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Abstract

Selection markets describe markets in which people strategically “select” into cer-

tain options based on knowledge only they possess, and in doing so may communicate

some of that knowledge. Examples include sick people buying more comprehensive

health insurance contracts, talented students choosing more challenging programs,

and high-quality goods producers offering longer warranties. These markets tend to

be inefficient—sometimes to the point of total collapse. The theory of selection mar-

kets can help to diagnose issues and offer policy solutions. This thesis analyzes three

theoretical problems in the theory of selection markets. The first part is a techni-

cal contribution connecting the recent Azevedo-Gottlieb model to the older reactive

equilibrium model. The second part studies insurance markets with a fixed cost of

providing contracts, and gives a necessary and sufficient condition under which the

market will collapse. The third provides a framework for simulating selection mar-

kets with choice frictions, and constructs a model within this framework to study

the ambiguous effect of rational inattention on insurance market inefficiency.
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Chapter 1

Introduction

1.1 Background

Most markets involve a certain degree of information asymmetry between buyers and

sellers. The seminal work of Akerlof (1970) showed that asymmetries can present a

barrier to trade, if not completely collapse the market. If trade occurs at all, the

market may be inefficient, with the informed side of the market making costly choices

to convey information to the uninformed side. As such, the theory of markets with

private information informs the debate on the role of government in these markets.

This thesis traces its roots to two canonical models. In the job market signaling

model of Spence (1973), workers privately know their intrinsic productivity but can-

not convey it directly to employers; in lieu, productive workers obtain education—a

costly task which productive workers are willing to do in equilibrium but unproduc-

tive workers are not—to signal their productivity to potential employers. It is said

here that productive workers separate from the pool. In the insurance market model

of Rothschild and Stiglitz (1976), insurers screen potential buyers—who privately

know their risk level—by offering contracts with different levels of coverage; those

who are lower risk will be more willing to accept lower coverage, suboptimal as it

may be, to separate themselves from higher risks and gain access to lower premiums.
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A general conundrum which the authors produce is that there are cases with no Nash

equilibrium, where any pool of insureds could have its best “cream skimmed” away

(i.e. separated) by firms offering lower coverage at lower premiums, and any separat-

ing state—in which low-risk people buy low coverage and high-risk people buy high

coverage—can be disrupted by offering a pool which is strictly preferable for both,

in which high-risk people get better prices and low-risk people get more coverage.

We refer to the object being purchased here—labour, insurance, etc.—simply

as a contract, which encodes all relevant non-price information—level of education,

coverage, etc. The distinguishing feature of these markets is that price is determined

not only by the contract, but by who selects into the contract. This thesis refers to

such markets simply as selection markets.

The textbook treatment of signaling and screening typically structures these

models as dynamic games—for example, a strategic interaction between one worker

and n firms, complete with an order of play—and solves these models by character-

izing strategies (and beliefs) falling under certain equilibrium notions. Traditionally,

the informed party (e.g. the worker) will typically move first (e.g. by getting edu-

cation) in signaling games and move second in screening games. The first is typ-

ically a dynamic Bayesian game—the first player taking an action and the second

player forming a belief, updating it upon seeing the action, and responding with their

own—with unrestricted beliefs leading to infinitely many PBE. In screening, the un-

informed players—the n firms—act first by offering a menu of contracts, followed by

the informed player choosing those contracts. When considering competitive mar-

kets, however, it often makes little sense to stipulate a strategic interaction with one

single informed player, and with one side necessarily moving first, so while selection

market theory appropriates game theoretic equilibrium concepts, it does so with lit-

tle emphasis or fidelity to the game theoretic details.1

1. For example, we just as commonly say that “firms screen workers” (rather than “workers
signal to firms”). When a worker chooses a level of education, a menu of contracts is already being
offered—as represented through the price of labour associated with each level of education. These
prices essentially represent the beliefs of the market, but unlike signaling games where the set of

2



A seminal work on competitive markets with asymmetric information is Riley

(1979), in which n competitive uninformed parties offer a market menu of contracts.

The reactive equilibrium concept, introduced in the paper, consists of a menu which,

if any uninformed party were to undercut in price, would induce a reaction which

renders the undercutting unprofitable. Riley’s model is similar to Rothschild-Stiglitz

in that any pool can be separated by cream-skimmers, but different in that the

Pareto-dominant zero-profit separating equilibrium2 cannot be de-stabilized by any

pooling or separating market offering without that offering being threatened with

unprofitability by a market reaction. Subsequent work in game theoretic (Cho and

Kreps 1987; Banks and Sobel 1987) and price theoretic (Azevedo and Gottlieb 2017)

models of behaviour under asymmetric information also suggested the same outcome,

now known as the Riley outcome.

1.2 Recent Advances and Challenges

For a number of decades after the 1970s, Akerlof (1970), Spence (1973), and Roth-

schild and Stiglitz (1976) stood as the workhorse models in empirical work and

benchmark models in theoretical work. In a handbook chapter on connecting theory

to data in social insurance, Chetty and Finkelstein (2013) undertake the theoreti-

cal discussion almost entirely using an Akerlof (1970) model, only augmenting it as

needed. And in a Yale Law Journal article arguing that adverse selection is an exag-

gerated threat, Siegelman (2003) presents the theory in the Rothschild and Stiglitz

(1976) paradigm, then proceeds to provide empirical evidence against it and point

to weaknesses in the theory.

Siegelman was not alone: an empirical strand of literature which emerged in the

2000’s, beginning with the pioneering work of Chiappori and Salanié (2000), sought

admissible beliefs may be large or infinite (depending on how one defines an equilibrium, more on
this later), prices in the competitive market model are set mechanically by a zero profit condition.

2. or ‘least-cost separating equilibrium’
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to test adverse selection theory looking for the correlation between risk and cover-

age which the theory predicts—the so-called “positive correlation test.” What was

surprising was how often the test produced a null result. Subsequently, Finkelstein

and McGarry (2006) pointed out that null results could be explained by multiple

dimensions of private information. Cutler, Finkelstein, and McGarry (2008) investi-

gate the issue further, showing the importance not only of private information about

risk, but the second dimension of risk tolerance. In particular, while it is true that

ceteris paribus, high-risk people select into high coverage, it is also true that risk

tolerant people select into low coverage. Because risk tolerant people tended to be

high risk, the competing forces of adverse and advantageous selection led to the lack

of positive correlation between coverage and risk.

This highlighted the importance of higher dimensions in selection markets—an

aspect conspicuously missing from selection theory, which primarily focused on one

dimension of contracts (e.g. coverage) and one dimension of types (e.g. risk), both

ordered.3 It was in this context that the Veiga and Weyl (2016) and Azevedo and

Gottlieb (2017) models were developed for selection markets with multidimensional

heterogeneity.

A second rationale for a lack of adverse selection observed in markets is the pos-

sibility that, ironically, selection markets are selective, in that the more adversely

selected a market is, the more likely it is to not exist (and thereby cannot be ob-

served) because, as we show in chapter 3, such markets take only small frictions to

collapse. Some of the empirical literature in the last ten years has been dedicated to

studying selection in markets which do not exist. One notable avenue, pursued by

Hendren (2013, 2017), has been to identify a theoretical “no-trade” condition under

which a market would be so adversely selected that it could not exist, and then test

empirically whether the condition is met; if so, then private information precludes

the market from existing.

3. See Azevedo and Gottlieb (2019) for a non-existence result for reactive equilibria when types
are not ordered along one dimension.
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Looking forward, one final incongruence between theory and empirics which has

developed in recent years has to do with the fact that all the above-described mod-

els assume perfect rationality, while much of the literature of the last decade—

particularly in health insurance—has pointed to the empirical relevance of choice

frictions (Chandra, Handel, and Schwartzstein 2019). Just as the empirical relevance

of multidimensional heterogeneity presented the need for new theoretical tools, so

too does the empirical relevance of choice frictions.

1.3 Overview of This Thesis

Chapter 2 provides a basic result about the equilibrium of Azevedo and Gottlieb

(2017) which reconciles it with the Riley outcome. Typically, an easy and general

way to solve for the outcome is via an initial value problem (IVP) first presented in

Riley (1979) (for a recent example of its use, see Chen, Ishida, and Suen (2022)). I

derive the conditions under which it also produces a unique Azevedo-Gottlieb out-

come. The mathematical contribution here is two-fold. First, I connect a mathe-

matical tool commonly used in economics—the differential equation representing an

incentive-compatible separating equilibrium—with a modern equilibrium concept.

Second, I show that general propositions about the Azevedo-Gottlieb equilibrium

concept can be proven without using the definition of the equilibrium. The concept

has always been vulnerable to the criticism that it is mathematically intractable; the

equilibrium has a complicated definition, and because the paper provides only theo-

rems regarding existence and necessary conditions, empiricists and theoreticians alike

may forgo this concept because it is not clear that one can prove a given proposition

without starting from the definition. Even if the proposition was rather intuitive,

one risks being bogged down in the details. Indeed, the paper itself proves only spe-

cific examples with the given theorems. On the other hand, I prove a more general

proposition using only the theorems provided in the paper.

Chapter 3 studies a Riley model of insurance coverage with a fixed cost of provid-
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ing contracts, solves for the D1 equilibrium (Banks and Sobel 1987), and reconciles it

with a necessary condition for no-trade in Hendren (2013) and Azevedo and Gottlieb

(2017). I show the equilibrium is given by a pool at zero coverage, and possibly a

separating portion, defined by a Riley IVP. The parameters of the specified model

determine an open set in contract-price space, and the price function of the sepa-

rating contracts is determined by the IVP over its maximal interval of existence in

that open set. Of course, if the open set is ∅, then there is only a pool. This yields

a somewhat intuitive condition for no trade: if and only if the riskiest type is not

willing to pay the fair price of full coverage.

Chapter 4 presents a framework for simulating selection markets with multiple

dimensions of information and of contracts which allows for the incorporation of

choice frictions. I then construct a model within the framework to study the impli-

cations of rational inattention on selection markets. The contribution of this chapter

spans several fronts: i) I construct a new approach to modeling selection markets—

a dynamic multi-dimensional model with stochastic choices—which contrasts with

and supplements the standard static (and often uni-dimensional) models with fully

rational agents ii) I provide a new, intuitive, market-based foundation for D1/Riley

equilibria and iii) I find that outcomes in markets with inattentive agents can diverge

significantly from markets with perfectly rational agents.

6



Chapter 2

Reconciling Azevedo and

Gottlieb’s Equilibrium with Riley’s

Initial Value Problem

2.1 Introduction

When considering economic problems with asymmetric information—ranging from

job market signaling to adverse selection in insurance markets to strategic communi-

cation—it is often useful to first consider a simple model with an interval of types and

an interval of contracts.4 Given single-crossing preferences (Spence 1973; Mirrlees

1971), the initial value problem (IVP) of Riley (1979) describes a Pareto-dominant

(or “least cost”) separating equilibrium where i) sellers make zero profits and ii)

buyers set marginal cost to equal marginal rate of substitution between money and

the signal given by the contract choice.

Recently, interest has shifted towards the equilibrium concept of Azevedo and

Gottlieb (2017, hereafter, AG). This equilibrium is attractive in that it purportedly

4. Depending on context, contracts might be replaced with signals, messages, actions, etc. as
the object of interest
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replicates the Pareto-dominant separating equilibrium when both exist, but unlike

the latter, the former is capable of handling multiple dimensions and unordered types.

However, to my knowledge, no theoretical results have been proven which reconciles

generally the AG model with Riley’s IVP, and so before we can write down the IVP

and assume that it is yields the AG equilibrium, several questions must be answered.

Does the IVP have a unique solution under the softer assumptions of AG? Does

the solution yield a valid or unique equilibrium? Are there non-separating equilibria

which the IVP fails to characterize? What about semi-separating or mixed-strategy

equilibria?

This chapter addresses these questions, and draws some familiar conclusions.

With a local Lipschitz condition on the marginal rates of substitution, equilibria are

(in some sense) unique and almost every type is allocated to a single contract. When

the contract space is sufficiently large, as is sometimes explicitly assumed, types sep-

arate; otherwise, bad types separate and good types pool, as in Cho and Sobel (1990)

or Kartik (2009). Semi-separating/pooling equilibria depend on the distribution of

types, while the separating equilibrium depends only on the support. Separating,

semi-separating, and pooling equilibria are (almost) disjoint occurrences. Thus, it

suffices to solve the IVP first and check the contract space is large enough after the

fact. Without the Lipschitz condition, however, IVPs are not unique and an AG

equilibrium corresponding to one need not be Pareto-dominant.

The contribution of this chapter is two-fold. First, I reconcile AG with the Riley

IVP. Second, in doing so, I show how certain results may be obtained using only

the theorems provided in AG, which include only an existence condition and some

necessary but not sufficient conditions. One concern among economists has been

that without sufficient conditions, one may have to work with the incredibly com-

plex machinery of AG in order to prove any theorems about the equilibrium. To my

knowledge, the theorems have not been used to prove any general results. Indeed,

AG themselves only use their theorems to characterize specific examples.

8



Relation to the Literature. The seminal paper by Riley (1979) introduced the con-

cept of a reactive equilibrium; in lay terms, an equilibrium is reactive if for every

strictly profitable deviation, there exists a profitable market reaction which renders

the deviation strictly unprofitable. Under stronger assumptions, Riley also provided

the IVP presented herein for the Pareto-dominant separating equilibrium, which co-

incided with the reactive equilibrium. Engers and Fernandez (1987, hereafter, EF)

generalised the Riley model and relaxed some assumptions; but left the assumption

that the contract space was so large so as to guarantee a separating equilibrium.

Moreover, whether the equilibrium satisfied an IVP was outside the scope of the

paper.

Up until now, a workable approach has been to restrict attention to “sufficiently

large” compact contract spaces with a C2 utility function U . One then appeals to the

Mailath (1987) result that any incentive-compatible (IC) separating allocation must

satisfy an ordinary differential equation (ODE). However, U ∈ C2 does not guaran-

tee uniqueness of the solution to the IVP, nor necessarily imply the non-existence of

IC semi-separating states, and so one must then refine away all other equilibrium—

typically, leaving behind the Pareto-dominant separating one. Moreover, it is possi-

ble, depending on the marginal rates of substitution, that the allocations “explode”

to infinity too quickly, thus even an unbounded action space can fail to host a sepa-

rating equilibrium.

This chapter relaxes some of these assumptions and characterizes the equilibria.

While AG is both technically unwieldy and does not explicitly prove that their equi-

librium aligns with the traditionally-expected outcomes of single-crossing models—

say, Riley or D1 equilibrium (Banks and Sobel 1987)—it does provide very useful

necessary conditions and an existence guarantee, which is sufficient to parlay into a

uniqueness result. As we will see, what guarantees uniqueness is not U ∈ C2, but

the local Lipschitz property of the marginal rate of substitution −Ux/Up.

9



2.2 Model

Continuum screening environments. A screening environment consists of a type space

Θ = [0, θ], a type distribution F with support Θ on a set probability space (Ω,F , P ),
a contract (or ‘signal’) space X = [0, x], a utility function U : X ′ × R′ × Θ′ → R,
and cost function c : X ′ ×Θ′ → R+, where X

′ ⊃ X, R′ ⊃ R+, and Θ′ ⊃ Θ are each

open sets.5

Assumption 1. U, c ∈ C1.

Assumption 2. Without loss of generality,6 Ux < 0, Up < 0, cx ≤ 0, cθ < 0, and

0 ≥ cx(x, θ) > −Ux(x, c(x, θ), θ)
Up(x, c(x, θ), θ)

> −∞.7

Assumption 3. Indifference curves are single-crossing and those of better types are

less steep; that is:

θ > θ′ =⇒ −Ux(x, p, θ)
Up(x, p, θ)

> −Ux(x, p, θ
′)

Up(x, p, θ′)
.

Assumption 4. There exists a metric d on X and a number L for which X is

compact and U(x, p, θ) ≥ U(x′, p′, θ), p′ > p =⇒ p′ − p ≤ L · d(x, x′). That is to say

that the marginal rates of substitution are bounded.8

Equilibrium notions. A mechanism (x, p) consists of an allocation x : Θ → X and a

price p : X → R+. The mechanism is incentive compatible (IC) if

x(θ) ∈ argmax
y∈X

U(y, p(y), θ).

5. We situate the problem in open sets merely for differential equations purposes. Another
approach, taken by Mailath and Von Thadden (2013), is to use the one-sided derivative where
appropriate.

6. i.e. these inequalities can be appropriately reversed
7. This is to say that signaling is not first-best. In the context of insurance where 1−x is coverage

and 1 − θ is probability of loss, cx > Ux/Up if insurers are risk-neutral, insureds are risk-averse,
and 0 < θ < 1. In the context of job market signaling where education is x and productivity is −c,
cx > Ux/Up if the productivity gain is not sufficient to justify additional education.

8. Except when x = ∞, d can be taken to be the usual metric |x− y|.

10



Notice we deal only with pure-strategy allocations. An equilibrium is an IC mecha-

nism. y is a pool of x if x−1(y) has more than one element (x allocates more than one

type to y). The equilibrium is separating if x has no pools (x is one-to-one, allocating

each type to a unique element), pooling if it has one pool (x(Θ) is a singleton, x maps

all types into a single element), and semi-separating otherwise (x maps types to two

or more elements, but at least two types are allocated to the same element). The

equilibrium is zero-profit if, for any contract y in the image of the allocation x(Θ),

E[c(y, θ)|θ ∈ x−1(y)] = p(y).9

In this chapter, we will consider (strong) Azevedo-Gottlieb equilibria (SAGE).

The reader may refer to AG for a technical exposition of SAGE, but for the purposes

of this chapter, it suffices to know the following. SAGE is zero-profit and IC (AG,

Proposition 1.1), with a Lipschitz continuous price function (AG, Proposition 1.3),

such that (to quote AG, Proposition 1.2 directly) “every contract that is not traded

in equilibrium has a low enough price for some consumer to be indifferent between

buying it or not, and the cost of this consumer is at least as high as the price.”

2.3 On the Generality of the Model

Here, I prove two facts about the model. First, it suffices to restrict attention to

non-probabilistic allocations x : Θ → X. See, formally, AG allocations consist of a

measure α : BX ⊗ BΘ → R on a product space. To bridge the two, and to allow the

latter to take advantage of the theory of the former, we use lemma 1.

Second, the model generalizes the traditional signaling setup where players are

evaluated on their expected type, rather than their expected cost given their con-

tract. Another viewpoint is that the zero-profit equilibrium is essentially a productive

signaling equilibrium, as shown in lemma 2. In productive signaling, the payoff is

9. Note this is zero profit in expectation, not zero profit for each contract. In competitive markets,
all equilibria will be zero-profit, although not screening environments in general in the literature.
See monopolist pricing models, for example.
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U(x,Et∼µ(x,·)[c(x, t)], θ) where µ(x, ·) is a regular conditional probability represent-

ing the belief (a distribution over θ) of the signal receiver upon observing signal x

(in AG, µ would be given by α in equilibrium) and U is the signal sender’s util-

ity. This generalizes unproductive signaling Perfect Bayesian Equilibria, where the

payoff is V (x,Et∼µ(x,·)[t], θ), a utility function given by expected type (often called

“reputation”) rather than expected cost.

Lemma 1. In the SAGE of this model, types are allocated to one non-pool at most

(in an a.e. sense with respect to α). Moreover, if there is a pool, it must be x. Lastly,

only one type can be allocated to both a non-pool and x.

Proof. First, assume for contradiction that θ is allocated to two non-pools x1 < x2.

Since they are not pools, it must be the case that p(x1) = c(x1, θ) and p(x2) =

c(x2, θ). To see that θ strictly prefers x1, observe that

U(x1, c(x1, θ), θ)− U(x2, c(x2, θ), θ) =

∫︂ x2

x1

dU

dx
(x, c(x, θ), θ) dx

=

∫︂ x2

x1

Ux + Upcx dx > 0

by the assumption that cx > −Ux/Up and Up < 0. Hence, IC is violated.

Next, assume for contradiction that there is a pool y < x. It follows there

are types t in the pool whose cost c(y, t) is strictly less than p(y) = E[c(y, θ)|α].
Let t∗ be the infimum of such types and let q∗(x) be the indifference curve of t∗

through (y, p(y)). Since p is continuous (AG 1.3), we can pick ε > 0 such that

p(y + ε) > c(y + ε, t∗). IC implies that p(y + ε) ≥ q∗(y + ε). In light of AG 1.2,

suppose θ that some type is indifferent between buying y + ε or not. Given that

p(y + ε) ≥ q∗(y + ε), by single-crossing, θ ≥ t∗. But then, c(y + ε, θ) < p(y + ε),

contradicting AG 1.2.

Lastly, suppose both θ′ < θ′′ are allocated to the pool x and the non-pools y′

and y′′ respectively. By IC, θ′ must be indifferent between (x, p(x)) and (y′, p(y′)),
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which by single-crossing, implies θ′′ strictly prefers (y′, p(y′)), violating IC.

Lemma 2 (Representation lemma). Let V (x, t, θ) be differentiable and strictly mono-

tonic in x and reputation t. Without loss of generality assume Vx < 0 and Vt > 0.

Then there exists a set P and functions U : X × P × Θ → R and c : X × Θ → P,

such that Ux < 0, Up < 0, cx ≤ 0, cθ < 0, and V (x, t, θ) = U(x, c(x, t), θ). As a

consequence, any allocation-belief pair (x, µ) satisfying

1. µ is a regular conditional distribution (RCD) of θ given x◦θ; that is, µ satisfies

Bayes’ rule

2. x(θ) ∈ argmaxy∈X V (y, Et∼µ(y,·)[t], θ) for all θ ∈ Θ; that is, x is IC

also satisfies the condition x(θ) ∈ argmaxy∈X U(y, E[c(y, t)|t ∈ x−1(y)], θ) for all

θ ∈ Θ.

Proof. Fix V . Set c(x, θ) = −θ and U(x, p, θ) = V (x,−p, θ). It follows Ux = Vx < 0,

Up = −Vt < 0, cx = 0 ≤ 0, cθ = −1 < 0, and U(x, c(x, t), θ) = U(x,−t, θ) =

V (x, t, θ). Et∼µ(y,·)[t] = E[c(y, t)|t ∈ x−1(y)] holds by construction of the RCD

(Kallenberg 2002, Proposition 8.5).

2.4 Results

Definition 1. The ordinary differential equation (ODE) for allocations is

ξ′(θ) = − Upcθ
Ux + Upcx

=: g(θ, ξ(θ)) (ODE:A)

evaluated at x = ξ(θ), p = c(ξ(θ), θ), and θ = θ.10 The IVP for allocations is given

by (ODE:A) and the initial condition ξ(0) = 0.

Definition 2. The ODE for price functions is

ϕ′(x) = −Ux(x, ϕ(x), θ(x, ϕ(x)))
Up(x, ϕ(x), θ(x, ϕ(x)))

=: f(x, ϕ(x)) (ODE:P)

10. that is, ξ′(θ) = − Up(x(θ),c(ξ(θ),θ),θ)cθ(ξ(θ),θ)
Ux(ξ(θ),c(ξ(θ),θ),θ)+Up(ξ(θ),c(ξ(θ),θ),θ)cx(ξ(θ),θ)
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where θ(·, ·) is defined implicitly by c(x, θ(x, p)) = p. The IVP for price functions is

given by (ODE:P) and the initial condition ϕ(0) = c(0, 0).

The implicit ODE for price functions is given by the chain rule on ϕ(x(θ)) =

c(x(θ), θ):

ϕ′(x) = cx + cθ/x
′ = cx −

(Ux + Upcx)cθ
Upcθ

= −Ux
Up

Definition 3. The SAGE is unique if the price function is unique.

With definitions in tow, I now proceed to the main results. The proofs of the

results are deferred to Section 2.6. I will first present an overview of the intuition.

If we view x as a signal, the worst type begins by sending the weakest signal. Each

type θ sends a signal just large enough to “separate” from a marginally inferior type

θ− ∂θ (conversely, one could imagine that a cream skimmer would lure θ away from

θ − ∂θ with a low enough price for a marginally larger signal). At each turn, θ asks

whether they would prefer to separate and pay their actuarially fair price, or pool

at x and pay a price E[c(x, t)|t > θ]. If θ∗ is indifferent between the two, all types

θ > θ∗ strictly prefer to pool, and thus pool.

If the contract space has enough “room” for types to separate—that is, x is suf-

ficiently large that no one wants to pool—then pooling does not occur. When the

space is sufficiently restricted, high types begin to pool at x. When the space is

further restricted, all types pool at x.

A key insight used to show the uniqueness of SAGE is that because types choose

contracts by setting their indifference curve tangent to the graph of p, p must be

absolutely continuous, otherwise p′ would equal −∞ in some places. AG, Proposition

1.4 guarantees that p is a.e. differentiable, and so jointly, this guarantees that p

satisfies (ODE:P). Local Lipschitz continuity guarantees the uniqueness of solutions

for the ODE.
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Proposition 3. If the slope field f of (ODE:P) is locally Lipschitz in p, then the

following statements are equivalent:

1. There is a separating SAGE.

2. There is a unique separating SAGE (x, p) where p solves the IVP for price

functions on x(Θ).

3. Let ϕ solve the IVP for price functions up to its maximal interval of existence

I. There is an x ∈ I where x ≤ x for which ϕ(x) = c(x, θ).

4. There are no semi-separating/pooling SAGE.

Proposition 4. Suppose f is locally Lipschitz in p, any of the statements in propo-

sition 3 are violated, and U(x,E[c(x, θ)], 0) > U(0, c(0, 0), 0). The SAGE consists of

a pool at x.

The semi-separating SAGE can be constructed as follows. By the Implicit Func-

tion Theorems for differentiable and for strictly monotonic functions (Hazewinkel

et al. 1990), for each θ ∈ Θ, we can construct q(x; θ), the indifference curve of θ

passing through the pool, implicitly via

U(x, q(x; θ), θ)− U(x,E[c(x, t)|t > θ], θ) = 0

and construct ξ(θ), the separating contract for which θ would be indifferent to the

pool, via

U(ξ(θ), c(ξ(θ), θ), θ)− U(x,E[c(x, t)|t > θ], θ) = 0.

Further, ξ is continuous and qx(x; θ) = −Ux(x,q(x;θ),θ)
Up(x,q(x;θ),θ)

; q is also continuous in θ because

lim
θ→θ−

U(x, q(x; θ), θ) = lim
θ→θ−

U(x,E[c(x, t)|t > θ], θ)

= lim
θ→θ+

U(x,E[c(x, t)|t > θ], θ)

= lim
θ→θ+

U(x, q(x; θ), θ).
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Define D = {(x, p) : ∃θ ∈ Θ s.t. x ≥ ξ(θ) and p ≥ c(ξ(θ), θ)} to be the region of

X ′ × R′ (see the model assumptions) northeast of L := {(ξ(θ), c(ξ(θ), θ)) : θ ∈ Θ}.
Define t : D → Θ implicitly by q(x, t(x, p))− p = 0, which we can do since for fixed

x, q(x, θ)− p is strictly monotonic in p, and vice versa. Finally, define the slope field

h : X ′ ×R′ → R by

h(x, p) =

⎧⎨⎩f(x, p) (x, p) ∈ Dc,

qx(x, t(x, p)) (x, p) ∈ D.
(2.1)

Proposition 5. Suppose f is locally Lipschitz in p, any of the statements in propo-

sition 3 are violated, and U(x,E[c(x, θ)], 0) < U(0, c(0, 0), 0). If further, F is non-

atomic, there is a unique SAGE price function satisfying p′(x) = h(x, p), p(0) =

c(0, 0).

That F is non-atomic is sufficient for SAGE to not need probabilistic allocations,

but if θ̂ has a positive mass, it is possible that there is no SAGE allocation where θ̂

is allocated a.s. to one contract.

The final proposition deals with whether AG and EF select for a unique and, in

some sense, ‘logical’ outcome when f is not locally Lipschitz. It hints at something

interesting: EF equilibrium loses its existence guarantees when types are unordered,

as shown by Azevedo and Gottlieb (2019), but on the other hand, AG might not

select for a desirable equilibrium even when types are ordered, whereas EF does.

Proposition 6. There is always a solution to the IVP in the sense of Carathéodory.

Let F be the set of solutions. ϕ(x) := supϕ∈F ϕ(c) and ϕ(x) := infϕ∈F ϕ(x) are both

in F . SAGE sometimes selects for p, whereas if the assumptions in EF are satisfied,

then EF always selects the Pareto-dominant market offering.

Note that this is purely an artifact of the model. AG tends to select for separating

equilibria with a least-cost initial value. Any price function solving the IVP, such as

ϕ, must be associated with such an equilibrium where the price function equals ϕ on-

the-equilibrium, since the only off-the-equilibrium contracts are (x(θ), x]. This does
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not happen with discrete type spaces: tracing along indifference curves to identify

the least-cost separating equilibrium yields a unique equilibrium.

2.5 Discussion and Concluding Remarks

I have thus far postponed the discussion of which assumptions are strictly necessary

and which are merely simplifying. Purely for the purposes of ODEs, we extend the

definition of U and c to open sets X ′, R′, and Θ′. The assumption that types are

lower bounded is to assume there exists a worst type. Likewise, there is a ‘worst’

contract in terms of signaling value which is ‘best’ in terms of consumer utility. It

is sufficient for signaling purposes that worst types and contracts exist, but it is

arbitrary that lower types are worse types. Without loss of generality, we assume

the lower bounds on X and Θ to be zero. The contract space may be the extended

nonnegative reals [0,∞], in which case we include the element ∞.11 The choice made

that cx ≤ 0 and cθ < 0 is arbitrary; in the Spence (1973) job market signaling game

with a productivity function v(x, θ) such that vx ≥ 0 and vθ > 0, one could set

c = −v. c ≥ 0 is necessary for SAGE, but it not restrictive because even if c is

not lower bounded, we may monotonically transform the range of c and accordingly

transform U . The assumption that cx > −Ux/Up implies that signaling is costly,

even if somewhat productive: recall that, because zero profits are made, productiv-

ity gains from higher x are returned in the form of reduced c, with the marginal

cost reduction being cx, and that must not fully offset the utility loss −Ux/Up. The
marginal rate of substitution being Lipschitz along the isocost curves is used to in-

voke the Picard-Lindelöf Theorem for uniqueness of IVP solutions.

One notable motif of these types of models is that they have no individual ratio-

nality (IR) constraint: the rationale is that, provided the contract space is sufficiently

large, the equilibrium is dependent only on the support of the distribution, not the

distribution itself, and therefore, provided IR constraints do not change the support

11. under the standard assumptions concerning ∞ ∈ R; see, for example, Folland (1999)
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of the distribution, the equilibrium is otherwise unaffected. This is not always the

case for semi-separating or pooling equilibria.

Nevertheless, the main idea of this chapter is that the economist may work out

the IVP for price functions first (solving directly or numerically), and check that the

solution satisfies condition 3 in proposition 3 ex post facto. If so, then the economist

can rest assured that the equilibrium is separating, the solution is the price function

of the informational equilibrium, and the equilibrium is unique.

2.6 Chapter Appendix: Omitted Proofs

Lemma 7. Let I ⊂ Θ be an open interval and x be a SAGE allocation. If x is

one-to-one on I, then p is strictly decreasing, x is continuous and therefore strictly

increasing on I.

Proof. First, if x(θ′) > x(θ′′) and p(x(θ′)) ≥ p(x(θ′′)), then θ′ would prefer x(θ′′).

Thus, if x has a discontinuity at θ, it must be an increasing one. Let tn ↓ θ but

limn→∞ x(tn) > limt→θ− x(t) ≡ x(θ−). Then:

lim
n→∞

U(x(tn), c(x(tn), tn), tn)− U(x(θ−), c(x(θ−), θ−), tn)

= lim
n→∞

U(x(tn), c(x(tn), tn), tn)− U(x(θ−), c(x(θ−), tn), tn)

= lim
n→∞

∫︂ x(tn)

x(θ−)

dU

dx
(x, c(x, tn), tn) dx

≤ lim
n→∞

∫︂ x(θ)+ε

x(θ−)

dU

dx
(x, c(x, tn), tn) dx

≤
∫︂ x(θ−)+ε

x(θ−)

[︃
lim sup
n→∞

dU

dx
(x, c(x, tn), tn)

]︃
dx

=

∫︂ x(θ−)+ε

x(θ−)

[Ux(x, c(x, θ), θ) + Up(x, c(x, θ), θ) · cx(x, θ)] dx < 0,
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which implies for some (x(θ−), p(x(θ−))) ≻tn (x(tn), p(x(tn))) for some tn, contra-

dicting IC. Continuous and one-to-one implies strictly monotonic, and single-crossing

implies x is not strictly decreasing.

Lemma 8. Let (x, p) be a SAGE. If I ⊂ Θ is an interval, and x is one-to-one on I,

then p is absolutely continuous on x(I). In particular, if x is separating on Θ, p is

absolutely continuous.

Proof. Assume for contradiction that p is not absolutely continuous. By AG, Propo-

sition 1.3 it is nevertheless continuous. Moreover, because p(x(θ)) = c(x(θ), θ), p

must be strictly decreasing on x(I). x is continuous, and I is an interval and there-

fore connected, so x(I) is also an interval.

It follows that the set {x ∈ x(I) : p′(x) = −∞} has positive Lebesgue measure

(Leoni 2017, 3.46). Pick a θ∗ ∈ I for which x(θ∗) ∈ int(x(I)) and p′(x(θ∗)) = −∞,

and it follows from the fact that the marginal rate of substitution is bounded that

the indifference curve of θ∗ crosses the graph of p, and therefore, the mechanism is

not IC, contradicting AG, Proposition 1.1.

Lemma 9. Let (x, p) be a SAGE. If x(0) is not in a pool, then x(0) = 0, and

therefore p(0) = c(0, 0).

Proof. x(0) > 0 and p(x(0)) = c(x(0), 0) would mean every x ∈ [0, x(0)) contradicts

AG, Proposition 1.2.

Lemma 10. Any pool in SAGE consists of an interval of types.

Proof. Let (y, p(y)) be a pool and let θ < θ′ < θ′′. Let Sy = {(x, p) : (x, p) ≻θ

(y, p(y))} and define S ′
y and S ′′

y likewise. By single-crossing, S
′
y ∩

(︁
Sy ∪ S ′′

y

)︁c
=

{(y, p(y))}. Id est, the only pair weakly preferred over (y, p(y)) by θ′ but not strongly

preferred by θ or θ′′ is (y, p(y)) itself.

Corollary 10.1. Any semi-separating SAGE consists of a pooling interval containing

θ and a separating interval containing 0.
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Lemma 11. If f(x) = g(x), f ′(x) < g′(x), then for some δ > 0, |h| < δ implies

f(x− h) < g(x− h) and f(x+ h) > g(x+ h). That is, f and g “cross.”

Proof. Set ϕ = g − f . For ε = ϕ′(x)/2 > 0, we can take δ > 0 such that 0 < |h| <
δ =⇒ |ϕ′(x)− ϕ(x+h)−ϕ(x)

h
| < ϕ′(x)/2, implying ϕ′(x)/2 < ϕ(x+h)/h < 3ϕ′(x)/2.

Proof of proposition 3. (1 =⇒ 2) Let (x, p) be a separating SAGE. By lemma 8, p

is absolutely continuous. By AG, Proposition 1.4, p is a.e. differentiable. Where

it is differentiable on x(Θ), it must satisfy the ODE, as otherwise, the indifference

curve of some θ would cross the graph of p at x(θ), per lemma 11. By lemma 9, the

initial condition is also unique: p(0) = c(0, 0). So p must solve the IVP uniquely on

x(Θ) (Hale 1980). For non-traded contracts x > x(θ), AG, Proposition 1.2 implies

the price function traces along the indifference curve of θ until 0 is met, after which

p = 0. To see that x must also be unique, consider two possible allocations x1 and

x2; recall that p
′ = −Ux/Up < cX implies p crosses each isocost curve c(·, θ) only

once, so for each θ, there is only one x for which p(x) = c(x, θ), thus x1 = x2.

(1 =⇒ 3) Let (x, p) be a SAGE and let p, ϕ solve the IVP. By Picard-Lindelöf, p = ϕ,

so ϕ(x(θ)) = p(x(θ)) = c(x(θ), θ).

(3 =⇒ 2) Let ϕ(x) = c(x, θ). If (x, p) is a semi-separating SAGE, then there is

a separating interval I = [0, θ∗) and a pooling interval (θ∗, θ]. By lemma 8, p is

absolutely continuous on x(I); as before, combined with lemma 9 this implies p = ϕ

on x(I). On the pooling interval, x(θ) = x and p(x) = E[c(x, t)|t > θ∗], such that θ∗

is indifferent between limθ→θ∗− x(θ) and x. But by construction of ϕ,

U(x(θ∗), ϕ(x(θ∗)), θ∗) ≥ U(x, ϕ(x), θ∗) = U(x, c(x, θ), θ∗).

Recall that cx > −Ux/Up implies U(x, c(x, θ), θ∗) ≥ U(x, c(x, θ), θ∗), which, by mono-

tonicity of U , is > U(x,E[c(x, t)|t > θ∗], θ∗). Ergo, θ∗ strictly prefers limθ→θ∗ x(θ) to

x. An nearly identical proof applies to show that no pooling SAGE exists either.
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(4 =⇒ 1) SAGE always exists, so if it isn’t semi-separating or pooling, it must be

separating.

Proof of proposition 4. From lemmas 1 and 10 and proposition 3, we know the SAGE

is not separating, and is not semi-separating if x(0) is in the pool at x. Assume for

contradiction that x(0) is not in the pool at x. Lemma 9 implies x(0) = 0 and

p(x(0)) = c(0, 0). Clearly, E[c(x, θ)|θ > t] is strictly decreasing in t since cθ < 0;

therefore,

U(x,E[c(x, θ)|θ > θ∗], 0) > U(x,E[c(x, θ)], 0) > U(0, c(0, 0), 0)

where θ∗ separates the separating and pooling intervals, contradicting IC. Therefore,

x(0) is in the pool at x, and the result follows.

Lemma 12. Let θ∗ divide the pooling and separating intervals of a semi-separating

SAGE. Then

lim
θ→θ∗−

U(x(θ), c(x(θ), θ), θ∗) = U(x,E[c(x, θ)|θ > θ∗], θ∗)

Proof. If θ∗ strictly preferred limθ→θ∗− x(θ) to x, then by continuity, so would some

type θ∗ + ε, contradicting IC since x(θ∗ + ε) = x. Likewise, if θ∗ strictly preferred x

to limθ→θ∗− x(θ), then by continuity, there is ε > 0 for which

U(x(θ∗ − ε), c(x(θ∗ − ε), θ∗ − ε), θ∗ − ε) < U(x,E[c(x, θ)|θ > θ∗], θ∗ − ε)

also contradicting IC.

Lemma 13. The graph of the solution ϕ to the IVP for price functions intersects L

once at most.

Proof. Suppose x∗ is such that (x∗, ϕ(x∗)) ∈ L. By construction, there is a type θ∗

for which ξ(θ∗) = x∗ and c(ξ(θ∗), θ∗) = ϕ(x∗). By construction of ϕ, ϕ(x) ≥ q(x; θ∗)

for all x with equality holding when x = x∗. If there was another x∗∗ such that

(x∗∗, ϕ(x∗∗)) ∈ L—and without loss of generality we may assume x∗∗ > x∗—then
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since q is strictly decreasing in θ by definition, we would have ϕ(x) ≥ q(x; θ∗) >

q(x; θ∗∗) and ϕ(x∗∗) = q(x∗∗; θ∗∗), a contradiction.

Proof of proposition 5. By proposition 3, there is no separating SAGE. Assume for

contradiction that there is a pooling SAGE. Let q(x; 0) be the indifference curve of

type 0 passing through (x,E[c(x, θ)]). By IC, p(0) ≥ q(0; 0), but by AG, Proposition

1.2, p(0) ≤ c(0, 0) < q(0; 0), via the assumption U(x,E[c(x, θ)], 0) < U(0, c(0, 0), 0).

This yields the contradiction.

It follows that there is a semi-separating SAGE, containing a separating interval

and a pooling interval. Again, by AG, Proposition 1.4, p is differentiable a.e., and

wherever it is differentiable on the separating interval, it must satisfy p′ = −Ux/Up
lest the indifference curve of θ(x, p(x)) crosses the graph of p, contradicting IC. By

lemmas 8 and 9, it follows that p uniquely satisfies the IVP for price functions on

the separating interval. To see that the separating interval is also (almost) unique,

observe that if θ∗ divides the separating and pooling intervals, then by lemma 12,

L ∋ lim
θ→θ∗

(x(θ), c(x(θ), θ)) = lim
θ→θ∗

(x(θ), p(x(θ))) ≡ lim
θ→θ∗

(x(θ), ϕ(x(θ)))

By lemma 13 that limθ→θ∗ (x(θ), ϕ(x(θ))) = (ξ(θ∗), c(ξ(θ∗), θ∗)) for a unique θ∗. Thus

the separating interval is either [0, θ∗) or [0, θ∗].

Lastly, the price function p(x) for x ∈ [θ∗, θ] must trace along the indifference

curve q(x; θ∗): any less and some type arbitrarily close to θ∗ would strictly prefer x,

violating IC, any more and no type is indifferent between x(θ) and x, violating AG,

Proposition 1.2.

Lemma 14. For a bound b <∞ and a fixed ϕ0, the family

F = {ϕ ∈ AC[0, b] : ϕ(x) = ϕ0 +

∫︂ x

0

f(s, ϕ(s)) ds}

is equicontinuous, and the functions ϕ(x) := infϕ∈F ϕ(x) and ϕ(x) := supϕ∈F ϕ(x)
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are in F .

Proof. I will do the proof for ϕ, but the proof is the same for ϕ. By construction,

|f | ≤ M for some M < ∞. So, for any ε > 0, we take δ = ε/2M , then ϕ ∈ F and

|x− y| < δ implies

|ϕ(x)− ϕ(y)| =
⃓⃓⃓⃓ ∫︂ x

y

f(s, ϕ(s)) ds

⃓⃓⃓⃓
≤ 2M |x− y| < ε

Thus F is equicontinuous. The infimum of an equicontinuous family is continuous.

If {ϕn} ⊂ F and ϕn → ϕ̂, then ϕ̂ ∈ F , because the Dominated Convergence Theorem

implies

ϕ̂(x) = lim
n→∞

ϕn(x) = ϕ0 + lim
n→∞

∫︂ x

0

f(s, ϕn(s)) ds = ϕ0 +

∫︂ x

0

f(s, ϕ̂(s)) ds

and the Fundamental Theorem of Calculus for Lebesgue integrals (Folland 1999)

implies ϕ̂ is also absolutely continuous; thus proving ϕ̂ ∈ F . Moreover, it should be

pointed out that ϕ̂ is continuously differentiable since f is continuous. Lastly, the

Arzela-Ascoli Theorem implies F is sequentially compact.

At each x, we can define a sequence ϕxn ∈ F such that ϕxn(x) decreases to ϕ(x);

there exists a subsequence which uniformly converges to a function ϕx, for which

ϕx(x) = ϕ(x). One trivial consequence is that ϕ is strictly monotonic and therefore

a.e. differentiable, otherwise the graph of ϕ and ϕx would cross, contradicting the

definition of ϕ. Because ϕ is both continuous and strictly monotonic on [0, b], it must

be absolutely continuous: otherwise, ϕ′ = −∞ on a positive measure set (Leoni 2017),

and at x where ϕ′(x) = −∞, the graph of ϕx would cross ϕ, by lemma 11, which

contradicts the definition of ϕ. By the same logic, it must be the case that where

ϕ is differentiable, ϕ′(x) = ϕxx(x) = f(x, ϕx(x)) = f(x, ϕ(x)). Since ϕ is absolutely

continuous and a.e. differentiable, it follows that ϕ ∈ F .

Proof of proposition 6. f is continuous in both terms and is bounded on a bounded

set, thus it satisfies the conditions of Carathéodory’s existence theorem.
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Consider once again the family

F = {ϕ ∈ AC[0, b] : ϕ(x) = ϕ0 +

∫︂ x

0

f(s, ϕ(s)) ds}

and the function ϕ(x) := supϕ∈F ϕ(x). Suppose F contains multiple functions, of

which ϕ is necessarily not Pareto dominant. Assume that the rest of the slope field

north of graph(ϕ) is locally Lipschitz.

Recalling that X = [0, x], consider the SAGE associated with an environment

with the restricted contract space X̃ = [x∗, x]. By the preceding propositions, a

SAGE exists, and clearly, ϕ̃ > ϕ. Next, consider a sequence of such restricted envi-

ronments X̃1 ⊂ X̃2 ⊂ · · · such that
⋃︁
nXn = [0, x], each associated with a SAGE

price function ϕ̃n. Since each ϕ̃n is associated with a sequence of perturbations and

a sequence of weak equilibria which converge to the SAGE, it follows there exists a

sequence which converges to the SAGE associated with ϕ.

That EF selects for ϕ follows from the uniqueness result in EF.
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Chapter 3

Fixed Costs, the Extensive

Margin, and No-Trade

3.1 Introduction

It is curious that some insurance markets do not exist, and others regularly reject

entire sub-populations of applicants. After all, even very risky groups of people are

still risk-averse relative to an insurance company, so there should be gains to trade.

Hendren (2013) comes to one surprising result: theoretically, no trade occurs only if

the riskiest type θ in the sub-population incurs a loss with probability θ = 1, and em-

pirically, a heavy-tailed distribution of losses appears to be a reasonable explanation

in a number of markets, given non-trivial frictions. AG arrive at an even stronger

theoretical result: in an endogenous contracts setting, no-trade occurs if and only if

θ = 1.

But in some cases, that some people are highly certain of loss seems too strin-

gent a condition for no-trade; here, adverse selection fails to fully explain rejections.12

For example, why don’t standard travel insurance policies cover those traveling to

perform “high-risk” activities? Certainly, no one would travel abroad just to hurt

12. nor would moral hazard, a point first highlighted by Shavell (1979)
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themselves, so buyers could hardly be certain of injury. One plausible explanation is

that the fixed costs, such as underwriting and litigation, may be too high for general

insurers to cover specialized risks. As Hendren (2017) alludes to in a model with

moral hazard,13 adding fixed costs may render the no-trade condition sufficient but

not necessary.

This chapter formalizes this idea in a competitive market with endogenous con-

tracts whose key friction is a fixed cost κ. In doing so, I derive a necessary and suffi-

cient condition for no-trade at D1 equilibrium (Banks and Sobel 1987) and describe

the state of the market as it unravels towards no-trade. For clarity, the chronology

of key results is as follows:

1. Without an extensive margin (choice of whether to exit the market), the equi-

librium is fully separating along the intensive margin (choice of coverage within

the market) when θ < 1.

2. For any given type defined by its probability of loss θ > 0, the higher θ is, the

less coverage θ buys. When θ = 1, every other type buys 0 coverage. This is

implied in Hendren’s model.

3. Adding an extensive margin, with κ > 0 and θ < 1, leads low types to pool at

0 coverage.

4. The higher κ or θ is, the more types pool at 0.

5. When θ prefers buying 0 insurance to buying full insurance at cost, the market

will have completely unraveled to no-trade.

To see that Hendren’s necessary condition is a special case, observe that for someone

who is certain of loss (θ = 1), the variable cost of fully insuring against the loss

would be the value of the loss itself, thus they weakly prefer 0 coverage and would

13. As we will see, we do not need or consider moral hazard, and in this particular example,
one could even reason that there is sometimes little moral hazard after conditioning on high-risk
activity.
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strictly prefer it if insurance had a fixed cost κ > 0.

This chapter dovetails with the recent work by Geruso et al. (2023) characterizing

a price-theoretic model of an insurance market with an extensive margin. Both this

chapter and their paper assume perfect competition and appeal to the Riley (1979)

concept. Theirs uses a framework with two fixed contracts (Akerlof 1970), whereas I

use an endogenous contracts framework (Rothschild and Stiglitz 1976). They focus

on analyzing policy tradeoffs, and while this model—with its fewer moving parts—

may be well-suited to do so, I focus on illustrating the impact of frictions.

3.2 The Riley Model

3.2.1 Assumptions

The market consists of risk-neutral uninformed insurers14 and risk-averse buyers who

seek to insure a loss l > 0 and who are informed of their probability θ of incurring

the loss (their “type”), which Nature draws from a distribution F with support

Θ = [0, θ] where supΘ = θ < 1. For simplicity, we normalize the loss to 1 relative

to buyers’ wealth to w. The utility to type θ of an insurance contract with coverage

x ∈ X = [0, 1] at price p ≤ x, is given by

U(x, p, θ) = θ · u(w − p− (1− x)) + (1− θ) · u(w − p)

where u : R+ → R ∈ C2, 0 < u′ <∞, 0 > u′′ > −∞. The cost of supplying contract

x to type θ is given by

c(x, θ) = xθ + κ

where κ ≥ 0 is a fixed cost. For simplicity, I assume w > 1+κ so as to define u only

over the positive reals. The fixed cost is immaterial for now and one may picture it

14. Specifically, a particular sub-population thereof as identified by observables like age, gender,
etc.
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to be 0.

The assumptions above are essentially the same as those in Hendren, bar two.

First, we assume Θ is supported on an interval rather than an arbitrary compact set;

this is simply convenient for ODE purposes, but not necessary, and moreover, from

the empirical results of Hendren, it does not appear to be an errant assumption.

Second, implicit in this model is that, for now, there is no individual rationality

constraint; that is, no option to buy no insurance for no cost (except when κ = 0).

We will soon relax this assumption.

Definition 4. The indifference curve of θ through (y, p) is a function qy,p(·; θ) : X →
R defined implicitly by

U(x, qy,p(x; θ), θ)− U(y, p, θ) = 0,

which implies qy,px (x; θ) = −Ux(x, qy,p(x; θ), θ)/Up(x, qy,p(x; θ), θ).

Lemma 15. Indifference curves are single-crossing on x ∈ (0, 1], p ∈ [0, x].

Proof. −Ux(x,p,θ)
Up(x,p,θ)

= 1

1+ 1−θ
θ

· u′(w−p)

u′(w−p−(1−x))

which is strictly increasing in θ. Thus if θ′ > θ,

then qy,px (y; θ) < qy,px (y; θ′), and so

qy,p(x; θ)− qy,p(x; θ′) = (qy,p(x; θ)− p)− (qy,p(x; θ′)− p)

=

∫︂ x

y

−Ux(x, q
y,p(x; θ), θ)

Up(x, qy,p(x; θ), θ)
−
(︃
−Ux(x, q

y,p(x; θ′), θ′)

Up(x, qy,p(x; θ′), θ′)

)︃
dx

< 0 if x > y and > 0 if x < y.

Lemma 16. −Ux(x, p, θ)
Up(x, p, θ)

> cx(x, θ)

Proof. We have

1

1 + 1−θ
θ

· u′(w−p)
u′(w−p−(1−x))

=
θ

θ + (1− θ) · u′(w−p)
u′(w−p−(1−x))

> θ = cx(x(θ), θ)

since u′(w−p)
u′(w−p−(1−x)) < 1.
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3.2.2 Equilibrium

The Pareto-dominant, zero-profit separating equilibrium consists of an allocation x

and a price p which solve the initial value problems15

x′ = x · θu′(w − 1− κ+ (1− θ)x) + (1− θ)u′(w − θx)

θ(1− θ) [u′(w − 1− κ+ (1− θ)x)− u′(w − θx)]
=: g(θ, x) x(θ) = 1 (3.1)

p′ =
(p− κ)/x

(p− κ)/x+ (1− (p− κ)/x) ·
(︂

u′(w−p)
u′(w−p−(1−x))

)︂ =: h(x, p) p(1) = c(1, θ) = θ + κ

(3.2)

These ODEs are derived from (Mailath and Von Thadden 2013)

x′(θ) = −Up(x(θ), c(x(θ), θ), θ)
Ux(x(θ), c(x(θ), θ), θ)

· dc(x(θ), θ)
dθ

= − cθ(x(θ), θ)
Ux(x(θ),c(x(θ),θ),θ)
Up(x(θ),c(x(θ),θ),θ)

+ cx(x(θ), θ)

p′(x) = −Ux(x, p(x), (p(x)− κ)/x)

Up(x, p(x), (p(x)− κ)/x)

where θ = p(x)−κ
x

iff c(x, θ) = p(x); these in turn can be derived from the zero-profit

condition and the first-order condition necessary for incentive compatibility:

p(x(θ)) = c(x(θ), θ)

dU(x(t), p(x(t)), θ)

dt

⃓⃓⃓⃓
t=θ

= Ux(x(θ), p(x(θ)), θ) · x′(θ)

+ Up(x(θ), p(x(θ)), θ) · p′(x(θ)) · x′(θ) = 0.

The Pareto-dominant, zero-profit separating equilibrium is also a reactive equilib-

rium (Riley 1979; Engers and Fernandez 1987); loosely speaking, for any profitable

attempt at cream skimming the market, there exists a market reaction which ren-

ders the attempt unprofitable. We refer to this equilibrium as the Riley equilibrium,

15. I will use x (the variable) to denote an arbitrary contract with coverage x ∈ X, and x : Θ → X
(the function) to denote an allocation. The context will clarify which is which.
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which the following statements concern.

Proposition 17. x′(θ) =: g(θ, x(θ)), x(θ) = 1 has a unique solution on Dx =

{(θ, x) : θ ∈ (0, θ + ε), x ∈ (−ε, 1 + ε)}, for a sufficiently small ε. Likewise,

p′(x) =: h(x, p(x)), p(1) = θ has a unique solution on Dp = {(x, p) : x ∈ (0, 1+ε), p ∈
(κ− ε, κ+ x)}, for a sufficiently small ε.

Proposition 18. Setting x(0) = 0, x is a (continuous, strictly increasing) bijection

from Θ to [0, 1]; for each θ, there is a unique x for which p(x) = c(x, θ),

Proposition 19. The equilibrium is incentive-compatible (IC).

Proposition 20. As the support of the distribution approaches [0, 1] (that is, as

θ → 1), the Riley price function approaches x ↦→ x+ κ uniformly.

Corollary 20.1. Let θn ↑ 1, and let (xn, pn) be the associated Riley equilibrium. For

any fixed θ < 1, xn(θ) → 0.

Proposition 17 states that the equilibrium is unique. Proposition 18 points out

the possibly surprising fact that, regardless of what θ is, limθ→0 x(θ) = 0; id est, not

only is there unraveling along the intensive margin, but types are ‘spread out’ over

whole of X = [0, 1]. Corollary 20.1 is the Riley analog of the necessary condition in

Hendren (2013), which in Azevedo and Gottlieb (2017) is sufficient.

There are many ways to understand this result, and I see it this way: the Riley

price must be a) zero-profit and b) IC. a) implies p(x(θ)) = c(x(θ), θ), and b) implies

qx(θ),p(x(θ))(x; θ) ≤ p(x). Unfortunately, the indifference curve of θ = 1 is exactly its

cost curve; thus if θ = 1 , then p(x) ≥ c(x, 1) = x + κ. A closely aligned strand of

reasoning is that in Riley equilibrium—and in the D1 equilibrium considered in the

next section—pools are unstable because of cream skimming, so the market must

separate the types; but as θn ↑ 1, it becomes harder and harder to do that, and when

θ = 1, it becomes impossible to separate.
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3.3 D1 Equilibrium

In effect, the above described model is a signaling game in which the buyer sends

signal x, the seller with belief µ responds mechanically with p(x) = Et∼µ(x,·)[c(x, t)],

leaving the buyer with utility U(x, p(x), θ). That motivates the following definition

analogous to a Perfect Bayesian Equilibrium.

Definition 5. (x, µ) is an equilibrium if:

1. µ is a regular conditional distribution (RCD) of θ given x◦θ; that is, µ satisfies

Bayes’ Rule

2. x(θ) ∈ argmaxy∈X U(y, Et∼µ(y,·)[c(y, t)], θ) for all θ ∈ Θ; that is, x is IC

From this we simply define the distribution and conditional expectations as

F (θ|x) = µ(x, ·)

E[f(x, θ)|x] =
∫︂
µ(x, dθ) f(x, θ)

for any measurable function f .

Definition 6. (x, µ) satisfies the D1 criterion if for all y ∈ X\x(Θ), µ(y, ·) satisfies
the following: if θ′, θ′′ satisfies

U(y, p, θ′) ≥ U(x(θ′), E[c(x(θ′), t)|x(θ′)], θ′)

=⇒ U(y, p, θ′′) > U(x(θ′′), E[c(x(θ′′), t)|x(θ′′)], θ′′)
(3.3)

for all p, then θ′ ̸∈ supp F (θ|y).

In lay terms, this is to say that when formulating beliefs about who might have

deviated to an off-the-equilibrium action y, θ′ is eliminated if there is a type θ′′ which

satisfies the following: for any (y, p) which θ′ weakly prefers to its equilibrium action,

θ′′ strictly prefers (y, p) to its equilibrium action.

The D1 equilibrium typically aligns with the Riley (1979) and AG equilibria.

However, neither model permits a discontinuous cost function, which we turn to.
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3.4 Adding the Extensive Margin

All assumptions in section 3.2.1 are maintained except we augment the cost to include

a fixed cost κ ≥ 0 whenever positive coverage is provided:

c(x, θ) = xθ + κ1x>0.

In this sense, the “null contract” x = 0 for which c(x, θ) = 0 for all θ constitutes an

extensive margin, that is, “not buying” is the same as “buying nothing for the price

of nothing.” Thus, in this model, IC implies individual rationality.

The Riley allocation xr is the reactive equilibrium in the event that there is no

extensive margin (that is, choosing x = 0 at p = 0 is not an option), as defined in

the preceding sections. We denote the associated Riley price function pr and Riley

allocation xr. Under the following assumption, the succeeding propositions show

that the unique D1 equilibrium involves high risk types being allocated to xr.

Assumption 5. U(1, θ+ κ, θ) > U(0, 0, θ); the riskiest type prefers paying an actu-

arially fair price for full insurance to no insurance at all.

Proposition 21. Given assumption 5, there is a unique θ for which

U(xr(θ), pr(xr(θ)), θ) = U(0, 0, θ).

Denoting this type as θ̂, all types > θ̂ strictly prefer the Riley allocation over the null

allocation given actuarially fair prices, and the reverse is true for types < θ̂.

Proposition 22. Let x be an allocation satisfying

x(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (0 ≤ θ < θ̂)

0 or xr(θ) (θ = θ̂)

xr(θ) (θ̂ < θ ≤ θ)

and let µ : X × BΘ → [0, 1] be a regular conditional distribution of θ given x ◦ θ
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where, for each off-equilibrium y ∈ X\x(Θ), µ(y, A) = 1θ̂∈A. Given assumption 5,

(x, µ) is a D1 equilibrium.

Definition 7. y is a pool of (x, µ) if y ∈ x(Θ) and µ(y, ·) is not a degenerate

distribution.

Proposition 23. If U(1, θ + κ, θ) > U(0, 0, θ), i.e. assumption 5 is satisfied, there

are no D1 equilibria except the one described in proposition 22. If U(1, θ + κ, θ) <

U(0, 0, θ) (resp. ≤), then all types (resp. all but possibly θ) pool at 0 in D1 equilib-

rium.

The results and their proofs are standard for D1 equilibria under single crossing

preferences. Namely, any off-the-equilibrium path contract purchased with coverage

less than a nearby pool should be assigned almost surely to the infimum of the types

in the pool, and any contract greater than the nearby pool should be assigned to the

supremum.

3.5 Concluding Remarks

Because of the distribution-free nature of least-cost separating equilibria, a type space

(where types are defined by their probability of loss) with a large upper bound θ can

result in significant Rothschild-Stiglitz-style unraveling, such that small frictions can

lead to the non-existence of the market. For a model where said friction is a fixed

cost, this chapter has arrived at a simple condition for no-trade in D1 equilibrium:

U(1, θ + κ, θ) < U(0, 0, θ).

3.6 Chapter Appendix: Omitted Proofs

Proof of proposition 17. u′ is C1 on an open set containing [w − 1− κ,w], so g(θ, ·)
is composed of C1 functions on (−ε, 1 + ε) for sufficiently small ε for any fixed

θ ∈ (0, θ+ε), which implies g is locally Lipschitz in x.16 Likewise, h(x, ·) is composed

16. In particular, for fixed θ, the u′ terms in the numerator are C1 so denote the numerator
a(x) ∈ C1. The ones in the denominator are also C1, and the denominator is bounded below by a
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of C1 functions on (−ε, x) for any fixed x ∈ (0, 1 + ε). The result follows from the

Picard–Lindelöf theorem (Hale 1980).

Proof of proposition 18. By construction, x is strictly increasing on its interval of

existence. Plugging in y(θ) = 0 shows that y′(θ) = g(θ, y(θ)). By uniqueness on Dx,

x(θ) > 0 for all θ > 0; that is, there does not exist θ > 0 for which x(θ) = 0, this

shows its maximal interval of existence on Dx includes Θ.

By inspection of g, it can be seen that x is thereby strictly monotonic for θ ∈
(0, θ]. Similar to before, q(x) = κ solves qx(x) = h(x, q(x)), therefore, p(x) > κ

whenever x ∈ (0, 1]. Assume for contradiction that limθ→0 x(θ) = c ∈ (0, 1]. This

implies limθ→0 p(x(θ)) = p(c) > κ. However, limθ→0 c(x(θ), θ) = limθ→0 θx(θ) + κ =

κ, and a contradiction is drawn. It follows limθ→0 x(θ) = 0, and it is continuous to

define x(0) as such.

Proof of proposition 19. The utility difference to θ between x(θ) and another con-

tract x(θ̂) is

U(x(θ), p(x(θ)), θ)− U(x(θ̂), p(x(θ̂)), θ)

=

∫︂ θ

θ̂

dU(x(t), p(x(t)), θ)

dt
dt

=

∫︂ θ

θ̂

Ux(x(t), p(x(t)), θ) · x′(t) + Up(x(t), p(x(t)), θ) · p′(x(t)) · x′(t) dt

=

∫︂ θ

θ̂

x′(t) [Ux(x(t), p(x(t)), θ) + Up(x(t), p(x(t)), θ) · p′(x(t))] dt

=

∫︂ θ

θ̂

x′(t)

[︃
Ux(x(t), p(x(t)), θ)− Up(x(t), p(x(t)), θ) ·

Ux(x(t), p(x(t)), t)

Up(x(t), p(x(t)), t)

]︃
dt.

x′ is always positive. The single-crossing condition implies the rest of the integrand

is positive iff θ > θ̂ and negative iff θ < θ̂, which ensures the definite integral is

positive. Ergo, x(θ) is an optimal strategy for θ.

number > 0, so denote the denominator as b(x) ∈ C1 with inf b > 0. a(x)/b(x) is thus C1.
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Proof of proposition 20. Clearly, on [0, 1], p(x) = x+ κ uniquely solves the IVP

p′(x) = h(x, p(x)) p(1) = 1 + κ

Let {θn} ⊂ (0, 1) be a sequence increasing to 1. Let pn solve

p′n(x) = h(x, pn(x)) pn(1) = c(1, θn) = θn + κ

θn → 1 implies c(1, θn) → 1+κ. Thus, pn converges uniformly to the function which

solves

ϕ′(x) = h(x, ϕ(x)) ϕ(1) = 1 + κ

(Teschl 2012, Theorem 2.8). Ergo, pn(x) → p(x) = x+ κ uniformly.

Proof of corollary 20.1. Fix θ < 1. Assume for contradiction that there is ε > 0

such that xn(θ) > ε for infinitely many n. By assumption, pn(xn(θ)) = c(xn(θ), θ) =

θxn(θ)+κ. Consequently, there are infinitely many n for which xn(θ)+κ−pn(xn(θ)) =
xn(θ) + κ − θxn(θ) − κ = (1 − θ)xn(θ) > (1 − θ)ε. Ergo, pn(x) does not converge

uniformly to x+ κ.

Proof of proposition 21. The difference in utility between the Riley allocation and

the null allocation for type θ is

δ(θ) = U(xr(θ), θxr(θ) + κ, θ)− U(0, 0, θ)

By assumption 5, δ(θ) > 0, and since xr(0) = 0, we also see that δ(0) < 0; so since δ

is continuous, by the Intermediate Value Theorem, there exists at least one θ̂ ∈ (0, θ)

where δ(θ̂) = 0.

I now show that θ̂ is unique by showing that δ(t) < 0 if t < θ̂ and δ(t) > 0 if
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t > θ̂. Let x̂ = x(θ̂) and p̂ = p(x(θ̂)). The indifference curve qx̂,p̂(x; θ) solves

qx̂,p̂(x; θ) = p̂+

∫︂ x

x̂

−Ux(y, q
x̂,p̂(y; θ), θ)

Up(y, qx̂,p̂(y; θ), θ)
dy

Let t > θ̂. Single-crossing (see lemma 15) implies qx̂,p̂(x; t) < qx̂,p̂(x; θ̂) whenever

x < x̂, so there exists x∗ > 0 for which qx̂,p̂(x∗; t) = qx̂,p̂(0; θ̂) = 0, thus we have

U(0, 0, t) < U(x∗, 0, t) = U(x̂, p̂, t) ≤ U(xr(t), pr(xr(t)), t)

where the latter inequality follows by IC, as needed. Now, let t < θ̂. By IC,

qx̂,p̂(x; θ̂) ≤ pr(x). By single-crossing, q0,0(x; t) < q0,0(x; θ̂) = qx̂,p̂(x; θ̂) ≤ pr(x)

for x > 0, and therefore,

U(xr(t), pr(xr(t)), t) > U(x(t), q0,0(x(t); t), t) = U(0, 0, t)

as needed.

Proof of proposition 22. (x, µ) is IC by proposition 21. By construction, for y ∈
X\x(Θ), supp F (θ|y) = {θ̂}. Lastly, we need to check that the implication eq. (3.3)

is never satisfied for θ̂. Let θ′′ be some other type and let y ∈ X\x(Θ). Let q once

again denote the indifference curve. By definition

U(y, qx(θ̂),c(x(θ̂),θ̂)(y; θ̂), θ̂) ≥ U(x(θ̂), c(x(θ̂), θ̂), θ̂)

By single-crossing, if θ′′ < θ̂, then q0,0(y, θ′′)) < q0,0(y, θ̂)), so

U(0, 0, θ′′) > U(y, qx(θ̂),c(x(θ̂),θ̂)(y; θ̂), θ′′)
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Conversely, if θ′′ > θ̂, θ′′ then, by IC and single-crossing,

U(xr(θ
′′), c(xr(θ

′′), θ′′), θ′′) ≥ U(xr(θ̂), c(xr(θ̂), θ̂), θ
′′)

= U(y, qxr(θ̂),c(xr(θ̂),θ̂)(y, θ′′), θ′′)

> U(y, qxr(θ̂),c(xr(θ̂),θ̂)(y, θ̂), θ′′)

as needed.

Lemma 24. If (x, µ) is IC and y ∈ X is a pool then x−1(y) is an interval of Θ.

Proof. Let y be a pool and let θ < θ′ < θ′′. By single-crossing,

max{qy,p(y)(x; θ), qy,p(y)(x; θ′′)} > qy,p(y)(x; θ′)

for all x ̸= y. So anything θ′ weakly prefers to y is strongly preferred by either θ or

θ′′.

Lemma 25. If (x, µ) is IC then x is increasing. It is constant on pooling intervals

(obviously) and strictly increasing on separating intervals.

Proof. Suppose for contradiction that x was not strictly decreasing on a separating

interval T . Since x is not pooling on T , this implies there is θ′, θ′′ for which θ′ > θ′′ but

x(θ′) < x(θ′′). For x > x(θ′), qx(θ
′),c(x(θ′),θ′)(x; θ′) > c(x, θ′) by lemma 16; therefore,

qx(θ
′),c(x(θ′),θ′)(x(θ′′); θ′) > c(x(θ′′), θ′) > c(x(θ′′), θ′′)

which implies U(x(θ′), c(x(θ′), θ′), θ′) < U(x(θ′′), c(x(θ′′), θ′′), θ′); that is, θ′ prefers

x(θ′′), which contradicts IC.

Lemma 26. If (x, µ) is a D1 equilibrium then there is no pool y > 0.

Proof. Suppose for contradiction that there was a pool at y > 0, and let θ∗ =

inf x−1(y), θ∗ = supx−1(y). Several facts follow. First, by the single-crossing condi-

tion, if θ∗ does not choose y, then it must be indifferent between x(θ∗) and y, lest some
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type arbitrarily close would also strictly prefer x(θ∗). Second, because µ(y, ·) is non-
degenerate, there must be an interval (θ∗, θ̂) ⊂ x−1(y) for whom c(y, θ) is less than

p(y) = E[c(y, t)|t ∈ x−1(y)]. Third, the interval I = {x < y : qy,p(y)(x; θ∗) > c(x, θ∗)}
where the indifference curve of θ∗ passes over its cost curve must contain contracts

which are out-of-equilibrium. Assume for contradiction x(θ) ∈ I. If θ > θ∗, then

p(x) ≥ c(x, θ∗), in which case by single-crossing, θ would strictly prefer y to x. If

θ < θ∗, then p(x) ≤ c(x, θ∗), and by definition of I, θ∗ would strictly prefer x to y.

In D1, for all x ∈ I, µ(x,A) = 1θ∗∈A (the Dirac measure for θ∗). But then

x(θ∗) is not IC, because c(·, θ∗) < qy,p(y)(x; θ∗) on I, so θ∗ would be better off going

off-the-equilibrium.

Proof of proposition 23. x is not separating since some type θ arbitrarily close to 0

would strictly prefer (0, 0) to (x(θ), c(x(θ), θ)). Any semi-separating/pooling equilib-

rium pools only at 0. Mailath and Von Thadden (2013, Theorem 3) implies that on

the separating portion of any semi-separating equilibrium, x = xr. By proposition 21,

the semi-separating interval is either (θ̂, 1] or [θ̂, 1], for a unique θ̂. This concludes

the proof that x must be as in proposition 22, given assumption 5. As for beliefs,

the D1 criterion and single-crossing jointly imply µ(y, A) = 1θ̂∈A for y ∈ X\x(Θ).

Trivially, if U(1, θ + κ, θ) = U(0, 0, θ), then θ̂ = θ, and if U(1, θ + κ, θ) < U(0, 0, θ),

then q0,0(x; θ) < pr(x)—no part of the Riley allocation is IC and a pool forms at

0.

38



Chapter 4

Dynamic Stochastic Selection

Markets and the Implications of

Inattention

4.1 Introduction

The empirical literature on consumer choice in selection markets has burgeoned in

the last few decades,17 the implications of which motivate, and provide the basis for,

new theoretical developments. Case in point, classical selection market models tend

to assume one dimension of private information, so when empirical evidence sug-

gested the importance of multiple dimensions (Finkelstein and McGarry 2006), this

motivated the development of selection models with multidimensional types (Veiga

and Weyl 2016; Azevedo and Gottlieb 2017). Though these models do not supplant

classical intuition (Friedman 1962; Akerlof 1970; Rothschild and Stiglitz 1976), they

do complement it by allowing us to understand where different assumptions lead,

and to square observations in the real world with the model world.

17. Recent handbook chapters include: Chandra, Handel, and Schwartzstein (2019), Einav,
Finkelstein, and Mahoney (2021), and Handel and Ho (2021)
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To wit, this chapter aims to provide a tractable approach to incorporating choice

frictions in a dynamic setting, and bridge the gap between existing models and three

important stylized facts about selection markets:

1. Agents change decisions slowly over time (e.g. Handel (2013)), while classical

models focus on static equilibria

2. Agents make inconsistent choices (e.g. Abaluck and Gruber (2011)), while clas-

sical models assume consumers optimize in equilibrium

3. Some markets exist and some markets don’t (e.g. Hendren (2017)), but markets

display little of their predicted fragility18

Beyond explanation, a secondary motivation which informs the construction of the

model presented herein is to make substantive predictions. Empirical work in selec-

tion markets demonstrate that statements about them are often context dependent:

better information could lead to better health plan choices, but it could also lead to

greater unraveling, so the welfare effect could go either way. A tractable computa-

tional model could be a useful tool for informing policy in such a setting.

This chapter provides two contributions: first, I set out a selection market frame-

work which allows for i) a time dimension, ii) micro-founded stochastic choices, and

iii) multiple dimensions of information and contracts, including moral hazard; a dy-

namic informational stochastic equilibrium (DISE), for short. Second, I present the

linear logit model—the simplest model within this framework capable of capturing

choice frictions; I use the model to isolate the implications of rational inattention in

active choices in selection markets.19

18. I am referring here to the persistent critique of models of both strategic interactions (Cho
and Kreps 1987; Banks and Sobel 1987) and markets (Riley 1979; Azevedo and Gottlieb 2017)
which imply least-cost separation where possible: that an arbitrarily small changes to the model
parameters can cause significant changes in the predicted equilibrium.
19. Passive choice refers to whether to re-consider one’s action, active choice refers to what action

to take next.
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Despite its simplicity, the benchmark model elicits some surprising implications

when compared beside classical results. First, it reproduces the familiar Riley out-

come found in signaling (Cho and Kreps 1987; Banks and Sobel 1987) and selection

markets (Handel, Hendel, and Whinston 2015; Azevedo and Gottlieb 2017), only

with added noise. Second, using a single attention parameter β ∈ [0,∞] which can

be interpreted as the inverse of an information cost, we show that the unstable the-

oretical nature of Riley outcomes—whereby a small change in the type distribution

can cause large market changes—is reliably reproduced only when β is large. That

is, the noise added by β can collapse least-cost separations into pools. Intuitively, if

good types vastly outnumber bad types, and some proportion of the good types fail

to separate even when incentivized, that small group of good types may still swamp

the bad types, thus reducing the incentive to separate; as the incentive to separate

gets smaller and smaller, this collapses the separation towards a pool. Third, along

similar lines, I show that welfare can be but is not necessarily improved by allowing

agents to make better choices; intuitively, agents can gain by either improving their

individual choices or minimizing costly separation, sometimes creating a tradeoff

in β. Lastly, following Azevedo and Gottlieb (2017), I calibrate a health insurance

model with 26 evenly-spaced contracts and 96,000 types to the parameter estimates

of Einav et al. (2013).

4.2 Background and Related Literature

Theory of adverse selection markets.20 Two seminal contributions form the starting

point for analyzing selection markets: Akerlof (1970, hereafter, Lemons) and Roth-

schild and Stiglitz (1976, hereafter, RS). Lemons describes a market with a fixed

contract space. With two contracts with coverage {L,H} ⊂ [0, 1], the first-best

world has everyone buy high coverage H, but in the adverse selection world, only the

most risky—so-called “lemons”—buy H because they have the highest willingness

to pay, thus inflating its price and deflating quantity traded to suboptimal levels.

20. A more comprehensive up-to-date overview of both theory and empirics can be found in Einav,
Finkelstein, and Mahoney (2021).
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H is said to unravel. The case with more contracts is more complicated, but the

suboptimality holds. In the limit, with an interval of contracts, we get an RS model

in which insurers can choose what contracts in [0, 1] to offer. RS argues that in such

a market, no Nash equilibrium exists. Indeed under some model specifications, any

potential equilibrium could be disturbed by offering slightly different coverage at a

price which attracts the right types.21

RS is typically presented as a screening game in which the uninformed players

move first (by offering contracts), and informed players move second. A parallel

literature on signaling games—in which informed agents move first—began with the

seminal work of Spence (1973), who proposed that non-lemons could take costly

actions which lemons find more costly in order to “separate.” Equilibria in Spen-

cian games—consisting of signals from the informed and (Bayesian) beliefs of the

uninformed—came later to be formalized as Perfect Bayesian Equilibria (PBE).22 In

insurance, the costly action which separates low risk types would be buying a lower

coverage contract. The problem with signaling is, however, that rather than too few

equilibria (as in RS), there are infinitely many PBE.

While the distinction between signaling and screening is important in strategic

settings (i.e. games), it is less so when considering markets where thousands of un-

informed and informed agents move every period, with prices constantly reinforcing

beliefs and vice versa. What’s more important is choosing an equilibrium concept

(ideally, yielding > 0 and <∞ equilibria). In endogenous contracts and in signaling,

one equilibrium outcome has proven influential—the least-cost separating equilib-

rium, better known as the Riley outcome—which Riley (1979) showed coincides with

the reactive equilibrium, consisting of a price function over signals where any attempt

at cream skimming could be met by a profitable reaction by the market which renders

the skim unprofitable. Later, equally influential work in belief-based refinements of

21. Hendren (2014) contrasted the two thusly: Lemons describes an “equilibrium of market un-
raveling” and RS describes an “unraveling of market equilibrium.”
22. Fudenberg and Tirole (1991) say the first use of PBE was in Milgrom and Roberts (1982)
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games, which restricted the set of plausible PBE by eliminating certain beliefs, also

pointed towards a Riley outcome (Cho and Kreps 1987; Banks and Sobel 1987); as

has recent work introducing a price-taking equilibrium concept for selection markets

which allows for multidimensional type and contract spaces (Azevedo and Gottlieb

2017, hereafter, AG). The Riley outcome, however, suffers from a lasting weakness:

namely, that the outcome depends only on the support of the type distribution, and

not the distribution itself. One consequence is that good types separate from bad

types regardless of how few bad types there are, as long as it is not zero.23 Some

recent empirical work also use distribution-free results: Hendren (2013) and Hendren

(2017) are based partly off the premise that a necessary condition for market collapse

is that the support contains a very risky type.

This chapter differs from all the above mentioned work on two fronts. One, pre-

vious work focused on static equilibria (or lack thereof), while this work focuses on

dynamics. Second, previous work assumed agents made utility-maximizing choices of

contracts, whereas I assume stochastic choice micro-founded by rational inattention.

Both prove crucial in the results to come.

Stickiness and inattention. This work contributes to a rich economic literature em-

phasizing stickiness and inattention as crucial choice frictions. However, the lit-

erature on which our models are based has concerned not selection markets, but

price-setting behaviour in macroeconomics. After the sticky markets of the neo-

classical synthesis (Keynes 1936; Hicks 1937) gave way to micro-founded models,

stickiness re-emerged in the form of New Keynesian models which have come to

23. This has been pointed out by AG and by Mailath, Okuno-Fujiwara, and Postlewaite (1993).
The latter offers an alternative equilibrium concept, the undefeated equilibrium (UE), in which high
productivity workers do not separate from low productivity workers if the separating PBE is worse
for them than the pooling PBE. This happens when the low productivity workers are sufficiently
few in number that wages for high type workers would not be sufficiently depressed to warrant
separating. This is an important alternative to Riley outcomes in signaling games, but in a market
in which workers enter and take wage scales as given, there does not appear to be a mechanism
by which a separating equilibrium would collapse to a pool (or vice versa) were the distribution of
types to shift from one conducive to a pooling UE versus one conducive to a separating UE.
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dominate macroeconomics. The seminal contribution of Calvo (1983) considered a

simple model where firms had some probability each period to be able to reset prices.

This proved surprisingly effective for as simple a model as it was; nonetheless, sto-

ries still differed on why prices were sticky. It was in this context that a research

agenda focusing on rational inattention came to be (Sims 1998, 2003). An important

contribution has been Matějka and McKay (2015), who connected the multinomial

logit stochastic choice model—a tractable model commonly used in discrete choice

econometrics—to rational inattention. For its part, this chapter studies the effects

of similar choice frictions on selection markets, focusing on the most simple case in

which agents move on from old decisions at an exogenous rate (as in the Calvo model)

and make new choices via multinomial logit (as in the Matějka-McKay model). But

similar to the conservative interpretations that much of the rational inattention lit-

erature takes on the topic, I would interpret the model herein to be an as-if model,

rather than how agents really act.24

Related work. Two recent empirical works have leveraged the Matějka-McKay model

as a microfoundation for a logit choice model of selection markets: Brown and Jeon

(2023) and the job market paper of Boehm (2024). I am not aware, however, of any

similar work of a primarily theoretical nature.

4.3 Theoretical Framework

4.3.1 Basic Setup

The goal of this section is not to set out a functional model per se, but to outline

the key desiderata of dynamic informational stochastic equilibria—DISE25—without

necessarily incorporating selection.

24. For example, in insurance, this chapter models a world where it is as-if a certain percentage
of people move on from their old contracts each year and were rationally inattentive in picking new
ones.
25. unfortunately, leaving out ‘stochastic’ makes the acronym needlessly morbid
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Setting. The model is set in discrete time. There is a finite contract space26 X, two

finite type spaces Θ1 ∪ Θ2 = Θ representing the private information held on either

side of the market (termed “buyers” and “sellers”). To each type θ ∈ Θ is a prior

probability µ(X, θ) defining the mass of each type over their respective spaces. The

total mass of buyers µ(X,Θ1) is normalized to one.

Outflows and Inflows. To each type θ, contract x, and time t ∈ N is a correspond-

ing mass µt(x, θ). In a fixed types model,
∑︁

x µ
t(x, θ) = µt(X, θ) is constant over

all t for any fixed θ; when there is no confusion, the time index is dropped. At

each time, to each (x, θ), there is an outflow νt(x, θ) and an inflow ιt(x, θ) such that

µt+1 − µt = ιt − νt. Of course, for any θ, total inflow and outflow must equate:

ι(X, θ) = ν(X, θ).

Pricing mechanism. There is a specified means by which prices in t are set based on

the state variables and choices made at t − 1, including for contracts which are not

traded.

Preferences. There exists a utility function U(x, p, θ) which is strictly monotonic in p.

Stochastic choices. ι > 0 for all (x, θ) and ν > 0 whenever µ > 0. This is to say that

θ has a positive, however small, probability of choosing/leaving any given contract

x. Ideally, ι, ν ≪ 1. The outflow and/or the inflow should be strictly monotonic

in U ; that is, types should be more likely to flow away from contracts they do not

prefer and/or or towards contracts they do prefer.

Equilibrium. If it exists, an inflow-outflow equilibrium or “steady-state” is achieved

when outflows equal inflows for almost every (x, θ).

Model flexibility. The framework leaves a lot of room for modeling decisions. In

particular, choice frictions can be incorporated into the outflows and inflows, with

26. or signal space, action space, etc.
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the outflows typically capturing the “passive” choice frictions and inflows capturing

the “active” choice frictions.

There is some flexibility in how the model sets its prices, but each model typically

restricts the set of possible price setting mechanisms. A search-and-matching model,

for example, typically specifies how surplus is split. Models with one-sided informa-

tion asymmetry typically require a mechanism specifying how the uninformed side

of the market might use the contract space (provided it is sufficiently large) to cream

skim the informed side.

Intuitively, one of the things that makes this model work in practice is that not

everybody moves at once. “If everyone were to move at once, what should each person

do?” is a much more difficult question than “If an infinitesimal mass of people were

to move conditional on no one else moving, what are some good moves?” because

the movement of the infinitesimal mass has no effect on the state of the market. As

we will see later, the stochastic nature of the flows are helpful in that equilibria tend

to be more stable when people make mistakes that are random on a micro-level but

predictable on a macro-level.

4.3.2 Linear Logit Model

In the benchmark model, only one side of the market moves and is privately informed,

termed the “agents.” The other side consists of arbitrarily many homogeneous, unin-

formed, risk-neutral, competitive firms that, in competition, make zero profit. Agents

come with a cost c or a value V , depending on their privately informed type and

chosen contract.

The outflow is linear in mass

ν(x, θ) = αµ(x, θ) (4.1)
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where α is a rate parameter, and the inflow

ι(x, θ) = ρ(x, θ) · ν(X, θ)

is given by the total outflow times a multinomial logit (better known in other fields

as softmax ) probability

ρ(x, θ) =
eβU(x,p(x),θ)∑︁
y∈X e

βU(y,p(y),θ)
(4.2)

where U(x, p, θ) is some utility function smooth in p and β ∈ [0,∞) is the attention

parameter.

In this chapter, I use AG price setting, which assumes that at every contract in

X, there exists a fixed η-mass of “crazy types”—types of minimum cost or maximum

value. η is an exogenous parameter, which we set by default to 10−8, so as to not

have any significant effect.

When considering informed buyers (e.g. insurance), we assume they have a cost

c(x, θ), dU/dp < 0, and the price of each contract is

p(x) =

[︃∫︂
c(x, θ) µ(x, dθ) + η ·min

θ
c(x, θ)

]︃
/(µ(x,Θ) + η)

Conversely, when considering informed sellers (e.g. job market), we assume they have

a value V (x, θ), dU/dp > 0, and their price is

p(x) =

[︃∫︂
V (x, θ) µ(x, dθ) + η ·max

θ
V (x, θ)

]︃
/(µ(x,Θ) + η)

4.3.3 Discussion

On the outflow. In linear logit, we completely abstract from passive choice to hone

in on the active choice. Contracts are staggered a la Calvo (1983): agents change
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their contract in any given period with a single exogenous probability α. In a model

where the underlying distribution of θ is fixed over time, this could model birth-

deaths, fixed-term contracts, and/or stochastic shocks to otherwise inertial agents,

in each case forcing a new contract decision.

One technical drawback of the linear logit is that even with no inflow, the mass

takes infinite time to fully decay (since µ′ = −αµ, µ(0) = 1 is solved by µ = e−αt).

Other functional form specifications can guarantee that µ decays in finite time. Fi-

nally, linear logit falls into a class of models where outflow depends only on mass,

meaning consumers are unaware of the emergence of particularly attractive options,

in contrast to endogenous outflow models.

On (price) myopia. Unlike macroeconomic models, agents in DISE models are my-

opic insofar as they make decisions conditioned only on today’s preferences. In

theory, if utility is separable in x and p, the consumer could incorporate the fact

that he is “stuck” with the contract terms (and the discounted utility flows arising

from x) for a stochastic period of time, as is commonly done in the standard New

Keynesian model, but nevertheless cannot forecast future changes in p. In many

market settings, consumer myopia with respect to price is a reasonable assumption.

Handel (2013), for example, argues in the context of health insurance:

...[prices] change as a function of factors that would be difficult for consumers

to model. For consumers to understand the evolution of prices they would

have to (i) have knowledge of the pricing model, (ii) have knowledge about who

will choose which plans, and (iii) have knowledge about other employees’ health.

Other types of economic models stipulate that one cannot “beat the market” by

predicting consistently, so myopia holds by construction. Moreover, myopia can be

a self-fulfilling mechanic of the market: myopia helps the model converge towards

stable prices, and if prices are stable, that justifies price myopia.

The one situation which may be harder to fit within a myopic price model is one
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in which prices can be expected, at least to go up or down. Those who choose to get

a petroleum engineering degree, for example, are probably cognizant that the price

of labour today does not reflect the price tomorrow. There are still ways to fold

this into the model; for instance, we could encode into the contract space X, that

by choosing to be a petroleum engineer, one must accept the disutility of certain

consumption smoothing realities.

On multinomial logit. Logit is a sensible choice for a stochastic choice function—at

least as a benchmark—for several reasons: i) it is transparent, analytically tractable,

and computationally efficient ii) it is already a workhorse model in econometrics and

iii) there has been a sizable literature on how logit can/cannot be justified (canon-

ical examples include Luce (1959) and McFadden (2001)). In particular, Matějka

and McKay (2015) showed that a weighted logit function arises when consumers are

rationally inattentive with a cost of Shannon information inversely proportional to

β. In their model, the weights are given by the prior probabilities, which helps the

model overcome the irrelevant alternatives (also known as “red bus, blue bus”) cri-

tique of Debreu (1960).27 Indeed, the model allows us to adjust for consumer biases

for particular contracts by adjusting their prior probability of choosing that contract

(for example, in insurance, there may be bias for zero coverage, maximum coverage,

or some ‘default’). For simulation purposes, we simply define a suitable contract

space X without close alternatives such that it is reasonable to assume a uniform

prior.

Another interpretation of stochastic choice which is more appropriate when X

represents a signal space is that signals are simply noisy. A law school applicant may

27. Debreu’s critique was that in logit models, the relative probability of taking a train vs. a red
bus is equal to exp(β(Utrain − Ured bus)), and it remains so when half the red busses are replaced
by blue ones. However, that cannot be, since the blue bus is a perfect substitute for the red
bus. Matějka and McKay showed that if the rationally inattentive agent has a prior probability
pi over all forms of transportation i ∈ T , the stochastic choice function becomes a weighted logit
pi exp(βUi)/

∑︁
j pj exp(βUj), so probability ratio becomes ptrain

pred bus
exp(β(Utrain − Ured bus)). When

the prior probability of red busses are cut in half by the blue busses, the probability of taking the
red bus halves. This weighting is equivalently thought of as shifting the utility by β−1 log pi.
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intend to score a 170 on the Law School Admission Test, but may end up scoring

166 or 174. This is actually one of the more concrete examples in signaling—when

signals are abstract messages open to interpretation by the market, it is difficult to

reason how choice wouldn’t be stochastic, given a rich enough set of choices. Though

there is not any reason per se why the stochastic choice function in this case would

need to be multinomial logit.

On price setting. In competitive market models, when a contract is traded, price is

equal to average cost. When the market is a selection market, however, the devil is

in the detail of how prices are set when contracts are untraded, and specifically, how

these shadow prices incentivize the unraveling of pools. Even more concretely, the

simulated market should know to set the shadow price of a lower coverage contract

low enough to incentivize good types to separate from bad.

The simplest mechanism involves setting the price of untraded contracts to the

best possible price (the minimum cost or the maximum value). Under the right

circumstances, this can draw away the types who would benefit from an inferior con-

tract being offered at a lower price, if such types exist, and leave others behind. The

untraded price holds for only one period, and may dissipate after trade occurs. This

process of price discovery can be interpreted as entrepreneurs experimenting with

the market by offering deals unprofitable in the short term, but after drawing away

the right clientele, is sustainable in the longer term.

One clunky aspect of linear outflow models is that masses never fully decay, so

we have to specify a condition under which a contract is considered “untraded”: say,

if µ(x,Θ) < ε for some ε > 0. To avoid erratic price setting behavior, one would

have to specify α ≪ ε ≪ 1
|X| ; this is in principle perfectly fine but in practice, the

number of simulations required for convergence (in the colloquial, imprecise sense)

is proportional to 1/α, meaning that such a price discovery procedure falls victim to

a curse of dimensionality.
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In simulations, however, nearly identical results are obtained by replacing the

above process with AG price setting. The intuition is that, instead of assuming

someone can cream skim by offering an untraded contract at the best price, we in-

stead cheat by assuming that these contracts which are almost wholly untraded by

regular types are nevertheless perpetually being traded at the best price to some tiny

mass of crazy types, a mass which can be set arbitrarily small so that its influence

on the nature of widely-traded contracts is imperceptible. AG price setting therefore

emulates cream skimming, but allows us to remove a clunky ‘moving part’ in the

model.

Framework flexibility. I would emphasize that the linear logit model is the simplest

model within this DISE inflow-outflow framework, and a lot can be modelled simply

by changing the nature of inflows and outflows. For example, perhaps passive choices

also depend on the state of the market, and agents are more likely to outflow if the

price of their contract becomes noticeably high compared to the market; there is

nothing in the framework precluding the endogenization of outflows as well.

4.4 Job Market Signaling

4.4.1 Setup

We use the linear logit model from above. The signal space x = 0, 0.1, 0.2, ..., 10.0

represents level of education. θ1 = 1, θ2 = 2, and θ3 = 3 each represent intrinsic

productivity. Education is unproductive, thus the parameters of the model are

V (x, θ) = θ U(x, p, θ) = p− x

2θ

4.4.2 Theory

When X = R and Θ consists only of two types, both the D1 Criterion (Banks and

Sobel 1987) and the Intuitive Criterion (Cho and Kreps 1987) eliminate all Perfect

Bayesian Equilibria except the least-cost separating equilibrium, known as the Ri-
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ley outcome (Riley 1979). In this setting, the Intuitive Criterion tends to be used

because it tends to be regarded as more—for the lack of a better word—intuitive.28

However, when Θ consists of three or more types, the Intuitive Criterion fails to elim-

inate all but the least-cost separating equilibrium, whereas the D1 Criterion does not

fail. We use a type space with three types precisely to show whether and when the

model converges to the D1 equilibrium, in part to provide a foundation for its usage.

To be specific, in the unique D1 equilibrium, all θ1 = 1 choose x = 0, all θ2 = 2

choose x = 2, and all θ3 = 3 choose x = 6. As shown in fig. 4.1, θ1 chooses the

smallest signal and receives wage θ1 = 1. θ2 chooses the least costly signal capable

of separating himself from θ1, by tracing along the indifference curve of θ1 until it

hits p = θ2 = 2. θ3 separates from θ2 analogously.

Figure 4.1: Riley outcome of Spence’s signaling model

28. In particular, Cho and Kreps cite a “speech” that the signaling party ostensibly gives to
convince the uninformed party not adopt unusual beliefs about off-equilibrium signals.
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The D1, Intuitive, and Riley equilibria have all been subject to criticism (and

even self-criticism, in the case of Azevedo and Gottlieb (2017), whose equilibrium

produces a D1 result) on the basis that the outcome they produce are distribution

free—that is, they depend only on the support of the distribution, and not on the

distribution itself. The same equilibrium is produced when P (θ = 1) = 1
2
as when

P (θ = 1) = 10−100. Mailath, Okuno-Fujiwara, and Postlewaite (1993) proposed

an alternative in which those who separate consider the Riley equilibrium to which

they would separate, and in particular, whether or not it “defeats” the pooling

equilibrium. But this implies pooling in a two-type signaling case whenever the low

type has probability < 1
2
, and this equilibrium seems more appropriate for strategic

interactions than markets. In a dynamic competitive market, it doesn’t seem clear

why high types couldn’t be gradually cream skimmed away from a pool even if they

made up 51% of the pool, or why a separating equilibrium would collapse.

4.4.3 Results and Discussion

The Equidistributed Model. Assume that µ(θ1) = µ(θ2) = µ(θ3) = 1/3. Unless

otherwise specified, I set α = 0.001, β = 50, the mass of AG behavioral types to

10−8, and set the mass of all types at time zero to be µt=0(0,Θ) = 1; that is, all

types start at no signaling.

The system settles at a D1 equilibrium, or at least distributionally close. Figure 4.2

shows the distribution of signals for β = 50 after 25,000 periods, starting with all

types choosing zero signal.29 It has three peaks, just north of x = 0, 2, 6, as D1

predicts. However, because choices are stochastic, there is some deviation from that

prediction. This deviation is larger for θ3 than for θ1. This makes sense from the

rational inattention standpoint (as well as from a noisy signaling standpoint), since

signaling is less expensive for θ3 and thus over-signaling is less costly.

Figure 4.3 illustrates the convergence of the unconditional probability of each sig-

29. Not shown: I tried a variety of starting points, all of which converged at the same result.
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Figure 4.2: The “Noisy D1” in the equidistributed model

Figure 4.3: Convergence in the equidistributed model
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nal µn(·,Θ) after n periods. We see that after roughly n = 104 periods, or 10× α−1,

the distribution has all but converged to the state shown in fig. 4.2.30

Note that this convergence is not achieved if α is not sufficiently small and β

is very large—instead, the system can behave chaotically. This is a natural con-

sequence of inertia: if everyone were to move at once, then the optimal move in

period n could become quite suboptimal by n + 1. So while it seems like inertia is

an additional assumption added to the model, it actually alleviates us from making

stringent assumptions about how these agents would behave strategically were they

to act all at once.

As β ↓ 0, pooling becomes more pronounced, as fig. 4.4 shows. When β = 20, the re-

spective types are still largely separated. When β drops to 12, we still get a trimodal

distribution, but one where there is significant “cross-subsidization” between θ2 and

θ3. Lowering β even further to 4, we obtain a bimodal distribution, with a local max

in the middle of the signal space where marginals of θ2 and θ3 have converged to form

a single peak, as the marginals show in fig. 4.5. Conversely, as β ↑ ∞, there is less

and less “noise” around the signals as more and more agents choose their D1 strategy.

Changing the distribution. I now turn to how the linear logit model deals with

the canonical critique of Riley-like outcomes: namely, their distribution-freeness.

Riley-like outcomes predict that, in this signaling model, there should be least-cost

separation between the three different types, regardless of the proportion of each

type, provided it is non-zero. A specific criticism is that it implies, regardless of how

many θ1’s there are, θ2 separates from θ1 (and likewise, θ3 separates from θ2).

30. When discussing simulations I use convergence colloquially here to mean that the distribution
does not move discernibly after many periods; convergence (say in the sense of weak convergence
of measures) is not proven, and as I discuss, for large α and β does not occur. Indeed, for general
linear logit, one can construct simple counterexamples where the inferior type constantly tries to
mimic the superior type, and the superior type constantly tries to separate, creating a “chase”
through the contract space.
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To explore this in the linear logit model, I set µ(θ1) = 1/r and µ(θ2) = µ(θ3) =

(1 − 1/r)/2 for some r > 1. The other specifications remain unchanged from the

equidistributed model.

As shown in fig. 4.6, when θ1 types constitutes a relevant proportion of the popu-

lation, θ2 separates from θ1 after 200,000 periods. Otherwise, it does not. The cutoff

for “relevant” is somewhere in between 1/50 and 1/100.

What happens for some r in between 50 and 100 is that they converge to the

D1 state (θ2 separated from θ1), but very slowly, and slower for larger r. What is

shown in fig. 4.6 is that after 200,000 periods, the market with µ(θ1) = 1/89 is stuck

somewhere between the two equilibria. For some specifications of r, it may take

millions of periods to converge.

Given that we only care about the short-to-medium run, it is interesting to inter-

Figure 4.4: Limiting distributions as a function of β after 10,000 periods
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Figure 4.5: Marginal distributions for the case β = 4 after 25,000 periods

pret slow convergence as, in the short run, a “stable” state.31 This faux-equilibrium

is actually quite intriguing, because we have θ2 consistently choosing a signal between

0 and 2 (i.e. between its pooling signal and its D1 signal). The reason is that the 0

signal—because some θ2 (and a small amount of θ3 send it)—has an inflated wage

relative to the fair wage for θ1, so it takes a smaller signal for θ2 to separate, were

he to act optimally.

Equilibria derived from theories of strategic interaction can destabilize in decentral-

ized markets. I have briefly mentioned, to this point, that in the Spence signaling

model (though not generally), the limiting distribution tends to not depend on the

initial distribution.

But this leaves out a quite interesting story, which is how such an equilibrium

31. In the way that the Sun is pretty much constant in size throughout our lives, but will in
billions of years expand to engulf what remains of our cold, dead bones.
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Figure 4.6: Signal distribution given µ(θ1) after 200,000 periods. All but 1/89 have
converged.

is arrived. Figure 4.7 is particularly intriguing and illustrative. It shows that if we

start with a sharp D1 equilibrium, the market does not converge nicely to a noisy

D1. Rather, it collapses in on itself into a semi-separating equilibrium, with θ2’s

pooling with θ1’s. Then, over millions of periods, the market cream skims the pool,

slowly moving towards a separating equilibrium.

This is quite a clarifying example in that it highlights the difference between equi-

librium concepts in strategic interactions—as characterized by equilibria in which “no

one is better off deviating”—and de-centralized choices, even if only slightly stochas-

tic, made in a market.

The vast majority of insurance buyers, for example, do not know how many

people buy a particular contract, or what the least-cost separating equilibrium is,

or what that term even means. They just respond to price. In the signaling game,
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Figure 4.7: Convergence of the case µ(θ1) = 1/89 when the initial distribution is the D1
equilibrium

the belief and the price are intertwined, so people do not “deviate” because they

will be punished by the price. But in the DISE model, price is set by the movement

and location of the agents in signal space. What happens after we set the initial

condition at D1 is that θ2’s, in stochastically choosing some smaller signals, quickly

raise the average productivity associated with smaller signals. In doing so, they are

“discovering” that they can get high wages sending small signals—and thus have no

reason to send larger signals. It then takes time—in this case, a long time—for the

market to slowly cream skim θ2’s away from the θ1’s by offering higher wages for

higher signals.

4.4.4 Relationship to the Intuitive “Speeches”

One of the main critiques of D1 criterion and the Riley outcome at large is that

it is unintuitive, at least in comparison to the Intuitive Criterion. The results sug-

gest a new intuitive foundation for them: namely, that they represent what a stable
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inflow-outflow equilibrium looks like in the limit, and more specifically, in a market

where the uninformed side “experiments” with offering favourable prices on “off-the-

equilibrium” contracts as a means of cream-skimming.

Adding noise to D1 also strengthens the intuitiveness of the proposed outcome,

because another one of the critiques is that D1 puts too strong a condition on the

out-of-equilibrium beliefs: the uninformed side of the market, in the single cross-

ing case, assigns belief about out-of-equilibrium actions to only one player. In this

market-based approach, beliefs about contracts which are dominated for all players

(which one may term as “off-the-equilibrium”) are dictated by the empirical distribu-

tion of those who purchase it (except in the aforementioned “deals”), thus assigning

belief to multiple players in a rational, Bayesian way.

The results are also intuitive in another sense. Recall that the “intuition” in

Cho and Kreps (1987) is justified in part by the famed “speeches” that the informed

player can give to eliminate “unintuitive” beliefs that the uninformed player may

hold. The results also imply similar speeches that can be given in the market which,

rather than eliminating “unintuitive” off-the-equilibrium beliefs, do the much sim-

pler task of appealing to Bayesian plausibility (i.e. the “belief” of the “market” must

be in accord with the empirical distribution of signals).

Consider the three-type (with low, medium, high types) signaling game with the

following priors:

µ(θL) = 0

µ(θM) = ε

µ(θH) = 1− ε

for ε arbitrarily small. Once again, suppose productivity is given by V (θ) = θ and

the price of a contract (signal) is p(x) = E[V (θ)|x] given by the distribution of types

who buys the contract (sends the signal).
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The “intuitive” speeches, in this scenario, sound something like as follows. To

eliminate any belief which would require θM to send any signal higher than 0, θM

gives the following speech in justifying their action:

I am sending the signal 0, which ought to convince you that I am > θL. For I

would never (that is, with probability zero) both be θL and send signal 0, while

if I am > θL, and if sending this signal so convinces you, then, as you can see,

it is in my interest to send it.

To justify separating from a pool by sending a profitable signal xH , the least-

cost separating signal between θM and θH assuming θM sends 0, θH recites a similar

speech:

I am sending the signal xH , which ought to convince you that I am θH . For I

would never wish to send 0 if I was not θH , while if I am θH , and if sending

this signal so convinces you, then, as you can see, it is in my interest to send

it.

Thus, ruling out anM -H pooling equilibrium. A similar speech can also be made

to justify sending a less-costly separating signal, thus ruling out any separating equi-

librium except the least costly one.

Now compare this intuition with the market case. First, θM can choose signal 0

by making almost the exact same speech, but instead appealing to the fact that there

are no θL’s, thus it would be non-Bayesian for the market to assign the signal 0 to θL’s.

Because µ(θH) is arbitrarily close to 1, the competitive wage of a M -H pool

will be arbitrarily close to θH . With a sufficiently fine signal space, θH can indeed

make the speech and separate with a slightly higher signal; this changes the price

and can eventually unravel the pool. However, suppose that the signal space is

X = {x1, ..., xn} where 0 = x1 < · · · < xn.
32 The fact that X is finite (in the

32. for some sufficiently large x that the upper bound is not relevant in this analysis
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DISE model and in reality) renders the task, in practice, implausible, at least in the

short-and-medium term.

Consider a DISE model, except that there is one fully rational agent (me, without

loss of generality).33 First, consider the signals close to 0. For all x′ close to 0,

there will be some mass of θM ’s, but θH will massively outnumber them because of

stochastic choice. Thus,

p(0) is close to but less than p(x′) is close to but less than θH = V (θH)

for any x′ close to 0. Because the prices are so similar, there is almost zero incentive

for θM to choose a slightly lower signal, or θH to choose a slightly higher one. In the

rational inattention (logit) model with a uniform prior, the utilities being so similar

implies the inflows are too (that is, because agents are nearly indifferent between

signals, they basically choose at random). The speech of θH could sound something

like this

I am sending some signal x′ close to 0; regardless, you ought to assign a high

probability that I am θH , since there is enough randomness in the choices of θH

types that each signal near 0 is sent almost entirely by θH types.

Second, the discreteness of the signal X means that to separate, θH would need

to send the second smallest signal x2, which may not be worth it at all, thus render-

ing the pool stable. For example, if the signal space near 0 consists of only x1 = 0,

and the utility for θH of receiving wage V (θH) sending x2 is less than the utility of

receiving wage
∫︁
V dµ(θ) sending x1: in math, U(x2, θH , θH) < U(x1, Eθ, θH). The

speech might sound something like this:

33. this one fully rational agent merely exists to analyze what a fully rational person would do in
a world where most people act stochastically, and this person has zero mass
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I am sending the signal x1 = 0, which ought to convince you that I am probably

θH . For most people who send signal 0 are θH , and no θH would want to send x2

if the only incentive to do so is to go from convincing you that we’re probably

θH to convincing you that we’re certainly θH .

But it is not only difficult to separate; for the same reason, separation is also

easy to collapse. Consider an initial state which is the least-cost separating equi-

librium (θM chooses 0, θH chooses xH). At the initial state, the market’s “belief,”

dictated by the empirical distribution of signals, is that the signal 0 is sent by θM and

signal xH is sent by θH .
34 To justify sending 0, I could just make the following speech:

I am sending the signal 0, which ought to convince you that I am probably θH ,

and thus deserve a wage close to V (θH) = θH . For so many θH will choose the

signal 0 out of pure inattention in the next period that you will be forced raise

my wage anyway. From then on, all θH will be incentivized, and increasingly

so, to send the 0 signal instead of xH . If sending this signal convinces you,

then, as you can see, it is in my interest to send it.

4.5 Implications for Insurance Markets

4.5.1 Introduction: A “Model-Free” Analysis

Adverse selection causing a market to unravel provides a compelling rationale for

government intervention. Some have alleged the problem is overblown and lacks em-

pirical backing (Siegelman 2003), yet others have conjectured that the problem may

be ubiquitous but difficult to observe since, by definition, an unraveled market is not

there.

One recent empirical approach used to support the latter claim involves showing

empirically that the private information in a market satisfies a theoretically derived

34. The market model does not have “off-the-equilibrium” beliefs per se, but we can suppose it
entertains the D1 belief that [0, xH) is sent by θM and [xH ,∞] is sent by θH (on the other hand,
under the linear logit model, the market prices all off-the-equilibrium contracts at θH , implicitly
assigning all off the equilibrium contracts to θH)
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no-trade condition, and thus precludes the existence of a market. Hendren (2013,

2017) centre on the following proposition:

Proposition 27 (Hendren (2013)). Consider a model where types θ, drawn from

distribution F , face a next-period loss l from their next-period wealth w with proba-

bility θ. They each have a von Neumann-Morgenstern utility function u. The market

collapses – i.e. the only allocation which is resource feasible, individually rational,

and incentive compatible is one with no insurance – if and only if

u′(w − l)

u′(w)
≤ inf

τ∈ supp F\{1}

E[θ|θ ≥ τ ]

1− E[θ|θ ≥ τ ]

1− τ

τ
=: T (τ) (4.3)

Furthermore, this no-trade condition holds only if there are perpetually worse types

– that is, 1 ∈ supp F .

The clever part of the proposition is that it is “model free” (in that it does not

assume Akerlof-style fixed contracts or RS-style endogenous contracts). All it shows

that, under the no-trade condition, one of the following pre-requisites of a stable in-

surance market must fail: resource feasibility, incentive compatibility, and individual

rationality.

Hendren interprets the condition in detail in Hendren (2013). But basically,
E[θ|θ≥τ ]

1−E[θ|θ≥τ ] is the fair cost of providing a contract which insures τ , assuming that any

such contract will draw in all types θ ≥ τ , while u′(w−l)
u′(w)

τ
1−τ is the willingness to pay

of for an infinitesimal transfer of wealth from the event of a loss to the event of no

loss. That is, a market exists if and only if some type τ , who knows that all risks

worse than him will pool with him, is nevertheless willing to pay that price.

The results in the preceding section on the linear logit model suggest two effects

could induce trade even when the no-trade condition holds.

The first effect, I regard as trivial: the inflow into any contract in the contract

space is positive. This I do disregard as having little per se practical significance.
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For one, if the model suggests a mass of, say, 10−7, buying some contract, then

that could only be regarded as an artifact of the DISE model without substantive

economic relevance. But more importantly, in such a scenario, these types are not

willing to buy the contract, they are merely making mistakes.

The second effect, though – that stochastic choice lowers the average cost of the

contract with the riskiest pool – is significant, and may be compounded by the first.

Under perfect rationality, trade occurs only if for some type τ is willing to pay the

average cost when all types θ > τ pool with him, and all types θ < τ do not. But

with stochastic choice, some of the riskier types θ > τ will fail to buy into this pool

and some types θ < τ will accidentally buy into this pool. It follows that there are

pathological cases where τ would not be willing to buy the contract if all buyers were

rational, but would be willing provided sufficiently many agents made mistakes. I

investigate this concept further in the context of the Akerlof and Rothschild-Stiglitz

models.

4.5.2 The Akerlof Model

Typically, the fixed contracts paradigm works best with two insurance contracts,

with high coverage H and low coverage L. For this section, assume that H = η and

L = 0, so that we may entertain the thought of an “infinitesimal” transfer of wealth

from the state with loss to the state without.

Figure 4.8 illustrates the basic problem in selection markets.35 Without ad-

verse selection—for example, if people were to randomly, rather than selectively, buy

insurance—one would expect the average cost to be a horizontal line AC0, since the

average cost would involve an unconditional expectation over the risks in the pop-

ulation. In adverse selection markets, however, AC is downward sloping because

higher price implies higher willingness to pay among buyers implies higher aver-

35. Note D and AC need not be linear; this is just an illustration
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Figure 4.8: Akerlof unraveling of the market for high coverage contracts

age risk.36 AC meets AC0 only when q = 1 (here q describes the proportion of

the population buying insurance), since that would return us to an unconditional

expectation over the population. The demand curve D describes how many people

would be willingness to pay at a certain price, and equilibrium arises where D = AC.

The complete unraveling case would be if the average cost curve AC laid strictly

above the demand curve D, but even without complete unraveling, we see that ad-

verse selection leads to an underprovision of insurance, compared to the case where

we had constant costs AC0.

So what does inattention do? First, consider the average cost curve, and in par-

ticular, consider the extreme case where β = 0; this is just random choice, so the

average cost curve would be AC0. Conversely, the case where β = ∞ corresponds to

perfect rationality, and we return to the standard model where average cost is AC.

So, it follows that inattention flattens the AC curve.

36. This is not always true beyond this textbook, one-dimensional case. For instance, higher
willingness to pay could also imply greater risk aversion. In some cases, there can be advantageous
selection. See Einav, Finkelstein, and Mahoney (2021).
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Turning to the demand curve—in theory, willingness to pay stays the same, so

the demand curve characterizing the mass q of people who are willing to pay at a

given price p is unchanged. However, we could separately characterize, given a cer-

tain price, how many people would actually buy, call this the inattentive demand

D̂. Again, in the extreme case β = ∞, D̂ = D, and in the other case β = 0,

D̂(p) = 0.5; that is no matter the price, people pick randomly.37 In between, D̂

looks something like a logistic function: when price is very high, theoretically some

tiny quantity still buys insurance, and vice versa. The graph of D̂ steepens (flattens

as a function of p) as β decreases (price of information increases) in that inatten-

tive demand will respond less to the contract price as the information price increases.

q

p

AC1(p)

0 1

AC2(p)

D̂1(p) D̂2(p)

Figure 4.9: A change in β causing an ambiguous effect

Generally, the overall effect can be ambiguous, as shown in fig. 4.9. Holding D̂

still, a flattening of AC induced by a decrease in β would increase quantity q and

decrease price p. Likewise, when quantity is low and AC is held still, the steepening

of D̂ by decreasing β (which one could picture as pointwise convergence to q = 0.5,

when β = 0) would increase quantity and reduce price. In either case, it’s fairly plau-

37. in the Matějka-McKay model, one could shift the priors so that it’s not 50-50, but we’ll use
50-50 for now.
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sible that welfare goes up even if some people aren’t making the utility-maximizing

choice. But if quantity is initially high (above the prior), the steepening of D̂ while

keeping AC still would decrease quantity and increase price.

Example. Here we illustrate a case where no type is willing to pay for an in-

finitessimal amount of insurance under perfect rationality, but not under stochastic

choice. Consider the binary loss model with

u(c) = log c l =
w

2
θ ∼ Unif[0, 1]

E[θ|θ ≥ τ ] = 1−τ
2

+ t = 1− 1−τ
2
, and so T (τ) = 2. On the other hand, u′(c) = 1

c
, so

u′(w−l)
u′(w)

= w
w−l = 2. Thus the no-trade condition (just barely) holds.

Now consider the market for an insurance contract which transfers an infinites-

imal amount from the agent’s no-loss state to his loss state. The willingness-to-pay

(WTPη) for a small finite transfer η satisfies

θ · u(w − l + η −WTPη) + (1− θ) · u(w −WTPη) = θ · u(w − l) + (1− θ) · u(w)

=: C,

where C is a constant. The willingness-to-pay for a small amount of insurance

normalized by dividing by the amount is approximated by its Taylor series, in turn

given by the triple product rule:

WTPη
η

≈ dWTPη
dη

⃓⃓⃓⃓
η,WTPη=0

= − ∂C/∂η

∂C/∂WTPη

⃓⃓⃓⃓
η,WTPη=0

=
θ · u′(w − l)

θ · u′(w − l) + (1− θ) · u′(w)
.

It can be checked that the demand is

D(p/η) = P (WTPη ≥ p/η) = 2− 2

2− p
,
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while the average cost is

AC(q)

η
= η−1E[θη|θ ≥ 1− q] = 1− q

2
.

The model is illustrated in fig. 4.10. As we see, the average cost curve lies above the

demand curve, indicating full unraveling, just barely—which is what we expect since

the no-trade condition holds, just barely.

Figure 4.10: Example: Market for an infinitesimal amount of insurance

But we also see that if the average cost curve is lowered at all by stochastic

choices, say to ˆ︃AC, then the curve would intersect the demand curve, indicating

that there is a positive mass of types willing to pay for insurance.

4.5.3 The Riley-Rothschild-Stiglitz Model

As shown in Azevedo and Gottlieb (2017), a model with endogenous contracts

yields an even starker result than the under-insurance result with fixed contracts:

if X = [0, 1] is the contract space and Θ is the support of the type distribution (de-

scribing the probability of binary loss), then the market unravels whenever 1 ∈ Θ.

Taking into account fixed costs and moral hazard, the market unravels whenever
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supΘ is sufficiently large.

The basic intuition is that, to create a least-cost separating equilibrium, types

θ < 1 would have to separate from θ = 1. But that is not possible, because any

insurance contract—which must be priced lower than the insured loss (that is, one

would never buy pay a $100 premium to insure against a loss of $100)—would auto-

matically draw in all types for whom θ = 1.

The Willy Loman Principle. In Arthur Miller’s Death of a Salesman, Willy Lo-

man, the salesman, pays premiums on a life insurance policy which he knows will

be claimed. Would Willy Loman have single-handedly collapsed the life insurance

market in New York?

The answer is obviously no, but it is harder to pinpoint exactly why. The stochas-

tic choice answer is that, however separation occurs, the market does not separate

others from Willy Loman—who, certain of his demise, buys the best contract—

provided that Willy Lomans are vastly outnumbered by the mass of people who buy

the same contract by chance, who are not certain of death.

Just as in the signaling case, if we simulate a case with two types, high risk θH

and low risk θL, a pool which buys full coverage unravels quickly towards a (noisy

version) least cost separation (no trade if θH = 1) only if the mass of θH is sufficiently

large. Otherwise, the pool unravels slowly or not at all.

4.6 A Health Insurance Model

With the previous section in mind as a simple model for why better decisions (by

way of lower information costs) may or may not improve welfare, I show how we can

use a DISE simulations to investigate counterfactuals.

Following Azevedo and Gottlieb (2017), this section attempts to illustrate the
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equilibrium framework by constructing a model which, as faithfully as possible, repli-

cates the model presented in Einav et al. (2013) (hereafter, EFRSC), and calibrates

it to their parameter estimates.

4.6.1 Setup

The original model. First, I outline the setup in EFRSC. The market consists of

privately informed buyers and zero-profit sellers. Buyers are defined by a multidi-

mensional type θ = (ψ, ω, µ, σ2). Buyers face a healthcare cost shock λ in period two,

distributed according to a log-normal distribution with parameters (µ, σ2). Given

their private information, they make a decision in period one to buy one of twenty-six

evenly spaced contracts X = {0, 0.04, ..., 1}, where x is their coverage against shocks.

After receiving the shock, they choose a level of medical expenditure based on their

shock λ and their moral hazard type ω; skipping the derivations, their ex-post utility

after optimal medical expenditures is

u(x, p, θ;λ) = xω − (xω)2

2ω
+ y − (1− x)λ− p

where y is income. Buyers have an ex-ante von Neumann-Morgenstern (vNM) utility

function with constant absolute risk aversion (CARA)

U(x, p, θ) = −
∫︂

exp(−ψu(x, p, θ;λ)) dFθ(λ)

and the cost function is

c(x, θ) = xEθλ+ x2ω

While I have formulated a linear logit model which differs from the model they es-

timated, I try to keep the linear logit model and its parameters as faithful to the

original where possible. I discuss minor details of the model later on in this section.

For this exercise, α is set to 0.01, once more we consider a 26-contract space

71



X = [0, 0.04, ..., 1] with an initial state where all types choose full coverage, and run

the model for 1000 periods.38 For concreteness, this would model unraveling over

the course of 1000 days, if 1% of the population in question were to make an active

choice each day.

Finally, I would stress that this is purely an illustrative exercise to demonstrate

the usefulness of the model in simulating counterfactuals. Inherent in the adoption

of the EFRSC model is that we are co-opting the expected utility in EFRSC—used

for ordinal purposes—for cardinal purposes in the logit function. Thus we make an

implicit and arbitrary imposition upon the Matějka-McKay model: that the EFRSC

model is true. This is, in part, to constrain the author’s degrees of freedom.

Details related to the simulation are found in section 4.8.2. Further discussion

on the rational inattention foundations of the model, and some of the alternative

assumptions that I could have used, are found in section 4.8.3.

4.6.2 Results

Distribution. The resulting distributions for β = 10, 102, 104, 108, 1016, 1032 are shown

in fig. 4.11. Recalling that β−1 is the cost of information, the model suggests that

lowering the cost (improving agents’ decisions) tends to lead to increased coverage in

equilibrium, although the realized demand for full coverage is not necessarily mono-

tonic. When information costs are small, the equilibrium is characterized in large

part by indifference over high contracts.

Welfare. Taking the Matějka-McKay model as a microfoundation, there are two

approaches to comparing welfare outcomes. The first is the expected contract utility:

WC =
∑︂
x∈X

∑︂
θ∈Θ

U(x, p(x), θ) · ϕ(x, θ)

38. after which we run for another 1000 to confirm that little has changed
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Figure 4.11: Distribution of coverage choices given various choices of log10(β)

which does not include the utility loss of information acquisition. The second, nat-

urally, includes said loss:

WT = −β−1Iϕ(x; θ) +
∑︂
x∈X

∑︂
θ∈Θ

U(x, p(x), θ) · ϕ(x, θ)

Figure 4.12 shows the welfare effects of varying β, according to the model. Here

too, the model suggests that lowering information costs improves overall welfare.

Caveats. It could be argued that one of the key features of the small β cases is actu-

ally an artifact of the CARA model. Namely, the fact that most types are indifferent

some swathe of higher coverage contracts is in part a result of the upper bounded-

ness of exponential utility; therefore, I would not make too much of the result. Even

more specifically, because exponential utility is upper bounded, many agents will

have some options which are far far away from the upper bound and some close to

the upper bound; those far away will end up being assigned a probability near zero
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Figure 4.12: − log10(−W ) given six choices of log10(β)

by the softmax, and those close to 0 will be assigned a probability roughly equal to

one another.

Another caveat relevant to small β cases is that baseline model assumes a uniform

prior over all contracts, whereas typically, we might imagine more weight being put

on large x and x = 0 (no insurance) and less on small positive values of x. Indeed,

as the welfare results suggest, part of the reason that the distribution is more spread

out when information costs are high is because information costs dominate in that

scenario. When this is the case, the assumption regarding the priors have a more

salient effect; what this also suggests is the importance of priors/choice architecture

when information costs are high. Consider the extreme case where β = 0: in that

case, the distribution of contract choices is determined entirely by the priors.

I see no negative implications of these caveats on the general efficacy of the DISE

approach, as these problems can be easily fixed by calibrating the model to more
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appropriately suit one’s needs. I chose to follow a particular model specifically in

the interest of constraining researcher degrees of freedom.

4.7 Concluding Remarks

The goal of this chapter was to trace out the implications of a fundamentally different

set of assumptions about selection markets: instead of the traditional approach of

identifying static equilibria with fully rational agents capable of changing contracts

at any time, we study a market in which agents change contracts over time and,

although they are irrational at a micro-level, their joint distributions are predictable

at a macro-level.

To this end, this chapter provides a framework by which dynamic selection mar-

kets with choice frictions may be simulated. I construct a simple model under this

framework to isolate the implications of rational inattention. In the classic one-

dimensional case, the model produces a noisy least-cost separation which is far more

robust than the equilibrium suggested by fully rational models. Finally I show that

the model can be used to simulate potential counterfactuals in a calibrated model of

a health insurance market.

4.8 Chapter Appendix

4.8.1 Models in the Limit

Even though the models don’t work in continuous time, it is sometimes convenient

to make use of calculus.

Define the total distance between the inflow and outflow by

G =
1

2

∑︂
X

∑︂
Θ

(ι− ν)2
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and its derivative with respect to time by

dG

dt
=
∑︂
X

∑︂
Θ

(ι− ν)

(︃
dι

dt
− dν

dt

)︃
.

In the linear model, ν = α(ι− ν). Holder’s inequality gives

dG

dt
= −α

∑︂
X

∑︂
Θ

(ι− ν)2 +
∑︂
X

∑︂
Θ

2(ι− ν)

(︃
dι

dt

)︃
= −2αG+

∑︂
X

∑︂
Θ

(ι− ν)

(︃
dι

dt

)︃
≤ −2αG+ 2G ·

⃓⃓⃓⃓⃓⃓⃓⃓
dι

dt

1

ι− ν

⃓⃓⃓⃓⃓⃓⃓⃓
∞
.

Thus, provided the norm is eventually bounded by α, G→ 0 eventually.

An interesting mathematical question, therefore, is whether there is always β > 0

which guarantees ||dι/dt||∞ is bounded by β times a constant times ||ι− ν||∞.

Proposition 28. In the linear logit model, assume both |U | and
⃓⃓⃓
dU
dp

⃓⃓⃓
and bounded,

if β satisfies

β

⃓⃓⃓⃓⃓⃓⃓⃓
dU

dp

⃓⃓⃓⃓⃓⃓⃓⃓
∞
[1 + (|X| − 1)eβ(U−U)] ·max

x,θ

⃓⃓⃓⃓
⃓|Θ|c(x, θ)−

∑︂
θ′∈Θ

c(x, θ′)

⃓⃓⃓⃓
⃓ ·max

θ
µ(X, θ) < 1,

then G→ 0 eventually.

Proof. β shows up in two places: first,

dι

dt

1

ι
=
dρ

dt

1

ρ

=
1

ρ

(︃
d

dt

eβUx∑︁
X e

βUy

)︃
=

1

ρ

(︃
eβUx∑︁
X e

βUy

)︃
· β

(︄
dUx
dt

−
∑︁

X
dUy

dt
eβUy∑︁

X e
βUy

)︄
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= β

(︄
dUx
dt

−
∑︂
X

dUy
dt

ρy

)︄

≤ βmax

⃓⃓⃓⃓
dU

dp

⃓⃓⃓⃓
·max

⃓⃓⃓⃓
dp

dt

⃓⃓⃓⃓
,

where the subscripts denote the relevant contract, when necessary.

Second, letting (U − U) be the maximum difference in utility between two con-

tracts at price-equals-cost, the minimum inflow probability is

ρ ≥ eβU

eβU + (|X| − 1)eβU

=
1

1 + (|X| − 1)eβ(U−U)
.

The change in price is given by

dp(x)

dt
=

∑︁
θ c(x, θ)

dµ(x,θ)
dt

µ(x,Θ)
−
∑︁
c(x, θ)µ(x, θ)

µ(x,Θ)2
dµ(x,Θ)

dt

=
1

µ(x,Θ)

(︄∑︂
θ

c(x, θ)
dµ(x, θ)

dt
− p(x)

dµ(x,Θ)

dt

)︄

=
1

µ(x,Θ)

(︄∑︂
θ

[c(x, θ)− p(x)](ι(x, θ)− ν(x, θ))

)︄
.

Because inflow is always positive, we get that, in the long run, if ι(x,Θ) ≥ ι, then

lim inf
t→∞

µ(x,Θ) ≥ ι(x,Θ)

α

≥
ρν(X,Θ)

α

= ρ
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and so,

lim sup
t→∞

dp(x)

dt
≤ [1 + (|X| − 1)eβ(U−U)] ·max

θ

⃓⃓⃓⃓
⃓|Θ|c(x, θ)−

∑︂
θ′∈Θ

c(x, θ′)

⃓⃓⃓⃓
⃓ · ||ι− ν||∞.

Lastly, max ι(x, θ) ≤ maxθ ν(X, θ) = αmaxθ µ(X, θ). Consequently,

lim sup
t→∞

⃓⃓⃓⃓⃓⃓⃓⃓
dι

dt

1

ι− ν

⃓⃓⃓⃓⃓⃓⃓⃓
∞

= lim sup
t→∞

⃓⃓⃓⃓⃓⃓⃓⃓
dι

dt

1

ι

ι

ι− ν

⃓⃓⃓⃓⃓⃓⃓⃓
∞

≤ β

⃓⃓⃓⃓⃓⃓⃓⃓
dU

dp

⃓⃓⃓⃓⃓⃓⃓⃓
∞
[1 + (|X| − 1)eβ(U−U)] ·max

x,θ

⃓⃓⃓⃓
⃓|Θ|c(x, θ)−

∑︂
θ′∈Θ

c(x, θ′)

⃓⃓⃓⃓
⃓ · αmax

θ
µ(X, θ).

Lastly, dividing by α gives the desired result.

The bound here is, of course, crude. Several facts (and the discreteness of time

in the actual model) suggest that heuristically, β need not be anywhere near the

bound for the model to converge. First, a lot is lost by using Holder’s inequality

∑︂
X

∑︂
Θ

(ι− ν)

(︃
dι

dt

)︃
≤ 2G ·

⃓⃓⃓⃓⃓⃓⃓⃓
dι

dt

1

ι− ν

⃓⃓⃓⃓⃓⃓⃓⃓
∞

since for the sum on the left, both (ι − ν) and
(︁
dι
dt

)︁
are sometimes positive and

sometimes negative, and tend to cancel out. Second, likewise, by examination of dp
dt
,

the sum which defines it is sometimes positive and sometimes negative.

4.8.2 Health Insurance Model Simulation Details

Following Azevedo and Gottlieb (2017), I consider 26 contracts specifying coverage

level x ∈ {0, 0.04, ..., 0.96, 1}. The types θ = (ψ, ω, µ, σ2) lie on a 20× 20× 20× 12

lattice, with the underlying probability mass function of each type corresponding

roughly to the distributions accorded by the parameters estimated in EFRSC.

Computing the utility. The first trick we take advantage of is the fact that we can
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decompose U into

U(x, p, θ) := −
∫︂

exp(−ψu(x, p, θ;λ)) dFθ(λ)

= − exp (ψp) exp

(︃
−ψ

[︃
xω − (xω)2

2ω
+ y

]︃)︃∫︂
exp (ψ(1− x)λ) dF̃ θ(λ).⏞ ⏟⏟ ⏞

h(x;θ)

What this allows us to do is, instead of carrying out the full calculation each period,

we compute h ahead of time and update the vNM via changes in price only.

In order to ensure that the integral defining U is > −∞, instead of using a log-

normal distribution F ,39 we assume λ is drawn from F̃ , a log-normal distribution

truncated at λ, which we set at $75,000 based on the summary data in EFRSC.

While there isn’t a clean formula for the moment-generating function of F̃ , there

is a closed form for its moments. Therefore, via Fubini’s theorem, we change the

integral to a sum:∫︂
exp (ψ(1− x)λ) dF̃ θ(λ) =

∞∑︂
n=0

ψn(1− x)n

n!

∫︂
λn dF̃ θ(λ)

=
∞∑︂
n=0

ψn(1− x)n

n!
exp

(︃
µn+

σ2n2

2

)︃
Φ

(︃
log(λ)− µ

σ
− σn

)︃

As it turns out, we can bound the error of this approximation by the N -th term

using Holder’s inequality.

Lemma 29. Shorthanding the sum as
∑︁∞

n=0
ψn(1−x)n

n!

∫︁
λn dF̃ θ(λ) =

∑︁
n an, we can

bound the remaining terms by
∑︁∞

k=1 aN+k ≤ aN · ψ(1−x)λ
N+1−(ψ(1−x)λ) whenever N + 1 >

ψ(1− x)λ.

39. in EFRSC, they specifically actually assume λ−κ is log-normal, where κ is yet another random
variable. We omit this dimension.
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Proof. We have

an+1 =
ψn+1(1− x)n+1

(n+ 1)!

∫︂
λn+1 dF̃ =

ψn+1(1− x)n+1

(n+ 1)!
||λn+1||1

≤ ψn+1(1− x)n+1

(n+ 1)!
||λn||1||λ||∞ =

ψ(1− x)||λ||∞
n+ 1

γnψn(1− x)n

n!

∫︂
λn dF̃

=
ψ(1− x)λ

n+ 1
an.

Shorthand ζ = ψ(1− x)λ. Then,

aN+k ≤
ζ

N + k
aN+k−1 =

ζ2

(N + k)(N + k − 1)
aN+k−1 = · · · = ζk

N !

(N + k)!
aN .

From whence we may obtain several representations of a bound on the sum of all

terms greater that N whenever N + 1 > ζ

∞∑︂
k=1

aN+k ≤ aN

∞∑︂
k=1

ζkN !

(N + k)!

= aN

[︄(︄
∞∑︂
k=0

ζkN !

(N + k)!

)︄
− 1

]︄

≤ aN

[︄(︄
∞∑︂
k=0

ζk

(N + 1)k

)︄
− 1

]︄

= aN

(︄
1

1− ζ
N+1

− 1

)︄
= aN · ζ

N + 1− ζ
.

The next lemma describes the actual summation we use to avoid over/underflow

problems, since λ and n! are naturally quite large.
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Lemma 30. We have40

h(x; θ) =
1

2
exp

(︄
ψ

[︃
x2ω

2
− xω − y

]︃
−

( log(λ)−µ
σ

)2

2

)︄

×
∞∑︂
n=0

exp

(︄
n log(ψ(1− x)λ)−

n∑︂
k=1

log(k)

)︄
· ξn

where ξn = erfcx
(︂
σn√
2
− log(λ)−µ

σ
√
2

)︂
.

Proof. We rewrite

Φ

(︃
log(λ)− µ

σ
− σn

)︃
=

1

2
exp

(︃
−1

2
(σn− log(λ)− µ

σ
)2
)︃
erfcx

(︃
σn√
2
− log(λ)− µ

σ
√
2

)︃
=

1

2
exp

(︄
−
( log(λ)−µ

σ
)2

2
+ σn · log(λ)− µ

σ
− σ2n2

2

)︄
ξn

=
1

2
exp

(︄
−
( log(λ)−µ

σ
)2

2
+ n

(︁
log(λ)− µ

)︁
− σ2n2

2

)︄
ξn

and

h(x; θ)

= eψ(x
2ω/2−xω−y)

∞∑︂
n=0

ψn(1− x)n

n!

∫︂
λn dF̃

= eψ(x
2ω/2−xω−y)

∞∑︂
n=0

ψn(1− x)n

n!

1

2
λ
n
ξn · exp

(︄
−
( log(λ)−µ

σ
)2

2

)︄

=
1

2
exp

(︄
ψ

[︃
x2ω

2
− xω − y

]︃
−

( log(λ)−µ
σ

)2

2

)︄
∞∑︂
n=0

ψn(1− x)nλ
n

n!
ξn

40. Note the abuse of notation in the representation of n! as exp (
∑︁n

k=1 log(k)) which of course
isn’t valid for n = 0.
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=
1

2
exp

(︄
ψ

[︃
x2ω

2
− xω − y

]︃
−

( log(λ)−µ
σ

)2

2

)︄
∞∑︂
n=0

exp

(︄
log

[︄
ψn(1− x)nλ

n

n!

]︄)︄
· ξn

=
1

2
exp

(︄
ψ

[︃
x2ω

2
− xω − y

]︃
−

( log(λ)−µ
σ

)2

2

)︄
∞∑︂
n=0

exp

(︄
log

[︄
ψn(1− x)nλ

n

n!

]︄)︄
· ξn

=
1

2
exp

(︄
ψ

[︃
x2ω

2
− xω − y

]︃
−

( log(λ)−µ
σ

)2

2

)︄

×
∞∑︂
n=0

exp

(︄
n log(ψ(1− x)λ)−

n∑︂
k=1

log(k)

)︄
· ξn.

For the purposes of our simulation, we used the bound

10−14 ≥ exp

(︄
( log(λ)−µ

σ
)2

2

)︄
∞∑︂
n>N

ψn(1− x)n

n!

∫︂
λn dF̃ θ(λ)

=
∞∑︂
n>N

exp

(︄
n log(ψ(1− x)λ)−

n∑︂
k=1

log(k)

)︄
· ξn

4.8.3 Rational Inattention Foundations of the Utility Func-

tion

Consider a rational inattention model in which agents are not fully aware of their

type θ – say, they do not know µ or σ2, but definitely know ψ and ω. Before the game,

they commit to an information strategy described by a joint distribution between

optimal contract and type ϕ(x, θ) over the probability space (Ω,F , P ). In the first

period, they receive a signal and choose a contract based on the information strategy.

In the second, the true θ is revealed to them. In the third period, they receive the

health shock and take the optimal health expenditure action in the third period.

Matějka and McKay (2015) show that any agent solving an expected-utility-minus-
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information-cost problem

max
ϕ

−β−1Iϕ(x; θ) +
∑︂
x∈X

∑︂
θ∈Θ

U(x, p, θ) · ϕ(x, θ)

subject to Bayes plausibility:
∑︂
x∈X

ϕ(x, θ) = P (θ)

where Iϕ(x, θ) =
∑︂
x∈X

∑︂
θ∈Θ

ϕ(x, θ) log

(︃
ϕ(x, θ)

P (x)P (θ)

)︃

where P (θ) is the prior of θ, I(x; θ) is the Shannon mutual information, and β−1 is

the search cost, the logit stochastic choice function uniquely solves the optimization

problem.

The astute reader will notice a slight but not unresolvable hitch with the Matějka-

McKay story when applied here: rational inattention is all about the agent not

knowing θ, whereas selection markets are all about the agent being the only one who

knows θ. The resolution I propose is as follows. Suppose θ = (θk, θa) representing

the information which is known to the agent and the information which must be

acquired by the agent. Regardless of whether θ, or just θa, represents information

which must be acquired, it will nevertheless be the case that

P (x|θk, θa) = eβU(x,p(x),θk,θa)∑︁
y e

βU(y,p(y),θk,θa)
=

eβU(x,p(x),θ)∑︁
y e

βU(y,p(y),θ)
= P (x|θ)

So while from the view of the agent, there is a difference between not knowing θ and

not knowing only θa, from the point of view of the market which does not observe

any part of θ, P (x|θ) remains multinomial logit.

The remaining discussion to come centers on the unenviable task what cardi-

nal U to use. In the health insurance model, I take U simply to be the expected

CARA utility (over health states) in EFRSC, which is ordinal; in the Matějka-

McKay model, U is cardinal, as the model involves taking an expectations over

(x, θ). Any vNM utility function U which is a strictly increasing transformation of
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−
∫︁
exp(−ψu(x, p, ω;λ))dFθ(λ) will maintain the preference over choices x ∈ X con-

ditional on type. None inherently make more sense than the one I used, but to give

an idea of the other possibilities, I consider some of the implications of the following

candidates for U :

1. the “CARA”: UCARA = −
∫︁
exp(−ψu(x, p, ω;λ)) dFθ(λ)

2. the “adjusted CARA”: Uadj = −γ−1
∫︁
exp(−ψγu(x, p, ω;λ)) dFθ(λ)

3. the “Lp”: UL = −γ−1
(︁∫︁

exp(−γu(x, p, ω;λ))ψ dFθ(λ)
)︁1/ψ

4. the “log Lp”: ULL = − 1
ψγ

log
(︁∫︁

exp(−ψu(x, p, ω;λ)) dFθ(λ)
)︁

Interpretation. The CARA utility, when plugged into the maximization problem, the

resulting expected utility can be interpreted as an application of the tower property:

∑︂
x∈X

∑︂
θ∈Θ

−
∫︂

exp(−ψu(x, p, ω;λ)) dFθ(λ) · ϕ(x, θ)

= Eϕ [E[− exp(−ψu(x, p, ω;λ))|θ, x]]

= Eϕ [− exp(−ψu(x, p, ω;λ))] .

On the surface, this makes the most sense, but this actually ignores an important

aspect of the structure of the model. The agent is not choosing a contract conditional

on θ, rather, the agent chooses, and importantly, commits to an information strategy.

To make things more concrete, consider someone choosing an insurance pol-

icy x, who can choose how much research to do into the state of the world θ.

Maćkowiak, Matějka, and Wiederholt (2023) notes that, similar in spirit to Kamenica

and Gentzkow (2011), these two choices are tantamount to a single commitment to

a Bayes plausible joint distribution ϕ(x, θ). It is only after choosing the policy that

the state of the world θ is revealed – for example, the onset of a particular medical

condition. No health expenditure shock has yet hit, but he has an interim utility

U—a certain “(un-)happiness” about being stuck with (x, p) now that θ is known—

which is a strictly increasing function of E[− exp(−ψu(x, p, ω;λ))], but need not be
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a linear function.41

Lp gives a particular way for the agent to evaluate his contentment with a

number of scenarios (x, θ). Consider what the agent with ψ = ∞ (i.e. the sup

norm) is doing in the rational inattention paradigm. He sits at the kitchen table

evaluating policies over states of the world and, to each (x, p, θ), assigns a util-

ity U(x, p, θ) = ess supλe
−ψγu(x,p,ω;λ), corresponding to essentially42 the worst-case

health outcome in that state of the world. Conversely, as ψ → −∞, he assumes

best case scenario. In this view, ψ can be seen as incorporating “optimism” or “pes-

simism”. Insofar as the usefulness of insurance is partially derived from providing

peace-of-mind, this provides for an interesting interpretation of the parameters.

Price levels. It is easy to see that for any constant η,

u(x, ηp, ηω; ηλ) = ηu(x, p, ω;λ).

This poses a theoretical problem for CARA which is solved by the adjustment.

Namely, the odds ratio of two contracts is dependent on price level. Recalling that

β−1 is the price of information:

P (x1|θ)
P (x2|θ)

= exp
(︁
βη−1(E[− exp(−ψηu1)]− E[− exp(−ψηu2)])

)︁
.

Rates and elasticities of substitution. By assumption, u(x, p, ω;λ) is quasilinear, so

we can move w = y − p outside of U . However, in each case, a different thing is

moved out:

Uadj = −γ−1 exp(−ψγw)
∫︂

exp(−ψγu(x, ω;λ)) dFθ(λ)

41. In the end, the “expected utility” in fig. 4.12 represents the preferences of agents from an
ex-ante perspective, in the sense of a Rawlsian veil of ignorance: expected utility over all states of
the world without any information about it, though we may make a conditional expected utility
calculation by holding some dimension(s) of θ fixed and integrating over the remaining ones.
42. in the measure-theoretic sense and in the colloquial sense
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UL = −γ−1 exp(−γw)
(︃∫︂

exp(−γu(x, ω;λ))ψ dFθ(λ)
)︃1/ψ

ULL = w − γ

ψ
log

(︃∫︂
exp(−ψγu(x, ω;λ)) dFθ(λ)

)︃
.

Given a fixed ϕ such that

V ∗ = −β−1Iϕ(x; θ) +
∑︂
x∈X

∑︂
θ∈Θ

U(x, p, θ) · ϕ(x, θ)

the marginal rates of substitution between information acquisition cost and nu-

meraire wealth loss, denoted MRS = ∂V/∂(−w)
∂V/∂I

are

MRSadj =

(︃
ψγe−ψγw

β−1

)︃∑︂
x∈X

∑︂
θ∈Θ

γ−1

∫︂
exp(−ψγu(x, ω;λ)) dFθ(λ) · ϕ(x, θ),

MRSL =

(︃
γe−γw

β−1

)︃∑︂
x∈X

∑︂
θ∈Θ

γ−1

(︃∫︂
exp(−γu(x, ω;λ))ψ dFθ(λ)

)︃1/ψ

· ϕ(x, θ),

MRSLL = β.

If we interpret “cost” β of information literally, then naturally, log Lp is the most

reasonable, since the tradeoff is linear.

Now assume that I is not numeraire, but rather comes about via costly search

(loss of leisure as opposed to a loss of money). Take s = eξI to be the search cost.

Then, letting C be a constant such that MRSL(I,−w) = Ce−γw:

MRSL(s,−w) =MRSL(I,−w)
ds

dI
= Ce−γwξs

The derivative of the MRS with respect to s/(−w) is

dMRSL(s,−w)
d(−s/w)

= −dMRSL(s,−w)
ds

ds

d(−s/w)
= −Cwe−γwξ
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Thus the nice thing about CARA/Lp is that the elasticity of substitution is 1:

MRSL(s,−w)
−s/w

/︃
dMRSL(s,−w)

d(−s/w)
= −Ce

−γwξsw

s

/︃
− Cwe−γwξ = 1

Non-stochastic implications (Fθ is Dirac). Thus far we have remained within the

rational inattention framework. Here we ask, given our functional form for U , what

is the implied probability that someone “makes a mistake” when choosing an insur-

ance policy (for example, by choosing a policy which is strictly dominated by an

alternative)?

To fix ideas, perhaps it is better to ask, what is the probability that someone

fails to pick a $10 dollar bill off the ground if the bill is there almost surely? For

adjusted CARA, U = −γ−1
∫︁
exp(γψχm) dP (m) = −γ−1 exp(γψχm), where χ is

the indicator for whether the bill is picked up and P is a Dirac probability with

P (m = 10) = 1. The ratio between the probability of picking up a bill on the ground

vs. not implied by the rational inattention model is P (χ=1|θ)
P (χ=0|θ) exp(β[U(1) − U(0)]) =

exp(βγ−1[− exp(−10γψ) + 1]), meaning that risk averse agents are more likely to

pick up the bill, and this is true irrespective of the information cost β−1. For Lp,

U = −γ−1 exp(γχm), where γ is a constant, so the likelihood ratio is independent of

ψ, so risk aversion plays no role. For log Lp, U = −χm, which is likewise independent

of ψ but also independent of the price level γ.

Again, there is no right way to interpret this per se – it depends on the mental

model that one has about insurance choice. On the one hand, it seems plausible in

the context of rational inattention that more risk averse people spend longer around

the kitchen table thinking about what the future state of the world might be. On

the other, if we interpret this outside the context of rational inattention, it seems

plausible that simple mental lapses might be orthogonal to risk aversion.
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Chapter 5

Conclusion

This thesis provides several new results in the theory and simulation of selection

markets. The first reconciles the Riley and Azevedo-Gottlieb equilibrium concepts

by laying out the conditions under which the Riley IVP provides a unique SAGE.

The second augments the standard Riley model to include a fixed cost and provides

a condition under which the fixed cost fully unravels the market. The final chapter

sets out a broader framework for simulating selection markets, and uses it to study

the implications of rational inattention on selection markets, finding that inattention

adds noise to the standard equilibrium, making equilibria more stable and less prone

to unraveling.

Future theoretical work on selection markets can contribute in a number of di-

rections: i) to the way we understand economic forces, ii) to the way we understand

existing models, and iii) to our ability to make predictions.

On the first point, very little substantively has changed on this front in recent

decades. Though models have been produced to better simulate multidimensional

models and (herein) models with choice frictions, there is not yet a theoretical frame-

work to think about multidimensional or dynamic problems on par with the way we

think about unidimensional static problems in terms of Akerlof, Spence, and RS.

That is, we have a much easier time explaining why there might be a correlation be-
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tween risk and coverage than explaining why there might not be a correlation when

risk aversion comes into play, as in Finkelstein and McGarry (2006). Future work

could therefore improve the way we think about such markets.

On the second point, Azevedo-Gottlieb equilibrium is arguably the first major

advance in the theory of competitive selection markets in a number of years, and

that it essentially replicates the original reactive equilibrium adds to its credibility.

However, it remains unwieldy to use as a pen-and-paper tool. Future work could

aim to make it more tractable, or connect it more broadly to qualitative ideas about

selection market behavior, or replace it altogether with a new approach.

On the third point, models which produce least-cost separating equilibria in the

single-crossing case still face the challenge of empirical testing. In the spirit of Hen-

dren (2013, 2017), the second chapter’s main result could be empirically tested by

looking at whether market non-existence may be predicted by the existence of high-

risk types not willing to pay their fair price for insurance.

Lastly, dynamic models of selection markets open up a large array of theoretical

questions. One direction could be to trace out the implications of other behavioral

models. Another could be to build a model incorporating more behavioral elements

to make quantitatively better predictions about the trajectory of selection markets.

A final question, opened up by our exploration of the effect of information costs on

unraveling, is a question of designing the marketplace for inattentive consumers: a

designer (e.g. a government in an insurance marketplace, or the human resources

department in a workplace insurance scheme) could save buyers from information

acquisition costs by giving good recommendations (i.e. the designer commits to pro-

viding a recommendation that is close enough to optimal for the buyer that they

won’t be incentivized to acquire much more costly information); in doing so, it has

some control over the outcome of the insurance market. This opens up new research

directions into what an optimal information policy could be.
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