributed between true positive and false positive reactions (Table 5.5). 
The results show th a t the Motif SVM predictor is placing the largest fraction 
of its false positive predictions in reactions tha t are already known to exist 
in the target organism. These are the “discoveries” tha t were discussed in 
Section 3.5.3. Therefore, the M otif SVM classifier is quite good a t generating 
low-risk leads for biologists to  follow up with an experiment.
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Figure 5.3: Mean statistics for the Pfam m otif SVM classifier using a linear 
kernel.

Table 5.4 summarizes the quality of the pathway structure predictions made 
by the various classifiers. Predicting the pathway structure is an easier problem 
than predicting the individual catalysts. This fact is reflected in this table’s 
statistics, as the mean f-measure, mean precision, and mean recall of every 
classifier is higher when measuring structure predictions than when measuring 
catalyst predictions.
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C lassifier F-m easure P recision R ecall
BLAST-HMM 
BLAST Thresh 
Motif SVM 
HMM
BLAST NN

0.673 (0.152)
0.667 (0.155) 
0.659 (0.155) 
0.654 (0.164) 
0.459 (0.158)

0.630 (0.197) 
0.609 (0.205) 
0.666 (0.190) 

0 .704  (0.190) 
0.456 (0.197)

0.784 (0.176) 
0.802 (0.170)
0.692 (0.187) 
0.671 (0.221) 
0.574 (0.221)

Table 5.2: Best average catalyst prediction scores (selected by F-measure) for 
each classifier type. The standard deviation is shown in parentheses.
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BLAST NN 
BLAST Thresh 
HMM
BLAST-HMM 
Motif SVM

0.000 0.260 - 0.342 
0.000
0.000 0.379 0.172 0.235 
0.000 - 0.402 -

Table 5.3: Comparing classifier effectiveness. Statistical risk (a  level) in assert­
ing th a t the row’s classifier is better than  the colum n’s classifier by f-measure 
of catalyst predictions, according to the t-test statistic with 248 degrees of 
freedom. The dashes ‘- ’ denote false comparisons (mean f-measure of the row 
classifier is less than the mean f-measure of the column classifier). The only 
statistically sound conclusion we can draw is th a t the BLAST NN baseline 
classifier is indeed the worst performer.

C lassifier F-m easure P recision R ecall
BLAST-HMM 
BLAST Thresh 
HMM 
Motif SVM 
BLAST NN

0.846 (0 .110)  
0.846 (0 .114)
0.814 (0.141) 
0.806 (0.126) 
0.643 (0.202)

0.851 (0.138) 
0.842 (0.148) 
0.887 (0.122) 

0 .894  (0.118)
0.512 (0.207)

0.867 (0.141) 
0.876 (0.138)
0.787 (0.192) 
0.760 (0.173) 
0.975 (0.055)

Table 5.4: Mean pathway structure prediction scores corresponding to the 
catalyst scores in Table 5.2. The standard  deviation is shown in parentheses.
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C lassifier T P FP
K n o w n  R x U n k n o w n  R x

Motif SVM 0.586 0.345 0.069
BLAST Thresh 0.527 0.316 0.156
HMM 0.627 0.261 0.111
BLAST-HMM 0.657 0.239 0.105
BLAST NN 0.453 0.010 0.538

Table 5.5: Distribution of positive catalyst predictions for each classifier’s best 
run.
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C hapter 6 

R eaction-specific  classifiers

The experimental results for both the BLAST threshold and HMM threshold 
classifiers show th a t different overall e-value thresholds vary the effectiveness of 
the predictor. However, when analyzing these overall scores, any sense of the 
success of the classifier at the individual reaction nodes is lost. A more detailed 
analysis shows th a t at different reaction nodes, a different e-value threshold 
maximizes the f-measure. Table 6.1 shows the f-measure scores a t different 
e-value thresholds when predicting reaction 1 (EC 1.8.1.4 - Dihydrolipoyl de­
hydrogenase) and reaction 2 (EC 2.3.1.12 - Dihydrolipoyllysine-residue acetyl- 
transferase) for the C. elegans instance of the Gluconeogenesis pathway using 
the BLAST Threshold classifier. This example shows th a t choosing a single 
e-value threshold for both  nodes results in sub-optimal performance for the 
two classifiers.

We analyzed the results of our experiments with the BLAST and HMM 
threshold classifiers and calculated the overall scores th a t could be achieved 
by using the best threshold at each reaction node. The results of this analysis

e-value f-m easure  
1.8 .1 .4

f-m easure
2 .3 .1 .12

le-03 0.250 0.750
le-05 0.333 0.857
le-10 0.333 0.857
le-20 0.400 0.857
le-50 0.667 0.800

le-100 1.000 0.500
le-160 1.000 0.000
le-200 1.000 0.000

Table 6.1: F-measure metric at different e-value thresholds for the BLAST 
threshold classifier predicting reaction in C. elegans’ Gluconeogenesis pathway.
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e-value f-m easure  
6.2 .1 .5

f-m easure  
4 .1 .1 .9

1 0.286 1.0
le-50 0.333 1.0

le-100 0.4 0
le-200 1.0 0
le-250 0 0
le-300 0 0

Table 6.2: F-measure metric at different e-value thresholds for the HMM 
threshold classifier predicting reactions in H. sapiens 's Propanoate metabolism 
pathway.

C lassifier F-m easure P recision R ecall
O pt BLAST 
O pt HMM 
BLAST-HMM 
BLAST Thresh 
Motif SVM 
HMM
BLAST NN

0 .837  (0 .130)
0.795 (0.141) 
0.673 (0.152) 
0.667 (0.155) 
0.659 (0.155) 
0.654 (0.164) 
0.459 (0.158)

0.783 (0 .170)
0.777 (0.184) 
0.630 (0.197) 
0.609 (0.205) 
0.666 (0.190) 
0.704 (0.190) 
0.456 (0.197)

0.926 (0 .114)
0.848 (0.138) 
0.784 (0.176) 
0.802 (0.170) 
0.692 (0.187) 
0.671 (0.221) 
0.574 (0.221)

Table 6.3: Best catalyst prediction scores (selected by F-measure) for each 
classifier type.

are presented in Table 6.3 and Table 6.5, with the other predictors. They 
are named O pt BLAST and O pt HMM. The results show th a t the BLAST 
predictor gains 17% in its mean precision and 12% in mean recall, while the 
HMM predictor gains 7% in mean precision and 17% in mean recall over their 
constant-threshold counterparts. Our statistics show th a t Opt BLAST yields 
the best result and is recommended approach (see Table 6.4).

Another interesting observation arises from the histogram of the best thresh­
olds for the BLAST classifier (Figure 6.1). The histogram shows two signif­
icant peaks, indicating th a t there are twro categories of metabolic reactions. 
The first one (near lO” 100) is very sensitive to the variations in the catalyst’s 
amino acid sequence. The second (near 10~3) is ra ther forgiving of variations, 
perhaps only being functionally affected by a small section of the protein.

This evidence suggests th a t for accurate pathway prediction, the decision 
as to whether a particular protein from the target organism is suitable to 
catalyse a reaction should be made by a classifier specialised for tha t reac­
tion. The classifier should adopt prediction techniques and param eters tha t 
are specialized for recognising proteins th a t meet the reaction’s particular re-

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



>

BL
AS

T 
N

N
 

BL
AS

T 
T

hr
es

h 

H
M

M

B
L

A
ST

-H
M

M
 

M
ot

if 
SV

M
 

O
pt

 
H

M
M

Opt BLAST 
Opt HMM

0.000 0.000 0.000 0.000 0.000 0.008 
0.000 0.000 0.000 0.000 0.000

Table 6.4: Statistical risk (a  level) in asserting th a t the row’s classifier is better 
than the column’s classifier by f-measure of catalyst predictions, according to 
the t-test statistic with 248 degrees of freedom. The statistics show tha t the 
O pt BLAST classifier is the best performer with 99% confidence.

C lassifie r F -m e a s u re P re c is io n R eca ll
O pt BLAST 
O pt HMM 
BLAST-HMM 
BLAST Thresh 
Motif SVM 
HMM
BLAST NN

0.883 (0 .089) 
0.851 (0.110) 
0.846 (0.110) 
0.846 (0.114) 
0.806 (0.126) 
0.814 (0.141) 
0.643 (0.202)

0.862 (0.114) 
0.868 (0.114) 
0.851 (0.138) 
0.842 (0.148) 

0.894 (0 .118) 
0.887 (0.122) 
0.512 (0.207)

0.925 (0.114) 
0.864 (0.161) 
0.867 (0.141) 
0.876 (0.138) 
0.760 (0.173) 
0.787 (0.192) 

0.975 (0.055)

Table 6.5: Mean pathway structure prediction scores corresponding to the 
catalyst scores in Table 6.3. The standard  deviation is shown in parentheses.

quirements. The param eter searching involved in constructing a large number 
of specialized classifiers may seem like a daunting task- -choosing which of the 
presented classifiers to use, in addition to its particular parameters. However, 
we believe th a t this burden can be eased by utilizing machine learning tech­
niques to select and tune the classifiers. We have started  this process, but the 
results are beyond the scope of this dissertation.
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Histogram -- Best BLAST e-value threshold

Fraction of best f-measure scores

1e-50 1e-100
e-value

1e-150 1 e-200

Figure 6.1: Best e-values for BLAST threshold classifier.

Histogram HMM Threshold -- Best e-value

Fraction of best scores

1e-50 1 e-100 

Best Threshold

1 e-150 1 e-200

Figure 6.2: Best e-values for HMM threshold classifier.
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C hapter 7 

C onclusion

7.1 F uture work

This section outlines some possible directions in which the work presented in 
this dissertation could be extended.

7.1.1 A  learned reaction-specific classifier

The results presented in Chapter 6 are evidence th a t making good pathway 
predictions benefits greatly from the use of specialised classifiers for each reac­
tion of the model pathway, as well as combinations of classifier types (BLAST- 
HMM). Unfortunately, the strategy of selecting a single best type and param ­
eter combination for each model reaction by a rule, the one w ith greatest 
f-measure scored in cross-validation, presents itself as an inflexible scheme.

An alternative strategy tha t deserves investigation is to com pute predic­
tions with a number of classifier type and param eter combinations for each 
model reaction. The type and param eter combinations could be strategically 
chosen, perhaps based on the distribution of the best scores of the classifiers 
shown in Figures 6.1 and 6.2. All the individual predictions could then be 
collected into a single feature vector representing the “opinions” of each of the 
param eter variations. By collecting one such feature vector for each step of 
the usual cross-validation procedure, we could build a training da ta  set tha t 
could be used to learn a reaction-specific rule th a t chooses a specialised com­
bination of classifier types and param eters for each model reaction. The rule 
might consist of a support vector machine, or some other type of binary clas­
sifier. In addition, adopting this approach opens the door to using other types 
of information to help improve the quality of the prediction. For instance, 
the prediction rule could integrate the sub-cellular localization of the model 
proteins and the target protein into its decision.
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7.1.2 C onsidering operons in protein  classification

In bacteria, proteins tha t are involved in the same pathway are normally tran ­
scribed from a single section of the bacteria’s DNA whose expression is under 
the control of a single operator gene. Such segments of DNA are known as 
operons. This knowledge could be used as a verification technique when pre­
dicting bacterial pathways, since components of the pathway coming from an 
operon differing from the rest could be flagged as potential false positives.

Furtherm ore, by a process of elimination it may be possible to use infor­
m ation on the proteins’ source operon to predict which protein is responsible 
for catalysing a reaction th a t appears as a “gap” in a predicted pathway. In 
other words, suppose the classifiers from C hapter 4 have resulted in a predicted 
bacterial pathway tha t contains a reaction w ithout any assigned catalyst. If 
all the assigned proteins come from the same operon, and th a t operon has 
one more unassigned protein, there is a high probability th a t the unassigned 
protein is responsible for catalysing the gap reaction.

7.1.3 Test other typ es of reaction-specific classifiers

Due to time constraints, only the BLAST threshold and HMM threshold clas­
sifiers were tested with reaction-specific param eters. It would be interesting 
to  see whether finding reaction-specific param eters brings the same degree of 
improvement to the effectiveness of the other types of classifiers.

7.1.4 Perform ance w ith  other types o f pathw ays

Because of the unavailability of data, it was not possible to  evaluate the pre­
diction performance of the presented pathway prediction techniques with non- 
metabolic pathways. In the event tha t such pathway da ta  becomes available 
in a suitable form, it would be desirable to  complete these tests.

7.1.5 A web-based too l for pathw ay prediction

The Pathway Analyst prototype discussed in this dissertation is currently be­
ing transformed into a web-based tool th a t will be available to the public via 
the Internet. This will allow users to browse and download pre-calculated 
pathway predictions, as well as subm itting their own proteomes for a custom 
analysis.
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7.2 Sum m ary

In this dissertation, a com putational technique has been presented for pre­
dicting biochemical pathways' reactions and catalysts. The technique is based 
on the  premise th a t similarity between organisms can be exploited to use the 
knowledge of well-understood pathway instances to predict the structure and 
com ponents of other pathway instances in organisms of interest. The algo­
rithm  and classifiers have been implemented in the Pathway Analyst prototype 
system, and tested by cross-validation showing tha t they can make accurate 
predictions of metabolic pathways. In particular, the Opt BLAST classifier is 
found to  be the most effective technique out of the ones tested in maximising 
the f-measure of the catalyst predictions. This finding evidences the necessity 
to  tailor the choice of classifier and its param eters to each particular reaction 
being predicted.
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