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Abstract 

 

Bioacoustic analyses have been used for a variety of purposes including classifying 

vocalizations for biodiversity monitoring and understanding mechanisms of cognitive processes. 

A wide range of statistical methods, including various automated methods, have been used to 

successfully classify vocalizations based on species, sex, geography, and individual. Here, I used 

several classification techniques, namely Discriminant Function Analyses (DFAs), Support 

Vector Machines (SVMs), and Artificial Neural Networks (ANNs), for sex-based classification 

of zebra finch (Taeniopygia guttata) distance calls using acoustic features measured from 

spectrograms. We found that all three methods (DFAs, SVM, and ANNs) correctly classified the 

calls to respective sex-based categories with high accuracy between 92% and 96%. Frequency 

modulation of ascending frequency, total duration, and end frequency of the distance call were 

the most predictive features underlying this classification in all our models. My results presented 

here agree with previous results and identified highly convergent acoustic features involved in 

this classification. My comparison of classification methods gives researcher much needed 

information to select an optimal classification method. 

 

Refining and modifying experimental procedures play a vital role in improving 

methodology while also reducing animal distress. Standardized experimental procedures are 

often modified for obtaining optimal responses. Many automated operant conditioning 

procedures have been developed and modified over time. Here, I asked if an increase in feed 

time duration affects discrimination in an operant go/no-go task. Specifically, we used zebra 

finches’ sexually dimorphic distance calls as acoustic stimuli to test whether there were any 

significant differences in performance on an operant discrimination task requiring zebra finches 
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to classify calls according to the sex of the producer when a key experimental parameter, feed 

time duration, was increased from 1 second to 2 seconds. We found no significant differences in 

learning speed (trials to criterion) between birds that were given 1 sec or 2 sec of food access 

following a correct go response. Our results indicate doubling food access duration did not 

impact the speed of acquisition of distance call discrimination in zebra finches. These findings 

suggest that we can provide twice as much time for zebra finches to access food, potentially 

improving animal welfare, whilst still being able to compare new results with historical results. 
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Chapter 1. General Introduction 

 

 Zebra finches (Taeniopygia guttata) are well established animal models for 

understanding mechanisms of vocal learning using behavioural, neurobiological, hormonal, and 

mathematical paradigms (Brainard & Doupe, 2002; Zann, 1996). The zebra finch vocal 

repertoire contains many vocalizations including songs and calls (Elie & Theunissen, 2016). For 

this thesis, I will focus on distance calls, a type of sexually dimorphic contact call emitted by 

zebra finches on take-off, in flight, and prominently when a bird is isolated from partner or flock 

(Zann, 1996). In this chapter of Introduction, I begin by reviewing various methods of 

classification used in bioacoustic analysis, keeping focus on binary classification a method which 

entails separation of the two categories based on acoustic features e.g., differences in sex. Later 

in this chapter, I outline the importance of refinement and standardization of experimental 

procedures with focus on operant conditioning in birds. In Chapter 2, I compare the performance 

of the classification methodologies using distance call datasets.  In Chapter 3, I test the effect of 

increasing in feed time duration in an operant paradigm on discrimination of distance calls. I 

conclude Chapter 1 by detailing the aims and questions that I will focus on this thesis. 

1.1 Bioacoustic analysis 

Animal communication can be defined as sending and receiving specific signals from one 

individual to other individual(s) of same or different species, usually for a specific function 

(Bradbury & Vehrencamp, 2011). The modality of the signal depends on animal species and its 

social organization, primary sensory system, environment, behavioural context, and function of 

the signal (Ryan, 1990). The signal can be visual, acoustic, chemical and/or tactical in nature 
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depending on type of signal, its biological function and presence of environmental constraints 

(Bradbury & Vehrencamp, 2011; Hopp et al., 1998). Acoustic communication is widespread 

throughout the animal kingdom from insects to birds and mammals (Hopp et al., 1998). The field 

of Bioacoustic includes the study of sound production, transmission, and reception in animals 

(Hopp et al., 1998). A major branch of bioacoustic research focuses on classification of animal 

vocalizations into vocal repertoires and trying to describe and define the classes that characterize 

animal vocalizations. The classification can be interspecies, identifying species based on 

vocalization or intraspecies (Chou et al., 2007; Chou & Liu, 2009; Fagerlund, 2007; Piczak, 

2016), classifying vocalizations into vocal repertoires based on type of vocalizations (Elie & 

Theunissen, 2016, 2018), or based on sex (Campbell et al., 2016), geography (Hahn et al., 2013; 

Tuncer, 2013; Warwick et al., 2015), and elevation (Branch & Pravosudov, 2015, 2019). The 

classification of vocalizations can also aid in species monitoring biodiversity research and 

understanding the functional role of vocalizations (Mcloughlin et al., 2019; Penar et al., 2020; 

Teixeira et al., 2019). 

1.2 Methods of classification 

In the field of classification, observations with similar characteristics are classified into 

classes (Izenman, 2008). The classes may include presence or absence of a particular disease, 

spam or non-spam email, blood groups, sets of neurons, species of birds, or types of 

vocalizations. In classification, these classes can be separated by an algorithm, known as 

classifier. The information from the labeled observations is used for the construction of the 

classifier which separates the classes. The classifier can predict the class of new unlabeled 

observations, and this is known as supervised learning. The variables which are included for 

classification are called feature variables. Each variable may contain several observations. The 
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feature variables with the observations are known as feature vectors (Izenman, 2008; James et 

al., 2013). The problem of classification can be divided into two broad categories, binary 

classification, and multiclass classification. As the names suggest, binary classification involves 

two classes and multiclass classification involves classifying observations into one of several 

classes. In this thesis, we are primarily interested in binary classification. 

We see binary classification problems in our everyday life, whether it’s presence or 

absence of a disease through medical testing, credit risk calculation, quality control decision or 

email spam detection (Duda et al., 2001). We select the particular method of binary classification 

depending on properties of the feature vector. Some of the popular methods of classification are 

Logistic regression, Probit model, Discriminant function analysis, Decision trees, Random 

Forest, Bayes’s rule classifier, Support vector machines, and Artificial neural networks (Duda et 

al., 2001; Izenman, 2008). Each method has its advantages and disadvantages. For our interest 

and limited scope of the thesis, we will focus on three of these methods: Discriminant function 

analysis (DFAs), Support vector machines (SVMs) and Artificial neural network (ANN).   

1.2.1 Discriminant function analysis (DFA) 

 
In 1936 R. A. Fisher developed discriminant functions for a taxonomic problem 

where Fisher classified plants to its species based on multiple measurements of the flowers 

(Fisher, 1936a). Fisher’s discriminant function uses dimensionality reduction technique where 

the ratio of the between-class variance to the within-class variance is maximized. Here, the linear 

combination of feature vectors separates the two classes as much as possible. When the 

assumption of normality for the probability density function of feature variables for each class is 

met, the discriminant function analysis is known as Gaussian linear discriminant analysis or 

linear discriminant analysis (LDA) (Izenman, 2008).  
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    Bayes’s rule classifier is used for classifying observations between two classes. Each 

observation belongs to a class with prior probability. From Bayes’s theorem, one can obtain the 

posterior probability for an observation belonging to a class. The posterior probability for an 

observation is calculated for both the classes. A ratio of posterior probability for both the classes 

is used for classifying an observation to a class. Let’s say, the ratio of posterior probability of 

class 1 to class 2 is higher than 1, then the observation will belong to class 1 else to class 2. In 

linear discriminant function analysis (LDA), the logarithm of the ratio of the two posterior 

probabilities is used, where a ratio greater than zero belongs to one class; else belongs to the 

other class. 

The linear discriminant function (LDF) can be calculated using training datasets. 

Then, LDF can be cross validated using various methods. In leave-one-out cross-validation 

procedure, one observation is dropped from the dataset and LDF is calculated from remaining (n-

1) observations. Then, the omitted observation can be classified using the LDF. This procedure is 

repeated until all the observations are classified. In the holdout method of cross-validation, the 

whole dataset is divided into two sets, training set, and testing set. The LDFs are calculated on 

the training set and performance of this model is evaluated with the testing set. We can then 

construct a confusion matrix showing true classifications and misclassifications out of total 

classifications for the classes. Another way to calculate LDF is using multiple regression. The 

target variable in multiple regression can be the classes and the feature vector as predictor 

variables. We can regress the classes on the variables to obtain regression coefficients. This can 

be used in variable selection especially for high-dimension data based on significant coefficients 

obtained from multiple regression. 
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The requirements for a dataset for it to be used in DFA are rarely satisfied. This can 

potentially lead to over or under representation of the datasets. Randomization testing is one of 

the ways to tackle this problem (Manly & Navarro Alberto, 2020). Randomization testing helps 

in determining whether the null hypothesis, in which the pattern observed in the data is purely a 

chance event, is a reasonable assumption. In this randomization testing, a test statistic measure is 

chosen to obtain the extent of pattern observed in the data. The same test statistic can be obtained 

for the null distribution of the data which is constructed from randomization. Now, we compare 

both test statistics for observed data and random null distribution data. The point being, if the 

null hypothesis is true, the observed distribution is one of the possible outcomes. Thus, we can 

observe this while comparing test statistics for both null and observed distribution of data. 

Mundry and Sommer, 2007 developed permuted DFA (pDFA) procedure to solve the 

dataset misrepresentation issue for bioacoustics analysis. In the real world the data are messy, 

and they rarely fit for various discriminant function analyses for strict requirements as mentioned 

above. In bioacoustics analysis, one of the major problems is having multiple vocalizations from 

the same individual. Permuted DFA (pDFA) solves this by constructing a test statistic which 

takes care of this issue while comparing to the null distribution (Mundry & Sommer, 2007). 

1.2.2 Support vector machines (SVM) 

 
Support vector machines (SVMs) are a relatively modern methodology for binary 

classification which can perform better than discriminant functions in terms of classification 

accuracy depending on data structure. SVMs were first introduced by Boser, Guyon, and Vapnik 

in 1992 (Boser et al., 1992; Cortes & Vapnik, 1995). SVMs use supervised learning methods for 

the binary classification, where training datasets are used for class prediction of testing datasets. 

SVMs work well for both linear and non-linear data, giving SVM clear advantages to other 
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methods like neural networks and decision trees (Cortes & Vapnik, 1995; Jakkula, 2011). SVMs 

use a new mathematical tool known as kernel methods which can be very successful with non-

linear data.  

SVM uses maximal margin classifier as a decision rule for classification as compared to 

DFA which uses Bayes’s rule classifier as described above in section 1.2.1 (Izenman, 2008). The 

primary problem of binary classification is to construct a function using observed data, which 

can classify new data to either of the classes. Suppose f (x) is a separating function, then with a 

new datum x, the sign of f (x) will determine which class the datum x belongs to. The function f 

(x) will assign all points with positive values to one class and negative values to the other class. 

We can construct a hyperplane with a linear combination of observed data that can separate 

positive and negative functions. There can be an infinite number of such separating hyperplanes. 

We are interested in a hyperplane which has maximum margin. The margin is the sum of the 

shortest distance from the separating hyperplane to the nearest negative data point and to the 

nearest positive data point. Thus, when we maximize this margin, we can say this as a maximal 
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margin classifier (Figure 1.1).  

 

Figure 1.1 Showing a maximum margin classifier. Data points obtained from a separating 

function f (x) are plotted in x1 and x2 axes. The blue data points can correspond to all the data 

points having negative sign f (x) and gray data points to positive sign f (x). The separating 

hyperplane is shown in a red line. The dotted lines are two other hyperplanes, and points on 

those hyperplanes are support vectors. The black line with arrowheads is the margin of the 

separating hyperplane.    
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Similar to DFA, we can use the holdout method of cross-validation dividing the whole 

dataset into training and testing sets and use testing sets for cross-validation. Then a confusion 

matrix can be constructed to represent true classifications and misclassifications.   

1.2.3 Artificial neural network (ANN) 

            Initially, ANNs were developed to model human intelligence and mimic neural activities 

in the brain. Now, ANNs are used to solve problems of pattern recognition, classification, and 

prediction such as speech recognition, image recognition, and robotics (Haykin, 2009). In 1943, 

McCulloch and Pitts constructed a simplified model of neural activities in the human brain, 

artificial neural networks (McCulloch & Pitts, 1943). In this simplified model, the artificial 

neurons consisted of multiple inputs (equivalent to dendrites of a biological neuron) and a single 

output (axon). The input units could take values of 1(on) or 0 (off). Multiple input units with 1 

and 0 are summed through logical functions (“AND” and “OR”) to produce a target output. The 

value of output is compared with a predefined threshold value. If the value of target output is 

larger than threshold value, the neuron will fire. The McCulloch–Pitts neurons are not a good 

approximation of biological neurons and not flexible with variation in input parameters.        

         How does ANN learning take place? When there is repeated excitation of synapses, 

the synapses get strengthened. The strength of synaptic connection depends on the firing history 

of those neurons, the strength gets weaker with less firing. This is known as the “Hebb learning 

rule”. In 1949, Donald O. Hebb described this theory in detail, which became the foundation on 

how the brain functions (Hebb, 1949). Later, Frank Rosenblatt improved Hebb’s theory and built 

a perceptron system known as single layer perceptron (Rosenblatt, 1958). The perceptron system 

is similar to McCulloch–Pitts neuron except now the input units have connection weights. The 

connection weights represent strength of the neural connections. The network of neural 
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connections can be represented in graphs as nodes and edges. The activation value of the output 

nodes can be calculated with a linear combination of input units. These are known as linear 

activation functions. We can filter the activation values for each node through a nonlinear 

threshold activation function. Meaning firing of the neuron will depend on these activation 

functions. Some common nonlinear activation functions include linear, ReLU, step function, 

logistic, and various sigmoid functions (Izenman, 2008; James et al., 2013).      

In binary classification, the neural network consists of layers of input units and a single 

output unit. The output variable from the output until takes on value 0 or 1, depending on 

whether the neuron fires (1) or does not fire (0). Suppose there are two groups of observations 

which are linearly separable. This means there exist a set of weight connection vectors, which 

can separate the observations into two groups through linear combination with observations. We 

can use a learning algorithm to iteratively update learning, ultimately resulting in a separation of 

the observations. The gradient-descent algorithm is one such algorithm where the input 

observations are analyzed one at a time and classified to one of the two groups. Then the true 

group of the observation is revealed, and the classification procedure is updated according to this 

classification error (Duda et al., 2001; Izenman, 2008).                         

Recent research into ANNs from the 1980s to present time focused on multilayer 

perceptrons with the newer backpropagation algorithms (Haykin, 2009), mainly driven by 

increased computational power of more modern computers. A multilayer perceptron network 

consists of an input layer, hidden layer, and output layer. Multivariate statistics is used on the 

input vector (nonlinearly) to predict output. The hidden layer acts as a node in between input and 

output layer. A schematic is shown in Figure 2. For binary classification the output layer has one 

variable with value 0 (not fire) or 1 (fire). 
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Figure 1.2 Showing schematic of an artificial neural network with input layer, one hidden layer 

and binary output layer. Individual neurons are represented as nodes (circles), and connections as 

edges (lines).  

1.3 Refinement of experimental designs 

 In 1935, R. A. Fisher published “The Design of Experiments” on the principle of 

experimentation with a focus on statistical aspects of the design (Fisher, 1936b). We should 

design experiments with respect to scientific methods, while following standard laboratory 

procedures to produce valid reproducible data (Diamond, 2001; Johnson & Besselsen, 2002; 

Kirk, 2012; Larsson, 2001; Myers, 1979; Ryan & Morgan, 2007; Sproull, 2002; Weber & 

Skillings, 2017). Design of an animal experiment involves literature search, research questions 

and objectives, selection of animal model, standard research methods, and statistical analyses etc. 

with consideration to 3Rs (Replacement, Reduction, and Refinement) (CCAC Guidelines: 
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Animal Welfare Assessment, 2021; Johnson & Besselsen, 2002). Standardized research methods 

are essential for reproducibility (Richter et al., 2009; Würbel, 2000). Modifying factors in a 

standardized research procedure might impact validity, and reproducibility of the experiments 

(Bailoo et al., 2014; Richter et al., 2009; Würbel, 2000). Commonly used standard research 

procedures in behavioural testing are often reviewed and refined by manipulating various factors 

of the procedures. Studies have looked at biological factors (age, gender, body weight, strain 

etc.), environmental factors, food manipulations, schedule of treatments, dosage and type of 

drugs etc. affecting behavioural and physiological responses in the forced swim test (FST), a 

widely used behavioural test in rodents for basic research and pharmaceutical research 

(Bogdanova et al., 2013). The olfactory conditioning of proboscis extension response (PER), a 

paradigm to study learning and memory in honeybees, has been standardized (Bitterman et al., 

1983) and reviewed (Matsumoto et al., 2012) as variation in conditioning procedure (schedule, 

intertrial interval, interstimulus interval, number of trials, intensities of conditioned & 

unconditioned stimulus etc.) may result in significant differences in acquisition and retention 

performances. Change in a consistently used experimental procedure requires investigating the 

impact on experiment outcomes. 

1.3.1 Operant conditioning in small birds 

In the 1970s, operant conditioning procedures began to be used successfully to study 

sensory processes in laboratory animals like rats, pigeons, and monkeys (Stebbins, 1970). In 

1980s, Hienz et al. developed operant conditioning techniques to study auditory cognition and 

processing in birds such as redwing blackbirds (Agelaius phoeniceus) and brown-headed 

cowbird (Molothrus ater) (Buchholz & Hothersall, 1976; Hienz et al., 1977). Later, Park, 

Okanoya and Dooling successfully applied the standard operant conditioning techniques for 
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other bird species including budgerigars (Melopsittacus undulatus), canaries (Serinus canarius), 

zebra finches (Taeniopygia castanotis), swamp sparrows (Zonotrichia georgiana), and song 

sparrows (Zonotrichia melodia) (Klump et al., 1995; Park et al., 1985). Auditory perception 

research with operant conditioning involved two types of response methodologies one in which 

birds make a response by hopping to the perch (Park & Dooling, 1991; Shy et al., 1986) and one 

in which they make their response by key pecking response buttons (Hulse & Cynx, 1986; 

Klump et al., 1995; Okanoya & Dooling, 1987; Park et al., 1985). Since then, automated systems 

for operant conditioning procedures (hopping to the perch and food delivery) have been 

developed and refined over the time (Berkhoudt et al., 1987; Brown & Riede, 2017; Gess et al., 

2011; Nagel et al., 2010; Njegovan et al., 1994; Sturdy & Weisman, 2006; Varnon et al., 2018). 

An automated motor driven feeder (Njegovan et al., 1994) has been used extensively for operant 

paradigm in zebra finches (Taeniopygia guttata), wild-caught black-capped chickadees (Parus 

atricapillus), and wild-caught white-throated sparrows (Zonotrichia albicollis) (Congdon et al., 

2019; Hoeschele et al., 2013; Klump et al., 1995; Montenegro, Service, et al., 2021; Njegovan & 

Weisman, 1997; Sturdy et al., 1999, 2001; Weisman et al., 2004). As discussed earlier, various 

operant conditioning factors, such as schedules of reinforcement, intertrial interval, interstimulus 

interval, number of trials, and intensity of reinforcement impact the response rate, acquisition, 

and retention performances (Gess et al., 2011; Klump et al., 1995). Duration of food access 

during operant trials is one of the important factors determining the performance in an operant 

task with respect to motivation. Here, I was interested in doubling food access time in an operant 

task, for a consistently used operant system (Njegovan et al., 1994; Sturdy & Weisman, 2006), 

and determining the impact on discrimination performance for zebra finches in a task 
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discriminating female and male distance calls (Gess et al., 2011; Zann, 1996). Chapter 3 goes in 

details about the effect of increasing feed time duration on discrimination.  

1.4 Aims of the thesis  

 
In this thesis, I aim to answer the following questions: 

1. Presenting a methodological comparison of various classification methods 

using zebra finch distance calls, and their bioacoustic measurements, as a test 

set.    

2. Are there any impacts of changing feed time duration in an operant paradigm 

on discrimination of vocalizations? 

First, I will describe DFA, SVM, and ANN classification methods for vocalization 

classification, then I will compare classification performance and consistency among these 

methods using sex-based classification of zebra finch distance calls from measured acoustic 

features from spectrograms. I will also analyze variables of relative importance for acoustic 

features used in the classification. The comparative bioacoustic analysis will provide a baseline 

and framework for future vocalization classification problems. The ranked acoustic features, 

ranked by relative variable of importance, can be used in future perceptual, neurobiological or 

playback studies to better understand biological basis of distance calls. Chapter 2 goes into 

details about the comparative bioacoustic analysis.  

Second, I will increase the feed time duration in a go/no-go operant task and look at its 

effect on discrimination performance. I will use zebra finches as model system and zebra finch 

distance calls for a discrimination task. Zebra finches will discriminate between female distance 

calls from male distance calls in a go/no-go operant paradigm. I will compare the discrimination 
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performance between birds with 1 sec food access to that of 2 sec food access during operant 

trials. This is an attempt to refine the consistently used operant paradigm (Njegovan et al., 1994; 

Sturdy & Weisman, 2006). If I find no significant differences in the discrimination performance, 

we can double the feed time duration during operant trials with no negative impact on 

discrimination performance. In doubling the feed time duration, birds will have more time to eat 

during trials, which can potentially improve their wellbeing. The manipulation of feed time 

duration and examining its effect on discrimination performance will allow for comparisons of 

past auditory discrimination experiments with future experiments (with modified operant 

procedures). In Chapter 3, I will discuss in detail about the effect of change in feed time duration 

on discrimination of female and male zebra finch distance calls.  

 Finally, I will conclude the thesis with Chapter 4, the discussions, and conclusions from 

above two studies. Overall, I compare bioacoustic classification techniques with advantages and 

disadvantages and I examine the impact of increase in feed time duration in an operant task on 

discrimination performance.    
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Chapter 2: Comparing methodologies for classification of zebra 

finch distance calls 

2.1. Introduction 

 Acoustic communication is used throughout the animal kingdom in the contexts of mate 

attraction, territorial defense, raising alarm, and recognition of species, group, and individuals 

(Bradbury & Vehrencamp, 2011). Understanding the context in which animal vocalizations are 

used plays a key role in understanding biological function and evolution of animal 

communication, as well as the underlying mechanisms of vocal communication in the animals 

producing the vocalizations under study (Bradbury & Vehrencamp, 2011). Research in 

bioacoustics focuses primarily on the mechanisms of production, transmission, and reception of 

acoustic signals (Erbe, 2016; Hopp et al., 1998). One approach to bioacoustics research involves 

describing and then classifying animal vocalizations into categories. This approach helps to 

reduce naturally-occurring complexity among signal classes by forming categories of signals 

based on acoustic similarity (Garcia & Favaro, 2017). The categories can be vocal repertoires of 

different species (Ficken et al., 1978; Salmi et al., 2013), based on the sex of the vocalizer 

(Campbell et al., 2016), based on geographical locations (Hahn, et al., 2013; Tuncer, 2013) based 

on ecological habitats (Anderson et al., 2008; Gómez et al., 2018) or based on the individuals 

(Elie & Theunissen, 2016; Hahn et al., 2013; Laiolo et al., 2000; Montenegro et al., 2021; 

Průchová et al., 2017). The application of this approach varies widely from biological scales 

(Gentry et al., 2020) to wildlife management and conservation (Laiolo et al., 2008; Teixeira et 

al., 2019) to animal welfare (Manteuffel et al., 2004; Röttgen et al., 2020; Schön et al., 2004) to 

life history, and evolutionary biology (Warwick et al., 2015; Xu & Shaw, 2019).  
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Bioacoustics methods, especially vocalization classification, play an important role in 

investigations of cognitive processes such as perception, memory, and decision making 

(Shettleworth, 2009). Thorough description and classification of vocalizations are an integral 

part of understanding the mechanisms involved in biologically relevant processes like mate 

selection (Delgado, 2006; Hernandez et al., 2016; Vignal et al., 2008), predator interaction (Bee 

et al., 2016; Congdon et al., 2020), territoriality (Walcott et al., 2006), social interaction 

(Slocombe & Zuberbühler, 2005), and individual recognition (D’Amelio et al., 2017; Elie & 

Theunissen, 2018). Classification of vocalizations into specific classes as a tool of bioacoustic 

analyses dates to the early history of bioacoustics in the 1950s and 60s where scientists used 

sound spectrograms to describe the prominent features of vocalization types in domestic fowl 

and weaverbird (Collias, 1963; Collias & Joos, 1953). Since then, the field of bioacoustics has 

come a long way introducing new concepts, powerful analysis techniques (Herbst et al., 2013; 

Kershenbaum et al., 2016; Tallet et al., 2013; Wadewitz et al., 2015) and moving towards data-

driven and automated classification (Bravo Sanchez et al., 2021; Brooker et al., 2020; Elie & 

Theunissen, 2016; Mcloughlin et al., 2019; Priyadarshani et al., 2018; Salamon et al., 2016).  

A multitude of statistical methods, including automated methods, have been used for 

classification of vocalizations for biodiversity monitoring (Caycedo-Rosales et al., 2013; 

Priyadarshani et al., 2018), constructing vocal repertoires (Elie & Theunissen, 2016; Wadewitz et 

al., 2015), and classifying based on sex (Campbell et al., 2016), geography (Hahn et al., 2013; 

Tuncer, 2013), and individuals (Elie & Theunissen, 2018; Průchová et al., 2017). These methods 

mainly include random forest, decision trees, Hidden Markov models, spectrogram cross-

correlation, support vector machines (SVMs), and artificial neural networks (ANNs) (Knight et 

al., 2017). These automated methods are useful for classification, especially for large data sets, 
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although human, and possibly non-human animal involvement, is required to verify the 

reliability and validity of such analyses. Thus, semi-automated methods with human involvement 

work best. Uncovering the acoustic features primarily responsible for the classification into types 

based on species, sex, or individual can reveal the locus of biologically significant stimulus 

control involved in animal communication signals. An integrated approach is required for 

classification, from identifying acoustic units to choosing methods of analyses for identifying 

features responsible for classification (Kershenbaum et al., 2016).   

Zebra finches are flocking songbirds native to Australia that are sexually dimorphic in a 

number of important aspects. Only male zebra finches produce songs, though both sexes produce 

a variety of calls (Elie & Theunissen, 2016; Zann, 1996). Distance calls or “long calls” are the 

most characteristic, species-typical calls produced and are used in a variety of contexts, 

especially when birds are visually isolated from their mates or conspecifics (Zann, 1996). 

Distance calls are sexually dimorphic: males produce shorter, more acoustically complex calls 

and females produce longer, relatively unmodulated calls (Zann, 1996). The male distance call is 

composed of a downsweep frequency modulation with a fundamental frequency of 

approximately 600-1000 Hz (Figure 2.1). The female distance call is composed of a harmonic 

series of unmodulated frequencies with fundamental frequency of 350-550 Hz (Vicario et al., 

2001; Zann, 1996). Zebra finches are capable of discriminating mates from others (Vignal et al., 

2008) and of recognizing conspecifics (Vignal et al., 2004) using distance calls. The differences 

in the acoustic structure between male and female versions of these calls allow this 

discrimination (Vignal & Mathevon, 2011). Call duration, fundamental frequency, and rapid 

frequency modulation seem to play an important role in eliciting differential behavioural 

response to male and female distance calls (Vicario et al., 2001; Vignal & Mathevon, 2011).                
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 In the past, zebra finch distance calls have been investigated in a number of different 

manners using a variety of bioacoustically-based classification approaches. A previous study, 

where the primary aim was to classify vocalizations into types (e.g., song, distance call etc.) 

based on sexually-dimorphic acoustic features, quantified the potential acoustic features in the 

distance calls in comparison to other vocalization classes (Elie & Theunissen, 2016). This 

analysis showed that females produced longer, and lower pitched distance calls compared to 

male distance calls (Elie & Theunissen, 2016). A subsequent study (Mouterde et al., 2014) used 

DFA with spectral envelopes, temporal envelopes, and spectrogram features of distance calls, to 

classify distance calls based on the distance of the emitter of the calls (i.e., from 2m, 16m, 64m, 

128m, and 256m) from the microphone. In the Mouterde et al. (2014) study, several density 

functions (mean, standard deviation, skewness, kurtosis, and entropy) of spectral and temporal 

envelopes and spectrogram principal component parameters were measured and used 

successfully to classify distance calls at various propagation distances via the individual acoustic 

signature of the birds. However, the complex acoustic features of distance calls used in the 

bioacoustic analyses of the two studies just discussed are not straightforward to either measure or 

manipulate in an experimental context. The acoustic features described in these two studies are 

problematic for use in an experimental context as they are complex to either measure or 

manipulate by an experimenter.     

In this study, I used three statistical methods (DFA, SVM and, ANN) to classify Zebra 

finch distance calls by sex of the emitter based on bioacoustic features, some of which are known 

to differ between sexes when analyzing the entire repertoire of the Zebra finch. I used 10 

acoustic measurements in our analyses including both temporal and spectral measures. I 

hypothesize similar classification performance in all three classification methods given the past 
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successes using these methods for similar tasks (Elie & Theunissen, 2016; Mouterde et al., 

2014). Furthermore, I predict that total call duration and frequency modulation will be the 

predominant features used to classify the calls, as these features are visually distinct in the 

spectrograms of these calls and previous studies (Elie & Theunissen, 2016; Vignal & Mathevon, 

2011) suggest that these are the key features facilitating sex-based call discrimination.  

2.2. Methods and Results 

2.2.1 Recordings 

In total, N=83 zebra finch distance calls were obtained from the data sets of D’Amelio et 

al. (2017), Elie and Theunissen (2016), and from adult zebra finches recorded by members of the 

Phillmore lab at Dalhousie University, Halifax, NS Canada. The set consisted of 38 female and 

45 male distance calls produced by 21 females and 26 males, with 1-2 vocalizations per 

individual depending on availability. There were 12 male calls and 12 female calls obtained from 

12 male individuals and 12 female individuals respectively from D’Amelio et al. (2017), 18 male 

calls and 20 female calls from 9 male individuals and 10 female individuals respectively from 

Elie and Theunissen (2016), and 15 male calls and 6 female calls from 8 male individuals and 4 

female individuals respectively from the Phillmore lab. All the recorded calls were recorded in 

the laboratory with digital recorders and microphones having frequency response ranges from 

200 Hz to 10,000 Hz. The calls from D’Amelio et al. (2017) and Elie and Theunissen (2016) 

were recorded at a sampling rate of 44,100 Hz. The calls obtained from Phillmore lab were 

recorded at a sampling rate of 48,000 Hz. For all sources, calls were recorded at a distance 

between 0 and 100 cm from the birds. Thus, these recordings provided us with a diverse dataset 

of high-quality recordings of distance calls. Because calls were recorded with different sampling 
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rates, all distance calls were resampled using SIGNAL software version 5.16.11 (Beeman, 2017) 

at 44,100 Hz before further analyses.  

2.2.2 Acoustic measurements  

The following acoustic analyses and measurements were conducted in SIGNAL and 

performed by the first author (PS). For each sound file, 5 ms of silence was added to the 

beginning and end of the vocalization and tapered to remove transients; peak RMS amplitude 

was equalized to 1. Spectrograms were created with a Hanning window and 256 pts transform, 

frequency resolution of 172.3 Hz and 5.8 ms time resolution. Power spectra were produced with 

an FFT window of 16,384 points and 88 Hz smoothing for amplitude measurement. The 

following acoustic features were measured manually from the spectrograms of individual calls: 

(a) Total duration (TD), measured from the start to the end of the highest amplitude harmonic 

band, (b) Start frequency (SF), measured at the start of the first clearly visible and continuous 

harmonic band, in this case, the second frequency band in the spectrogram, (c) End frequency 

(EF), measured at the end of the first clearly visible and continuous harmonic band, in this case, 

the second frequency band in the spectrogram (d) Peak frequency (PF), measured at the highest 

frequency observed of the highest amplitude harmonic band, (e) Ascending duration (AD), 

measured from the start to the peak frequency of the highest amplitude harmonic band, (f) 

Descending duration (DD), measured from the peak to the end of the highest amplitude harmonic 

band, (g) Frequency modulation of ascending frequency (Fmasc; Peak frequency-Start 

frequency/Ascending duration), (h) Frequency modulation of descending frequency (Fmdsc; End 

frequency-Peak frequency/Descending duration), (i) Frequency at highest amplitude (Fmax), 

measured at the peak frequency of the highest amplitude harmonic band from the power spectra 

and, (j) Fundamental frequency (F0) (Campbell et al., 2016; Nowicki & Nelson, 1990). The 
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fundamental frequency was measured in Praat 6.1.38 (Boersma & van Heuven, 2001; Goldstein, 

2021). Figure 2.1 shows the measured acoustic features from the spectrograms of male and 

female zebra finch distance calls.  

Figure 2.1 Measured acoustic features from the spectrogram showing Total duration (TD), Start 

frequency (SF), End frequency (EF), Peak frequency (PF), Ascending duration (AD), 

Descending duration (DD) with male distance call at top and female distance call at bottom. F0 

was measured in Praat (not pictured here). 

2.2.3 Statistical analyses  

All analyses were conducted in R 3.6.2 (R Core Team, 2019). The linear discriminant 

analysis (LDA) and discriminant function analysis (DFA) were conducted using the MASS 

(Venables & Ripley, 2002) and klaR (Weihs et al., 2005) packages, the SVM was conducted 
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using the e1071 package (Meyer et al., 2019), and the ANN was conducted using the neuralnet 

package (Günther & Fritsch, 2010). Mathews correlation coefficient (MCC) was calculated using 

mltools (Gorman, 2018). For LDA, standardized coefficients were obtained using canonical 

discriminant analysis from the candisc package (Friendly & Fox, 2021). The relative importance 

of variables or weights for SVM were calculated using the weight vectors (Meyer et al., 2019). 

The relative importance of input variables for ANN were calculated using the “olden” function 

of NeuralNetTools which evaluates variable importance through input-hidden and hidden-output 

connection weights (Beck, 2018).             

All measured acoustic features were scaled by z-standardization, using the scale function 

in R to account for and standardize across multiple units of measurement. This allowed us to 

compare between measures, even when those measures differed in units. The z-standardization 

of an individual acoustic feature involves subtracting the mean of the specific acoustic feature 

from the individual measurement and dividing by its standard deviation. We conducted 

correlation analyses to identify and omit redundant and highly correlated acoustic features. The 

Ascending duration (AD) and Descending duration (DD) were highly correlated with each other 

(Pearson's r =0.75, p < 0.001) and with Frequency modulation of ascending frequency, Fmasc 

(AD and Fmasc: Pearson's r = -0.85, p < 0.001) and Frequency modulation of descending 

frequency, Fmdsc (DD and Fmdsc: Pearson's r = - 0.83, p < 0.001). Thus, AD and DD were not 

included in further analyses (r ≥ 0.75 and significant). Table 2.1 shows correlation across the 

measured acoustic features.   
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Table 2.1 Table showing Pearson's correlation coefficients across acoustic features. * represents 

significant correlation  

  TD SF EF PF AD DD Fmasc Fmdsc Fmax Fo 

TD                     

SF -0.06                   

EF 0.26*  0.48*                 

PF -0.01 -0.16 -0.22*                

AD 0.56* 0.04  0.43* -0.26*             

DD 0.61* 0.03 0.30* -0.1  0.75*           

Fmasc -0.39 -0.19 -0.46* 0.52* -0.85* -0.54         

Fmdsc 0.43* 0.15  0.49* -0.42* 0.72*  0.83* -0.71*       

Fmax 0.05 -0.14 -0.08  0.51* -0.03 0.02  0.27* -0.2     

Fo 0.22 0.03 0.14 -0.17  0.42*  0.23* -0.50* 0.31* -0.16   

 

2.2.3.1. DFA, pDFA, and LDA.  

    Discriminant function analysis (DFA) is used for classification of exemplars into 

groups based on a linear combination of features which separate the groups. In bioacoustics 

analyses, DFA can be used to classify vocalizations into types (Jaiswara et al., 2013) or across 

individuals (Chen & Goldberg, 2020; Mundry & Sommer, 2007). For example, DFA has been 

used to classify vocalizations of mountain chickadees (Poecile gambeli) based on elevation 

gradient (Branch & Pravosudov, 2015, 2019). DFA has also been used to classify black-capped 

chickadee (Poecile atricapillus) vocalizations based on geography (British Columbia and 

Ontario; Hahn et al., 2013a) and sex (Campbell et al., 2016).  

I used a stepwise DFA with the leave-one-out method of cross-validation for classifying 

distance calls based on sex. In this process, a single vocalization is withheld while the rest of the 
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vocalizations are used to obtain the discriminant functions. The accuracy of the discrimination 

functions can then be obtained by comparing the predicted group, male or female, of the 

withheld vocalization to the original class of that vocalization (i.e., was the function able to 

classify a male call as male, and a female call as female.). This method was repeated until all the 

vocalizations were classified (i.e. permutation test), thus giving us overall percent correct 

classification (Betz, 1987; Mundry & Sommer, 2007).  

When multiple vocalizations from the same individuals are used for DFA, there is the 

possibility of pseudoreplication. Pseudoreplication occurs when non-independent data points 

from the same subject (e.g., multiple vocalizations from one individual) are analyzed as 

independent replicates (Mundry & Sommer, 2007). A permuted DFA (pDFA) can be used to 

account for potential pseudoreplication if any is present (Mundry & Sommer, 2007). With 

pDFA, I compared the percent correct classifications by DFA from the original distance call 

distribution to percent correct classifications obtained from null distributions. The null 

distributions of distance calls are constructed by randomly assigning individual calls as male or 

female. One thousand such null distributions were constructed, and percent correct 

classifications were obtained by leave-one out method of DFA as mentioned above. The 

proportion of times percent correct classification by pDFA were equal to or greater than correct 

classification by original DFA was obtained and was noted as p-value as described by (Mundry 

& Sommer, 2007).  

The stepwise DFA accurately classified distance calls based on sex using all eight of the 

remaining measured acoustic features. In the forward stepwise DFA method for variable 

selection for classification, where each feature is entered individually, one by one (rather than all 

features entered all at once) with total duration (TD) as starting variable, Total duration (TD), 
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End frequency (EF), Frequency modulation of ascending frequency (Fmasc), Frequency 

modulation of descending frequency (Fmdsc), and Frequency at highest amplitude (Fmax) in 

order, were all used together for the sorting  of distance calls into the respective sex category that 

produced the calls. The forward stepwise DFA classified the distance calls into the correct 

category with 96.3% accuracy. I then used a pDFA to test the validity of the stepwise DFA; 

conducting the pDFA involved constructing null distributions of distance calls, where sex 

identity of each call was randomized. The mean correct classification for all 1,000 null 

distributions was 50.2% ± 6.6 (mean±sd), meaning pDFA could only classify the null 

distributions with ~50% accuracy.  None of the pDFAs produced correct percent classification 

greater than the stepwise DFA classification percentage, thus giving a p-value of 0 for the pDFA 

null model, indicating that the stepwise DFA accurately classified calls by sex of producer.                               

I also used a supervised linear discriminant analysis (LDA) with the hold out method of 

cross-validation to classify distance calls based on sex for a direct comparison with support 

vector machine (SVM) and artificial neural network analysis (ANN). In the hold out method of 

cross-validation, the data set is separated into two sets: training and testing. The function uses the 

training set to build a model to predict the output of the testing set. In supervised LDA, 75% of 

the vocalizations were chosen randomly for training and then the remaining 25% are used in a 

test to validate the accuracy of the same testing dataset. This procedure was repeated 1,000 times 

and mean percent accuracy was calculated (Engler et al., 2014; Ligout et al., 2016). 

In the supervised LDA, all the eight acoustic features were used to calculate the 

discriminant functions and predict classification for testing datasets. This process was repeated 

and cross-validated 1,000 times to obtain the mean correct percent classification. Using all the 

eight features, the LDA classified distance calls with 96.3% ± 3.4 accuracy. The mean MCC for 
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the LDA was 0.96 (range: 0.63-1.00) from 1,000 testing datasets which indicates high 

classification performance, meaning there was no significant effect of unbalanced datasets with 

unequal numbers of samples in the two groups on classification accuracy. Low MCC can 

potentially pose a problem resulting in a larger dataset overestimating the classifier. Figure 2.2 

shows the distribution of the individual distance calls according to the first discriminant function, 

LD1, male and female calls are well separated. 

 

Figure 2.2 Distribution of the first discriminant function (LD1) for all male and female distance 

calls.  
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DFA is a robust and stable classification technique when the classes are well separated, 

thus giving accurate parameter estimates that separate the classes. However, when the dataset is 

limited with high dimensionality (has more features than samples), there is risk of over-fitting. 

This over-fitting might reduce the cross-validation performance of classifiers (James et al., 2013; 

Tachibana et al., 2014). Our overall dataset is not high dimensional (i.e., we have more samples, 

n=83 than features, n=8), but data are from various sources produced from different individuals. 

I used support vector machine (SVM) algorithms, as SVM avoids the problem of overfitting, a 

potential issue with DFA. SVM also helps reduce human effort involved in other classification 

methods, as SVM works with a relatively small instruction (training) dataset in comparison to 

other methods.  

2.2.3.2 SVM 

Support vector machines (SVMs) are supervised learning algorithms used for mainly 

two-group classification problems (Cortes & Vapnik, 1995). SVMs use all the eight measured 

acoustic features as input variables, similar to a DFA, and then build a prediction model. 

However, when data are not linear, there is a possibility for interaction among variables, which 

can happen when classifying using a DFA. SVMs solve this problem by using a kernel approach. 

Kernels are various functions (e.g., linear, polynomial, radial, and sigmoid) that can be applied to 

input data so that data are separated linearly in the feature space. Here, I used a linear kernel for 

both training and prediction. SVMs have been widely used for classification of songbirds to their 

species by their songs, for example, using song syllables of 7 bird species (Dufour et al., 2014) 

or using flight calls of 11 species of birds (Tung et al., 2003), and more recently, using additional 

automated methods such as hybrid model of deep convolutional neural networks and hidden 

Markov models for classification of birdsong using song notes and syllable elements (Koumura 
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& Okanoya, 2016; Tachibana et al., 2014). In this study, I used a linear SVM where 

classification boundaries are determined by maximizing margins between the nearest samples 

and boundary hyperplane for distance call classification. In this supervised semi-automated 

method, I randomly divided all 83 vocalizations using a 3:1 ratio to serve as training and testing 

datasets, respectively. The validity of the model based on the training dataset was measured 

against a testing dataset.  

I cross validated performance SVM with the testing datasets. This process of cross 

validation was repeated 1,000 times with randomly chosen testing dataset for mean correct 

classification percentage. SVM classified distance calls with a mean of 94% ± 5.1 correct. The 

mean MCC for SVM was 0.88 (range: 0.42-1.00). 

2.2.3.3 ANN 

Artificial neural networks (ANN) consist of connected input nodes and edges in multiple 

layers; acoustic features can be used as input to produce a predicted category as target output 

(Izenman, 2008). In bioacoustic analyses, neural networks have been used in the context of 

species classification using acoustic features, ranging from whole vocalizations to individual 

song and call notes, to sort vocalizations by species (Chou & Liu, 2009; Piczak, 2016) or to sort 

notes into note types (Dawson et al., 2006). ANNs for binary classification are very similar to 

SVM, apart from the training algorithms that are used for calculation of classification functions: 

ANNs use backpropagation whereas SVM uses hyperplane to make predictions. In 

backpropagation, the weights of a neural net are fine-tuned according to error rate or loss 

function of previous epochs or iterations in training while in hyperplane, observations are 

separated into two classes by a threshold hyperplane, calculated from linear combination of the 

dependent variables (Izenman, 2008; James et al., 2013). ANNs can account for potentially 
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complex relationships among input features without compromising classification performance 

(Collobert & Bengio, 2004; Jakkula, 2011).   

I used a supervised ANN, which used the eight measured acoustic features from distance 

calls as input, to classify the calls. I built an artificial neural network using the neuralnet package 

in R with the default logistic activation function (Günther & Fritsch, 2010). The neural network 

consisted of eight acoustic input features with a single hidden layer consisting of two neurons 

and one output unit to predict sex of the producer of the distance call. The input features were 

multiplied by a random set of weights prior to the training. The logistic activation function 

applied to the multiplied numbers and output as neurons in the hidden layer. The neurons in the 

hidden layer were again multiplied by a random set of weights, and the activation function was 

applied to these numbers to produce a single output. The prediction output (lies between 0 and 1) 

was compared with the true output. The loss or error was then calculated with a cross-entropy 

function to know how far off our prediction from true output (Izenman, 2008). I used resilient 

backpropagation algorithms to get the gradients for each weight from the initial random weights. 

During epochs of training, the error got smaller, and weights got optimized for best prediction of 

output (Günther & Fritsch, 2010). A schematic of the neural network is shown in Figure 2.3.  
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Figure 2.3 Schematics of the neural network showing acoustic features as input, two neurons in 

hidden layer and output layer where TD: Total duration, SF: Start frequency, EF: End frequency, 

PF: Peak frequency, Fmasc: Frequency modulation of ascending frequency, Fmdsc: Frequency 

modulation of descending frequency, Fmax: Frequency at highest amplitude, and Fo: 

Fundamental frequency.      

Seventy-five percent of the total pool of vocalizations were chosen randomly to be used 

as a training set for supervised learning, while the remaining 25% of the vocalizations were 

withheld and used to validate the accuracy of the training model. This training and validation 

method was repeated 1,000 times. I trained the ANN until all absolute partial derivatives of the 
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error function were smaller than 0.01 meaning we achieved asymptotic performance, a standard 

stopping point for confirming validity of ANNs (Günther & Fritsch, 2010).  

 The neural network classified the distance calls to the respective sex of producer with a 

mean accuracy of 92.5%±5.4 correct. The mean MCC for neural networks was 0.85 (range: 0.46-

1.00), consistent with the MCC for both LDA and SVM.   

2.2.3.4. Model comparison 

The use of multiple methods of classification of distance calls will give us an overview of 

classification using a variety of methods while constructing a base for future classifications of 

similar problems. All methods used (DFA, LDA, SVM and ANN) classified calls into the correct 

sex of the produce with high accuracy (DFA and LDA: 96 %, SVM: 94 %, ANN: 92 %). For the 

stepwise DFA, pDFA validated the classification. To evaluate the relative classification 

performance for the rest of the methods (LDA, SVM and ANN), I calculated and compared 

MCC and the classification accuracy of each. MCC is a measure of quality of two-class 

classification used in various fields of research including songbird vocalization classification 

(Chicco & Jurman, 2020; Matthews, 1975; Wellock & Reeke, 2012). MCC generates high score 

only if the classification predictor can correctly predict most of both classification categories. 

The MCC for all the methods (LDA: 96, SVM: 0.88, ANN: 0.85) were high and consistent with 

each other. Figure 4 shows a comparison of classification performance with accuracy and MCC. 

Further, I assessed the relative importance of specific acoustic features in classification across 

stepwise DFA, LDA, SVM and ANN methods. Comparing the relative importance across 

various methods will inform us as to whether the same acoustic features were used preferentially 

for each method for classification. Such methodological comparisons will further allow 
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researchers to make informed decisions when selecting which methodological tools they will 

employ for their particular set of circumstances.  

 

Figure 2.4 A bar graph showing classification accuracy (scaled to 1) and MCC (Matthews 

correlation coefficient) values for all classification methods; pDFA & LDA, SVM, and ANN. 

Higher value is better.    

In all four methods (stepwise DFA, LDA, SVM, and ANN), Frequency modulation of 

ascending frequency (Fmasc), Total duration (TD), and End frequency (EF) were three top 

features used for classifying distance calls according to the sex of the producer (see Table 2.2 for 

full list). Although the methods used apply different algorithms for classification, they produced 

similar classification results with a similar relative importance for the input features. In sum, all 

methods tested successfully classified zebra finch calls by sex of the producer.  
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Table 2.2. A table showing acoustic features used and their relative importancea (in descending 

order with relative proportion in the brackets) used for classification by Linear discriminant 

analysis (LDA), Support vector machines (SVM), and Artificial neural networks (ANN). For 

stepwise DFA, the DFA column shows features used for obtaining a classification accuracy of 

96%.    

 

Order of  

Importance  

 

DFA 

      

LDA 

 

SVM 

 

ANN 

1 TD Fmasc (0.43) Fmasc (0.41) Fmasc (0.42) 

2 EF TD (0.15) EF (0.2) EF (0.25) 

3 Fmasc EF (0.11) TD (0.12) TD (0.12) 

4 Fmdsc PF (0.1) Fmdsc (0.08) Fmdsc (0.07) 

5 Fmax Fo (0.08) PF (0.07) Fo (0.04) 

6  Fmdsc (0.01) SF (0.06) PF (0.04) 

7  SF (0.01) Fo (0.04) SF (0.04) 

8  Fmax (0.004) Fmax (0.0001) Fmax (0.01) 

 

a Refer to Statistical analysis section for calculation of relative importance of variables 

for each method. 
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2.3 Discussion  

 All the methods (DFA, LDA, SVM, and ANN) were highly accurate at classifying 

distance calls into male and female; each had a classification accuracy greater than 92%. Three 

methods (LDA, SVM and ANN) had MCC values greater than 0.85, indicating highly correct 

predictions for both male and female calls independent of their potentially problematic unequal 

sample size in the dataset. The results from DFA, LDA, SVM, and ANN consistently and 

accurately classified male and female distance calls. Both the leave-one-out method and holdout 

method of cross-validation produced similarly excellent classification performance. This 

suggests that there are acoustic features that differ between male and female distance calls such 

that they can be used to effectively classify them with all four of these methods. Frequency 

modulation of ascending frequency (Fmasc), end frequency (EF), and total call duration (TD) of 

the distance call were the top ranked acoustic features used by stepwise DFA, LDA, SVM, and 

ANN. The LDA, SVM, and ANN all ranked Fmasc as the most important acoustic feature. SVM 

and ANN ranked EF and TD as the second and third most important features whereas LDA 

ranked TD and EF as second and third most important features. The order change may be due to 

different algorithms used for classification and for relative importance nevertheless frequency 

modulation was the most crucial feature used for classification. The stepwise DFA approach is 

useful and efficient for investigating and pruning variables when there are a large number of 

input variables involved; all variables can be entered in one step and the DFA outputs the 

variables used in the classification. SVM, on the other hand, works best for binary classifications 

with the use of maximum margin linear classifiers and for high dimension data, relatively large 

datasets, with the help of various available kernel functions. ANN is useful with multi-class 

classification with large datasets. Ideally, I recommend the use of a combination of these 
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methods to account for stochasticity of real-world data. Pragmatically, if I were to choose one 

method, SVM would be our recommendation for the current question of sex-based call 

classification, due to its simplicity and ease of use for binary classification problems. Our study 

adds to the literature of methodological comparisons of vocalization classification (Bat 

echolocation: Armitage & Ober, 2010; Mouse ultrasonic: Ivanenko et al., 2020).  

The distance calls used here were from several sources: birds were from the colonies in 

the USA, Germany, and Canada (D’Amelio et al., 2017; Elie and Theunissen, 2016). Thus, the 

study involved calls from a diverse sampling space which extends the external validity of the 

study. The acoustic features I measured and entered into the algorithms resulted in successful 

classification by DFA, SVM, and ANNs; all approaches were able to classify the distance calls 

with high accuracy of over 92%. It would be ideal to test vocalizations from other captive 

colonies and to wild birds to determine whether accuracy remains high with vocalizations from 

other groups of finches, including non-domesticated birds. Distance calls are sexually dimorphic, 

making the classification task relatively easy. It would be interesting to expand this study to test 

the performance of the classification methods with other zebra finch calls such as stacks and tets 

which contain individuals’ sex identity.   

Because all measurements for acoustic features were collected manually, there is a degree 

of subjectivity in the data that could have resulted in some potential for increased variability in 

the measurements collected. In the future, one refinement might be using an automated process 

to measure acoustic features with more consistency and less chance of bias. However, even 

automated or semi-automated measurement techniques require some level of human 

involvement, either for establishing the method or verifying the accuracy of the chosen method 

(Priyadarshani et al., 2018). I did not use additional acoustic measures that were difficult to 
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obtain (e.g., Mel-Frequency Cepstral Coefficient or moments of spectral density functions like 

skewness, kurtosis, entropy etc.) for classification. Thus, variables used for the classification 

may have been oversimplified and as a result some important acoustic features potentially used 

by zebra finches for discrimination may not have been detected. It would be interesting to 

compare classification performance with the methods discussed here when using predefined 

acoustic features (e.g., intensity measures, pitch, frequency measures) vs a complete 

representation (e.g., Modulation power spectrum, full spectrogram, Mel frequency cepstral 

coefficients) of the acoustic stimuli (Elie and Theunissen, 2016). In future, larger samples from 

many individuals may be helpful to alleviate this issue by being able to assess interrater 

reliability of acoustic measurements in cases where more than one individual measured calls.  

Distance calls contain information about individual identity of the caller. Studies could 

compare the classification performance of these methods for the classification of distance call 

based on individual identity which would require large number of calls from each individual.   

The features used here for distance call classification based on sex of caller can be used as a 

starting point to design future experiments to validate the acoustic measures used in the present 

study, such as an operant conditioning study to directly test the birds’ ability to discriminate the 

manipulated on those features measured here. Such an operant study would add to the literature 

combining detailed bioacoustics analysis with perceptual studies by assisting in identifying and 

then manipulating simple spectrogram features to create experimental stimuli. That is to say; 

studies could test if only duration or frequency cues from the calls are discriminable. We would 

expect the acoustic features identified here would be relatively easily discriminable based on 

previous research works (Lohr et al., 2003, 2006; Prior et al., 2018). Apart from distance calls, 

other zebra finch calls like stacks and tets also contain sex identity of the caller. We predict that a 
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single acoustic feature from distance call will not be enough to convey information about sex. 

Birds might use both spectral and temporal acoustic features for sex identity of the caller. Our 

study adds further evidence about the importance of these acoustic features and methodologies 

for classification and these methodologies can be used for classification of other call types. 

The relative importance of variables in classification models provide information about 

what acoustic features animals may attend to preferentially when listening to and making 

decisions about responding to conspecific vocalizations. Previous studies focusing classification 

of vocalizations have primarily used Canonical loadings from DFA (Khan & Qureshi, 2017; 

Tooze et al., 1990), Gini index, or mean decrease accuracy for Random Forest algorithm 

(Armitage & Ober, 2010; Elie & Theunissen, 2016; Henderson et al., 2011; Robakis et al., 2018; 

Valletta et al., 2017) to determine relative importance of input variables due to their successful 

use in various contexts and ease of implementation in statistical software. I used similar 

measures for variable importance and expanded with the connection weight algorithm (Olden & 

Jackson, 2002) for variable importance in ANN. Future studies could use the above variables of 

importance and possibly improve with other methods for assessing the relative importance of 

input variables for ANN (Ibrahim, 2013).      

In conclusion, I show that discriminant functions, support vectors, and neural networks 

were consistent with each other in accurately classifying zebra finch distance calls by sex of 

caller. Zebra finch distance calls can be accurately classified by sex using primarily three 

acoustic features: total duration, end frequency and frequency modulation ascending frequency. 

Highly similar patterns of acoustic feature rankings were observed for classification for all the 

methods. I believe our framework used in this bioacoustic analysis and subsequent classification 
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of distance calls can be used as a starting point for researchers wanting to conduct similar 

bioacoustics studies in the future.     
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Chapter 3. Effect of feed-time duration on discrimination of 

vocalizations in a go/no-go operant paradigm 

3.1. Introduction 

Experimental methodologies often focus on optimizing behavioural responses and 

minimizing distress to animals, whether for a newly developed paradigm, or to refine existing 

paradigms (Klump et al., 1995). Operant conditioning procedures are often optimized for high 

rates of engagement by balancing high levels of motivation and optimal food access (Gess et al., 

2011; Goltstein et al., 2018; Kim et al., 2017; Phillips et al., 2017). Many laboratories have 

developed operant paradigms to test auditory perception in songbirds (Gentner et al., 2000; Gess 

et al., 2011; Houx & Ten cate C, 1999; Nagel et al., 2010; Njegovan et al., 1994; Park et al., 

1985; Scharff et al., 1998; Sturdy & Weisman, 2006). Refinement and improvement of an 

extensively used operant paradigm (Njegovan et al., 1994; Sturdy & Weisman, 2006) can 

involve manipulation of reinforcement factors such as type, strength, and schedule, coupled with 

investigating the effect of these variations on performance in the operant task (Scheiner et al., 

2004; Stebbins et al., 1959; Trosclair-Lasserre et al., 2008). Duration of food access during 

operant conditioning trials may impact motivation, task performance, and even the wellbeing of 

an animal.         

In the current study, I investigated whether changing the duration of food access after a 

correct response in an operant go/no-go discrimination task impacted the discrimination 

performance of zebra finches (Taeniopygia guttata), a widely used model species for 

neurobiological and behavioural studies of song development and auditory perception (e.g. 
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Adret, 1993; Brainard & Doupe, 2002; Geberzahn & Derégnaucourt, 2020). Previously, each 

bird received 1 sec of food after rewarded responses during discrimination trials (Campbell et al., 

2020; Congdon et al., 2021; Guillette et al., 2013; Hahn et al., 2015; Hoeschele et al., 2013; 

Montenegro et al., 2021; Scully et al., 2020). In an attempt to refine our procedures, and 

potentially increase welfare of our experimental animals, I increased the feed duration from 1 sec 

to 2 sec which allow us to directly compare discrimination performance between conditions. If 

birds perform similarly in both 1 sec and 2 sec conditions, we could refine our experimental 

procedures by increasing the feed duration without compromising the comparability of future 

studies with past results. Two groups of birds were trained to discriminate zebra finch distance 

calls (Elie & Theunissen, 2016; Gess et al., 2011; Zann, 1996) with either 1 sec and 2 sec of 

reward; both groups of birds discriminated female distance calls (go or S+) from male distance 

calls (no-go or S-).  

 3.2. Methods 

3.2.1. Subjects 

In total, 25 adult zebra finches were tested (14 male, 11 female) between February and 

August 2021. One female bird died during the training stage due to natural causes. Six birds (two 

males and four females) failed to learn to use the perch and feeder to obtain food during the 

training stage so were removed from the experiment and any further analyses. Birds were bred 

and raised at the University of Alberta, Canada. The housing rooms were maintained on a 14:10 

light:dark cycle (lights on 0700, full spectrum lights - Standard, 32W, T8 Daylight) at ~ 21°C 

temperature and humidity ~ 40%. Birds were provided with spray millet once per week and 

spinach and Prime Vitamin Supplement (Hagen) three times a week. The birds (25 in total) were 
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naïve to the experimental procedures, including the acoustic operant conditioning task, and call 

stimuli, but had experience with other cognitive tasks (Camacho-Alpízar et al., 2021, Lambert et 

al., 2022). For detailed housing information refer to Lambert et al. 2022. 

3.2.2. Apparatus  

During the experiment, each bird was housed in a modified cage (30 × 40 × 40 cm) 

placed inside a ventilated, sound-attenuating operant chamber, and maintained with a 14:10 hour 

light:dark cycle. For all other details about apparatus refer to Lambert et al. 2022. For a diagram 

and detailed description of the apparatus, see Sturdy and Weisman, 2006.    

3.2.3. Acoustic stimuli 

A total of 60 zebra finch distance calls were used in the experiment: 30 male and 30 

female calls produced by 18 males and 18 females with 1-2 calls used per individual (Lambert et 

al. 2022). 

3.2.4. Procedure   

3.2.4.1. Initial shaping and training     

Once each bird learned to use the request perch and feeder to obtain food, training to 

discriminate a tone (1,000 Hz; to receive food access) from no tone (0 Hz) began. At this point in 

tone/no tone training, each bird was randomly assigned to one of two treatment groups (1s group: 

1 sec food access and 2s group: 2 sec food access). After successfully learning to discriminate 

(DR ≥ 0.80 for three 500 trial bins; see definition of DR in section 2.5) tone from no tone, each 

bird moved to Non-differential training where they were exposed to and reinforced for 

responding to each of the 60 stimuli. The goal of this phase was to ensure each bird responded to 
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all stimuli equivalently prior to discrimination training. For a detailed training criteria for the 

initial shaping and training, refer to Lambert et al. 2022. 

3.2.4.2. Discrimination training  

In Discrimination training, 40 of the 60 calls were randomly selected and presented as 

training stimuli. Responses to half of the stimuli (S+ = 20 female distance calls) were reinforced 

with 1 sec or 2 sec access to food, according to the treatment group, and responses to the other 

half (S- = 20 male distance calls) were punished with a 30 sec intertrial interval with lights off. 

Discrimination training continued until each bird completed six 320-trial blocks with a 

discrimination ratio (DR, see definition in section 2.5)) ≥ 0.80 with the last two blocks out of six 

blocks being consecutive with DR ≥ 0.80. 

3.2.5. Response measures 

For tone/no tone training (DR = (response to tone trials)/sum(response to tone and no 

tone trials) in a 500 trial block) and discrimination training, a discrimination ratio (DR) was 

calculated. The DR is a measure of how accurately a bird discriminates rewarded calls (S+) from 

unrewarded calls (S-). A DR was calculated using the formula: (R+S+)/sum(R+S+ and R+S-), 

where R+S+ is the mean proportion of responses for block of 320 trials when rewarded calls 

(S+) were played and R+S- is the mean proportion response when unrewarded calls (S-) were 

played. A DR of 0.50 indicates equal response to rewarded (S+) and unrewarded (S-) stimuli, 

and a DR of 1.00 indicates a bird only responded to S+, thus a perfect discrimination. Average 

number of trials per day was measured as a proxy to compare motivation and total trial blocks 

required to reach the criterion in the Discrimination training stage was measured to compare the 

speed of acquisition between birds in the treatment groups.  



43 

 

3.2.6. Statistical analysis 

All statistical analyses were conducted in R v3.6.2 (R Core Team, 2019). Below data are 

represented as mean ± SD. I conducted a mixed-model Analysis of Variance (ANOVA) on 

average number of trials per day as a proxy for motivation to compare across feed time groups 

and sex in different experimental stages. If there are significant differences in average trial 

numbers for each stage, it would mean a change in feed time duration affecting completion time 

of an experiment. The Greenhouse-Geisser sphericity correction was applied due to a violation of 

sphericity assumptions. The assumption of normality was violated (from the Shapiro–Wilks test) 

for the distribution of a few groups below. Therefore, I used a robust two-way ANOVA with the 

WRS2 package (Mair & Wilcox, 2020) using trimmed means (20%) to examine the main effect 

of feed time groups (1s and 2s) and sex (female and male), and the interaction between feed time 

group and sex based on the total number of trial blocks required to reach criterion. An alpha of p 

=.05 was used as the cutoff for significance. 

3.3. Results 

3.3.1. Trials per day 

         I used the average number of trials completed per day for different stages (Non-

differential and Discrimination training) as a proxy to compare motivation for speed of task 

completion for feed time groups and for females and males. I conducted a Group × Experiment 

Stage × Sex, mixed model ANOVA on average number of trials per day with experiment stage 

as the within-subject factor and feed time groups and subject sex were between-subject factors. 

There was a significant main effect of the experimental stage (F = 10.6, p = 0.002). There were 

no other significant main effects or interactions (all ps > 0.07; Figure 3.1). Birds performed 
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significantly more trials per day in Discrimination (1391.7 ± 374.5) than Non-differential 

training (883.65 ± 167.1).  

 

Figure 3.1 Bar and scatter (jittered) plot showing average trials per day for feed time groups (a), 

and for females and males (b). The bars represent average number of trials completed per day for 

experimental stages (Non-differential and Discrimination) for feed time groups and sex (dark 
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gray: 1s and female and light gray: 2s and males). No significant difference across feed time 

groups and sex was found. Each filled circle (1s group and females) and filled triangle (2s group 

and males) represents individual birds. Error bars represent 95% confidence intervals. Note: 

same data is shown in both (a) and (b).  

I conducted pairwise comparisons using t-tests with Bonferroni corrections to determine 

if 1s and 2s groups and females and males differed in the average trials per day in each 

experiment stage. There were no significant differences in the average number of trials 

completed per day for 1s vs 2s group and female vs male, in each individual experimental stage 

(all ps > 0.42).  

3.3.2. Trials to criterion in Discrimination phase 

I used the total number of 320-trial blocks required to reach the criterion (DR ≥ 0.80 for 

six blocks, last two blocks consecutive) to compare the speed of acquisition for feed time groups 

and for females and males. I conducted a two-way ANOVA with trial blocks required to reach 

the criterion as the dependent variable with feed time group and sex as factors. There were no 

significant main effects of the feed time group (adj. critical value = 0.49, p = 0.5) or sex (adj. 

critical value = 3.3, p = 0.1), nor was there a significant interaction between feed time group and 

sex (adj. critical value = 0.15, p = 0.71), see Figure 3.2.    
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Figure 3.2 Bar and scatter (jittered) plot showing trial blocks required to reach criterion for 

Discrimination training for feed time groups (a), and for females and males (b). The bars 

represent the average number of trial blocks required for each group (dark gray: 1s and female 

and light gray: 2s and males). Each filled circle (1s group and female) and open circle (2s group 

and male) represents individual birds. No significant difference across feed time groups and sex 

was found. Error bars represent 95% confidence intervals. Note: same data is shown in both (a) 

and (b).  

3.4. Discussion 

         In the current study, I asked whether modifying feed time duration from 1 sec to 2 sec 

influences the performance of zebra finches learning to discriminate between female and male 

distance calls. Birds given either 1 or 2 seconds to obtain food after responding to a rewarded 
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stimulus did not differ in number of trials completed per day from, nor did the groups differ in 

the speed of acquisition of the discrimination task.  

I used the number of trials per day as a proxy measure for motivation which was 

important to measure since the duration of food access might be expected to impact motivation. 

However, the increase in feed duration did not significantly impact the number of trials per day 

performed in either Non-differential or Discrimination stages. However, birds differed in the 

number of trials per day between experimental stages (i.e., Non-differential and Discrimination). 

This is likely due to differing degrees of difficulty of the experimental stages, as there is 

punishment for responding to S- stimuli in the Discrimination stage, compared to responding in 

the Non-differential stage where responses to all the stimuli are rewarded. Nevertheless, this 

means I can double the feed duration without significantly affecting the number of operant trials 

performed per day, which can impact the completion of an experimental stage. Birds can have 

more access to food reward during an experiment, potentially reducing the stress to the demands 

of having to eat quickly during a trial. The operant experiments with the current new feed 

durations (i.e., 2 seconds) can take a similar number of trials for completion and previous work 

with 1 second feed access, aiding in comparisons across studies. Our results show that at a 

minimum, I can successfully double the access time to food for birds without a significant impact 

on desired outcomes for sex-based discrimination of distance calls, at least in terms of the speed 

of learning. Doubling the feed access duration ensures birds get more time to eat food, which can 

potentially impact the well-being of the animals. 

In an animal welfare study, Starlings when deprived of enrichments they show negative 

affective state through more pessimistic responses (Bateson, 2016; Bateson and Matheson, 2007; 

Matheson et al., 2008). Food and water restriction in a visual discrimination task in mice 
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significantly influenced the task engagement (trials per session) and task acquisition (number of 

sessions for learning criteria) (Goltstein et al., 2018). Operant conditioning in mice has been 

standardized for optimal reproducibility and engagement through standardization of reinforcer’s 

caloric content (Kim et al., 2017, Phillips et al., 2017). Our study adds to these studies, looking at 

optimizing engagement and food access in consideration with animal wellbeing. Future studies 

should consider examining the effect of an increase in feed duration on the well-being of the 

animals with comparisons of welfare measurements like weight, fat content, etc. before and after 

an experiment. These studies can help guide decisions about food access for long-term 

experiments where animals have limited food access for a longer period. Further studies with 

different species and more challenging discriminations for longer periods are required to get a 

complete picture of the effect of feed duration on operant-based discrimination tasks (Sturdy & 

Weisman, 2006). Nevertheless, our study takes an important step towards improving and refining 

experimental operant procedures without sacrificing discrimination performance.   

Our study used calls as discriminative stimuli to look at the effect of feed time duration. 

Overall, it illustrates the effect of changing feed duration in an operant discrimination task. In the 

future, similar studies on the manipulation of other experimental factors can be conducted with 

other passerine bird species, or with more complex song discrimination in order to further 

improve the operant paradigm. Here, we have taken a step forward in improving experimental 

methodology and possibly animal-wellbeing while providing information about sex-based 

discrimination. 
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Chapter 4. Discussion  

 

In this thesis, I addressed two issues which are crucial for researchers studying auditory 

cognition, communication: 1. vocalization classification and 2. refinement of experimental 

procedures. Classification of vocalizations helps in our understanding of and sheds light into the 

functional roles of the vocalizations through finding commonalities and patterns. Researchers 

have used many classification techniques to group and describe animal vocalizations. In this 

thesis, I compared binary classification methodologies, using sexually dimorphic zebra finch 

distance calls to understand advantages and disadvantages of each classification method. 

Secondly, refinement of experimental procedures is often required for fine-tuning and 

improvement of an experimental procedure. Here, I refined the feed time duration, an important 

factor in go/no-go operant conditioning procedure and looked at its effect on discrimination of 

vocalizations (female vs male zebra finch distance calls) which helps us by improving of an 

operant procedure by allowing increased food access to the birds performing an operant 

discrimination task.  

4.1 What does comparing bioacoustic-classification methodologies tell us?  

Classification of vocalizations is one of the major aspects of bioacoustic research (Garcia 

& Favaro, 2017). Many studies have been conducted in a variety of species and contexts in order 

to answer relevant questions of classification. These studies involve one or many statistical 

classification methodologies. The application and comparison of multiple classification methods 

does two things: 1. It provides a measure of classification accuracy via multiple methodologies 
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and 2. It provides options to choose optimal classification methods for the current as well as 

future research problems. 

In this thesis, I focused on binary classification, which is relatively simple but useful in 

contexts ranging from medical science like detection of diseases to computer science like spam 

detection (Abi-Haidar & Rocha, 2008; Izenman, 2008; Zhang et al., 2014). I compared 

Discriminant function analyses (DFAs), Support vector machines (SVMs), and Artificial neural 

networks (ANNs), which are widely used across disciplines for vocalization classification. 

Chapter 2 described how each classification method works, what are the differences in their 

classification algorithms, and what are the advantages and disadvantages of these methods across 

various contexts of vocalization classification. A detailed description and comparison of these 

methods helps in understanding the classification process of the different groups of stimuli. 

Biological datasets are usually complex and often context dependent, thus it becomes difficult to 

choose an optimal classification method. Studies applying and comparing various classification 

methodologies help in answering a particular research question and provides a base for solving 

future research problem involving similar datasets (Armitage & Ober, 2010; Caycedo-Rosales et 

al., 2013; Colonna et al., 2016; Ivanenko et al., 2020; Keen et al., 2014). I used zebra finch 

distance call (a sexual dimorphic call) dataset to evaluate the classification performance of 

DFAs, LDAs, SVMs, and ANNs, where the goal was to classify the calls based on sex of the 

caller. I found similar classification performance across all the methods for the zebra finch 

distance call classification based on sex. Previous bioacoustic studies have shown that distance 

calls can be classified based on sex in different contexts (Elie & Theunissen, 2016, 2018). The 

current study validates these findings by classifying distance calls with high accuracy with a 

dataset constructed of calls from different sources (i.e., from the USA, Germany, and Canada). I 
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also provide a detailed description and foundation for future classification problems especially 

those involving binary classification, songbird vocalizations, and multiple vocalizations from the 

same individual (i.e., pseudoreplication).  

The current study adds to the literature of comparative bioacoustic classification. 

Previously, various classification techniques have been compared for bat echolocation 

classification based on species and genera (Armitage & Ober, 2010), mouse ultrasonic 

vocalizations based on sex and strain (Ivanenko et al., 2020), and wood-warblers flight call based 

on species (Keen et al., 2014) to name a few. These studies used DFAs, LDAs, SVMs, ANNs, 

and Random Forest (RF) algorithms to compare classification performance of the tasks. In zebra 

finches, PCA (principal component analysis), RFs, and LDAs were used to classify vocalization 

types (Elie & Theunissen, 2016) and for classification based on individual identity (Elie & 

Theunissen, 2018). In black-capped chickadees, DFAs, and ANNs were used for sex-based 

classification of chick-a-dee calls (Campbell et al., 2016) and individual identity-based 

classification of fee-bee songs (Montenegro et al., 2021). Here, I compared classification 

performance of DFAs, LDAs, SVMs, and ANNs using sex-based classification of zebra finch 

distance calls. This study validates the usage of these classification methodologies for various 

classification problems and with a variety of datasets.  

Later in Chapter 2 goes into the relative importance of variables (in the present case, 

acoustic features) for the classification of calls based on sex of the caller. I compared previously 

used methods and extended these with more methods, not commonly used in songbird 

bioacoustics research, to obtain ranked acoustic features in the order of relative importance for 

the sex-based classification. Previous studies primarily obtained the order of relative importance 

through random forests’ Gini index (Armitage & Ober, 2010; Elie & Theunissen, 2016). I used 
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standardized coefficients for LDAs, weight vectors for SVMs, and Olden function for ANNs to 

compare the relative importance of acoustic features. This gives us the option to choose an 

optimal method depending on the classification technique used.  

One concern in using various classification techniques has been the number of calls in the 

dataset. Specifically, many numbers of calls per classification category is required to perform 

optimally. Though the current study had a good number of calls (range: 38-45) per classification 

categories (female and male calls) based on previous studies (Armitage & Ober, 2010: range 20-

62 calls); and classification problems based on individuals would require more calls from each 

individual. Here, I measured the acoustic features manually for all the calls and with large 

datasets this becomes a challenging task. An easier alternative would be to use automated 

methods for measurements with human supervision. It would be interesting to compare the 

classification methods used here with more challenging classification tasks as the current one 

involved relatively easy task of classifying sexually dimorphic female vs male distance calls. 

Nevertheless, the current study provides a base for future classification comparisons. Overall, I 

believe this study will benefit researchers, students, and everyone else who are new to this area 

of research by providing an introduction and comparison of techniques used for the classification 

of vocalizations. 

4.2 Modifying a standardized go/no-go operant conditioning procedure 

Refinements are often required for fine-tuning and improvement of experimental 

procedures. Modifying any standardized research procedure requires studies looking at effects of 

manipulation of experimental factors on outcomes. Operant conditioning procedures have been 

developed to study auditory cognition in small birds by many labs. A go/no-go operant 

conditioning procedure has been consistently used in our and others’ labs to study auditory 
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cognition in chickadees and zebra finches (Congdon et al., 2020; Gentner et al., 2000; Gess et al., 

2011; Hahn et al., 2015; Houx & Ten cate C, 1999; Nagel et al., 2010; Njegovan et al., 1994; 

Park et al., 1985; Scharff et al., 1998; Sturdy & Weisman, 2006).  

In Chapter 3, I doubled the feed time duration, a crucial factor in a go/no-go operant 

conditioning procedure (Njegovan et al., 1994; Sturdy & Weisman, 2006) and looked at its effect 

on discrimination of vocalizations. Zebra finches discriminated female from male zebra finch 

distance calls. Birds with 2 seconds feed time duration performed similarly in terms of trials per 

day and trials required for discrimination as birds with 1 second feed time duration. For a 

particular experimental stage (Non-differential or Discrimination stage), both feed time group 

birds (1s and 2s access to food) performed a similar number of trials per day. It could be that 

birds had more time, thus reducing the stress to eat quickly, or eating twice as much as compared 

to 1s group birds. Direct measurements of birds’ health parameters (such as mass, fat deposits, 

etc.) are required to determine definitively whether this manipulation had any of these effects. 

Learning speed, in terms of trials required to complete the discrimination, was similar for the 

feed time groups, which could imply doubling the feed time duration had a negligible effect on 

this parameter, which in this case is desired since it would allow more direct comparison of 2 

second feed access with studies conducted with 1 second feed access.   

 It would be interesting to see how other species such as black-capped chickadees 

perform with new 2 second time window and how birds’ performance compares with more 

challenging discrimination tasks. Future studies could focus more on the animals’ wellbeing 

aspect of the experiment. Animal well-being measures before and after the experiment are 

required to comment on the improvement of operant procedure in accordance with improving 
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animal welfare. Nevertheless, comparatively we could reduce potential stress to eat food quickly 

by increasing feed time duration. 

4.3 Conclusion  

 In this thesis, I compared methodologies for binary classification of vocalizations to 

provide a baseline and framework for future bioacoustic analyses. I performed comparative 

analyses of classification methods, which included DFAs, SVMs, and ANNs, for a binary 

classification problem. I used zebra finch distance calls to conduct sex-based classification using 

these methods. All classification methods successfully classified distance calls according to sex 

with high accuracy and consistency. I also calculated and compared the variables of relative 

importance for measured acoustic features of distance calls which separates female and male 

distance calls from all methods. Many automated and semi-automated methods have been used 

for vocalization classification (Brooker et al., 2020; Priyadarshani et al., 2018). Comparisons of 

classification techniques inform us about the applicability of individual techniques, advantages & 

disadvantages of techniques according to data sets, significance of classifying features, and 

provide a framework for future researchers. In this thesis, I extend the methodological 

comparisons for vocalization classification with zebra finch distance calls which provides base, 

and framework for future bird vocalizations classification problems with giving insights about 

ranked features involved in distance call classification.  

Modification in standardized research methods requires manipulation of experimental 

factors and investigating its effect on research outcome (Bitterman et al., 1983; Bogdanova et al., 

2013; Klump et al., 1995). In the second part of this thesis, I investigated the effect of increase in 

the feed time duration during trials on discrimination performance in a go/no-go operant 

conditioning paradigm. Zebra finches discriminated female distance calls from male distance 
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calls equivalently when the feed time duration was doubled, from 1 sec to 2 sec. Thus, here I 

modified a go/no-go operant paradigm which is widely used to test auditory perception, where 

now birds can receive more time to eat, potentially increasing the well-being of birds.  

In sum, I provide a comparisons of classification methodologies, and show increase in 

feed time duration in a go/no-go operant procedure has no significant effect on discrimination 

performance.  
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