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Abstract

Counting unique number of people in a video (i.e., counting a person only once

while the person passes through the field of view (FOV)), is required in many video

analytic applications, such as transit passenger and pedestrian volume count in rail-

way stations, malls and road intersections, aid in security and resource manage-

ment, urban planning, advertising and many others.

In this PhD thesis I have developed a robust algorithm to generate unique peo-

ple count from monocular videos taken from an arbitrary angle. From applications

point of view, my algorithm is one of the most economical ones, because it can

work with existing video cameras already mounted. Within a region of interest

(ROI) on the FOV of the camera, I compute influx/outflux rate of people, i.e., num-

ber of people coming in or going out of the ROI per unit time. Then, I sum the

influx/outflux rate between any two time points to estimate the number of people

that entered and/or left the ROI within that time interval. I employ two well-known

computer vision techniques for this purpose: Gaussian process regression (GPR) to

estimate the number of people present within a ROI and optical flow-based tracking

of the boundary of the ROI.

The principle roadblock in most of computer vision problems is occlusion. To

avoid this bottleneck, we adopt the combination of (a) the concept of influx and

outflux of fluid mass from computational fluidics, (b) the GPR to estimate the num-

ber of people within a ROI and (c) ROI boundary tracking (as opposed to object or

feature tracking) for a short period. Thus, the principal contribution of the thesis is

to successfully handle occlusions by computing the average influx and/or outflux of

people and avoiding people detection and tracking.

We validate the proposed algorithm on 19 publicly available monocular bench-



mark videos. Occlusions are abundant in these videos, yet we obtain more than

95% accuracy for most of these videos. We also extend our proposed framework

beyond monocular videos and apply it on multiple views of a publicly available

dataset with about 99% accuracy.

Keywords: people counting, occlusion, boundary tracking.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

People counting is important for solving many important applications like traffic

management, detection of overcrowded situations in public buildings, tourist flow

estimation, surveillance and many other scenarios. It is also a significant component

in video analytics. By unique people count, we mean the computation of the total

number of people in a specific time interval by counting a person only once while

the person is present within a field of view (FOV) or a region of interest (ROI)

within the FOV.

Among the different real life applications of people counting, one of the most

important is the traffic management system. An automatic people count system

would help transit authorities to optimize frequencies of transit vehicles at differ-

ent times of the day by taking into account the total people count during those

times. In this way, emission of greenhouse gases can be prevented which leads

to the welfare of mankind and the environment. Traffic and transit management

also helps in different resource management and urban planning in broader aspects.

Cumulative people count is effectively used in advertising purposes and store man-

agement. Store managers may need to monitor people count for different reasons.

One of them may be to learn how frequently the store is visited and at what times.

This type of information helps the store manager to schedule employees efficiently.

Moreover, a people counting software may also be able to reciprocate the rate of

increase of number of customers due to the new advertisement campaign. With
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the aid of a real time people counting software, shop assistants can be assigned to

necessary areas of a store in an interactive way. For public transportation, an au-

tomatic people counting system may be again needed for determining the optimal

schedule. Overcrowding situations can also be determined with such a software by

estimating the number of people in large crowds. Thus this software can be used in

calculating the total number of people participating in a demonstration or festival

or even tourist flow estimation during certain seasons of the year. Finally, a very

important utility of a people counting software lies in the domain of surveillance

videos. Most of surveillance applications need the total count of people during cer-

tain interval of time to ensure safety, security, support site management and many

others. Some crucial instances include estimation of queue length in retail outlets,

monitoring entry points in secured buildings, train stations, bus terminals and even

in military camps. Thus counting unique number of people plays a very important

role in modern technologies.

People counting systems can be roughly categorized into computer vision based

and non-computer vision based techniques. The non-computer vision based sys-

tems use many different technologies [5], each with its own advantages and disad-

vantages. Probably the most straightforward system is the tally counter or clicker

counter. It has a very simple working mechanism where pressing a button acti-

vates the count. However, the method needs human intervention, which is both

labour and cost intensive. A very accurate people counting system is the mechani-

cal counter, known as the turnstile, which needs to be turned by the individual each

time he/she crosses it in order to take into account the individual count. However

again, this method is invasive and disruptive. Laser beam-based sensors are among

the non-invasive methods used frequently in railway stations. These methods are

inexpensive, but they are not suitable for counting people in outdoor environments,

because their performance can be negatively affected when subjected to direct sun-

light. Another well-known non-invasive people counter is based on thermal sensors.

However, once again, they are sensitive to ambient temperatures.

Computer vision-based solutions to date are mainly based on methods that use

either a camera network or a monocular video. The network of multiple cameras
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is one of the most advanced technologies used for people counting. It takes into

account different views of people with different camera angles to avoid occlusion.

But the setting up of the system can be costly and the process may often be cumber-

some due to lack of resources. Moreover, homography constraints often need to be

applied [4] for finding out correspondences among views of people obtained from

multiple cameras in order to perform any kind of tracking or counting. The homog-

raphy computation may also lead to the occurrence of transfer errors (summation

of the projection error in each camera view for a pair of correspondence points) that

needs to be dealt with. Our proposed approach to finding the unique people count

is based on monocular videos. Our principal motivation is to make use of existing

cameras and avoid expensive camera network setup and maintenance.

The computer vision based algorithms for people counting from monocular

videos are mainly used for finding out two types of counts - frame based people

count and unique people count.

The frame based people counting algorithms count people in individual video

frames with reasonable accuracy even in the presence of occlusions [8, 9, 18, 59,

67, 17]. These methods use extracted features from individual frames and count

the number of people in each frame with the help of machine learning techniques

that map the extracted features to the number of people present in the frame. But

these methods fail to count the unique number of people present in a video over

an interval of time, as they do not consider the correspondence of the same person

over multiple frames. For example, if there are n people in the first frame and one

person enters, while another person exits the FOV in the second frame, the frame

based counting will produce n as the people count for the second frame. However,

the unique count of people for the two frames should be n+ 1.

The computer vision based solutions to unique people count can be further cat-

egorized into three types:

(a) the detection and tracking based approach [28, 34, 64]

(b) the visual feature clustering based approach [6, 57]

(c) the line of interest (LOI) count approach [40, 16, 35]
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The detection and tracking based approaches [28, 34, 50, 64] count people by

detecting individuals on an image and creating corresponding trajectories by track-

ing them. The number of trajectories in an interval of time accounts for the number

of people. The method is efficient when the object size is large, with sparse crowd

and limited or no occlusion, because large object size helps in the detection due to

the presence of enough image pixels depicting the object. Tracking is successful

for overhead FOVs where little or no occlusion is present, but succumbs to fail-

ure in case of whole body views, where partial occlusion is present. Applying the

detection-tracking approach becomes difficult in dense crowds, where each person

is depicted by only a few image pixels and people occlude each other.

The visual feature trajectory clustering methods [6, 57] cluster feature trajecto-

ries that exhibit coherent motion and the number of clusters is used as the number of

moving objects. This type of method requires sophisticated trajectory management,

such as, handling broken feature tracks due to occlusions or measuring similarities

between trajectories of different lengths. Thus, in crowded environments, it is fre-

quently the case that coherently moving features do not belong to the same person.

Thus, equating the number of people to the number of trajectory clusters becomes

quite error prone. Once again, occlusion is a serious bottleneck for these methods

too. Thus, the first two individual based analyses are somewhat successful for low

density crowds or overhead camera views, but they are not competent enough for

large crowds.

In the LOI counting methods [40, 16, 35] the basic principle is to create a line

of interest within the FOV and take into account people crossing the LOI. At first,

temporal images are constructed across the LOI over a period of time. Features are

extracted from the temporal images and the cumulative people count is estimated by

using a regression function. The disadvantage of these methods is that the feature

computation pipeline used in these methods is fairly complicated. These methods

may not perform well if the walking speed varies greatly within the crowd. Finally,

a suitable LOI need to be drawn within the FOV to take into account all the people

within the FOV. Drawing this type of LOI is problematic for FOVs where people

are moving in multiple directions.
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In this PhD thesis I have developed a robust algorithm to generate the unique

people count for monocular videos taken from an arbitrary angle. From an appli-

cations point of view, my algorithm is one of the most economical ones, because it

can work with existing video cameras already mounted. To avoid the expensive and

also challenging video camera network system, my algorithm should work on the

view taken from a single camera. Finally, apart from dealing with sparse crowds,

the algorithm is able to deal with large as well as dense crowds. Hence, it should

be capable of handling occlusions.

1.2 Proposed Solution

As discussed in the previous section, unique people counting finds its use in a va-

riety of applications. But the methods used are either non-computer vision based

techniques (both mechanical and electronic) which are either too cumbersome or

costly, or are restricted by the environment in their applications. The computer vi-

sion based techniques currently in work or in research are mostly affected by occlu-

sion or need a network of cameras. A network of cameras capture different views

of people from different angles. This often helps to deal with occlusion problem

which is a significant hurdle in the domain of computer vision. Moreover, homog-

raphy constraints are also needed while we work with multiple camera views. But

this method utilises costly and complicated setup, which needs skilled staff to main-

tain and manage, that restricts the use of camera network to only big enterprises or

corporations. This leaves the small businesses unable to use computer vision based

counting methods for their operations. Thus, an affordable solution is necessary

to count people from monocular videos plagued with occlusion, which could be

adapted for use in existing camera setup.

So, I aim to build a unique people counting software which can use any existing

camera setup, i.e., it should mainly work on monocular videos. Expensive solutions

to people count problems prohibit many end users of small scale businesses to use

them. So, my purpose is to build an inexpensive solution so that it is adaptable

to any type of applications and still provide a good solution. In order to avoid
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expensive solution, we exclude multiple views of humans captured from camera

network from our input data. Instead we work with monocular videos so that our

solution can be provided with any existing cheap single camera setup. We also

keep in mind, that the solution should provide satisfactory accuracy in people count

on any camera angle without using multiple human views and still should handle

occlusion. As the solution can be provided using a single camera, the setup is

simple and maintenance cost is low which is aptly suitable for small business and

several real life applications.

I initially worked with the City of Edmonton for developing an automatic soft-

ware for counting passengers in the LRT stations of Edmonton. The local trans-

portation agency in Edmonton required automatic software capable of counting the

number of LRT passengers. Such software can serve their future planning and de-

cision making system. Transit count data is an important component in Transit and

Transportation Planning as they are an input for the design of effective and efficient

transit service and transportation management systems. The count data helps to

analyse the impacts of changes to the transit service, thus optimizing the frequency

of transit vehicles which helps to save fuel and human resources. This data also

decreases emission of green house gases from the vehicles impacting the environ-

ment. Moreover, the different people count in different times of the day will help

the city in further decision making and design of transportation system in future.

Recently, most of the data collection processes of the City of Edmonton use either

a manual counting system or laser beams for the LRT. Manual counting is expen-

sive and intermittent, whereas laser beams are cheap but not suitable for outdoor

environments. So, the city expressed zeal to develop a new vision for a Transit

Monitoring application.

In order to achieve this goal, the City of Edmonton used existing cameras with

monocular videos to lower the expense. The different views captured can be broadly

classified into top views and full body views. In my research work, I initially pro-

duced a framework for counting passengers in LRT stations, that has three major

steps: people detection, tracking and validation. The framework is tested on both

top views and whole body views of passengers. In the top views of passengers,
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the Hough circle based detection algorithm [27] is used to detect people, then an

optical flow based tracking algorithm [29] is evoked to track each person detected

in a frame, and finally all the trajectories resulted from the tracking algorithm, are

sieved through a spatio-temporal validation algorithm to verify whether the trajec-

tory followed a person correctly [50]. The total number of valid trajectories gives

the total number of unique count of the people within a specific time interval.

Apart from top views, the second focus was to work with whole body views of

people. In this case, a background subtraction method is proposed for the initial

detection of a human being, an optical flow method for tracking and a motion his-

togram based technique for classifying the trajectories into human or nonhuman.

Although different methods are proposed for the framework, the framework is not

constrained by these methods. For example, in the case of a sparse crowd, back-

ground subtraction may be used for the detection process, while for dense crowds,

a histogram of oriented gradients can be applied. Thus this framework is flexible

enough for future work.

The speciality of this framework is the introduction of the validation step where

the trajectories are classified into human or non human after the detection and track-

ing work are completed. Most of the existing algorithms skip the validation step.

Here we argue that the validation step is crucial in this type of people counting work

as most of the existing detection algorithms produce a significant number of false

alarms which may lead to a wrong count.

The task of people counting with the above mentioned detection-tracking-validation

(DTV) algorithm becomes complicated when the crowd is very dense and there is

significant occlusion. Occlusion handling is a challenge in the domain of human

recognition and tracking problems when each human in a crowd is analysed indi-

vidually. So, for occlusion handling, the whole crowd needs to be analysed instead

of individual analysis.

In my PhD thesis, the novel framework I have developed monitors a human

crowd globally, avoiding individual analysis. The input to this framework, is a

monocular video consisting of human views and the output is the total unique count

of people within a certain duration of the video. The aim of the framework is
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an application towards real life problems. It is termed novel because it does not

resemble any of the above mentioned three methods for unique people count. First

of all, the method analyses the crowd globally unlike individual analysis performed

in the detection-tracking or visual feature trajectory clustering methods. This helps

to avoid the occlusion which plagues the individual detection and tracking work.

Secondly, the method differs from the LOI counting methods, because it does not

rely on any temporal image generation and their analysis. It works with ROIs which

can be of any shape, rather than only a straight line as in the LOI methods. Thirdly,

we incorporate concepts, such as influx, outflux and boundary tracking in the field

of people counting, which when combined with a non linear regressor help to handle

occlusion better than the LOI counting and the detection-tracking methods.

To achieve unique people count within a ROI (rectangular or any other shape)

on the FOV of the camera, we compute influx/outflux rate of people, i.e., number

of people coming in or going out of the ROI per unit time. Then, we sum the in-

flux/outflux rate between any two time points to estimate the number of people that

entered and/or left the ROI within that time interval. Thus, we are able to compute

the influx and/or the outflux rate of unique people at any time instant. Summing

these rates between any two time points provide us with the unique people count.

In addition to unique people count, we are also able to count the number of peo-

ple moving in different directions by taking into account directional influx/outflux

along the edges of the ROI. To compute influx and outflux, we use machine learn-

ing to estimate the number of people within a region of interest and we track the

boundary (as opposed to tracking any object, blob, or feature) for a short time pe-

riod. In addition, any remaining effect of occlusions is mitigated by averaging the

influx and outflux rate over a period of time. Our framework is online and it does

not accumulate error over time. The reported running times make it suitable for

realtime applications. We have termed this framework as Unique Influx Outflux

Count (UIOC) framework.

For validation of the UIOC framework, we have performed extensive experi-

ments on four benchmark datasets: the UCSD dataset [8], which consists of a one

hour video of 25,656 frames, the FUDAN dataset [59] which has 1500 frames, the
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LHI dataset [16], which has 12 videos captured at different camera angles (90o, 65o

and 40o), and of durations ranging between 5 to 15 minutes and the PETS 2009

dataset [76] which consists of multiple camera views targeted at the evaluation of

various surveillance applications. Although the focus of the current work is the ap-

plication of people count, we have also tested our algorithm for counting cells from

video microscopy [54].

The high accuracy in performance achieved on all of the videos, accompanied

with the attributes of fastness and capability of working on multiple views with

competence, endows our framework with applicability to any type of video and

make it suitable for various commercial applications.

1.3 Contribution of Thesis

In this thesis work I have introduced a novel framework named UIOC as described

in the previous section. The novel framework designed here for unique people

count, is able to count people with excellent accuracy overcoming occlusion. This

framework contributes to the scientific community in the following ways:

(a) Better occlusion handling - Occlusion is one of the major problems in the

domain of computer vision. The effect of occlusion is handled competently

in the proposed framework due to three factors -

(i) Boundary tracker, which computes pixel motion only on the ROI bound-

ary, thus works with a very small set of pixels and also for a short period

of time.

(ii) Machine learner-based frame count can handle occlusion to a great ex-

tent.

(iii) Remaining effects of occlusion overlooked by the machine learner are

resolved by averaging the influx and outflux rate over a period of time.

The novelty here is that, the framework does not resemble any of the exist-

ing methods in literature ie detection-tracking framework, visual trajectory
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clustering framework or LOI counting framework. It avoids individual detec-

tion and tracking but is still capable of overcoming occlusion with dexterity.

Though it uses a machine learner used in existing literature for occlusion

handling, its better occlusion handling capacity is not only because of the

machine learner but also due to incorporation of the boundary tracker and

averaging of influx and outflux rate over a period of time which empowers it

with better occlusion handling capacity.

(b) Versatility in application - Our framework is capable of working on any ex-

isting camera setup as it can work on both monocular and multiple camera

views. It is also flexible to use on views captured at different angles over-

coming any amount of occlusions. The results presented in the following

chapters of the thesis support our claim. As the system is able to work on

monocular videos, it is aptly suitable for small businesses and various real life

applications. In addition to people counting, the proposed system is success-

fully applied to cell counting with remarkable accuracy [54] which depicts

its versatile nature.

(c) High Accuracy - The system produces high accuracy on 19 publicly available

benchmark videos. Apart from that, it also produces more that 90% accuracy

on the LRT dataset provided by the City of Edmonton which illustrates its

utility in real life problem solving.

(d) Speed - The framework is very fast and works as fast as 30 frames per sec-

ond on a system with Intel(R), core(TM), DuO CPU, E8400 @ 3GHz which

is real time. The system is implemented in OpenCV using the MATLAB

implementation of the GP.

(e) Online - The system is totally online in nature and is capable of working on

streaming videos.

(f) Non-accumulation of errors - A remarkable characteristic of our system is

that, it does not accumulate any error with time. Thus it can be applied on
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any length of video sequences with satisfactory performance. This fact is

validated through our results.

(g) Directionality - Directionality is incorporated very easily in our framework.

This enables us to count the number of people moving in any direction within

the field of view. This attribute is extremely helpful in real life applications

like traffic management.

1.4 Organization of Thesis

The thesis is organized as follows. First, the background and existing work on peo-

ple counting have been explored in Section 2. In Section 3, we provide a detailed

description of the two types of frameworks which we propose for the people count-

ing task along with the results obtained. Section 4 illustrates the flexibility of the

UIOC framework with the help of a discussion of its application on cell counting.

We conclude in Section 5 with probable future works.
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Chapter 2

Background and Related Work

The computer vision based algorithms for people counting from monocular videos

are mainly used for finding out two types of counts: the frame based people count

and the unique people count.

2.1 Frame Based People Count

The frame based people counting algorithms count people in individual video frames

with reasonable accuracy even in the presence of occlusions [8, 9, 18, 59, 67, 17].

These methods use extracted features from individual frames and count the number

of people in each frame with the help of machine learning techniques that map the

extracted features to the number of people present in the frame. These approaches

for people counting are currently very popular in computer vision as they monitor

the entire crowd environment globally without individually detecting or tracking

the humans. Hence, the problem of occlusion is handled very deliberately with the

help of machine learners instead of tackling it in the detection or tracking phase.

These methods are supervised where in the training phase, low level features are

extracted from each training image. Then a machine learner is trained to learn a

relationship between the extracted features and people count in each frame. In the

testing phase, features are extracted from each test frame and the machine learner

obtains the count in each test frame based on the extracted features.

In [8], the authors initially use mixture of dynamic textures [11] to segment

regions having motion. Then in the training phase, they extract features from each

12



frame and calculate people in each frame. With the features and people count from

the training images, they train a Gaussian process regressor [58] to obtain a rela-

tionship between the extracted features and people count. Then in the testing phase,

they extract features from test images. Finally, they estimate the people count on

each image with the learned function of the trained regressor using the extracted

features.

In the paper, [9], the authors have extended the method discussed in [8]. The

Gaussian process regressor, which they used previously, produces real valued out-

puts, whereas the actual counts are discrete. So, in [9], the authors overcome this

limitation by using a Bayesian treatment of Poisson regression [10].

In [18], the authors use SURF points as features. They extract SURF points

from each frame of the input video. For each point on which a surf feature is de-

tected, they estimate motion vector w.r.t the previous frame using a block matching

technique. Then points with null motion vectors are pruned. The remaining points

are divided into clusters using a graph-based clustering method as they worked on

videos where people are walking in groups. A support vector machine is trained

with the number of points in a cluster and the distance of the cluster from the cam-

era to estimate the number of people in the cluster.

In the paper [17], suitable scale-invariant features are extracted from image

frames and the moving feature points are chosen taking into account that they cor-

respond to moving people. The frames are divided into a number of horizontal

zones to avoid perspective distortions. The people count in each frame is counted

by summing up the people counts in all the horizontal zones.

The method used by Tan et al. [59] is almost similar to Chan’s method [8].

Unlike Chan’s method, here the authors used semisupervised learning to reduce

the learning time. They add the unlabeled data as regularization term to refine the

performance of learning. Elastic net [69], which is a variant of Lasso [60], is used

as a machine learner to learn the mapping function between the extracted features

and the people count. The authors chose Elastic net as their machine learner because

of its capability of reducing some redundant features.

Zisserman et al. proposed a novel method [67], which estimates image density
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and integrates this image density over any image region to produce object count

within that region. The authors have used this method for people count in individual

image frames along with other object count applications.

2.2 Unique People Count

The computer vision based solutions to unique people count can be further catego-

rized into three types: a) the detection and tracking based approach [28, 34, 64],

b) the visual feature clustering based approach [6, 57], and c) the line of interest

(LOI) counting approach [40, 16, 35]. The first two individual based analyses are

somewhat successful for low density crowds or overhead camera views, but they

are not competent enough for large crowds. In these types of views, there is too

much occlusion, or people are depicted by only a few pixels, or the situations are

too challenging for tracking. The LOI counting methods are capable of handling

occlusion, but these methods have received relatively less attention so far.

2.2.1 Detection-Tracking Approach

The detection tracking approach counts the number of people by detecting indi-

viduals in an image and creating corresponding trajectories by tracking them. The

number of trajectories in an interval of time accounts for the number of people.

There are lots of human detection methods available in the literature. The most

simple one is background subtraction method [34] where moving human bodies

are detected as silhouettes. Background subtraction is suitable for the situations of

stationary cameras where the crowd is sparse and each connected foreground ob-

ject, known as a blob, corresponds to a single object. But sometimes the blobs may

be fragmented for low contrast or partial occlusion by humans and also there may

be some non-human pixels included in the blob due to shadows and noise. Hence,

some morphological post processing is often needed. In the case of dense crowds,

the segmentation task becomes even more complicated as one big blob consists of

several humans. So, human segmentation cannot be performed from the blobs as

they do not provide direct object level description. In order to segment this type of
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foreground, where human objects overlap with each other, a Bayesian framework

is needed [26, 65]. Zhao et al. [65] pose the problem of human segmentation

as a model-based segmentation problem in which human shape models are used to

interpret the foreground in a Bayesian framework. A number of 3D human models

are used to capture the gross shape of standing and walking humans. The human

shape is modelled by four ellipsoids corresponding to head, torso and two legs.

An ellipsoid fits human body parts well and its projection is an ellipse which has

a convenient form. Each ellipsoid has two parameters named length and fatness.

Therefore, the parameters of each human object are model/orientation, position,

height and fatness, respectively, which are used for the Bayesian segmentation. On

the other hand, Ge et al. [26] tackles both the problems of detection and counting

of people in crowded environments by a Bayesian mark point process model. The

model uses a spacial stochastic process to take into account the number and place-

ment of individuals with a conditional mark process to select body shape. Initially,

they estimate a mixture of Bernoulli shape prototypes with an extrinsic shape dis-

tribution, which describes the orientation and scaling of the shapes for any given

image location. Then they automatically learn a mark process from the training

video. The maximum a posteriori configuration of shapes is efficiently estimated

with the help of a Markov Chain Monte Carlo framework. This leads to very accu-

rate estimate of count, location and pose of each person in the scene.

Another type of detection algorithm includes detection with a cascade of classi-

fiers [62]. It develops a pedestrian detection system which takes into account both

image intensity information and motion information. The overall detection pro-

cedure works as a degenerate decision tree, which is called a cascade. A positive

result from the first classifier triggers the evaluation of a second classifier which has

also been adjusted to achieve very high detection rates. A positive result from the

second classifier triggers a third classifier, and so on. A negative outcome at any

point leads to the immediate rejection of the sub-window. Stages in the cascade are

constructed by training classifiers using AdaBoost and then adjusting the threshold

to minimize false negatives.

Skin color information provides a robust information for detection purposes in
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a cluttered environment, as used in [28]. Here the authors depict a counting system

for transport vehicles, integrated in a video surveillance product. The detection is

based on skin color information of faces. An iterative process is used to estimate the

position and shape of multiple faces in images, and to track them. The trajectories

are then processed to count people entering and leaving the vehicles.

A well known approach in the field of human detection in recent studies is the

sliding window based approach. Examples include the popular Histogram of Ori-

ented Gradients (HOG) method [20] and the Local Binary Patterns (LBP) method

[49]. In [20], the authors study a novel feature descriptor for human detection,

known as the HOG descriptor, which is based on fine scale gradients and fine ori-

entation binning in overlapping descriptor blocks. After reviewing previous edge

and gradient based descriptors and performing experiments on more challenging

datasets, the authors prove the competence of their robust object detection method.

LBP [49] is another well-known sliding window approach which works on

grayscale images and mainly carries texture information. It is a texture operator

which labels the pixels of an image by thresholding the neighborhood of each pixel

and considers the result as a binary number. The histogram of the 256 different la-

bels can then be used as a texture descriptor. The most attractive characteristics of

LBP are its invariance to monotonic gray-scale changes, low computational com-

plexity and convenient multi-scale extension. The philosophy behind LBP is simple

and elegant, unifying statistical and traditional structural methods. The advantage

of LBP over HOG is that, when the target object typically appears in a cluttered

environment and the unexpected noises drastically degrade the performance, only

gradient information is insufficient to judge useful points and outliers. In this case,

the concept of uniform LBP provides the possibility for effectively removing out-

liers. Moreover, LBP is more robust to illumination changes.

In a recent people counting paper [64], the authors used both the HOG and

LBP descriptors for human detection purpose. The method designed a robust head-

shoulder detector for people counting in surveillance systems. Initially for detection

purpose, they combined the HOG and LBP as feature set. Principal Component

Analysis (PCA) is used to reduce the dimension of the HOG-LBP feature set. Then
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they incorporate the detector through a particle filtering tracking to get the final

count. This method performed well for partial occlusion as the detection method

was robust and it was based on only head and shoulders and not on the whole body.

As the above mentioned methods detect whole pedestrians or a part of the pedes-

trian (face or head-shoulder), they are not very effective for dense crowds where

there is significant occlusion. These types of scenarios have been handled by part

based detectors [63, 23]. In [63], an individual human is modelled as an assembly

of natural body parts (head, shoulder, torso, legs). The authors introduce edgelet

features which are a new type of silhouette oriented features. Part detectors are

learned by a boosting method depending on the edgelet features. Responses of part

detectors are combined to form a joint likelihood model that includes instances of

multiple, possibly inter-occluded humans. The human detection problem is then

formulated as maximum a posteriori (MAP) estimation. On the other hand, [23]

describes an object detection method based on mixtures of multiscale deformable

models which has been applied on many objects other than human beings. The nov-

elty of the detection method is that it uses a star-structured part-based model defined

by a root filter along with a set of part filters and associated deformation models.

As it is also a part based detector, it is capable of handling significant occlusion in

dense crowds where the detection is based on visible body parts even if some of the

body parts remain occluded.

In the detection-tracking framework, after a person gets detected by a detection

algorithm, the detected person needs to be tracked throughout the field of view for

generating a trajectory. The number of generated trajectories accounts for the num-

ber of people in the video. The different tracking algorithms available in literature

include block matching technique, optical flow methods [29, 39, 7], and different

particle filter methods.

Before proceeding to the next section, a brief discussion about these tracking

methods is needed. Among the various tracking methods available in the literature,

the different optical flow (OF) methods have gained popularity in recent years. One

of the oldest of them is the Horn-Schunck (HS) [29] method. This method gener-

ates the optical flow pattern by assuming that the brightness pattern varies smoothly
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almost everywhere in the image. [The theory of optical flow can be found in Ap-

pendix]. Thus this method always attempts to minimize distortions in flow and

preferably tries to produce solutions which show more smoothness. Some remark-

able attributes of this OF method are that it is very fast in nature and robust against

quantizations of brightness levels and additive noise. Due to its fast nature, I have

used it in many stages of my work.

The Lucas Kanade (LK) [39] method solves the aperture problem of the OF

problem in another way. It works on the assumption that the displacement of the

image pixels between two nearby frames, is too small and almost constant within

the neighbourhood of a point under consideration. Thus the method assumes the

OF equation to be valid for all pixels within a window centred at that pixel. Finally,

the LK method solves an over-determined system by least squares principle [38].

The Brox method [7] of optical flow models the energy functional of the OF

under three assumptions : brightness constancy assumption, gradient constancy

assumption and a discontinuity-preserving spatio-temporal smoothness constraint.

The numerical scheme designed by this method is very consistent and provides

a theoretical foundation to warping. The method is hardly sensitive to parameter

variations and very robust towards noise.

One of the most accurate OF methods is the one designed by Black-Anandan

(BA) [1]. This method designs a very robust and accurate solution to the OF

problem by avoiding the single motion assumptions adopted by most of the state

of arts and considering the effects caused by multiple motions. Thus it is applied

successfully to three standard techniques of OF solutions : area based regression,

correlation and regularization with motion discontinuities.

Apart from OF methods, the particle filter based trackers are also very popular

due to their accuracy in performance. Among the different particle filter trackers, a

recent and very fast method which needs to be mentioned here is the particle filter

tracker with classifiers [12]. The speciality of this method is that, it uses classifiers

for the observation function of the particle filter. Thus the likelihood function is

modelled directly from the output of classifiers. The classifiers used here are the

Support Vector Machine [19] and Adaboost [61]. This method is very fast and
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real time in nature. Thus, it is used in many popular applications like pedestrian

tracking and counting [64].

2.2.2 Visual Trajectory Clustering Approach

In the broad classification of people counting methods, the second category spec-

ifies the visual feature trajectory clustering method [57, 6]. These methods clus-

ter feature trajectories that exhibit coherent motion and the number of clusters is

used as the number of moving objects. Rabaud et al.’s [57] method is based on

a highly parallelized version of the KLT (Tomasi-Kanade features) [3] tracker for

processing the video into a set of feature trajectories. For determining the number

of objects at a given time, the features present at that time are clustered into plausi-

ble objects, and the number of resulting clusters gives the count. At each time step,

the present features form the nodes of a connectivity graph, whose edges indicate

possible membership to a common object. Thus the problem can be modelled as an

instance of graph partitioning problem with binary edge weights that can be solved

using cues and various techniques described in the paper.

Brostow et al. [6] describes an unsupervised data driven Bayesian clustering

algorithm which detects individual entities as its primary goal. In the paper, the

authors track simple image features, eg corners and Tomasi-Kanade features and

probabilistically group them into clusters. The clusters represent independent mov-

ing entities. Thus the number of clusters denotes the number of human beings.

2.2.3 LOI Counting Approach

In the LOI counting methods [40, 16, 35] the basic principle is to create a line of

interest within the FOV and take into account people crossing the LOI. In [40],

a LOI is drawn in the FOV first. Spatio-temporal images are formed across this

LOI. Features are extracted from these spatio-temporal images. Then the number

of people is counted using a regression function.

In [16], a LOI is created in a similar way. Then a ROI is created across the LOI.

Pedestrians are regarded as fluid flow across the line and a novel model is designed

to estimate the flow velocity field. Dynamic mosaics are constructed by integrating
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over time for counting the number of pixels and edges crossing the line. Finally the

number of pedestrians is estimated by applying a quadratic regression function on

the dynamic mosaics.

The authors in [35] consider a virtual gate as their LOI. Low level features

are extracted across the LOI using foreground pixels and motion vectors. Then the

number of pedestrians are estimated using the accumulated features.

2.3 Background Subtraction Methods

Background subtraction is an integral part in different people counting algorithms.

We have used background subtraction in both the frameworks proposed in this work

- Detection-Tracking-Validation (DTV) [50] and Unique Influx Outflux Count

(UIOC). In this section, we will discuss the different background subtraction al-

gorithms which have been mainly considered in this work.

Among the different background subtraction algorithms, a simple and straight-

forward one is the Approximate Median (AM) [41] method. This method is a

combined form of image differencing with respect to a median background and a

Laplacian operator. The first step in this method is image differencing. Each con-

secutive image is subtracted from a time averaged reference image. The difference

image produced as an output of this step is thresholded. This threshold is the only

tunable parameter in the AM method which can be tuned with only a few training

frames. Moving object pixels having values more than the threshold value are con-

sidered as foreground pixels. Segmentation results produced from image differenc-

ing between current frame and a reference image produce better results compared

to subtraction between consecutive frames as this type of subtraction may lead to

the generation of false positives where dark shadows move away from an area of

background. The method produces a sequence of images whose running median is

the reference image. The value of each pixel in the reference image is increased

by 1 if the corresponding pixel value in the current image is greater and the value

of each pixel in the reference image is decreased by 1 if the corresponding pixel

value in the current image is less. Each pixel in the reference image then converges
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to a value for which half of the updated values are greater and half are less which

actually indicates the median. Among the different advantages of this method, one

is that it is computationally inexpensive as it needs to store only one reference im-

age. Moreover, the median possesses better capability of rejecting outliers than the

mean in the distribution of values of pixels. Due to these several attributes, we have

used this method for calculating foreground pixels in our DTV framework and for

the UCSD dataset in UIOC framework.

Another remarkable method of background subtraction is the mixture of Gaus-

sians method (MG) [48]. This method initially models each pixel of an image as

a mixture of Gaussians by using an online approximation for updating the model.

Then it evaluates Gaussian distributions of the adaptive mixture model and deter-

mines which is most probable to be a result from a background process. Each pixel

is classified based on the Gaussian distribution it represents. If the Gaussian dis-

tribution which represents a pixel most effectively, is part of a background model,

then the pixel is classified as background. This method works in real time and pro-

duces stable results. It has the ability to handle lighting changes, long term scene

changes, shadows, repetitive motions from clutter and many other challenges. So, it

can be successfully applied to FUDAN dataset which has lighting changes as well

as shadows.

Finally, a very recent and fascinating method of background subtraction needs to

be mentioned here which is Visual Background Extractor (ViBe) [2]. This is a very

fast method which outperforms many current techniques in terms of computation

speed and segmentation accuracies. The method stores a set of values for each

pixel acquired from the past in a similar location or in its neighbourhood. Then it

compares this set of values with the present pixel value for determining whether the

pixel corresponds to the background or not. Then the model is updated by randomly

selecting a value for replacing from the background model. If the pixel is classified

as part of the background, then its value is propagated in the background model of

its neighbouring pixel. This technique is different from the state of art in the sense

that it does not work according to the belief that oldest values should be substituted

first. We have successfully applied this method on the 12 different videos of the
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LHI dataset and also on the LRT dataset.
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Chapter 3

Proposed People Counting from

Monocular Videos

Based on the literature review presented in the previous section, we come to know

that the problem of people counting can be handled in two different ways - either

analysing each individual in the crowd differently or work with the entire crowd

environment globally.

The detection-tracking framework works on the principle of analysing each in-

dividual separately. In these approaches [28, 34, 64], the individual persons are first

detected and then they are tracked. The number of tracked trajectories accounts for

the estimate of the number of people. Thus, the count is not dependent on individ-

ual frames, but on a sequence of frames. The shortcoming of these methods is that,

often they avoid a validation step, where the detected objects or tracked trajectories

should be classified as a human or non-human. Consequently, these methods are

imprecise. Therefore, we develop a framework, which has three major steps: people

detection, tracking and validation. The interesting characteristic of the framework

is the inclusion of the validation step, which is overlooked by most of the existing

methods. Although different methods are proposed for the detection, tracking as

well as the validation stages for the framework, the framework is not constrained

by these methods. Thus this framework is flexible enough for future work.

The detection-tracking-validation (DTV) technique works well for situations

where the object size is large, crowd is not too dense and occlusion is not severe.

Large object size helps in the detection as there will be enough number of image
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pixels to depict the object. Tracking is failsafe for overhead views where there is no

occlusion. In case of whole body views, where there is partial occlusion, particle

filter based tracking can be applied.

Applying the detection-tracking-validation approach becomes difficult in dense

crowds where each person is depicted by a few image pixels and people occlude

each other in complex ways. Detection becomes challenging due to both occlusion

and small size of people. Occlusion also poses a difficult challenge for tracking.

For these situations, we need to gather all information from the image by analysing

the environment globally in order to perform the people counting task successfully.

Based on this idea, we develop a framework where we perform the people counting

task by monitoring the entire crowd holistically.

In order to design the framework, we adopt a combination of (a) the concept

of influx and outflux of fluid mass from computational fluidics, (b) a non-linear

regressor to estimate the number of people within a region of interest (ROI) and (c)

ROI boundary tracking (as opposed to object or feature tracking) for a short period.

Within a ROI, we compute influx/outflux rate, i.e., number of people entering or

exiting the ROI per unit time. Then, we sum the influx/outflux rate between any

two time points to estimate the number of people that entered and/or left the ROI

within that time interval. This framework is named as Unique Influx Outflux Count

(UIOC). The UIOC framework is online in nature and is as fast as realtime.

A detailed explanation of the frameworks is given in the ensuing sections.

3.1 Detection-Tracking-Validation (DTV) Framework

In this section we describe the DTV framework [55]. This framework is tested on

two major types of datasets - top views and whole body views of people. The input

of the proposed algorithm is a sequence of views of passengers and the output is a

set of valid trajectories. The number of valid trajectories represents the number of

people. The framework contains three major consecutive steps-

i. The object detection step where the trajectories are initiated.

ii. The object tracking step where the trajectories are generated.
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iii. The object validation step where the trajectories are classified into human or

non-human.

After execution of these three steps, the number of valid trajectories denotes the

total number of people in the given sequence of frames. First, the approach for top

views is discussed in the following section.

3.1.1 Top Views

The first type of dataset on which the proposed framework is tested, consists of top

views of passengers [50] as shown in Figure 3.1(a). The advantage of working

with top views is that, there is no occlusion and a person can be tracked failsafe.

But the disadvantage is that, there is less number of features that make the automatic

detection process challenging. The different stages of working with top views are

described below.

Object Detection

Taking into account that there is circularity in the top view of a human body, the

whole body of the person has been captured as a circular object. Initially, the frames

that do not have any people are removed with an approximate median (AM) based

background subtraction method [41] to speed up the process. Canny’s edge de-

tector [27] is used to detect edges on the frames which remain after background

subtraction. Circles having radii within 60 to 80 are detected on the edge image

using Hough circle method [27]. A square template is constructed around the cen-

ter of the detected circle to denote the object and track it in the following frames

Figure 3.1(b). As detection and tracking are performed at each frame, color in-

formation is used for distinguishing newly arrived persons and the persons already

detected in the previous frame. For each frame, the value of the Bhattacharya co-

efficient [25] between the color distribution of a newly detected and previously

detected person is calculated. If this value becomes very high, then the newly de-

tected person is ignored as he or she is already considered as detected in the previous

frame.
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Histogram of Oriented Gradients (HOG) [20] is also used for the detection pro-

cess for comparing with the Hough circle method. In the experiments, as the top

views of passengers have a parametric circular shape, the performance of Hough

circle method is better than HOG method. Moreover, passengers are having dif-

ferent hair colors, wearing different types of hoodies, caps, long winter jackets,

carrying bags etc. These make an irregular shape of the outer body that is very

difficult to learn with supervised shape based object detection technique like HOG.

Object Tracking

After an object is detected in a frame, Horn-Schunck (HS) optical flow (OF) method

[29] is used to track the center of the object along with its template in the consecu-

tive frames. In the OF based tracking method, the average velocity of pixels within

a template of the previous frame is calculated. As the template is in the previous

frame, its center position is already known. So, the center of the template in the

current frame is obtained by adding the average velocity with the center of the tem-

plate of the previous frame. Thus tracking is done by obtaining the position of the

center of the templates in each frame. As a person is detected in a frame, tracking is

initiated and it continues as the person moves through the frame. When the person

leaves the FOV, tracking is stopped and the trajectory gets generated as shown in

Figure 3.1(c). Apart from Horn-Schunck method, other two well-known methods

proposed by Lucas-Kanade method [39] and Brox et al. [7] are also used for

tracking. All the three methods show good performance on the top views of the

passengers. Since Horn-Schunck technique has fewer parameters and is also very

fast, it is used in our proposed DTV framework.

Object Validation

Two types of false alarms are generated from Hough or HOG based object detec-

tion technique : (a) clutter detected as people; (b) duplicates: detecting different

body parts of the same person (Figure 3.2). For clutter removal, an approximate

median (AM) based background subtraction method [41] is used in the spatio tem-

poral domain and a measure of overlap of two trajectories is calculated for du-
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plicate removal. The proposed validation framework is named as spatio-temporal

validation (STV). Let T = T1, T2, ..., Ti, ..., Tp be a trajectory generated by the

tracking algorithm on p consecutive frames, where Ti is the set of pixels con-

tained by the trajectory on i-th frame. Trajectory T belongs to a person correctly if
∑p

i=1

∑

(x,y)ǫTi
Fi(x, y)/

∑p

i=1Ni > L. Fi is the output of AM for frame Ii. The

value of each pixel (x, y) in Fi is either 1 or 0 if it belongs to foreground or back-

ground respectively. Ni is the number of pixels contained by the trajectory Ti on

i-th frame. So, the proportion of foreground pixels to the total number of pixels in

a whole trajectory is calculated to conclude whether the trajectory actually belongs

to a person or not as a greater proportion of foreground pixels indicates that the

trajectory belongs to a human being. For duplicate removal, one trajectory A is

considered as duplicate of another trajectory B if (
∑m

i=1Ai

⋂

Bi/Ai

⋃

Bi)/m > O

where, m is the number of common frames for both trajectories A and B. The values

of L and O are determined empirically.

(a) Input frame (b) Detection with square template

(c) Trajectory generated after completion of

tracking

Figure 3.1: Top views of passengers
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(a) Clutter detected as person (b) Duplicate : A person detected twice

Figure 3.2: Different false alarms on top views of passengers

3.1.2 Whole Body Views

The second type of dataset on which the framework is tested, consists of whole body

views of people where the passengers are going down or climbing up the staircase

of a LRT station. As the view consists of whole body of the passengers, lots of

features are available. But the two major challenges in this situation are occlusion

and scaling effect. The scaling effect is due to the fact that the size of the people

is decreasing or increasing as they are going down or coming up the stairs. The

second challenge, occlusion, is not severe in the dataset, as in most of the cases,

people are descending or coming up the stairs one by one. In case of two or more

people, there is only partial occlusion. In this work, we attempt to avoid occlusion

by creating a ROI at the bottom of the frame as shown in Figure 3.3(a). When one

person enters the ROI, he/she is detected. If a second person also comes in along

with the first person within the ROI, the second person is not detected initially due to

partial occlusion and also because the entire body of the second person does not fit

simultaneously with the whole body of the first person within the small ROI. Once

the initially detected person is tracked for a few frames and the whole body of the

second person fully enters the ROI, the second person is captured Figure 3.3(b). In

this way, partial occlusion is avoided. Moreover scaling effect can also be handled

in this way as the size of a person does not change much within a small region. The

various steps of this methodology are described below.
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(a) Region of interest on current frame (b) Partial occlusion handling

Figure 3.3: Whole body views of passengers

Object Detection

In the case of whole body views, background subtraction method is adopted for the

object detection process. Initially, foreground pixels are obtained from the back-

ground detection process. Different connected components are found out from this

foreground image. The connected component having area greater than or equal to

an average human size corresponds to a single person Figure 3.4. A rectangular

template is constructed around the center of the detected blob to denote the object

and track it in the following frames.

Histogram of Oriented Gradients (HOG) method is also used for the detection

process for comparing with background subtraction method. But in this case, the

performance of background subtraction method is better as HOG produces a lot of

false alarms. Moreover, the background subtraction method is much faster than the

HOG method as established in the result section.

Object Tracking

After an object has been detected in a frame, HS optical flow method is used to

track the center of the object along with its template in the consecutive frames.

In the OF based tracking method, the average velocity of pixels within a template

of the previous frame is calculated. As the template is in the previous frame, its

center position is already known. So, the center of the template in the current frame

is obtained by adding the average velocity with the center of the template of the
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previous frame. Thus, tracking is done by obtaining the position of the center of

the templates in each frame. As a person is detected in a frame, tracking is initiated

and it continues as the person moves through the rectangular ROI. When the person

leaves the ROI, tracking is stopped and the trajectory is generated.

Object Validation

The false alarms are again of two types for both the background subtraction and

HOG detection techniques (a) clutter detected as people; (b) duplicates: detecting

different body parts of the same person Figure 3.5. For clutter removal, a motion

histogram based technique [21] is adopted to classify the trajectories into human

and non-human. At first, half of the number of frames is taken for the training

process. In the training phase, the motion histograms of all the trajectories are

constructed and a support vector machine (SVM) [19] is trained with these his-

tograms. In the testing phase, the motion histograms of the generated trajectories

are constructed and using these histograms and the trained SVM, the trajectories

are analysed to classify them as human or non-human. For duplicate removal, one

trajectory A is considered as duplicate of another trajectory B if they have some

overlap between them as described in section 3.1.1.

(a) Input frame (b) Output of background subtraction method

Figure 3.4: Detection algorithm on whole body views
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(a) Clutter detected as person (b) Duplicate : A person detected twice

Figure 3.5: Different false alarms on whole body views of passengers

3.2 Results of DTV Framework

The DTV framework is tested on 7000 frames of top views and 10000 frames of

whole body views of the LRT dataset. For top views, comparisons among different

methods for each of the detection, tracking and validation steps are demonstrated.

In the case of top views, the video has different crowd densities whereas for the

whole body views, the crowd density is almost constant.

In addition to the LRT dataset, the framework is also tested on 3300 frames of

an university campus (LHI) dataset which consists of top views of students walking

along the campus.

3.2.1 Results for Top Views

Some visual results of the algorithm on top view sequences for both sparse and

dense crowds of the railway dataset, are shown in Figure 3.6. Figure 3.7 demon-

strates the visual results of HOG and Hough based detection algorithms. The quan-

titative comparison in terms of Accuracy, Recall, Precision and F-measure between

HOG and Hough are shown in Figure 3.8. In case of detection with HOG, first

50% of the total frames has been used for training and the remaining 50% has been

used for testing. F-measure combines recall and precision into a single quantity by

computing harmonic mean of Recall and Precision. A better performance is indi-

cated by a higher F-measure. It can be concluded from both Figures 3.7 and 3.8
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that Hough circle method performs better than the HOG method. While performing

the performance evaluations, Horn-Schunck method is used for tracking and STV

method is used for validation for both HOG and Hough based detection procedures.

In the Hough circle method, there is a noise sensitive parameter. This parame-

ter is the ratio of the number of detected edge pixels to the calculated perimeter of

the circle. Recall and precision are computed on 100 randomly selected images for

different values of this parameter ranging from 0.2 to 0.9 at an interval of 0.1 and

it is found that the recall is 100% but precision is 70% at a threshold value of 0.7.

This experiment is shown in Table 3.1. The threshold value 0.7 is chosen while per-

forming detection with Hough circle method as the recall value is maximum in this

case and the precision value increases significantly by introducing the validation

step into spatio-temporal domain.

Horn-Schunck method is chosen for tracking in the proposed framework as it

has only one tuning parameter. Average time taken in seconds to track a person be-

tween two consecutive frames of resolution 480-by-640 by Horn-Schunck method

is 1.32 seconds.

The validation step, which is the noteworthy novelty of the algorithm, enhances

the performance of the proposed method. Before validation, the recall and precision

of the system was 100% and 70% respectively, which was analyzed on a frame by

frame basis. After validating the entire trajectories through the spatio-temporal val-

idation process, the recall and precision of the system is 97% and 92% respectively.

The values of L and O, for clutter and duplicate trajectory removal are chosen to be

0.6 and 0.1 experimentally.

The proposed validation technique has been compared with two other valida-

tion techniques viz., motion histogram (MH) [21] and spatio-temporal gradient

histogram (STG) [31] and their comparisons are illustrated in Figure 3.9, where it

shows that the proposed validation technique outperforms both the MH and STG

techniques. Both MH and STG are supervised validation algorithms and first 50%

of the total frames is used as training and the remaining 50% is used as testing.

Here, it is to be kept in mind that Hough circle method is used as detection and

Horn-Schunck algorithm is used as tracking while evaluating the performances of
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Threshold Recall Precision

0.9 0.9 0.89

0.8 0.96 0.82

0.7 1 0.7

0.6 0.91 0.69

0.5 0.91 0.63

0.4 0.91 0.56

0.3 0.91 0.56

Table 3.1: Recall and Precision values for different thresholds of Hough Circle

method

STV, MH and STG.

People entering from any of the four borders of the frame and moving in any

direction can be detected and tracked successfully using the proposed framework

as shown in Figure 3.10.

The algorithm also exhibits excellent performance on LHI dataset. Visual re-

sults on LHI dataset are shown in Figure 3.11. The video is of duration 5 minutes

30 seconds consisting of 3300 frames where overhead views of passengers are cap-

tured. Similarly as the other overhead views of the railway station, Hough circle

method is used as detection, Horn-Schunck method is used for tracking and STV is

used for validation for the LHI dataset.

Accuracy, Recall, Precision and F-measure of the proposed algorithm for top

views on both the LRT and the LHI dataset, are demonstrated in Table 3.2.

3.2.2 Results for Whole Body Views

The framework is tested on 10000 frames of a video where people were walking

down or coming up the stairs of a LRT station. The people were moving mainly in

two directions and they wore different types of colored dresses. Some of them were

even carrying bags with them. Some visual results are illustrated in Figure 3.12.

Background subtraction method is chosen for the initial segmentation of human
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(a) Dense crowd

(b) Sparse crowd

Figure 3.6: Visual results on top views
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Figure 3.7: Results of HOG and Hough circle based detection

Figure 3.8: Accuracy, Recall, Precision and F-measure for two detection methods:

HOG and Hough
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Figure 3.9: Accuracy, Recall, Precision and F-measure for three spatio-temporal

based validation methods: motion histogram (MH), spatio-temporal gradient (STG)

and proposed spatio-temporal validation (STV)

Figure 3.10: People moving in different directions. Top row shows people mov-

ing in opposite directions and bottom row shows people moving in perpendicular

directions
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Figure 3.11: Visual results on LHI dataset

37



Views Frames Recall Precision Accuracy F-measure

(%) (%) (%) (%)

Top 7000 97 92 92 94

(LRT)

Top 3300 99 96 96 97

(LHI)

Whole body 10000 95 90 90 92

(LRT)

Table 3.2: Performance of proposed framework

beings. Quantitative comparison between Background Subtraction and HOG based

detection methods in terms of Recall, Precision, Accuracy and F-measure is shown

in Figure 3.13. Receiver Operating System (ROC) curves for both the detection

methods for different ROI’s have been plotted in Figure 3.14. The height of the

rectangular ROI is varied several times and different values of True Positive Rates

(TPR) and False Positve Rates (FPR) are observed which generate the points on

the ROC curve. It is noticed that the area under the ROC curve for the proposed

background subtraction based detection method is 0.83, whereas the area under the

curve for the HOG method is 0.74. The greater area under the ROC curve of the

proposed detection method demonstrates its superiority over the HOG method. It is

also observed that the background subtraction method is faster than HOG method.

The time taken by these two detection methods on each frame implemented in Mat-

lab on a desktop (Intel duo 2 core processor, 2GHz and 4 GB RAM) is illustrated

in Table 3.3. The proposed validation step described in section 2.2.3 enhances the

performance of proposed method. After passing the entire trajectories through vali-

dation process, the recall and precision of the system is 95% and 90% respectively.

The recall, precision, accuracy and F-measure of the framework on all the 10000

frames are illustrated in Table 3.2 which proves the competency of the framework.
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Figure 3.12: Visual results on whole body views

Figure 3.13: Quantitative comparison between Background Subtraction and HOG

methods
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Figure 3.14: ROC curve for comparison between Background Subtraction and HOG

methods

Detection Algorithm Background Subtraction HOG

Time(s) / frame 0.66 2.76

Table 3.3: Running time of two detection algorithms
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3.2.3 Comparison with an existing method

The proposed method is compared with the method proposed by Zeng et al. [64] .

In Zeng et al.’s paper, the approach is almost similar that includes only detection and

tracking, but not the validation step. The detection is a supervised method where

they use both HOG and Local Binary Pattern (LBP) [56] features to detect the head

and shoulders of people to avoid occlusion. In tracking, they use a particle filter

tracker. So, basically their approach develops a detection-tracking framework while

the proposed approach here designs a detection-tracking-validation framework.

Zeng et al.’s method is applied on the same 10000 frames where the proposed

framework is implemented. As it is a supervised method, 50% of the total number

of frames is used for training and the remaining 50% for testing. As there is no vali-

dation step, the false positives cannot not be removed : the accuracy of Zeng et al.’s

method is 75% whereas the accuracy of the proposed method is 90%. The quan-

titative comparison of the two methods is illustrated in Figure 3.15 which proves

the superiority of the discussed method. ROC curves for both the methods for dif-

ferent ROI’s have been plotted in Figure 3.16. The height of the rectangular ROI

is varied several times and different values of True Positive Rates (TPR) and False

Positve Rates (FPR) are observed which generate the points on the ROC curve. It

is noticed that the area under the ROC curve for the proposed DTV framework is

0.83 whereas the area under the ROC curve for Zeng et al.’s method is 0.72. The

greater area under the ROC curve of the proposed detection method illustrates its

superiority over Zeng et al.’s method. It is also observed that the DTV framework is

faster than Zeng et al.’s framework. The time taken by these two methods on each

frame implemented in Matlab on a desktop (Intel duo 2 core processor, 2GHz and

4 GB RAM) is illustrated in Table 3.4.

People Counting Proposed Zeng et al.’s

Algorithm Method Method

Time(s) / frame 0.66 2.52

Table 3.4: Running time of two people counting algorithms
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Figure 3.15: Quantitative comparison between Proposed method and Zeng et al.’s

[64] method

Figure 3.16: ROC curve comparing Proposed method and Zeng et al.’s [64] method
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The experimental results demonstrated above show that the DTV framework

performs well on both types of views and it can successfully detect and track per-

sons having different hair colors, wearing hoodies, caps, long winter jackets, carry-

ing bags and so on. The algorithm also shows promising results for people moving

in different directions.

3.3 UIOC Framework

In this section, we will discuss our UIOC framework [53, 52, 51]. This framework

counts the unique number of people that entered and exited an ROI within any time

interval.

3.3.1 Background of UIOC Framework

At first, we will describe two different techniques that form the backbone of the

proposed unique count method. These two techniques are a) frame based count and

b) ROI boundary tracking.

(a) Frame Based Count: The general idea here is to extract features from an im-

age frame and map these features to the number of people present in the image

frame. This mapping is achieved by supervised machine learning methods, such as

Gaussian Process regression [8].

The features taken into account include the foreground features obtained from

a background subtraction method and texture features. Based on empirical exper-

iments, the background subtraction algorithms chosen for our framework are the

Approximate Median method [41] for the UCSD and the PETS 2009 datasets,

Mixture of Gaussians method [48] for the FUDAN dataset and VIBE [2] for the

LHI dataset. The features considered for the frame based count are as follows:

i. Segment features are extracted to capture physical properties like shape, size

etc. by computing a) foreground area, b) perimeter of foreground area, and

c) perimeter-area ratio.

ii. Edge features, such as a) number of edge pixels, and b) edge orientation

43



are computed. Edges within a segment are strong cues about the number of

people in it.

iii. Texture features - Texture features, which are based on the gray-level cooc-

currence matrix, are used for estimating the number of pedestrians in each

segment [8, 59]. The image is first quantized into eight gray levels and

masked by the segment. The joint probability of neighboring pixels i and j

within the image frame I , p(I(i), I(j) | θ) is then estimated for four orienta-

tions θ ∈ {0 , 45 , 90 , 135 }.

a Homogeneity: the texture smoothness,

gθ =
∑

i,j

p(I(i), I(j) | θ)/(1 + (i− j)2)

b Energy: the total sum-squared energy,

eθ =
∑

i,j

p(I(i), I(j) | θ)2

c Entropy: the randomness of the texture distribution,

hθ =
∑

i,j

p(I(i), I(j) | θ)logp(I(i), I(j) | θ)

Generally, features like foreground segmentation area or number of edge pixels

should vary linearly with the number of people in each frame [30, 66]. Foreground

segmentation area versus the individual frame-based manual people count over the

first 1000 frames of the UCSD dataset is plotted in Figure 3.17. It can be observed

that the overall trend is almost linear with some local non-linearities. These local

non-linearities occur due to different reasons like occlusion, segmentation errors in

background subtraction, perspective foreshortening etc.

The non-linearities are modelled by including additional features, other than the

segmentation areas, which are mentioned above and handled by a machine learner

using a suitable kernel function. In order to decide our machine learner, we have

performed experiments with two non-linear regressors - Gaussian Process (GP) Re-

gressor [58, 73] and Support Vector Regressor (SVR) [47].
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Figure 3.17: Plot of foreground segmentation area vs. people count on first 1000

frames of the UCSD dataset

We choose the UCSD dataset to evaluate the performance of the machine learn-

ers as it has many dense crowd instances. For training, the number of people is

counted manually on 500 frames with variable crowd densities and the features of

each frame within the ROIs are extracted. Next, the machine learners are trained

with these extracted features and the corresponding people count in each frame

within the ROI to learn the relationship between the two. The performance of the

machine learners is then evaluated on 1000 validation frames that are different from

the training frames. Manual count is also generated on these 1000 validation frames

to perform the quantitative comparison between the two machine learners.

Figure 3.18 plots the predicted count versus the manual count for both the ma-

chine learners on the 1000-frame validation set. The dotted lines plot the predicted

count from the machine learner, whereas the solid lines denote the true count pro-

duced manually. Both the GP Regressor and the SVR perform well on all the frames

of the validation set. A quantitative analysis based on mean squared error, mean ab-

solute error and percentage of mean absolute error is reported in Table 3.5. Here it

can be seen that the performance of the GP Regressor is slightly better than that of

the SVR.
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(a)

(b)

Figure 3.18: Performance evaluation of the two machine learners
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Machine Mean Squared Error Mean Absolute Error Percent Mean

Learner (No. of people squared/frame) (No. of people/frame) Absolute Error (%)

GP 2.3818 1.2378 7.3

SVR 2.5151 1.3001 7.6

Table 3.5: Performance of GP and SVR on 1000 test frames

Based on the above experiments, we have chosen Gaussian Process (GP) Re-

gressor [58] as the machine learner.

A GP specifies distribution over functions. Following the notations from [58],

given n dimensional training data,

D = {xi, f i|i = 1, 2, ......, n} = {X, f},

the key assumption is that,

f(x1), f(x2), ...., f(xn) ∼ N(O,K)

where O is the mean function and K is the covariance function.

We want to make predictions f ∗ at test points X∗. The joint distribution of f

and f ∗ is Gaussian,

[

f
f ∗

]

∼ N(0,

[

K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]

)

Here, we are interested in the conditional probability

P (f ∗|f)

which is represented by the posterior,

P (f ∗|X∗, X, f) ∼ N(µ,Σ)

where,

µ = K(X,X∗)K(X,X)−1f

Σ = K(X∗, X∗)−K(X,X∗)K(X,X)−1K(X∗, X)
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Our best estimate for f ∗ is the mean of the distribution and the uncertainty is cap-

tured in the covariance function.

The kernel of the GP used here, is a combination of both linear and squared

exponential kernels (RBF) [8]:

k(xp, xq) = α1(x
T
p xq + 1) + α2e

−‖xp−xq‖
2

α3 + α4δ(p, q),

where xp and xq are the p-th and q-th feature vectors and α = {α1, α2, α3, α4}

are the hyperparameters.

Once the machine learner is decided, we test our framework on three back-

ground subtraction algorithms to check which one performs the best. Background

subtraction is needed to compute the foreground features discussed before. The

background subtraction algorithms chosen are Approximate Median method [41],

Mixture of Gaussians method [48] and ViBe [2]. For testing these algorithms, the

first 1000 frames from the UCSD dataset are used. The unique count of people

obtained on the these 1000 frames corresponding to each algorithm are presented

in Table 3.6. GP is used as the machine learner in all the three cases. The man-

ual unique count on these 1000 frames is 54. So, it is seen from Table 3.6 that

the approximate median method performs the best in terms of accuracy for UCSD

dataset. Thus, we choose the approximate median method as our background sub-

traction algorithm for UCSD dataset. We perform similar experiments for FUDAN

and LHI datasets. For FUDAN dataset, we chose Mixture of Gaussians Method and

for LHI, we chose ViBe as the best performing background subtraction algorithms

for calculating foreground features.

(b) Boundary Tracking with Optical Flow: As has been mentioned earlier, our

proposed unique people count is inspired by the control volume analysis in fluidics.

Thus, we need to account for people leaving or entering the ROI. To mitigate the

effect of occlusion, we avoid the tracking of individual people in our framework.

Instead, we track pixels on the ROI boundary over a short period of time.

A number of methods can be applied for tracking the ROI boundary. How-

ever, we choose a very fast optical flow [29] technique principally to make our

framework more suitable for real life applications. The optical flow computes pixel
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Background Predicted Manual Accuracy

Subtraction Method Count Count ( %)

Approximate 54.70 52 95.06

Median

Mixture of 56.06 52 92.76

Gaussians

ViBe 59.10 52 87.99

Table 3.6: Performance of three background subtraction algorithms on 1000 test

frames

motion between two consecutive image frames, taking into account brightness con-

stancy. We have used a publicly available implementation [74] of the method with

the default parameter settings in all our experiments. The original ROI and tracked

ROI on an image of video 3-3 of the LHI dataset is plotted in Figure 3.19 to cite an

example of boundary tracking.

Figure 3.19: Actual ROI and Tracked ROI on an image from video 3-3 of the LHI

dataset

3.3.2 Proposed Unique Count Framework

In this section, the proposed framework is presented. The rationale of the frame-

work is based on the assumption of the availability of the following two functional-
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ities discussed in the previous section:

Functionality 1: A ROI boundary tracker (Track) that is able to track the boundary

of ROI R for a short while ∆t.

Functionality 2: A machine learner (Pred), which is able to predict the number of

people present within a ROI on a single video frame.

With these two functionalities, the following framework counts the number of

unique people who have entered or left the ROI R.

Unique Influx and Outflux Count (UIOC)

for t = 0, 1, 2, 3, ....

Ct ← Pred(I t, R);

Rd ← Track(I t, I t+∆t, R);

∆Cin ← Pred(I t+∆t, R ∪Rd)− Ct;

∆Cout ← Ct − Pred(I t+∆t, R ∩Rd);

F t
in ← ∆Cin/∆t;

F t
out ← ∆Cout/∆t;

end

Output at time point t: F t
in, F

t
out, C

t.

Unique influx count between t1 and t2 is Ct1 +
t2
∑

t=t1

F t
in, and unique outflux count

between t1 and t2 is Ct2 +
t2
∑

t=t1

F t
out,

where,

I t: Video frame at time t

R: Region of interest (ROI)

Rd: Deformed ROI due to boundary tracking between frames I t and I t+∆t.

∆Cin: Unique influx between time points t and t+∆t

∆Cout: Unique outflux between time points t and t+∆t

F t
in: Influx rate of people at time t
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F t
out: Outflux rate of people at time t.

The Track functionality tracks the ROI boundary R from I t through I t+∆t.

Track returns Rd, which is the deformed ROI due to the pixel motion at the bound-

aries of R. The Pred functionality counts the number of people within a ROI based

on extracted image features. If a ROI neither consumes nor generates people, the

influx and the outflux count over a period of time should be equal, assuming accu-

rate performance by the two aforementioned functionalities. We refer to such a ROI

as a (mass) conserving ROI. An example of a non-conserving ROI, where people

get consumed and/or generated, is a view of an elevator, in which people enter or

come out of.

Figure 3.20 explains the working principle of the framework. The top left part

of Figure 3.20, illustrates the positions of people and the ROI R at time instant

t. The top right panel displays the positions of people at time instant t + ∆t as

well as the deformed ROI Rd. Notice that Rd is a result of tracking the boundaries

of R between t and t + ∆t. The bottom left and right panels respectively show

set union and intersection of the original ROI R and the deformed ROI Rd. For

clarity, the positions of people at time instant t + ∆t at the bottom two panels are

depicted by dots. Note that influx is given by ∆Ct
in = Pred(I t+∆t, R ∪ Rd) −

Pred(I t, R) = 4 − 3 = 1, whereas outflux is given by ∆Ct
out = Pred(I t, R) −

Pred(I t+∆t, R∩Rd) = 3−1 = 2. The total unique number of people produced by

the influx count is Pred(I t, R) + ∆Ct
in = 3 + 1 = 4 and the total outflux count is

Pred(I t+∆t, R) + ∆Ct
out = 2 + 2 = 4. As expected, these two numbers are equal,

since the ROI here is a conserving one that neither consumes nor generates people.

The effect of occlusions is mitigated principally because of three reasons: (a)

unlike object tracking, our boundary tracker computes pixel motion only on the

ROI boundary, thus working with a very small set of pixels and also for a short

period of time. So, it is hardly affected by occlusions (b) machine learner-based

frame count can handle occlusion to a great extent and (c) any remaining effects of

occlusion overlooked by the machine learner are mitigated by averaging the influx

and outflux rate over a period of time. Our experiments validate this observation.
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Figure 3.20: Pictorial representation explaining the principal of Influx and Outflux

count

According to the above discussion and related to the theoretical discussion of

GP in section 3.3.1, we can conclude that the influx (or outflux) rate at time t de-

noted by F in
t is a random variable and it should follow a Gaussian distribution. Let

C0
t be the frame basd people count on original ROI and Cd

t+∆t be the frame based

people count on deformed ROI at time t + ∆t. According to the UIOC algorithm

in section 3.3.2,

F in
t =

1

∆t
(C0

t − Cd
t+∆t) (3.1)

Regarding the theory of GP, C0
t and Cd

t+∆t are also Gaussian distributions. Let

C0
t ∼ N(m0

t , σ
0
t )

Cd
t+∆t ∼ N(md

t+∆t, σ
d
t+∆t)

Here m0
t and σ0

t are mean and standard deviation respectively of the normal

distribution followed by C0
t whereas md

t and σd
t are mean and standard deviation

respectively of the normal distribution followed by Cd
t .

So according to equation 3.1,
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F in
t ∼ N(

m0
t −md

t+∆t

∆t
,

√

(σ0
t )

2 + (σd
t+∆t)

2

∆t
)

Let us denote

σt
in =

√

(σ0
t )

2 + (σd
t+∆t)

2

∆t
(3.2)

It can be noticed from equation 3.2 that σt
in should decrease in value with in-

crease of time interval ∆t as σ0
t does not vary much with time. But as the term

σd
t+∆t is very much dependent on ∆t and may increase in value with increase in

∆t value, the value of σt
in over a long time sequence does not increase much which

leads to the competency of our results demonstrated later.

3.4 Results of UIOC Framework

The publicly available monocular videos on which UIOC has been applied are -

UCSD, FUDAN and LHI dataset. The UCSD dataset is a 1 hour video containing

25,656 frames. It has captured video of pedestrians passing through University of

California, San Diego walkways from a stationary camera. The dimensions of all

the videos are 238x158 and captured at 10 fps (frames per second). The dataset is

split into 6 scenes captured from different viewpoints. It contains instances of all

types of crowd densities - sparse, medium and dense. The number of people on

each frame varies from 11 to 45 [59].

The FUDAN dataset consists of 1500 sequential frames, each of dimension

320x240. The video is captured inside FUDAN university campus. The number of

pedestrians on each frame varies from 0 to 15 [59]. The dataset has varying crowd

density with occlusion, people moving in varying directions and shadows under the

pedestrians’ feet which make the dataset challenging enough to work with.

The LHI dataset contains 12 videos of Lotus Hill Institute Campus. The videos

are captured with camera angles of 90, 65 and 40 degrees respectively. There are 4

videos corresponding to each camera angle and having different views and lengths.

As illustrated in Figure 3.23, the first row of images is captured at 90 degree camera

angle named from 1-1 to 1-4, the second row corresponds to the 65 degree category,
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named from 2-1 to 2-4 and the third row images are taken at 40 degree tilt angle

named from 3-1 to 3-4. The scenes covered with the different camera angles vary

widely from sparse crowd to dense crowds. The dimension of each image frame is

352x258. The video lengths vary from 3:45 minutes to 25:35 minutes.

Visual results for both the UCSD and FUDAN datasets are shown in Figure

3.21 and 3.22. We can see that both the images have severe occlusions along with

shadows of people in FUDAN dataset. For both UCSD and FUDAN datasets, a

rectangular ROI R is chosen which can be seen on the top left panels of both the

figures, while the top right panels show the deformed ROI Rd. Figure 3.21 shows

deformed ROI Rd due to influx while Figure 3.22 shows deformed ROI Rd formed

due to outflux. The bottom left panels of Figure 3.21 and 3.22 show the gray

images formed due to union (R ∪ Rd) and intersection (R ∩ Rd) respectively. The

bottom right panels show the foreground/background segmentations of the unified

and intersected images, respectively.

Figure 3.21: Visual results on UCSD dataset for Influx Count
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Figure 3.22: Visual results on the FUDAN dataset for Outflux Count

Figure 3.23: Different videos of the LHI dataset. The dotted lines are the LOIs from

[16]. The rectangles are our ROIs.
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∆t Accuracy

(No. of Frames) ( %)

20 91.35

25 98.46

30 93.22

Table 3.7: Accuracy for three different timesteps for the FUDAN dataset

In our method we have only one tunable parameter, the time-step ∆t. On one

hand, a large ∆t would smooth out noisy predictions by the machine learner. On

the other hand, a large ∆t would make the boundary tracking more challenging due

to occlusions. The timestep used for the application of the tracking routine varies

for different datasets. These values are chosen based on our experiments with three

different values on the first 100 frames. The experiments for the FUDAN dataset

are shown in Table 3.7.

In order to evaluate the performance of the proposed algorithm, both the influx

and outflux counts are calculated for UCSD and FUDAN datasets, and their means

are used as the predicted people count. The values of the influx and outflux count

are found to be almost similar for both the datasets. Thus only influx count is com-

puted for the LHI dataset. The performance evaluation of the methods is done by

calculating the accuracy as follows:

Accuracy = 1−
|ManualCount− PredictedCount |

ManualCount

The manual count, predicted count and the accuracy of the methods on different

datasets are tabulated in Table 3.8, 3.9 and 3.10.

The results show that UIOC method outperforms all other methods that are dis-

cussed later. The accuracy of people count in UCSD dataset is 94.70 % (Table 3.8),

while for FUDAN is as high as 98.46 % (Table 3.9). For LHI dataset, the accuracy

of our method remains consistently above 90% (Table 3.10) for most of the videos

irrespective of the camera angle.
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UIOC works as fast as 30 frames per second on a system with Intel(R), core(TM),

DuO CPU, E8400 @ 3GHz. The system is implemented in openCV using the MAT-

LAB implementation of the GP. So this method can be used in real time commercial

applications like surveillance videos, transit passenger count in railway stations,

road intersections etc.

Performance of UIOC is compared with three methods: a baseline method,

detection-tracking method proposed by Zeng et al. [64] and flow-mosaicking method

[16], which is a LOI counting method. These methods are described next.

3.4.1 Comparison with a Baseline Method

We have devised a baseline method and compared it with UIOC method. The pur-

pose of this method is to prove that unique count of people cannot be computed

by direct correlation of frame based count to average foreground pixel speed and

distance between the typical entry and exit point of a person on the ROI border.

Suppose, we know the average number of frames nt for which a person is inside

a ROI R on frame t. Then, a baseline estimate of the unique people count can

be computed between two time points t1 and t2 as:
t2
∑

t=t1

Pred(I t, R)/nt, where,

as before, Pred(I t, R) predicts the number of people on frame I t within the ROI

R. A practical and quick approximation to nt can be obtained by dividing the dis-

tance d between a typical entry and exit point on the ROI border by the average

foreground pixel speed st (obtained by optical flow) computed on frame t. With

these approximations, the baseline method people count turns into the formula:

(
t2
∑

t=t1

stPred(I t, R))/d. Furthermore, we treat the distance d as a tunable parameter

here. So, we choose d by matching the baseline count with the manual count on a

training set of the first 500 frames.

We apply the baseline method on both the UCSD and FUDAN datset. The

total unique count produced by this method for the datasets are 1324.19 and 121.77

respectively as shown in Table 3.8 and Table 3.9. The results also show that our

method (UIOC) outperforms the baseline method by approximately 20% and 63%

for UCSD and FUDAN dataset respectively. This proves that generating unique

count of people from frame based count using direct correlation of frame based
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count to average foreground pixel speed and distance between the typical entry and

exit point of a person on the ROI border does not provide an accurate people count.

3.4.2 Comparison with A Detection-Tracking Method

In Zeng et al.’s work, each individual person is detected in a frame and then tracked

in consecutive frames until the person leaves the FOV [64]. The trajectory gen-

erated due to tracking represents a single individual. The number of trajectories

denotes the number of people during a time interval.

The detection here is a supervised method in which Zeng et al. use both His-

togram of Gradients (HOG) [20] and Local Binary Pattern (LBP) [56] features to

detect the head and shoulders of people to avoid partial occlusion. For tracking,

they use a particle filter tracker [12].

Zeng et al.’s method is also applied on both the UCSD dataset and the FUDAN

dataset. As it is a supervised method, 50% of the total number of frames is used for

training and the remaining 50% for testing. Though the detection process is tried to

be made robust by taking into account both HOG and LBP features, the detection

performance was observed to be somewhat poor on the datasets used here. This

happens mainly because of two reasons. Since the size of human beings is very

small in the UCSD dataset, the detection process becomes complicated as there

are fewer pixels on a human body to detect it properly. The second issue is the

occlusion that plagues both detection and tracking.

The performance evaluations of the detection-tracking algorithm are tabulated

in Table 3.8 for the UCSD dataset and in Table 3.9 for the FUDAN dataset showing

that UIOC outperforms the detection-tracking algorithm for both the datasets.

To demonstrate the competence of our method in handling occlusion, we choose

5 highly occluded video segments from the UCSD dataset each 1000 frames long

and calculate the accuracy of the aforementioned methods on these frames. In Fig-

ure 3.24 we plot the accuracy of UIOC, baseline and detection-tracking method

compared to the manual count at the end of each segment. The UIOC method out-

performs the other two methods in handling occlusion in dense crowds with over

95% accuracy. The baseline method performs comparably well in the first 1000
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Algorithm Predicted Manual Accuracy

People Count People Count (%)

UIOC 1118.27 1062 94.70

Zeng et al. 727 1062 68.46

Baseline 1324.19 1062 75.31

Table 3.8: Accuracy of three algorithms on the UCSD dataset

Algorithm Predicted Manual Accuracy

People Count People Count (%)

UIOC 75.14 74 98.46

Zeng et al. 21 74 28.38

Baseline 121.77 74 35.45

Table 3.9: Accuracy of three algorithms on the FUDAN dataset
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frames, because it was initially trained on the first 500 of these 1000 frames. But

its performance deteriorates in the ensuing frames mainly due to occlusion.

Figure 3.24: Performance evaluation of three algorithms on 5 highly occluded video

segments of UCSD dataset

One more important feature of the UIOC method is its ability to avoid error

accumulation over the length of a video clip. In Figure 3.25 we wanted to illustrate

this phenomena experimentally. In the figure, the accuracy of UIOC method for

UCSD dataset is plotted against increasing video clip lengths. The figure shows

that the accuracy is barely affected with increase of frame number, thus, confirming

our claim.

3.4.3 Comparison with a LOI Counting Method

The LOI counting method described in the Flow-Mosaicking (F-M) paper [16],

counts the number of people crossing a specific line of interest based on flow veloc-

ity estimation and temporal image generation. The regression function used in the

F-M method is the same as ours ie the GP. This method was applied on 12 videos

of the LHI dataset [16]. The ROIs chosen on the videos for running our algorithm,

are same in locations, dimensions and orientations as that of the ROIs in the F-M

method to facilitate fair comparison. These ROIs are shown in Figure 3.23. The ac-

curacy calculated for the unique people count obtained for the videos in LHI dataset
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Figure 3.25: Accuracy of the proposed framework with increase of video clip

lengths on UCSD dataset

from UIOC and F-M method are listed in Table 3.10 for the sake of comparison.

Here, we can observe that UIOC has higher accuracy compared to the F-M method

on all the 12 videos. The table also shows the variation of accuracy with change in

camera angle for F-M method, with highest average accuracy of 95.24 % at 90 de-

gree or overhead view and lowest accuracy of 82.76% for a video clip at 40 degree

camera angle. The results confirm that F-M method using a LOI is incapable of

handling occlusion which is absent at 90 degree and generally increases with a de-

crease in camera angle. On the other hand, the accuracies of our proposed method

undergo little variation over different camera angles and views ranging from 91.26-

99.72%. Thus we can conclude that the better performance of UIOC over F-M

method using LOI is due to effective occlusion handling capacity. The occlusion

handling capacity is due to the combination of ROI boundary tracking, using GP

with a complex kernel and averaging influx rate of people over time which the LOI

counting method lacks in spite of using GP with similar kernel. Another reason for

better performance for UIOC method is the dependence of F-M method on tempo-

ral image analysis and flow velocity estimation which also suffers from occlusion.

We can also surmise that the F-M method with LOI is unsuitable for dataset like

the FUDAN where people are moving in random directions, thus complicating the
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generation of a single line of interest which will be crossed by every person.

3.4.4 Work on LRT Dataset

As observed from the previous sections, UIOC performs excellent on several pub-

licly available challenging datasets. In this section, I will discuss about its perfor-

mance on LRT dataset obtained from the City of Edmonton. The dataset is captured

from Churchill Square during busy hours of the day. The field of view consists

mostly of the platform as shown in Figure 3.27. There are stairs at the top end of

the platform from where people are entering the platform. At the two sides of the

platform, there are rail lines where trains are coming and leaving. A huge crowd

enters and leaves the platform once a trains arrives and leaves. Thus, the motion of

the crowd is in multiple directions. It is also observed that there is problem of scal-

ing effect in this dataset because the size of people increases as they descend down

the stairs and come nearer to the camera to board the train and their size decreases

as they exit the train or enter the platform and then move towards the stairs to exit.

To handle the motion of people in different directions and also the scaling effect,

we construct a trapezoidal ROI at the bottom of the stairs as shown in Figure 3.26.

It is observed from the video that all the people who enter or leave the platform,

cross this ROI. We consider people entering through all the sides of the ROI ie we

count the influx count. For background subtraction, we experiment with all the

three algorithms - Approximate Median method, Mixture of Gaussians and ViBe.

ViBe performs best among all the three. So, we keep ViBe in our framework. For

the machine learner we use GP and for optical flow we use Horn Schunck algorithm

as before.

The video is of duration 10 minutes with varying crowd densities and the density

reaching its maximum when a train arrives. The maximum number of people in a

frame was 32. The manual unique count in the video is 123 whereas our algorithm

produces a count of 131.86 which is 92.8% accurate.
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Camera Angle Video name Video Length Total no. of Accuracy (%) Accuracy (%)

(min:sec) pedestrians UIOC method Flow mosaicking method

90

1-1 8:59 256 99.64 97.66

1-2 14:48 247 97.02 94.33

1-3 4:30 23 96.61 95.65

1-4 5:30 180 98.63 93.33

65

2-1 11:29 62 98.27 83.87

2-2 8:24 300 96.21 84.67

2-3 3:45 42 91.26 90.48

2-4 4:40 44 99.72 86.36

40

3-1 7:16 29 97.25 82.76

3-2 25:35 267 94.64 93.26

3-3 13:08 288 99.26 93.75

3-4 10:08 40 93.08 87.50

Table 3.10: Comparative study of the UIOC method and the Flow-Mosaicking method [16] on the LHI dataset

6
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Figure 3.26: Visual Results on LRT dataset for Influx Count

Figure 3.27: Images from LRT Dataset
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3.4.5 Work on Multiple ROIs

In order to increase the accuracy of the UIOC framework, we apply it on multiple

ROIs, rather than on a single ROI as shown in Figure 3.28. While working with

multiple ROIs, we work with a special characteristic of GP. As discussed in section

3.3.1, along with people count estimate in each frame, the GP model also produces

the uncertainty in estimation of the people count which is captured in the covariance

function of the predictive distribution.

Keeping this in mind, we execute experiments by taking into account multiple

ROIs in the following way. -

i We compute the uncertainty in estimation produced by the GP corresponding

to each ROI.

ii The ROIs are ranked according to increasing uncertainties.

iii The counts corresponding to the top 3 ROIs are considered.

Once we get the total influx count for all the individual ROIs, we take the aver-

age to compute the final unique count. Number of ROIs is a design parameter here.

On the training set, we empirically found that we obtained maximum accuracy by

working with 5 ROIs choosing the top 3 ROIs among them. The accuracy is 99.12%

on the entire UCSD dataset. In comparison, the unique count was 94.70% with a

single ROI previously.

3.5 Addition of Directionality

In addition to total people count, we incorporate directionality in our framework.

We test this idea on the UCSD dataset. In the UCSD dataset, the people flow goes

mainly in two directions: north and south. In order to count the number of people

heading north, we need to take into account the people exiting through the up-

per boundary i.e., the directional outflux through the upper boundary, because the

people who are entering the ROI through the lower boundary are exiting the ROI

through the upper boundary. Similarly, for counting the people heading south, we
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Figure 3.28: Example of multiple ROIs on an image frame of UCSD dataset

need to consider the people exiting through the lower boundary ie the directional

outflux through the lower boundary.

Figure 3.29 explains how the directional counting works. The top left panel

of Figure 3.29 illustrates the positions of people and the ROI R at time instant t.

The top right panel displays the positions of people at time instant t + ∆t as well

as the deformed ROI Rd. Rd is a result of tracking the boundaries of R between

t and t + ∆t. The bottom left panel shows Rd intersected with R at the upper

boundary, which we need in order to compute the number of people heading north.

The bottom right panel shows Rd intersected with R at the lower boundary which

we need in order to compute the number of people heading south. The number of

people heading north is given by the difference of the number of people present in

the actual ROI and the number of people present in the deformed ROI, which is

formed from the intersection of R and Rd at the top i.e., ∆Ct
N = 4 − 2 = 2. On

the other hand, the number of people heading south is given by the difference of

the number of people present in the actual ROI and the number of people present in

the deformed ROI, which is formed by the intersection of R and Rd at the bottom

i.e., ∆Ct
S = 4 − 3 = 1. Summing ∆Ct

N and ∆Ct
S , we get the total number people

moving north and the total number of people moving south respectively.
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Direction Manual Accuracy

People Count (%)

North 183 94.17

South 204 93.23

Table 3.11: Performance of UIOC for Directional Count on UCSD dataset

We test the method on the first video of the UCSD dataset, which has the densest

crowd. We manually count the number of people heading north and south separately

and then run our framework to get the experimental count. We achieve more than

90% accuracy in both cases as tabulated in Table 3.11.

Figure 3.29: Pictorial Explanation of Working Mechanism of Directional Count

3.6 Application on Multiple Views

For extending our framework towards more benchmark datasets, we apply it on

multiple views of the PETS 2009 dataset [76] (S1-L2 view, Time 14-31).
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In order to apply the UIOC framework on multiple views, the first step is to

merge multiple views together in order to choose a ROI. Using a simple program

that uses the OpenCV library, the views are merged by their overlapping areas to

create an extended view. This is accomplished by manually choosing corresponding

points between the source images (views two, three and four) and the destination

image (view one) which are the four views presented in Figure 3.30. Using these

points and OpenCV library functions, the homography among the views is found

and used to transform views two, three, and four into the closest match of view one.

Once the three views are transformed, all four views are superimposed on top of

one another for the actual merging. Figure 3.31 shows the merged view. The ROI

is then chosen on the merged image. For each view that is transformed, the coor-

dinates of the chosen ROI are transformed using the inverse of the transformation

matrix that is used to transform the image to match view one. In this way, the newly

transformed ROI corresponds roughly to the correct location on each original view.

Also, any points too close to the edges or out of bounds have to be moved in. In

the case of the PETS data, as all the views have significant overlap and there is not

much room to lose people in, the count for each view should theoretically be almost

the same. Therefore, at the end of the program, the average count among all four

views is taken as the final estimated people count. The actual count for the selected

ROI is 38, and the estimated count is 38.49 which produces 98.71% accuracy.

We compare our results with an existing multi-camera person tracking work [36].

According to [36], the people count accuracy on PETS 2009 S1-L2 dataset (Time

14-31) is almost 82% whereas our accuracy is 98.71% which we achieve without

taking into consideration any homography constraints.

So, the UIOC framework, though initially developed for monocular videos, is

proved to be flexible enough to perform well even on a network of cameras captur-

ing multiple human views.

From the above experiments, we can observe that the UIOC framework is very

well capable of overcoming occlusion, which is one of the most dominant problems

in the domain of computer vision based solutions to people counting and also was a

shortcoming for DTV method. We achieve more than 95% accuracy on numerous
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Figure 3.30: The four different views and the chosen ROIs on the PETS 2009 S1-L2

dataset

Figure 3.31: Merged view of PETS dataset
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publicly available benchmark videos. Apart from producing high accuracy, the

method is also online in nature and works very fast which is useful for real time

commercial applications. We even extend our framework to work on multiple views

with complacent accuracy. In the ensuing chapters, we show that this method is

also applied on cell counting videos with satisfactory accuracy which proves its

generality and ubiquitousness.
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Chapter 4

Generality of UIOC Framework

4.1 Application on Cell Counting

In the earlier chapters, we have discussed the competency of UIOC framework on

different types of human videos. The videos include numerous kinds of monocular

videos having sparse, medium and dense crowd densities and captured from various

camera angles. Apart from monocular videos, the framework is also applied on

multiple camera views with high accuracy. All these illustrate its ubiquitousness of

performance on different types of human datasets.

In this section, we will discuss about its application on cell dataset and thus

illustrating its generality in more details.

Automatic cell detection and counting is a subject of interest for the last few

years in many biological and pathological studies ranging from blood cell count to

studies regarding cell migration and propagation. All medical laboratories generate

blood cell count reports on physician’s advice, in order to assist the diagnosis of

particular ailments of patients. Sometimes, mobile blood cell assays are studied

by time lapse analysis to determine cell counts. The conventional methods, which

mostly involve manual counting of blood cells, are unreliable and erroneous and

may generate unbearable stress on the laboratory technicians. Cell migration stud-

ies, which are important for understanding embryonic development, tissue repair,

immune system function, and tumor invasion, also need time lapse video analy-

sis to quantify their response to extracellular chemotactic signals [33] and current

analytical methods also show similar problems as blood cell counting.
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Introduction of video microscopy has helped in the pathological analysis and

has developed the need of sophisticated and automatic cell counting tools to study

various aspects of cellular behaviour. Also, the analysis using live-cell imaging

provides the window for the use of computer vision-based identification, tracking

and counting of blood cells using video microscopy.

An essential element of cell counting from video microscopy has been cell

tracking. Manual cell tracking approaches can be erroneous and time consum-

ing, especially when numerous cells are needed to be tracked for a long period

of time. Thus, computer vision based automated/semi-automated methods are pre-

ferred over the manual techniques. The cell tracking methods can be broadly clas-

sified into three categories namely sequential tracking, model based tracking and

detection based association.

The sequential tracking techniques [46, 37, 68] mainly uses particle filtering

based approach for multiple object tracking. But many of these methods often suf-

fer from computational complexity and the problem of scalability. So, the job of

tracking and counting numerous cells for a long period of time become complex and

time consuming. The theme of model based tracking [15, 22] is creating and updat-

ing a model for each target object to be tracked. But often in biological applications,

it may be the case that the type of motion may not be known in advance. In these

cases, the model based tracking procedures cannot be applied for cell counting.

The idea of detection based association approach [14, 43] is to initially segment

and locate objects and then associate the short object trajectories among multiple

frames. The shortcoming of this approach is that it may suffer from data association

problems and it may sometimes require user inputs.

4.1.1 Results

We use UIOC framework in cell counting and thus avoid individual cell tracking by

achieving excellent accuracy in counting.

We validate our method on 11 different cell video sequences. These videos con-

sist of human monocytes observed in an in-vitro assay, where the cells are rolling

on human P-selectin (data can be downloaded from: [70]).
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We have chosen a rectangular ROI R, as shown in the top left panel of Fig-

ure 4.1. The top right panel in Figure 4.1 shows the deformed ROI Rd due to

boundary pixel motion. The bottom panel of Figure 4.1 shows R ∩ Rd of the fore-

ground/background segmented image. We calculate both the influx and the outflux

count for the cells and take their average to get the final total count. We achieve

a mean accuracy of 99% for the videos. The time taken to process each frame

with UIOC (implemented in Matlab) is 0.1853 seconds on a system with Intel(R)

core(TM) i7 processor, 2.2 GHz and 8 GB RAM.

The UIOC algorithm has a tuning parameter: time/frame step (∆t) as mentioned

in the previous chapters. On the data set 1, we compute accuracies for three different

time steps. These are shown in Table 4.1. Based on these accuracies, we fix the

value of ∆t as 25 for all the video sequences for computing cell count.

UIOC is compared with six different tracking methods to determine its com-

petency (Table 4.2). Table 4.2 shows the cell counting accuracies of the tracking

methods, such as, CGC [13], CG [15], SK [44], CV [14], SS [43] and JL [32] for

comparison. The CG method is based on model-based detection approach whereas

the other methods are based on detection based association approach as discussed in

the introduction. The model-based detection approach was chosen for comparison

to establish the inadequacy in performance, due to lack of explicit knowledge of the

motion model. The cell counting accuracies (obtained from the tracking accura-

cies) of these tracking methods are computed from CGC [13]. Since the accuracies

are reported for cell tracking, we assume that the accuracy for cell counting will

be at most the cell tracking accuracy. As we count a large number of cells over a

long interval of time, we do not compare our method with any sequential tracking

method for counting, as these methods suffer from computational complexity.

On comparison (Table 4.2), we find that UIOC produces a mean accuracy of

99.07% which is more than any other method compared here. Moreover, the stan-

dard deviation is the lowest at 0.65 which makes our method more reliable and

reproducible than any other method. Our method greatly outperforms CG due to

the lack in knowledge of the required motion model for the image sequence. Among

the other detection based tracking methods, CV and SS also perform quite poorly
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Time step (∆t) Accuracy (%)

15 97.82

25 98.41

35 98.12

Table 4.1: Time steps versus accuracy on first data set

compared to other methods. High sensitivity of CV to the maximum speed parame-

ter makes it vulnerable to produce inaccurate results, while use of greedy strategies

to solve the correspondence problem is the reason for failure of the SS method.

Methods proposed by CGC, JL, and SK have comparable accuracies but are still

lower than our method.

Figure 4.2 plots the accuracies of the seven methods including our method for

each video sequence. It is clear that our method outperforms every other method

with more consistent accuracies over the 11 video sequences. Their is a 3.5% in-

crease in accuracy compared to model-based detection method. Also, our method

has outperformed CV and SS methods by 18.0 % and 20.9 % respectively. Our

method is capable of outperforming these five methods because it only performs

ROI boundary tracking and hence is able to overcome most of the difficulties of

individual cell tracking.
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Figure 4.1: Image sequence going through the processing stages. (a) chosen ROI

on the cell image from the dataset, (b) deformed ROI due to boundary tracking, (c)

intersected foreground/background segmented image

Figure 4.2: Performance graph of the proposed method and other counting methods

75



Dataset UIOC CGC JL CG SK CV SS

1 98.41 97.40 96.76 93.07 95.21 77.41 71.26

2 98.56 96.82 96.32 90.35 89.70 81.11 76.30

3 99.19 98.27 98.35 96.72 97.31 71.12 73.27

4 98.27 96.71 98.57 95.85 94.81 83.49 77.62

5 98.88 98.10 98.35 98.10 94.50 91.55 85.03

6 100.00 98.07 97.69 94.23 93.50 89.72 82.62

7 98.81 98.30 97.80 96.22 95.28 76.61 73.13

8 99.91 98.72 99.20 98.11 96.70 82.90 85.10

9 98.52 97.11 97.11 95.00 92.30 80.11 79.20

10 100.00 100.00 100.00 96.70 94.20 79.23 77.65

11 99.23 98.20 100.00 97.91 95.11 80.20 80.20

Mean 99.07 97.97 98.20 95.66 94.42 81.22 78.31

SD 0.65 0.94 1.22 2.39 2.08 5.75 4.70

Table 4.2: Percentage of cell counting accuracy of seven different algorithms for 11

datasets (reproduced from Chatterjee et al. [13])
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, we have proposed two frameworks for unique people count from

monocular videos - DTV and UIOC.

The DTV framework consists of three components: object detection, object

tracking and object validation. A person is detected in the object detection step as

he enters the image frame, the object tracking step tracks the person as he moves

through the frame and as a result, a trajectory is generated. The validation step anal-

yses the trajectories and the total number of trajectories is counted. The number of

valid trajectories represents the number of people. The algorithm is experimented

on both top views and whole body views of people. The algorithm succeeds in

detecting various types of appearances like persons having different hair colors,

wearing hoodies, caps, long winter jackets, carrying bags etc. The proposed frame-

work is also smart enough for handling of people entering in the frame from any

direction. Although some specific methods are proposed for the different stages

of the framework, the framework is not constrained by these methods. Thus this

framework is flexible enough for future work.

The shortcoming of the DTV framework is in handling occlusion. It is com-

petent for overhead views and views having partial occlusions but not competent

enough for highly occluded situation.

Our proposed UIOC framework is designed in such a way so that it is capable

of handling any type of occlusions and can handle any challenging situations. As
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observed from the experimental results, we achieve more than 95% accuracy on nu-

merous publicly available benchmark videos using the UIOC framework. It is also

applied on LRT dataset which is a real life data where it has produced satisfactory

accuracy. Apart from producing high accuracy, this method is also online in nature

and works very fast which is useful for real time commercial applications. We even

extend the framework to work on multiple views and on cell counting videos with

complacent accuracy. Thus we can conclude that the proposed UIOC method in

my thesis is not only competent in nature but also as fast as real time and flexible

enough to work on different types of dataset.

Our future work includes the following -

(i) Work on multiple ROIs for LRT dataset.

(ii) Addition of directionality for LRT dataset.

(iii) Application of the framework on vehicle counting.
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Chapter 6

Appendix

The optical flow Horn Schunck method has been widely used throughout the thesis.

The theory and derivations are given here.

6.1 Estimation of Optical Flow

The optical flow method which is used to calculate motion between two image

frames, is described as follows. The motions are computed at every pixel position

at times t and t + δt . We assume that, a pixel at location (x, y, t) with intensity

I(x, y, t) moves by δx, δy within a small time period δt between the two image

frames. As we assume the image intensity of the pixel to remain constant, it can be

written as [24]:

I(x, y, t) = I(x+ δx, y + δy, t+ δt). (6.1)

We assume that the movement of the pixel is small. So, expanding the right hand

side of (6.1) with Taylor series, it can be obtained:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+H.O.T., (6.2)

where H.O.T indicates the higher order terms. From (6.1) and (6.2) it is obtained,

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂t
= 0, (6.3)
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or,

Ixẋ+ Iy ẏ = −It, (6.4)

where ẋ and ẏ are the horizontal and the vertical velocities respectively at pixel lo-

cation (x, y); Ix, Iy and It are the derivatives of the image in x, y and time directions

respectively. This is an equation having two unknown variables ẋ and ẏ. Thus, it

is an under-determined system. This is popularly known as the aperture problem.

Different optical flow methods generally solve this problem using various regular-

ization techniques, like adding equations arising out of the assumptions about the

smoothness of the flow.

6.1.1 Horn-Schunck Method

The Horn-Schunck method computes optical flow by optimizing a functional based

on residuals from the brightness constancy constraint and a particular regularization

term which denotes the expected smoothness of the flow field [29]. The method is

termed as global as it incorporates a global constraint of smoothness for solving the

aperture problem.

The algorithm assumes smoothness in the flow over the whole image. Thus,

it tries to minimize distortions in flow and tends to provide solutions with more

smoothness.

The flow is formulated as a global energy functional minimized thereafter. For

two dimensional images the functional is represented as follows -

E =

∫ ∫

[(Ixu+ Iyv + It)
2 + α2(‖▽u‖2 + ‖▽v‖2)]dxdy (6.5)

where Ix, Iy and It denote the derivatives of the image intensity values along

the x, y and time dimensions respectively. The OF vector is represented as
−→
V =

[u(x, y), v(x, y)]T . The parameter α is a regularization constant. Larger values of α

results in a smoother flow. This functional is minimized by solving corresponding

EulerLagrange equations which are as follows-

∂L

∂u
−

∂

∂x

∂L

∂ux

−
∂

∂y

∂L

∂uy

= 0 (6.6)
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∂L

∂v
−

∂

∂x

∂L

∂vx
−

∂

∂y

∂L

∂vy
= 0 (6.7)

L is the integrand of the energy expression which produces -

Ix(Ixu+ Iyv + It)− α2∆u = 0 (6.8)

Iy(Ixu+ Iyv + It)− α2∆v = 0 (6.9)

Here subscripts represent partial differentiation and ∆ = ∂2

∂x2 + ∂2

∂y2
represents

the Laplace operator.

The Laplacian is generally calculated approximately with the use of finite dif-

ferences and can be written as ∆u(x, y) = u(x, y) − u(x, y) where u(x, y) is a

weighted average of u which is calculated over the neighbourhood around the pixel

assumed to be located at (x, y).

With the help of this notation, the previous equation can be rewritten as follows-

(I2x + α2)u+ IxIyv = α2u− IxIt (6.10)

IxIyu+ (I2y + α2)v = α2v − IyIt (6.11)

This equation is linear in u and v. Thus it can be solved for each pixel in the

image.

But, as the solution is dependent on the neighbouring values of the OF field, it

should be repeated along with the update of the neighbours.

Keeping this in mind, the following iterations should be operated -

uk+1 = uk −
Ix(Ixu

k + Iyv
k + It)

α2 + I2x + I2y
(6.12)

vk+1 = vk −
Iy(Ixu

k + Iyv
k + It)

α2 + I2x + I2y
(6.13)

The superscript k + 1 denotes the very following iteration which needs to be

calculated and k denotes the previously calculated result.

81



6.2 Gaussian Process Regressor

The Gaussian Process regressor which is one of the backbones of UIOC algorithm,

is briefly discussed here.

A GP specifies distribution over functions. Following the notations from [58],

given n dimensional training data,

D = {xi, f i|i = 1, 2, ......, n} = {X, f},

the key assumption is that,

f(x1), f(x2), ...., f(xn) ∼ N(O,K)

where O is the mean function and K is the covariance function.

We want to make predictions f ∗ at test points X∗. The joint distribution of f

and f ∗ is Gaussian,

[

f
f ∗

]

∼ N(0,

[

K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]

)

Here, we are interested in the conditional probability

P (f ∗|f)

which is represented by the posterior,

P (f ∗|X∗, X, f) ∼ N(µ,Σ)

where,

µ = K(X,X∗)K(X,X)−1f

Σ = K(X∗, X∗)−K(X,X∗)K(X,X)−1K(X∗, X)

Our best estimate for f ∗ is the mean of the distribution and the uncertainty is cap-

tured in the covariance function.
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6.3 Background Subtraction

Background subtraction methods are used in the fields of image processing and

computer vision for extracting foreground in order to further process it. Generally

objects in the foreground like humans, cars, texts etc are the regions of interest in

an image. Background subtraction is a popular technique to detect moving objects

in videos from static cameras. The rationale behind the approach is that, moving

objects are detected with respect to the current frame and a reference frame. This

reference frame is known as background model. Background subtraction is mainly

needed for images originated from video streams.

A robust background subtraction algorithm should be capable of handling light-

ing changes, repetitive motions from clutter, long-term scene changes, shadows and

many other.

If V (x, y, t) is a video sequence where t is the time dimension, x and y are

the pixel locations, then for example, V (1, 2, 3) is the pixel intensity (1, 2) pixel

location of the image at t = 3 in the video sequence.

6.3.1 Approximate Median Method

In this section, we will discuss the Approximate Median (AM) method of back-

ground subtraction which is frequently used in both the DTV and UIOC frame-

works.

In order to obtain foreground images using median filter, we adopt the following

procedure -

In order to calculate the background image at the instant t

B(x, y) =
1

N

N
∑

i=1

V (x, y, t− i) (6.14)

where N is the number of preceding images whose median is taken into account.

N depends on the video frame rate (number of images per second in the video) and

the movement amount in image sequences.

B(x, y) is the background.
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Once the background B(x, y) is obtained, it can be subtracted from the image

V (x, y, t) at time t = t and threshold it. Thus the foreground is

|V (x, y, t)− B(x, y)| > Th (6.15)

where Th is threshold.

The background subtraction method often used in this thesis, is the Approximate

Median (AM) [41] method. This method is a combined form of image differenc-

ing with respect to a median background and a Laplacian operator. The first step

in this method is image differencing. Each consecutive image is subtracted from

a time averaged reference image. The difference image produced as an output of

this step is thresholded. This threshold is the only tunable parameter in the AM

method which can be tuned with only a few training frames. Moving object pixels

having values more than the threshold value are considered as foreground pixels.

Segmentation results produced from image differencing between current frame and

a reference image produce better results compared to subtraction between consecu-

tive frames as this type of subtraction may lead to the generation of false positives

where dark shadows move away from an area of background. The method produces

a sequence of images whose running median is the reference image. The value of

each pixel in the reference image is increased by 1 if the corresponding pixel value

in the current image is greater and the value of each pixel in the reference image is

decreased by 1 if the corresponding pixel value in the current image is less. Each

pixel in the reference image then converges to a value for which half of the updated

values are greater and half are less which actually indicates the median. Among the

different advantages of this method, one is that it is computationally inexpensive as

it needs to store only one reference image. Moreover, the median possesses better

capability of rejecting outliers than the mean in the distribution of values of pixels.

Due to these several attributes, we have used this method for calculating foreground

pixels in our DTV framework and for the UCSD dataset in UIOC framework.
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