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ABSTRACT Irregularities in observed population densi-
ties have traditionally been attributed to discretization of the
underlying dynamics. We propose an alternative explanation
by demonstrating the evolution of spatiotemporal chaos in
reaction—diffusion models for predator-prey interactions. The
chaos is generated naturally in the wake of invasive waves of
predators. We discuss in detail the mechanism by which the
chaos is generated. By considering a mathematical caricature
of the predator-prey models, we go on to explain the dynamical
origin of the irregular behavior and te justify our assertion
that the behavior we present is a genuine example of spatio-
temporal chaos.

The widespread spatial and temporal irregularities in actual
population densities are in marked contrast to the smooth
predictions of early ecological models (1-3). Simple ordinary
differential equation models for three or more interacting
species have long been known to exhibit chaotic behavior
(4-6), but when only two species are involved, such simple
models cannot predict chaos. Standard explanations for ob-
served irregularities in such systems rely on discretization of
space, time, or population density (7-9); difference equations,
coupled oscillators, and cellular automata frequently exhibit
chaotic solutions in appropriate parameter regimes. This raises
the question of whether ecological chaos arising from inter-
actions between two species depends intrinsically on discreti-
zation of population behavior. We present results suggesting
that this is not the case. We show that spatiotemporal chaos can
arise naturally in a class of reaction-diffusion models of
predator-prey interactions. Necessary ingredients for this are
classical oscillatory predator-prey dynamics (10, 11) plus random
(diffusive) movement of both predators and prey. With these
ingredients, a spatiotemporal invasion of predators may have
chaotic solutions in its wake.

Chaotic solutions of reaction-diffusion equations are very
rare and have previously been demonstrated, arising by quite
different mechanisms, only in models of chemical reactions
(12-16) and cardiac electrical activity (17, 18). Our work
demonstrates chaos in ecological models of two interacting
species without either discretization or delay effects.

Waves of Invasion

We consider reaction-diffusion models for predator-prey
interactions of the form

dp/ot = D,d*p/ax* + f(p, k)
ohjot = D, a*h/ax* + fi(p, h).

[1a}
{1b]

Here p(x, t) and h(x, ) are the population densities of predators
and prey with diffusion coefficients D, and Dy, respectively,
and x and r denote space and time. Throughout, we restrict
attention to one-dimensional spatial domains. Biologically
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realistic kinetic terms f, and f;, will have two nontrivial
equilibria, a “prey only” state, in whichp = 0, A = hy, and a
“coexistence” state, in which p = p,, & = h;. Models of type
1 have been studied by many previous authors in the case when
P = ps, h = ks is a stable equilibrium. In this case, one of the
classical types of solution is a wave of invasion, that is, a
traveling wave moving with constant shape and speed (19, 20).
Ahead of the wave front there are prey but no predators (p =
0, h = hg), and behind the wave the two species coexist (p =
ps, b = hy). Standard linear analysis about the leading edge of
the wave (19, 21) shows that the speed of invasion must be
greater than @ = 2[D,(9f,/9p)| @ = 0, & = #y]* and numerical
evidence, both for predator-prey models discussed here and
for other equations of this type (21+23), suggests that invasive
waves always travel at this minimum speed. Typically, a wave
of this type arises when predators are introduced locally into
an otherwise uniform distribution of prey.

We consider the analogue of these invasive waves when the
kinetic parameters are such that p = p,, h = h, is unstable, with
the stable, spatially homogeneous, coexistence state consisting
not of an equilibrium but of periodic temporal oscillations in
p and A. Such stable limit cycles occur for many well-known
kinetic terms (11), and to be specific, we consider two different
sets that are both well-known as predator-prey models (24):

folp, b) = Bp(1 —p /h)

falp, h) = h(1 = h) —Ahp /(h + C) 2]
and

fop By = Bp(A = 1 = Ae™ )

fllp, By =h(1 —h) —p(1 — e~ %), 3]

In both sets of dynamics, 4, B, and C are positive parameters,
and for appropriate parameter values, the kinetics have a
stable limit cycle. For a wide range of such parameters and for
both sets of kinetics, we have studied numerically the evolution
of model 1 following the local introduction of predators to an
otherwise uniform distribution of prey. Intuitively, one might
expect the solution to consist of an invasive wave front, with
spatially homogeneous, temporal oscillations behind this.
However, such solutions are never observed; rather, the be-
havior behind the wave front consists of either regular, spa-
tiotemporal oscillations (Fig. 14) or spatiotemporal oscilla-
tions that are irregular and apparently chaotic (Fig. 1b).

In the case of regular oscillations, detailed space-time plots
show that these oscillations are periodic plane waves, moving
with constant shape and speed (Fig. 2). These waves can move
in either the same or the opposite direction to the invasive
wave, depending on parameter values, but in all cases the wave
speed is considerably greater than the speed of invasion. This
difference in wave speed shows that the reguiar oscillations are
not simply part of the invasive wave front; rather, they are a
new type of solution that appears behind the invasive front as
the coexistence steady state (ps, h;) becomes unstable, by
means of a Hopf bifurcation in the kinetics. Now prior to Hopf
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FiG. 1. Spatial and temporal variations in prey densities behind a
wave of invasion by predators for a model whose kinetics have a stable
limit cycle. The qualitative form of the predator distributions behind
the invading front is very similar. (¢) Invasion generates regular
spatiotemporal oscillations in population densities. (b) Invasion gen-
erates highly irregular oscillations. The kinetics are from Eq. 3, with
Dp =Dy =1;and4 = 15.Ina, B = 0.05 and C = 4, whileinb, B =
1 and C = 5, and the equations were solved numerically by using the
method of lines and Gear’s method. In all the solutions in the figures,
we take D, = Dy; however, our mechanism applies equally to unequal
dispersal rates.

bifurcation, the invasive front is a traveling wave solution
satisfying the equations

D,p" +ap’ +f,(p, ) =0 {da]
D'+ ah' + fu(p, k) =0 [4b]

lim p(z) = 0, lim A(z) = ho,
lim pz) =ps,  lim A(z) = hy, [4c]

>0 z—>—

where prime denotes d/dz, hz = x — at, and p(x, 1) = p(z),
h(x, ) = h(z). The difference between the oscillatory and
invasive wave speeds suggests that this front solution persists
after the Hopf bifurcation in the kinetics, and this is confirme

by numerical continuation of Egs. 4. The oscillatory wake
arises because, although the invasive front persists, the steady
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FIG. 2. Space-time plots of the prey density behind a wave of
invasion by predators, for a model whose kinetics have a stable limit
cycle and for parameter values giving regular oscillations behind the
invading front. The qualitative form of the predator distributions
behind the invading front is very similar. The oscillations move with
constant shape and speed in the opposite direction to the invading
wave; for some other parameters the oscillations move in the direction
of invasion. The kinetics are from Eq. 2, with D, = D, = 1,4 = 3; B
= 0.1; and C = 0.2. We plot the prey density i(x, 1) as a function of
x at successive times, with the vertical separation of any two solutions
proportional to the time interval between them.

state behind it is now unstable, and perturbations induced by
the passage of the front itself are amplified by this instability.
Moreover, it appears that the speed and direction of the
regular oscillations are determined by the particular way in
which the rear of the invasive front perturbs the steady state
(ps, hs). It is known that in simpler reaction-diffusion systems,
exponentially decaying perturbations applied to an unstable
steady state can induce periodic plane waves whose speed
varies continuously with the decay rate of the initial pertur-
bation (25). In the present case, the rear of the invasive front
does indeed decay exponentially to (p;, k), at a rate given by
the real part of the appropriate eigenvalue of Eqgs. 4. For a wide
range of parameter values for which regular oscillations are
observed, we have calculated this decay rate and imposed the
corresponding perturbation on (p,, k) in a simple numerical
experiment. In each case, the perturbation induces periodic
plane waves of the same speed as those observed behind the
invasive fronts (Fig. 3).

We are now in a position to address the case of irregular
wakes. In this case too, the rear of the invasive front will
impose an exponentially decaying perturbation on {(p;, A;),
which will in turn give rise to periodic plane waves. The logical
explanation for the appearance of irregular oscillations is that
these periodic plane waves are unstable as reaction-diffusion
solutions. This is confirmed by following the progression from
regular to irregular wakes as one of the kinetic parameters is
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F16.3. Evolution of the solution of Fq. 1 following a small, exponentially decaying perturbation to the (unstable) coexistence steady state ( p..
hy). The form of the perturbation has exactly the form of the tail of the invasive wave, so that the initial conditions are [ p(x, 0), A(x, 0)] = (ps,
hs) + & Re[(pe, he)exp(—Ax)], where £ << 1, A is the unstable eigenvalue of Eq. 4 at { p;, k), which is unique up to complex conjugacy, and (pe.,
he) is the corresponding normalized eigenvector. The prey density in the reaction-diffusion solution evolving from this initial condition is shown
at three different times (—), and compares extremely well with the oscillations observed behind the invasive wave for the same parameters (- - -).
In the latter solution, an appropriate spatial translation is applied at one time point to give correspondence between the two sets of solutions. A
similarly good comparison is observed for the predator density and for other sets of parameter values. In the case illustrated, the kinetics are from

Eq.2,withD, = Dy = 14 = 3; B = C = 0.1; and ¢ = 0.005.
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varied. At the borderline between the two behaviors, the
solution has a mixed appearance, with a band of regular
oscillations immediately behind the invasive front, and irreg-
ular oscillations further back (Fig. 4). This behavior appears
just as separate numerical tests (of the type illustrated in Fig.
3) show a transition to instability in the periodic plane waves
induced by the rear of the invasive front. Thus, the mixed
behavior occurs because the regular oscillations are only just
unstable and persist transiently before the growth of instabil-
ities gives rise to irregular behavior.

In our numerical studies, we have considered only two sets
of kinetic terms. However, for both sets we have examined a
wide range of parameter sets, and in all cases, the results are
essentially the same. Moreover, we have presented a detailed
explanation for the oscillatory wakes observed numerically,
the mathematical details of the mechanism are described more
fully elsewhere (23). This explanation depends only on the key
ingredients of an invasive wave and kinetics with a stable limit
cycle. Many predator-prey systems possess these ingredients,
and, thus, we expect the phenomenon of irregular wakes to
apply in many naturally occurring situations. Ideally, we would
like to derive general conditions on f, and f, for the different
types of behavior to occur, but this is prevented by the lack of
general conditions for the stability of periodic plane waves as
reaction~diffusion solutions, despite extensive mathematical
study (26-28). Therefore, we can only derive parameter do-
mains for regular and irreguldr wakes by using numerical
simulations, and one such division of a cross section of
parameter space is illustrated in Fig. 5.

The concept of spatiotemporal oscillations in the wake of
invasion is not new in ecology. Jeltsch et al. (29) described data
illustrating spatiotemporal oscillations behind waves of teph-
ritid fly populations, which they explain by using a discrete-
time model. Earlier data from the work of Caughley (30) on
the Himalayan thar in New Zealand also illustrated oscillations
behind invasion by a single species. On the theoretical side, Kot
(31) has demonstrated period doubling cascades in the wake of
invasive waves in integrodifference equations, and Kaneko
(32) has studied chaos behind waves in systems of asymmetri-
cally coupled logistic maps. However, the irregularities in these
cases are a simple consequence of the local dynamics, rather
than a new phenomenon introduced by dispersal. A different
approach was taken in recent work by Pascual (33), who
demonstrated chaos in diffusively coupled predator-prey sys-
tems of the form in Eqgs. 1 but with a spatial variation in the
prey growth rate. This is a fundamentally different mechanism
from the one discussed here, because the chaos is induced
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F1G. 4. Spatial and temporal variations in prey densities behind a
wave of invasion by predators for parameters on the borderline
between regular and irregular oscillations. The qualitative form of the
predator distributions behind the invading front is very similar.
Immediately behind the invading front, there are regular spatiotem-
poral oscillations, corresponding to periodic plane waves (PPWs).
However, these periodic plane waves are just unstable, and further
back from the front, instabilities have had time to grow, giving rise to
irregular behavior. The kinetics are from Eq. 3, with D, = Dp = 1, 4
=15B=02%andC = 5.
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externally by the imposed spatial variation, rather than arising
naturally, as in the present study.

The Route to Chaos

A key outstanding question concerns the nature of the irreg-
ular oscillations discussed above: is this really an example of
spatiotemporal chaos or just behavior that appears irregular on
superficial inspection but in reality has underlying order?
Routes to chaos in spatially discrete models are well known,
enabling this question to be answered relatively easily, but the
spatially continuous case is much less well understood. There-
fore, in order to simplify matters as much as possible, we will
consider a mathematical caricature of the rather complex
predator—prey models discussed above. Specifically, we will
focus on a reaction—diffusion equation of A-w type,

oujot = yufox* + (1 —rHu~ G ~riy [5a]
avjot = avjox® + (3~ ru + (1 - r¥y [5b]

where r = (u? + v2)2. The choice of this particular A~ system
is essentially arbitrary. The system has kinetics with a (circular)
stable limit cycle and a unique (unstable) steady state at the
origin, and it is, thus, unable to reflect the phenomenon of
invasive waves. However, the limit cycle means that the
equations do possess periodic plane waves, and exponentially
decaying perturbations to the ¥ = v = 0 equilibrium again
induce periodic plane waves. The main advantage of a A-w
system is that the form and stability of periodic plane wave
solutions can be determined analytically: the waves are r = R,
6= (3 — R¥)t = (1 — R*)V%, where (r, 6) are polar coordinates
in the u-v plane, and the amplitude R € (0, 1) parameterizes
the wave family (26). This solution is stable on 0 < x < L
whenever R > R..y, a critical value that depends on the domain
length L and the boundary conditions. This detailed knowl-
edge of the form and stability of periodic plane waves makes
it much simpler to investigate the behavior resulting from the
perturbation of unstable periodic plane waves; however, we
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Fic. 5. Example of the division of parameter space into regions
giving regular and irregular wakes. The cross-section B = 0.1 of the
three-dimensional A-B~C parameter space is shown with open hexa-
gons indicating a regular wake and filled hexagons indicating an
irregular wake. The distinction between the two cases was made by
numerical determination of the growth or decay of localized pertur-
bations in the wake region. Specifically, Egs. 1 were solved numerically
up tot = t;, and then the solution was continued up to r = £; for two sets
of the equations in parallel and in one case with a small perturbation
applied atx = xperr. The differences between the two solutions were used
to determine whether the initial perturbation had grown or decayed,
corresponding to an irregular or regular wake, respectively. In fact, the
procedure was carried out for a number of values of £;, £ and in particular
Xpert, Since for some parameter values the growth of the perturbation is
only evident in the time interval we are considering in some parts of the
wake region.
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anticipate that the key aspects of our results will also hold for
the predator-prey models. Our use of A-w systems as a
mathematical caricature of more general reaction—diffusion
models follows similar approaches by many previous authors,
most notably in the study of spiral waves (34, 35).

We have solved the Egs. 5§ numericallyon 0 <x <L, t >0,
with the initial solution at r = 0 given by a small random
perturbation of the periodic plane wave of amplitude R. In
order that the boundaries do not force instability, we require
boundary conditions atx = 0 andx = L that will be satisfied
by the periodic plane wave. One possibility is periodic bound-
ary conditions, but this would require the domain length to be
a whole number of wavelengths, and thus to vary with R. To
avoid this restriction, we impose instead dr/ox = 0 and 96/3x
= (1 — R?)Y2 at the boundaries. For given values of L, we have
studied in detail the variation with R of the long-term behavior
in numerical solutions of Eqgs. 5. The results are most conve-
niently described in terms of the spatial and temporal behavior
of the solution amplitude r, recalling that the periodic plane
wave solution has r = R, constant. For sufficiently large values
of L, spatiotemporal irregularities are observed in these finite
domain solutions, and we will discuss the sequence of behav-
iors for L = 30 in detail. The solution for R just below
R.iw ~ 0.809 consists of small, decaying oscillations in r
However, as R is decreased, there are two intervals of R values
for which the long-term solution exhibits spatiotemporal ir-
regularities. Our numerical observations suggest that these
irregularities arise through bifurcation sequences that are well
known from ordinary differential equations, namely periodic
doubling and bifurcations to tori (Table 1).

Two aspects of these results are relevant to the present study.
First, the appearance of these well known routes to chaos is a
very strong indication that the irregular behavior is genuinely
chaotic in time. In addition, it is clear that the initial periodic
plane wave amplitude R is a key bifurcation parameter. Now,
R enters our scheme in two separate ways: in the boundary
conditions and in the initial conditions. To consider which of
these is the crucial effect, we fixed R at a value giving chaotic
behavior and varied separately the initial and boundary con-
ditions. This showed very clearly that the rich structure
described in Table 1 depends on the boundary conditions we
are using and is essentially independent of the initial solution.
How does this relate to the chaotic wakes we have described
in predator-prey models? We have shown that the passage of
the invasive front perturbs the (unstable) coexistence steady
state in a way that induces periodic plane waves. Now the front
is, by definition, always at the boundary of the wake region; of
course, this is a moving boundary, and moreover there is a
boundary of this type at only one edge of the wake region. With
this proviso, the front induces a boundary condition on the

wake of exactly the type we have imposed in our bifurcation
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Table 1. Long-term behavior of Eqs. § as R varies for L = 30

R range (approx.) Long-term behavior of r(x, ¢)

1>R>0809
0.809 > R > 0.807

r = R (periodic plane wave)

Regular spatiotemporal oscillations,
periodic in time, decaying with x

Period doubling cascade in temporal
behavior, synchronously in space

Spatiotemporal chaos

Regular spatiotemporal oscillations
These appear from the chaotic
behavior in a sharp transition

The temporal behavior bifurcates to a
torus and, thence, to chaos. This
occurs via a “wave of bifurcation” in x

0.807 > R > 0.805

0.805 > R > 0.79
0.79 > R > 0.545

0.545 > R > 0.52

052> R > 045 Spatiotemporal chaos

045> R>04 The temporal behavior undergoes a
reverse bifurcation sequence, via a
torus, to periodic oscillations

04>R>0 Regular spatiotemporal oscillations

The initial and boundary conditions are as discussed in the text.

study, and thus the A~ study strongly suggests that it is this
boundary effect that generates the chaotic wake.

The hallmark of a chaotic solution is that small perturbations
grow to induce large scale differences in the solution, and this
is indeed the case in the irregular wakes (Fig. 6). Not only does
a locally applied perturbation grow in time, but it also prop-
agates spatially through the wake region. It is this spatial
propagation of instability that leads us to describe the solution
as spatiotemporal chaos. Our analysis thus suggests that spa-
tiotemporal chaos in predator-prey systems is not limited to
the dynamics given in Eqgs. 2 and 3. We conjecture that, when
diffusive terms have been added to the predator and prey
dynamics, the classical rules given by Kolmogorov (10) to
ensure predator-prey oscillations may, in turn, ensure chaotic
solutions after an invasion of predators.

It is well known that diffusion can destabilize the spatially
homogeneous steady-state solution (ps, ;) and lead to diffu-
sion-driven instabilities and eventually to clumping of the
predator and prey populations (see ref. 36 for a review). Our
analysis indicates a way in which diffusion can destabilize
predator—prey dynamics: addition of diffusion to predator—
prey oscillations can lead to irregular fluctuations in both
predator and prey densities and eventually to spatiotemporal
chaos. An indication that this may be a general property of
oscillatory predator-prey interactions rather than an artifact of
reaction—diffusion models is provided by our observations of
similar behavior in spatially and temporally discrete models for
predator-prey interactions (Fig. 7). This underscores the

message that, in ecology, random movement, as modeled by

® t = 507 Ocn(b) t = 719 (b ¢ = 903 oe(b) x=2040] (3 x = 203.7
0002 ﬂ 0.05 08 /\ 08|
< 0.000 0.041 q 04 / . 0 4
&) 0.0 ] 02 0z Il 0.00] i AMAs e
= ~0.0024 | . !
; —0.004] 0.024 ’ 0.01 \f‘/ D R M—" ]
S 0.01 ~0.21 i ~-0.2 4
& —0.008] 0.00 ~0 41 ~0.41 0.01
~0.0081 +0.01 \[ ~0.6 -0.61
100 " 200 300 160 200  a00 200 300 600 700 800 900 3600 4000 4400
X X x t t

F1G. 6. Development of a small, localized perturbation applied to the wake region. Eqs. 1 were solved numerically up to a fixed time, and then
the solution was continued for two sets of the equations in parallel, in one case with a small perturbation applied in the wake region. Specifically,
1% of the steady-state values was added to u and v in the region 200 < x < 210. The figure shows the difference between the two solutions for
prey density u—i.e., the development of the perturbation; the solution for the predator density is very similar. The kinetics are from Eq. 2, with
parameter values as in the legend to Fig. 1; thus a corresponds to a regular wake and the perturbation rapidly decays, while in b, corresponding
to an irregular wake, the perturbation grows and expands in space. In both cases, the way in which the perturbation develops is not sensitive to

details such as when or where within the wake region it is applied.



2528  Ecology: Sherratt et al

0.00

FiG.7. Solution illustrating the formation of periodic waves and an
irregular wake behind invasion in a discrete space and discrete time
model for predator—prey interaction. The predator density is illus-
trated using the grey scale indicated; the solution for the prey density
has a qualitatively similar form. The solution is illustrated as a
space-time plot: the discrete spatial patches are represented by pixels
running across the page, with successive time steps running down the
page. The discretization is barely visible at this magnification. The
model equations are taken from ref. 37, with parameter valuesr = 1.2;
a = 1;K = 8; and & = 1 (notation as in ref. 37). The model in ref. 37
is a temporal difference equation, and to incorporate spatial effects,
the predator and prey densities are replaced at the end of each
iteration by a weighted average of the density at the current patch and
the two neighboring patches; for the solution shown the weighting is
0.05:0.425:0.425. The solution is shown for 498 time steps on a spatial
domain of 1001 patches; initially there are no predators and a
steady-state density of prey in each patch, except patch number 501,
in which a predator density of 0.01 is introduced. This system has no
formal mathematical relationship with the reaction-diffusion systems
considered previously, although it is modeling a similar biological
situation, and the occurrence of the same phenomena of regular and
irregular wakes in the two types of model strongly supports the
possibility that this is a real biological phenomenon rather than a
modeling artifact.

diffusion, cannot be considered merely as a spatial averaging
process; in the system here, diffusion heralds the omset of
irregular, unpredictable fluctuations, which cannot be ex-
plained by the underlying growth dynamics.
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