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Abstract

Optimistic value estimates provide one mechanism for directed exploration in reinforcement learning

(RL). The agent acts greedily with respect to an estimate of the value plus what can be seen as

a value bonus. The value bonus can be learned by estimating a value function on reward bonuses,

propagating local uncertainties around rewards. This approach, however, only increases the value

bonus for an action retroactively, after seeing a higher reward bonus from that state and action.

Such an approach does not encourage the agent to visit a state and action for the first time. In

this work, we introduce an algorithm for exploration called Value Bonuses with Ensemble errors

(VBE), that maintains an ensemble of random action-value functions (RQFs). VBE uses the errors

in the estimation of these RQFs for designing value bonuses that provide first-visit optimism and

deep exploration. The key idea is to design the rewards for these RQFs in such a way that the

value bonus can decrease to zero. We show that VBE outperforms Bootstrap DQN and two reward

bonus approaches (RND and ACB) on several classic environments used to test exploration and

provide demonstrative experiments that it learns faster in several Atari environments.
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Chapter 1

Introduction

An agent interacting with an environment for multiple steps, with the goal to maximize some scalar

reward requires that the agent visits different parts of the environment, states, that can result in

high reward. The goal of an agent is thus to understand the environment it is in, and perform

a series of actions that can result in a high total reward. This series of state dependent actions

that the agent takes is what we usually refer to as a policy. In order for an agent to find a policy

that maximizes the total reward it receives, it needs to carefully explore the environment it is in.

Exploration thus controls the degree of what can be known to the agent about the environment,

and thus its ability to learn a policy that maximizes the reward. However, it is also not feasible

for the agent to always explore the environment, as it also needs to exploit the knowledge it has

gained to maximize the reward. The question then becomes a matter of time or instance, i.e., when

should an agent explore and when should an agent exploit. This trade-off between exploration and

exploitation is known as the exploration-exploitation dilemma.

There is a large body of literature that studies this dilemma, in the bandit setting and also

in the full Reinforcement Learning (RL) setting. It is not very clear what is the optimal way

to explore, or how an intelligent agent should explore an environment. However, in the tabula

rasa setting where there is no prior information about the environment or the agent, the best or

perhaps the only way to explore an environment, from the perspective of learning a policy that

maximizes the total reward, is to try to visit all the unique states enough times to have accurate

estimates for each state. One way of doing this is through a framework called Optimism in the

Face of Uncertainty, which has been widely used and studied both in the bandit setting and the

RL setting. The idea is that the agent should explore by taking actions that could be good, given

the uncertainty (effectively an upper confidence bound).

The challenge with this approach is that it is not always easy to measure uncertainty, especially

in the RL setting especially with function approximation. One practical way of doing this for the
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tabular bandit setting is to maintain visitation counts for each action and define a bonus, often

referred to as the reward bonus, using these counts. The agent then selects actions that maximizes

the reward and this added reward bonus, encouraging the agent to take actions less frequently taken.

The reward bonus can be defined in many different ways, and broadly such methods belong to a

class of algorithms called Upper Confidence Bounds (UCB). Extending such UCB-style methods

to the RL setting is not as straight forward, as the goal is not to maximize the immediate rewards,

rather to maximize the expected sum of future rewards, i.e., the value of a state. Thus we need a

bonus in the value space, which we refer to as the value bonus. This value bonus should be based

on an uncertainty measure that does not just tell the agent about the immediate uncertainty of a

state, but rather tells the uncertainty of future states as well, that the agent might observe while

following a particular policy.

Exploration not only controls the ability of the agent to learn an optimal policy, but also the

time it takes to learn that policy. If the agent explores randomly it will take a much longer time to

cover the state space and learn a good policy. However, in many cases random exploration is the

choice of exploration, as it is simple to implement and does not require any prior knowledge of the

environment. In this work we discuss why it is challenging to design an exploration strategy for

reinforcement learning agents, discuss some important properties for exploration, highlight some

shortcomings of existing methods, and finally propose an exploration strategy which is simple to

implement and can be used in conjunction with any reinforcement learning algorithm.

A typical approach to incorporate exploration into a value-based RL agent is to obtain optimistic

value estimates. The agent takes greedy actions according to this optimistic value estimate, leading

it to take actions that look good either because they have high uncertainty or because the action

is actually high value. This approach has been well-developed for the contextual bandit setting,

with a variety of algorithms and theoretical results on optimality (Li et al., 2010; Abbasi-Yadkori

et al., 2011). Understanding is growing about how to soundly extend these ideas to reinforcement

learning, though the theoretical results on estimating and using optimistic values are limited to the

linear function approximation setting (Grande et al., 2014; Osband et al., 2016a; Abbasi-Yadkori

et al., 2019; Wang et al., 2019).

Though the theory is difficult to extend, there has been a concerted effort to develop and

empirically evaluate such optimistic value estimation approaches for the deep RL setting. Bootstrap

DQN with priors, for example, maintains an ensemble of action-values, which reflect uncertainty in

the value estimates (Osband et al., 2018; 2019). It takes a Thompson sampling approach—which

can be seen as optimistic—by sampling one action-value in the ensemble and following it for an

entire episode. Another common approach to obtain optimistic value estimates employs the usage

of reward bonuses (Bellemare et al., 2016; Ostrovski et al., 2017; Burda et al., 2019; Ash et al.,

2022). A reward bonus, reflecting uncertainty with respect to the transition, is added to the reward,
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increasing the estimated value proportionally for the corresponding states and action.

Most works, however, eschew these directed exploration approaches in favor of simpler, undi-

rected exploration approaches like ϵ-greedy. One potential reason for this is that reward bonus

approaches do not encourage first-visit optimism. They encourage revisiting a state, if the reward

bonus was high in that state; namely, they retroactively reason about uncertainty of states they

have seen. The reward bonus cannot encourage visiting a state for the first time. Bootstrap DQN

with priors (BDQN), on the other hand, tries to solves this issue by using an ensemble and fixed

additive priors for each value function in the ensemble to provide first-visit optimism. Unlike reward

bonuses, though, BDQN is more onerous to use. It requires completely changing the algorithm to

one that maintains and updates an ensemble, and making key choices like how often to follow one

of the value functions in the ensemble before switching. Recent work suggests it is key to have a

large ensemble for BDQN (Janz et al., 2019; Osband et al., 2023). Epinets (Osband et al., 2023)

can match the performance of BDQN with much less compute, but are arguably even more onerous

to implement than BDQN. Our goal is to develop an easy-to-use exploration approach for deep RL,

that can easily be added to an existing algorithm, making it less onerous to displace the default

ϵ-greedy approach.

To do so, we explore how to directly estimate a value bonus. The agent acts greedily according

to the value estimate plus this separate value bonus b, namely argmaxa q(s, a) + b(s, a). The value

bonus should ideally represent the uncertainty for that state and action. Though this may be the

first time this term is used,1 there are some works that estimate value bonuses. One simple approach

is to separate out the reward bonuses and propagate them to learn a second value function, as was

proposed for RND (Burda et al., 2019) and later adopted by ACB (Ash et al., 2022). This approach,

however, still suffers from the fact that reward bonuses are only retroactive, and the resulting b is

unlikely to be high for unvisited states and actions. For the contextual bandit setting, the ACB

algorithm actually directly estimates the reward bonus using the maximum over an ensemble of

functions, which is high for unvisited actions; but the extension to RL with reward bonuses loses this

first-visit optimism. UCLS (Kumaraswamy et al., 2018) and UBE (O’Donoghue et al., 2018; Janz

et al., 2019) both directly estimate value bonuses, but are limited to linear function approximation.

Dora (Choshen et al., 2018) uses value bonuses that are inversely proportional to visitation counts,

which is again difficult to extend to the general function approximation setting.

1Usually, b would be called a confidence interval, with q(s, a) + b(s, a) an upper confidence bound. However, we
do not use that term here, because for the heuristics we use, it is not clear we get a valid upper confidence bound.
Instead, it is a bonus added to the value when deciding which action looks promising.
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1.1 Contributions

In this work, we introduce a new approach to obtain value bonuses for reinforcement learning,

with an algorithm we call Value Bonuses with Ensemble errors (VBE). Similarly to ACB, we use

a maximum over an ensemble, but directly use that maximum as the value bonus, rather than

indirectly through reward bonuses. The idea is to sample a random action-value function (RQF)—

such as a random neural network—and extract the implicit random reward function underlying

this RQF target. The RQF predictor in the ensemble is updated using temporal difference learning

on this random reward. Because the RQF target is sampled from the same function class as the

RQF predictor, the error can eventually reduce to zero, allowing the value bonus to shrink to zero.

These value bonuses are learned separately from the main action-values, and so can be layered on

top of many algorithms. In our experiments, for example, we simply use Double DQN (Van Hasselt

et al., 2016), and modify the step where the agent selects an action from ϵ-greedy to instead taking

the greedy action in the value estimate plus the value bonus. We show that this simple approach

is an effective, and scalable method for exploration that improves sample efficiency of learning in a

range of domains: from hard exploration gridworlds, to image-based Atari domains.

1.2 More on Related Work

Many algorithms estimate optimistic values via upper confidence bounds in the tabular setting.

These include Interval Estimation Q-learning (Meuleau & Bourgine, 1999), E3 (Kearns & Singh,

2002), R-max (Brafman & Tennenholtz, 2003), UCRL (Auer & Ortner, 2006), UCRL2 (Jaksch

et al., 2010), REGAL (Bartlett & Tewari, 2012), Delayed Q-learning (Strehl et al., 2006) and

MBIE-EB (Strehl & Littman, 2008). Some of these ideas have been extended to the linear function-

approximation setting, maintaining some theoretical guarantees, by RLSVI (Osband et al., 2016a),

DGPQ (Grande et al., 2014), Exploration-enhanced POLITEX (Abbasi-Yadkori et al., 2019) and

LSVI-UCB (Wang et al., 2019).

Though some theoretically-sound works listed above use a model-based approach, Neu & Pike-

Burke (2020) showed that value optimism and model optimism are equivalent. This insight is

useful, because value optimism should be simpler to obtain; it supports the approach taken in

this work. Closely related, Ciosek et al. (2020) show that fitting random prior functions serve as

a computationally tractable approach towards estimating uncertainty in the supervised learning

setting, which also motivates the approach taken here.
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Chapter 2

Background

Reinforcement Learning (RL) is a paradigm of Artificial Intelligence (AI), where an agent learns

to interact with an environment to maximize a scalar reward signal. The agent learns to select

actions that maximize the expected sum of future rewards (Sutton & Barto, 2018) or the average

reward (Naik et al., 2019; Wan et al., 2021). The agent does not have access to a supervisor, nor

does it have access to a dataset of pre-collected examples. Instead, the agent learns by trial and

error, receiving feedback in the form of rewards and penalties. In the tabula-rasa setting the agent

has no prior knowledge of the environment or about itself, and must learn by interacting with the

environment. After each interaction, the agent receives a reward and observes the next state of the

environment. The agent then updates it’s beliefs about the environment, and uses these beliefs to

update it’s behavior accordingly. The goal of the agent is thus to learn a policy that maximizes

the expected total reward.

This is different from supervised learning, where the agent is given a dataset of examples and a

supervisor that provides the correct output for each example. The goal there is to learn a function

that maps inputs to outputs. RL bears a similarity with unsupervised learning in that there is no

need for labeled data for unsupervised learning algorithms, but the goal however is different. In

unsupervised learning, the goal is to learn a representation of the data, or pattern recognition. The

key thing that distinguishes RL from other machine learning paradigms is that in RL the agent

learns by interacting with the environment, and that an RL agent has autonomy to interact with

the environment, cause changes in the environment, learn from these changes, and to ultimately

learn to control or maximize the outcome of the interactions.

Formally this agent-environment interaction is modelled as a Markov Decision Process (MDP).

An MDP consists of (S,A, P, r, γ) where S is the set of states; A is the set of actions; P : S×A×S →
[0,∞) provides the transition probabilities; r : S × A × S → R is the reward function; and

γ : S × A× S → [0, 1] is the transition-based discount function which enables either continuing or
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episodic problems to be specified (White, 2017). On each step, the agent selects action At in state

St, and transitions to St+1, according to P , receiving reward Rt+1
def
= r(St, At, St+1) and discount

γt+1
def
= γ(St, At, St+1).

There are many ways for an agent to learn how to interact with the environment and learn a

policy that maximizes the expected total reward. One such way to do this is through an iterative

process called Generalized Policy Iteration (GPI) (Sutton & Barto, 2018). In GPI, an agent iter-

atively evaluates the current policy and then improves it. Policy evaluation involves learning an

action-value function for the current policy. An action-value function qπ(s, a) is the expected total

reward (or return) that the agent will receive by following the policy π, after taking the action a

in state s. The total reward or the return can simply be defined as the discounted sum of future

rewards, or as the average reward (Naik et al., 2019; Wan et al., 2021). The policy is improved by

making it greedy with respect to the improved and updated action-value function. The process is

repeated until convergence.

In this work, we focus on the value-based approach to RL, and on maximizing the expected

sum of future rewards. However, the work we present later in Chapter 3 of this thesis is in no way

limited to this setting and can easily be extended to many different RL frameworks. In value-based

RL, the agent learns and behaves according to an action-value function qπ(s, a). The action-value

function can be estimated using Monte Carlo (MC) methods, Dynamic Programming (DP), or

Temporal Difference (TD) learning.

MC methods estimate the value function by averaging the returns observed after visiting a

state. DP estimates the value function by iteratively applying the Bellman equation, which is a

recursive equation that expresses the value of a state in terms of the value of it’s successor states.

This however requires access to the underlying models of the MDP, which makes it hard to scale

when the MDP is large and not known. TD learning estimates the value function by bootstrapping,

i.e. by using the value of the next state to estimate the value of the current state. TD learning and

MC methods make use of the collected data and do not require access to the underlying models of

the MDP, making them more scalable. TD learning is more efficient than MC methods, because

it uses bootstrapping, and thus requires less samples to converge. Thus TD learning combines the

best of both worlds, it is more efficient than MC methods as it uses bootstrapping, and it does not

require access to the underlying models of the MDP.

For a policy π : S×A → [0,∞], the value for taking action a in state s is the expected discounted

sum of future rewards, with actions selected according to π in the future,

qπ(s, a) = Eπ

[︂
Rt+1 + γt+1q

π(St+1, At+1)
⃓⃓⃓
St = s,At = a

]︂
where Eπ means that actions are selected according to π in the expectation. The policy π can be
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progressively improved by making it greedy in qπ(s, a), then updating the action-values for the new

policy, then repeating until convergence (Sutton & Barto, 2018).

In practice, these steps are approximated. The action-values qπ are approximated using qw pa-

rameterized by w ∈ W ⊂ Rd. One algorithm to estimate qw is Double DQN (DDQN) (Van Hasselt

et al., 2016). DDQN is an off-policy algorithm, meaning that it uses a different behavior policy πb

to select actions from the policy it evaluates, which is greedy in qw. This algorithm uses a target

network qw̃ for bootstrapping, giving the following update for one transition (s, a, r, s′, γ):

w ← w + ηδ∇qw(s, a) for δ
def
= r + γqw̃(s′, argmax

a′
qw(s′, a′))− qw(s, a) (2.1)

The behavior policy is typically defined to be ϵ-greedy in qw, but can be any policy that promotes

exploration. In this work, we consider an alternative choice for the behavior policy: one that uses

a value bonus b, πb(s) = argmaxa qw(s, a) + b(s, a). The value bonus should reflect uncertainty in

the action-value estimate, encouraging the behavior policy to take an action in a state if it has

high uncertainty. It might have high uncertainty if (s, a) is quite different from what it has seen

before—meaning it has never been visited—or because the agent has not yet visited it sufficiently

often to be certain about it’s value. The focus of this work is a new approach for obtaining b for

the deep RL setting.

2.1 Exploration background

There are many methods and algorithms that exist for exploration in RL, and there are many

categories in which these exploration methods can be divided into, but an important distinction

is whether an exploration strategy provides directed or undirected exploration. Undirected explo-

ration works by injecting randomness in the agent’s behavior policy which allows the agent to take

non-greedy actions at random. Directed exploration allows the agent to take actions that reveal

more information about the environment. Although it makes more sense to use directed exploration

methods, however in practice undirected exploration methods, like ϵ-greedy or softmax policies are

more common. The reason for this is that undirected exploration methods are easier to implement

without much overhead, whereas, it is hard to design scalable directed exploration strategies. In this

section we will discuss why directed exploration is important, discuss some exploration strategies,

some of the shortcomings of existing methods, and how they relate to our work.
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2.1.1 Undirected Exploration

Undirected exploration methods are the most common methods used in practice. The most common

undirected exploration methods are ϵ-greedy and softmax policies. In ϵ-greedy exploration, the

agent selects a random action with probability ϵ, and selects the greedy action with probability

1 − ϵ. This allows the agent to take non-greedy actions at some timesteps. This simple method

works well in practice for simpler environments where the state space is relatively small. However,

since the action selection is an independent random process, the actions taken by the agent do not

seek to reveal useful information about the environment. Also, because of random selection the

agent can very well select actions that have been taken before or the greedy action itself. This is a

very naive way to explore and is very sample inefficient. In practice the agent usually starts with

a high value of ϵ and then gradually decreases it over time. This is because the agent needs to

explore more in the beginning and then exploit later on. However, this is not a very good strategy

since the agent can not know when and how much it needs to explore and exploit. In softmax

exploration, also known as Boltzmann exploration, the agent selects an action according to the

softmax distribution, which is a distribution proportional to the magnitude of the action-values,

parameterized by a temperature parameter τ . The temperature parameter controls the entropy of

the distribution, and thus controls the degree of exploration. The stochastic nature of sampling from

the distribution allows the agent to take actions that have not yet been tried enough, at random.

However, the agent can still take the greedy action with a non-zero probability, and thus the agent

can still take actions that have been taken before. Also, it is not clear how to set the temperature

parameter τ , as it depends on the nature of the environment which is not known a prior. Another

popular undirected exploration strategy for Deep RL is the use of Noisy Networks (Plappert et al.,

2017; Fortunato et al., 2018), which in addition to the network parameters, maintains and updates

a set of noise parameters which are added to the original network parameters, and are randomly

scaled after each optimization step. All these exploration strategies provide some level of random

exploration, however, these strategies do not seek to take actions that reveal more information about

the environment, and thus are not suitable for complex environments with large state spaces, and

are sample inefficient. Undirected random exploration strategies can take exponential times to

explore the state space when the goal is at a hard to reach place (Osband et al., 2019).

2.1.2 Directed Exploration

In directed exploration the agent seeks to take actions that reveal more information about the

environment. The basic idea of most directed exploration algorithms comes from the principle of

Optimism in the Face of Uncertainty (OFU) (Kaelbling et al., 1996; Szepesvári, 2022). The general

idea is that whenever the agent is uncertain about an action in a state, the agent should take that

action. There can be many sources of uncertainty, it could be that the agent has not taken that

8



action before or enough times compared to the other actions, or that there is some stochasticity

associated with that state either in the reward or the transition function, thus requiring more visits

to be certain about the learned estimates associated with that state.

One of the fundamental directed exploration algorithm comes from the bandit literature, and is

known as Upper Confidence Bound (UCB) (Agrawal, 1995; Auer et al., 2002; Auer, 2002; Sutton &

Barto, 2018; Lattimore & Szepesvári, 2020). In the bandit setting there are K arms, and the agent

has to select an arm to pull at each timestep. The agent receives a reward after pulling an arm,

and the goal is to maximize the total reward. The agent does not know the reward distribution

of each arm θt(a), where a ∈ [1, 2, ...,K], and thus has to learn it by pulling the arms. In the

simplest version of UCB the agent maintains counts of the number of times each arm has been

pulled Nt(a), and the estimate of reward function of each arm θ̂t(a). The agent then selects the

arm based on the reward function estimates and the bonus term which is inversely proportional to

the counts associated with that arm: At = argmaxa θ̂t(a) + β
√︂

log t
Nt(a)

, where β is scaling parameter

for the bonus. The agent will select an arm that has been pulled less number of times, and thus

is uncertain about it’s reward function estimate. This is a very simple algorithm with strong

theoretical guarantees and works well in practice. However, it is not clear how to extend this to

the multi-step RL setting, where the agent takes actions with respect to a value function, and thus

needs a bonus in the value space that can lead the agent to uncertain parts of the state-space later

on following a particular policy.

Another way of doing directed exploration is to use Thompson sampling (Thompson, 1933),

which has also been extensively studied in the bandit literature (Chapelle & Li, 2011; Agrawal

& Goyal, 2012; Gopalan et al., 2013; Agrawal & Goyal, 2013; Russo & Van Roy, 2014). Thomp-

son sampling is based on sampling the reward function estimates θ̂t(a) from a posterior distri-

bution Nt(µt,a,
∑︁

t,aa), where µt,a and
∑︁

t,aa is the expected mean and covariance of each arm

a ∈ [1, 2, ...K] updated using Bayesian regression. Thompson sampling provides certain advantages

over UCB methods, like not requiring to compute the bonus term entirely, rather Thompson sam-

pling only requires sampling the parameters from the posterior distribution (Russo & Van Roy,

2014). Thompson sampling provides optimism by directly incorporating the covariance of the

posterior distribution in the action selection process: At = argmaxa θ̂t(a). An arm a with higher

uncertainty in it’s estimates will have a higher variance, which would produce higher values for that

arm due to its broad distribution. Thompson sampling also enjoys strong theoretical guarantees.

However, this is perhaps even more complex to extend to the RL setting, as a naive implementa-

tion would require maintaining a posterior distribution over the action-value function, which can

be computationally intractable.

There have been attempts to extend UCB-style (Bellemare et al., 2016; Pathak et al., 2017;

Choshen et al., 2018; Burda et al., 2019; Ash et al., 2022), and Thompson sampling (Osband et al.,
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2013; 2016a;b; Osband & Van Roy, 2017; Osband et al., 2018; 2019; 2023) exploration methods to

the RL setting, which gives us the two main class of directed exploration algorithms that we will

discuss here. First is the reward bonus methods, and second is a class of methods that incorporates

optimism directly in the action-value estimates.

2.1.3 Reward bonus methods

Reward bonus strategies aim to extend UCB-style exploration methods to the RL setting. The idea

is simple, during action selection the agent should pick actions that maximizes the action-value and

a bonus term, which corresponds to the uncertainty associated with those actions. However, in the

multi-step RL setting the agent has to learn about what will happen in the future and reflect that

information in the value estimates. Similarly, the agent at each timestep needs to consider the

uncertainty about the future and not just the immediate uncertainty associated with the actions at

that step. This makes it challenging to extend UCB-style methods to the RL setting, and requires

that the local uncertainty of a state propagates to earlier states (Meuleau & Bourgine, 1999). One

way to do this is that the agent in addition to trying to maximize the expected sum of future

rewards, should also maximize the expected sum of future intrinsic rewards. The intrinsic reward

or the reward bonus can be thought of as a reward representing agent’s curiosity or uncertainty.

Most simply, the bonus term – proportional to agent’s uncertainty – is added to the reward coming

from the environment. The agent then estimates the sum of future rewards and the added bonus

term, and takes actions that maximizes this bonus incorporated value estimates. Ideally, with

more experience the bonus term should decay and the value estimates converge to the true value

estimates.

The reward bonus is typically a proxy measure of uncertainty and in literature many different

methods have been proposed, ranging from count-based methods (Bellemare et al., 2016; Ostrovski

et al., 2017; Martin et al., 2017; Tang et al., 2017; Choshen et al., 2018; Machado et al., 2020) to

prediction errors in dynamics function (Stadie et al., 2015; Pathak et al., 2017), and in random

auxiliary tasks (Burda et al., 2019; Ash et al., 2022). In general it is hard to keep accurate track of

visitation counts with function approximation and large state-spaces. Prediction errors in dynamics

function may not be a suitable measure of uncertainty as it can reflect the noise in the environment

(Linke et al., 2020; Burda et al., 2019).

Reward bonus strategies, although quite famous, lack an important property for exploration,

i.e., they do not provide first-visit optimism. Reward bonus strategies without any optimistic

initialization are retroactive, rather than being proactive in terms of providing optimism. An agent

has to take an action in a state first for the intrinsic reward to be incorporated in its estimates. This

means that the agent can only know about the uncertainty of the state-action pairs it has already

visited. This uncertainty is usually referred to as in-sample epistemic uncertainty. However, for
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an agent to be able to effectively explore the environment, it needs to be able to take actions that

have not yet been tried, and take actions that lead to states where some actions have not been

tried. This is referred to as the out-of-sample uncertainty, and the reward bonus methods without

additional methods do not incorporate this type of uncertainty.

Another problem with reward bonus strategies is that they can induce non-stationarity in the

learning process, even if the environment itself is stationary. The reward bonus, being a measure

of uncertainty can initially start off high and then decay with learning and experience, this changes

the rewards distribution as it gets added to the original reward. This can sometimes slow down

the learning process and requires additional solutions to deal with (McLeod et al., 2021; Ash et al.,

2022).

2.1.4 Optimistic value estimates

Instead of estimating local uncertainties and then propagating it to earlier states, another way to

do directed exploration is to incorporate optimism directly in the value estimates. The idea is

simple, the agent should take actions that maximize the value estimates, and the value estimates

should be optimistic. The agent should be optimistic about the value estimates of the states that

it has not yet visited (out-of-sample epistemic uncertainty), and the states that it has not yet

visited enough times (in-sample epistemic uncertainty). This however is more challenging as it is

not easy to get accurate uncertainty estimates for the value function. Kumaraswamy et al. (2018)

proposed an algorithm called Upper Confidence Bound Least Square (UCLS), which estimates the

uncertainty around value estimates by learning a second value function with the cumulant being

the TD error for a state-action pair. The uncertainty value function is combined with the original

value function to define an upper bound and the actions are selected from this upper bound.

However, this method only provides in-sample epistemic uncertainty estimates, and is restricted to

linear-function approximation.

Another class of algorithms called Randomized Least Square Value Iteration (RLSVI) (Wen,

2014; Osband et al., 2016a; 2019) aim to approximate Thompson sampling for RL. The idea is

simple, the value function estimates are updated with data perturbed with independent gaussian

noise z ∼ N(0, v), where v is supposed to represent the variance in the environment. In the

linear setting, the RLSVI solution is equivalent to the conjugate Bayesian posterior. The estimates

Qθ̃H(s,a) given by RLSVI tend to grow and shrink with the variance of Q∗
H(s, a) due to sampling

from the posterior distribution. This is what provides optimism in the value estimates and allows

the agent to do deep exploration. However, the original RLSVI algorithm is a fixed-horizon batch

algorithm that requires re-using the entire data to update the estimates. Also, the noise z(s, a)

has to be sampled once during one iteration or episode. This makes sure that the optimistic value

of a state due to the noise z(s, a) is allowed to propagate. Sampling the noise multiple times in
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one iteration can cancel out the optimism, as some noise samples would be optimistic and other

pessimistic.

The practical online variant of RLSVI uses the discounted RL framework, and relies on ensemble-

sampling to estimate the distribution induced by RLSVI. This version maintains an ensemble of

value functions and updates them in parallel using distinct datasets for each value function in the

ensemble. A short coming of RLSVI is that it requires the noise variance parameter v, which can

not be known a prior, as it is supposed to the model the variance of the environment. Another

way to incorporate randomization is to use statistical bootstrapping (Tibshirani & Efron, 1993),

as is used in Bootstrap-DQN (Osband et al., 2016b). Bootstrap-DQN is an instance of the class of

RLSVI algorithms, which provides some advantage over gaussian noise perturbing (Osband et al.,

2016b; 2019) like not requiring the variance parameter v. These algorithms incorporate in-sample

epistemic uncertainty directly into the value estimates, however, they lack out-of-sample uncertainty

incorporation. A simple fix was proposed by Osband et al. (2018), by using fixed additive priors

for each value function in the ensemble to provide first-visit optimism.

2.1.5 baseline methods

Here we describe the baseline methods used in this work for comparison on different RL benchmarks.

We use algorithms belonging to both the classes of directed exploration methods, i.e., reward bonus

methods and optimistic value estimates.

BDQN

The first one is Bootstrap-DQN with additive priors (BDQN) as proposed in Osband et al. (2018).

BDQN uses an ensemble of size k action-value functions, which are updated in parallel using

distinct replay-buffers for each value function in the ensemble. At the beginning of each episode

a value function is uniformly sampled from the ensemble j ∼ U([1, ..., k]), and the agent behaves

greedy w.r.t Qj for that episode. It is not clear how and when the value function should be

sampled for continuing problems. In Osband et al. (2016b) an ensemble voting policy is used for

offline evaluations on Atari benchmark. The statistical bootstrapping accounts for the in-sample

epistemic uncertainty, and the out-of-sample epistemic uncertainty is accounted for by using fixed

additive priors for each value function in the ensemble.

Let γ ∈ [0, 1] be the discount factor, fθ be the action-value function parameterized by θ, fθ̄ be

the periodically updated target function, p be the fixed additive prior, c be scale parameter for the
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Algorithm 1 Bootstrap-DQN with additive priors (BDQN)

1: Parameters: ensemble size k, bonus scale c, target net update frequency τ , batch size m
2: Initialize empty buffers B[1...k] ← ∅, ensemble fθ1 , . . . , fθk , target networks fθ1̄ . . . fθk̄ , and fixed

additive priors p1, . . . , pk with a standard random initialization
3: j ∼ U([1, ..., k]) // Uniformly sample a value function from the ensemble
4: Get the initial state s0
5: for environment interactions t = 0, 1, . . . do
6: Take action at ← argmaxat(fθj (st, at) + c ∗ pj(st, at)) and observe rt+1, st+1, γt+1

7: With probability 0.5 for each buffer add (st, at, rt+1, st+1, γt+1) to B[1...k]

8: for i in [1, . . . , k] do
9: Sample a mini-batch from Bi

10: Update fθi using Equation (2.2)
11: end for
12: if t + 1 mod τ == 0 then
13: fθ̄[1...k] ← fθ[1...k] // Updating target networks

14: end if
15: if γt+1 == 0 then
16: j ∼ U([1, ..., k]) // Uniformly sample a value function at the end of episode
17: end if
18: end for

prior, and D = (st, at, rt, st+1) be the data, then the TD update for BDQN is given by:

θ ← θ+ηδθ∇fθ(s, a); δθ
def
= rt + γ max

at+1

(fθ̄(st+1, at+1) + c ∗ p(st+1, at+1))⏞ ⏟⏟ ⏞
target

− (fθ(st, at) + c ∗ p(st, at))⏞ ⏟⏟ ⏞
prediction

(2.2)

In addition to this update, BDQN uses a double-or-nothing bootstrap (Owen & Eckles, 2012), i.e.,

each transition (st, at, rt, st+1) has a 50% chance of being included in the replay-buffer of each value

function in the ensemble. Algorithm 1 shows the complete pseudo-code for BDQN.

DQN-P

DQN-P is a simple modification of BDQN, with only one value function with additive priors, and

without any statistical bootstrapping. The reason to add this baseline is to test if the the additive

priors can provide the necessary out-of-sample uncertainty and can it be used instead of ϵ-greedy

exploration. Algorithm 2 shows the pseudo-code for DQN-P.
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Algorithm 2 DQN with additive priors (DQN-P)

1: Parameters: bonus scale c, target network update frequency τ , batch size m
2: Initialize empty buffers B ← ∅, action-value function fθ, target network fθ̄, and fixed additive

priors p with a standard random initialization
3: Get the initial state s0
4: for environment interactions t = 0, 1, . . . do
5: Take action at ← argmaxat(fθ(st, at) + c ∗ p(st, at)) and observe rt+1, st+1, γt+1

6: Add (st, at, rt+1, st+1, γt+1) to B
7: Sample a mini-batch from B
8: Update fθ using Equation (2.2)
9: if t + 1 mod τ == 0 then

10: fθ̄ ← fθ // Update the target network
11: end if
12: end for

RND

Random Network Distillation (RND) (Burda et al., 2019) is a reward bonus exploration method

that defines the intrinsic reward as a model’s prediction error trained to predict random features for

observations. Identifying the issues with prediction errors of a model trained to mimic a stochastic

transition dynamics model, RND proposes to predict deterministic targets, so that the errors in

predictions are indicative of whether the agent has seen that observation enough times during the

updates. A model trained to predict a deterministic target for an observation would ideally have

less prediction errors for the observations seen many times during the updates, compared to those

seen less frequently. This captures the essence of epistemic uncertainty, and allows the prediction

error to be used as a reward bonus.

RND uses a randomly initialized network parameterized by θ̂ to define the target function

fθ̂ : O → Rd, where O is the observation. A prediction function fθ is defined that belongs to the

same function class as the prediction network fθ̂, meaning both have similar architecture and similar

weight initialization methods. The prediction network is then updated using gradient descent to

minimize the Mean Squared Error (MSE) ∥fθ(x) − fθ̂(x)∥2. The intrinsic reward or the reward

bonus is defined as the prediction error of the prediction network rint = ∥fθ(x) − fθ̂(x)∥2. RND

then uses this intrinsic reward to learn a separate value function to propagate local uncertainties.

The reason for using a separate value function is because making the intrinsic value function

non-episodic helps with exploration (Burda et al., 2019; Ash et al., 2022). The idea behind it is

that the agent should be curious about a state even if the episode terminates in that state, i.e.,

the intrinsic return should not be zero for a state because of episode terminating. Since, the value

function trained on environment rewards can be episodic – depending on the environment – a

combined value function can not be learned on these two different reward streams. Also, it maybe
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Algorithm 3 Random Network Distillation (RND) with PPO

1: Parameters: N ← number of rollouts, Nopt ← number of optimization steps, K ← length of
rollouts, t← 0

2: Initialize fθ̂ target function, fθ prediction function, and πθ̃ policy parameters with a standard
random initialization

3: for i in [1, . . . , N ] do
4: for j in [1, . . . ,K] do
5: take action at ∼ π(.|st) and observe rt+1, st+1, γt+1

6: calculate intrinsic reward rintt+1 = ∥fθ(x)− fθ̂(x)∥2
7: add (st, at, rt+1, rintt+1 , st+1, γt+1) to optimization batch Bi

8: t← t + 1
9: end for

10: Compute Return Ri, Rinti , and Advantages Ai, Ainti

11: Combine Advantages Acomb
i = Ai + Ainti

12: for k in [1, . . . , Nopt] do
13: Update policy parameters πθ̃ using PPO on Bi

14: Update prediction function fθ using MSE loss on Bi

15: end for
16: end for

better to learn a separate value functions for each reward stream, as the intrinsic reward function

is non-stationary, whereas the environment reward function can be stationary or non-stationary

depending on the environment. To incorporate the reward bonus into agent’s behavior RND uses

a modified version of Proximal Policy Optimization (PPO) (Schulman et al., 2017) that uses the

two mentioned value functions for the updates.

Since RND is a reward bonus method, it does not provide the out-of-sample optimism, also

since the targets are deterministic it does not provide extra bonus for visiting the stochastic parts

of the environments, as they require more visitation. Algorithm 3 provides the pseudo-code for

RND.

ACB

Anti-concentrated confidence bonuses (ACB) (Ash et al., 2022) is a reward bonus strategy that tries

to extend a UCB-style exploration algorithm to the RL setting. ACB uses an ensemble of linear

regressors which is trained to predict independent standard gaussian noise N(0, 1). The reward

bonus is defined to be proportional to the maximum deviation over this ensemble from the mean

0. With more updates the ensemble would concentrate around the mean 0, and thus the reward

bonus would decay.

Like RND, ACB uses a separate non-episodic value function for the reward bonuses to propagate

local uncertainties, and uses PPO to update the policy parameters. To deal with non-stationarity
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Algorithm 4 Anti-concentrated confidence bonuses (ACB) with PPO

1: Parameters: N ← number of rollouts, Nopt ← number of optimization steps, K ← length of
rollouts, t← 0

2: Initialize wθ1 . . . wθk ensemble of linear regressors, πθ̃ policy parameters, auxiliary policy pa-
rameters πθ̃aux with a standard random initialization

3: for i in [1, . . . , N ] do
4: for j in [1, . . . ,K] do
5: take action at ∼ π(.|st) and observe rt+1, st+1, γt+1

6: Compute gradient-features gt+1
def
= g(st+1, πθ̃, πθ̃aux)

7: calculate intrinsic reward rintt+1 = maxl(⟨gt+1, wθl⟩2)
8: add (st, at, rt+1, rintt+1 , st+1, γt+1) to optimization batch Bi

9: t← t + 1
10: end for
11: Compute Return Ri, Rinti , and Advantages Ai, Ainti

12: Combine Advantages Acomb
i = Ai + Ainti

13: for k in [1, . . . , Nopt] do
14: Update policy parameters πθ̃ using PPO on Bi

15: For all l ∈ [1 . . . k] sample random targets y[1...k] ∼ N(0, 1)
16: Update ensemble wθ[1...k] using MSE loss on y[1...k] and Bi

17: Update auxillary network parameters πθ̃aux ← απθ̃ + (1− α)πθ̃aux
18: end for
19: end for

ACB uses gradient-features computed w.r.t a tail-averaged set of policy weights instead of the

most recent policy weights being used to interact with the environment. The gradient-features is a

representation learning technique that comes from the active learning domain (Sener & Savarese,

2017), and is used instead of the regular last-layer neural network features as input to the linear

regressors. In addition, the reward bonuses are computed using a Polyak-averaged version of

the ensemble rather than the ensemble itself, and the weights of the ensemble are aggressively

regularized towards the initial weights of the ensemble. This is done to prevent the reward bonuses

from decaying too quickly.

Like RND, ACB also does not provide out-of-sample optimism. Since the targets are stochastic,

it may take more time and visits to learn the targets and thus bonus maybe valid for a longer time.

This can be useful if the environment is stochastic, however, the variance in the targets and the

variance in the environment may not be the same. Stochastic targets can cause more flailing, even

in the parts where the environment is deterministic. Also, for the stochasticity in the targets to

model the stochasticity in the environment, it maybe important to sample the target noise once per

interaction like in Osband et al. (2019), rather than sampling it before every update when using a

replay-buffer. Algorithm 4 provides the pseudo-code for ACB.
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Chapter 3

Value Bonuses with Ensemble Errors

In this section, we present VBE, an alternate approach for extending UCB-style exploration to RL

by directly estimating the value bonus. We first motivate why we need to estimate the value bonus

in the RL setting. Then we discuss how to estimate the value bonuses for reinforcement learning,

using a novel idea around random target value functions. Finally we put it all together into an

optimistic exploration algorithm called Value Bonuses with Ensemble errors (VBE).

UCB-style exploration methods originate from the multi-armed bandit setting, where an agent

has k-arms, each with its own reward distribution. The agent must choose which arm to pull at

each time step, and the goal is to maximize the total reward. The agent does not know the reward

distributions, but can learn them by pulling the arms. The agent maintains estimates of mean

reward for each arm, and acts according to the estimated mean rewards. In order for the agent to

explore different arms, it needs a bonus on top of the estimated mean rewards, that encourages the

agent to pull arms it is uncertain about. This is primarily done by keeping counts for each arm

pull and defining a bonus inversely proportional to these counts. The agent then acts greedily with

respect to the estimated mean reward plus the reward bonus. In contrast, an RL agent maintains

estimates of the value of each state-action pair, and acts according to these value estimates. Thus,

we need a bonus on top of the estimated values, or value bonus, that encourages the agent to visit

states and take actions it is uncertain about.

To understand why, consider the case where we use prediction errors over an ensemble to define

an exploration bonus, as is done in ACB and RND. For an ensemble of size k, we can generate

randomly initialized neural networks f1, . . . , fk and update the learned functions f̂1, . . . , f̂k in the

ensemble using a squared error: for each (s, a), update each f̂ i using loss (fi(s, a)− f̂ i(s, a))2. The

bonus for any (s, a) can be set to

b(s, a)
.
= max

i∈[k]
|fi(s, a)− f̂ i(s, a)| (3.1)
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Ciosek et al. (2020) show that fitting random prior functions serve as a computationally tractable

approach towards estimating uncertainty in the supervised learning setting. Unfortunately, in the

reinforcement learning setting, using this bonus directly for action selection will not do what has

been called deep exploration (Osband et al., 2019), as this bonus is a local uncertainty estimate,

and is likely to concentrate too quickly. We want the agent to reason not just about uncertainty

for this state and action, but also about the uncertainty of the states that it leads into.1

Instead we want a bonus that estimates uncertainty in the value estimates, or value bonus.

Existing methods that aim to extend UCB-style exploration to RL first estimate local uncertainties

associated with states using counts, prediction errors, etc., and then propagate these local uncer-

tainties via value learning to get a value bonus. In this work we propose to use prediction errors

over an ensemble that directly gives us the value bonus and promotes deep exploration. More

specifically, we want to generate a reward function ri for each fwi , where the fwi are updated using

standard temporal difference learning approaches. We want the learning dynamics for these value

functions to resemble the primary value function, so that they learn at a similar timescale and are

more likely to converge to zero once the primary value function has also converged.

In order to measure errors in the value estimates that can be used to define the value bonus, one

needs access to the true value function, which is not known a prior. The value of a state depends

on the reward function and the policy, i.e., the value of a state can be different for different policies.

Thus, we need to define reward and target value functions that are consistent with each other

and allows us to easily measure the errors. Consider if we again do the simplest thing: generate

a random neural network ri for each fwi . Let us assume for now that we have a fixed policy, π.

First, it is not clear how we would actually measure the error since we do not know the true value

function fi, namely the expected return using ri under policy π. Further, this true value function

may not be representable by fwi .

Instead, our proposed approach is to generate a random action-value function (RQF) fi, and

then define rewards consistent with that fi. Define the stochastic ensemble reward from (St, At) to

be

Ri,t+1
def
= fi(St, At)− γt+1fi(St+1, At+1), (3.2)

where At+1 ∼ π(·|St+1) and γt+1
def
= γ(St, At, St+1) is defined by the environment. Further, by

definition, the action-values of the random prediction function is:

qπi (s, a)
def
= Eπ

[︁
Ri,t+1 + γt+1q

π
i (St+1, At+1)

⃓⃓
St = s,At = a

]︁
. (3.3)

We show in the following proposition that qπi = fi.

1Note that RND did not use these errors directly for exploration. Instead, they used them as reward bonuses,
which can retroactively promote deep exploration, barring the issue that they do not promote first-visit optimism.

18



Proposition 1. For all i ∈ [k], we have qπi = fi.

Proof.

qπi (s, a) = Eπ

[︁
Ri,t+1 + γt+1q

π
i (St+1, At+1)

⃓⃓
St = s,At = a

]︁
= Eπ

[︁
Ri,t+1 + γt+1Ri,t+2 + γt+1γt+2q

π
i (St+2, At+2)

⃓⃓
St = s,At = a

]︁
= Eπ

[︂
[fi(s, a)− γt+1fi(St+1, At+1)] + γt+1[fi(St+1, At+1)− γt+2fi(St+2, At+2)]

+ γt+1γt+2q
π
i (St+2, At+2)

⃓⃓
St = s,At = a

]︂
= Eπ

[︂
[fi(s, a)−γt+1fi(St+1, At+1)]⏞ ⏟⏟ ⏞

cancels

+γt+1fi(St+1, At+1)⏞ ⏟⏟ ⏞
cancels

− γt+1γt+2fi(St+2, At+2)] + γt+1γt+2q
π
i (St+2, At+2)

⃓⃓
St = s,At = a

]︂
We can keep unrolling this, and these terms will continue to telescope, leaving only the first term

fi(s, a), completing the proof.

Therefore, updating fwi with rewards ri should converge to qπi —and so to fi—because fi is in

the function class of fwi . This convergence ensures the value bonuses go to zero, which is desired

if we want the agent to stop exploring and converge to the greedy policy. Even with a fixed policy,

however, this convergence will only occur under certain conditions. Primarily, the failure would be

that fwi gets stuck in a local minima or even that it diverges, due to know issues with temporal

difference (TD) learning algorithms combined with neural networks and with off-policy updates.

There is fortunately a large (and growing) literature understanding the convergence behavior of

TD algorithms. Under linear function approximation, we know least-squares TD converges at a rate

of 1/
√
T to the global solution, even under off-policy sampling (Tagorti & Scherrer, 2015). With

the advent of theory for overparameterized networks, TD with a particular neural network function

class has been shown to converge to the global solution, under on-policy sampling (Cai et al., 2019).

In general, we know that a class of modified TD algorithms, called gradient TD methods, converge

even under off-policy sampling and nonlinear function approximation (Dai et al., 2017; Patterson

et al., 2022). Convergence under off-policy sampling is key in our setting, because the behavior

policy is optimistic but the target policy may be greedy. We expect that under certain conditions

on the neural network it might be possible to say that these gradient TD methods converge to

global solutions, though to the best of our knowledge, no such work yet exists. We provide a more

complete discussion in Appendix A of how this existing theory on convergence of TD applies to our

setting.

To understand how our value bonus method provides optimism by implicitly conserving un-

certainty in the value estimates consider this example: Consider the following transition sequence:
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(s, a, s′, a′), fw(s, a) is the predictor RQF, f(s, a) is the target RQF, and reward function for the

predictor RQF is defined as r(s, a, s′, a′) = f(s, a) − γ ∗ f(s′, a′) (Equation 3.2). Now suppose

that the state-action pair (s′, a′) has been less frequently visited and thus has high prediction er-

ror. This would mean that the error or the bonus(s′, a′) = |fw(s′, a′) − f(s′, a′)| would be high,

but how does this high uncertainty affect bonus(s, a)? Notice that we update fw(s, a) by boot-

strapping the prediction value of fw(s′, a′) (TD learning update), that is the target for fw(s, a)

is r(s, a, s′, a′) + γ ∗ fw(s′, a′). This bootstrap target can only be the “true target” f(s, a), if

γ ∗ fw(s′, a′) == γ ∗ f(s′, a′), that is fw(s′, a′) is error-free. This means that prediction error for

(s,a) or the bonus(s,a) will only go down to zero when the prediction error for all subsequent state-

action pairs is zero. Proposition 1 reflects this property. This essentially allows us to conserve

epistemic uncertainty in the value estimates, and do directed deep exploration.

Connection to Reward Shaping: It is interesting to note that this work has close similarities

with the reward shaping literature (Ng et al., 1999). The reward function defined for each RQF fwi

in equation 3.2 is a difference of potential functions. This is essentially what allows the predictor

RQFs to converge to the target RQFs. Similar to the framework in Ng et al. (1999), we can define

the RQF framework using parallel MDPs, i.e., for each RQF in the ensemble we can define a parallel

MDP M ′
i which is identical to the original MDP M

def
= (S,A, P, r, γ) except that the reward function

is defined as ri(s, a, s
′, a′) = fi(s, a)−γ ∗fi(s′, a′). The true value function for the MDP M ′

i and for

any policy π is given by fi. Knowing this true value function allows us to directly measure errors

in the value estimates and use it as a bonus to do directed exploration in the original MDP M .

Similar to the result in Ng et al. (1999), we can show that the optimal optimistic policy of VBE:

π∗
b (s) ← argmaxa∈A q∗w(s, a) + c b(s, a) is identical to the optimal policy of the original MDP M ,

since the bonus term b(s, a) decays to zero using proposition 1.

Connection to BDQN: Though not obvious at first glance, there is a connection between

RQFs and random prior functions in BDQN. In BDQN, the value function is qθ = fθ + p where

p is a random prior function that is not updated and fθ is the function that is updated. Random

priors were developed for stationary state distributions—though then applied to control—so let us

consider the update for a fixed policy π. The update uses a′ ∼ π(·|s′), giving

δ
def
= r + γ(fθ(s

′, a′) + p(s′, a′))− (fθ(s, a) + p(s, a))

⇒ r − (p(s, a)− γp(s′, a′))⏞ ⏟⏟ ⏞
reward−bonus

+γfθ(s
′, a′)− fθ(s, a)

This is a standard update with reward bonus p(s, a) − γp(s′, a′), and this bonus is the negation

of our reward in Equation (3.2). With a fixed policy, we can separate the value function learning

into qπ that estimates the values for the rewards and bπ that estimates the values for the reward

bonuses. Namely, fθ consists of qπ + bπ. As these functions converge, bπ(s, a) approaches −p(s, a)
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using the exact same argument as in Proposition 1, just negating the function p. Consequently,

fθ(s, a) + p(s, a) = qπ(s, a) + bπ(s, a) + p(s, a) = qπ(s, a) + (bπ(s, a) + p(s, a)) goes to qπ since

bπ(s, a) + p(s, a) eventually cancels.

This argument is not how randomized priors are presented, but provides another intuitive

interpretation. Further, it highlights a key difference BDQN and VBE: BDQN takes a Thompson

sampling approach to induce optimism whereas VBE acts greedily with respect to optimistic value

estimates. The ensemble in BDQN aims to approximate the posterior distribution over action-

value functions, and the additive priors for each value function in the ensemble provides first-visit

optimism. The ensemble in VBE also ensures first-visit optimism, but in a different way compared

to BDQN. In BDQN the additive priors in the ensemble must be high value to provide optimism

for a state-action pair. Whereas in VBE, the predictor and target RQFs should be different from

each other to provide optimism. This can be achieved by defining an ensemble and randomly

initializing the RQFs (Ciosek et al., 2020). It can also be noted intuitively that it is easier to define

two functions that produce different values through random initialization, than to define a prior

function which ensures high values through random initialization. In our experiments we noted

that VBE relies on much smaller ensemble sizes – in some experiments even one RQF is enough –

compared to BDQN which requires a large ensemble to provide sufficient exploration.

Value Bonuses with Ensemble Errors: We now provide the Value Bonuses with Ensemble

Errors (VBE) algorithm in this section. The pseudocode, in Algorithm 5, is for the case where the

base algorithm is Double DQN, but it is possible to swap in many different off-policy value-based

algorithms. Even actor-critic, which explicitly maintains a critic qw, could easily incorporate the

value bonuses by using instead an optimistic critic. For the purposes of this paper, however, we

restrict our focus to Double DQN.

The ensemble value functions are updated on the same target policy as Double DQN, namely

the greedy policy in qw. This choice comes from the fact that we want to understand uncertainty

in the values for the target policy. The update is similar to Double DQN, except the actions are

sampled according to qw rather than fwi , and we use the ensemble reward ri defined above in

Equation (3.2):

wi ← wi + ηδi∇fwi(s, a) for δ
def
= ri + γfw̃i(s

′, argmax
a′

qw(s′, a′))− fwi(s, a) (3.4)

On each step, we only update one RQF predictor. Updating the entire ensemble is expensive, and

arguably unnecessary. There are multiple ways to control the magnitude of the value bonus, and

how quickly it decays. One way is the size of the ensemble, where the larger the ensemble, the more

slowly this bonus should decay. Updating each RQF predictor less frequently, however, will also

cause the bonus to decay more slowly. It both allows us to make the ensemble smaller, and ensure

that regardless of the ensemble size, the computation per-step is simply double that of Double
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Algorithm 5 Value Bonuses with Ensemble Errors (VBE)

1: Parameters: ensemble size k, bonus scale c, target net update frequency τ , batch size m
2: Initialize empty buffer: B ← ∅, action-value function: qw, target RQFs: fi, . . . fk, predictor

RQFs: fw1 , . . . , fwk
, and target networks: qw̃, fw̃1 , . . . , fw̃k

3: Optimistic behavior policy: πb(s)← argmaxa∈A qw(s, a) + c b(s, a)
where b(s, a)← maxi∈[k] |fwi(s, a)− fi(s, a)|

4: Get the initial state s0
5: for environment interactions t = 0, 1, . . . do
6: Take action a← π(st) and observe rt+1, st+1, γt+1

7: Add (st, at, rt+1, st+1, γt+1) to the buffer B
8: // Update the action-values using the Double DQN update
9: Sample a mini-batch and use update in Equation (2.1) to update qw

10: // Update one randomly select ensemble value function
11: Sample i from [k] uniform randomly
12: Sample a mini-batch from B and update fwi using Equation (3.4) where

for each (s, a, r, s′, γ) we replace r with ri
def
= fi(s, a)− γfi(s

′, argmaxa′∈A qw(s′, a′))
13: if t + 1 mod τ == 0 then
14: q̃w ← qw and for all i, fw̃i ← fwi

15: end if
16: end for

DQN: one update to the main value function and one update to an RQF predictor.

We can again ask what happens to our value bonuses in VBE. Ideally, they eventually converge

to zero, with the action-values converging and the behavior and target policies both converging to

a greedy policy. This scenario goes beyond the convergence conditions discussed above in Section

3 for fixed policies. In VBE, both our behavior policy and target policy are changing with time.

Unfortunately, theory around TD does not address this scenario. There are some results for a fixed

behavior policy for double Q-learning under linear function approximation (Zhao et al., 2021),

or for a variant of DQN with a fixed dataset (Wang & Ueda, 2022). The issue with a changing

behavior policy is that it changes the relative importance of states in the objective, and so the best

value function may change as it changes how it trades off errors across states. In our realizable

setting, this changing importance may be less important, because our RQF predictor can perfectly

represent the target. In our own experiments, we found the value bonuses did always converge to

zero. Nonetheless, we know of no theory that would allow us to guarantee this.
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Chapter 4

Experiments

We evaluate our proposed algorithm on four classic exploration environments and six Atari environ-

ments, particularly in comparison to BDQN and the reward bonuses approaches ACB and RND.

We first investigate the algorithms in a pure exploration setting, on DeepSea, where we evaluate

state coverage. Then we compare performance on the classic environments, and investigate the

impact of the bonus scale and number of RQFs in the ensemble. We also compare variants of VBE

which use ACB and RND’s reward bonus strategy to to estimate the value bonuses (VB ACB and

VB RND). We conclude with experiments in Atari, particularly highlighting how to scale VBE to

this setting.

4.1 Environments

The four classic exploration environments are Sparse Mountain Car, Puddle World, River Swim

and DeepSea (Figure 4.1). These four environments have varying requirements for exploration:

DeepSea and River Swim are considered hard exploration environments, whereas Puddle World

and Mountain Car require less exploration. The full details for these environments are in Appendix

A.1, but we list a few key details here.

Mountain Car has two-dimensional continuous inputs, with a sparse reward structure: the

agent only receives a reward of 1 at the goal and 0 otherwise. Puddle World also has two-

dimensional continuous inputs, noisy actions and highly negative rewards in puddles along the way

to the goal.

River Swim and DeepSea were both designed as hard exploration problems, requiring per-

sistent behavior with likely failure under dithering, ϵ-greedy exploration. River Swim resembles

a problem where a fish tries to swim upriver, with high reward (+1) upstream which is difficult
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(a) River Swim (b) Puddle World (c) Mountain Car (d) Deepsea

Figure 4.1: A visual depiction of the four classic control environments.

to reach and, a lower but still positive reward (+0.005), which is easily reachable downstream.

River Swim is a continuing environment and has a single continuous state dimension in [0, 1], with

stochastic displacement when taking actions left or right. One seemingly innocuous but impor-

tant point for this environment is that we flipped the observation such that the high reward is at

observation 0 and the lower reward is at observation 1. We did so because the standard random

initialization and ReLU activation often results in a higher value for a higher input, thus favouring

the correct action in this case. We found deep RL agents trivially solving this original variant,

but not for the reasons we would like! This other variant removes this inadvertent bias without

changing the problem structure or difficulty in any way.

DeepSea is similar to River Swim, but is an episodic grid world environment of size N × N .

Reaching the high-reward state requires the agent to take the action to go right every time. However,

there is a penalty of 0.01
N for taking the action right, except for the right most state where the agent

gets a reward of 1 for taking the right action. A policy that explores uniform randomly has the

probability of 2−N of reaching the goal state in each episode.

4.2 Algorithms and Experimental Settings

The environments uses slightly different evaluation metrics. River Swim is continuing, so we report

accumulated reward over learning. For both DeepSea and Puddle World, we report the undis-

counted episodic return. For Mountain Car, we report the discounted return, because for every

successful episode, the undiscounted return is 1 and so not meaningful in this sparse variant. For

all episodic environments, we report steps on the x-axis and the corresponding episodic return on

y-axis. For one run, this results in a step function, but averaged across runs we get a measure of

average episodic return after t steps. All results in the classic environments use 50000 steps and 30

runs, except for DeepSea which uses 10000 episodes and 5 runs. The default grid size for DeepSea,

unless mentioned, is 50, which is the largest grid size we experiment with.
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Across problems we compare VBE with DQN with additive priors (DQN-P), BDQN, the released

variants of ACB and RND that use PPO 1, and their DDQN-based variants: VB ACB and VB

RND. DQN-P simply adds an additive prior to DQN, like BDQN has; it can be seen as BDQN

with one value function in the ensemble and without bootstrapping. For both VBE and BDQN,

we test using 1, 2, 8 and 20 value functions in the ensembles and bonus scales of 1, 3 and 10.

ACB and RND also use the same bonus scales. To match their original implementations ACB uses

an ensemble of 128 to estimate the reward bonus, and RND uses two deep neural network with

multiple (64) nodes in the final layer as the target and predictor network for the reward bonus. All

methods use the same neural network architectures, detailed in Appendix A.1.

We also include variants of VBE to provide evidence for the way we estimate the value bonuses

with our ensemble errors. We include VBE-SL, meaning that instead of the TD update, we use

a supervised learning update. We discussed in Section 3 that the errors for VBE-SL are likely

to reduce too quickly, resulting in insufficient exploration; we test that hypothesis here. We also

evaluate DDQN-based variants of ACB and RND which use the reward bonuses underlying ACB

and RND to learn the value bonus and replace them with VBE’s ensemble value bonus, i.e., VB

ACB and VB RND. As originally proposed by the authors of ACB and RND, we make the reward-

bonus value function non-episodic. VB ACB, VB RND and VBE-SL are otherwise exactly the

same as VBE, including using DDQN, defining the value bonus using the ensemble error and using

the value bonus in the same way.

4.3 Pure exploration

We first test how effectively the agents cover the state-space in Tabular DeepSea environment

with increasing grid sizes. For this tabular setting, the agents are otherwise same as the other

experiments, except the function approximation is linear on a one-hot encoding. In the pure

exploration setting, the agents do not receive any reward from the environment, and the behavior

is totally dependent on the exploration strategy employed by the agent. This can be achieved by

setting the reward function to be zero for all states and actions. BDQN relies on bootstrapping,

ensemble sampling and additive priors for it’s exploratory behavior. DQN-P relies on additive

priors. VB ACB and VB RND rely on the reward bonuses and the intrinsic value function for

exploration. VBE and VBE-SL rely on the ensemble error-based value bonus for exploration.

Figure 4.2a shows that VBE covers the entire state-space for different grid sizes. BDQN is able

to cover the state-space for a grid size of 30 and 35, but starts to degrade after that. DQN-P

fails to cover the state-space as it only uses one action-value function with additive priors. For the

additive priors to provide optimism for different parts of the state-space an ensemble is required as

1See https://github.com/JordanAsh/acb/tree/main
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Figure 4.2: Contrasting the state coverage abil-
ities of exploration algorithms in DeepSea. In
(a) each bar corresponds to the total number of
unique states visited by an agent after complet-
ing 10,000 episodes. The black stars indicate the
total number of unique states visited for each
grid size. Notably, VBE covers the entire state
space, even for the larger grid sizes. (b) displays
the progression of unique states visited by agents
over the course of learning for Deepsea with grid
size 50. The dotted line represents the total num-
ber of unique states (1275) in this environment.
It provides evidence that VBE consistently ex-
plores new states at a significantly higher rate.

in BDQN. Both VB ACB and VB RND fail to cover the state space, with VB ACB covering even

less than DQN-P. This outcome is not surprising, given that neither approach ensures first-visit

optimism. VBE-SL at least includes first-visit optimism, encouraging the agent to take an action

in a state if it has not done so before. But, as expected, it does not explore as much as VBE, due

to its value bonuses decaying too quickly and not capturing in-sample epistemic uncertainty.

These suboptimal behaviors are emphasized in Figure 4.2b for a grid size of 50. All methods

initially start exploring a similar number of states, easily reaching around 300 unique states. VB

ACB, DQN-P and VB RND largely stop visiting new states very early in learning, though VB RND

26



is slowly increasing the number of states it visits. BDQN and VBE-SL across in their behavior,

with VBE-SL exploring more early, possibly due to better first-visit optimism. Over time, however,

BDQN starts to catch up and then surpasses VBE-SL. One reason why BDQN is slow and fails

to explore the state-space of bigger grid sizes in the given time budget maybe due to the random

sampling of action-value functions from the ensemble at the start of the episode. Since BDQN

uses the sampled action-value function for the entire episode, it can get stuck with a value function

that is not optimistic for a region in the state-space. VBE is the only algorithm that maintains a

consistent increase until it has seen all states. It is also important to note that VBE is able to cover

the state-space for all grid sizes with just one RQF in the ensemble. This result is very significant

as other ensemble methods use an ensemble size of 20 – maximum allowed in this experiment – and

still fail to cover the state-space. Table A.1 in Appendix A.1 shows the best performing ensemble

size k and bonus scale c, for each agent in this experiment.

4.4 Comparison in Classic Environments
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Figure 4.3: Comparison of online performance in River Swim, Puddle World, Mountain Car, and
Deepsea. In all domains, higher on y-axis is better. The x-axis denotes the number of interaction
steps with the environment. The shaded region corresponds to standard errors.
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Figure 4.4: Comparing VBE with baseline agents in four classic control environments, with tile-
coded features and a linear-layer.

In this section we compare VBE with DQN-P, BDQN, ACB, and RND. ACB and RND here use

PPO as originally proposed. In Figure 4.3, VBE learns faster and reaches the best final performance

in all four environments. Surprisingly, DQN-P is competitive with BDQN in three out of the four

environments. In DeepSea, where persistent optimism is essential to reach the state with high
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reward, DQN-P fails. In Riverswim which is continuing and also has a high rewarding state that

can be hard to reach, DQN-P accumulates marginally lesser reward. Since Riverswim is continuing,

BDQN can get stuck with a value function from the ensemble that may not be optimistic, requiring

the agent to wait for resampling from the ensemble. ACB and RND fail to learn in both the sparse

reward domains Riverswim and Mountain Car. In Puddle World and Deepsea which have a denser

reward structure, they perform better. RND learns slowly in both, whereas ACB is competitive in

Puddle World, but does poorly in Deepsea. In Appendix A.2 we study the impact of the ensemble

size and bonus scale on the performance of VBE.

4.4.1 Linear function approximation

In this section we test VBE and the baseline agents on the same four classic environments with

tile-coded features and a single linear-layer network. For Riverswim we use the following tile-

coding parameters: (tiles = 4, tiling = 32, features = 128), Puddle world: (tiles = 5, tiling =

5, features = 128), and Mountain car: (tiles = 4, tiling = 16, features = 512). The results in

Figure 4.4 are similar to their neural network counterpart results in Figure 4.3. In Riverswim,

RND does well and even surpasses BDQN in terms of performance. ACB, however, still fails on

Riverswim. In Puddle world RND is comparable towards the end of training, and ACB is much

slower. DQN-P outperforms BDQN in Puddle world, and Mountain car, whereas both ACB and

RND fail in Mountain car. In Deepsea we see that DQN-P and ACB fail to learn the optimal

policy. RND learns relatively quickly but then fails to stick to the optimal policy and thus collects

less reward per episode throughout.

4.5 Alternative Choices for the Value Bonus

We compared VBE to VB ACB and VB RND for pure exploration; now we do so for the four classic

environments. VB ACB and VB RND are another natural way to estimate value bonuses—albeit

missing first-visit optimism—and help validate our new approach to estimating value bonuses.

Reward bonus methods can be used and implemented in many different ways. Two of the

baseline agents that we use in our experiments, ACB and RND use PPO as their base algorithm,

as originally proposed. In this section we test these two reward bonus methods in the value-based

setting, and refer to them, respectively, as VB ACB and VB RND. These agents are similar to

the ones used in Section 4.3, except here the agent observes the environment reward and updates

the value function along with the intrinsic value function. The base algorithm is DDQN, and the

behaviour policy is greedy with respect to the learned value estimates plus the scaled intrinsic

value function, same as VBE. This experiment is to test and highlight the efficacy of our value

bonus strategy compared to reward bonus methods which have known issues like dealing with
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non-stationary reward bonuses, and their inability to provide first-visit optimism.
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Figure 4.5: Comparing online performance VBE to two alternative ways to estimate value bonuses,
namely estimating a value function on the reward bonuses given by RND and ACB. The shaded
regions corresponds to standard errors.
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Figure 4.6: Comparing VBE with VB ACB and VB RND in the linear setting with tile-coded
features.

In Figure 4.5 we see that VBE outperforms VB ACB and VB RND in all four environments.

Similar to their PPO versions in Figure 4.3, they fail in Mountain Car and are competitive in

Puddle World. However, behavior is quite different in Deepsea and Riverswim. VB RND almost

matches VBE in Riverswim, and VB ACB has significantly improved compared to its PPO version.

But, in Deepsea, they both perform notably more poorly, especially VB RND here fails in most

runs but succeeded with its PPO version. The primary difference between them is using DDQN as

a base algorithm, rather than PPO. In Riverswim, the VB variants of these reward bonuses is more

competitive than the corresponding PPO variants earlier, perhaps due to the off-policy updates

used for learning the value function here.

4.5.1 Linear function approximation

Similar to Section 4.4, here we compare VBE with VB ACB and RND in the linear setting with

tile-coded features. In Figure 4.6 we see that VBE outperforms VB ACB and VB RND in the two

hard exploration environments: Riverswim and DeepSea. In Riverswim VB ACB does better than

its PPO counter part in Figure 4.4a. VB ACB and RND perform comparable to VBE in Puddle

world and Mountain car. Both VB ACB and RND fail in Deepsea.
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(a) Breakout (b) Pong (c) Q∗bert

(d) Pitfall (e) Private Eye (f) Gravitar

Figure 4.7: A visualization of the Atari environments used in our experiments.

4.6 Atari

In this section we test VBE on several hard exploration Atari games (Figure 4.7), namely Private

Eye, Pitfall, Gravitar (Burda et al., 2019), and also on Breakout, Pong and Qbert. As is standard,

we combine four consecutive frames to make the observation (4× 84× 84), and update VBE ever

four steps. We do 3 runs for all the agents for 12 million steps.

In VBE the target and the predictor RQFs have 3 CNN-layers, followed by 2 non-linear layers

(representation network) and a final linear output-layer. We only update the final layer of the

predictor RQFs, and initialize the predictors to have the same representation network as the target

RQFs, so to have learnable targets. In practice we found that even 1 RQF works well for VBE, so

that is what we use in our experiments. We chose this configuration because it was faster to run

and seemed to be more stable than updating the whole network. We include the comparison to the

variant of VBE where we update the whole network for the RQFs in Section 4.8.

For BDQN we use an ensemble size of k = 10. As in the original BDQN implementation, each

value function in the ensemble uses a shared representation network. The additive priors have the

same network architecture as the value functions. ACB and RND agents do 128-step roll-outs and

then do 4 epochs of network updates using PPO. To make sure that each agent gets the same

number of interactions with the environment and to match our online setting, we run ACB and

RND with one agent interacting with the environment instead of running multiple parallel agents.

ACB uses an ensemble size of k = 128 for computing the reward bonus, and RND uses a CNN-based

target and predictor. Note that VBE runs at least three times faster than BDQN, ACB and RND.
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Figure 4.8: Comparing online performance in six Atari games, with shaded regions corresponding
to standard errors. The environments in the second row are considered to be more challenging from
an exploration perspective. The x-axis is the number of environment interaction steps in millions,
and the y-axis is the online Undiscounted Episodic Return, for which higher is better.

In Figure 4.8 we see that VBE greatly outperforms the other algorithms in four out of six

environments, and is competitive if not better in the remaining two environments. This result is

starkly different from the prior work, and is due to the fact that we examine early learning. RND

was originally trained on around 2 billion frames, and ACB on around 20 million steps with data

coming from 128 parallel agents. In Pitfall all algorithms except ACB are competitive, with VBE

and BDQN performing the best. In Gravitar, RND and ACB perform well from the beginning

but do not improve overtime. VBE is slow initially but eventually surpasses both ACB and RND.

Overall, these results show that VBE scales to more complex deep RL settings and results in sample

efficiency improvements in early learning in several Atari environments.

4.7 Atari: Alternative Choices For The Value Bonus

In this section we compare VBE with DDQN-based variants of ACB and RND, denoted as VB

ACB and VB RND, on Atari to see early learning. In Figure 4.9 we can see that the VB ACB and

VB RND are much more sample-efficient than their PPO-based counterparts. However, VBE still

performs better in general. VBE performs the best in four out of six environments, i.e., in Breakout,
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Pong, Pitfall, and Privateeye. In Qbert, VBE is competitive with the baselines and performs better

than VB ACB. In Gravitar, both VB ACB and VB RND perform better than VBE initially, but

VBE surpasses VB ACB towards the end.
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Figure 4.9: Comparing the online performance of VBE, VB ACB and VB RND on six Atari
environments on a budget of 12 million steps.

4.8 Atari: An alternate variant of VBE

In this section we compare two variants of VBE on the same six Atari games. VBE as mentioned

in Section 4.6 only updates the final output layer of predictor RQFs. We implement a version

of VBE, VBE-CNN which updates the complete CNN architecture for predictor RQFs. Since we

are updating the complete network the predictor and target RQFs do not need same weights for

the representation network. To ensure that the magnitude of errors is not too small, we initialize

the target RQFs with a scale of 1 (scale parameter in Orthogonal initialization), and initialize

predictor RQFs with a scale of 0.01. Note that this choice of scale was adopted from ACB’s public

implementation by Ash et al. (2022). We use an ensemble size of k = 1 for both these agents, and

a bonus scale of c = 10 for all games, except for Pitfall for which we use a bonus scale of c = 1

for all the agents. In Figure 4.10 we see that both agents continue to learn and improve at around

12 Million frames. VBE is better than VBE-CNN in Breakout, Pong and Privateye. However,

in Pitfall VBE-CNN converges to a policy that results in no negative reward at around 6 Million
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Figure 4.10: Comparing the online performance of VBE and VBE-CNN on six Atari environments.
For Private Eye we compare the agents for 10 Million steps, and the rest for 12 Million steps.

frames. This result is quite impressive as Pitfall is a very hard exploration environment and most

agents take a lot more data to learn a good policy in this environment. VBE does exceptionally

well on Private Eye, which is also a very hard exploration environment. In Q∗bert we see that both

agents are comparable uptill 6 Million frames after which VBE-CNN first decreases in performance

but eventually surpasses VBE towards the end. Finally, in Gravitar we see that both agents are

competitive and continue to improve. Both variants of VBE do well in all six Atari environments,

and demonstrate sample efficiency by early learning. Although we do not run the agents for as long

as the baselines, VBE is still able to learn much quickly and in some environments even outperforms

baselines trained on much more data. Table 4.1 shows the mean episodic return observed during

the last 500 episodes of online training.

VBE VBE-CNN

Breakout 170.17 73.08

Pong 18.81 5.65

Qbert 963.73 2026.31

Pitfall -18.65 0.0

Privateeye 2416.05 242.12

Gravitar 247.76 214.6

Table 4.1: Mean episodic return observed during the last 500 episodes of online training.
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Chapter 5

Conclusion

In this work we introduced a new approach to do directed exploration in deep RL, called Value

Bonuses with Ensemble errors (VBE). The utility of value bonuses is that it is simple to layer on top

of an existing algorithm: the value bonuses are separately estimated and only impact the behavior

policy. Improving how we estimate value bonuses, therefore, provides a promising path to replacing

simple, but undirected exploration strategies like ϵ-greedy. To date, the primary way to estimate

value bonuses has been to estimate a separate value function on reward bonuses, as was done for

ACB and RND. This approach, however, does not encourage first-visit optimism; it only encourages

revisiting an action once a reward bonuses was observed. We show that, in general, ACB and RND

do not provide effective exploration, in classic environments and several Atari environments, and

that VBE consistently outperforms BDQN.
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Appendix A

A Discussion on Convergence Criteria

for Value Bonuses

First let us discuss how the theory for LSTD applies to our setting. The result from (Tagorti

& Scherrer, 2015, Corollary 1) bounds the error of the value function learned under LSTD to

the true value function, assuming features are linearly independent (Assumption 1) and a mixing

assumption for the environment and behavior policy (Assumption 2). This bound includes an error

to the best linear solution, for infinite data, and the error between the best linear solution and the

true value function. Because we are in the realizable case and the objective is convex for linear

function approximation, the best linear solution is the true value function and in the limit of data

the LSTD solution will reach this best linear solution. We can write this as a corollary of their

result. Note their result is written by value functions, but automatically extends to action-value

function by considering state-action features and stationary distribution µb(s, a) = µ(s)πb(a|s).

Corollary 1 (Corollary following from [Theorem 1). (Tagorti & Scherrer, 2015)] Assume we are

given behavior policy πb with stationary distribution µ and target policy π and the rewards are

defined using a randomly sampled fi from the set of linear functions on features ϕ(s, a) and the

formula in Equation (3.2). Under Assumption 1 and 2 from (Tagorti & Scherrer, 2015), for a

large enough number of samples T given by (Tagorti & Scherrer, 2015, Eq 6) (called n in their

result), then fwi returned by LSTD satisfies

Es∼µa∼πb(·|s)[(fwi(s, a)− fi(s, a))2] ≤ O(1/
√
T )

Now let us discuss how the work on neural TD applies to our setting (Cai et al., 2019). The

result is proved for neural networks with a single hidden layer using a ReLU activation for the

hidden layer, with the additional condition that the stationary distribution for the policy has a
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bounded density over states and the stepsizes decrease at a rate of 1/
√
t. This result immediately

implies that our fwi should converge to fi, because the global solution for this problem is fi because

it is in the value function class. We state this as a corollary of their result here, to be clear about

how it applies.

Corollary 2 (Corollary following from [Theorem 4.6). (Cai et al., 2019)] Assume that 1) the policy

π is fixed with stationary distribution µ, where µ(s)π(a|s) has bounded density across the space x =

(s, a) 2) the function class F = { 1√
m

∑︁m
j=1 bj max(x⊤wj , 0)|W = (b1, . . . , bm, w1, . . . , wm), ||W −

W (0)||2 ≤ B} for x = (s, a), W (0) a point at which the weights are initialized in the algorithm

and B some constant, 3) ∥x∥2 = 1 for all x and the rewards are defined using a randomly sampled

fi from F and the formula in Equation (3.2), and 4) the Neural TD algorithm (Algorithm 1 in

(Cai et al., 2019)) is run for T steps with stepsize η = min((1− γ)/8, 1/
√
T ). Then the algorithm

returns fwi that satisfies

EW∼,µπ[(fwi(s, a)− fi(s, a))2] ≤ O(B2)

(1− γ)2
√
T

+ O(B2m−1/2 + B5/2m−1/4)

Proof. The result also requires that the reward magnitudes are all bounded, which they are by

construction. Theorem 4.6 states that the outputted action-value function is bounded as above to

the global optimum in the function class. Because fi(s, a) is in the function class, we know it is the

global optimum.

A.1 Experiment Details

A.1.1 Environment Details

Mountain Car is classic control problem of driving an underpowered car up a mountain. The

original problem is set up as cost-to-goal, and here to frame it as a challenging exploration problem

we offset the reward by 1, making it a sparse reward problem. The start state is sampled from

the range [−0.6,−0.4], which is the valley between two mountains, and the car starts with velocity

zero.

Puddle World is a continuous state 2-dimensional world with (x, y) ∈ [0, 1]2 with 2 intersecting

puddles: (1) [0.45, 0.4] to [0.45, 0.8], and (2) [0.1, 0.75] to [0.45, 0.75]. The puddles have a radius

of 0.1 and the goal is the region (x, y) ∈ [0.95, 1.0], [0.95, 1.0]. The problem is cost-to-goal with

additional penalty for when the agent is either puddle. The penalty for being in a puddle is

proportional to the distance of the agent from the center of the puddle, i.e., negative reward for

being close to the center. The agent chooses a direction of movement, resulting in displacement

equal to 0.005 + ζ, ζ ∼ N(µ = 0, σ = 0.1) in the chosen direction. The starting positions for
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episodes is uniformly sampled from (x, y) ∈ [0.1, 0.3], [0.45, 0.65]. High variance transitions coupled

with high magnitude penalties make this a challenging exploration problem.

River Swim is a standard continuing exploration benchmark inspired by a fish trying to swim

upriver, with high reward (+1) upstream which is difficult to reach and, a lower but still positive

reward (+0.005), which is easily reachable downstream. The state space is continuous in [0, 1],

and the stochastic displacement is equal to 0.1 + ζ, ζ ∼ N(µ = 0, σ = 0.01) in the direction of the

chosen action up or down. As swimming upstream is difficult, action up is stochastically switched

to down. We also flip the observation such that the high reward is at observation 0 and the lower

reward is at observation 1. We do this because we noticed that using random initialization with

RelU activations would mostly result in a higher value for a higher input thus favouring the correct

action in this case. The starting position is sampled uniformly in [0.9, 1.0].

DeepSea is a hard exploration episodic grid world environment. In each state the agent can

take two actions, left or right, which moves the agent down one row with column shifting based

on left or right action. Collisions to the grid edges are handled by the agent staying in the same

column but moving down one row. Since the agent can never access the states on the right side of

the diagonal of the grid, the total number of states are thus N×(N+1)
2 . The most rewarding state is

the state on the bottom right corner of the grid. To reach this the agent to take the action to go

right every time. However, there is a penalty of 0.01
N for taking the action right, except for in this

high rewarding state where the agent gets a reward of 1 for taking the right action. This makes it

a very challenging environment. A policy that explores uniform randomly has the probability of

2−N of reaching the goal state in each episode.

A.1.2 Algorithm Details

In the classic environments, every agent uses the same neural architecture, containing 2 non-linear

layers with 50 nodes each and ReLU activation, followed by a linear output-layer. DQN-P, BDQN

and all variants of VBE use target networks which are updated periodically after every τ steps. For

DQN-P and BDQN we use τ = 4 for all four classic environments. VBE and its variants use τ = 4

for Mountain Car, Puddle World and River Swim, and τ = 64 for DeepSea. We use a learning

rate of α = 0.001 and a discount factor of γ = 0.99. DQN-P, BDQN and VBE variants use an

experience replay buffer that stores the most recent 50K transitions. The agent’s parameters are

updated after every step using a randomly sampled mini-batch of 128. We sweep the agents on

bonus scales c = [1.0, 3.0, 10.0], and ensemble sizes k = [1, 2, 8, 20]. The PPO version of ACB uses

an ensemble size of k = 128, and RND uses a multi-layer neural network instead of an ensemble.

Tables A.1, A.2, A.3 show the best performing sets of ensemble size k and bonus scale c for results

in Sections 4.3, 4.4, 4.5.
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DeepSea

VBE k = 1, c = 1.0
VBE-SL k = 20, c = 1.0
DQN-P k = 1, c = 1.0
BDQN k = 20, c = 1.0

VB ACB k = 20, c = 1.0
VB RND c = 1.0

Table A.1: Ensemble size k and bonus scale c for agents in Figure 4.2

River Swim Puddle World Mountain Car DeepSea

VBE k = 20, c = 1.0 k = 1, c = 10.0 k = 2, c = 1.0 k = 20, c = 1.0
DQN-P k = 1, c = 10.0 k = 1, c = 3.0 k = 1, c = 1.0 k = 1, c = 10.0
BDQN k = 8, c = 10.0 k = 2, c = 1.0 k = 20, c = 1.0 k = 20, c = 10.0

ACB (k = 128) c = 1.0 c = 3.0 c = 1.0 c = 10.0
RND c = 1.0 c = 10.0 c = 10.0 c = 1.0

Table A.2: Ensemble size k and bonus scale c for agents in Figure 4.3

A.2 Ensemble size × Bonus scale

In this section we show the effect that bonus scales and ensemble sizes have on the performance

of the VBE in each of the four classic control environments. In Figure A.1 we show the average

performance of VBE used in Section 4.4, for each environment. For Riverswim we see that the

performance improves as the bonus scale and the ensemble size is increased. This makes sense as

Riverswim is a hard exploration environment and requires more aggressive exploration. In Puddle

world and Mountain car, we observe that increasing the bonus scale and the ensemble size harms

the performance, since they do not rquire too much exploration. For Deepsea we only test a bonus

scale of 1 with different ensemble sizes on different grid sizes. We can see that only an ensemble

size of 20 works well on all grid sizes. For the single linear-layer agent we observe a similar patter

in Figure A.2.
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Figure A.1: Shows the effect of different bonus scales and ensemble sizes across the classic control
environments. For Deepsea, we only use a bonus scale of 1 and test different ensemble sizes.
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River Swim Puddle World Mountain Car DeepSea

VBE k = 20, c = 1.0 k = 1, c = 10.0 k = 2, c = 1.0 k = 20, c = 1.0
VB ACB k = 20, c = 10.0 k = 1, c = 1.0 k = 8, c = 1.0 k = 20, c = 1.0
VB RND c = 10.0 c = 1.0 c = 1.0 c = 1.0

Table A.3: Ensemble size k and bonus scale c for agents in Figure 4.5
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Figure A.2: Shows the effect of different bonus scales and ensemble sizes across the classic control
environments. These results correspond to the single linear-layer agent.

A.3 Target policy experiments

In many cases it is straight forward to define the agent’s behaviour policy depending on the prob-

lem at hand, for example, for exploration an agent can use an ϵ−greedy policy, or use an upper

confidence style bonus to select actions, lets call this the optimistic policy. However, in case of the

general policy iteration setting it is not clear what the target policy should be to perform updates.

Should the target policy also be optimistic/on-policy? Or should it be greedy only with respect

to the value estimates/off-policy? The question becomes especially challenging to answer when

there are multiple value functions or an ensemble of value functions, like in our case. What should

be the target policy to update the RQFs? To investigate we performed a series of experiments

using different types of target policies, i.e., optimistic, and greedy. The optimistic agent uses the

optimistic policy to update the value head and the RQFs. The greedy agent uses the greedy target

policy to update both the value head and the RQFs. The target policy for the value heads and

the RQFs is consistent, this is because we want the RQFs to correspond to the value estimates.

The intuition behind using an optimistic policy is that the target action-values it gives may have

high prediction errors and updating the RQFs by bootstrapping off of values with high prediction

error is likely to produce errors in current RQF predictions as well. This allows uncertainty to

propagates allowing the agent to do directed exploration. In case of the greedy target policy, the

uncertainty still propagates however, in this case the prediction errors don’t play a role in the

selection of action-values, for example, an action-value with a low value but a high prediction error

may not be selected using a greedy target policy.

In Figure A.3 we show two different agents, optimistic and greedy, run on different grid sizes of

45



Figure A.3: Comparing Optimistic target policy (On-policy) with Greedy target policy (Off-policy)
on different grid sizes of Deepsea.

DeepSea with different ensemble size, represented by color, and different bonus scales, represented

by shapes. The agents use a single linear-layer for the value function and RQFs. We can see that

the greedy agent generally performs better than the optimistic agent, which makes sense as the

optimistic target policy can cause more exploration. The greedy agent performs well even with

multiple RQFs, whereas optimistic agent fails to learn the optimal policy as the number of RQFs

increase. We use the greedy target policy version of VBE in all the results of the main body.

In our experiments with VB with ACB and RND, we noticed a strange phenomenon, i.e., using

an optimistic target policy allows VB ACB and VB RND to learn the optimal policy quickly on

DeepsSa environments (Figure A.4), and using a greedy target policy for VB ACB/RND would

cause the agents fail to learn the optimal policy (Figure 4.6d, 4.5d). This is interesting, as reward

bonus methods do not provide optimism for unseen action-values, VB with ACB and RND should

not be able to cover the entire state space based on random initialization. We found out that this

happens because of the bias term in the linear layer, the momentum term in the optimizer and

because the intrinsic value function is non-episodic. Using the optimistic target policy and with
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Figure A.4: In Figure A.4a the agents do on-policy (optimistic) updates. In Figure A.4b the agents
do off-policy (greedy) updates. VB ACB/RND fail with the greedy policy, whereas with optimistic
target policy they outperform VBE. VBE however, does well with a greedy policy compared to the
optimistic one. These agents use a single linear-layer with bias term.

the help of momentum the bias term consistently increases, consequently the intrinsic action values

start to increase. Since the bias-term is a shared parameter, the increase in its value provides the

optimism for unseen action-values as well, this allows for the agent to cover the state space and

thus learn the optimal policy. In case of the greedy target policy the intrinsic values do no increase,

thus the agent fails to cover the state space. In Section 4.3, we show that if we use tabular features

and a linear-layer without any bias term then VB ACB/RND fail to cover the state space. In this

setting the agent’s behaviour and target policy is governed by only the intrinsic value functions

(on-policy), however it fails on account of not providing first-visit optimism.
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