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Abstract 

This thesis presents two studies employing computational approaches to tephra source 

attribution and tephra volume estimation. 

Glass major oxide data was used to train 11 classification algorithms. Each classifier 

probabilistically attributed tephra chemistries to one of ten volcanic sources from Alaska. An 

ensemble model, combining random forest and artificial neural network predictions, was highly 

accurate on held-out and new data from Eklutna Lake, Alaska. Results matched visual 

assessment and identified tephra geochemically consistent with the Pleistocene Emmons Lake 

Volcanic Center (Dawson tephra) in Holocene-aged sediments. 

The May 18, 1980 Mount St. Helens eruption’s volume was reassessed. Spline 

interpolation permitted thickness, area, and cumulative volume to be calculated from a new 

synthesized thickness map at high resolution. A novel approach and cumulative volume plots 

show tephra volume for the deposit with clarity and uncertainty estimation. Reassessment 

indicates comparable volume to past estimates, but distal volume is proportionally larger than 

previously thought.  
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Preface 

Chapter 2 of this thesis has been published as Bolton MSM, Jensen BJL, Wallace K, Praet 

N, Fortin D, Kaufman D, and De Batist M (2020) Machine learning classifiers for attributing 

tephra to source volcanoes: an evaluation of methods for Alaska tephras. Journal of Quaternary 

Science 35:81–92. I was responsible for lead authorship, methods development, and modelling. 

BJL Jensen was the supervisory author and helped conceptualize the project. All co-authors 

contributed to data collection and provided edits to the manuscript. Appendices A-D contain the 

supporting information from this paper. 

Chapter 3 is in preparation for submission to Bulletin of Volcanology. I was responsible 

for lead authorship, methods development, georeferencing, and modelling. BJL Jensen was the 

supervisory author, helped conceptualize the project, and provided edits to the manuscript. 

Chapters 1 and 4, the introductory and concluding chapters, are my own original work. 
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Chapter 1.  Introduction 

The study of tephra (volcanic ejecta) deposition is a long-standing component of 

volcanological research (Walker and Croasdale, 1971, Sparks et al., 1981, Williams and Self, 

1983, Pyle, 1989), and the deposits themselves are often used for stratigraphic and chronologic 

control in Quaternary research (Lowe, 2011; Davies, 2015). In volcanological applications, 

identifying tephra units and their sequences is necessary for understanding the timing of 

individual events, eruption trends over time, frequency and magnitude, and environmental 

impacts resulting from fallout over space and time (Westgate and Gorton, 1981; Watt et al., 

2013; Papale, 2018; Payne and Egan, 2019). Pre-historic records of tephra deposition comprise 

the majority of our known record of volcanism. Thus studies of modern and historical eruptions 

are an essential part of validating our interpretations of past eruptions (Pallister et al., 1992; 

Hildreth and Fierstein, 2012; Cutler et al., 2020). Central to much of this research is the 

geochemical identification and correlation of tephras and an understanding of the volume or 

mass of erupted material.  

However, tephra studies are often labour-intensive activities, where much “hands-on” time 

is spent on data analysis. Currently implemented volume estimation and tephra cross-correlation 

methods rely on replicating the complicated and overly time-consuming tasks initially done by 

hand in a digital environment. For example, software that permits more rapid plotting of data and 

simple line-fitting is in wide use in many fields (e.g., commonly available spreadsheet software), 

but graphical methods have changed little since their advent and rarely take advantage of modern 

computational advances, nor do they utilize the full density of information present in the data (be 

it spatial trends in observational data or empirically diagnostic weighting of geochemical 

parameters, for example). Though critically employing expert judgment and interpretation, 

existing approaches may also introduce unconscious bias or subjectivity to their outcomes.  

This thesis will address how newer computational methods, such as “machine learning” 

approaches, can be used to speed workflows, reduce subjectivity, and more fully account for 

uncertainties in data analysis and resulting interpretations. The focus will be on two domains of 

tephra studies: tephra correlation using glass geochemistry and erupted tephra volume estimates. 

However, the tools implemented herein have the potential for applications beyond the cases we 

https://paperpile.com/c/tVJFe0/DwYv+Qfsg+SG5Y+ASn6
https://paperpile.com/c/tVJFe0/DwYv+Qfsg+SG5Y+ASn6
https://paperpile.com/c/tVJFe0/DwYv+Qfsg+SG5Y+ASn6
https://paperpile.com/c/tVJFe0/DwYv+Qfsg+SG5Y+ASn6
https://paperpile.com/c/tVJFe0/7y8s+FO7C
https://paperpile.com/c/tVJFe0/EnKW+OwhJ+PORd+2FGn
https://paperpile.com/c/tVJFe0/EnKW+OwhJ+PORd+2FGn
https://paperpile.com/c/tVJFe0/EnKW+OwhJ+PORd+2FGn
https://paperpile.com/c/tVJFe0/EnKW+OwhJ+PORd+2FGn
https://paperpile.com/c/tVJFe0/sOYX+Fk9f+KDtx
https://paperpile.com/c/tVJFe0/sOYX+Fk9f+KDtx
https://paperpile.com/c/tVJFe0/sOYX+Fk9f+KDtx
https://paperpile.com/c/tVJFe0/sOYX+Fk9f+KDtx
https://paperpile.com/c/tVJFe0/sOYX+Fk9f+KDtx
https://paperpile.com/c/tVJFe0/sOYX+Fk9f+KDtx
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explore. This chapter will serve as an introduction to tephra correlation and volume estimation. It 

presents the research objectives and significance of the thesis and defines the structure of the 

remaining thesis. To better put the need for such novel approaches into perspective, we address 

the context and history of the most familiar analytical processes under two headings: 

“Correlating tephras” and “Volume estimation”. 

1.1. Correlating tephras 

Tephras are often found distal from their sources, frequently hundreds to thousands of 

kilometres away (e.g., Sarna-Wojcicki et al., 1981; Jensen et al., 2014; Cashman and Rust, 

2020). As the distance from the vent increases, tephra deposits generally thin (Sarna-Wojcicki et 

al., 1981; Yang and Bursik, 2016; Buckland et al., 2020). In the far-field or where preservation 

was poor, visible evidence of the deposit may not exist, but careful analyses to consolidate 

volcanic glass can reveal the presence of cryptotephra. If such tephras are to be useful as age 

constraints (i.e., stratigraphic isochrones), or as components for volume estimates, they must first 

be correlated to confidently identified proximal deposits or visible tephra elsewhere (Lowe, 

2011). It is only proximally that we can use the full suite of contextual information, including 

stratigraphic position and relationships, to build a consistent framework of eruptions from 

sources and their characteristics.  

Various methods can be used to characterize and correlate tephra. Properties of tephra 

useful for identification include the mineralogy and composition of the tephra's crystal 

component (Westgate and Gorton, 1981; Smith and Leeman, 1982; Lowe et al., 2017). For 

example, Fe-Ti oxide major and minor element geochemistry (Lerbekmo et al., 1975; Nadoll and 

Koenig, 2011; Preece et al., 2014), assessment of ferromagnesian silicate mineral 

presence/abundance and their composition (Smith et al., 2006), and feldspar geochemistry 

(Jouannic et al., 2015) and isotopic analysis (Ickert et al., 2015) are all diagnostically helpful 

characteristics of the crystalline tephra component. However, the geochemical characterization 

of glass, the primary component of most tephras, is usually the most diagnostic feature of any 

deposit, thus forming the basis for most distal tephra studies (Lowe, 2011; Lowe et al., 2017). 

Such work usually entails major elemental analysis via electron microprobe. However, major, 

minor, and trace element concentrations may be studied via microprobe (Smith and Westgate, 

1968, Sarna-Wojcicki et al.; 1991) or laser ablation inductively coupled plasma mass 

https://paperpile.com/c/tVJFe0/YDmsf+PaPov+y5lbN/?prefix=e.g.%2C%20,,
https://paperpile.com/c/tVJFe0/YDmsf+PaPov+y5lbN/?prefix=e.g.%2C%20,,
https://paperpile.com/c/tVJFe0/YDmsf+PaPov+y5lbN/?prefix=e.g.%2C%20,,
https://paperpile.com/c/tVJFe0/YDmsf+PaPov+y5lbN/?prefix=e.g.%2C%20,,
https://paperpile.com/c/tVJFe0/YDmsf+PaPov+y5lbN/?prefix=e.g.%2C%20,,
https://paperpile.com/c/tVJFe0/YDmsf+PaPov+y5lbN/?prefix=e.g.%2C%20,,
https://paperpile.com/c/tVJFe0/iMdBz+cvvpi+YDmsf
https://paperpile.com/c/tVJFe0/iMdBz+cvvpi+YDmsf
https://paperpile.com/c/tVJFe0/iMdBz+cvvpi+YDmsf
https://paperpile.com/c/tVJFe0/iMdBz+cvvpi+YDmsf
https://paperpile.com/c/tVJFe0/iMdBz+cvvpi+YDmsf
https://paperpile.com/c/tVJFe0/iMdBz+cvvpi+YDmsf
https://paperpile.com/c/tVJFe0/FO7C
https://paperpile.com/c/tVJFe0/FO7C
https://paperpile.com/c/tVJFe0/EnKW+5xhJt+qejMF
https://paperpile.com/c/tVJFe0/EnKW+5xhJt+qejMF
https://paperpile.com/c/tVJFe0/EnKW+5xhJt+qejMF
https://paperpile.com/c/tVJFe0/YNrcz+9EmBK+ffQC0
https://paperpile.com/c/tVJFe0/YNrcz+9EmBK+ffQC0
https://paperpile.com/c/tVJFe0/YNrcz+9EmBK+ffQC0
https://paperpile.com/c/tVJFe0/YNrcz+9EmBK+ffQC0
https://paperpile.com/c/tVJFe0/YNrcz+9EmBK+ffQC0
https://paperpile.com/c/tVJFe0/YNrcz+9EmBK+ffQC0
https://paperpile.com/c/tVJFe0/zs5pC
https://paperpile.com/c/tVJFe0/zs5pC
https://paperpile.com/c/tVJFe0/zs5pC
https://paperpile.com/c/tVJFe0/PmEuL
https://paperpile.com/c/tVJFe0/PmEuL
https://paperpile.com/c/tVJFe0/PmEuL
https://paperpile.com/c/tVJFe0/KtES3
https://paperpile.com/c/tVJFe0/KtES3
https://paperpile.com/c/tVJFe0/KtES3
https://paperpile.com/c/tVJFe0/FO7C+qejMF
https://paperpile.com/c/tVJFe0/FO7C+qejMF
https://paperpile.com/c/tVJFe0/FO7C+qejMF
https://paperpile.com/c/tVJFe0/uGvut+Et22T
https://paperpile.com/c/tVJFe0/uGvut+Et22T
https://paperpile.com/c/tVJFe0/uGvut+Et22T
https://paperpile.com/c/tVJFe0/uGvut+Et22T
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spectrometry (LA-ICP-MS) (Pearce et al., 2007; DiMaggio et al., 2018). These analyses are 

conducted on individual glass shards, with care taken to avoid non-glass components such as 

phenocrysts. Bulk sample analysis may also be performed, e.g., by X-ray fluorescence 

spectroscopy (XRF) or solution ICP-MS (Pearce et al., 2004; Sarna-Wojcicki et al., 2005). Such 

bulk or “whole-rock” fingerprinting provides both major and trace elemental composition but is 

less commonly applied because it homogenizes potentially identifying geochemical 

characteristics, and modal mineral percentages vary from proximal to more distal localities - 

changing the bulk composition (Pearce et al., 2007). Glass shard morphology is another method 

used to differentiate tephras, and has been a standard technique for years (Smith and Houghton, 

1995; Bourne et al., 2010; Jensen et al., 2019), especially before the advent of microprobe 

technology (Smith and Westgate, 1968). Refractive index of glass (and ferromagnesian crystals) 

can also be used to characterize tephras (Hodder, 1978; Wilcox, 1983), though this approach is 

not typical for tephras from North America (Smith and Westgate, 1968; Nakashima et al., 2008; 

Suzuki, 2008). 

The utility of single-grain glass geochemical analysis is well documented and forms the 

basis of modern tephrochronology (Westgate and Gorton, 1981; Lowe et al., 2017). Individual 

grain analysis allows for the detection and quantification of heterogeneous magmatic conditions, 

post-depositional mixing, and otherwise identifying disparate geochemical populations within a 

sample. It is clear that analytical methods that assess bulk geochemistry or summarise point 

geochemistry, such as averaging sample results, may obscure or over-simplify the so-called 

“fingerprint” of tephras evident from single-grain analyses. The following sub-section details 

techniques by which tephras can be correlated or identified based on point-wise measurements of 

their major element glass geochemistry.  

1.1.1. Reference-sample comparison and numerical methods 

Tephra identifications are only convincing when there is agreement from multiple lines of 

evidence, such as stratigraphy, chronology, geochemistry, or other correlative parameters 

(Westgate and Gorton, 1981). But glass geochemistry is the most common numerically-based 

correlative tool. The most straightforward method of geochemical cross-correlation is by 

comparison of unknowns to reference material of known origin. Comparison to reference data 

typically relies on geochemical plotting of major oxides, normalized to 100% anhydrous (Smith 

https://paperpile.com/c/tVJFe0/60953+jN5DQ
https://paperpile.com/c/tVJFe0/60953+jN5DQ
https://paperpile.com/c/tVJFe0/60953+jN5DQ
https://paperpile.com/c/tVJFe0/60953+jN5DQ
https://paperpile.com/c/tVJFe0/60953+jN5DQ
https://paperpile.com/c/tVJFe0/6lBlH+WpXKb
https://paperpile.com/c/tVJFe0/6lBlH+WpXKb
https://paperpile.com/c/tVJFe0/6lBlH+WpXKb
https://paperpile.com/c/tVJFe0/6lBlH+WpXKb
https://paperpile.com/c/tVJFe0/6lBlH+WpXKb
https://paperpile.com/c/tVJFe0/60953
https://paperpile.com/c/tVJFe0/60953
https://paperpile.com/c/tVJFe0/60953
https://paperpile.com/c/tVJFe0/bhjjH+AjPOi+st9Fp
https://paperpile.com/c/tVJFe0/bhjjH+AjPOi+st9Fp
https://paperpile.com/c/tVJFe0/bhjjH+AjPOi+st9Fp
https://paperpile.com/c/tVJFe0/bhjjH+AjPOi+st9Fp
https://paperpile.com/c/tVJFe0/bhjjH+AjPOi+st9Fp
https://paperpile.com/c/tVJFe0/bhjjH+AjPOi+st9Fp
https://paperpile.com/c/tVJFe0/uGvut
https://paperpile.com/c/tVJFe0/3EnXC+2TyGB
https://paperpile.com/c/tVJFe0/uGvut+HNVwS+B1I3J
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and Westgate, 1968; Froggatt, 1992; Pearce et al., 2008). Such plotting is a standard procedure 

and is used to discriminate unknowns and correlate them to reference samples visually. 

However, compositional overlap can make this work challenging, and visualizing all pairwise 

plots is time-consuming. For example, if nine major oxides are compared, this means there are 

36 unique bi-variate combinations of these variables. Considering log-ratios (Pollard et al., 2006) 

or permutations such as summed alkalis further add to the requirement for visualization. 

Furthermore, such visualization must be repeated with various reference samples and each 

unknown tephra. This frequently results in hundreds of expert evaluations of plots in a standard 

correlative study. Continued and intensifying research in tephrochronology is producing ever-

larger glass geochemistry datasets analysts must parse. Such expansion includes reference 

samples and unknowns, especially in regions with numerous volcanoes or a long history of 

volcanism such as Iceland and the western United States of America. Correlation evidenced by 

visualization is the standard that must be met. Still, given the aforementioned expansion of glass 

geochemical datasets, cross-correlation tasks are becoming increasingly difficult to address only 

using visualization-based methods.  

Fortunately, some numerical and statistical methods may be able to reduce the requirement 

for many test visualizations and (potentially subjective) choice of elemental comparisons (Lowe 

et al., 2017). Numerical tests include forms of similarity coefficient analyses. Most frequently, 

tephra geochemical similarity is measured using the “SIMAN coefficient” (Borchardt, 1974) or 

its relatives (Gower, 1971; Addison et al., 2010). But the similarity coefficient in tephra 

correlation fails to take advantage of the strengths of individual shard analyses and ignores the 

possibility of mixed samples or multiple geochemical populations (Pouget et al., 2014). 

Additionally, determining the cut-off at which similarity between samples is sufficient to give a 

reliable identification is notoriously difficult (Lowe, 2011; Blegen et al., 2015), and samples 

with few analyses, all too common in cryptotephra studies (Davies, 2015), may be insufficient to 

provide a reliable assessment of their geochemical populations (Lowe et al., 2017).  

Statistical methods associated with sample similarity measure distance between samples in 

various ways and are the foundation for techniques that detect statistical structure or clusters in 

geochemical data. Such distance-based approaches used in tephra correlation include the 

Mahalanobis distance (Cronin et al., 1997), Euclidean distance (Preece et al., 2011), or 
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Manhattan or “city block” distance (Cortés et al., 2007). Clusters in data and distance between 

sample means or their individual geochemical measurements can be identified and visualized in 

dendrograms. This analysis is referred to as unsupervised learning because we identify 

statistically different populations in a dataset (i.e., patterns are “learned” from the input data). 

Still, no a priori “supervision” or labels define what the clusters should be. 

A natural alternative to unsupervised learning is to use reliable reference samples to both 

characterize example inputs (i.e., to “learn” what individual tephras are like) and to predict the 

probability of membership of unknowns to those labelled classes. This is called supervised 

learning. Even though databases of glass geochemistry have been growing in size and number, 

and some supervised classification efforts have been used in the field for years, supervised 

learning methods are only beginning to be explored.  

Both supervised and unsupervised learning are included in the burgeoning field of machine 

learning. Machine learning-based classification of unlabelled data can be adaptable to a variety 

of domains and problems; it is common in research areas including business (Smith and Gupta, 

2000), soil mapping (Hitziger and Ließ, 2014), and document processing (Mostafa and Lam, 

2000), to name just a few. It stands to reason that the application of state-of-the-art classification 

techniques could be useful for tephra identification. It may present the opportunity to 

significantly increase the capacity for analysts to review large numbers of unknown and 

reference tephra chemistries rapidly. These new methods can also permit quantifying such 

correlations through calibrated probabilistic predictions (Platt, 1999; Guo et al., 2017). 

1.2. Volume estimation 

Assessing the size of explosive volcanic eruptions is a crucial component of understanding 

volcanic activity, its impacts, and developing hazard assessments. Newhall and Self (1982) 

devised a rapidly adoptable comparative scale for this purpose, the volcanic explosivity index 

(VEI). This index categorizes eruptions into discrete bins based on several measured or inferred 

parameters, including column height, qualitative description or classification, duration, or 

explosivity, among others. But the VEI system was intended for the assessment of historical (i.e., 

observable) eruptions. For prehistoric eruptions, it is most common to use the volume of bulk 

erupted ejecta as the key classification criterion. In this way, volume indicates the rank of 

eruptions from 0 for the smallest eruptions (< 10,000 m3) to 8 for truly catastrophic Ultra-Plinian 
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eruptions (> 1000 km3). It is worth noting that bulk volume-based VEI does not account for 

variations in tephra density or vesicularity, and the VEI is not calibrated for predominantly non-

explosive eruptions (Pyle, 2016). Alternative measures of eruption size rely on converting 

observed volume to dense rock equivalent (DRE) volume, usually assuming a fixed conversion 

factor for the deposit or estimating the mass of the erupted material (Pyle, 2015). Erupted mass 

can then be converted to a continuous measure of eruptive magnitude, M (Pyle, 2015). 

Whichever standard of eruption size is used, a first step is often to calculate bulk volume, then 

scaling it to estimate mass or DRE volume, preferably keeping in mind variability in the density 

of the volcanic deposits. 

Modern computational methods now permit advanced physics-based plume and fallout 

modelling to be conducted to reconstruct tephra deposits. However, these methods are based on a 

suite of source parameters, and an estimate must usually inform the models of erupted volume 

(or mass). Both modern fallout deposits and preserved prehistoric deposits are normally mapped 

to help calculate these parameters. Such maps delineate the deposits' areal extent and thickness, 

with contours of equal thickness called isopachs. Similar maps showing contours of equal mass-

loading are called isomass maps. Isomass maps are not the focus of this research, but it is worth 

noting that their generation and analysis is virtually the same as that of isopach maps. Still, the 

underlying observational data to create them differ. Both map formats are useful for quantifying 

the impacts and scale of volcanic eruptions and their deposits. 

We can use isopach maps to visualize and study the distribution of tephra thickness over 

space. Once thickness data are collected and plotted spatially, the volume within the mapped area 

can be calculated using various means. Such methods range from simple, time-tested techniques 

such as hand-drawn maps and using uncomplicated measurement tools to the advanced 

computerized generation of isopachs or continuous thickness surfaces used to produce isopach 

area and surface volume. Today, these are usually calculated using a geographic information 

system (GIS) software. The following subsections detail how volume can be calculated, with 

particular focus on methods that allow for extrapolation of thickness trends beyond the visually 

mapped deposit. 

https://paperpile.com/c/tVJFe0/JZfic
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1.2.1. Non-isopach based approaches 

Isopach-based analysis is by far the most common volume estimation method. However, 

alternative approaches are especially useful in cases where data is insufficient to produce well-

constrained isopachs. One of the most interesting in terms of far-distal volume is Walker 

(1980)’s crystal concentration method. This method uses the ratio of crystal and vitric 

components in large pumice blocks to inform us, based on the mass of liberated crystals near the 

vent, what the mass and volume of vitric and lithic components are beyond the mappable deposit 

limit. The crystal concentration method relies on several key assumptions (Walker, 1980). These 

assumptions are supported by observations of mineral/glass proportions and comparisons from 

proximal to distal zones in many deposits (Rose, 1993). Such a method relies on a mass-balance 

approach that is physically comprehensible. However, crystal concentration studies require 

access to areas of the preserved deposit far enough from the vent as to be beyond the zone of 

crystal-enrichment; it calls for numerous componentry analyses; and the method is complicated 

by variations in deposit density (Fierstein and Nathenson, 1993). Interestingly, crystal 

concentration volumes appear systematically and significantly larger than isopach-based 

estimates (Fierstein and Nathenson, 1992).  

Two closely related and more computationally intensive methods rely on modelling the 

dynamics of an erupted plume that can subsequently be used to reconstruct bulk volume. Ash 

transport and deposition modelling, such as implemented in Ash3d (Schwaiger et al., 2012), can 

produce isopach maps and fresh tephra volumes, but depend on DRE volume as an input 

parameter. In this type of modelling, parameters are initialized according to prior or assumed 

knowledge of physical characteristics controlling the eruption and the environment into which it 

is emitted. Inversion is an alternative modelling approach where eruptive and environmental 

parameters can be adjusted to reconstruct observations (Klawonn et al., 2012, Spanu et al., 2016, 

White et al., 2017). This method has recently been employed to reconstruct the Campanian 

Ignimbrite deposit originating from Italy (Marti et al., 2016), and to calculate volume from other 

eruptions (Costantini et al., 2006; Costa et al., 2009; Bonadonna and Costa, 2013a). 

Non-isopach-based methods have their advantages and are usually relatively close in 

agreement with isopach-based approaches (Bonadonna and Costa, 2012). Even reasonably large 

differences in volume or mass result in proportionally small changes to VEI or M (Pyle, 2016). 
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However, these methods may be more computationally demanding, as is the case with plume and 

fallout modelling, or may be more lab-work-intensive than isopach methods if crystal 

concentration studies are used (Fierstein and Nathenson, 1993). They also tend to operate on 

more complex assumptions than isopach-based volume estimates. For this reason, isopach 

approaches are the focus of the volume component of this thesis. 

1.2.2. Volume, area, and thickness 

The obvious first step of isopach-based volume estimation is the generation of an isopach 

map. Traditionally this is done by hand, but even maps drawn from the same underlying 

thickness point observations will vary depending on the spatial distribution of data, the analyst's 

experience, and the degree of data smoothing analysts prefer (Klawonn et al., 2014a, 2014b). 

However, in addition to various computational methods like those addressed above that also 

produce isopachs, spline functions can be useful for interpolating between thickness points 

(Engwell et al., 2015; Buckland et al., 2020; Cutler et al., 2020). Once interpolation is complete, 

isopach contours can be plotted, just as in hand-drawn maps. However, the contours are merely 

discrete representations of a continuous surface (usually displayed as a raster).  

Calculating the area within isopachs of various thicknesses is simple with such surfaces, 

and cumulative volume within those isopachs can be calculated precisely using direct integration 

(Engwell et al., 2015). However, even if the exact volume under a mapped thickness surface can 

be calculated using a computer, the volume beyond that thinnest limit is still ignored. Other 

methods must be used to describe the thinning or decay function of the deposit. This function, in 

turn, can extrapolate beyond the thinnest mapped isopach. 

Traditionally, inputs for functional decay analysis include the areas inside isopachs and 

their thicknesses. Transformations have long been used to modify how thickness and area data 

points are displayed, mainly so that curves can be plotted to the data to summarize the thinning 

trend. For example, log-log plots of thickness against area were used at least as far back as 1973 

(Rose et al., 1973) and were common thereafter (Walker, 1980; Rose et al., 1983). The log-log 

transformation is, in effect, a linearization method, where a piecewise power-law fit can be used. 

However, this method shares limitations of power-law functions described later, and is very 

sensitive to the underlying data (Fierstein and Nathenson, 1992).  
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An alternative method, proposed by Pyle (1989), is to visualize the data as one or more 

straight lines on a log-thickness versus square-root area plot, or as he referred to them, 

ln(thickness)-(area)1/2 diagrams. These plots have the advantage of showing thinning’s straight-

line behaviour, suggesting a reasonable capacity to extrapolate beyond the mapped deposit. The 

exponential linear fits are simple to calculate and do not require complicated parameter 

optimization. Integration of such a function produces the “area” beneath the curve (e.g., 

integrating with respect to thickness, with area as the independent variable, from zero to infinite 

area), or total deposit volume. 

The next primary type of thinning function used to extrapolate volume beyond mapped 

regions was the power-law (Bonadonna and Houghton, 2005). Such a function generally yields a 

much slower distal decay rate and is apt to predict proportionally greater distal volume than 

Pyle’s exponential method (Bonadonna and Houghton, 2005; Klawonn et al., 2014b). But, just as 

with power-law fits on log-log plots, the power-law function in ln(thickness)-(area)1/2 space 

cannot be integrated to the full zero to infinity area; integration limits must be supplied to permit 

finite calculations (Daggitt et al., 2014; Biass et al., 2019). This violates the requirements for 

volume estimation techniques specified by Fierstein and Nathenson (1992). However, power-law 

thinning is especially useful for those deposits that do not have sufficient distal data to support 

reliable extrapolation from methods such as exponential fits.  

The most recent innovation in curve-fitting based integration for volume estimates is the 

application of the three-parameter Weibull model (Bonadonna and Costa, 2012). This method is 

perceived as an intermediate option between exponential and power-law fits (Bonadonna and 

Costa, 2013b; Klawonn et al., 2014b), but can even replicate simple exponential decay as well 

(Bonadonna and Costa, 2012). This method’s disadvantages include that the model’s free 

parameters must be numerically optimized, and weighting parameters must be established to 

produce good fits that agree well with our understanding of deposit and map error (Bonadonna 

and Costa, 2012; Engwell et al., 2013; Biass et al., 2019). However, Daggitt et al. (2014) 

implemented a new approach to amplifying the gradient over which the Weibull parameters are 

optimized and simplified the search process. 

To calculate isopach area, dot-grids, planimeters, and even the cutting out and weighing of 

individual isopachs have been traditionally used (Froggatt, 1982). However, with the advent of 
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GIS technology, georeferenced isopachs, and continuous thickness surfaces from interpolation or 

other modelling techniques, thickness data including area and directly integrated surface volume 

are now easily calculable. Not only do GIS-based methods permit more rapid data preparation 

for volume estimation via conventional curve-fitting and integration, but GIS measurement of 

surface volume makes more precise extrapolation of volume trends possible.  

Plotting of isopach thicknesses (the independent variable) against the cumulative volume 

they contain has long been recognized as a “superior” approach to erupted volume visualization 

and estimation (Froggatt, 1982).  When volume-thickness plots are made to have logarithmic y-

axes, just as with ln(thickness)-(area)1/2 diagrams, exponential functions display as straight lines. 

Analyzing these plots may be preferred because they are simple to interpret, do not require undue 

extrapolation, and readily yield volume estimates at any area, including zero, i.e., the full deposit 

(Froggatt, 1982). However, when this method was first advocated, cumulative volume 

calculations were limited to the thicknesses between the minimum and maximum isopachs (i.e., 

minimal volume of Rose et al., 1983) and interpolation between the contours was conducted on a 

linear thickness to area plot following the trapezoidal rule (Fierstein and Nathenson, 1992). As 

such, was this approach was only accurate for densely isopached deposits and it could not 

extrapolate proximal or distal volumes beyond isopach thicknesses. 

Froggatt (1982)’s exponential representation on a log-volume vs thickness plot could 

account for extrapolation to zero thickness but still missed proximal volume. The exponential 

volume-thickness method also over-simplified the curvature of the relationship; just as with 

ln(thickness)-(area)1/2 analysis, many deposits required at least a two-segment exponential fit to 

adequately represent the thinning trend (Pyle, 1989; Fierstein and Nathenson, 1992).  Today, GIS 

methods and thickness-surface generation can address the issues presented by numerical 

integration using the trapezoidal rule. However, adequately flexible extrapolation methods for 

volume-thickness relationships have not been explored in the literature. Adding to the limitations 

of readily available and easily usable volume estimation methods – usually as pre-formatted 

spreadsheets (Bonadonna and Costa, 2012; Nathenson and Fierstein, 2014) or software that 

automates much of the parameter optimization (Daggitt et al., 2014) – these methods typically 

only provide point estimates of volume, without uncertainty bound calculation.  
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1.3. Problem statement and research questions 

Piecing together the timing, sources, and magnitude of past volcanic eruptions is key to 

understanding how volcanoes work and their impacts on other natural systems. Unfortunately, 

observational records of volcanic eruptions only extend back a few hundred or thousand years, 

even though the “return time” for large eruptions may be orders of magnitude longer (Mason et 

al., 2004; Pyle, 2016). To make informed decisions about volcano-related hazards, return 

intervals, and to understand changes in eruptive dynamics over time, we must study past 

eruptions and carefully work to ascertain the sources of preserved tephra layers, assess the 

amount of erupted material therein, and determine the timing of their activity and deposition. 

Furthermore, if we are to know anything about the physical characteristics of prehistoric 

eruptions, such as their plume height, or if we aim to reliably model past activity to be able to 

predict outcomes of future eruptions, we must have a good understanding of the volume and or 

mass ejected in ancient times. The greater context for the present research is broad, including 

volcanology, risk management, and volcanic hazard analysis. However, determining the sources 

of past eruptions is a crucial element of traditional tephra correlative studies in geoscience 

research too. Not only does this have a bearing on palaeoenvironmental, archaeological, and 

palaeontological studies, identifying the source of tephras ties back into our understanding of 

volcanic activity in the past. 

The background section of this chapter has detailed existing methods for tephra volume 

estimation and approaches to cross-correlation and tephra source determination by geochemical 

analysis. It has also illustrated how the predominant methods to date introduce subjectivity at 

several vital points. There is clearly the potential for much more efficient workflows if modern 

computational methodologies are adopted. Here we point out several sources of the 

aforementioned subjectivity: 

● Hand-drawing isopachs can be highly subjective, but even when computerized 

isopach generation occurs, the free parameter selection that controls the 

interpolation is not usually determined using a robust optimization routine. 

● There are a variety of functions that could characterize deposit thinning.  The 

preferred formulation for a given deposit is not typically obvious and may result 

in errors that are hard to visualize on currently used plots.  

https://paperpile.com/c/tVJFe0/WVBzs+JZfic
https://paperpile.com/c/tVJFe0/WVBzs+JZfic
https://paperpile.com/c/tVJFe0/WVBzs+JZfic
https://paperpile.com/c/tVJFe0/WVBzs+JZfic
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● Identification or correlation of glass geochemistry relies on the availability of 

representative reference data and the semi-qualitative visualization and decision 

making of an expert, without quantified probabilistic interpretation to accompany 

such decisions.  

 

There is a great opportunity to improve on existing methods to reduce these sources of 

subjectivity while increasing the effectiveness of studies and simultaneously highlighting the 

uncertainty in our assessments. Thus, the general research question this thesis addresses is, “How 

can computational methods improve existing approaches to volcanological and 

tephrochronological problems in volume estimation and geochemical correlation?” 

The objectives of this thesis include: 

1. To implement and evaluate the performance of a suite of machine learning 

algorithms to identify volcanic sources of unknown tephras based on glass 

geochemistry. 

2. To assess the feasibility of supervised learning and probabilistic source 

predictions for tephrochronological studies. 

3. To employ established interpolation and optimization methods to the task of 

mathematical isopach generation, used here with contour input data but extensible 

to observed thickness points. 

4. To introduce a novel method for extrapolating cumulative volume-thickness 

relationships to estimate deposit volume of a whole deposit, distal region, or the 

volume contained inside/above or outside/below any specified thickness 

threshold. 

5. To explore numerical integration and error propagation techniques to account for 

function-fitting uncertainty for tephra thinning relationships and volume. 

6. To assess new and existing volume estimation methods on an eminently well-

studied deposit and compare current results to previous works. 

 

The remainder of this thesis primarily consists of two more extensive chapters, each 

representing papers that address the research question and together achieve the objectives 
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outlined above. Chapter 2 is a study of machine learning classifiers used to attribute unknown 

tephras to their volcanic sources. This paper uses a large glass geochemistry reference dataset 

from Quaternary-active volcanoes in Alaska to train and evaluate the algorithms. To test the 

practicality of the methods, they are also tested on an assemblage of unknown tephras and results 

are compared to visual plotting. This chapter has been published in the Journal of Quaternary 

Science (Bolton et al., 2020). Chapter 3 is a tephra volume estimation study that focuses on the 

airfall deposits of Mount St. Helens erupted on May 18th, 1980. This work synthesizes existing 

isopach maps from the literature and uses established and new approaches to quantify this 

historic eruption’s bulk volume. This chapter is currently being prepared for submission to the 

Bulletin of Volcanology. These papers are followed by a concluding chapter that summarises the 

main points of the work and details future research opportunities to be pursued.  

 

  

https://paperpile.com/c/tVJFe0/R0lD1
https://paperpile.com/c/tVJFe0/R0lD1
https://paperpile.com/c/tVJFe0/R0lD1
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Chapter 2. Machine learning classifiers for attributing tephra 

to source volcanoes: an evaluation of methods for Alaska 

tephras 

2.1. Introduction 

Volcanic ashes (tephra) are useful chronostratigraphic markers for studies in geology, 

archaeology, and palaeoenvironmental sciences, forming the basis for the field of 

tephrochronology (Lowe 2011, Lowe et al., 2017). Some of the most challenging 

tephrochronologic work can be confidently cross-correlating tephras - developing “tie-lines” 

between profiles, cores, sites, and source volcanoes.  

Meaningfully correlating disparate tephra layers requires multiple lines of evidence, 

including stratigraphic, physical, and geochemical characterization. Glass geochemistry is a 

fundamental part of this process, where a sample’s geochemical characteristics are compared 

against possible correlatives from a reference dataset, attempting to match the “geochemical 

fingerprint” of the unknown to a known tephra. This process is complicated in regions that have 

experienced ashfalls from successive eruptions, thereby increasing the list of possible 

correlatives. Assessment complexity is increased further when tephras possess related magmatic 

origins and similar compositions. Arrays of bivariate plots are the primary way 

tephrochronologists visually assess the relationships between glass geochemical parameters 

(Pearce et al., 2008), regardless of additional analytical techniques that may be employed. 

Pioneering efforts have examined statistical methods to overcome limitations in glass-

based tephra correlations (Lowe et al., 2017). These methods include “machine learning” or 

“computer intelligence” techniques. A type of machine learning called supervised classification 

employs algorithms that accept labelled data points (e.g., tephra geochemistry with a known 

source) as inputs to train a model that in turn generates predictions relative to those labels. 

Supervised classifiers for tephra correlation are rare. However, several examples have shown that 

the concept is viable for tephra classification, including applications of linear discriminant 

analysis (LDA) (Beaudoin and King, 1986; Stokes et al., 1992; Shane and Froggatt, 1994; 

Bourne et al., 2010), and support vector machines (SVM) (Petrelli et al., 2017).  
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Supervised models are divided into two categories based on their approach to classification 

(Ng and Jordan, 2002). The differentiation depends on whether a model purely calculates the 

probability of a class label (y) given certain predictor characteristics (x), i.e., 𝑃(𝑦|𝑥), or whether 

the joint probability of both are considered first, i.e., 𝑃(𝑦, 𝑥). Based on the approach adopted, 

classification models are categorized as discriminative or generative, respectively (Ng and 

Jordan, 2002).  

Not all classifiers approach the problem of multiple potential labels in the same way. Most 

simply, classification is the task of identifying a target class (i.e., the positive class) relative to 

examples of another label (i.e., the negative class). Some algorithms are intrinsically extensible 

from the binary situation (e.g., decision trees, nearest neighbour methods, and multi-output 

neural networks). Others must approach multiclass problems by combining binary 

classifications. For example, in a one-vs-all approach, multiclass problems are interpreted as 

multiple binary problems by treating one class as the positive class and considering all other 

examples as the negative class (Rifkin and Klautau, 2004). This process is repeated until sub-

models are trained with each label as the positive class. Alternatively, in one-vs-one 

classification, pairs of individual classes are evaluated against one another, with each having a 

turn as the positive class (Knerr et al., 1990; Galar et al., 2011). Under both approaches, multiple 

binary sub-models must be reconciled into a final classification. Some common methods include 

evaluating the confidence of the individual models (Rifkin and Klautau, 2004), or by voting (Hsu 

and Lin, 2002). 

While some discriminative algorithms only define the boundaries of classification in the 

feature space to produce discrete “raw” label-only predictions without meaningful probabilistic 

interpretations (e.g., SVM), generative and many other discriminative algorithms produce 

probabilistic outputs. Such probabilistic outputs are important for applications in tephra 

identification, as they impart information about the confidence of the classification and similarity 

between samples.  

This work’s purpose is to assess the applicability and performance of select supervised 

machine learning methods in determining the volcanic sources of compositionally complicated 

tephras based on their glass geochemistry. Late Quaternary tephra geochemical data from Alaska 

serve as the training and evaluation sets. We explore classification algorithms that have proven 
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successful in tephra correlation (LDA and SVM), and other methods shown to perform well in 

classification trials (Fernández-Delgado et al., 2014). Several model ensembles are also 

evaluated. Finally, we test the most promising algorithms on the tephra geochemical dataset from 

Eklutna Lake, Alaska, that has been partially presented in Boes et al. (2018) and Fortin et al. 

(2019). These data are used to examine the models’ capacity to make predictions in a dataset that 

had initially been evaluated through manual plotting.  

This paper will focus on the practical application and results of this study such that future 

analysts and tephrochronologists may adapt these methods to meet their own goals. A more 

detailed methodological rationale, procedure and discussion are provided in the electronic 

supplement (Appendix A, p. 156) along with the R code itself (Appendix B, p. 170). 

2.1.1. Regional setting  

More than 100 volcanoes from Alaska’s Aleutian Arc-Alaska Peninsula and Wrangell 

volcanic field have erupted in the Quaternary Period, and more than 50 of those have been 

historically active (Cameron and Schaefer, 2016). Tephra from these volcanoes are widely used 

as chronostratigraphic markers, and a well-developed tephrostratigraphy exists for the 

Pleistocene from interior Alaska and Yukon (e.g., Preece et al., 1999, 2011; Jensen et al., 2008, 

2013). Systematic work on Alaska Holocene tephra deposits has been more challenging, but has 

the additional goal of building eruption histories for hazard assessments, particularly for the 

active Cook Inlet volcanoes adjacent to Alaska’s largest population center, Anchorage (Figure 

2.1). Regional distal tephras are a key component in building hazard assessments because 

proximal records can be sparse and/or difficult to access. However, considering the temporal and 

spatial density of relatively recent eruptions, the list of possible correlatives for tephras in this 

region is large, particularly if distal cryptotephras are assessed.  

The geochemical results from analyses of tephras from the volcanoes highlighted in Figure 

1 are used as the basis for this case study. Although there are numerous tephras known from 

Alaska, this study utilizes only those unambiguously tied to a source volcano, with a focus on the 

Holocene timeframe. This naturally skews the studied material toward more recent eruptions.  



26 

  

 

Figure 2.1. Map of the study area with the plume areas of substantial late Quaternary eruptions 

demonstrating high geographic overlap and density of substantial tephra deposits. (Plumes 

redrawn from Scott and McGimsey, 1994; Fierstein et al., 1998; McGimsey et al., 2001; Froese 

et al., 2002; Stelling et al., 2005; Fierstein and Hildreth, 2008; Bull et al., 2012; Hildreth and 

Fierstein, 2012; Preece et al., 2014; Davies et al., 2016) 

2.2. Materials and methods 

2.2.1. Source data 

Electron probe microanalyses (EPMA) of individual glass shards were used as training and 

validation data for modelling. This included 1953 geochemical data points from 55 samples, 

representing 28 tephras traced to 10 volcanic sources: Aniakchak, Augustine, Mount Churchill, 

Mount Spurr, Emmons Lake Volcanic Center (Dawson tephra), Fisher Caldera, Hayes, Kaguyak, 

Katmai-Novarupta, and Redoubt. The majority of analyzed samples and data are from the 

University of Alberta (UA) tephra collection, supplemented by data and/or samples from the 

Alaska Volcano Observatory. Training data drew heavily on geochemical data first reported in 

Davies et al. (2016) but include new analyses of early/mid-Holocene eruptions of Redoubt. 

Modelling data included weight-percentage measures of major oxides: SiO2, TiO2, Al2O3, FeO, 

MnO, CaO, Na2O, and K2O.  
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Data were parsed to remove poor or non-glass analyses. Glass geochemistries are 

summarized per source in Table 2.1. Further sample information is listed in the appendices 

(Appendix C, Table C.1, p. 180) in addition to details of data pre-processing (Appendix A.1, p. 

156). Glass analyses (n = 1793) were conducted at the UA’s Electron Microprobe Laboratory, 

except Augustine data, which were collected by the U.S. Geological Survey Electron Microprobe 

laboratory at Menlo Park, California (n = 160). Both laboratories were part of a formal 

interlaboratory comparison evaluation (Kuehn et al., 2011) and were deemed to produce 

comparable data. For example, glass data from mid-Holocene Hayes eruptions (Wallace et al., 

2014) have been analyzed at both laboratories, and the University of Alaska Fairbanks 

(Mulliken, 2016). The data from all three compare favourably. This is an important 

consideration, as comparisons between tephras and use of models trained on those tephras are 

only useful so long as the analyses are comparable.  

This project’s training and testing dataset was selected for its size and geochemical 

characteristics. Tephras from Alaska can be difficult to correlate using traditional methods. There 

are numerous potential sources and eruptions, all with various degrees of geochemical similarity 

between them (Table 2.1). Plotting and comparing unknowns to the reference data becomes 

extremely time-consuming because there are simply so many options. These data, replete with 

overlapping geochemical fields, bimodal distributions, and diversity of chemistries (Table 2.1, 

Figure 2.2), can meaningfully test these computational methods and their ability to reliability 

identify potential correlatives and make this process more efficient. In particular, geochemical 

similarities between Kaguyak and Augustine (Figure 2.2; Table 2.1), and Katmai and some older 

Redoubt material, should test the limits of the algorithms. Given the complexities and range of 

data in this training set, we can expect algorithms trained and tested on it to perform similarly on 

comparable datasets. 

2.2.2. Modelling 

Supervised classification algorithms have two primary steps. First, a model is “trained” on 

data so it can “learn” the relationships that relate variable attributes to classification groups, 

𝑃(𝑦|𝑥). Once a model has been trained, it can be used to predict the labels of unknown data 

presented to it.
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Table 2.1. Geochemical summary of glass data (weight percentage) used for model training, including the number of analyses and 

eruptive events or layers comprising each source’s data pool. See Supplemental Data (Table S1) for information on individual tephras 

and samples in the dataset. Note: Aniakchak data in this table are divided into two geochemical populations based on silica content, 

though all data from this source were given the same label, “Aniakchak”, for training. SD = standard deviation 

Source      SiO2      TiO2   

   

Al2O3     FeOt       MnO       MgO       CaO    

   

Na2O      K2O       Cl     n 

events/ 

layers 

Aniakchak (SiO2 < 65%) Average 59.17 1.38 16.50 7.56 0.21 2.79 6.39 4.34 1.55 0.13 117 2 

 SD 1.40 0.08 0.24 0.75 0.04 0.32 0.59 0.40 0.14 0.03   

Aniakchak (SiO2 > 65%) Average 71.09 0.49 15.16 2.54 0.14 0.51 1.80 5.10 2.98 0.20 175 2 

 SD 0.61 0.07 0.21 0.30 0.03 0.08 0.20 0.28 0.13 0.03   

Augustine Average 76.26 0.35 13.01 1.99 0.06 0.44 2.23 3.45 1.89 0.31 160 5 

 SD 1.35 0.08 0.52 0.30 0.04 0.10 0.31 0.34 0.11 0.05   

Churchill Average 74.30 0.19 14.26 1.44 0.05 0.31 1.74 4.07 3.32 0.33 491 2 

 SD 1.03 0.06 0.58 0.23 0.03 0.09 0.26 0.22 0.23 0.04   

Emmons (Dawson) Average 74.17 0.26 13.61 2.08 0.07 0.23 1.24 4.48 3.64 0.23 117 1 

 SD 0.31 0.04 0.23 0.08 0.03 0.03 0.06 0.15 0.13 0.03   

Fisher Average 68.97 0.54 15.69 4.04 0.19 0.48 2.26 5.25 2.43 0.17 209 2 

 SD 1.36 0.09 1.23 0.60 0.05 0.15 0.62 0.56 0.31 0.03   

Hayes Average 74.38 0.23 14.24 1.70 0.08 0.48 2.26 3.82 2.53 0.36 139 6 

 SD 2.03 0.08 1.05 0.51 0.03 0.40 0.59 0.47 0.38 0.09   

Kaguyak Average 77.56 0.29 12.48 1.38 0.05 0.27 1.87 4.00 1.95 0.18 32 1 

 SD 0.29 0.04 0.16 0.18 0.03 0.04 0.07 0.11 0.05 0.02   

Katmai Average 77.08 0.25 12.49 1.58 0.06 0.23 1.17 3.97 3.00 0.19 245 1 

 SD 2.43 0.16 0.79 0.72 0.03 0.24 0.74 0.20 0.24 0.04   

Redoubt Average 74.51 0.39 13.70 1.76 0.07 0.42 1.82 4.17 3.05 0.15 218 7 

 SD 3.17 0.12 1.61 0.73 0.03 0.30 0.90 0.46 0.53 0.06   

Spurr Average 63.18 0.85 15.94 6.44 0.18 2.00 4.89 4.69 1.64 0.26 50 1 

 SD 0.52 0.06 0.34 0.23 0.04 0.17 0.22 0.22 0.09 0.04   

All analyses are normalized to 100%. n = number of shards analyzed. FeOt = all Fe as FeO 
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Figure 2.2. Glass geochemical plots for the full training set, with data summarized by density 

fields (darker colours mean higher density of point measurements). Note: Spurr and the low 

silica population of Aniakchak are easily differentiable based on SiO2 (A, B); they are excluded 

from the lower row plots (D, E, F) to show more detail for the remaining distributions. Total 

alkali‐silica (TAS) plot (A) following le Bas et al. (1986); B = basalt, BTA = basaltic 

trachyandesite, TA = trachyandesite, TD = trachydacite, R = rhyolite, A = andesite, D = dacite 

We trained and tested eight different learning algorithms to classify data points to source. 

These fitted models are referred to as “base learners”. We also used the probabilistic outputs of 

the base learners as input features to three second-layer ensemble models (see Sebestyen, 1962). 

One ensemble was an unweighted average of two high-performing base learners (a classifier 

fusion ensemble; a form of non-trainable combiner (Kuncheva, 2004)), while the second and 

third ensembles were trainable combiner “model stacks”, or “meta-models” that fit higher-level 

models (artificial neural network (ANN) and random forest (RF)) using all probabilistic base 

learner predictions. This ensemble technique is synonymous with “stacked generalization” and is 

employed with the goal of minimizing error rate (Wolpert, 1992).  The base learners and 
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ensembles trialled are detailed in Table 2.2. The nuances of each method are documented well in 

other sources, including their respective R package documentation (Table 2.2) and in Kuhn and 

Johnson (2013). However, brief summaries of the fundamental concepts behind each learner’s 

approach and key references for the methods are included in Appendix C, Table C.2, p. 182.   

Table 2.2. Table summarizing classifiers used in this study and the abbreviations by which they 

are referred to throughout 

Algorithm 

name 
Abbreviation Caret method Parent package Approach 

Explanatory 

variables 

Classification 

Tree 
CART rpart 

rpart (Therneau 

and Atkinson 

2018) 

Discriminative, 

multiclass 
Geochemistry 

Random Forest RF rf 

randomForest 

(Liaw and 

Wiener 2002) 

Discriminative, 

multiclass 
Geochemistry 

Support Vector 

Machine with 

Radial Kernel 

SVM svmRadialSigma 

kernlab 

(Karatzoglou et 

al. 2004) 

Discriminative, 

"one against 

one" voting 

(e.g., Hsu and 

Lin 2002) 

Geochemistry 

K Nearest 

Neighbors 
KNN knn 

caret (Kuhn 

2008) 

Discriminative, 

multiclass 
Geochemistry 

Naive Bayes NB naive_bayes 
naivebayes 

(Majka 2019) 

Generative, 

multiclass 
Geochemistry 

Linear 

Discriminant 

Analysis 

LDA lda 

MASS 

(Venables and 

Ripley 2002) 

Generative, 

multiclass 
Geochemistry 

Artificial Neural 

Network 
ANN nnet 

nnet (Venables 

and Ripley 

2002) 

Discriminative, 

multiclass 
Geochemistry 

C5.0 C5.0 C5.0 
C50 (Kuhn and 

Quinlan 2018) 

Discriminative, 

multiclass 
Geochemistry 

Ensemble 

Average 

Average 

Ensemble 
none 

base (R Core 

Team 2019) 

Discriminative, 

multiclass 

Base learner 

predictions 

(probability), RF 

and ANN 

Random Forest 

Ensemble 
Meta-RF rf 

randomForest 

(Liaw and 

Wiener 2002) 

Discriminative, 

multiclass 

Base learner 

predictions 

(probability), all 

Artificial Neural 

Network 

Ensemble 

Meta-ANN nnet 

nnet (Veneables 

and Ripley 

2002) 

Discriminative, 

multiclass 

Base learner 

predictions 

(probability), all 

 

Two SVM variants were trained. By default, SVMs provide non-probabilistic class 

predictions; a second layer model must be used to calibrate the outputs into a probabilistic format 

(Platt, 1999). We tested the discrete SVM classifier (SVM raw), and one adapted to produce 

probabilities using a sigmoid function (SVM prob.) (Platt, 1999; Wu et al., 2004). Only the SVM 
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prob. predictions were used in the meta-models. Of the algorithms tested, SVM was the only 

method that can return different predictions in “raw” and “probabilistic” modes. 

Each of the base learners and trainable ensembles were “optimized” such that their tuning 

parameters allowed the maximization of a performance measure, Cohen's kappa statistic (κ), 

within a subset of possible permutations. Tuning was conducted using cross-validation among 

data specifically partitioned for training and tuning. The data were split into three partitions, 

stratified by volcanic source, following Arlot and Celisse (2010). Of all data, 40% were allotted 

to train base learners, another 40% were used in training the subsequent ensembles, and 20% 

were reserved for evaluation (the “test set”). Performance was measured through cross-validation 

during training and directly on the test set. Cohen’s kappa and overall accuracy were used to 

evaluate model efficacy. Cross-validation performance was also assessed for final models using 

the complete dataset. Also, performance was evaluated using an exact one-sided binomial test 

(Clopper and Pearson, 1935), resolving the p value that accuracy is greater than the null 

hypothesis (the “no information rate” NIR; i.e., the accuracy if all records are labelled as the 

most common class) by chance alone. 

Modelling was conducted in the R programming language and software environment (R 

Core Team, 2019). An easily adaptable R script is supplied in the appendices (Appendix B, 

Script B.1, p. 170) such that the code can be used to train new models and adapted to different 

use-cases as users see fit. Further, “final” models, trained on the full dataset are presented as 

stand-alone R objects (Appendix D, Models D.1, p. 257), so users can make source predictions 

using our fitted models on new data. 

2.2.3. Evaluation on new samples 

As a trial case, a suite of 11 tephras from Eklutna Lake was assessed using this study’s 

machine learning methods and traditional techniques. Initial correlations used traditional plotting 

methods, comparing the tephras to internal glass geochemical data and selected literature 

(Riehle, 1985; Begét and Nye, 1994; Payne and Blackford, 2008). Some of these results have 

been reported by Boes et al. (2018) and Fortin et al. (2019). Here, we present the entire 

tephrostratigraphy and reassess all results using machine learning. Instead of seeking an explicit 

measure of model performance, we strove to assess the feasibility of machine learning for 
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identifying the sources of unknown tephras (not necessarily the specific eruption), while 

exploring the method’s practicality. 

2.3. Results 

2.3.1. Learner performance 

All base-learning and ensemble algorithms resulted in mean kappa values of greater than 

0.56 on their respective training sets. Minimum mean training accuracy was 0.63. Of the fitted 

models, the SVM prob. performed the worst, with all others resolving mean and median kappa 

and accuracy statistics > 0.95 (Figure 2.3). Given the good cross-validation results of ANN and 

RF, and their reputation for producing realistic probabilistic outputs (Niculescu-Mizil and 

Caruana, 2005), these two best-performing probabilistic base learners were combined to form the 

Average Ensemble. Further analysis of learner performance is included in the appendices 

(Appendix A, Section A.2.1, p. 160).  

When models were trained on only their respective training sets and evaluated on test data, 

performance trends followed much the same patterns as in the training cross-validation (Figure 

2.4). For all models tested, accuracy was significantly higher than the no information rate (NIR = 

0.2513; p values < 2 x 10-55; as low as 1.1 x 10-212 for the Meta-RF ensemble).  

The use of kappa as a class-size-weighted metric is valuable in this dataset, and we believe 

it is appropriate for many other tephra datasets given unequal label frequencies found in most 

studies. Following the arbitrary ranking of kappa values presented by Altman (1990), predictions 

of all the learners exhibited “very good agreement” with the test data (kappa 0.8-1), with the 

exception of CART, which demonstrated “good agreement” (0.6–0.8), and SVM prob., which 

showed only “moderate agreement” (0.4–0.6) (Figure 2.4).  
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Figure 2.3. Box and whisker plots of model performance on cross‐validation resamples (100 

each) for training data only and final models (complete data). Boxes represent interquartile range 

(IQR), with filled circles indicating median; whiskers are 1.5 times IQR above and below the 

box or minimum/maximum data limits if minimum/maximum points are within 1.5 times IQR 

range; hollow circles are fold measurements that fell outside the whisker range. See 

Table 2.2 and Appendix C, Table C.2, for explanation of algorithms used 

 

Figure 2.4. Algorithm performance; models trained on the training set and evaluated on the test 

set. See Table 2.2 and Appendix C, Table C.2, for explanation of algorithms used 
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Generally, the most computationally complex models, including the various ensemble 

methods and the base ANN, performed the best (Figure 2.4). Given the good final performance 

of all the models, except SVM prob. and CART, the question remains if increased computational 

complexity (i.e., time) is worth a modicum of heightened classification performance. This 

decision will require a value judgement by the end-user. For this study, we believe the most 

reasonable compromise between complexity and performance is the Average Ensemble of ANN 

and RF base learners. This simple ensemble delivers consistently high performance, reduces the 

variance inherent to a single base learner, while limiting the intensity of training and cross-

validation required. 

2.3.1.1. Shard vs. sample performance 

Despite variations in classification performance, the majority of single point measurements 

(e.g., individual shards) within each sample were correctly identified more often than not by all 

learners, even the probabilistic SVM.  This indicates that applying classification schemes to glass 

data on a per-shard basis can be accurate when predictions are pooled for each sample and the 

mode is accepted as the final prediction. This method, called voting, is common for aggregating 

discrete predictions, such as the SVM raw model’s. However, a more valuable option is to use a 

model’s average probabilistic outputs per sample as a pooled prediction.  

Because the class probabilities for each shard analyzed from a sample can also be 

composited in the mean predictions per source, the result is a “probability” for each sample’s 

source as a whole. This diverges from the common method of using the mean geochemical 

values for each sample as central point estimates (e.g., Shane and Froggatt, 1994). Note, despite 

being the accepted term for the type of prediction in question (i.e., probabilistic classification), 

the word “probability” may be misleading. Predictions are derived from a probability distribution 

restricted to the set of classes considered by the model. As such, the sum of a record’s 

probabilities from all labels must equal 100%. In other words, the values calculated per class 

represent conditional probabilities, given the unknown evaluated was in the training set. We 

made no attempt to calibrate probabilities outside of modelling (cf. Niculescu-Mizil and 

Caruana, 2005). 

Based on predictions from the test data, all evaluated probabilistic learners were more 

accurate when the averages of probabilities per sample were used for classification instead of 
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their single-point (raw) classifications alone. Sample-wise accuracy for probabilistic models was, 

on average, 3% higher than evaluation of independent shards. In fact, the Average Ensemble, 

Meta-ANN, ANN, and LDA classified the 54 samples included in the test set perfectly when 

sample averages were used. All probabilistic learners with the exception of CART and SVM 

prob. correctly classified over 96% of samples when evaluated in this way. Meta-RF, RF, and 

NB each misclassified one sample, C5.0 and KNN misclassified two, while CART misclassified 

six, and SVM prob. misclassified 20. When mean probabilities were used for predictions, NB 

accuracy increased by 7.6% and LDA increased by 5.9%, but SVM prob. increased by only 

0.1%. In the case of raw-only predictions, when the mode was used per sample, the SVM raw 

model predicted classes perfectly in the test set, up from 97% accuracy on individual shards. 

By evaluating a sample’s individual point data, a more complete assessment of the 

composition can be made than if only geochemical means are used. For example, nuances like 

polymodal distributions can be used in classification and detected in unknowns. Shard-wise 

predictions can also be useful for discerning the sources of shards that have been redeposited and 

intermixed within tephra layers, though are compositionally distinct on a statistical level (e.g., 

Pouget et al., 2014).  

2.3.2. Comparison to prior work 

The relatively poor performance of SVM prob. on this dataset was unexpected given the 

high accuracy of raw (non-probabilistic) model of similar design (> 0.90) that discerned volcanic 

sources in Italy (Petrelli et al., 2017). Even averaging the predicted probabilities per sample, 

SVM prob.’s predictive accuracy was hardly better than considering each shard independently 

(0.630 vs 0.628). However, Petrelli et al. (2017) used P2O5 and trace elements as predictors in 

addition to major elements, which undoubtedly contributed to their SVM’s accuracy. 

Interestingly, the comparatively poor SVM prob. accuracy here does compare to the raw 

accuracy of Petrelli and Perugini (2016) (0.69) when SVMs were trained only on major oxides to 

discriminate rock tectonic environments. SVM’s poorer performance on our dataset suggests the 

present multiclass implementation of the algorithm and associated probability model can be 

problematic for some datasets. The difference between probabilistic and raw predictions is noted 

by Wu et al. (2004) as a result of how sigmoid functions split classes. They suggest no solution 

for when probability calibration fails.  However, given the good performance of the SVM raw 
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model and following evaluation of the decision values produced by the uncalibrated SVM model 

that underlies the SVM prob. model, we are confident reasonable decision boundaries can be 

found by SVM for this dataset. Unless an alternative multiclass probability calibration method is 

employed for SVMs, care should be taken when evaluating learner performance or using 

predictions of SVM probabilistic models. 

Most of the algorithms selected for use in this study are known to work particularly well 

with non-linear data relationships, many features, and non-normal distributions. One significant 

departure is LDA, which is known to have problems coping with non-normal data, and 

particularly, multicollinearity (Naes and Mevik, 2001). Both characteristics are common in 

geochemical datasets, including ours, where pairwise correlations - quantified by R2 - are 

frequently > 0.9. Nevertheless, LDA demonstrated discrimination rules can be well defined, even 

where the eigenvalues that determine them are relatively small, still allowing for reliable 

classification of tephra. In relation to other LDA efforts for geochemical classification of tephra 

glass, our final model performed comparably in terms of accuracy on reference data: our study = 

95.1%; Tryon et al. (2009) = 95-97%; Stokes and Lowe (1988) = 97.5%; Charman and Grattan 

(1999) = 90.3%.  

CART methods have been successful in tracing obsidian to source with 96% accuracy 

using trace metal data (Sheppard et al., 2011). This result is substantially more accurate than our 

CART models, although this separation can probably be ascribed to differences in data 

characteristics, not implementation. Further, an example of a classification tree is presented in 

Lowe et al. (2017) for glass data, although this was provided as a data exploration tool, not 

strictly for deriving class predictions. As such, no performance measure was given. One other 

early study of statistical cheomstratigraphy, Malmgren and Nordlund (1996), compared ANN, 

KNN, and LDA for classifying volcanic ash zones utilizing major oxide geochemistry. Their 

basic findings agree with ours, indicating high accuracy of ANN on held‐out data (our study = 

97.7%, Malmgren and Nordlund (1996) = 90.8%). Their assessment of KNN and LDA were less 

favorable (69.2% and 61.6% accuracy respectively) (Malmgran and Nordlund, 1996). For the 

other algorithms, the authors know of no comparable performance baseline in literature for the 

classification of glass composition. 



37 

  

2.3.3. Test application: Eklutna Lake tephras 

Eklutna Lake is a glacially-fed lake approximately 45 km northeast of Anchorage 

(61°22'36"N 149°02'07"W, Figure 2.1). The lake is an important paleoenvironmental archive not 

in small part because the sediments are varved (e.g., Loso et al., 2017; Praet et al., 2017; Boes et 

al., 2018). Tephras in the lake cores have been important in developing the chronology for these 

studies, but not all tephras present have been reported (e.g., Boes et al., 2018; Fortin et al., 

2019). These tephras are of interest because they are regionally distributed, most are 

exceptionally well-dated through the varve chronology, and represent past eruptions where 

ashfall impacted what is now the most densely populated region of Alaska. 

Eleven distinct tephra layers were characterized, with an additional four samples 

containing four different, mixed populations. Sampling of background sediments shows that 

glass is a component of the lake sediment. The tephras’ glass geochemistry and average median 

ages (Fortin et al., 2019) are summarized in Table 2.3 and appended data (Appendix C, Table 

C.3, p. 186). A diagram indicating the relative core depths/stratigraphy of the tephras examined 

is included in the appendices supplement (Appendix C, Figure C.4, p. 256). Overall, of the 15 

populations tested, representing 13 samples, an agreement between machine learning and 

plotting was found in all 12 tephras initially assigned to a source volcano (Table 2.4).  

The source classification strongly supports the initial geochemical correlations of Tephras 

1 and 2 presented in Boes et al. (2018), and Tephras 5, 7, 10, and 12 in Fortin et al. (2019). 

Tephra 1 was correlated with AD 1992 Crater Peak eruption of Spurr, and Tephra 2 to the AD 

1989/1990 eruption of Redoubt Volcano. Tephras 5, 10, and 12 are all attributed to Redoubt, and 

Tephra 7 to Augustine (Fortin et al., 2019). These assertions are strengthened by known activity 

of Redoubt around 450 cal a BP (Begét and Nye, 1994; Begét et al., 1994; Schiff et al., 2010)) 

and Augustine around 700 cal a BP (Waitt and Begét, 2009).  

New data presented here are for “Tephras” 3, 4, 6, 8, 9, 11, 17, and 19. “Tephras” 3, 6, 8, 

and 9 are largely comprised of mixed geochemical populations. Some have identifiable 

geochemical groupings, but inconsistencies between cores and a detrital component preclude 

their identification as primary tephras. For example, Tephra 3, younger that ~AD 1930, contains 

geochemical populations sourced to Katmai (AD 1912), and the Dawson tephra. Dawson tephra, 

from a late Pleistocene caldera-forming eruption, also appears in several of the other detrital-rich 
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samples. All other tephras were considered primary based on their presence across multiple 

cores, consistent stratigraphy, and purity of the samples. 

Tephra 4 is attributed to Redoubt and is geochemically similar to late 20th and 21st century 

eruptions from that volcano. The most likely event would be the well-documented eruption of 

AD 1902; however, the age estimate for this tephra is closer to ~AD 1880. There are no 

documented eruptions from Redoubt at this time, except for a short note in Cordeiro (1910) 

about a potential event in AD 1881. Tephra 11 correlated to Emmons Caldera, which was 

initially problematic due to the reworking of Dawson tephra in lake sediments.  However, the 

purity of the samples across multiple cores suggests that Tephra 11 represents a primary 

Holocene event. In fact, most of the tephras from this lake were effectively cryptotephras (i.e., 

invisible tephras, detected in this study by magnetic susceptibility (MS)). The presence of Tephra 

11 as a single-population, highly glass-dense unit accentuates its importance and helps identify it 

as a primary ashfall unit, and not just reworked Dawson. This is also supported by the slightly 

lower hydration of Tephra 11 (~ < 3 wt%) compared to reworked Dawson (~ >3.5 wt%). 
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Table 2.3. Weight percentage averages and standard deviations (SD) of primary tephra identified in Eklutna Lake, their correlatives, 

and modelled ages where present in varved cores (following Fortin et al., 2019). Note: Tephra 11 is interpreted as a primary tephra 

and is geochemically consistent with the Dawson tephra but at present we have no evidence of silicic glass being produced from 

Emmons in the Holocene 

Sample    SiO2      TiO2   

   

Al2O3     FeOt       MnO       MgO       CaO       Na2O      K2O       Cl     H2Od n 

Average 

modelled 

median 

age (a BP) 

Average 

SD (a)  

Tephra 1 63.14 0.85 16.12 6.31 0.17 1.98 4.91 4.59 1.67 0.26 2.39 39   

Crater Peak 0.69 0.06 0.52 0.19 0.04 0.12 0.31 0.30 0.13 0.03 0.84    

Tephra 2 77.43 0.29 12.43 1.18 0.05 0.16 1.04 3.80 3.49 0.13 1.81 93   

Redoubt 1.38 0.08 0.82 0.22 0.03 0.07 0.38 0.34 0.29 0.05 0.91    

Tephra 4 77.47 0.25 12.50 1.12 0.05 0.20 1.11 3.84 3.32 0.13 2.22 63 70 3 

Redoubt 0.51 0.05 0.25 0.18 0.03 0.03 0.12 0.22 0.16 0.04 0.59    

Tephra 5 75.67 0.26 13.44 1.37 0.07 0.28 1.54 4.10 3.13 0.14 2.40 126 454 5 

Redoubt 1.97 0.08 0.88 0.40 0.02 0.13 0.49 0.30 0.23 0.04 1.87    

Tephra 7 74.04 0.44 13.49 2.33 0.06 0.58 2.53 4.29 1.92 0.31 0.54 101 729 6 

Augustine 1.33 0.08 0.55 0.35 0.02 0.14 0.42 0.26 0.26 0.06 1.25    

Tephra 10 77.11 0.26 12.49 1.19 0.05 0.21 1.18 3.97 3.37 0.17 2.87 88 1312 13 

Redoubt 0.90 0.05 0.45 0.18 0.02 0.07 0.26 0.15 0.18 0.03 1.26    

Tephra 11 74.17 0.28 13.59 2.04 0.07 0.24 1.27 4.53 3.65 0.22 3.35 52 1579 14 

Emmons 0.37 0.05 0.11 0.17 0.02 0.06 0.14 0.15 0.21 0.02 1.79    

Tephra 12 74.66 0.30 13.70 1.68 0.08 0.32 1.65 4.38 3.06 0.17 2.27 72 1749 15 

Redoubt 0.54 0.04 0.28 0.18 0.03 0.05 0.11 0.12 0.10 0.03 1.02    

Tephra 17 70.72 0.50 15.04 2.85 0.10 0.75 2.79 4.44 2.65 0.18 2.61 82   

Redoubt 1.48 0.07 0.56 0.43 0.03 0.17 0.47 0.17 0.26 0.03 1.40    

Tephra 18 75.03 0.21 13.63 1.67 0.07 0.39 2.12 3.90 2.53 0.46 3.34 22   

Hayes 0.52 0.04 0.20 0.15 0.01 0.05 0.17 0.10 0.10 0.04 2.20    

Tephra 19 73.10 0.40 14.21 2.23 0.09 0.51 2.28 4.33 2.65 0.20 2.84 35   

Redoubt 1.77 0.08 0.71 0.43 0.03 0.15 0.51 0.18 0.20 0.02 1.59       

All analyses are normalized to 100%. n = number of shards analyzed. FeOt = all Fe as FeO 
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Table 2.4. Shard-averaged membership probabilities for unknown populations of tephras from Eklutna Lake resulting from ANN/RF 

average ensemble, coupled with the perceived correlations resulting from initial traditional plotting and machine learning (in this case, 

the maximum probability per population). Populations within tephras are denoted with decimal suffixes 

 Aniakchak Augustine Churchill Emmons Fisher Hayes Kaguyak Katmai Redoubt Spurr 

Traditional 

plotting 

correlation 

Average 

RF/ANN most 

probable 

correlation 

Tephra 1 4.5% 0.4% 0.0% 0.0% 0.4% 0.9% 0.0% 1.8% 0.2% 91.8% Spurr Spurr 

Tephra 2 0.1% 0.1% 3.2% 3.4% 0.0% 3.9% 0.2% 9.1% 79.8% 0.0% Redoubt Redoubt 

Tephra 3.1 0.2% 0.0% 3.2% 94.9% 0.0% 0.5% 0.0% 0.4% 0.7% 0.0% -- Dawson 

Tephra 3.2 0.0% 0.4% 0.1% 0.1% 0.0% 0.9% 0.3% 86.8% 11.3% 0.0% Katmai Katmai 

Tephra 4 0.0% 0.1% 2.6% 0.2% 0.0% 2.7% 0.2% 19.4% 74.9% 0.0% Redoubt Redoubt 

Tephra 5 0.6% 0.2% 15.8% 0.5% 0.1% 8.5% 0.2% 8.4% 65.7% 0.0% Redoubt Redoubt 

Tephra 7 0.3% 77.1% 0.5% 1.2% 0.6% 5.7% 1.0% 4.4% 8.7% 0.5% Augustine Augustine 

Tephra 8.1 0.2% 0.0% 1.6% 96.4% 0.0% 0.2% 0.0% 0.3% 1.3% 0.0% -- Dawson 

Tephra 8.2 0.0% 89.1% 0.1% 0.0% 0.2% 4.2% 0.2% 4.0% 2.2% 0.0% Augustine Augustine 

Tephra 10 0.0% 0.1% 3.3% 0.2% 0.0% 2.8% 0.4% 9.3% 83.7% 0.0% Redoubt Redoubt 

Tephra 11 0.1% 0.0% 2.6% 88.2% 0.0% 0.1% 0.0% 0.3% 8.7% 0.0% -- Dawson 

Tephra 12 1.3% 0.4% 27.7% 4.9% 0.2% 3.5% 0.3% 5.1% 56.5% 0.0% Redoubt Redoubt 

Tephra 17 2.3% 0.2% 0.5% 0.7% 3.6% 1.5% 0.0% 7.6% 83.4% 0.2% Redoubt Redoubt 

Tephra 18 0.0% 0.5% 1.1% 0.0% 0.0% 97.2% 0.1% 0.5% 0.5% 0.0% Hayes Hayes 

Tephra 19 1.5% 1.0% 1.9% 0.3% 1.2% 7.5% 0.3% 16.4% 69.9% 0.1% Redoubt Redoubt 
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However, we must emphasize that there is no published evidence of silicic glass products from 

Emmons in the Holocene and that modern eruptions from the area (e.g., Pavlof Volcano) are 

more mafic than Dawson (e.g., andesitic composition; not rhyolitic) (Waythomas et al. 2017). 

Two of the three oldest units, Tephra 17 and 19, were tentatively identified as originating 

from Redoubt when traditional methods were employed. However, these layers also shared 

geochemical characteristics with material from the Katmai Volcanic Cluster, especially Tephra 

19. An early version of the RF/ANN average model trained only with Redoubt data from the AD 

1989-90 and AD 2009 eruptions indicated that these samples were statistically most similar to 

Katmai. However, predictions from the Average Ensemble trained on the full dataset that 

included new early and mid-Holocene Redoubt data were more-or-less definitive, favouring 

Redoubt over Katmai for Tephra 17 with 11 times the probability. Tephra 19 was less clearly 

separable, but Redoubt was still 4.27 times more likely than Katmai. This notable shift in 

predictive outcomes following a change to the training data highlights the importance of 

exhaustive classifier training data relative to the potential tephras being analyzed. While we were 

able to improve the training dataset for Redoubt by including newly collected data from older 

eruptions, our Katmai volcanic cluster data are limited to the AD 1912 eruption. The third older 

unit, Tephra 18 was clearly identified as a Hayes tephra. 

All correlations were tested with plotting as well. Visual discrimination between sources in 

this study is clearest in a Na2O vs K2O plot (Figures 2.2, 2.5). We also highlight that the two 

oldest tephras (Tephra 18, Hayes, and Tephra 19, Redoubt) from Eklutna Lake cluster in the 

high-density regions of the Na2O/K2O chemical-space for their respective assignments, further 

supporting our identification of these tephras (Figure 2.5).   

Fortin et al.’s (2019) age model was not applied to the older tephras. Fortunately, Tephra 

18 was further correlated to a Hayes eruption, tephra unit H2 (Figure 2.6; Wallace et al. 2014), 

through comparisons with reference Hayes glass chemistry. Tephra unit H of Wallace et al. 

(2014) also correlates to tephra T1 of Combellick and Pinney (1995), which has upper and lower 

bounding dates. Utilizing their 14C dates from peat above and below, and wood above the tephra, 

we have calculated a median age for the tephra of 3713 ± 72 cal a BP by modelling the age of a 

boundary, “tephra unit H”, between terminus ante/post quem phases in OxCal v4.3.2 (Ramsey, 

2009), calibrated with the IntCal13 curve (Reimer et al., 2013). Tephra 17 is younger than 
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Tephra 18, but below the base of the age model, thus between ~2200-3700 cal a BP. Without 

radiocarbon dates constraining the age of the lowest tephra, Tephra 19, we can only say that this 

tephra is older than Tephra 18/Hayes H. Though the interval between the tephras is probably 

substantial (perhaps on the order of one thousand years), given the ~2 m core depth between 

them. 

 

Figure 2.5. Glass geochemical plot highlighting separability between volcanic sources. Shaded 

areas represent high‐density regions based on the training dataset. Hollow triangles = Tephra 18; 

Hollow circles = Tephra 19 

 

 

Figure 2.6. Geochemical plots of glass compositions demonstrating the good correlation of 

Tephra 18 with Tephra H, and not with the other chronologically proximate Tephra F/Jarvis Ash 
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Keep in mind, prediction probabilities can be biased when the training data are missing 

specific eruption geochemistry, or with limited/no data from a source. For example, we are 

limited to Katmai 1912, and have no data from Iliamna, both volcanoes that do/may exhibit 

geochemical characteristics similar to Redoubt. We have examples through time of Redoubt’s 

many Holocene eruptions, and careful plotting reveals the “Redoubt” tephras (4, 5, 10, 12, 17, 

and 19) are on-trend with reference data. However, without a clear match to a specific eruption, 

we must recognize that attribution cannot be unequivocally determined.  

We believe that the machine learning approach to tephra sourcing has proven reliable when 

provided with appropriately diverse training data, and produces informative source predictions. 

The Average Ensemble, built from RF and ANN learners, was both relatively quick to train and 

fast in making predictions (< 1 s for >800 point analyses, each with nine geochemical 

parameters).  

2.3.4. Further considerations 

Petrelli and Perugini (2016) discuss a number of caveats about machine learning in 

geochemical discrimination that are applicable to this study. They assert that machine learning 

models should be evaluated carefully; models do not “magically” classify data with 

unquestionable labels. Results from machine learning must be integrated with and tested by other 

analyses that include traditional geochemical assessment by plotting. Robust correlations must 

consider some combination of physical, stratigraphic, compositional, and chronologic 

parameters. In addition, we strongly suggest the use of plotting to assess input data before 

models are fit to assure that only the best quality data are used. Thus, the resulting models are 

preconditioned by human experts.  

We also must emphasize that any supervised learning method will fail if the examples of 

the true class of unknowns were not included in the data used to fit the model. This is obvious 

but underscores the importance of using exhaustive and confidently identified tephra data as 

inputs for model training. Though not tested in this work, “outlier detection” methods may be 

helpful for pre-evaluating unknown data before presenting them to a classifier. This could help 

solve the problem of predictions only representing classes within the training set. These methods 

could filter out samples unlikely to belong to any of the reference classes and exclude them from 

predictions. Examples include one-class SVM (Schölkopf et al., 2001), soft independent 
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modelling of class analogy (SIMCA) (Wold and Sjöström, 1977), or training some other 

algorithm to differentiate training set data from a background of random data (Hastie et al., 

2009; Kuhn and Johnson, 2013). No matter what filtering protocol may be adopted, it is always 

advisable to evaluate unknowns against reference data from their supposed labels using 

traditional plotting and comparison. 

2.4. Conclusions 

Conclusions drawn from this work are divided into three categories: 1) the applicability of 

machine learning classifiers for tephra source attribution overall, 2) the more specific practicality 

of using classifiers to help determine volcanic sources based on major oxides from Alaska, and 

3) how machine learning can aid in the assessment of unknown tephras, including findings from 

Eklutna Lake. In terms of the broad-scale adoption of machine learning in tephra analysis: 

● Classifiers can be useful for quickly parsing glass geochemistry datasets. 

● Classifiers can generate probabilistic predictions of volcanic source. 

● Aggregated point analysis predictions are more useful than classifications from 

geochemical means or raw (label only) predictions. 

● By using point analyses, mixed geochemical populations can be detected and 

discriminated. 

● Algorithm performance is not always consistent given differing problem questions or 

data presented. As such, algorithms from differing methodological families should be 

evaluated when new research questions are addressed. 

● Ensemble models can effectively improve classification performance and reduce 

variance, but their use may be limited by their heightened computational 

requirements. 

● Any learning algorithm is only as good as the data it is based on. In order to best 

utilize classification methods, wisely curated and appropriately expansive glass 

geochemistry datasets must be available as reference data.  

 

Specific conclusions from our exploration of classification of select Alaska tephras 

include: 
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● RF and ANNs appear to be among the most robust base learners explored, and their 

averaged prediction (forming a simple ensemble) is a computationally cost-effective 

method that yields high performance through cross-validation and on “true 

unknowns”. 

● LDA, despite being among the least computationally complex methods trialled, still 

proved highly accurate. Though learner complexity is often correlated with 

performance, this is not always the case, 

● The methods trialled view data synoptically and can define multi-dimensional 

decision boundaries, even when geochemical overlap exists. 

● SVM prob. performed consistently poorly, indicating that despite its potential as a 

useful and accurate classifier in other cases, certain data contexts may produce 

suboptimal results. 

 

Applying what we believe was the best compromise between performance and complexity, 

the RF/ANN Average Ensemble, to a geochemical dataset from Eklutna Lake produced results in 

agreement with manual plotting and correlation. Other conclusions from this case study include: 

● Where tephra layers are correlated for the first time, the chronologies of known 

eruptions from these intervals lend credibility and context to the model predictions. 

● Even when tephras not present in the training set are encountered, predictions can 

still be reliable, though this is most effective A) when tephras are geochemically 

consistent between eruptions and B) the training set is appropriately representative to 

include the variability and sources present. 

● Special care should be taken when maximum probabilities are particularly low (e.g., 

1/C; C = number of classes). But even at values much higher than that, 

misclassifications may be more frequent if the training data lack the unknown’s 

eruption. Plotting and statistical tools can help assess this. 

 

The Eklutna Lake tephras are predominantly from Redoubt Volcano, showing that the 

Anchorage area has repeatedly been impacted by ashfall from this Cook Inlet volcano. This is 

predictable given the volcano’s proximity but using MS as the primary indicator of tephras may 
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have skewed the tephra record somewhat because tephras from Redoubt tend to be richer in Fe-

bearing minerals than some other regional volcanoes. Nonetheless, ongoing field studies at 

Redoubt do suggest it is the most active of the Cook Inlet volcanoes in terms of number of tephra 

falls preserved in Holocene age sediments (e.g., Schiff et al., 2010).  While the late Pleistocene 

Dawson tephra does appear as a detrital population in several samples, Tephra 11 appears to be a 

true primary tephra, representing a previously undocumented eruption geochemically identical to 

Emmons’ Dawson tephra, but dating to around ~1580 cal a BP. There exist many poorly 

documented and characterized eruptions and tephras from Alaska, and even among those 

characterized, most are not correlated to source (Mangan et al. 2003). Still it seems unlikely that 

Tephra 11 is a product from the Emmons Lake Volcanic Center unless rapid changes in melt 

characteristics occurred between ~1580 cal a BP and modern times.  Overall, this varved 

chronology from Eklutna Lake bottom sediments presents a unique opportunity to develop a 

more complete understanding of ashfall hazards for the Anchorage area and is worth further 

examination. 

As increasingly complete glass compositional databases are developed, the potential for 

employing efficient and accurate predictive models for tephra classification increases 

concurrently. We have shown that machine learning algorithms have great capacity to discern the 

sources of tephras from the chemically diverse and complex late Quaternary Alaska. This is the 

first large-scale comparative study of machine learning for classifying glass geochemistry. 

However, work on discriminating tephras at a finer resolution (i.e., per eruption) is ongoing. 

Such studies are important for evaluating discriminatory power on increasingly similar 

geochemical populations, and where decision boundaries may be even less clear. But this work is 

just one component of the expanding computational toolset available to tephrochronologists. The 

potential for machine learning in this application will depend on its adoption by researchers, and 

especially, adaptation to new problems.  

  



47 

  

2.5. References 

Altman DG. 1990. Practical Statistics for Medical Research. Chapman and Hall/CRC: London. 

Arlot S, Celisse A. 2010. A survey of cross‐validation procedures for model selection. Statistics 

Surveys 4: 40– 79. 

le Bas MJ, le Maitre RW, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks 

based on the total alkali‐silica diagram. Journal of Petrology 27: 745– 750. 

Beaudoin AB, King RH. 1986. Using discriminant function analysis to identify Holocene tephras 

based on magnetite composition: a study from the Sunwapta Pass area, Jasper National 

Park. Canadian Journal of Earth Sciences 23: 804– 812. 

Begét JE, Nye CJ. 1994. Postglacial eruption history of Redoubt Volcano, Alaska. Journal of 

Volcanology and Geothermal Research 62: 31– 54. 

Begét JE, Stihler SD, Stone DB. 1994. A 500‐year‐long record of tephra falls from Redoubt 

Volcano and other volcanoes in upper Cook Inlet, Alaska. Journal of Volcanology and 

Geothermal Research 62: 55– 67. 

Boes E, Van Daele M, Moernaut J, et al. 2018. Varve formation during the past three centuries in 

three large proglacial lakes in south‐central Alaska. Geological Society of America 

Bulletin 130: 757– 774. 

Bourne AJ, Lowe JJ, Trincardi F, et al. 2010. Distal tephra record for the last ca 105,000 years 

from core PRAD 1‐2 in the central Adriatic Sea: implications for marine 

tephrostratigraphy. Quaternary Science Reviews 29: 3079– 3094.  

Bull KF, Cameron C, Coombs ML, et al. 2012. The 2009 Eruption of Redoubt Volcano, Alaska. 

In Report of Investigations of the Alaska Department of Natural Resources, Division of 

Geological & Geophysical Surveys 2011‐5, JR Schaefer (ed). State of Alaska, Department 

of Natural Resources: Fairbanks, AK.  



48 

  

Cameron CE, Schaefer JR. 2016. Historically Active Volcanoes of Alaska: Alaska Division of 

Geological & Geophysical Surveys Miscellaneous Publication 133 v. 2. Alaska Division of 

Geological & Geophysical Surveys: Fairbanks, AK.  

Charman DJ, Grattan J. 1999. An assessment of discriminant function analysis in the 

identification and correlation of distal Icelandic tephras in the British Isles. Geological 

Society, London, Special Publications 161: 147– 160. 

Clopper CJ, Pearson ES. 1935. The use of confidence or fiducial limits illustrated in the e of the 

binomial. Biometrika 26: 404– 413.  

Combellick RA, Pinney DS. 1995. Radiocarbon age of probable Hayes tephra, Kenai Peninsula, 

Alaska. Short Notes on Alaska Geology, Alaska Division of Geological & Geophysical 

Surveys Professional Report PR0117, 1– 9.  

Cordeiro FJB. 1910. The volcanoes of Alaska. Appalachian Journal 12: 130– 135.  

Davies LJ, Jensen BJL, Froese DG, et al. 2016. Late Pleistocene and Holocene 

tephrostratigraphy of interior Alaska and Yukon: Key beds and chronologies over the past 

30,000 years. Quaternary Science Reviews 146: 28– 53.  

Fernández‐Delgado M, Cernadas E, Barro S, et al. 2014. Do we need hundreds of classifiers to 

solve real world classification problems? Journal of Machine Learning 

Research 15: 3133– 3181.  

Fierstein J, Hildreth W. 2008. Kaguyak dome field and its Holocene caldera, Alaska 

Peninsula. Journal of Volcanology and Geothermal Research 177: 340– 366. 

Fierstein J, Hildreth W, Hendley JW II, et al. 1998. Can another great volcanic eruption happen 

in Alaska? US Geological Survey Fact Sheet 075‐98.  

Fortin D, Praet N, McKay NP, et al. 2019. New approach to assessing age uncertainties – The 

2300‐year varve chronology from Eklutna Lake, Alaska (USA). Quaternary Science 

Reviews 203: 90– 101.  



49 

  

Froese D, Westgate J, Preece S, et al. 2002. Age and significance of the Late Pleistocene 

Dawson tephra in eastern Beringia. Quaternary Science Reviews 21: 2137– 2142.  

Galar M, Fernández A, Barrenechea E, et al. 2011. An overview of ensemble methods for binary 

classifiers in multi‐class problems: Experimental study on one‐vs‐one and one‐vs‐all 

schemes. Pattern Recognition 44: 1761– 1776.  

Hastie T, Tibshirani R, Friedman J. 2009. The Elements of Statistical Learning. Springer: New 

York.  

Hildreth W, Fierstein J. 2012. The Novarupta‐Katmai eruption of 1912—largest eruption of the 

twentieth century; centennial perspectives. U.S. Geological Survey Professional 

Paper 1791.  

Hsu C‐W, Lin C‐J. 2002. A comparison of methods for multiclass support vector 

machines. IEEE Transactions on Neural Networks 13: 415– 425. 

Jensen BJL, Froese DG, Preece SJ, et al. 2008. An extensive middle to late Pleistocene 

tephrochronologic record from east‐central Alaska. Quaternary Science 

Reviews 27: 411– 427.  

Jensen BJL, Reyes AV, Froese DG, et al. 2013. The Palisades is a key reference site for the 

middle Pleistocene of eastern Beringia: new evidence from paleomagnetics and regional 

tephrostratigraphy. Quaternary Science Reviews 63: 91– 108.  

Karatzoglou A, Smola A, Hornik K, et al. 2004. kernlab‐an S4 package for kernel methods in 

R. Journal of Statistical Software 11: 1– 20.  

Knerr S, Personnaz L, Dreyfus G. 1990. Single‐layer learning revisited: a stepwise procedure for 

building and training a neural network, Neurocomputing, NATO ASI Series (Series F: 

Computer and Systems Sciences), Springer: Berlin Heidelberg; 41– 50.  



50 

  

Kuehn SC, Froese DG, Shane PAR. 2011. The INTAV intercomparison of electron‐beam 

microanalysis of glass by tephrochronology laboratories: Results and 

recommendations. Quaternary International 246: 19– 47.  

Kuhn M. 2008. Building predictive models in R using the caret package. Journal of Statistical 

Software 28: 1– 26. 

Kuhn M, Johnson K. 2013. Applied Predictive Modeling. Springer: New York, NY.  

Kuhn M, Quinlan R. 2018. C50: C5.0 Decision Trees and Rule‐Based Models. R package 

version 0.1.2. Retrieved from https://CRAN.R‐project.org/package=C50 

Kuncheva LI. 2004. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & 

Sons: Hoboken. 

Liaw A, Wiener M. 2002. Classification and regression by randomForest. R news 2: 18– 22.  

Loso M, Finney B, Johnson R, et al. 2017. Evaluating evidence for historical anadromous 

salmon runs in Eklutna Lake, Alaska. Arctic 70: 259– 272. 

Lowe DJ. 2011. Tephrochronology and its application: A review. Quaternary 

Geochronology 6: 107– 153.  

Lowe DJ, Pearce NJG, Jorgensen MA, et al. 2017. Correlating tephras and cryptotephras using 

glass compositional analyses and numerical and statistical methods: Review and 

evaluation. Quaternary Science Reviews 175: 1– 44.  

Majka M. 2019. naivebayes: High Performance Implementation of the Naive Bayes Algorithm in 

R. R package version 0.9.6. Retrieved from https://CRAN.R‐

project.org/package=naivebayes 

Malmgren B., Nordlund U. 1996. Application of artificial neural networks to 

chemostratigraphy. Paleoceanography 11: 505– 512. 

https://cran.r-project.org/package=C50
https://cran.r-project.org/package=naivebayes
https://cran.r-project.org/package=naivebayes


51 

  

Mangan MT, Waythomas CF, Miller TP, Trusdell FA. 2003. Emmons Lake Volcanic Center, 

Alaska Peninsula: source of the Late Wisconsin Dawson tephra, Yukon Territory, 

Canada. Canadian Journal of Earth Sciences 40: 925– 936. 

McGimsey RG, Neal CA, Riley CM. 2001. Areal distribution, thickness, mass, volume, and 

grain size of tephra‐fall deposits from the 1992 eruptions of Crater Peak vent, Mt. Spurr 

Volcano, Alaska. U.S. Geological Survey Open‐File Report 01‐ 370.  

Mulliken KM. 2016. Holocene volcanism and human occupation in the middle Susitna River 

Valley, Alaska. M.A. thesis. University of Alaska Fairbanks: Fairbanks, AK.  

Naes T, Mevik B‐H. 2001. Understanding the collinearity problem in regression and 

discriminant analysis. Journal of Chemometrics 15: 413– 426. 

Ng AY, Jordan MI. 2002. On discriminative vs. generative classifiers: a comparison of logistic 

regression and naive Bayes. In Advances in Neural Information Processing Systems, TG 

Dietterich, S Becker, Z Ghahramani MIT Press, 841– 848.  

Niculescu‐Mizil A, Caruana R. 2005. Predicting good probabilities with supervised 

learning, Proceedings of the 22nd International Conference on Machine Learning. 

ACM: New York, NY; 625– 632.  

Payne RJ, Blackford JJ. 2008. Extending the late Holocene tephrochronology of the central 

Kenai Peninsula, Alaska. Arctic 61: 243– 254.  

Pearce NJG, Bendall CA, Westgate JA. 2008. Comment on “Some numerical considerations in 

the geochemical analysis of distal microtephra” by A.M. Pollard, S.P.E. Blockley and C.S. 

Lane. Applied Geochemistry 23: 1353– 1364. 

Petrelli M, Bizzarri R, Morgavi D, et al. 2017. Combining machine learning techniques, 

microanalyses and large geochemical datasets for tephrochronological studies in complex 

volcanic areas: New age constraints for the Pleistocene magmatism of central 

Italy. Quaternary Geochronology 40: 33– 44.  



52 

  

Petrelli M, Perugini D. 2016. Solving petrological problems through machine learning: the study 

case of tectonic discrimination using geochemical and isotopic data. Contributions to 

Mineralogy and Petrology 171: 81.  

Platt J. 1999. Probabilistic outputs for support vector machines and comparisons to regularized 

likelihood methods. In Advances in Large Margin Classifiers, A Smola, P Bartlett, D 

Schölkopf, D Schuurmans (eds). MIT Press: Cambridge, MA.  

Pouget S, Bursik M, Rogova G. 2014. Tephra redeposition and mixing in a late‐glacial hillside 

basin determined by fusion of clustering analyses of glass‐shard geochemistry. Journal of 

Quaternary Science 29: 789– 802. 

Praet N, Moernaut J, Van Daele M, et al. 2017. Paleoseismic potential of sublacustrine landslide 

records in a high‐seismicity setting (south‐central Alaska). Marine Geology 384: 103– 119. 

Preece SJ, McGimsey RG, Westgate JA, et al. 2014. Chemical complexity and source of the 

White River Ash, Alaska and Yukon. Geosphere 10: 1020– 1042. 

Preece SJ, Westgate JA, Froese DG, et al. 2011. A catalogue of late Cenozoic tephra beds in the 

Klondike goldfields and adjacent areas, Yukon Territory. Canadian Journal of Earth 

Sciences 48: 1386– 1418. 

Preece SJ, Westgate JA, Stemper BA, et al. 1999. Tephrochronology of late Cenozoic loess at 

Fairbanks, central Alaska. Geological Society of America Bulletin 111: 71– 90. 

Ramsey CB. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337– 360. 

R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing, Vienna, Austria. Retrieved from http://www.R‐project.org/ 

Reimer PJ, Bard E, Bayliss A, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration 

curves 0–50,000 years cal BP. Radiocarbon 55: 1869– 1887. 

http://www.r-project.org/


53 

  

Riehle JR. 1985. A reconnaissance of the major Holocene tephra deposits in the upper Cook Inlet 

region, Alaska. Journal of Volcanology and Geothermal Research 26: 37– 74. 

Rifkin R, Klautau A. 2004. In defense of one‐vs‐all classification. Journal of Machine Learning 

Research 5: 101– 141.  

Schiff CJ, Kaufman DS, Wallace KL, et al. 2010. An improved proximal tephrochronology for 

Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal 

Research 193: 203– 214. 

Schölkopf B, Platt JC, Shawe‐Taylor J, et al. 2001. Estimating the support of a high‐dimensional 

distribution. Neural Computation 13: 1443– 1447. 

Scott WE, McGimsey RG. 1994. Character, mass, distribution, and origin of tephra‐fall deposits 

of the 1989–1990 eruption of redoubt volcano, south‐central Alaska. Journal of 

Volcanology and Geothermal Research 62: 251– 272. 

Sebestyen GS. 1962. Decision‐making Processes in Pattern Recognition, ACM monograph 

series, Macmillan: Indianapolis, IN. 

Shane PAR, Froggatt PC. 1994. Discriminant function analysis of glass chemistry of New 

Zealand and North American tephra deposits. Quaternary Research 41: 70– 81. 

Sheppard PJ, Irwin GJ, Lin SC, et al. 2011. Characterization of New Zealand obsidian using 

PXRF. Journal of Archaeological Science 38: 45– 56.  

Stelling P, Gardner JE, Begét JE. 2005. Eruptive history of Fisher Caldera, Alaska, 

USA. Journal of Volcanology and Geothermal Research 139: 163– 183. 

Stokes S, Lowe DJ. 1988. Discriminant function analysis of late Quaternary tephras from five 

volcanoes in New Zealand using glass shard major element chemistry. Quaternary 

Research 30: 270– 283. 



54 

  

Stokes S, Lowe DJ, Froggatt PC. 1992. Discriminant function analysis and correlation of Late 

Quaternary rhyolitic tephra deposits from Taupo and Okataina volcanoes, New Zealand, 

using glass shard major element composition. Quaternary International 13‐14: 103– 117. 

Therneau T, Atkinson B. 2018. rpart: Recursive Partitioning and Regression Trees. Retrieved 

from https://CRAN.R‐project.org/package=rpart 

Tryon CA, Logan MAV, Mouralis D, et al. 2009. Building a tephrostratigraphic framework for 

the Paleolithic of Central Anatolia, Turkey. Journal of Archaeological 

Science 36: 637– 652.  

Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. Springer: New York. 

Waitt RB, Begét JE. 2009. Volcanic processes and geology of Augustine Volcano, Alaska. U.S. 

Geological Survey Professional Paper 1762. 

Wallace K, Coombs ML, Hayden LA, Waythomas CF. 2014. Significance of a near‐source 

tephra‐stratigraphic sequence to the eruptive history of Hayes Volcano, south‐central 

Alaska. U.S. Geological Survey Scientific Investigations Report 2014‐ 5133. 

Waythomas CF, Haney MM, Wallace K, Cameron CE, Schneider DJ. 2017. The 2014 eruptions 

of Pavlof Volcano, Alaska. U.S. Geological Survey Scientific Investigations 

Report 2017‐ 5129. 

Wold S, Sjöström M. 1977. Chemometrics: Theory and Application, SIMCA: A Method for 

Analyzing Chemical Data in Terms of Similarity and Analogy, ACS Symposium Series, 

Vol. 52. 

Wolpert DH. 1992. Stacked generalization. Neural Networks 5: 241– 259. 

Wu T‐F, Lin C‐J, Weng RC. 2004. Probability estimates for multi‐class classification by 

pairwise coupling. Journal of Machine Learning Research 5: 975– 1005.  

 

https://cran.r-project.org/package=rpart


55 

  

Chapter 3. Revised volume estimates and uncertainty for 

Mount St. Helens air-fall deposits from May 18th, 1980 using a 

cumulative-volume approach 

3.1. Introduction 

The May 18, 1980 eruption of Mount St. Helens (MSH1980) is one of the most thoroughly 

studied volcanic eruptions, including detailed examinations of processes, petrology, deposit 

mapping, and more (Lipman and Mullineaux, 1981; Cashman, 1988; Rutherford and Hill, 1993; 

Cutler et al., 2018; Gouhier et al., 2019). A unique aspect to MSH1980 was the rapid and 

widespread thickness sampling of the ashfall immediately after the eruption, allowing for 

subsequent mapping and production of several isopach (contours of equal deposit thickness) 

maps (Folsom and Quinn, 1980; Sarna-Wojcicki et al., 1981). The deposit has also been 

regularly used for testing and evaluating erupted volume estimation methods (e.g., Pyle, 1989; 

Fierstein and Nathenson, 1992; Bonadonna and Costa, 2012). These methods use thickness data 

to fit functions that describe the deposit decay regime over an area and use those functions to 

extrapolate beyond the mapped deposit. Such extrapolation permits volume estimates to account 

for material in far-distal plume areas.  

Despite the prevalence of  MSH1980 in the literature, all published integration-based 

volume estimates for this eruption have been based on a single thickness dataset, namely Sarna-

Wojcicki et al. (1981)’s, either using the isopach map therein or the underlying data (Durant et 

al., 2009) as inputs to secondary models (e.g., Engwell et al., 2015). Additionally, current 

volume estimates for MSH1980, though sometimes including measures of fitting error (e.g., 

Root Mean Square Error (RMSE) in Bonadonna and Costa, 2012, and the Ashcalc software of 

Daggitt et al., 2014), are usually presented as single estimates without values for confidence 

intervals (CI) or other uncertainty bounds. Like so many eruptions, MSH1980 lacks modern 

estimates of volume uncertainty, despite error propagation and uncertainty assessment being 

acknowledged as a necessary feature of volume studies (Burden et al., 2013; Biass et al., 2014).  

It is apparent that measuring deposit volume only within mapped areas, as with a 

planimeter (e.g., Lerbekmo, 2008), is insufficient to encompass the full deposit. A potentially 
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significant volume of volcanic ejecta (tephra) will have been deposited in areas too thin to 

measure. Such far-distal material is sometimes referred to as “missing volume”, and can be 

calculated via integration, as we explore here, or using the crystal-concentration method 

(Walker, 1980). Deposit volumes from areas with less than 1 cm thickness (V1-cm), though 

generally small relative to the total volume (V), frequently account for ~20% of the total volume 

(Fierstein and Nathenson, 1992). 

Researchers have long understood that the logarithm of tephra thickness decreases linearly 

when plotted against distance from the source (Þórarinsson, 1954). In early works, this 

observation was expanded by some, including Walker (1981a, 1981b), to relate deposit thickness 

to the area inside the corresponding isopach. This approach is appealing because not only does it 

summarise how tephra is distributed over space, but if one could calculate the area under the area 

vs thickness relationship (i.e., integration), the result would be the volume of the deposit. Pyle 

(1989) displayed the thickness/area relationship in ln(thickness)-(area)1/2 plots. His work 

revealed that the distribution and decay patterns of many tephras follow a two-segmented 

regime, where each of the segments represents an exponential function that appears linear when 

the y-axis is logarithmic. Given the straight-line behaviour of the exponential relationship, Pyle’s 

method, elaborated by Fierstein and Nathenson (1992), is believed to effectively extrapolate 

beyond the distally mapped isopachs (and include the increasingly thin deposit) more reasonably 

than arbitrary or subjective extrapolation methods (e.g., Rose et al., 1973). The core of this 

method relies on fitting a function to describe the thickness-area relationship. Integration 

subsequently resolves the area under that curve to get V. This technique is the standard method 

for determining erupted volume, even though various functional forms can be used to summarise 

the thinning regime (e.g., Pyle, 1989; Fierstein and Nathenson, 1992; Bonadonna et al., 1998; 

Bonadonna and Houghton, 2005; Bonadonna and Costa, 2012). 

The characteristics of volcanic deposits are always subject to some uncertainty. For 

example, thickness data uncertainty can result from natural variance, observational error, and 

isopach generation (Le Pennec et al., 2012; Engwell et al., 2013; Klawonn et al., 2014a, 2014b; 

Biass et al., 2019). However, amongst those sources of uncertainty, the distal deposit exhibits 

much higher uncertainty than the medial range (Le Pennec et al., 2012; Klawonn et al., 2014b). 

Accordingly, much of the variability and uncertainty in final volume estimates are a result of 
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extrapolation into poorly or unsampled distal deposits and reliance on isopachs that are not well 

supported with field measurements (Rose, 1993; Watt et al., 2009). For the two-segment 

exponential curve, the thinning relationship may be well constrained for the proximal/medial 

zone, whereas the distal segment may be controlled by fewer isopachs (Fierstein and Nathenson, 

1992). The lack of sufficient data to reliably calculate multiple slopes is especially crucial for 

inadequately delimited deposits, including remote or ancient tephras. For example, Nathenson 

(2017), when calculating the volumes of Holocene eruptions from the Cascade Range volcanoes, 

had to rely on extrapolations from only two or three thickness contours for several eruptions. 

Using only a few points inherently predisposes those models to overfit and overestimate 

confidence in their results (Babyak, 2004; Bonadonna and Costa, 2013).  

Furthermore, which isopachs are included in each segment and where the inflection point 

between segments occurs can dramatically influence V (Le Pennec et al., 2012). Volume 

estimates of this type usually segment the thickness/area points into groups based on visual 

assessment and fit multiple lines based on this judgement (e.g., Nathenson and Fierstein, 2014). 

However, breakpoint between segments can be determined empirically from the data so that a 

residual function is minimized (Muggeo, 2003, 2008; Spanu et al., 2016). By employing 

techniques such as this, subjectivity can be removed from volume estimation. 

Other function families used for volume estimation by ln(thickness)-(area)1/2 modelling 

include Weibull (Bonadonna and Costa, 2012) and power-law (Bonadonna et al., 1998; 

Bonadonna and Houghton, 2005). The critical unifying feature between all these models is they 

calculate V depending on thickness, T(x), as a function of isopach area, where x is the square 

root-area. The integration, illustrated by Daggitt et al. (2014), is as follows: 

𝑉 = ∫  
∞

0

 𝑇(𝑥)𝑑𝐴 = 2∫  
∞

0

 𝑥𝑇(𝑥)𝑑𝑥 

Integration for volume must include the entire domain from zero to infinite areas. Thus 

functions that are not integrable within this interval (for example, power-law) require proximal 

and distal integration limits that must be carefully chosen (Bonadonna and Costa, 2012). 

Although some methods have been applied to reduce the arbitrariness of this process 

(Bonadonna and Houghton, 2005; Biass et al., 2019), limit selection has the potential to 

considerably bias resultant volume estimates (Bonadonna and Houghton, 2005). For this reason, 
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an unbiased estimation method should use functions that can be integrated fully within this 

range. 

As techniques develop to reduce the subjectivity of isopach generation and volume 

estimation (Engwell et al., 2015; Yang and Bursik, 2016), it becomes increasingly important to 

develop and use methods to calculate V (including beyond reasonable mappable limits) for use 

with a wide range of thickness data types. Thickness data can consist of traditionally generated 

thickness data like hand-drawn isopach maps, as we explore here. But it can also be 

computationally generated data such as maps of inversion and simulation-modelled eruptions. 

Geostatistical interpolations of field data, including kriging or spline-fit thickness surfaces, are 

also important thickness data formats. Such geostatistical methods can even be used to 

interpolate between mapped contours from other methods and can expand discrete isopachs into 

a continuous thickness surface. Such surfaces are capable of yielding surface volume, which is 

useful for both validating cumulative volume estimates from existing methods within the mapped 

area and as an input to new volume-based curve-fitting and extrapolation. Notably, such surface 

volumes (i.e., the precise and geographically complete accounting for tephra volume between an 

arbitrary reference plane and the surface) allows the present work to evaluate the “true” volume 

contained within individual isopachs and mapped deposits as a whole. Optimally, volume 

estimates should account for model uncertainties (decay function fitting and isopach generation), 

and that of the underlying field observations where possible (Engwell et al., 2013; Biass et al., 

2014; Klawonn et al., 2014b).  

The present work has three main goals. 

● Employ a geospatially-based extrapolation method for volume estimation, 

purpose-built for straightforward interpretation, calculation, and uncertainty 

analysis, explicitly linked to modern geographic information system (GIS) 

software and workflows. 

● Evaluate and synthesize existing thickness data, including expanding the 

geospatial scope and using detailed near-vent isopachs, to improve MSH1980 V 

estimates, with a focus on the accuracy of medial and distal volume. 

● Create the first statistically robust estimates of MSH1980 volume, including 

uncertainty bounds. 
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Throughout, efforts will be made to ensure techniques are explained intuitively and feature 

an emphasis on the motivations behind method selection. Although digital tools for this process 

are not published with this thesis, the methods employed are easy to implement in routine 

computer-based workflows, and use, or are readily adaptable to, open-source software (e.g., R 

and QGIS). Data tools and scripts will be provided in a subsequent publication. 

3.2. Methodology 

Published isopachs were digitized and used as the input data for volume estimation by 

existing and updated integration and curve-fitting methods. A novel approach was also applied 

that exploits the advantages of GIS-based analysis in conjunction with data straightening. This is 

described in “3.2.4.1 Spatial integration and data straightening approach”. Two published 

isopach maps were analyzed for MSH1980, the United States Geological Survey (USGS) map of 

Sarna-Wojcicki et al. (1981) and the Washington State Department of Natural Resources (WA 

DNR) map by Folsom and Quinn (1980). A compromise thickness surface and isopach map were 

also synthesized, drawing from the strengths of both maps while also integrating the proximal 

air-fall data from Waitt and Dzurisin (1981). Also, we used ten isopach maps representing tephra 

deposits ranging from <0.5 km3 to >200 km3 by previous estimates (VEI 4 to 7) as test cases for 

the volume methodology. These maps have been analyzed with existing symbolic integration 

methods (Pyle, 1989; Fierstein and Nathenson, 1992; Bonadonna and Costa, 2012) and direct 

integration (Marti et al., 2016). A generalized workflow of the volume estimation method using 

existing isopach contours is shown in Figure 3.1, with details explained in the following 

subsections. 

 

https://paperpile.com/c/cTksGw/sMqRz/?noauthor=1
https://paperpile.com/c/cTksGw/TjykM/?noauthor=1
https://paperpile.com/c/cTksGw/140dk/?noauthor=1
https://paperpile.com/c/cTksGw/RbQ0+UZQw+491R
https://paperpile.com/c/cTksGw/wwWY
https://paperpile.com/c/cTksGw/wwWY
https://paperpile.com/c/cTksGw/wwWY
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Figure 3.1. Generalized workflow for volume estimation using several methods and including 

confidence estimation 

3.2.1. Georeferencing and digitization 

Isopach maps were georeferenced in a GIS environment and projected in an equal-area 

projection. Isopachs were digitized as curved polylines, and point locations were extracted along 

the lines at a uniform distance in x and y directions with points sampled every dim/250, where 

dim is the length of the short axis (x or y) of the mapped isopach extent. This process relies on 

first converting contour vectors to a raster grid with cells of the above-defined dimensions, then 

the point at each cell center was extracted. These contour points, composed of x, y, and z 

(thickness) values, were the control points for surface generation.  

Adding “zero” or arbitrarily thin control points to tephra thickness datasets to ensure 

isopach closure is standard for statistically-based isopach generation (Engwell et al., 2015; 

Buckland et al., 2020; Cutler et al., 2020). For the USGS isopach, we supplemented a distal 

“zero thickness” contour from a compilation of USGS and other data by Squires (1980) to Sarna-

Wojcicki (1981)’s published isopach to control distal contour closure (Figure 3.2). Though not 

necessary for extracting thickness values out to a reasonable value (i.e., the last closed contour as 

mapped, 0.5 cm), this additional distal data allows for analysis of confidence and visualization of 

the distal deposit beyond 113.5° E. For the USGS dataset, this extension allowed for analysis 

~200 km beyond the mapped closed isopach in the downwind direction. The choice of zero 

thickness distal boundary has no bearing on the volumes we predict from this map, as we limit 

https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/0RnuR+6pi23+cjxaI
https://paperpile.com/c/cTksGw/ndRTH/?noauthor=1
https://paperpile.com/c/cTksGw/sMqRz/?noauthor=1


61 

  

our analysis to 0.5 cm, which is at least tentatively closed. An alternative distal boundary for 

future study could be Shipley and Sarna-Wojcicki (1983)’s, 0.5 mm limit but this too is inferred 

and not based on available observations. But we must emphasize the importance of bounding 

limits in the upwind direction and near-vent measurements or contours to ensure proximal zones 

of the deposit are reliably represented (Watt et al., 2009). The 0.1 cm contour of this dataset was 

appended to facilitate proper closure in the upwind direction to within ~10 km of the vent 

location. 

The WA DNR isopachs were more well-constrained, with a nearly closed “trace” contour 

being drawn, extending to the southern border of Wyoming and into Canada in the cross-wind 

direction, and past Montana and Wyoming, into North and South Dakota in the downwind 

direction. We interpreted this as representing 0.1 cm thickness (< 0.8 mm in Mastin et al., 2013; 

Wallace et al., 2013). Though, to constrain the proximal upwind deposit, this contour was 

reasonably synthesized to within ~30 km of the vent (Figure 3.2; near vent detail) 

https://paperpile.com/c/cTksGw/qnjnx/?noauthor=1
https://paperpile.com/c/cTksGw/PCog5
https://paperpile.com/c/cTksGw/PCog5
https://paperpile.com/c/cTksGw/PCog5
https://paperpile.com/c/cTksGw/VlwGN+WgyKt/?prefix=%3C%200.8%20mm%20in,
https://paperpile.com/c/cTksGw/VlwGN+WgyKt/?prefix=%3C%200.8%20mm%20in,
https://paperpile.com/c/cTksGw/VlwGN+WgyKt/?prefix=%3C%200.8%20mm%20in,
https://paperpile.com/c/cTksGw/VlwGN+WgyKt/?prefix=%3C%200.8%20mm%20in,
https://paperpile.com/c/cTksGw/VlwGN+WgyKt/?prefix=%3C%200.8%20mm%20in,
https://paperpile.com/c/cTksGw/VlwGN+WgyKt/?prefix=%3C%200.8%20mm%20in,
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Figure 3.2. Digitized isopachs from USGS (A) and WA DNR (B) maps (Folsom and Quinn, 

1980; Sarna-Wojcicki et al., 1981). USGS observation locations are from Durant et al. (2009), 

while WA DNR observations are digitized from the georeferenced map. Insets of each map show 

the same proximal area in both panes. Primary panel extents for A and B differ, emphasizing the 

difference in scope between the datasets. Proximal supplemental constraining isopachs were 

drawn here, while the outer (0 cm) limit (A) was from Squires (1980). The map projection is 

North America Albers Equal Area Conic; central meridian = 116° W 

 

 

https://paperpile.com/c/cTksGw/ndRTH/?noauthor=1
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3.2.2. Thickness surface generation and processing 

The contour-based control points were used as inputs to a thin plate spline algorithm 

implemented in the R package ‘fields’ (Nychka et al., 2017). Thin plate spline (TPS) is a type of 

multi-dimensional smoothing spline, mathematically related to the cubic bias-spline interpolation 

method of Engwell et al. (2015). TPS is commonly adopted for spatial interpolation (ANUDEM, 

Hutchinson et al., 2011), and has proven to be more accurate and computationally efficient than 

B-splines for some applications (Mitra et al., 2011). ANUDEM, as implemented in the “Topo to 

raster” tool of ArcGIS (Environmental Systems Research Institute, Inc., 2016), has been used for 

generating surfaces from tephra isopachs before (Klawonn et al., 2014b), but is not easy to tune. 

“Topo to raster” has several tolerances and a smoothness penalty that can be adjusted depending 

on the data, but requires rather elaborate external model-building or programming to optimize 

these values. As such, we favour a careful tuning program as follows. 

Once a TPS model was fit, predictions were made across the concave hull of control points 

with a 100 km buffer at a 1 km grid spacing as the default. The standard error (SE) and mean (𝑥 ) 

were calculated at each prediction point to estimate the total SE for the surface. CI surfaces were 

generated with z value (Z) set according to the desired confidence level (95% in this case; Z = 

1.96) in the standard way, 𝐶𝐼 =  𝑥  ±  𝑍 ×  𝑆𝐸. 

3.2.2.1. Thin Plate Spline 

A thin plate smoothing spline (TPS) is a generalization of the cubic smoothing spline that 

allows for a surface to be fit to data as if a thin plate of metal is bent to fit over input points 

arranged in three dimensions. However, because the sheet has a modicum of rigidity, it resists 

being bent to exactly interpolate between points (as in Delaunay triangulation), and preserves 

some smoothness in the fitted surface. Though there are many formulations and means to 

describe TPS, we use the approach of Nychka (2017) and his fields R package, drawing heavily 

from the work of Wahba (Wahba and Wendelberger, 1980; Bates et al., 1987; Wahba, 1990).  

A TPS model is additive and of the form 𝑌𝑖 = 𝑓(𝑋𝑖) + 𝜖𝑖. The spline 𝑓(𝑋) interpolates a 

surface of 𝑑 dimensions between the input data. The errors at our inputs, 𝜖𝑖, are uncorrelated 

random errors, have a mean of zero, and have variances 𝜎2/𝑤𝑖. The weighting factor at a point 

(𝑤𝑖) is the reciprocal variance of measurement error. But for our study, we assume observations 

all have the same (and negligible) error; thus weights are ignored. However, altering the 

https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/0RnuR/?noauthor=1
https://paperpile.com/c/cTksGw/UPALv/?prefix=ANUDEM%2C
https://paperpile.com/c/cTksGw/UPALv/?prefix=ANUDEM%2C
https://paperpile.com/c/cTksGw/UPALv/?prefix=ANUDEM%2C
https://paperpile.com/c/cTksGw/UPALv/?prefix=ANUDEM%2C
https://paperpile.com/c/cTksGw/3kqsk
https://paperpile.com/c/cTksGw/3kqsk
https://paperpile.com/c/cTksGw/3kqsk
https://paperpile.com/c/cTksGw/KZBpv
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/5dAml+cTHiZ+ifent
https://paperpile.com/c/cTksGw/5dAml+cTHiZ+ifent
https://paperpile.com/c/cTksGw/5dAml+cTHiZ+ifent
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weighting regime to match measurement error in other use cases is a potentially important 

consideration and a key advantage of TPS. 

A TPS function, 𝑓 is a combination of two components: a d-1 degree polynomial (where d 

is the dimensions of the data) and a smooth function to model the data’s spatial dependence. TPS 

estimates 𝑓(𝑋) by minimizing the weighted residual sum of squares (RSS), ∑   𝑖  𝑤𝑖(𝑦𝑖 − 𝑓(𝑥𝑖))
2
, 

while necessitating the function to have a degree of smoothness. As such, our penalized sum of 

squares, taking into account the roughness penalty 𝐽𝑚 based on mth order derivatives, is 
1

𝑛
𝑅𝑆𝑆 +

𝜆𝐽𝑚(𝑓). 𝜆 is a smoothing or regularisation parameter; as λ increases, the spline gets smoother. 

Enforcing a roughness penalty helps prevent spurious heterogeneity in the resulting surface and 

gives a “smoother” result than if unweighted RSS was used.  

Parameter selection was conducted following generalized cross-validation (GCV) (Craven 

and Wahba, 1976). 𝑉(𝜆) =
1

𝑛

𝑅𝑆𝑆(𝜆)

(1−
𝐸𝐷𝐹(𝜆)

𝑛
)
2, where EDF is the effective degrees of freedom. The 

parameter for smoothness can range from zero (no smoothing, but the result has zero residual 

sums of squares, e.g., an interpolating spline) to infinity (a perfectly smooth surface, i.e., a 

polynomial of degree m-1, where m is the order of the derivative penalty). m is set such that 2m-

d is > 0. So for our case, the spatial drift polynomial is of third order because we are using 2-

dimensional 𝑋 data.  

As noted above, smoothness can be optimized by minimizing the GCV function (Craven 

and Wahba, 1976). Thus, an empirically chosen compromise between surface smoothing and 

precision can be made such that the surface reliably represents both the values at the input 

control points and the interpolated values between the contours. In machine learning parlance, by 

minimizing the GCV function, we are optimizing the regularisation parameter 𝜆.Thus, we should 

be reducing the tendency of our TPS model to overfit. The result will ideally be a model that can 

reliably replicate our observed data, while still being generalizable. We can also use the GCV-

estimated 𝜆 to calculate residual variance 𝜎2, as in an ordinary least squares approach, �̂�2 =

𝑅𝑆𝑆

(𝑛−𝐸𝐷𝐹(𝜆))
. 

A challenge of TPS is that it requires the inversion of a p x p-sized matrix, where p is the 

number of input points used. Values of p might easily grow to thousands or millions for large or 

https://paperpile.com/c/cTksGw/stNzW
https://paperpile.com/c/cTksGw/stNzW
https://paperpile.com/c/cTksGw/stNzW
https://paperpile.com/c/cTksGw/stNzW
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high resolution data. From a computational approach, this can prove untenable for very large 

datasets. Approximations of TPS have been implemented to reduce the computational burden for 

fitting TPS models (e.g., “fast” TPS or formulations of spatial process models), and notably, the 

difficult task of assessing pointwise standard error (using a conditional simulation approach) 

(Nychka et al., 2017). However, for our studies, a more straightforward process is used. Ideally, 

for minimum mean squared error (MSE) of a fit, the density of input points would be maximised. 

However, subsampling of input data has shown to be a workable alternative to full-density input 

datasets for standard TPS (Donato and Belongie, 2003) that is both computationally simple 

without making extraneous assumptions. For this reason, we explored a range of sampling 

densities reduced from the initial input datasets, ranging from 100% density down to 0.15% 

density, to assess the trade-offs between computability, accuracy, and surface error.  

3.2.2.2. Density-based surface synthesis 

In addition to the USGS and WA DNR maps, several other proximal datasets were 

digitized separately. This includes isopachs of the blast ashfall A3, and subsequent air-fall B, C 

and D from Waitt and Dzurisin (1981), the full deposit thickness of MSH1980, including 

directed-blast (pyroclastic density flow) and air-fall deposits, and, finally, the A1 and A2 blast 

surge units from Waitt (1981). TPS surfaces were calculated for all these individual isopach 

maps as well. For reference, a table describing the major units of MSH1980 and their various 

(coeval) names in literature are shown (Table 3.1).  

Following Waitt and Dzurisin (1981), we consider MSH1980 air-fall to include layers A3, 

B, C and D, but not including the gravel and sand surge facies, A1 and A2. Note that A3 is a 

component of distal ash, even hundreds of kilometres from the volcano (Sarna-Wojcicki et al., 

1981; Eychenne et al., 2015). As both the density-flow thicknesses and the rest of the proximal 

deposit were mapped by hand using the same observational data as inputs, we have equal 

confidence in each of two possible approaches to mapping the full proximal air-fall thickness. 

One direction was to calculate the sum of TPS surfaces for A3, B, C, and D maps; while the 

alternative was to subtract the sum of units A1 and A2 from the full deposit surface. Where TPS 

modelling or the subsequent calculations gave negative thicknesses, these were corrected to 0 

cm. The average of both interpretations of proximal air-fall thickness was calculated and 

appended to thickness data from the USGS surface to ensure a smooth and consistent 

https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/r6Azj
https://paperpile.com/c/cTksGw/140dk/?noauthor=1
https://paperpile.com/c/cTksGw/D72Yb/?noauthor=1
https://paperpile.com/c/cTksGw/140dk/?noauthor=1
https://paperpile.com/c/cTksGw/sMqRz+bZecX
https://paperpile.com/c/cTksGw/sMqRz+bZecX
https://paperpile.com/c/cTksGw/sMqRz+bZecX
https://paperpile.com/c/cTksGw/sMqRz+bZecX
https://paperpile.com/c/cTksGw/sMqRz+bZecX
https://paperpile.com/c/cTksGw/sMqRz+bZecX
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extrapolation into the medial deposit. The mean surface comprised our “proximal dataset” 

(Prox). It was subsequently used to calculate a synthesis surface that combined the proximal 

surface with the USGS and WA DNR surfaces based on the density of their input data. 

Table 3.1. Table summarising MSH1980 main proximal and distal air-fall deposits. Proximal 

units A3-D are fallout units and are components of the air-fall mapping and volume estimation in 

this work. Note that although Criswell’s phases include PDCs, we refer to primarily non-PDC 

tephra for our airfall analysis and follow the maps of Waitt and Dzurisin as primary proximal 

controls on thickness. PDC = pyroclastic density current; PF = pyroclastic flow; * = unit pinches 

out and is preserved only in the proximal zone 

Distal unit 

(Sarna-

Wojcicki 

et al., 

1981) 

Visual 

description of 

distal deposit 

Phase 

(Criswell, 

1987) 

Dominant 

processes 

Proximal 

unit (Waitt 

and 

Dzurisin, 

1981) 

Unit description 

(Waitt and Dzurisin, 

1981) 

Eruption 

column 

description 

Unit 3 
Light-

coloured ash 

VI 
Weak ash 

emissions 
D* Upper grey silt 

Light-grey 

column 

V/VI 

Late PFs and 

weak ash 

emissions 

C3 Upper silt 

C2 Pumice sand 

C1 Lower silt 

IV Late Plinian B4 
Upper pumice-rich 

layer 

III 
Early PDCs, 

co-PF ash 
B3 

Upper lithic-rich 

layer 

II 
Early Plinian, 

minor PFs 

B2 
Lower pumice-rich 

layer Dark-gray 

column 
Unit 2 

Salt-and-

pepper ash 
B1 

Basal lithic-rich 

layer 

Unit 1 Dark ash I 

Blast fallout A3 Silt layer 

Directed 

(lateral) blast 

Blast surge A2* Sand layer 

early blast 

surge 
A1* Gravel layer 

 

For the MSH1980 isopach maps, there is a marked disparity between the sampling 

locations, both in number and density (Figure 3.2). Notably, the WA DNR map is entirely 

lacking proximal observations inside the 3 cm isopach. Whereas the USGS map includes a dense 

https://paperpile.com/c/cTksGw/sMqRz
https://paperpile.com/c/cTksGw/sMqRz
https://paperpile.com/c/cTksGw/sMqRz
https://paperpile.com/c/cTksGw/sMqRz
https://paperpile.com/c/cTksGw/sMqRz
https://paperpile.com/c/cTksGw/9wL1g
https://paperpile.com/c/cTksGw/9wL1g
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
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distribution of samples near the vent, but is far more spatially heterogeneous and lacks far-distal 

data. Considering this, we adopted a kernel density estimation (KDE)-based weighting regime to 

combine the mean TPS surfaces from both isopach maps. 

  Kernel density surfaces were computed for the observation points of each isopach using 

Silverman’s Rule of Thumb (Silverman, 1986) to inform the kernel bandwidth. Although some 

of the point locations for the USGS map have been reported by Durant et al. (2009), these 

include locations not on the original map and lack some of the points from the 1981 map. As 

such, observation locations for the USGS, Prox, and WA DNR maps were digitized from the 

georeferenced maps. Then, a density-weighted average approach was used to weigh the three 

maps’ TPS surfaces at every location within their extents. The implicit assumption being that we 

should have more confidence in interpolations where input observations are densest, whereas 

interpolation is less well-supported where observation density is low. The weighted mean (x̄) at 

each cell (i) is the sum of the mean TPS predictions for each surface, weighted by the relative 

density (d) of that surface (density for that surface, divided by the sum of the density values for 

all surfaces). Mathematically, it is as follows: 

𝑥 𝑖 = (𝐷𝑁𝑅𝑖 ⋅
𝐷𝑁𝑅𝑑𝑖

𝑈𝑆𝐺𝑆𝑑𝑖 + 𝐷𝑁𝑅𝑑𝑖 + 𝑃𝑟𝑜𝑥𝑑𝑖
) + (𝑈𝑆𝐺𝑆𝑖 ⋅

𝑈𝑆𝐺𝑆𝑑𝑖
𝑈𝑆𝐺𝑆𝑑𝑖 + 𝐷𝑁𝑅𝑑𝑖 + 𝑃𝑟𝑜𝑥𝑑𝑖

) 

+(𝑃𝑟𝑜𝑥𝑖 ⋅
𝑃𝑟𝑜𝑥𝑑𝑖

𝑈𝑆𝐺𝑆𝑑𝑖 +𝐷𝑁𝑅𝑑𝑖 + 𝑃𝑟𝑜𝑥𝑑𝑖
) 

3.2.2.3. Processing 

Surfaces were processed such that TPS-modelled negative thicknesses were changed to “no 

thickness”. Area and volume contained within arbitrarily defined isopachs of the generated 

surfaces were extracted for mean and CI surfaces following an arbitrary sampling regime that 

follows a geometric interval system. Using the maximum predicted thickness (Tmax) as an upper 

limit, the thickness space can be divided into 30 subdivisions (s 1:30) using an exponential 

formula to determine isopach breaks: 

0.006 ×  𝑇𝑚𝑎𝑥 × 𝑒0.17 × 𝑠
  
 

We suggested this (admittedly arbitrary) subdivision regime because it works well for 

representing skewed data while diminishing the overrepresentation of proximal isopachs that 

https://paperpile.com/c/cTksGw/svfqs
https://paperpile.com/c/cTksGw/NzJ9a/?noauthor=1
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would result from using an equal interval. Thicknesses contours thinner than can be reliably 

measurable/mappable should be excluded. Following the observations of Sparks et al. (1983), 

Pyle (2016), and Cutler et al. (2020), a threshold of 0.5 cm was used. For each fitted surface, the 

areas and volumes inside closed isopachs were calculated for each defined break. These values, 

in turn, were used as inputs for fitting various functions to estimate the total volume of the 

deposits.  

3.2.3. Curve fitting and integration 

Calculation of tephra volume, in most applications, is a matter of integration. Here, we use 

log thickness versus area1/2 relationships and a variety of functions fit to this data followed by 

numeric integration to calculate volumes. The advantage of numeric integration in this case, over 

symbolic formulations, is that it allows integration of irregular functions, e.g., instantaneous CIs. 

Such CIs are calculated via Monte Carlo (MC) simulation, although reasonable approximations 

may also be computed using first or higher-order Taylor series expansion (Wilson and Smith, 

2013; Tellinghuisen and Spiess, 2014; Spiess, 2018).  

3.2.3.1. Nonlinear least-squares approach 

Nonlinear least-squares (NLS) regression is a means to estimate parameters of nonlinear 

models. It is used to estimate the parameters of the models included in this study, including 

Weibull and exponential (with zero or more breakpoints) fits. By implementing weighted NLS, 

the random error in the dependent variable can be accounted for. However, a standard weighting 

regime is not feasible and should be considered carefully for each dataset applied. Changes in the 

weighting strategy may meaningfully influence estimated erupted volume (Bonadonna and 

Costa, 2013). As baselines, we adopt a uniform weighting regime (wi = 1) and one where weights 

minimize the proportional error, wi = 1/Ti
2(obs). However, other weighting regimes, including wi 

= 1/Ti(obs) or custom formulations accounting for observed or modelled error (e.g., Le Pennec et 

al., 2012; Engwell et al., 2013; Klawonn et al., 2014a, 2014b) may be more representative of the 

dataset in question. No matter how the weights are assigned, parameters are selected that 

minimize the residual 𝜎2 = ∑  𝑁
𝑖=1  𝑤𝑖[𝑇𝑖(𝑜𝑏𝑠) − 𝑇𝑖(𝑐𝑎𝑙𝑐)]

2, where N is the number of data 

points and Ti(obs) and Ti(calc) are observed and calculated thicknesses.  

The Levenberg-Marquardt (LM) algorithm (Marquardt, 1963) is used for fitting the NLS 

functions. It allows for parameter optimization even in cases where starting points are not well 

https://paperpile.com/c/cTksGw/LfZvT/?noauthor=1
https://paperpile.com/c/cTksGw/Y7A8v/?noauthor=1
https://paperpile.com/c/cTksGw/cjxaI/?noauthor=1
https://paperpile.com/c/cTksGw/4XZqv+vceGj+muhy
https://paperpile.com/c/cTksGw/4XZqv+vceGj+muhy
https://paperpile.com/c/cTksGw/8lr7s
https://paperpile.com/c/cTksGw/8lr7s
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+3BRk6+c1wkZ/?prefix=e.g.%2C%20,,,
https://paperpile.com/c/cTksGw/wDXnZ


69 

  

known. Effective optimization is vital for parameter estimation of all functions, but, especially 

well noted for the Weibull approach, where parameters are known to vary over several orders of 

magnitude, depending on the deposit being modelled (Bonadonna and Costa, 2012).   

The two primary function types we explore in this work include Pyle (1989)’s exponential 

model, extended to fit two segments, and Bonadonna and Costa (2012)’s Weibull model (with 

proportional error weighting). The exponential model is effectively 𝑇(𝑥) = 𝑐𝑒−𝑚𝑥 for each of 

two or more segments fit on separate domains of the data, with a break or interception point 

being the x value where the segments meet (Daggitt et al. 2014). T is thickness, x is area1/2, c is 

the theoretical maximum thickness (also Tmax), and -m is the thinning rate (e.g., the slope of a 

line on a ln(thickness)-(area)1/2 plot). A simple way to think of the exponential fit is simply a 

straight line fit with a logarithmic y axis. The Weibull model of Bonadonna and Costa (2012), on 

the other hand, is 𝑇(𝑥) = 𝜃 (
𝑥

𝛬
)
𝑛−2

𝑒(−
𝑥

𝛬
)
𝑛

.  θ is a thickness scale (linear units), 𝛬 is the decay 

length (linear units), and n is a dimensionless shape parameter. Note that capital lambda is used 

here for the decay length to differentiate it from the smoothing parameter (𝜆) used in TPS. 

For confidence interval calculation for fitted functions, error propagation of NLS values 

via MC is applied, with 100,000 iterations at each point. Although computationally more 

intensive than Taylor Series expansion, this methodology allows for direct comparison to other 

MC-based approaches (e.g., Biass et al., 2014, 2019). Note that exponential fits with multiple 

changepoints (i.e., three or more segments), although relatively uncommon for tephra deposits, 

may be required.  For multiple segment fits, bimodal distributions of the probable changepoints 

may occur. In these cases, unless taking into account suitable Bayesian posteriors for 

changepoint locations, NLS can estimate unrealistic uncertainty around changepoints. To address 

these issues, we use Muggeo (2017)’s score-based approach for interval estimation in multi-

slope exponentials. Our testing reveals no meaningful difference between Muggeo’s method and 

NLS-based (MC) confidence intervals for exponential cases with only one breakpoint. As such, 

NLS and MC were used.    

Numerical integration is achieved via the tanh-sinh quadrature scheme (Takahasi and Mori, 

1974), a robust and fast approach for continuous functions even with infinite intervals, as is the 

case for tephra thinning functions. Numeric integration of mean functions was compared to 

https://paperpile.com/c/cTksGw/491R
https://paperpile.com/c/cTksGw/RbQ0/?noauthor=1
https://paperpile.com/c/cTksGw/491R/?noauthor=1
https://paperpile.com/c/cTksGw/491R/?noauthor=1
https://paperpile.com/c/cTksGw/fTCg5+CR5x8/?prefix=e.g.%2C%20,
https://paperpile.com/c/cTksGw/fTCg5+CR5x8/?prefix=e.g.%2C%20,
https://paperpile.com/c/cTksGw/fTCg5+CR5x8/?prefix=e.g.%2C%20,
https://paperpile.com/c/cTksGw/VQPMR/?noauthor=1
https://paperpile.com/c/cTksGw/AM8Ia
https://paperpile.com/c/cTksGw/AM8Ia
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symbolic methods published (Pyle, 1989; Fierstein and Nathenson, 1992; Bonadonna and Costa, 

2012). Calculations were replicated tenfold for each function, including upper and lower 95% 

CIs to evaluate integration error and variance.  

3.2.4. Visualization and cumulative volume 

We recognize that ln(thickness)-(area)1/2 plots are the standard way tephra thinning and 

volume distributions have been shown since their introduction (Pyle, 1989). However, there is a 

case to be made for visualizing such data in volume-thickness plots (Froggatt, 1982). By 

showing the volume contained above isopach reference planes, it becomes intuitive to interpret 

volume differences at various deposit thicknesses, and such plots can show the volume out to any 

thickness directly (Froggatt, 1982). This is also where the advantages of GIS-based calculations 

and continuous thickness surfaces, such as our TPS predictions, are helpful. Earlier volume 

estimation methods that utilized cumulative volume-thickness relationships derived from discrete 

isopach contours could not account for proximal extrapolation to thicker than the maximum 

closed contour (Fierstein and Nathenson, 1992), and relied on other methods to extrapolate to 

zero thickness (Froggatt, 1982).  

We use TPS to extrapolate proximally (i.e., interpolation between spatial coordinates, but 

to greater thicknesses than the input domain). Thus, the prior limitations of isopach-only 

cumulative volume are overcome. But by using GIS to calculate the cumulative volume between 

the surface and various reference planes, we also overcome the limitations of the previously used 

trapezoidal rule-based numeric integration (Fierstein and Nathenson, 1992). Given that volume is 

the dependent variable for the data straightening approach introduced in this study, it is 

straightforward to plot such fits on volume-thickness plots and compare those fits to precisely 

calculated surface volume. To plot the results of Weibull or exponential curve fitting and 

integration requires an additional step and dramatically benefits from rapid and automated 

computation, but is not conceptually difficult or novel. 

Imposing integration limits in the area domain has been standard since the advent of curve-

fitting based volume estimation (Pyle, 1989; Fierstein and Nathenson, 1992). But we must iterate 

this process over a range of critical areas, each time including the volume that exists from zero 

area (i.e., maximal thickness) out to the area that is the limit of the critical thickness(es). In doing 

so, we can plot curves and confidence ranges around the cumulative volume for any reference 

https://paperpile.com/c/cTksGw/RbQ0+UZQw+491R
https://paperpile.com/c/cTksGw/RbQ0+UZQw+491R
https://paperpile.com/c/cTksGw/RbQ0
https://paperpile.com/c/cTksGw/dTog
https://paperpile.com/c/cTksGw/dTog
https://paperpile.com/c/cTksGw/UZQw
https://paperpile.com/c/cTksGw/dTog
https://paperpile.com/c/cTksGw/UZQw
https://paperpile.com/c/cTksGw/RbQ0+UZQw
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thickness. However, it is unlikely that any set of prediction points will return the precise area for 

a given thickness. This is especially the case when CIs are calculated. Essentially, we must 

interpolate between predictions to find the desired integration limit area that corresponds to 

mean, upper and lower CLs (Figure 3.3 A and inset).  

We use the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method of 

monotonic interpolation (Fritsch and Carlson, 1980) to find the area values for integration out to 

particular thicknesses. This is the same method useful for calculating distal volume beyond 1 cm 

(or V1-cm), but can be adapted to find integration limits for any thickness so long as the prediction 

domain is sufficiently large. For our study of MSH1980 we made predictions at zero area, areas 

at all input points, and arbitrarily large areas (two hundred thousand km2 and twenty billion km2, 

sufficient to cover the surface of the earth several times over in the last case). This allows for 

integration limits to be interpolated for any critical thickness, so long as the thinning function 

would eventually reach that thickness. If a function was to go asymptotic prior to reaching the 

critical thickness, integration to infinity should be done. Considering the general negative slope 

of the functions we explore here, integration limits for lower 95% CL at a given the thickness, 

will always be smaller than the mean integration limit, which in turn must be smaller than the 

upper CL’s integration limit (Figure 3.3 A). 

However, what becomes clear in this sort of visualization is something that was not 

initially apparent from ln(thickness)-(area)1/2 diagrams, or even thickness-area1/2 plots with linear 

y-axes (Figure 3.3 B). There appears to be a small but real offset in the directly integrated 

cumulative volume curve (summarized by trapezoidal rule or GIS-based integration) relative to 

the limited integration cumulative volumes from prior methods (Figure 3.3 C). This difference is 

one of the motivations behind using a technique that utilizes direct (GIS-based) integration of a 

thickness surface for extrapolation to total deposit volume.  

https://paperpile.com/c/cTksGw/vW84C
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Figure 3.3. Explanatory diagrams highlighting the concepts of integration for volume on (A) 

ln(thickness)-(area)1/2 diagrams, (B) thickness-area1/2 plots with linear y-axes, and (C) 

cumulative volume plots. Thickness, volume, and area data points are from Fierstein and 

Nathenson’s measurement of the USGS map of MSH1980. However, for reference, our approach 

to segmented exponential regression and Taylor expansion confidence interval estimation is 

adopted. Note that the breakpoint, Tmax, V, and V1-cm are all equivalent to the original work 

3.2.4.1. Spatial integration and data straightening approach 

In addition to existing methods of volume estimation, we present an alternative and novel 

technique that utilizes cumulative volume intrinsically. We aim not to calculate the areas under 

means and instantaneous confidence intervals of thinning functions (Figure 3.3). Instead, we 

perform direct integration of thickness surfaces in GIS software and extract cumulative volumes 

at a suite of thicknesses. We can then find the relationship that directly describes volume as a 

function of thickness. The essence of this rationale was proposed by Froggatt (1982). 

 The volume-thickness relationship is nonlinear. For most deposits it does not follow 

common non-linear forms either (diverging from the observations of Froggatt, 1982). Despite the 

fact that deposits can sometimes be roughly approximated by power-law, exponential, or 

logarithmic relationships, just as single-segmented exponential fits are often inadequate to 

account for thinning visualized on ln(thickness)-(area)1/2 plots, the exponential fit Froggatt 

proposed for log-volume vs thickness plots proves insufficient for many deposits. We instead use 

a modification of Mosteller and Tukey’s bulging rule to linearize the volume-thickness 

relationship (Tukey, 1977). Such a method uses a “ladder” of powers to transform and straighten 

data (Tukey, 1977).  

https://paperpile.com/c/cTksGw/dTog/?noauthor=1
https://paperpile.com/c/cTksGw/dTog/?prefix=diverging%20from%20the%20observations%20of
https://paperpile.com/c/cTksGw/2TnM
https://paperpile.com/c/cTksGw/2TnM
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For our case, we raise a variable parameter (v) to the power of thickness and fit a least-

squares regression line to this transformed x variable (vT) to predict volume. To put it another 

way, we are making the p-root of thickness the explanatory variable in ordinary least squares. 

The primary departure from Mosteller and Tukey's so-called “ladder” is that we are not limited 

to integer or 1/2 exponents. Instead we are optimizing this v to give us the smallest residuals. In 

essence, we are taking an ordinary least squares regression approach to predict volume. 

However, our x variable is transformed through the fitting process in such a way that the 

relationship is straightened. Thus, we refer to this as the “data straightening” approach. 

The formulation for the least-squares line is simple: V = m × vT + b. Here, m is the slope of 

the transformed line, and b is its intercept. As with the aforementioned curve-fitting approaches, 

the LM method was used for parameter estimation. After fitting, prediction intervals were 

calculated via MC at thicknesses of interest. Solving the equation at zero thickness resolves the 

total deposit volume, but modifying the T value allows for rapid calculation of volume contained 

within any arbitrary isopach. Here, instead of calculating the CI across the entire function from 

zero to infinity to get V, as with the other approaches, we simply calculate the prediction interval 

(PI) at the thickness of interest (e.g., zero for total deposit thickness). Note the distinction 

between prediction and confidence intervals, with confidence intervals indicating the limits 

between which we would expect the actual mean value (i.e., the summary function) to exist 

within. In contrast, prediction intervals indicate the range that would contain a single value 

sampled at a given x a certain percentage of the times when randomly sampled. Although 

naturally more conservative (i.e., yielding wider bounds), in this case, prediction intervals are 

appropriate because we are only looking for a single sample prediction at a specific thickness.  

Now, with these methods in hand, we can extrapolate high-thickness volume in a spatially 

consistent way via TPS, and can extrapolate the cumulative volume we observe in the mapped 

deposit to any thickness. Froggatt (1982) recognized the benefits of cumulative volume-thickness 

relationships as a means to predict V. He explained that by using cumulative volume, 

extrapolation is more reasonable than area-based methods of the time, and that the relationship to 

thickness is easily visualized in two dimensions, it is a simple matter to predict volume at any 

thickness. However, it is only now, by using spatial interpolation, GIS-based integration, and 

computerized NLS optimizers, that we can fully take advantage of cumulative volume data to 

https://paperpile.com/c/cTksGw/dTog/?noauthor=1
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reliably estimate V. By using NLS error propagation, we can estimate the uncertainty of our 

estimates on cumulative volume plots for the first time too.    

3.2.5. Extrapolation and sensitivity analysis 

To evaluate the reliability of the extrapolation methods, we used the KDE-based surface as 

a specific and well-supported test case. It is preferred for this analysis because it contains the 

most well-supported distal thickness data of any of the maps studied. We re-computed the 

surface at a higher-than-normal resolution (100 m) and calculated the surface volume using two-

segment piecewise exponential, Weibull, and data straightening methods at geometrically 

defined breaks (as above) to 0.5 cm limit. Instead of using all sampled contours, distal data was 

systematically withheld to observe prediction error relative to the directly computed surface 

volume > 0.5 cm. A series of fits were made, starting first with only the proximal data. 

Increasingly thinner, more distal, isopach data points were added in subsequent fits. By limiting 

integration to the 0.5 cm critical thickness threshold (as in limited integration plots), we 

evaluated the absolute volume error by comparing results with missing distal data to the exact 

and directly integrated surface volume > 0.5 cm. 

We also explored the impact of varying cell sizes for volume estimation to assess changes 

to volume and area above a reference contour. The 0.5 cm reference plane was chosen as it is 

most representative of the entire mapped deposit and thereby shows the most large-scale changes 

across the full thickness domain. We also tested a range of isopach point sampling densities to 

assess the sensitivity of TPS prediction values and their standard error as the number of thickness 

input points changed. 

For cumulative volume and limited integration analysis, particularly with experimental 

replication and iterations with various subsets, the computational load for MC can be excessive 

to the degree of intractability. First, many simulations are required to summarise the confidence 

intervals predicted over a broad and densely sampled range for input to the spline interpolation. 

Simulation must be repeated at points across the function for integration, replicated by the 

number of thickness values required for plotting. Considering this, although MC is viable for 

single (e.g., total) volume estimates, here less computationally intensive solutions are preferred. 

For the piecewise exponential functions, we used the first-order Taylor expansion confidence 

intervals from the segmented linear model predictions (Muggeo, 2008).  For the Weibull 

https://paperpile.com/c/cTksGw/WgSF
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functions the second-order Taylor expansion is used. In either case, adequate representations of 

confidence limits were made while forgoing the need for problematically intensive simulations. 

Our testing supports the notion that these approximations well-duplicate MC results (Wilson and 

Smith, 2013). However, it should be noted that higher-order Taylor expansion on piecewise 

exponential functions are prone to producing spurious CI measures, frequently going to infinity 

when the NLS convergence tolerance is set too high. For this reason, first-order Taylor 

expansion is preferred for the segmented models.     

3.2.6. Summary of methods 

The workflow implemented in this research uses a combination of GIS software (ArcMap 

10.6) and computations in the statistical software R. Currently, to complete the full analytical 

sequence, data must be transferred between software several times (Table 3.2). However, 

integration with R and GIS software is increasingly permitting joined geospatial and statistical 

workflows (Environmental Systems Research Institute, 2020; Pobuda, 2020). If running code 

without a user interface is not an option for a user, or they prefer to conduct statistical analysis in 

Excel, that is also an option. However, some differences in the results may be found, depending 

on the precise implementation adopted. Full R script templates and ArcGIS toolboxes will be 

released with the published version of this paper. Until that time, Table 3.2, in conjunction with 

the above subsections, should provide sufficient information to replicate this work.  

 

https://paperpile.com/c/cTksGw/4XZqv
https://paperpile.com/c/cTksGw/4XZqv
https://paperpile.com/c/cTksGw/JJ2CP+vTAwP
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Table 3.2. Table summarizing key methodological tasks in our volume estimation workflow, highlighting both currently employed 

and potential alternative approaches and software/programming solutions 

Task Type of 

process 

Presently implemented Alternative method 

Georeference isopach 

map, vectorize contours, 

convert vectors to points 

from raster grid 

GIS ArcMap: Align the image to control points with a transfer 

function, trace contours as curves, "Feature to Raster 

(Conversion)", "Raster to Point (Conversion)" 

Comparable process in QGIS. In ArcMap, "Generate Points Along 

Lines (Data Management)" can be used instead of rasterizing 

vectors and converting to points 

Interpolation: TPS 

optimization and fit 

Spatial 

statistics 

R: fields package "Tps" (Nychka et al., 2017). GCV is 

used to find lambda by default 

SAGA-GIS, as a standalone or for use with QGIS for TPS 

interpolation. However, optimizing λ is less straight-forward  

Surface generation and 

processing 1 

Spatial 

statistics 

R: "predict" Tps model to get interpolated values at 

desired coordinates. (Optional) Use fields "predictSE" to 

get covariance for surface CI assessment. Use base R to 

replace negative values with 0 

Radial Basis Function in ArcMap can produce interpolated 

predictions, but not SE. ArcMap "Raster Calculator" to 

conditionally select and alter negative values 

Surface processing 2 GIS ArcMap: Load point predictions as continuous surface 

(raster), generate contours at an arbitrarily high density 

(e.g., interval = 1 mm), turn contours to polygons with 

"Feature to Polygon", "Dissolve" polygons as multipart 

features, "Eliminate Polygon Part" to delete small islands 

and non-closing contours, use this extent to clip raster 

Comparable process in QGIS/SAGA-GIS 

Collect area and volume 

data from the surface 

GIS/ spatial 

statistics 

ArcMap: Iterate "Surface Volume" on the clipped raster, 

adjusting the reference plane to desired thickness breaks 

Comparable process in QGIS/SAGA-GIS. Can also be calculated in 

R  

Curve fitting (NLS) Line-fitting/ 

statistics 

R: minpack.lm "nlsLM" for fitting functions by LM 

method (Elzhov et al., 2016). "segmented" from 

segmented package (Muggeo, 2008) helps find reasonable 

starting parameters for piecewise exponential fits 

Solver add-in for Excel performs well for parameter optimization 

when adequate starting parameters are supplied 

Integration and error 

propagation 

Line-fitting/ 

statistics 

R: "predictNLS" from propagate package (Spiess, 2018) 

to get Taylor expansion or MC confidence/prediction 

intervals and means 

Symbolic mean integrations can be easily conducted in Excel. 

Estimated CI and PI can be calculated too, but parameter 

uncertainty estimation is difficult 

Interpolation and 

integration; cumulative 

volume plots 

Mathematical R: pracma package's "interp1" with method = "cubic" for 

univariate interpolation (Borchers, 2019). Adaptive 

numerical integration also using pracma "integral" 

Excel: PCHIP and functional integration can be implemented in 

Excel, if coding in Visual Basic for Applications (VBA) or 

sideloading analytical add-ons. Alternatively, linear interpolation is 

straightforward in Excel but could be less accurate. Integrals can 

also be approximated by the trapezoidal rule in Excel 

https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/fGHC
https://paperpile.com/c/cTksGw/x2Dq
https://paperpile.com/c/cTksGw/x2Dq
https://paperpile.com/c/cTksGw/x2Dq
https://paperpile.com/c/cTksGw/WgSF
https://paperpile.com/c/cTksGw/muhy
https://paperpile.com/c/cTksGw/aahr
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3.3. Results 

3.3.1. Comparison of isopach surfaces 

By drawing on extensive point observation datasets and expert-produced isopach contours, 

the produced KDE synthesis map (Figures 3.4 and 3.5) represents the most complete and well-

supported isopach map for MSH1980 produced to date. At a broad scale, it represents the 

characteristic features of the deposit, including maximal thickness in the proximal area, 

secondary thickening near the town of Ritzville, Washington (Sarna-Wojcicki et al., 1981; 

Durant et al., 2009) (i.e., the “Ritzville bulge”), as well as a northeastern drift with a northward 

displacement of deposit thickness evident by the co-blast plume (Eychenne et al., 2015). 

Focusing on the proximal deposit, near-vent heterogeneities are more clearly represented than in 

previous maps. They suggest topographic influence on air-fall deposition, particularly from layer 

A3 and units B, and D, where air-fall heterogeneity was most notable (Figure 3.5). However, 

without more precise mapping, it is hard to tell how much of this variability resulted from co-

pyroclastic density current ash. The northward displacement of the proximal deposit is also 

visible, mostly represented by the silt facies of the blast surge and associated air-fall deposit (unit 

A3) that make up the vast majority of proximal volume directly north of the vent. The northward 

spread of A3 is apparent as an isolated 10 cm contour in Figure 3.5 and is consistent with co-

blast ashfall of 4 cm and thicker (Waitt, 1981).  

Northward thickness displacement is also evident here by a small, isolated contour of >20 

cm near Johnston Ridge, just east of Spirit Lake. This local maxima in thickness is a result of the 

thickening of A3 >2 cm, but primarily unit C, which was mapped between 15 and > 60 cm thick 

in this region (Waitt and Dzurisin, 1981). The unit C deposit is mostly a product of windblown 

ash from proximal pyroclastic density currents (i.e., co-ignimbrite ash) (Waitt and Dzurisin, 

1981).  

The thickest region of the deposit in the KDE synthesis surface is a >30 cm contour 

northeast of the vent in Figure 3.5. This is a region of high local thickness from units A3, B, C, 

and D. The east flank of the volcano and the lead into the “pumice plain” is primarily derived 

from >20 cm thick unit B (deposits from the central eruptive column). By using the average of 

the total deposit minus primary ignimbrite deposits and the individual air-fall units to form the 

Prox dataset, flank thicknesses were reduced. This reduction is due to the sand and gravel facies 

https://paperpile.com/c/cTksGw/sMqRz+NzJ9a
https://paperpile.com/c/cTksGw/sMqRz+NzJ9a
https://paperpile.com/c/cTksGw/sMqRz+NzJ9a
https://paperpile.com/c/cTksGw/sMqRz+NzJ9a
https://paperpile.com/c/cTksGw/sMqRz+NzJ9a
https://paperpile.com/c/cTksGw/sMqRz+NzJ9a
https://paperpile.com/c/cTksGw/bZecX
https://paperpile.com/c/cTksGw/bZecX
https://paperpile.com/c/cTksGw/bZecX
https://paperpile.com/c/cTksGw/D72Yb
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
https://paperpile.com/c/cTksGw/140dk
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of the surge deposits being as thick (or thicker) than the mapped full eruption thickness. Directly 

north of the vent, the total deposit thickness as mapped in Waitt and Dzurisin (1981) is 

dominated by non-air-fall deposits (i.e., units A1 and A2), and the synthesized air-fall thickness 

drops below 1 cm within just a few kilometres of the thickest Plinian ash deposits. Important 

heterogeneities such as this have been absent from other whole-deposit maps produced to date. 

 

Figure 3.4. KDE synthesis isopach map for MSH1980 uncompacted air-fall thickness, combining 

USGS and WA DNR hand-drawn map data with a compiled proximal thickness dataset. 

Contours are in cm. For comparison to the most recent USGS deposit extent, the 0.5 mm contour 

of Shipley and Sarna-Wojcicki (1983) is added and compared to the 0.3 cm KDE synthesis 

contour, its closest analogue. MSH volcano is indicated by the black triangle. Generalized 

shaded relief (gray shading) is shown in the background, emphasizing large-scale topographic 

features. Note, proximal contours within black bounding box are generalized for interpretation; 

see Figure 3.5 for near-vent detail 

Comparing the three surfaces analyzed here reveals critical differences in their thickness 

distributions over the plume area. The most noticeable difference is the extension of the WA 

DNR 0.5 cm limit beyond that of the same USGS mapped extent in all directions except for a 

proportionally small region ~125 km long north-northeast of the volcano. Here, the USGS map’s 

0.5 cm limit is about 10 km further north than the WA DNR map’s. Otherwise, the WA DNR 

limit is more expansive, especially in the distal (downwind) deposit, where the difference is as 

much as ~92 km. Such an extension of fine ash agrees with Jensen et al. (2019)’s work that 

detailed occurrences of far-distal, yet visible, ash from MSH1980 considerably north into 

Canada. Over the portions of the two primary surfaces that overlap inside their 0.5 cm limits, on 

https://paperpile.com/c/cTksGw/140dk/?noauthor=1
https://paperpile.com/c/cTksGw/Vvq1/?noauthor=1
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average, the WA DNR surface is 0.8 cm thicker than the USGS surface (SD = 1.6 cm, n = 97776 

raster cells). However, near the vent, the USGS surface is substantially thicker, with a difference 

of up to 19 cm. Conversely, the places where the WA DNR surface was thickest relative to the 

USGS surface was mostly to the south of the deposit and between the WA DNR 3 and 5 cm 

isopachs east and south of the “Ritzville bulge”. 

 

Figure 3.5. KDE synthesis isopach map for MSH1980 uncompacted air-fall thickness, combining 

USGS and WA DNR hand-drawn map data with a compiled proximal thickness dataset. 

Contours are in cm. The black depression contour represents the MSH crater rim. The north- 

facing opening represents the area of flank collapse 

The KDE synthesis surface does not differ greatly from the full published map surfaces on 

average, but the near-vent thickness was increased relative to the USGS surface by as much as 

27 cm, and 44 cm for the WA DNR surface. Absolute Tmax of the TPS modelled surfaces are 47 

cm for the KDE synthesis, 22 cm for the USGS surface, and 5.5 cm for the WA DNR surface. Of 

note, Tmax for the WA DNR map is in the “Ritzville bulge” area. Near the vent, thickness only 

goes to 3.4 cm. The proximal difference in thickness is a result of the maximal constraining data. 

The USGS map is limited to 20 cm near the vent.  The WA DNR isopachs only include a 

proximal contour of 3 cm but are mapped to as thick as 5 cm in the “Ritzville bulge” area. 

Conversely, the proximal contours from Waitt and Dzurisin (1981)’s data are densely sampled 

isopachs to as thick as 1 m and are well supported in this region.  

https://paperpile.com/c/cTksGw/140dk/?noauthor=1
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When we compare data density, the proximal dataset bounded within a convex hull has 

about 46% more observation points in the 2775 km2 area near the vent than the main USGS 

isopach has in the 88,185 km2 area containing its observations, and only 22% less than the WA 

DNR observation-supported area. Although less densely sampled, the WA DNR map has the 

most widely distributed observations, with a convex hull area of 955,743 km2. On average, the 

USGS full map has 0.0013 points per km2, the WA DNR map has 0.00023 points per km2, while 

the proximal-only dataset has a much higher density of 0.063 points per km2. These densities are 

all substantially lower than the 2-0.1 points per km2 derived from Fogo A Plinian deposit, 

measured using Dirichlet tessellation, a spatial polygon-based method, with each point mostly 

representing areas 0.5-10 km2 (Engwell et al., 2013). However, the measurements of the Fogo 

deposit (Walker and Croasdale, 1971) are not typical and represent one of the most densely-

sampled areas in the world (Engwell et al., 2015). There are few comparative assessments of 

observation density in the literature, although MSH 1980 is generally considered a well-

documented deposit (Cashman and Rust, 2020). 

The contribution of the three input surfaces to the KDE synthesis can be summarised by 

the relative observation densities along a transect of the plume (Figure 3.6). Along the maximal 

thickness trend, within ~100 km from the vent, the compiled proximal thickness dataset 

primarily controls the synthesis. The USGS full map’s surface supports much of the medial 

deposit out to ~500 km, over which and beyond the WA DNR surface takes over (Figure 3.6). 

Whole-dataset kernel bandwidth was 8.5 km and the bounding geometry for proximal points was 

only 87 km. It follows that there are some regions of the KDE surface that are highly controlled 

by the proximal dataset. Proximal control even occurs in some areas where constraining isopach 

data is sparse, but observation data is relatively dense. Fortunately, for all the TPS surface 

calculated, optimal lambda values were high (i.e., at or near the maximal endpoints). As such, 

the surface approached pure interpolation conditioned by the spatial drift polynomial. In this 

case, the result was reasonable mean predictions, even where input data density was low. 

 

https://paperpile.com/c/cTksGw/C0Ji
https://paperpile.com/c/cTksGw/C0Ji
https://paperpile.com/c/cTksGw/C0Ji
https://paperpile.com/c/cTksGw/2ZEgH
https://paperpile.com/c/cTksGw/0RnuR
https://paperpile.com/c/cTksGw/0RnuR
https://paperpile.com/c/cTksGw/0RnuR
https://paperpile.com/c/cTksGw/pPoC0
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Figure 3.6. Proportional contribution of three input thickness surfaces based on input point 

density along a transect following maximal thickness (i.e., the primary downwind axis) of the 

KDE synthesis surface 

3.3.2. TPS uncertainty and influence of cell size 

General surface error trends for the TPS and synthesis surfaces can be summarised as 

follows. Higher sample density generally reduces error; this trend naturally follows power-law 

decay. Mean absolute difference (MAD) was used to assess the relative divergence of prediction 

values from a surface calculated using the highest density of input points (i.e., grid sized such 

that 250 cells were present on the shortest axis). Power-law curves for both MAD and mean SE 

of both primary surfaces level off, thereby showing a degree of diminishing returns after 230-625 

input points. Below these points, the MAD for both surfaces is expected to be <0.5 mm and for 

the WA DNR surface, mean SE <18 mm (Figure 3.7). Each of these three calculations were 

completed in a reasonable time (i.e., several hours or less) regardless of the input sample 

number. Although the USGS TPS SE, given its higher overall sampling resolution, was more 

intensive to compute and did not show the same decreasing form up to 1183 input points.  

The USGS TPS mean standard error was moderate at sampled densities and substantially 

higher than the WA DNR surface (although USGS SE was still < 60 mm at its maximum) 

(Figure 3.7). Increased isopach sampling density should reduce this. By way of example, a test 

calculation of SE with higher sampling density (2500 points), across 5% of the prediction 
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domain, showed a drop to 20 mm, comparable to the WA DNR surface’s error at similar input 

densities (~16 mm) (Figure 3.7). Notice that here, only the higher noise, higher error SE 

calculations could reasonably be made. This resulted in a convex upward power-law trend, 

instead of the standard concave downward form seen in the other mean absolute difference 

(MAD) and SE curves (Figure 3.7). The computational demand for TPS SE calculation scales 

exponentially depending on the number of input points. The USGS dataset SE calculations took 

from seconds to hours for 1000 input points and less. Beyond 1000 points, the time to complete 

rapidly exceeds one day. If SE could be calculated for the full resolution dataset (i.e., 4526 

points), expected computation time is ~18 days running on a machine with an Intel Core i7-8700 

processor at 3.20GHz clock speed. 

 

Figure 3.7. Mean absolute difference (MAD; filled symbols) and mean standard error (SE; 

hollow symbols) of predictions over a full rectangular spatial domain containing all constraining 

isopachs. MAD is calculated as the difference from the “full density” isopach sampling regime 

(WA DNR = 4526 points; USGS = 11018 points). Trend lines indicate power-law relationships, 

except the dashed purple line, which is a polynomial curve (order = 3) to visually represent the 

expected reduction in SE if the number of points could be reasonably increased. Vertical black 

lines indicate maximum curvature, calculated by evaluating perpendicular distance from a secant 

line (e.g., Maximum Distance Method of Lorentz et al., 2012). Note, the n = 2500 USGS SE 

point is the result of incomplete SE calculation (see text); the x range greatly influences 

maximum curvature 

There is a meaningful trade-off between input data resolution and the stability of TPS 

calculations, with higher density (i.e., smaller cell size) inputs being preferred so long as they are 

https://paperpile.com/c/cTksGw/hoyTb/?prefix=e.g.%2C%20Maximum%20Distance%20Method%20of
https://paperpile.com/c/cTksGw/hoyTb/?prefix=e.g.%2C%20Maximum%20Distance%20Method%20of
https://paperpile.com/c/cTksGw/hoyTb/?prefix=e.g.%2C%20Maximum%20Distance%20Method%20of
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calculable in a reasonable time on a given machine. Another consideration is the impact of grid 

output (i.e., prediction) resolution on the resultant volume and area variables required for curve 

fitting and extrapolation. Across both the USGS and WA DNR surfaces, the area within a fixed 

isopach generally increases with the cell size, while the included volume decreases 

concomitantly (Figure 3.8). This behaviour is a natural result of raster upscaling. Notably, area 

and volume values are stable at fine to medium-scale resolutions. The level of uncertainty a user 

finds tolerable will depend on the extent and heterogeneity of a tephra deposit and how precisely 

their isopachs must be measured. For example, if a contour’s area is only about 50 km2, the 

largest pixel that could represent this whole area would be ~7000 meters on each side. However, 

a reliably precise cell size would be finer yet. Our data indicates that for the MSH1980 deposit, 

cell sizes as large as 1000-3000 m offer a fair balance between data size, computation time, and 

accuracy. If we assume a linear relationship between cell size and absolute divergence of volume 

within the 0.5 cm isopach from volume calculated from a 500 m grid, mean error would be 0.1 

km3 or less at grid sizes of 38,000 or 25,000 m, or 0.01 km3 or less at 1500 and 1000 m grid size 

(WA DNR and USGS maps, respectively, in both cases) (Figure 3.8). 

 

Figure 3.8. Area and volume inside and above 0.5 cm isopach of TPS surfaces resampled 

bilinearly at a range of resolutions. Shaded areas indicate progressive standard deviation added 

and subtracted from the matching cumulative mean 

CI for TPS surfaces are critically important for understanding the “error in x” for square 

root-area vs thickness NLS. For our study, mean (interpolated) values are assumed to be the 

“true” representations of the thickness surfaces. Thus, the mean value at the contour points 
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would have a residual of zero. Upper and lower CI surfaces were not included as inputs for curve 

fitting. However, using surface error and CL would be especially useful for TPS surfaces 

generated from disparate field-derived measurements. Here, instead of informing our volume 

estimates directly, the TPS error surfaces illustrate the influence of data density and extent on 

predicted area and volume and the agreeance between interpolated surfaces.  

On average, the KDE synthesis surface is a compromise between the full literature-based 

isopach surfaces, with ln(thickness)-(area)1/2 values between the existing maps at thicknesses 

where they possess overlapping isopachs (e.g., < 5 cm) (Figure 3.9 B). However, above 10 cm, 

the areas of KDE synthesis thicknesses are even smaller than the USGS surface’s 95% CI 

(Figure 3.9 A). This emphasizes the more abrupt and topographically varied maximum thickness 

present in the updated proximal data. The maximum thickness of the KDE surface has a higher 

well-supported maximum thickness than either the USGS or WA DNR surfaces. It is this high-

thickness difference that accounts for an increase in mean volume over the 20 cm contour. Here, 

the USGS surface only contains about 0.001 km3 of volume, while the KDE surface contains 

about 0.003 km3 above the same thickness. Importantly, this volume is inconsequential when 

estimating V, and by 4 cm and thinner, the KDE mean surface remains between the means of the 

two main isopach surfaces. As expected, total area and volume uncertainty increase as thickness 

decreases, agreeing with the findings of Engwell et al. (2013) and Klawonn et al. (2014b). 

 

Figure 3.9. ln(thickness)-(area)1/2 plot (A) and thickness vs volume plot (B) for input surfaces 

and the KDE synthesis surface for the MSH1980 deposit. Shaded areas are confidence intervals 

based on 95% confidence surfaces restricted to the 0.5 cm contour of the mean surface. Thus the 

upper shaded area converges with the mean values at this thickness. Plotted data scope is defined 

by input data, i.e., from 0.5 cm to the thickest mapped contour 

https://paperpile.com/c/cTksGw/C0Ji/?noauthor=1
https://paperpile.com/c/cTksGw/3BRk6/?noauthor=1


85 

  

3.3.3. Comparison of volume estimation methods 

Our fits for the general thinning trend of the USGS MSH1980 map are consistent with 

those reported and visualized in a variety of papers (Pyle 1989; Fierstein and Nathenson 1992; 

Bonadonna and Costa 2012; Klawonn et al. 2014) (Figure 3.10). Following the mapped isopach 

regime, no meaningful differences are found between their results and ours, even when contours 

< 0.5 cm are removed from our data. However, our work introduces the visualization of 

confidence intervals for the exponential and Weibull fits for this mapped deposit. Seen in the 

USGS map and all others, there is a general and rapid increase in model uncertainty towards the 

thinnest and most poorly constrained deposits. Interestingly, the USGS map’s Weibull fit as 

mapped is relatively poor, with a very broad lower confidence bound (i.e., a strongly skewed 

confidence distribution).  

The significant characteristics of the WA DNR surface’s fits are that they lack the higher-

slope proximal sections observed in the USGS data. The general shape of the thickness-area 

relationship is concave down. This stands in contrast to the concave up relationships that are 

most common following Pyle (1989)’s and Fierstein and Nathenson (1992)’s exponential plots. 

The exponential and Weibull fits underpredict the proximal volume as visualized in these plots 

(Figure 3.10). The lack of high-thickness contours of the WA DNR surface is particularly 

apparent when the TPS surface is sampled following the geometric breaks regime. The thickest 

point is only 5.4 cm, far thinner than the maximum thickness represented in the USGS surface, 

proximal dataset, or the KDE synthesis surface or their predicted thickness at zero area following 

an exponential model (~20-100+ cm).   

Reasonable mean estimates for Weibull fits could be found in all cases, with only minor 

deviations from the input data apparent on ln(thickness)-(area)1/2 plots. However, the fits are not 

as precise as the other methods. This is apparent in the expanded confidence limit (CL) bounds 

shown in Figure 3.10, with more rapidly increasing uncertainty towards the thinnest regions of 

the deposit and most extensive areas. Irregular confidence intervals were found for the Weibull 

fit, even at experimentally increased MC simulation iteration. As such, Taylor expansion-based 

CI estimation is shown in Figure 3.10 and appear more stable when NLS fits are poor, or input 

(i.e., contour) datasets are sparser 

https://paperpile.com/c/cTksGw/RbQ0/?noauthor=1
https://paperpile.com/c/cTksGw/UZQw/?noauthor=1
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Because the KDE synthesis surface draws from both main published isopachs, it naturally 

resolves intermediate fits for both Weibull and exponential functions. But because the deposit 

has a much greater mapped Tmax, it also has a higher number of sampled points following the 

geometric sampling regime. When geometric breaks are employed to super-sample any of the 

surfaces, the CL bounds around each mean estimate are generally reduced. This difference is 

notable in all cases, except for the WA DNR geometric breaks test (Figure 3.10 E). Here, the 

increased data density, particularly around the exponential breakpoint increases the uncertainty 

of the fit. As such, CI is expanded, especially in the distal segment. This behaviour emphasizes 

the restrictions of piecewise exponential fits. Where data density is low, segments are prone to be 

fit on subsets with proportionally low numbers of points. A fit with only two or three points per 

segment, as we see for the mapped breaks, may yield over-fitting and underestimated error. 
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Figure 3.10. ln(thickness)-(area)1/2 plots with Weibull and two-segment piecewise exponential 

curves fit data from three MSH1980 thickness surfaces. Confidence intervals plotted are 

calculated with Taylor expansion error propagation. The top row (A-C) shows results of fits 

defined by the input map contours, while the geometric breaks regime defines the bottom row 

(D-F) data. Columns show the differing surfaces analyzed: (A, D) USGS surface; (B, E) WA 

DNR surface; (C, F) KDE synthesis surface. Note, the lower confidence bound for the mapped 

breaks KDE synthesis (C) Weibull fit reaches zero thickness beyond 200 km and cannot be 

plotted appropriately on a log-scaled plot. An arbitrarily small positive value is used in its place 

for visualization 

3.3.3.1. Data straightening and far distal volume 

Given the design of the data straightening method (i.e., solving for volume directly), it is 

straightforward to visualize regression using cumulative volume vs thickness plots (Figure 3.11) 

instead of ln(thickness)-(area)½ plots. Although more computationally intensive for explicit NLS 

integration methods (Weibull and exponential, particularly if MC is used), this visualization 

illustrates consistency with surface-calculated thickness/volume data in an untransformed 
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fashion. At zero thickness, the position of the y-axis intercept shows the total deposit volume 

complete with CL or prediction limits (PLs). Using Taylor expansion-based error propagation, 

uncertainty can be accounted for and plotted in this manner even at sampling density that would 

be computationally challenging if MC was used. 

No matter the sampling regime, qualitative fits in the most voluminous thicknesses (< 5 

cm) are closer to the observed data when data straightening is used.  Uncertainty is lower than 

Weibull or exponential methods, and extrapolation to zero thickness beyond the thinnest isopach 

limit (0.5 cm) appears consistent and reasonable given the thickness-volume trend (Figure 3.11). 

Although, interestingly, note that the volume error Figure 3.11 at zero thickness appears to be of 

lesser magnitude in all cases (except for Weibull fits for USGS and KDE Synthesis surfaces with 

mapped breaks) than we would expect from surface error if trends were extended from the 

mapped deposit (Figure 3.9 B). 

These plots also highlight differences between the thickness-volume data and the limited-

integration fits far better than on conventional log-axis plots. By looking at untransformed 

variables, the challenges of interpreting logarithmic differences in thickness and visualizing 

square-root areas (Klawonn et al., 2014b) are circumvented. All fits are generally acceptable and 

close to directly integrated cumulative volumes within the low-volume, high-thickness (i.e., 

proximal) deposit. But the cumulative volume contained in areas thinner than the inflection point 

(thickness <4 or 5 cm, Figure 3.11) represents a meaningful difference, even though the points 

appear relatively close to the ln(thickness)-(area)½ data in Figure 3.10. For MSH1980, the 

difference between exponential and Weibull-derived cumulative volume curves is most apparent 

around ~2 cm.  

https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
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Figure 3.11. Cumulative volume vs thickness plots for functions fit data from three MSH1980 

thickness surfaces. The top row (A-C) shows results of fits defined by the input map contours, 

while the geometric breaks regime represents the bottom row (D-F) data. Columns show the 

differing surfaces analyzed: (A, D) USGS surface; (B, E) WA DNR surface; (C, F) KDE 

synthesis surface.  CI/PI are calculated using second and first-order Taylor series expansion at 

fixed locations defined by the thickness of sample points (hollow circles) plus zero thickness 

(i.e., integration to infinite area) 

Viewing plots like Figure 3.11 also permits visualization of differences in volume at 

varying thickness limits. For example, the far-distal volume for each deposit, following the 1 cm 

cutoff implemented by Fierstein and Nathenson (1992), is the difference on the y-axis between 

predicted values at 0 and 1 cm thickness. We also use the ratio between this volume (V1-cm) to 

total volume (V) as a means of measuring the contribution of this distal portion relative to the 

entire deposit. This parameter, denoted V1-cm/V, also follows Fierstein and Nathenson (1992). 

Regarding distal volume differences, the thinnest portions of the limited integration plots 

(Figure 3.11) show over-estimates of distal volume by the exponential and Weibull methods 

relative to their directly integrated values. If the thin isopachs such as the 0.5 cm are reliable, the 

https://paperpile.com/c/cTksGw/UZQw/?noauthor=1
https://paperpile.com/c/cTksGw/UZQw/?noauthor=1
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distal thickness appears overpredicted by the exponential and Weibull methods (Figure 3.10).  

Interestingly, except the Weibull fits for the KDE synthesis surfaces (both sampling regimes), 

the data straightening method shows marginally higher mean absolute volume beyond 1 cm. The 

increased distal volume is evidenced by the greater slope of the relationships in the 1-0 cm 

regions of Figure 3.11 and is summarised, along with V and key deposit and map characteristics, 

in Table 3.3. The proportion of distal volume beyond 1 cm (V1-cm/V) is consistently higher for the 

data straightening method than the others (Table 3.3). This result is interesting, as even though 

medial volume from this method was lower than previous methods for most surfaces and break 

regimes, the mean V1-cm is higher for all iterations except the Weibull fits on the KDE synthesis 

(Table 3.3). Such findings may help reconcile far-flung distal ash fallout noted in many areas of 

North America (Jensen et al., 2019) that might otherwise seem inconsistent with MSH1980’s 

presumed low distal and “missing” volume previously proposed (Rose et al., 1983).  The 

variability across datasets for V1-cm/V values is lowest for the data straightening method (SD = 

0.02 km3) relative to the exponential and Weibull approaches (0.05 and 0.13 km3 respectively). 

 The proportional error (SD/mean) for each method’s mean and upper and lower 95% 

CL/PL for the three surfaces is a representation of sensitivity to data variations (e.g., choice of 

contours, differences in isopach smoothness). Across the three methods, mean proportional error 

is very stable (mean = 0.25, SD = 0.01). However, the increased variability in uncertainty for 

Weibull fits produces much greater proportional errors for the CLs (1.28 times more for the 

upper 95% CL, and 3.65 times more for the lower 95% CL) (Table 3.3). Further, averaging the 

proportional error for upper and lower limits and means, the Weibull has an overall uncertainty 

of 0.49. At the same time, the exponential method and data straightening approaches are lower 

and similar, with 0.24 and 0.26, respectively. 

https://paperpile.com/c/cTksGw/Vvq1
https://paperpile.com/c/cTksGw/Vvq1
https://paperpile.com/c/cTksGw/Vvq1
https://paperpile.com/c/cTksGw/OAqn
https://paperpile.com/c/cTksGw/OAqn
https://paperpile.com/c/cTksGw/OAqn
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Table 3.3. Summary of total deposit volume from three methods, each with confidence bounds for MSH1980 surfaces and their mean 

distal contributions beyond 1 cm thickness 

 
Volume (km3) 

Exponential Weibull Data Straightening 

Map/ 

surface 

Isopach 

break 

regime 

Number of 

contours ≥ 

0.5 cm L
o

w
er

 9
5

%
 C

L
 

M
ea

n
 (

V
) 

U
p

p
er

 9
5

%
 C

L
 

V
1
-c

m
 

V
1
-c

m
 /

V
 

L
o

w
er

 9
5

%
 C

L
 

M
ea

n
 (

V
) 

U
p

p
er

 9
5

%
 C

L
 

V
1
-c

m
 

V
1
-c

m
 /

V
 

L
o

w
er

 9
5

%
 P

L
 

M
ea

n
 (

V
) 

U
p

p
er

 9
5

%
 P

L
 

V
1
-c

m
 

V
1
-c

m
 /

V
 

USGS 

As mapped 9 0.91 1.06 1.26 0.38 0.36 0.12 1.04 1.74 0.41 0.40 0.78 0.85 0.91 0.43 0.51 

Geometric 24 0.96 1.08 1.23 0.40 0.37 0.79 1.03 1.23 0.35 0.34 0.80 0.83 0.87 0.42 0.51 

WA DNR 

As mapped 6 1.77 1.85 1.94 0.51 0.28 1.62 1.77 1.92 0.41 0.23 1.52 1.55 1.59 0.76 0.49 

Geometric 14 1.73 1.86 2.00 0.55 0.30 1.61 1.69 1.77 0.38 0.22 1.52 1.54 1.55 0.75 0.49 

KDE 

Synthesis 

As mapped 11 1.43 1.64 1.90 0.66 0.40 -0.20 1.68 3.09 0.87 0.52 1.24 1.28 1.32 0.69 0.54 

Geometric 26 1.53 1.65 1.80 0.64 0.39 1.06 1.84 2.47 0.94 0.51 1.24 1.26 1.28 0.68 0.54 

 

Mean 1.39 1.52 1.69 0.52 0.35 0.83 1.51 2.04 0.56 0.37 1.18 1.22 1.25 0.62 0.51 

SD 0.37 0.36 0.35 0.12 0.05 0.76 0.37 0.65 0.27 0.13 0.33 0.32 0.31 0.15 0.02 

SD/ 

mean 
0.27 0.24 0.21 0.22 0.15 0.91 0.25 0.32 0.48 0.35 0.28 0.26 0.25 0.25 0.05 
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The isopach break regimes (mapped vs geometric) draw from the same underlying surfaces 

for their data. But there remain differences in the number and distribution of sampled isopachs. 

The geometric method, by design, allows for as many as 30 breaks, depending on the maximum 

thickness and the rapidity of thinning (Table 3.3). However, hand-drawn maps rarely have so 

many contours. For example, in the summary of mapped deposits from Bonadonna and Costa 

(2012), only an average of 7.27 contours could be used as drawn (n = 33, SD = 3.22).  

The percent difference between the two break regimes (the difference in volume between 

the two regimes divided by their average volume) quantifies the effect of varying between these 

sampling regimes for MSH1980 (Table 3.4). Here, positive values indicate the mapped regime 

produced higher volumes, while negative percentages mean geometric breaks yielded larger 

volumes. Exponential and data straightening both appear similarly invariant to sampling regime, 

respectively resolving -0.1 and 0.1% differences between mapped and geometric regimes when 

considering the average of confidence bounds and means.  However, while the mean predicted 

volumes for each approach only varied between -0.01 and 0.01%, the uncertainty bounds of the 

Weibull curves produced much greater differences on average (Table 3.4). Notably, the data 

straightening method showed the least variability in mean or upper/lower uncertainty bounds in 

response to differing sampling regimes. Finally, there is a systematic bias towards more positive 

(i.e., higher mapped volume) for upper uncertainty bounds, while lower bounds are generally 

higher-volume for lower uncertainty bounds. This is a result of more precise volume estimates 

from geometric breaks and is visualized by the reduced shaded uncertainty ranges in the lower 

rows of Figure 3.10 and Figure 3.11 relative to their mapped counterparts. 

 

 

 

 

 

 

https://paperpile.com/c/cTksGw/491R/?noauthor=1
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Table 3.4. Table showing percent difference in total volume calculated using different isopach 

sampling regimes 

 Exponential Weibull Data Straightening 

Lower 

95% 

CL Mean 

Upper 

95% 

CL 

Lower 

95% 

CL Mean 

Upper 

95% 

CL 

Lower 

95% 

CL Mean 

Upper 

95% 

CL 

USGS -0.05 -0.01 0.02 -1.48 0.01 0.34 -0.03 0.01 0.05 

WA DNR 0.02 0.00 -0.03 0.00 0.04 0.08 0.00 0.01 0.02 

KDE Synthesis -0.07 -0.01 0.05 -2.95 -0.09 0.22 0.00 0.01 0.03 

Mean -0.03 -0.01 0.01 -1.48 -0.01 0.21 -0.01 0.01 0.03 

SD 0.05 0.01 0.04 1.48 0.07 0.13 0.02 0.00 0.02 

 

3.3.4. Integration uncertainty, sensitivity analysis, and literature comparison 

Replicated integration (n = 10, each with 100,000 MC iterations) shows negligible 

deviance in simulation-based integration (SD = 0.0005 km3, averaged across all three surfaces, 

three methods, and mean and upper/lower uncertainty bounds). Variance is a result of MC 

simulation, not integration, as mean value (i.e., first-order Taylor expansion mean; non-simulated 

prediction) integrations are identical to 1 m3 over replicates. Increasing the number of MC 

simulation iterations can reduce this noise. 

In comparing our results to those generated from reference maps previously used for 

volume estimation, we found that our results generally match those of previous analyzes (Table 

3.5). The few exceptions present are results from poorly closing distal contours on the original 

maps, or in one case (Quizapu) some doubt as to how previous authors integrated a variety of 

previously published maps. In any case, only those cases that could not yield reliably closed thin 

isopachs are conspicuously different from past works. These are the two Novarupta units and 

Quizapu. 



94 

  

 

Table 3.5. Summary table showing TPS and NLS-based fits with Taylor expansion confidence and prediction limits for mapped and 

previously compared eruptions. For reference, the published estimates for these eruptions using regression and integration are 

included. Though the map of Marti et al. (2016) has not been analyzed using these methods before, their work indicated a total deposit 

volume of 207.9 km3  
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Askja D1 0.3 0.4 0.4 0.1 0.3 0.6 0.2 0.2 0.3  0.32 0.3 2.1 

Campanian2 163.4 189.4 223.3 148.1 173.1 198.0 163.0 168.2 173.5     

Hatepe3 1.9 2.2 2.5 1.5 1.8 2.1 1.6 1.7 1.8  2.5 1.0 0.56 

Minoan4 34.0 48.0 76.6 26.5 30.3 34.1 27.1 28.2 29.3  39 44 42 

Novarupta A5 2.3 3.0 4.2 1.7 2.4 3.1 1.6 1.8 1.9  5.1 5.2 5.5 

Novarupta B5 1.3 1.6 1.9 1.0 1.2 1.4 0.9 1.0 1.0  2.3 2.5 2.5 

Quizapu6 2.1 2.2 2.4 1.8 2.0 2.2 1.6 1.6 1.7  9.9 9.5* 9.0 

Santa Maria7 8.9 10.3 12.0 7.3 8.4 9.6 7.4 7.7 7.9 12.2 7.8 9.2** 8.0 

Tambora8 88.0 99.2 114.1 81.5 94.1 106.7 88.9 92.5 96.1  95   

Waimihia3 10.2 11.3 12.8 8.8 10.3 11.7 8.3 8.8 9.4 10.1 11.3   
1= Sparks et al. (1981); 2= Marti et al. (2016); 3= Walker (1981a); 4= Pyle (1990); 5= Fierstein and Hildreth (1992); 6= Hildreth and Drake (1992); 7= Williams and Self (1983); 8= Self et al. (1984).  

* = 3-segment exponential; ** = single-segment exponential 

https://paperpile.com/c/cTksGw/wwWY/?noauthor=1
https://paperpile.com/c/cTksGw/TMBDF/?noauthor=1
https://paperpile.com/c/cTksGw/wwWY/?noauthor=1
https://paperpile.com/c/cTksGw/TOHLv/?noauthor=1
https://paperpile.com/c/cTksGw/VYjLc/?noauthor=1
https://paperpile.com/c/cTksGw/rki9B/?noauthor=1
https://paperpile.com/c/cTksGw/8JzSZ/?noauthor=1
https://paperpile.com/c/cTksGw/fHK4H/?noauthor=1
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The trend of data straightening being both the most precise, but also most conservative, 

continues in this assessment too. Likewise, exponential fits, on average, are always marginally 

higher than Weibull volumes. The CLs of Weibull fits were ±14% relative to the mean. At the 

same time, exponential fits showed non-normal error distributions at 95% confidence, from 15% 

below the mean to 23% above. There is little literature we can directly compare these values to. 

The only other work to date that includes NLS-based error propagation and confidence 

assessment for tephra volume, the TError project (Biass et al., 2014), reported 25th and 75th 

percentiles for their MC fits, not the 95% limit (i.e., 2.75th and 97.5th percentiles) we use. 

However, they too showed an upward skewing of exponential fit uncertainty, even with 

additional 10% proportional uncertainty propagated from thickness and contour area. By 

comparison, the data straightening method showed 95% PLs of ± 4%. 

Numeric integration of first-order Taylor expansion means and symbolic integration for the 

exponential and Weibull fits are virtually identical for MSH1980, with only 0.03 km3 mean 

error. Likewise, results from our NLS fitting and numeric integration match those retrieved from 

previously published volume estimation tools and software with the same input data (Bonadonna 

and Costa, 2012, Nathenson and Fierstein, 2014, Daggitt et al., 2014). 

By comparing MC to Taylor expansion methods for the three surfaces with breaks as 

originally mapped we see a very good correlation (R2 > 0.99) for these datasets when using the 

exponential and data straightening approaches. However, due to the poorly defined Weibull fits 

noted above for the USGS and KDE synthesis maps, there was a substantial over-prediction from 

Taylor series expansion or under-prediction of MC-based volumes (Figure 3.12). Note that this 

offset was not present for the geometric break regime for MSH1980 or when comparing the 

results of the methods on other published datasets also with geometric breaks (Figure 3.13). 

Here, the slope of the linear trend was very near 1. Even the most considerable difference, the 

Campanian Ignimbrite’s upper limit, presented only a 6% difference between the MC and Taylor 

expansion (i.e., an MC: Taylor volume ratio of 0.9). All other comparisons from the literature 

datasets gave a ratio of 1.0 to one decimal place.

https://paperpile.com/c/cTksGw/fTCg5
https://paperpile.com/c/cTksGw/fTCg5
https://paperpile.com/c/cTksGw/fTCg5
https://paperpile.com/c/cTksGw/491R+hFU7B+E7b0c
https://paperpile.com/c/cTksGw/491R+hFU7B+E7b0c
https://paperpile.com/c/cTksGw/491R+hFU7B+E7b0c
https://paperpile.com/c/cTksGw/491R+hFU7B+E7b0c
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Figure 3.12. Comparison of mean and 95% uncertainty bound volume calculated using two error 

propagation methods and three NLS-based statistical approaches for MSH 1980 on data from 

three thickness surfaces. The diagonal line is 1:1 (i.e., perfect match) 

 

Figure 3.13. Comparison of mean and 95% uncertainty bound volume calculated using two error 

propagation methods and three NLS-based statistical approaches for isopach surface calculated 

from published maps. Plus symbols are upper uncertainty bounds, minus symbols are lower 

bounds, while hollow circles are mean volumes. Colours indicate volume calculation methods 

where orange = Weibull, blue = exponential, and black = data straightening 
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Distinct trends can be picked out from comparing the methods developed for this paper 

across the previously published isopachs (Table 3.5). Both exponential and Weibull methods 

show higher overall volumes than the data straightening approach (Figure 3.14). However, the 

Weibull method is much closer on average (only 3% difference, compared to 11% for 

exponential). Interestingly, and in contradiction to past comparisons, when the data is limited to 

> 0.5 cm and exponential breaks are employed, the Weibull fits are lower than exponential 

volumes. This difference is a result of more accurate representation of the underlying thickness 

surface than when contours were initially drawn (illustrated already for MSH1980 in Figure 

3.10). For NLS-based approaches for ln(thickness)-(area)½ type regression, the more densely the 

underlying surface is sampled, the closer it can represent the GIS-based volumes used in and 

produced by the data straightening method. 

 

Figure 3.14. Comparisons of mean total volume for published isopachs sampled following a 

geometric breaks regime. Orange squares and least-squares trend are comparisons to Weibull 

volumes while the blue diamonds and line are for two-segment piecewise exponential volumes. 

Note, the Minoan eruption could not be divided into a segmented exponential relationship; as 

such, the exponential volume for that surface is not shown here. For comparison, a single-slope 

exponential fit (i.e., no breaks) gave 48.0 km3 for this surface. Both figure tiles show the same 

data, with the right merely zooming into the low-volume region of the left plot 
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The ideal extrapolation methods for volume estimation should not only accurately 

reproduce volume within the mapped deposit that it is “trained” on, but should also accurately 

predict distal volume beyond the limit of its input data. When we withheld distal isopach data 

and predicted cumulative volume >0.5 cm all methods greatly under-estimated volume when the 

thinnest datum in the dataset was greater than the thinning inflexion point (~ 6 cm) (Figure 3.15). 

However, when data thinner than this threshold was included, exponential and Weibull fits 

dramatically over-predicted volume to 0.5 cm. Even with the inclusion of distal data out to ~0.5 

cm, Weibull and piecewise exponential fits still over-predicted volume by about 50% on average 

relative to the directly integrated surface volume. The data straightening method was slower to 

raise the proportion of distal volume but saw a meaningfully reduced volume overshoot relative 

to the other methods. It also showed a 95% PI that included the true 0.5 cm volume even when 

data <3 cm were included. The Weibull method also included the true 0.5 cm volume even with 

<5 cm data missing but its mean predictions greatly exaggerated volume (>1000% error for 

much of the distal interval). The high Weibull uncertainty and problematic mean fits when only a 

portion of distal data is supplied must be a result in some part to the weighting regime used 

(Figure 3.15).  

 

Figure 3.15. Sensitivity analysis showing percent error of predicted cumulative volume ≥ 0.5 cm 

using three methods with variable inclusion of distal thickness data, relative to MSH1980 KDE 

synthesis surface direct integration. Shaded areas indicate 95% confidence limits for Weibull and 

piecewise exponential methods, while the shaded area around data straightening curve indicates 

95% prediction interval 
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As we see from the distal sensitivity analysis, significant under-estimations in volume 

should be expected if data thinner than a break in slope is not supplied.  This phenomenon 

explains the differences between Quizapu and previous estimates. It was calculated here using 

only the proximal map of Hildreth and Drake (1992).  It is not clear from other comparative 

work exactly which isopachs have been used for their volume calculations, though presumably 

others have used the compacted tephra isopachs from Hildreth and Drake’s 1980-1991 

observations. Although, the inclusion of thickness <1 cm in Fierstein and Nathenson (1992) and 

the use of 11 isopachs in Bonadonna and Costa (2012) suggest that at least the 0.1 cm contour 

from Larrson (1937) has been used to control distal thinning trends in those studies. For our 

comparison, only the proximal contours (closed ≥50 cm and partially open  to 20 cm) of Hildreth 

and Drake (1992) are used, thus avoiding this confusion. But as such, our values are most 

comparable to the 2-segment fit based on data ~> 10 cm published in that study, not V. Hildreth 

and Drake (1992) estimated a volume of 2.29 km3 for this region (0.16 + 2.13 km3 for the two 

proximal segments) using Pyle (1989)’s exponential method. 

3.4. Discussion 

Interestingly, the exponential and Weibull approaches to extrapolation have been believed 

to underestimate distal volume, particularly relative to power-law thinning (Klawonn et al., 

2014b). However, given both of their tendencies to over-predict volume in the mapped areas of 

the deposit as illustrated here (Figure 3.11), we suggest that at least in terms of the mapped 

deposit and assuming TPS interpolation is reasonable, they may be meaningfully over-estimating 

volume.  

We can make a few generalized recommendations about when which of the three methods 

explored here may be most appropriate. However, preferences will inevitably rely on nuances of 

the data, the purpose of the analysis, and preferred types of error. For datasets with only 

proximal data available (i.e., thicknesses greater than the inflexion point of two segmented 

exponential lines), Weibull and exponential fits may be preferred over the data straightening 

approach. At the risk of over-fitting, more breakpoints can be added to exponential fits to more 

closely match the concavity of the data on ln(thickness)-(area)½ plots. However, as the number of 

segments increase, care must be taken to ensure extrapolation does not become unreasonable.  

Following the conclusions of Bonadonna and Houghton (2005), in cases where distal data is 

https://paperpile.com/c/cTksGw/rki9B/?noauthor=1
https://paperpile.com/c/cTksGw/UZQw/?noauthor=1
https://paperpile.com/c/cTksGw/491R/?noauthor=1
https://paperpile.com/c/cTksGw/dMdQZ/?noauthor=1
https://paperpile.com/c/cTksGw/rki9B/?noauthor=1
https://paperpile.com/c/cTksGw/rki9B/?noauthor=1
https://paperpile.com/c/cTksGw/RbQ0/?noauthor=1
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/3BRk6
https://paperpile.com/c/cTksGw/GBi9w/?noauthor=1
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entirely missing, despite the issues of defining integration limits, power-law fits may be 

advantageous. 

For cases where sufficient distal data is available (and is perceived to be reliable), 

exponential and data straightening may be best, and generally show less uncertainty in V 

estimates than the Weibull method. However, if very good, highly reliable distal data is 

available, the advantages of the Weibull method and its weighting regime (i.e., proportionally 

more weight to thinner deposits) suggest that it could give more reliable estimates than the 

exponential approach. The Weibull fitting results also indicate the most consistent overlap of 

95% CI with the exponential and data straightening estimates for V. Although agreement 

between methods is not a requirement, the more conservative (i.e., broader) uncertainty of 

Weibull model fits may be preferred, especially where worse-case-scenario volumes are the 

target.  

As we know, the distal range, and particularly, the thinnest parts of a tephra deposit are 

prone to the highest measurement and isopaching uncertainties (Engwell et al., 2013; Klawonn et 

al., 2014b). The data straightening method appears to be less sensitive to distal outliers than the 

other methods. This is most apparent when investigating the rather smooth and predictable 

response to the addition of data thinner than the piecewise exponential break in slope (Figure 

3.15). Likewise, its capacity to reproduce cumulative volume reliably in the mapped deposit 

when “full” data is provided (Figure 3.11), and proved to reliably extrapolate at least out to 0.5 

cm for MSH1980, we believe that so long as data is supplied to characterize the distal deposit out 

to a reasonably measured thickness, the data straightening approach is robust, precise, and not 

prone to untoward volume overshoots observed in other methods. However, just as how “good” 

proximal data is required to control TPS Tmax, what proves to be a sufficient thickness limit will 

probably vary per deposit. However, in absence of a clearly defined universal value, the 0.5 cm 

cut-off we employed for MSH1980 and all the other deposits from literature we explored seems 

to be a reasonable goal. Results across all the methods trialled were consistent throughout and 

predictably different (Figure 3.14), even when the distal-most data was >0.5 cm. There will 

certainly be cases where data is insufficient to produce closed isopachs to the 0.5 cm threshold. 

One must simply be aware, as with Quizapu (discussed in the subsection “3.4.4. Distal data and 

closing contours”, p. 106) and our sensitivity analysis for MSH1980, the absence of distal data 

https://paperpile.com/c/cTksGw/C0Ji+3BRk6
https://paperpile.com/c/cTksGw/C0Ji+3BRk6
https://paperpile.com/c/cTksGw/C0Ji+3BRk6
https://paperpile.com/c/cTksGw/C0Ji+3BRk6
https://paperpile.com/c/cTksGw/C0Ji+3BRk6
https://paperpile.com/c/cTksGw/C0Ji+3BRk6
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will probably bring about a degree of under-estimation. Subsequent subsections will detail 

further considerations for the data straightening method, discussion of uncertainty in NLS and 

isopaching, isopach closure, and more theoretical discussion of when various volume methods 

are preferred. 

3.4.1. Data straightening 

Relative to previous curve-fitting-based integration methods for erupted volume 

estimation, using the data straightening method proposed here has a few potential advantages. 

First, by allowing for integration to be done directly on the thickness surface (e.g., TPS 

predictions), calculations can be made much more rapidly than when integrating over a 

secondary function. In this way, prediction intervals need only be calculated at thicknesses of 

interest instead of at practically infinite subdivisions (although, in practice, it is effectively less). 

This efficiency of calculation makes MC simulation more feasible. It permits a larger number of 

simulations in the same amount of time, in essence, allowing for a more accurate estimation of 

mean and uncertainty bound values. This follows the Central Limit Theorem, such that as the 

number of MC iterations (n) increases (n→ ∞), the standard error around the mean converges 

toward a constant value. In contrast, the standard error in the mean remains proportional to n-½ 

(Levy and Presidel, 1946).  

Further, by limiting the number of values at which predictions must be made, the data 

straightening approach is far more efficient than limited integration of confidence intervals for 

conventional methods. Also, secondary spline interpolation is not required for producing plots 

such as Figure 3.11 when the data straightening is used. By using data straightening, we need not 

estimate the predicted area that should be contained within a certain thickness of isopach. After 

all, we already have a function that calculates volume directly from thickness. 

The increased precision of volume estimates with data straightening over other methods is 

evident from our results (Figure 3.11 and Table 3.3). These trends were continued in our 

comparison to other published isopachs (Table 3.5). The area within each isopach, the 

independent variable for conventional methods, is implicit in the calculation of cumulative 

volume, but not necessary. We effectively remove a layer of statistical noise that obscures the 

underlying volume trend by modelling and integrating area explicitly in GIS, but not using it in 

our NLS fit. Critically, we assume the mean TPS interpolation of the input data represents the 

https://paperpile.com/c/cTksGw/Hydml
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true thickness of the deposit; the direct integration is used assuming negligible error. In reality, 

the fullest error propagation would include all elements of uncertainty, including measurement, 

natural variability, and interpolation or isopach generation (Engwell et al., 2013). Judging on the 

magnitude of TPS area uncertainty briefly explored here (Figure 3.9), it is apparent that how 

interpolation error is dealt with in future work will have a strong influence on overall certainty of 

volume estimates of any thickness-based analysis.  

Our method is but the first step in accounting for all components of volume estimation 

uncertainty. However, one key feature of the data straightening approach is that it is designed for 

use with continuous (and directly integratable) thickness surfaces, which are rapidly becoming 

the norm in computer-aided geospatial tephra deposit studies. Using direct integration of an 

interpolated (or other continuous surface) allows the full nuances of the thickness surface to be 

accounted for, even between those contours that are sampled in traditional isopach maps. Here, 

the generalization of the input data is controlled by the TPS fitting GCV optimization and 

volume is calculated continuously across all thicknesses, not just those contours sampled. 

Including the error in surface generation, as would be important to consider for TPS fits to field 

observed thickness points, will increase the overall uncertainty. But this uncertainty would be 

propagated to other methods as well. So while we expect a continued improved precision of data 

straightening, the degree to which this is the case will depend on the dataset, its thickness 

sampling regime, and warrants further future analysis.   

Using data straightening, we can now produce volume estimates that are less biased within 

the mapped thickness area (Figure 3.11). By fitting a NLS curve directly to volume, we 

circumvent the bias that results from our NLS residual being measured and minimized in 

ln(thickness) and our independent variable, area, being simplified. As such, non-Gaussian error 

when transformed to linear units is avoided. However, maximum deposit thickness in our new 

approach is controlled by the TPS fit and can be prone to underestimation similar to other spline-

based methods (Engwell et al., 2015; Buckland et al., 2020). Proximal underestimation can be 

mitigated by supplying more comprehensive and representative proximal thickness data, as we 

have done with the MSH1980 KDE synthesis dataset. It is also apparent that missing or under-

sampled thickness data, proximal or otherwise, can cause noticeable problems with fits (Watt et 

al., 2009; Nathenson, 2017).  

https://paperpile.com/c/cTksGw/C0Ji
https://paperpile.com/c/cTksGw/C0Ji
https://paperpile.com/c/cTksGw/C0Ji
https://paperpile.com/c/cTksGw/0RnuR+6pi23
https://paperpile.com/c/cTksGw/0RnuR+6pi23
https://paperpile.com/c/cTksGw/0RnuR+6pi23
https://paperpile.com/c/cTksGw/0RnuR+6pi23
https://paperpile.com/c/cTksGw/0RnuR+6pi23
https://paperpile.com/c/cTksGw/PCog5+HRVxE
https://paperpile.com/c/cTksGw/PCog5+HRVxE
https://paperpile.com/c/cTksGw/PCog5+HRVxE
https://paperpile.com/c/cTksGw/PCog5+HRVxE
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Another advantage of data straightening is that no proximal or distal integration limits need 

to be applied, as with power-law fits (Bonadonna and Houghton, 2005). By default, the TPS step 

allows for continuous and fully sampled enclosing volume information out to the thinnest closing 

contour or some arbitrary cut-off, such as 0.5 cm as implemented here. Unlike what is seen in the 

Weibull method, physical impossibilities are circumvented, i.e., the maximal thickness is not 

infinite. In general, we must be cognizant of how realistic extrapolation using any method is, and 

they should not be adopted unless there is sound theory to support the trends beyond observed 

data (Tukey, 1977). Fortunately, the formulation of our data straightening method allows for 

what appears to be reasonable continuations of input data (Figure 3.11). It deals predictably with 

missing data so long as any distal trend (i.e., beyond a break in slope, as with piecewise 

regression) is represented (Figure 3.15). Of course, such extrapolation, using any method, 

assumes that transport and depositional phenomena that occur beyond the mapped boundaries of 

closing isopachs are represented reliably by the trends in the mapped deposit.  

Other improvements offered by the data straightening technique, as well as the related 

limited integration plots we employ, relate to how data is visualized and interpreted. The 

logarithmic y-axes and difficulty hamper intuitive interpretations of ln(thickness)-(area) 1/2 plots 

in imagining two-dimensional areas being compressed into linear x-axes. Likewise, as we 

observed from the Weibull plots, especially when uncertainty bounds are included, predicted 

thickness at a certain area1/2 may be non-positive and must be replaced with an arbitrarily small 

positive number or omitted from visualization. Other improvements over conventional methods 

include ease of residual assessment over the thickness domain that has previously been 

challenged by the log-scale. Finally, from a mechanistic approach, by conducting fits to volume 

in its native (untransformed) form, residuals are uniform over that dimension, with reduced bias 

compared to the other methods (Figure 3.11 and  Figure 3.15). 

3.4.2. Error propagation techniques 

In this work, we compared two primary forms of error propagation on NLS fits: Taylor 

expansion and MC simulation. The advantages and disadvantages of these methods must be 

considered thoroughly, mainly if one method is to be adopted over the other.  These 

considerations fall into two categories: technical and practical. 

https://paperpile.com/c/cTksGw/GBi9w
https://paperpile.com/c/cTksGw/2TnM
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From a technical standpoint, MC can be highly flexible because simulations are drawn 

from multivariate t-distribution for each variable in the regression. However, even though first-

order Taylor expansion assumes linearity around the mean of observed data x̅i, second-order 

Taylor expansion can correct for bias in nonlinear expressions by expanding the degree of the 

polynomial used to estimate the error distribution. We also have found that to the level of 

precision reasonable for erupted volume estimates (usually to the tenths place of estimates in 

km3), even first-order estimates are in agreement with MC results, a trend echoed in prior works 

(Bakr and Butler, 2002). 

The number of simulations required to garner results of sufficient precision is a field of 

research in its own right (Driels and Shin, 2004; Lerche and Mudford, 2005; Rubinstein and 

Kroese, 2011; Tellinghuisen, 2018). Although it is evident that higher numbers of simulations 

can produce more precise results, computational overhead increases in kind. Our testing reveals 

that Taylor expansion is orders of magnitude faster than MC at reasonable numbers of 

simulations, and in the case of limited integration plot generation, between the two approaches, 

is the only realistic means to assess uncertainty. In practice, other than being substantially faster, 

Taylor expansion also has the added advantage of being smooth. For numeric integration, this is 

important, even for adaptive methods such as those employed here. That is because we are 

integrating across a domain that extends to infinity. Despite the robustness of tanh-sinh 

integration, even a small degree of noise could propagate unrealistic error to the integrated 

volume. It is for these reasons that Taylor expansion may be preferred.  

The evaluation of irregular error distributions should be considered too. It is beyond the 

scope of the present work to evaluate the impacts of “corrected” mean values from second-order 

Taylor expansion or MC relative to the first-order means (effectively, exact integrated volumes 

from empirical formulas) in great detail. We do show that for the NLS fits explored here for 

MSH1980 and the maps from literature, on average, there is little difference between exact mean 

volumes and those from MC or corrected means (<1%). Nevertheless, exploring a more 

elaborate Bayesian approach may be warranted. We know that at least for piecewise regression 

the change point value may exhibit multimodally distributed Bayesian posteriors (Raftery and 

Akman, 1986; Lindeløv, 2020). Piecewise methods, like with our segmented exponential fits, are 

required for many deposits. For our purposes, less demanding methods like NLS seem sufficient, 

https://paperpile.com/c/cTksGw/LnpvN
https://paperpile.com/c/cTksGw/M6SAj+q0Tbr+XzwEv+JljLS
https://paperpile.com/c/cTksGw/M6SAj+q0Tbr+XzwEv+JljLS
https://paperpile.com/c/cTksGw/HCITv+zJqep
https://paperpile.com/c/cTksGw/HCITv+zJqep
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even if some simplifications must be accepted. However, change-point uncertainty is still an 

important consideration that warrants further analysis. 

3.4.3. Error in thickness surfaces 

A vital element of the present analysis is that the literature-based isopachs are considered 

“true” and that the mean estimates of thickness from TPS interpolation are accepted as the most 

probable interpretation of the underlying surface we are modelling. This assumption is a 

departure from previous attempts to quantify volume estimate error from similar techniques, 

which have used one or more proportional error values to account for uncertainties in the 

measurement and mapping of the thickness surface (Le Pennec et al., 2012; Engwell et al., 2013; 

Biass et al., 2014, 2019; Klawonn et al., 2014a, 2014b). It is important to note that proportional 

error of thickness observations is generally highest in the distal deposits, increasing as thickness 

decreases. This same observation can be made for our TPS fits (Figure 3.9), owing in large part 

to more densely sampled areas in the medial deposit, and larger and larger areas being supported 

by few observations (or contours) in the far-field. However, observations of power-law 

relationships between mean thickness and the proportional error should be considered carefully, 

as those variables are innately homoscedastic. Much weaker trends are present when absolute 

uncertainties are assessed, either for TPS, or for natural or observational variance (Engwell et al., 

2013), and we believe this relationship should be explored in future work. 

A natural extension of this work, as we noted briefly in the comparison of isopach results, 

is the potential to use TPS for interpolation on observational data points - not relying on existing 

contour data. Here, similar to how Klawonn et al. (2014b) used different datasets and 

practitioners to develop hand-drawn isopach maps, TPS and related spatial process models allow 

for conditional simulation of surface error (cf. MC), or an exact calculation as trialled here. In 

this way, we can exhaustively assess the uncertainty of thickness measurements and the 

interpolations between them over space for the first time, in addition to the observational 

uncertainties, all of which are critical for adequately weighted regression (Bonadonna and Costa, 

2013). Regardless of the interpolation model employed it seems critical for parameter 

optimization to be well thought out (e.g., using MLE or GCV), and for spatially variable error in 

the thickness surface to be measured. Spline optimization is the biggest departure of our methods 

https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
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https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
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https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
https://paperpile.com/c/cTksGw/fOvcU+C0Ji+fTCg5+c1wkZ+3BRk6+CR5x8
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from Engwell et al. (2015)’s approach. While they found parameters that seemed to produce 

reliable results following visual inspection, we advocate an empirical approach. 

By allowing for higher isopach sampling density than has been available when maps are 

drawn by hand, we can also reduce the problems of low (apparent) fitting error due to overfitting 

resulting from data paucity (Bonadonna and Costa, 2012). Effectively “super-sampling” the 

thickness-space allows our function fitting (exponential, Weibull, data straightening, or any 

other) to more reliably account for the full shape of the deposit and its thinning, as well as the 

error associated with the underlying data. However, more work must be done to evaluate the 

impact of various sampling regimes, particularly with varying weighting methods.  

3.4.4. Distal data and closing contours 

It is well known that distal isopachs, their accuracy, and how they are handled, can have a 

substantial impact on the subsequent volumes calculated from them (Lerbekmo, 2008; 

Bonadonna and Costa, 2012, 2013). Not only are distal deposits usually thinner and harder to 

measure, but they may also be more prone to being disturbed or otherwise less representative of 

the mean thinning signal. One concern is that if only visible (and easily discernible) deposits in 

the far-field are used for mapping tephra thickness, some bias may be introduced by overlooking 

sites with indiscernible thin preserved deposits or those that are too diffuse to measure. In 

essence, these could be considered cryptotephra within the potentially mappable deposit. So even 

if local variability and heterogeneous over- and under-thickening may occur depending on 

preservation conditions, if the full gamut of sites is analyzed, a reasonable estimate of mean 

thickness may be made, even if individual measurements may be biased. Although probably not 

necessary to capture the vast majority of deposit thickness, pseudo-thickness data from 

cryptotephra analysis can be used to augment the visible deposit and allow for a more nuanced 

and complete assessment of far-distal ash. Likewise, the collection of multiple measurements at 

sites, including absences (Engwell et al., 2013; Cutler et al., 2020), will allow for a better 

understanding of inter- and intra-site variability while also informing interpolation and curve-

fitting methods with realistic empirical measures of uncertainty. By integrating thin deposits in 

this way, it may become reasonable to extend mapped deposits beyond the 0.5 cm threshold we 

defined in this paper. It is interesting to consider, though, how does the mapped distal component 

influence our fits? We observe that exponential and Weibull fits are higher than the more (map-) 
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accurate data straightening approach. It could be that even methods that are prone to increased 

distal “over-representation”, like power-law integration, may still realistically model far-distal 

thinning. Perhaps it is conservatism in distal mapping and being restricted to visible 

measurements that reduce volume estimates from other methods.  

We observe from our work that the limit to which contours can be closed can have a 

meaningful impact on the resulting full deposit volume. For example, the Novarupta A and B 

isopach maps of Fierstein and Hildreth (1992) have data that extends out to 1 cm, though these 

contours are not closed on the original isopachs. In fact, across both deposits, and maps at both 

proximal and regional scales, the only contour that is fully closed is the 100 cm Layer B isopach. 

For our work, TPS only provided closed contours for Layer A out to 10.5 cm, with B being 

limited to 5.5 cm. Both of these measurements equate to the thicknesses 0.5 cm inside the 

thinnest nearly closed contours in the original maps. We suggest that TPS can reasonably close 

nearly complete isopachs. Yet, open contours with undefined deposit limits present problems. 

However, this issue is not one limited to spline interpolation methods. Reasonable closure may 

be made for some deposits “by eye” by inferring the local trend as seen on the map, but this is 

obviously quite subjective. If the original author deemed it inappropriate to close an isopach, 

even with an uncertain contour, what credibility can we give to the interpretation for volume 

estimation at this thickness? 

Nevertheless, even where we have insufficient thickness data to effectively draw confident 

isopachs that can be closed (or nearly so) into the thinnest of deposits, many mapped eruptions 

have defined deposit limits. Furthermore, the addition of additional or supplementary limits or 

“zero” points to constrain interpolated thickness surfaces has been commonly employed. By 

constraining the outer limits of a deposit as either measurements (Engwell et al., 2015), or a 

boundary for calculation (Klawonn et al., 2014b), closing contours may be mapped from an 

interpolation method out to very thin areas. although the uncertainty in this extrapolation must be 

quantified and propagated to the full deposit volume. The “rule of thumb” cut-off adopted in this 

paper (0.5 cm) circumvents this requirement to an extent. However, careful analysis of distal 

thinning and deposit heterogeneity should be considered for each analyzed deposit. 

The TPS approach with optimization is preferred due to its empirically supported selection 

of parameters that can meaningfully reduce the subjectivity of surface interpolation. For 
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performing volumetric analysis of hand-drawn or other existing isopach maps, we rely on the 

expert interpretation of those who drafted the maps, without introducing our own biases for 

closing contours in areas of insufficient data or high uncertainty. Numerical optimization 

intrinsically avoids manual tuning of parameters as well (Engwell et al., 2015; Buckland et al., 

2020).  

Comparisons to point-observation-based isopach maps such as the cubic B-spline in 

tension implemented by Engwell and our TPS implementation on contour-only data is not apt. 

However, the fitting values required for the cubic B-spline to produce realistic predictions, with 

selection “guided to some extent by the visual credibility” of the surface (Engwell et al., 2015), 

also have the potential to more meaningfully underestimate the Tmax of the deposit by over-

smoothing than our approach. For example, when supplied with a maximum thickness 

observation of 0.2 m, Engwell et al. (2015) resolved a maximum thickness of only about half 

that. Whereas our application of TPS, using contours with the same maximum 0.2 m thickness 

resolved a Tmax of 0.22 m for the USGS surface, even with strict interpolation (i.e., λ value 

maximised relative to the EDF).  

Clearly, subsequent testing must be done with TPS for generating thickness surfaces from 

disparate observations, but TPS’ good performance on a variety of other natural sciences data is 

encouraging (Hancock and Hutchinson, 2006; Trossman et al., 2011; Chen et al., 2017). 

However, there is some discussion as to the best method for optimizing a regularization 

parameter such as our TPS lambda. Thoughtful cross-validation or tuning variables such that a 

performance criterion is maximized seems to be a wise method for regularisation (e.g., Restricted 

Maximum Likelihood (REML), Wood, 2011). Such methods are logically supported and are 

more likely to give more reliable predictions than objectively selected parameters (Craven and 

Wahba, 1976; Golub and von Matt, 1997; Hutchinson, 2000). However, this is mainly if a 

reasonable grid search method is employed (Bergstra and Bengio, 2012). Expert evaluation of 

interpolated thickness surfaces is often required to ensure they fit with the data and are not 

producing unreasonable artifacts. Fortunately, the GCV method we employed is generally 

robust; in all our testing, we never found an unreasonable interpolation.  
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3.4.5. The best volume estimation method? 

We compared several methods for integration, both direct (in a spatial sense) in indirect 

(calculating the area under summarising curves), and explored differing functional forms to 

describe the thinning of volcanic deposits. In determining which approach to volume estimation 

is deemed most appropriate, a few value judgements must be made. First, is under- or 

overestimation preferable? In hazard and risk management, conservatism in either direction may 

be necessary for varying reasons (Bear-Crozier et al., 2016) and should be carefully considered 

by decision-makers. In the past, Pyle’s exponential method has been viewed as a more 

conservative method that generally favoured underestimation. However, we see that relative to 

both mapped volume and the distal deposit beyond the mapped limit, the exponentially 

integrated volume is actually higher than we might expect given our mapped data (Figure 3.11). 

The data straightening method, however, is more conservative, while appearing to represent the 

mapped deposit better due to its explicit calculation from the continuous TPS surface. 

Comparing the Weibull and two-piece exponential fitting methods, the method that proves to be 

more conservative depends on both the distal limit of isopach data used and the NLS weighting. 

The influence of distal data exclusion on Weibull fits was illustrated by Bonadonna and Costa 

(2013), where it produced higher volumes from both high and low thickness regions of the 

deposits. Whereas studies of all mapped thickness contours show that exponential-produced 

volumes are usually lower than those from Weibull integration (Bonadonna and Costa, 2012; 

Klawonn et al., 2014b), this is highly dependent on the nuances of the dataset. In our study, 

when outer contours could be no thinner than 0.5 cm, the exponential method gives slightly 

higher volumes than the Weibull method, on average, for most situations. However, for all 

methods, it seems that increasing the isopach sampling density produces results that are more in 

line with the mapped volumes from direct integration. 

In pursuit of volume estimates that are most interpretable by risk managers and decision-

makers, we believe that regardless of integration method, displaying results in a cumulative 

volume, as with our limited integration plots, is best. Without the need for interpreting log-scales 

or needing to visualize areas under various curves, these plots resolve the volumes and 

uncertainties at varying thicknesses. Eschewing nonlinear axes for this plot type means that 

interpretation is intuitive and straightforward. Though we emphasise that these plots are most 

reasonably generated using Taylor expansion techniques for error propagation. 

https://paperpile.com/c/cTksGw/L6dv9
https://paperpile.com/c/cTksGw/L6dv9
https://paperpile.com/c/cTksGw/L6dv9
https://paperpile.com/c/cTksGw/8lr7s/?noauthor=1
https://paperpile.com/c/cTksGw/491R+3BRk6
https://paperpile.com/c/cTksGw/491R+3BRk6
https://paperpile.com/c/cTksGw/491R+3BRk6
https://paperpile.com/c/cTksGw/491R+3BRk6


110 

  

One other important aspect of method evaluation is the precision of final volume estimates. 

The reliability of volume estimates and their propagated uncertainty relies on the validity of their 

assumptions. If all methods evaluated were equally valid, presumably the one with the highest 

precision would be most useful. We have little information to assess the realism of extrapolation. 

However, if we assume reliability within the mappable deposit as the primary indicator of 

performance on distal data, it is clear that the data straightening method, by employing direct 

integration of the thickness surface is superior at least in the cases we evaluated. It also is usually 

the most precise. 

Finally, when integration with error propagation is conducted, volume estimate 

calculations at a given thickness by data straightening are far more computationally efficient than 

prior methods. This is a result of only needing to propagate the error to a single critical thickness 

value, instead of every value within the integration limits. Considering all this, the data 

straightening approach permits the most conservative, accurate, interpretable, and precise 

volume estimates of the methods tested here. Our methods conduct interpolation using TPS, fit 

models via weighted NLS, and optimized parameters by LM. At all of these stages we can 

account for uncertainty, from isopach generation to model-fitting. By selecting tools that are less 

sensitive to missing data, and presenting the option to include expert inputs (e.g., deposit limiting 

data), the present workflow is well situated to be expanded to a broad range of volume 

estimation tasks. These include interpreting existing maps with an interest in assessing 

uncertainty, or for calculating volume beyond thickness observations using truly subjective and 

empirically optimal methods. 

3.5. Conclusion 

The need for statistically sound, interpretable, and easily calculable volume estimation 

workflows is critical. Such methods would greatly benefit risk management, volcanological, and 

palaeoenvironmental studies and facilitate informed decision making. In this paper, we have 

adapted existing isopach-based volumetric analyzes to supply MC and Taylor expansion-based 

uncertainty bounds. We also leverage GIS software and a new application of TPS interpolation 

to permit not just continuous thickness surface modelling, but also direct measurement of 

cumulative volume above an objectively modelled thickness reference plane. This data was then 

used to conduct a linearized least squares regression, relating the thickness of an isopach (the 



111 

  

reference plane) and the volume under the surface above it. This data straightening approach 

predicts volume within the mapped deposit much more accurately than prior methods and 

extrapolates volume to zero thickness in a manner that is visually consistent with observations in 

limited integration plots.  Our new method is generally more precise and more computationally 

efficient than the integration of propagated-error NLS exponential and Weibull fits. 

By employing revised and new methods on previously published hand-drawn isopach maps 

of the uncompacted MSH1980 tephra, we reveal that the V of the deposit is probably similar to 

previous estimates, even when the only isopachs deemed credible (>0.5 cm) are considered. A 

more complete and finely detailed isopach surface and map we call a KDE synthesis provides the 

most detailed proximal data for any full-deposit map published of MSH1980 to date. Our new, 

empirically supported data straightening technique predicts a mean total deposit volume of 1.26 

km3 (1.24-1.28 km3 95% PI). Although the VEI of the deposit does not change with the new 

analysis, we have good reason to believe that the distal contribution, summarised as the portion 

of V that is thinner than 1 cm, is probably larger than previous estimates. 

Studying cumulative volume or limited integration plots reveals that piecewise exponential 

and Weibull NLS fitting and integration generally over-estimates volume within the mapped 

thickness domain. Our new approach is situated to supply better-supported interpolation and 

extrapolation that is consistent with expected decay trends. There remains considerable 

opportunity for our TPS interpolation, data straightening NLS fits, and error propagation to 

improve the reliability of erupted volume measurements across mapped deposits and is adaptable 

to observation-only data. By using rapidly calculable uncertainty estimates and new 

visualizations, this work should improve risk management and our understanding of volcanic 

deposits. 
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Chapter 4. Conclusion 

This thesis is centred around the development and implementation of computational 

approaches to tackling tephrochronological and volcanological problems. The main research 

question sought to address how new computationally-based methods could improve volume 

estimation and tephra geochemical correlations. In this chapter, we discuss how we achieved the 

goals of this thesis’ work, focusing on the essential outcomes. We follow this by suggesting 

future research avenues that evolved from our findings. Finally, we comment on the place of this 

thesis in the field of research and summarise our broadest interpretations coming from the work. 

4.1. Summary of outcomes 

There is no refuting the value of visual analysis of glass geochemistry as an essential 

validation tool for tephra correlation. Likewise, plotting and geochemistry are only one element 

of a well-supported correlation; identifications must be confirmed by multiple lines of evidence, 

including stratigraphy, chronology, chemistry, and physical parameters. However, we showed in 

Chapter 2 how machine learning methods could reliably and accurately identify the volcanic 

sources of unknown tephras based on their glass composition. We demonstrated these methods to 

be consistent with the timing of known volcanic activity from the considered sources and further 

assessments by geochemical plotting.  

Most of the methods trialled showed both high raw classification performance and 

provided useful probability estimates for source predictions. We did uncover that multi-class 

probability calibration from support vector machines (SVM) could produce spurious results, 

despite its high raw performance. Many other algorithms performed impressively on our training 

and test datasets, even those that were relatively computationally simple, including linear 

discriminant analysis (LDA), k-nearest neighbours (KNN), and Naive Bayes (NB). This supports 

earlier work, where LDA has been used to correlate tephras (Beaudoin and King, 1986, Shane 

and Froggatt, 1994).  

However, using more modern machine learning approaches, namely random forest (RF) 

and artificial neural network (ANN) classifiers, proved even more useful, especially when they 

were used in concert. An ensemble approach to classification, where the probabilistic source 

predictions of RF and ANN models were averaged, proved to be robust and relatively simple to 
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execute. Such implementation was made possible by semi-automated parameter tuning using a 

grid search method and simple coding in the R programming language. We proved that 

supervised classifiers, when supplied with adequate and representative datasets, can significantly 

expedite cross-correlative processes in tephrochronological analysis. This is especially important 

when there are many prospective correlatives and plotting every potential source or eruption is 

prohibitively time intensive. The methods we explored are well suited to narrowing down 

potential tephra sources where reference data is available and can provide quantitative 

probabilistic predictions based on empirical characteristics of the data.  

We tested the RF and ANN ensemble on geochemical data from tephras in sediment cores 

from Eklutna Lake, Alaska (Boes et al., 2018; Fortin et al., 2019). Not only did we verify 

previously published correlations from this lake and match cross-correlations made using visual 

analysis, but we also identified a Holocene-aged tephra that is geochemically consistent with the 

Pleistocene-aged Dawson tephra from the Emmons Lake Volcanic Center. The methods 

presented in this work use the strengths of individual shard-wise geochemical analysis and can 

rapidly parse extensive tephra datasets, even where multiple geochemical populations exist. We 

believe that machine learning methods are well-positioned to take advantage of the rapidly 

growing tephra geochemical databases worldwide. But as objective as statistical methods may 

be, they still are only as representative as the data they are provided and must inevitably be 

verified by expert judgement and a suite of other quantitative and qualitative data to produce 

credible identifications and correlations.   

In Chapter 3 we sought to improve volume estimation methods based on maps of tephra 

thickness (i.e., isopach maps). The goals therein included introducing objectively optimized 

thickness surface generation from published isopachs, finding an efficient way to propagate the 

model-fitting error to final integrated volume estimates, and developing an improved method for 

extrapolating thinning trends for cumulative volume and thickness data. In assessing these new 

techniques on the May 18th, 1980 deposits of Mount St. Helens (MSH1980), we synthesised a 

new isopach of this eruption’s uncompacted thickness, including detailed proximal data for the 

first time. 

Thin plate smoothing splines (TPS), with their degree of smoothing tuned by generalized 

cross-validation (GCV), converted published isopachs to continuous surfaces of thickness across 
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the mapped domain. This process has the advantage of removing subjectivity in parameter 

selection. Thus, proximal volume extrapolation into areas thicker than the maximum thickness 

provided are integrated in a spatially consistent manner. Subsequently, the cumulative volume at 

various thicknesses could easily be calculated in a geographic information system (GIS), and 

isopachs could be sampled at a higher-than-mapped density, thereby circumventing many of the 

problems of earlier direct integration approaches (Fierstein and Nathenson, 1992).   

In the field of volume estimation, where many possible functional thinning relationships 

may potentially be valid, one uniform “best” solution does not present itself. However, we found 

that existing methods, including Weibull functions (Bonadonna and Costa, 2012) and piecewise 

exponential fits (Pyle, 1989; Fierstein and Nathenson, 1992) were not consistent with our TPS 

predictions. Both methods tend to overpredict volume within the mapped region of volcanic 

deposits out to at least 0.5 cm thickness relative to that directly integrated from a thickness 

surface. A new data straightening method we introduced, using cumulative volume as the 

dependent variable, more reliably predicts a conservative estimate of volume in the mapped 

thickness domain and produces extrapolation to zero thickness that seems visually consistent 

with expected distal thinning rates. 

We evaluated error propagation of non-linear least squares (NLS) fits through Monte Carlo 

(MC) simulation and Taylor expansion to calculate confidence and prediction intervals for 

volume estimates. In comparison to MC, we see that Taylor expansion methods can be orders of 

magnitude faster, produce virtually the same results, and have advantages for numerical 

integration. Their use also facilitates the calculation of cumulative volume at a range of 

thicknesses and the production of so-called limited integration plots. We find these plots more 

interpretable and easier to derive useful volume information from than previous methods. 

Although our re-analysis does not suggest a profound change in the interpreted volume of 

MSH1980, the relative contribution of distal data (thicknesses <1 cm) is probably marginally 

higher than previous integration-based methods have suggested. 

These two studies have clearly shown how computational methods may improve and 

expedite critical components of tephra, Quaternary, and volcano research. We presented the 

material to highlight practicality for investigating volcanic deposits to sources and investigating 

their timing, size, and eruptive dynamics. Such work has implications for contemporary risk 
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management and hazard analysis, as well as studies of past volcanism, environments, and 

chronology.  But this work also has relevance beyond the fields explored explicitly here. For 

example, not only can the machine learning methods we used correlate tephra chemistries to 

sources, but they could be adapted to correlating individual tephras, non-glass mineralogy, or 

even help in classifying non-tephra materials in other earth science fields.  

Likewise, we explored volume estimates for bulk tephra from isopach contours. However, 

the TPS and NLS methods we used could just as easily generate statistically-based thickness 

surfaces from point observations (i.e., eliminating the subjectivity inherent to hand-drawing 

isopach maps). They are also naturally extensible to erupted mass and magnitude (M) estimation. 

These attributes, amongst others, are fundamental for better understanding volcanic parameters 

like eruption column height, mass-eruption rate, and may even be applied to reconstructing 

paleo- weather and climate through inversion modelling.  

4.2. Future work 

The papers in this thesis are two specific examples and tests for new method applications. 

While we were able to demonstrate convincing support for machine learning and computational 

approaches to volume estimation and tephra source correlation, there remains yet more research 

to verify, validate, and improve these techniques and to facilitate their application in new and 

broader contexts. 

In the area of supervised learning for tephra identification, there are key improvements that 

we suggest. For example, the methods employed here only provide practical probabilities if the 

actual source of an unknown is a member of the reference data used for comparison. There 

remains great utility in using statistical methods that can identify outliers or data not matching 

the reference samples. We suggest that one-class SVMs (Schölkopf et al., 2001), soft 

independent modelling of class analogy (SIMCA) (Wold and Sjöström, 1977), or other methods 

may be helpful in this endeavour. However, their evaluation is beyond the scope of the present 

work. Secondary calibration steps (i.e., as an alternative to scaling proposed by Platt, 1999) 

should also be investigated to alleviate the problems presented by probabilistic predictions for 

multi-class SVM. 

We also suggest that machine learning classifiers should be applied to more precisely 

discriminating individual tephras (i.e., correlating them to unique eruptions or units, not just 
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source). Preliminary tests already suggest these methods can be helpful for distinguishing unique 

tephras once a source has been determined. For example, given the suite of previously 

characterized Holocene tephras originating from Hayes Volcano (Wallace et al., 2014), yet the 

uncertainty around many less-proximal Hayes-correlated deposits (Mulliken, 2016), using 

classification techniques to support correlations from this source could prove lucrative. 

Classifiers may also be useful in assessing and processing glass geochemistry after it is 

initially collected. In this way, pre-identified geochemical clusters or types could be quickly 

flagged before a more detailed study is undertaken, detrital or mixed assemblages could be more 

easily teased out, and contaminated analyses (e.g., inadvertent phenocryst analysis) could be 

labelled automatically. This would be helpful in ensuring published geochemical datasets are as 

‘clean’ and representative of the units as possible – a challenge in tephrochronology where many 

people utilizing it are not experts in igneous petrologic processes. 

The potential for future research in the field of volume estimates is also immense. In 

addition to the open-ended questions posed in Chapter 3’s discussion, one critical question 

remains when considering cumulative volume from continuous surfaces. How sensitive are 

volumes to the influence of proximal extrapolation when insufficient near-vent data is supplied? 

For MSH1980, we had the benefit of having an exceptionally well-studied and sampled deposit 

with abundant proximal thickness data (Waitt and Dzurisin, 1981). However, this is not always 

possible. Further sensitivity analysis should be conducted to explore the impact of introducing 

supplemental maximal thickness control points to TPS input data, just as has become standard 

for distal control data (Engwell et al., 2015; Buckland et al., 2020; Cutler et al., 2020). Perhaps 

using extrapolated exponential maximal thickness or the upper prediction limits of initial TPS 

modelling could inform extreme “high thickness” zones in such tests.  

Just as importantly, we must determine what qualifies as “sufficient” proximal data. In our 

work, it seems reasonable to conclude that proximal data of the Washington Department of 

Natural Resources (WA DNR) map of Folsom and Quinn (1980) was proximally insufficient. 

Whereas the kernel density estimate (KDE)-based synthesis map we produced was not just 

sufficient, but ideally representative of near-vent heterogeneity. But future work must be done to 

define the degree of sampling or precision of isopach generation reasonable or required for 

accuracy in future volume studies.  
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We also propose the use of cryptotephra thickness or pseudo-thickness data (Cashman and 

Rust, 2020) could be a valuable tool to assess the performance of volume extrapolation beyond 

the reasonably mapped visible deposit. But disparate thickness points could not plausibly be 

accounted for unless we also include estimates of measurement error, and requisite variable 

weights in surface fitting processes (i.e., TPS), NLS fits, or both. Also alluded to in Chapter 3 

was the possibility of using TPS to generate surfaces and isopachs from raw thickness 

observations. It is likely that these methods can be adapted to provide the means to do so in an 

easy to compute and objective manner that simultaneously expedites and increases the scientific 

rigour of volcanological studies. 

4.3. Final remarks 

This thesis presents a case for how a more rigorous integration of computational methods 

can lead to improvements in tephrochronological and volcanological studies. However, we do 

not seek to replace traditional methods, as they certainly have their advantages. Invariably, the 

expert knowledge and interpretation only a skilled analyst can provide are essential. However, 

computational approaches such as machine learning for supervised classification of geochemical 

datasets, optimization of data smoothing and model parameters, and thickness data interpretation 

are well-positioned to ease already demanding analytical tasks. These methods can 

simultaneously make work less subjective and more reproducible.  

We have demonstrated a variety of techniques that provide probabilistic predictions of 

tephra source, model thickness and volume in new ways, and attempt to quantify the uncertainty 

in these models in ways that are at once easy to compute and interpret. But one fact remains: the 

new methods we propose and employ have not refuted related interpretations using more 

traditional techniques. Where an ensemble of classification models suggested correlations, the 

results matched human interpretations. And though we used new methods to model and visualize 

tephra volume, the resultant volumes were still of the same order as previous estimates. Thereby 

volcanic explosivity index (VEI) (Newhall and Self, 1982) and the mass-based magnitude (M) 

(Pyle, 2015) rankings remain unchanged or would be nearly so. The important contribution is 

that these innovations are making the use and analysis of larger and more complex datasets 

reasonable for the first time. Analytical tasks that would have been prohibitively costly in terms 

of time and effort are now within reach so long as the user has access to a computer. For studies 
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of past volcanic eruptions, we can now make predictions and correlations with greater certainty 

and efficiency than before. And in understanding present-day risk and hazards, we can quantify 

model uncertainty better. When we use new tools, we can make our assessments more 

accessible, and their execution can be faster than ever before. 
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Appendix A   

A.1. Expanded machine learning methodological rationale, procedure, and discussion  

A.1.1. Expanded procedure and rationale  

A.1.1.1 Data and variable selection  

As an additional preprocessing step, before modelling all features were standardized by 

centring (subtracting each value from the mean of that feature) and scaling (dividing the centred 

values by the feature’s standard deviation).   

Exploratory recursive feature elimination (RFE) incorporating resampling, the stepwise 

trial of models with subsequent removal of possible explanatory variables, as per Kuhn (2012), 

was conducted using Random Forests (Breiman, 2001) to test the relative importance of the 

geochemical attributes. The most accurate preliminary models retained all ten geochemical 

variables (SiO2, TiO2, Al2O3, FeO, MnO, CaO, Na2O, K2O, and Cl). However, because Cl is not 

measured as part of major oxide EPMA at all labs it was excluded as a predictor, while all others 

in the dataset were utilized. As such, this study’s outputs and methods can be applied to datasets 

which lack Cl measures. By then re-normalizing major oxides (excluding Cl) and standardizing 

compositional data for each shard before comparative modelling, we could assess the 

performance of predictive models trained for geochemical discrimination of volcanic source with 

only the most universally calculated chemical parameters.  

This parsed, weight-percent corrected, and pre-processed data was the input for all 

modelling efforts, and henceforth shall be referred to as the dataset. The numbers of glass shard 

points for each volcanic source and eruption are relayed in Appendix C, Table C.1, p. 180.  

A.1.1.2. Modelling  

For our purposes, the modelling process is split into two main phases: tuning/optimization 

and evaluation. In tuning, models are fit to data while algorithm-specific parameters are 

permuted over a range of likely values and the “best” permutation (e.g., highest performance 

rating) is adopted as the “tuned” model for that method. In testing, each tuned base learner and 

ensemble make predictions on a set of data that was entirely withheld from model training (first-

seen validation data) to gauge model performance.  
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All modelling and subsequent analysis were conducted in the R language and software (R 

version 3.5.0, 64-bit). Random seeds were set to ensure reproducibility. The R package “caret” 

(Kuhn, 2008) provided the framework for training and tuning base learners and the ensemble 

model stackers, while the average ensemble was computed in base R (using the Reduce() 

function). Details on the subordinate functions wrapped by caret, including all classification 

algorithms, are specified in Kuhn (2018) and are well described in their documentation via the 

Comprehensive R Archive Network (CRAN) (Hornik, 2012). Algorithms tested in this study 

include classification and regression trees (CART) via recursive partitioning (Therneau and 

Atkinson, 2018), Random Forest (RF) (Liaw et al., 2002), SVM with radial kernel (Karatzoglou 

et al., 2004), k nearest neighbors (KNN) (James et al., 2013), Naive Bayes (NB) (Majka, 2018), 

C5.0 (Quinlan, 1993), linear discriminant analysis (LDA), and feed-forward artificial neural 

network (ANN) (Venables and Ripley, 2002). These methods were used for base learners, while 

RF and ANN were also used to create stacked ensembles. An average ensemble was also 

constructed by averaging the top-two performing base learners. Note that the average ensemble 

was not natively a caret model. To ensure parity in the cross-validation and evaluation protocol 

between it and the models constructed via caret, a “dummy” CART model was used to house the 

model results wherein labels were assigned directly from the raw average predictions. Confusion 

matrices were used to ensure the results of the original average ensembles’ predictions and the 

dummy models’ were identical. See Table S2 for a summary of the algorithms used and their 

tuning parameters as well as descriptions of their learning approach.  

More complicated ensemble methods, adaptive boosting (AdaBoost) (Freund and Schapire, 

1996) and regularized gradient boosting (XGBoost) (Friedman, 2001), were also explored. 

Though, with the goals of ready reproducibility and easy adoption of methods by other analysts, 

these algorithms proved too computationally costly to be viable and were aborted before final 

model training was completed. Computation for preliminary modelling was conducted in parallel 

via the doParallel package (i.e., sending portions of processing tasks to separate processing 

clusters, in our case, central processing unit (CPU) cores) to speed the training and optimization 

processes. Though, at the cost of processing time, to ensure consistent internal resampling and 

random number generation between models, and to facilitate applicability of methods to all users, 

final models were computed using only a single process. Processing time for model training and 

fitting was recorded as a way of estimating the computation requirements for each algorithm.  
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A script containing the R code used to fit and test all the models in this study is included in 

the supplement (Appendix C, Script C1, p. 170). Each model was coded as a standalone call of 

caret’s train function (i.e., not looped or contained within another function), including preceding 

random seed-setting, such that the code can easily be run from the script.  

The performance measures used at all stages of training and validation include accuracy 

(i.e., a ratio of correct predictions to the total number of predictions) and Cohen’s (unweighted) 

kappa statistic (Cohen, 1960). Kappa is interpreted similarly to accuracy, in that a score of 1 

indicates perfect classification and values normally fall between 0 and 1 (Sim and Wright, 2005), 

except that performance is based on class size, and when performance is worse than expected by 

random chance, negative values between 0 and -1 are possible. Kappa is used to produce a more 

dependable assessment of performance that compensates for class imbalances in training data.   

Although accuracy is widely recognized as an inadequate metric for many classification 

problems (when considered alone), its value is most apparent when compared to the likelihood of 

correct classification given random chance, as is done here. Accuracy was compared to the no 

information rate (NIR) (i.e., the accuracy if all records were assigned the most abundant label) 

and an exact one-sided binomial test (Clopper and Pearson, 1935) returned the p value that 

accuracy > NIR.   

Note that sensitivity and specificity, among other common performance measures (Van 

Stralen et al., 2009), were eschewed. This is because the evaluation of specificity and sensitivity 

values require implicit value judgments on performance goals (e.g., the cost of false positives vs. 

false negatives) while weighing the importance of performance on certain classes (e.g., is it more 

important to correctly classify all cases of a certain volcanic source, yet give little attention to 

misclassifying others?). By avoiding these other methods, a class-neutral approach was adopted, 

wherein the classification of all labels were given equal emphasis and overall model performance 

was prioritized.  

During the training phase, model tuning parameters (hyperparameters) were varied over a 

tuning grid of permutations to seek values that approach "optimality" for each learner. Grids of 

tuning parameters were computed by caret and granularity (i.e., the number of levels for each 

hyperparameter modified) was specified using the tuneLength argument of the train function. To 

strike a balance between optimization and computing time, an arbitrary tuneLength of ten was set 
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for all learners except the base learners LDA (which has no tuning parameters), RF (as the 

maximum number of “mtry”, the decision-tree splitting parameter, intrinsically cannot exceed the 

number of predictor features minus one; mtry ≤ 8), NB (train function with the tuneLength 

argument hold parameters  “laplace” and “adjust” constant at zero and one respectively (i.e., their 

defaults) and only varies the use of kernel estimation; 2 levels, TRUE or FALSE) and KNN, 

which is very fast to compute, permitted a dense tuning grid; 20 levels, from 5 to 43). RF 

technically has another variable parameter, the number of trees that are grown and aggregated in 

the forest. For this study, a computationally reasonable but appropriately high number of trees 

were set (500) and kept fixed across all training (Oshiro et al., 2012). Also note that in 

preliminary model testing, the sigma parameter for the SVM’s Gaussian radial basis kernel 

function was estimated by the kernlab function sigest (Karatzoglou et al., 2004). However, SVM 

performance was increased by tuning both the sigma and cost parameters of the algorithm. In the 

case of SVM prob., following the use of the tuneLength setting for tuning, we increased the 

tuning parameter resolution by employing a custom grid-search, including the optimum 

parameters defined by the tuneLength search. Sigma was trialled at values between 0.5 and 1, 

progressed by increments of 0.05; cost was varied between 1 and 15 by increments of 1.5. All of 

this was to ensure that reasonable approximations of true hyperparameter optima were found for 

the SVM prob. model. SVM raw performed adequately using the standard tuning grid and 

tuneLength = 10, varying both cost and sigma.   

It is important to note that the optimization process utilized here is unlikely to have found 

precise local or global maxima relative to performance scores (or minima relative to loss 

functions). Though, given the consistent performance of tuned algorithms across cross-validation 

folds, evaluation of hyperparameter tuning plots, and assessment of performance gain, we are 

confident that, at large, the performance difference between our selected “best” tuning 

permutations and true optima is probably negligible. However, methods other than grid-searches, 

such as genetic algorithms and Bayesian optimization could yield better results and may even be 

faster (Peng-Wei Chen et al., 2004), though are generally more computationally intensive (Feurer 

and Hutter, 2019). Although such methods are not available in the caret framework, they are 

present in various R packages, including in mlrMBO (Bischl et al., 2017) and GA (Scrucca, 

2013).  
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During tuning, optimization was conducted by selecting the hyperparameters that resulted 

in the maximum overall average kappa value across cross-validation subsamples. Subsequent 

predictions were made from the models via the predict function. As part of this process, identical 

preprocessing methods (centring and scaling, with the same means and standard deviations as in 

training) were applied to new data on which predictions are made.  

Final models were trained on all available data to have a more complete "knowledge" of 

the feature-space. Final models are also included in Appendix D, Models D1, p. 257, as R objects 

that can be used as standalone classifiers for new geochemical data of the same format (namely, 

identical geochemical column names) via the predict function. The trained models can be 

imported into R sessions using the readRDS function, where the object of the function is the .rds 

file for each model of interest.   

For the final ensemble model fits, the full dataset was used for both the base learners and 

for training the stackers. This inherently increases the risk of overfitting through dataset 

memorization, even with cross-validation optimization (Magnus and Oxley, 2004). Though, for 

this study, is deemed an acceptable concession so that the full gamut of training data be utilized. 

These models were evaluated as before by repeated cross-validation on their training data.  

A.2.1. Expanded results and discussion  

A.2.1.1 Learner performance  

Generally, the ensemble methods performed best on cross-validation of training data, 

though for the meta-model stackers some measure of performance principally increases due to 

the opportunity for the models to “learn” from twice the volume of data distributed within the 

sample’s feature-space when compared to the base learners. Further, for the final models, the 

stackers were trained on the same partition of data used for base-learner training, resulting in 

some innate pattern memorization (over-fitting) to the dataset (Magnus and Oxley, 2004). 

Regardless of this, there appears to be good evidence that the ensembling reduces classification 

error in the training set and substantially lowers the variance of performance metrics.  

Though partitioned and kept separate from the training data, held-out test data is still drawn 

from the same overarching dataset used for training. A product of this arrangement is that the 

models inherently highly fit the data set on which they are trained and assuming homogeneous 
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data, and may yield optimistic performance measures. Stratification for data splits could be 

conducted using separate samples, instead of shards by source to help address the "same sample" 

being in both the test and training set. However, this technique is not appropriate for all datasets, 

including ours. This is the case when only one or a few samples for some labels (e.g., source) are 

available for reference. Considering this, the use of “final” models, trained on the full data, 

wherein all data points are used for training and evaluation for various iterations via 

crossvalidation is supported over the use of models trained on smaller data subsets. This 

recommendation, however, may be tempered in the case of the meta-models, as being doubly 

trained on the same data, memorization to any degree may be too high a price to pay for 

performance on the training set.  

A.2.1.2. Evaluation on test data  

It is somewhat surprising that KNN performed so well (Main article, Figs. 3 and 4), given 

its conceptual simplicity. This algorithm simply queries a fixed number of neighbours (K) in 

featurespace and returns the label of the mode encountered between them as its raw prediction. It 

follows that this algorithm requires both a relatively dense sampling of the feature-space and 

equal representation of classes in the space for best performance. In a way, KNN computation 

can be thought of as a proxy for mathematically more intensive density-based methods (e.g., 

Bronk Ramsey et al., 2015). Where drastic class inequalities exist in the training data, density-

based estimators (instead of using single data points as neighbours) or upscaling/downscaling 

data to equalize class membership may be more appropriate. Though, this too will incorporate 

inherent biases and assumptions.  

Models that perform well as base learners are not always the best choices for stacking 

algorithms for the same problem. However, given the good record of ANN in ensembles (as both 

base learners and meta-model stackers) and RF for a tremendous array of classification problems 

(Fernández-Delgado et al., 2014), they are both deemed by the authors to be acceptable initial 

methods for ensemble problems. By using more sophisticated algorithms for stacking, the models 

are flexible enough to fit complicated decision boundaries that simpler methods might not 

appropriately cope with (Kuncheva, 2004).  
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RF and ANN are also suggested as some of the most reliable uncalibrated probabilistic 

classifiers. In fact, ANN has even been shown to produce more robust probabilities on its own 

than following probabilistic calibration (Niculescu-Mizil and Caruana, 2005). Note that in the 

case of neural networks, "old-style" ANNs such as the approach we employ produce good 

probabilities, though newer frameworks, including "modern" deep neural networks, require 

calibration (Guo et al., 2017). Random forests, on the other hand, by nature of their averaged 

bagged trees, will inherently show some bias towards moderate probabilities, while yielding very 

high and very low probabilities (i.e., towards 0 and 1) more rarely than would be ideal 

(NiculescuMizil and Caruana, 2005). In our experiences, though, this effect is somewhat reduced 

as the number of trees increases. In light of these considerations, probabilistic predictions based 

on RF and ANN predictions appear to be reasonable representations of conditional probabilities 

(evaluated in reliability diagrams; Wilks, 1990). It should be noted that some other classifiers are 

more prone to producing biased probability estimates (Zadrozny and Elkan, 2001). Probability 

calibration may be required for some learners (i.e., using a sigmoid or isotonic function on binary 

learners), even amongst generative models (Domingos and Pazzani, 1996; Niculescu-Mizil and 

Caruana, 2005).  

Unfortunately, such calibration is not helpful in all cases, and we found the adaptation of 

socalled “Platt scaling” (from Platt, 1999) to be problematic for the SVM model(s). However, we 

should emphasize that the underlying SVM models (i.e., without calibration) produced reliable 

and reasonable decision values. As such, an alternative calibration process may be conducted to 

yield more reliable probabilistic outputs based on SVM methods for our dataset and others. 

Developing and employing novel approaches to SVM probabilistic calibration is beyond the 

scope of this paper. Suffice it to say, in our investigation, ANN, RF, and penalized multinomial 

log-linear regression (in an ANN framework) (Venables and Ripley, 2002) all showed promise as 

calibration methods for the SVM decision values and each showing improved classification 

performance relative to Platt scaling- based calibration (Platt, 1999) used in SVM prob. 

Nonetheless, these methods were not employed in the paper, though their exploration and that of 

other methods may be warranted (e.g., Xu et al., 2015).  
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A.2.1.3. Evaluation on previously published data  

During initial development and testing, we evaluated the performance of the five 

topperforming probabilistic methods using first-seen data from Monteath et al. (2017). These 

methods include Meta-RF, Average Ensemble, Meta-ANN, and RF. Samples reported as 

correlating to Aniakchak CFE II (UA 2560, 2561, 2558) and a pre-CFE II Aniakchak tephra (UA 

2559; RS151 in Monteath et al., 2017), plus correlatives for WRA (UA 2553) and Hayes (UA 

2554) were evaluated. In total, this new evaluation subset comprised of 156 glass-shard 

chemistries. Evaluations of model performance were conducted using the same measures as in 

the main paper. However, the new dataset contained only Aniakchak, Churchill, and Hayes 

material. Because predictions of other classes were thereby unlikely, performance metrics were 

generated on the union of classes (training classes  evaluation classes), ignoring classes with no 

predictions.   

RF displayed perfect shard-wise accuracy, the average ensemble and the other top 

probabilistic algorithms resolved 99% accuracy and kappa values of 0.953 (Meta-ANN and 

MetaRF) and 0.967 (Average ensemble and ANN) with the p value that accuracy is greater than 

NIR ≤ 6.1 x 10-9 (NIR, in this case, with a reduced number of classes = 0.8526).  The low p 

values suggest that, even in datasets with a high NIR (i.e., a substantial class imbalance), 

machine learning classifiers are highly capable of identifying tephra sources. In this case, the 

literature validation proves, at least where chemical signatures are relatively consistent over time 

(e.g., Kaufman et al., 2012), shards from eruptions rarely represented in the training data can still 

be discriminated. Here, UA 2559 (from Monteath et al., 2017), a pre-CFE II Aniakchak tephra, is 

clearly identified despite that eruption (i.e., Sample UA 1783, “Aniakchak 5.8 ka” in Table S1) 

only comprising about a quarter of the Aniakchak data and ~4% of the total training set.  All 

samples, when assessed in aggregate (i.e., considering the maximum average probability), were 

classified with perfect accuracy by the top-performing algorithms.   

A.2.2. Interpretability  

How interpretable machine learning algorithms and their results are has been highlighted as 

an important criterion for their adoption (Doshi-Velez and Kim, 2017). Because the competing 

parameters of accuracy and interpretability are often at odds, the final evaluation of a model’s 

worth depends on the goals of the researcher (Bratko, 1997). Such is the case in our study. Our 
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models’ performances were at least partly correlated with interpretability. Complicated 

ensembles of subordinate models performed best, followed closely by complicated base learners 

(e.g., ANN, RF, SVM raw, and C5.0), with conceptually simpler models (KNN, LDA, NB, and 

CART) performing less well on a shard-by-shard basis. To illustrate a truly “explainable” model, 

a simple decision tree (CART) for solving the classification problem posed in this study is shown 

in Figure A.1. Such trees are easy to interpret by the user. Comparatively, neural nets, once 

trained, are mathematically comprehensible but nearly impossible for an individual to usefully 

visualize and impractical to implement without a computer (Tu, 1996). For most accurately 

classifying our data, the less “explainable” models proved best. Alternatively, simpler models are 

more explainable, have lower computational requirements, and increased ease of use. As such, 

the adoption of these or other machine learning methods for future analysts poses a serious 

question: do you require the model that will produce the most accurate classifications, or is 

finding a method that is easier to run, code, and understand more valuable?  

 
Figure A.1. Visualization of an interpretable decision tree for classifying glass shards. 

Accentuating the performance vs. interpretability trade-off, by not pre-processing data (i.e., 

centring and scaling), this model is made more interpretable (easier for a human to use and 

explain) at the slight cost of performance.  
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The time spent both training and running the different models are presented in Table A.1. 

For the algorithms we tested, there was a weak positive correlation between combined 

training/tuning time and model accuracy. However, the dividends resulting from increased 

training time are low, with < 0.001 of improvement in accuracy units for every minute of 

processing time, with diminishing returns as accuracy approaches 100%. Computation time can 

be used as a proxy for mathematical complication and is probably linked to interpretability.  

While the ideal models are those that can be simultaneously easy to understand and exhibit 

robust performance (Lakkaraju et al., 2016), the lack of emphasis on interpretability in machine 

learning studies makes these “Goldilocks” algorithms generally elusive and not so well studied as 

empirical performancecentric methods.   

  

Table A.1. Processing time to fit and tune final models. Computation conducted using a single-

processing cluster on a 64 bit Windows PC, with an i7-8700 CPU at 3.20 GHz with 16 GB 

RAM.  

Algorithm  
Full training/ tuning 

time (secs)  

Final model training 

time (secs)  

LDA  1.47  0.01  

CART  5.66  0.02  

NB  9.77  0.05  

KNN  28.74  0.00  

RF  365.91  0.45  

SVM prob.  589.03  0.53  

SVM raw  519.62  0.60  

C5.0  851.75  2.19  

ANN  5,407.28  1.02  

Average Ensemble  5,778.48  0.01  

Meta-RF  8,576.53  1.66  

Meta-ANN   11,036.32  0.92  
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Appendix B   

Script B.1. Example R script for data pre-processing, classifier training, and prediction. 

# The following script is to accompany the Journal of Quaternary 

#Science article "Machine learning classifiers for attributing tephra 

#to source volcanoes: an evaluation of methods for Alaska tephras", by 

#Bolton et al. 2020 

 

# Code by Matthew Bolton, developed in R version 3.6.1 (2019-09-16) 

 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

 

# The code below details the process by which data was partitioned and 

pre-processed, tuning was  

# conducted, and final models were fit for the paper. With only minor 

changes (e.g., changing file names  

# or prediction variables) this same methodology can be used for 

fitting new models to other  

# classification problems. 

 

# The last section of the code (starting line 292) shows how to import 

and make predictions with 

# pre-trained and saved models such as those included in the paper's 

supplement. 

 

# Note, data for training, e.g., "inload_data.csv", should have a 

field for the identified source  

# (in this case, "Volcano"), as well as columns for the geochemical 

parameters used for making  

# predictions, e.g., SiO2 TiO2 Al2O3 FeO MnO MgO CaO

 Na2O K2O, labelled as such. Values should be 

# numeric (double) representing weight percent, e.g., the numeric 

73.41037 for 73.41037% SiO2.  

# Extra fields in the table such as other analytes or sample metadata 

are acceptable and can be left 

# in the input file, but will be ignored in the modelling process. 

 

 

 

# Install required packages if you don't have them 

if (!require("pacman")) install.packages("pacman") 

library(pacman) 

p_load(caTools, nnet, rpart, naivebayes, MASS, randomForest, kernlab, 

C50, plyr, caret, readr)  

 

# Load required libraries  

library(caTools) 

library(nnet) 
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library(rpart) 

library(naivebayes) 

library(MASS) 

library(randomForest) 

library(kernlab) 

library(e1071) 

library(C50) 

library(plyr) 

library(caret) 

library(readr) 

 

 

# Import and prepare data 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

# Load in geochemical data; warnings supressed because cells have 

inconsistent trailing characters. 

dataset <- suppressWarnings(read_csv("inload_data.csv")) # This .csv 

and any others you want to use  

# in R should be in your working directory. 

 

# assign predictor variables 

predVars <- c('SiO2', 'TiO2', 'Al2O3', 'FeO', 'MnO', 'MgO', 'CaO', 

'Na2O', 'K2O') 

 

# normalize data on defined predictors alone (e.g., excluding Cl and / 

or P205 if present) 

dataset[predVars] <- (dataset[predVars] / rowSums(dataset[predVars])) 

* 100 

 

 

# Define train / test split. 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

set.seed(1812)# Random seed set for reproducibility and random 

sampling 

testSplitIndex <- sample.split(dataset$Volcano, SplitRatio = .80)#20% 

reserved for testing. 

alltrain <- subset(dataset, testSplitIndex == TRUE) 

test <- subset(dataset, testSplitIndex == FALSE) 

 

set.seed(1812)  

trainSplitIndex <- sample.split(alltrain$Volcano, SplitRatio = .50)#Of 

the 80% training data,  

componenttrain <- subset(alltrain, trainSplitIndex == TRUE)#50% for 

training base models 

ensembletrain <- subset(alltrain, trainSplitIndex == FALSE)#50% 

reserved for ensemble model training 

 

 

# Train classifiers (base learners) 
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# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

 

# Define preprocessing requirements 

PP <- c('center', 'scale') 

 

# Define cross-validation resampling regime 

ctrl <- trainControl(method = "repeatedcv", #10fold cross validation 

 repeats = 10, classProbs = TRUE) #repeated 10 times; class 

probabilities will be computed for  

# (along with predicted values) in each resample 

 

# assign a fixed value to set model training / CV random seed 

seed <- 1776 

 

# Tuning and model fitting. Run individual blocks of code to train 

models of the following algorithms: 

 

 

#SVM with default "tuneLength" tuning. Can be un-commented by 

selecting and typing Ctrl+Shift+c.  

# Though, for our dataset, the custom tune grid below performs better. 

 

#set.seed(seed) 

#SVMsigmasource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO 

+ CaO + Na2O + K2O,  

#data = componenttrain, trControl = ctrl,  

#method = "svmRadialSigma", metric = "Kappa", tuneLength = 10,  

#preProc = PP) 

 

# Create a tuning grid over which to perform a gridsearch for SVM 

hyperparameters 

svmGrid <- expand.grid(sigma = seq(0.5, 1, 0.05), C = seq(1, 15, 1.5)) 

 

# SVM with radial kernel and a custom tuning grid 

set.seed(seed) 

SVMsigmasource2 <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO 

+ CaO + Na2O + K2O,  

                         data = componenttrain, trControl = ctrl,  

                         method = "svmRadialSigma", metric = "Kappa", 

tuneGrid = svmGrid,  

                         preProc = PP) 

 

 

# SVM with radial kernel, set to only provide "raw" classifications, 

no prob. model. 

set.seed(seed) 

SVMsigmaRaw <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + 

CaO + Na2O + K2O,  

                         data = componenttrain, trControl = 

trainControl(method = "repeatedcv", #10fold cross validation 
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repeats = 10, classProbs = FALSE),  

                         method = "svmRadialSigma", metric = "Kappa", 

tuneLength = 10,  

                         preProc = PP) 

 

#CART 

set.seed(seed) 

CARTsource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + 

CaO + Na2O + K2O,  

                    data = componenttrain, trControl = ctrl,  

                    method = "rpart", metric = "Kappa", tuneLength = 

10) 

 

#Random Forest 

set.seed(seed) 

RFsource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + CaO 

+ Na2O + K2O,  

                  data = componenttrain, trControl = ctrl,  

                  method = "rf", metric = "Kappa", tuneLength = 8, 

preProc = PP) 

 

#K Nearest Neighbors 

set.seed(seed) 

KNNsource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + CaO 

+ Na2O + K2O,  

                   data = componenttrain, trControl = ctrl,  

                   method = "knn", metric = "Kappa", tuneLength = 20, 

preProc = PP) 

 

# Naive Bayes 

set.seed(seed) 

NBsource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + CaO 

+ Na2O + K2O,  

                  data = componenttrain, trControl = ctrl,  

                  method = "naive_bayes", metric = "Kappa", tuneLength 

= 10,  

                  preProc = PP) 

 

#Linear Discriminant Analysis 

set.seed(seed) 

LDAsource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + CaO 

+ Na2O + K2O,  

                  data = componenttrain, trControl = ctrl,  

                  method = "lda", preProc = PP) 

 

#C5.0 

set.seed(seed) 

C5source <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + CaO 

+ Na2O + K2O,  

                  data = componenttrain, trControl = ctrl,  
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                  method = "C5.0", metric = "Kappa", tuneLength = 10, 

preProc = PP) 

 

#Artificial Neural Network (ANN), feed-forward neural network w 

/single hidden layer & variable neurons  

set.seed(seed) 

ANNsource <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO + CaO 

+ Na2O + K2O,  

                  data = componenttrain, trControl = ctrl, trace = 

FALSE,  

                  method = "nnet", metric = "Kappa", tuneLength = 10, 

preProc = PP) 

 

 

 

# Train ensemble classifiers (stacked learners) 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

 

# Make predictions on the ensemble training set using component models 

and save predictions for  

# input to meta-model training 

preddf <- data.frame(matrix(unlist(predict(object = list(CARTsource, 

KNNsource, LDAsource, NBsource, 

                  ANNsource, RFsource, SVMsigmasource2, C5source), 

ensembletrain, type = "prob")),  

                  nrow = nrow(ensembletrain))) 

 

# append original training labels to prediction probabilties 

preddf$label <- ensembletrain$Volcano 

 

# Define and train the meta-models 

set.seed(seed) # Use same CV splits as trained component models 

metaRFsource <- train(label~., data = preddf, trControl = ctrl, 

method = "rf", metric = "Kappa", tuneLength = 8,  

preProc = PP) 

set.seed(seed) # Use same CV splits as trained component models 

metaNNsource <- train(label~., data = preddf, trControl = ctrl, trace 

= FALSE,  

method = "nnet", metric = "Kappa", tuneLength = 10,  

preProc = PP) 

 

# Get average performance (Average ensemble) on training set.  

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

trainMean <- (Reduce("+", (predict(list(ANN = ANNsource, RF = 

RFsource),  

                                   componenttrain, type = "prob"))) / 

2) #Change dataset to another  

# if you want to make predictions on new data. 
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trainMean$pred <- as.factor(colnames(trainMean)[max.col(trainMean, 

ties.method = "random")]) 

 

trainMean$Volcano <- componenttrain$Volcano 

 

#Train "Final" models on full dataset 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

 

#Repeat above training methodology, but replace data = componenttrain 

with the full dataset.  

# For brevity, only one case of each learner type is provided. The 

process is the same as the first 

# training effort, but this time with the full dataset. Copy and paste 

the above code and change the 

# "data" parameter and output name as needed. 

 

#In the case of a base learner: 

set.seed(seed) 

KNNsourceFinal <- train(Volcano~SiO2 + TiO2 + Al2O3 + FeO + MnO + MgO 

+ CaO + Na2O + K2O,  

                        data = dataset, trControl = ctrl,  

                        method = "knn", metric = "Kappa", tuneLength = 

20, preProc = PP) 

 

#In the case of a stacked ensemble learner: 

# Make predictions on the ensemble training set using component models 

and save predictions for  

# input to meta-model training 

predfinal <- data.frame(matrix(unlist(predict(object = 

list(CARTsourceFinal, KNNsourceFinal,  

                                      LDAsourceFinal, NBsourceFinal, 

ANNsourceFinal, RFsourceFinal, 

                                      SVMsigmasource2Final, 

C5sourceFinal), dataset, type = "prob")), 

                                      nrow = nrow(dataset))) 

 

# append original training labels to prediction probabilties 

predfinal$label <- dataset$Volcano 

 

# Define and train the meta-model 

 

set.seed(seed) # Use same CV splits than trained component models 

metaRFsourceFinal <- train(label~., data = predfinal, trControl = 

ctrl,  

 method = "rf", metric = "Kappa", tuneLength = 8,  

 preProc = PP) 

 

 

#Get average ensemble performance on full data set 
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finalMean <- (Reduce("+", (predict(list(ANN = ANNsourceFinal, RF = 

RFsourceFinal), 

                                   dataset, type = "prob"))) / 2) 

 

finalMean$pred <- as.factor(colnames(finalMean)[max.col(finalMean, 

ties.method = "random")]) 

 

finalMean$Volcano <- dataset$Volcano 

 

 

 

#Test classification performance with a confusion matrix on new data 

(e.g., from the literature) 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

Lit_predicts <- read_csv("Lit_predicts.csv") # Replace this .csv with 

any csv table with the  

# appropriate geochemical attributes (predVars) and a "label" field. 

Labels should be the same format 

# and style as the model predictand column from original training 

dataset or factor levels from  

# model e.g., as in RFsourceFinal$finalModel$classes 

 

# normalize data on predictors alone (e.g., excluding Cl and / or 

P205), as before 

Lit_predicts[predVars] <- (Lit_predicts[predVars] / 

rowSums(Lit_predicts[predVars])) * 100 

 

# Make predictions on the ensemble training set using component models 

and save predictions for  

# input to meta-model predictions 

Litpredfinal <- data.frame(matrix(unlist(predict(object = 

list(CARTsourceFinal, KNNsourceFinal, 

                                        LDAsourceFinal, NBsourceFinal, 

ANNsourceFinal, RFsourceFinal, 

                                        SVMsigmasource2Final, 

C5sourceFinal), Lit_predicts,  

                                        type = "prob")), nrow = 

nrow(Lit_predicts))) 

 

# Copy the "label" field to the predictions for comparison 

Litpredfinal$label <- Lit_predicts$label 

 

# This block of code tests base learners against external data, e.g., 

from literature.  

# Replace the model, e.g., KNNsourceFinal, as desired. 

predicts <- predict(KNNsourceFinal, Lit_predicts, type = "raw") 

u <- union(predicts, Litpredfinal$label) 

t <- table (factor(predicts, u), factor(Litpredfinal$label, u)) 

confusionMatrix(t)$overall 
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# This block of code tests stacked ensembles against data from 

literature.  

# Replace the model, e.g., metaRFsourceFinal, as desired. 

predicts <- predict(metaRFsourceFinal, Litpredfinal, type = "raw") 

u <- union(predicts, Litpredfinal$label) 

t <- table (factor(predicts, u), factor(Litpredfinal$label, u)) 

confusionMatrix(t)$overall 

 

# This block of code tests the final average ensemble against data 

from literature. 

predicts <- as.factor(colnames(Reduce("+", (predict(list(ANN = 

ANNsourceFinal, RF = RFsourceFinal), 

                                  Lit_predicts, type = "prob"))) / 

2)[max.col(Reduce("+",  

                                  (predict(list(ANN = ANNsourceFinal, 

RF = RFsourceFinal),  

                                  Lit_predicts, type = "prob"))) / 2, 

ties.method = "random")]) 

u <- union(predicts, Litpredfinal$label) 

t <- table (factor(predicts, u), factor(Litpredfinal$label, u)) 

confusionMatrix(t)$overall 

 

#Saving trained models 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

# Trained models can be easily saved as R objects using the "saveRDS" 

function. This way, they can be 

# easily re-imported to a subsequent R environment and used for making 

predictions without having  

# to re-train a new classifier from scratch. 

 

saveRDS(LDAsource, "myLDAmodel.rds") # This saves the example model as 

an R object in your  

# working directory. Replace the input object and output name as 

needed. 

 

 

#Importing and using previously saved trained models 

# == == == == == == == == == == == == == == == == == == == == == == == 

== == == == == == =  

# The saved models that accompany this work can be imported to your R 

environment and used to  

# predict the source of new glass data. 

# Note, caret and the package for the respective algorithms are 

required to be installed for  

# the models to work properly. If you haven't done so already, to use 

the saved models, install the  

# packages: 

 

# Install required packages if you don't have them 

if (!require("pacman")) install.packages("pacman") 

library(pacman) 
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p_load(caTools, nnet, rpart, naivebayes, MASS, randomForest, kernlab, 

C50, plyr, caret, readr)  

 

RFmodel <- readRDS("RFsourceFinal.rds") #load the classifer (saved in 

your working directory).  

# The new name (e.g., "RFmodel") need not match the original. 

 

library(readr) 

NewData <- read_csv("NewData.csv") # Load your new data you want 

predictions for.  

# Variable names should include those in predvars 

 

# assign predictor variables 

predVars <- c('SiO2', 'TiO2', 'Al2O3', 'FeO', 'MnO', 'MgO', 'CaO', 

'Na2O', 'K2O') 

 

# normalize data on defined predictors alone (e.g., excluding Cl and / 

or P205 if present) 

NewData[predVars] <- (NewData[predVars] / rowSums(NewData[predVars])) 

* 100 

 

# Make predictions with base learners: 

NewOutProb <- predict(matts_model, NewData, type = "prob") # If you 

are interested in the individual 

# probabilities for each data point (recommended) 

 

NewOutRaw <- predict(matts_model, NewData, type = "raw") # Returns 

just the "raw" label with the  

# maximum probability 

 

# To make predictions with ensembles requires the component models be 

imported and called accordingly. 

# For example, the mean ensemble requires both the RF and ANN base 

learners to be in the  

# current R environment. 

 

ANNmodel <- readRDS("RFsourceFinal.rds") 

RFmodel <- readRDS("ANNsourceFinal.rds") 

 

# Then you can make predictions, just as before: 

EnsemblePreds <- Reduce("+",(predict(list (ANN=ANNmodel, RF=RFmodel),  

                                     NewData, type = "prob")))/2 

 

#Assign the maximum likelihood class as the final prediction for each 

analysis 

EnsemblePreds$predict <- 

as.factor(colnames(EnsemblePreds)[max.col(EnsemblePreds,  

                                     ties.method = "random")]) 

 

#Write EnsemblePreds results to a new csv to be assessed and/or 

compiled with original dataset.  

# It will be saved in your working directory by default 
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write.csv(EnsemblePreds, "EnsemblePreds.csv") 
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Appendix C   

Table C.1. Training data composition (volcanic sources, eruptions, samples, and number of 

analyses) 

Volcano Eruption Sample Count 

Aniakchak Aniakchak 5.8ka UA 1783 75 

  Aniakchak CFE II UA 1602 59 

   UA 1963 46 

   UA 1975 51 

   UA 1976 47 

   UA 1977 14 

  

Aniakchak CFE II 

Total  217 

Aniakchak Total     292 

Augustine Augustine 1883 AT-1599 25 

  Augustine B AT-1596 20 

  Augustine C AT-1561 15 

   AT-1562 20 

   AT-1563 34 

  Augustine C Total  69 

  Augustine H AT-1586 25 

  Augustine M AT-1593 21 

Augustine Total     160 

Churchill WRAe UA 1042 40 

   UA 1043 65 

   UA 1045 55 

   UA 1119 104 

   UA 1120 24 

   UA 1121 25 

   UA 1175 8 

   UA 1248 16 

   UA 1249 18 

   UA 1251 18 

   UA 1252 16 

   UA 1253 10 

   UA 1254 15 

   UA 1256 5 

  WRAe Total  419 

  WRAn UA 1044 40 

   UA 1046 32 

  WRAn Total  72 

Churchill Total     491 

Dawson Dawson UA 1000 72 

   UA 1005 20 

   UA 1601 25 

Dawson Total     117 

Fisher Fisher-Funk 1 UA 2644 57 

   UA 2645 56 

  Fisher-Funk 1 Total  113 

  Fisher-Funk 4 UA 2646 53 

   UA 2647 43 

  Fisher-Funk 4 Total  96 
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Volcano Eruption Sample Count 

Fisher Total     209 

Hayes Hayes B UA 2612 24 

  Hayes F1 UA 2613 15 

  Hayes F2 UA 2614 29 

  Hayes G UA 2615 15 

  Hayes H1 UA 2616 15 

  Hayes H2 UA 2617 41 

Hayes Total     139 

Kaguyak Kaguyak CFE UA 2611 32 

Kaguyak Total     32 

Katmai Katmai 1912 UA 1362 59 

   UA 1363 30 

   UA 1364 85 

   UA 1365 71 

Katmai Total     245 

Redoubt Redoubt 1989-90 UA 2754 62 

  Redoubt 2009 UA 2620 40 

  AT-1399 UA 3272 26 

  AT-1391 UA 3271 25 

  AT-1409 UA 3275 14 

  AT-1387 UA 3270 25 

  AT-1381 UA 3269 26 

Redoubt Total     218 

Spurr Crater Peak 1992 UA 2619 50 

Spur Total     50 

Grand Total     1953 
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Table C.2. Summary of learners and key references 

Algorithm 

name 
Caret method Parent package Approach Key references 

Tuning 

parameters 

Tune 

length 

Explanatory 

variables 

Trained model (R 

object)* 

Classification 

Tree 
rpart 

rpart (Therneau 

and Atkinson 

2018) 

Discriminative, 

multiclass 
Breiman et al. 1984 cp 10 Geochemistry CARTsource 

Random Forest rf 

randomForest 

(Liaw and Wiener 

2002) 

Discriminative, 

multiclass 
Breiman 2001 mtry 10 Geochemistry RFsource 

Support Vector 

Machine with 

Radial Kernel 

svmRadialSigma 

kernlab 

(Karatzoglou et al. 

2004) 

Discriminative, 

"one against one" 

voting (e.g., Hsu 

and Lin 2002) 

Cortes and Vapnik 

1995; Vapnik 2010; 

Wu et al. 2004; Platt 

1999 

sigma, C 10 Geochemistry 
SVMsource, 

SVMrawsource 

K Nearest 

Neighbors 
knn caret (Kuhn 2008) 

Discriminative, 

multiclass 

Fix and Hodges 1951; 

Cover and Hart 1967 
k 20 Geochemistry KNNsource 

Naive Bayes naive_bayes 
naivebayes (Majka 

2019) 

Generative, 

multiclass 
Hand and Yu 2001 

laplace, 

usekernel, 

adjust 

2 Geochemistry NBsource 

Linear 

Discriminant 

Analysis 

lda 
MASS (Venerables 

and Ripley 2002) 

Generative, 

multiclass 

Fisher 1936; Welch 

1939; Rao 1948; 

Johnson and Wichern 

1988 

None 
Not 

applicable 
Geochemistry LDAsource 

Artificial 

Neural 

Network 

nnet 
nnet (Venerables 

and Ripley 2002) 

Discriminative, 

multiclass 

Rumelhart et al. 

1986; Ripley 1996 
size, decay 10 Geochemistry ANNsource 

C5.0 C5.0 
C50 (Kuhn and 

Quinlan 2018) 

Discriminative, 

multiclass 

Quinlan and Rivest 

1989; Quinlan 1993; 

Kuhn and Johnson 

2013 

trials, 

model, 

winnow 

10 Geochemistry C5source 

Ensemble 

Average 
none 

base (R Core Team 

2019) 

Discriminative, 

multiclass 
Polikar 2006 none 

Not 

applicable 

Base learner 

predictions 

(probability), 

only RF and 

ANN 

Not applicable 

Random Forest 

Ensemble 
rf 

randomForest 

(Liaw and Wiener 

2002) 

Discriminative, 

multiclass 
Rokach 2010 mtry 10 

Base learner 

predictions 

(probability), all 

metaRFsource 

Artificial 

Neural 

Network 

Ensemble 

nnet 
nnet (Venerables 

and Ripley 2002) 

Discriminative, 

multiclass 
Rokach 2010 size, decay 10 

Base learner 

predictions 

(probability), all 

metaNNsource 

 



183 

  

Algorithm 

name 
Description 

Classification 

Tree 

A single decision tree, starting from a root node containing all data, successively splits the data into smaller, more homogenous groups at 

dichotomous nodes based on one attribute at a time until the resultant nodes (leaves) are maximally "pure", ideally only one label per leaf. 

Trees are generalized by "pruning" nodes to optimize performance given a relative cost-complexity parameter (cp); tree purity is penalized 

relative to the number of leaves. Classification trees naturally support multiclass problems by optimizing branch splits based on cross-

entropy. Probability is determined based on terminal node proportional composition; e.g., if the final leaf during training contained eight 

instances of class A and two of class B, the probability of A = 80%; B = 20%. 

Random 

Forest 

A bootstrap aggregated (bagged) ensemble of de-correlated trees, as from CART, but with no pruning and each being trained on a randomly 

selected subset of the training data with replacement (i.e., bootstrapped). Each tree split is based on only a fixed number of predictors (mtry). 

Each tree casts a vote for the predicted class. Class probability is assigned according to the proportional votes. 

Support 

Vector 

Machine 

with Radial 

Kernel 

A classifier designed to maximize the margin between labels (forming a separating hyperplane), moderated by a "cost" parameter that 

controls how heavily the model should be penalized for misclassifying training examples. Low cost values allow for potentially more 

generalizable models, at the risk of under-fitting, while high costs can promote overly complex decision boundaries (i.e., over-fitting). It acts 

as a regularizing parameter. Where linear boundaries between parameters between classes cannot be found, a so-called "kernel trick" can 

effectively map the data to a higher-dimension feature-space. In this case, a radial basis function kernel or Gaussian kernel is applied. Sigma 

is a free parameter in control of the Gaussian variance. Altering it changes the range of influence of points on the overall classification.  Note: 

SVMs are not designed to produce probabilities by default. A secondary probability model must be fit to the outcomes to derive probabilistic 

predictions; most often a sigmoid model is fit (i.e., logistic regression), following Platt (1999). 

K Nearest 

Neighbors 

The KNN algorithm serves to "memorize" the locations and identities of training points and simply makes predictions of unknown samples 

according to a number (K) of their nearest (i.e., most similar) neighbors. Proximity is determined based on Euclidean distance. Unlike most 

other classifiers, no formal decision boundary is optimized. Classifications rely directly on the composition and distribution of the training 

data. Given this, the proportionality of values is critical and it is advised to center and scale predictor values so that disparities in magnitude 

do not inappropriately bias the model.  As an example, if K = 5, the identity of the five points nearest to the unknown are queried; the most 

common label amongst those points is accepted as the raw classification and the proportions of points. Probabilities can be calculated using 

the class proportions of the neighbors.  

Naive Bayes 

Leveraging Bayes' Rule, we can estimate the probability of an outcome (e.g., a certain suite of geochemical characteristics) belonging to a 

certain class. The algorithm is considered "naïve" because it assumes that predictors are independent of one another. In short, if we know the 

prior probability of a certain class and the likelihood of observing certain predictor values for each class, and combine this data with evidence 

of the probability of observed predictors, we can estimate the posterior probabilities for belonging to certain classes. Probability distributions 

for predictors can be assumed to be Gaussian, though, this is not always reasonable. Otherwise non-parametric kernel density estimates can 

be taken to approximate the true conditional distributions of the data; this option is the "usekernel" parameter. As the method is innately 

probabilistic, extension to multiclass probabilities is simple. The probability for membership within each class is calculated independently; 

the class with the highest probability is the raw prediction, while all class probabilities are normalized so their sum equals one. 
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Algorithm 

name 
Description 

Linear 

Discriminant 

Analysis 

LDA uses a form of dimensionality reduction to reframe the data, maximizing of separability between groups, allowing for linear boundaries 

to be optimally set between them. LDA projection strives to maximize the mean between categories while simultaneously minimizing 

variation within them. The unique linear combinations of predictors that maximize separability, known as discriminant functions, can serve 

as axes for visualization of class separation and classification. In this projected space, the class with the highest probability (e.g., whose mean 

value is nearest) is the raw prediction. One key feature of LDA is that there are no hyperparameters to tune. Predictions, like in Naive Bayes 

are derived from Bayes' Rule. However, unlike in that method, by default the probability of predictors given a label is modelled exclusively 

as a multivariate Gaussian distribution. As such, LDA is the only strictly parametric classifier investigated in this study. 

Artificial 

Neural 

Network 

Conceptually modelled on the human brain, neural networks use the values of inputs, filtered through a series of connected nodes (cf. 

synapses in the brain), acted upon by weights and biases, and transformed by functions to resolve outputs. In our case, the outputs are 

probabilities of class membership. A sigmoidal activation function takes into consideration the weights and biases and allows for irregular, 

non-linear decision boundaries. In our case, one "hidden layer", with a variable number of neurons (the "size" parameter) exists between the 

input and output layers. Information flows in the "forward" direction only, from the input, through the hidden layer, and to the output. 

Weights are optimized using back propagation, allowing the model to find a local minimum of the error function. A free parameter, weight 

decay, is implemented to regularize fitting (i.e., penalize the decision function "roughness"), potentially improving optimization and reducing 

over-fitting. 

C5.0 

An updated version of an optionally tree- or rule-based classifier, C4.5, with iterative boosting and feature elimination (winnowing). Though 

conceptually similar to how CART grows and prunes trees, C5.0 strives to optimize tree splits by maximizing information gain at each 

decision step. Complex trees are pruned of branches, or sub-trees, until error rate is greater than one standard error of the original, non-

pruned tree. Based on tree decisions, C5.0 rules are pruned iteratively by measuring performance against complexity (see "Minimum 

Description Length"; Quinlan and Rivest, 1989). To make a decision, all rules are evaluated, each producing a “vote” of their suggested 

classification. These votes are then weighted based on their relative confidence (proportional to the rule’s specificity), and a final 

classification is made. The boosted tree method, on the other hand produces confidence values (i.e., class probabilities) averaged across all 

trees. 

Ensemble 

Average 

The mean of class probabilities from RF and ANN models. This a non-trainable, algebraic combiner. As both base learners produce 

probabilistic predictions whose sums equal 1, so too does their mean. 

Random 

Forest 

Ensemble 

A combination of the results of all probabilistic base learners. A random forest is trained to make predictions from the base learner results 

(i.e., a trainable stacker). No feature selection or engineering was used.  

Artificial 

Neural 

Network 

Ensemble 

A combination of the results of all probabilistic base learners. A neural network is trained to make predictions from the base learner results 

(i.e., a trainable stacker). No feature selection or engineering was used.  

*Trained models noted are included in supporting information in "Models S1"; all are suffixed with "Final", indicating they have been 

trained on the complete dataset 
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Table C.3. Eklutna Lake glass geochemical data 

Individual glass shard analyses normalized to 100%. Glass geochemical analyses on a JEOL superprobe using 6nA current, 15 keV, 

and either a 10 or 5 micron beam. Analyses using a 5 micron beam. Probe for EPMA software used, allowing for time-dependent 

intensity correction to compensate for Na loss.    

C.3.1. Eklutna Lake sample analyses 

Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

Tephra 1                

UA 3047 EK7-1A-17  62.63 0.93 16.44 6.16 0.19 2.14 4.98 4.66 1.64 0.23 100 1.32  

Spurr/Crater Peak 

1992  

EK14-02A-1G-

17.6-18.2 cm EK7-1A-4  62.88 0.84 16.50 6.11 0.22 2.04 4.98 4.53 1.62 0.28 100 2.11  Day 1, set 1/2 

 EK7-1A-15  63.01 0.86 16.40 6.17 0.16 1.88 5.09 4.60 1.57 0.27 100 1.88   

 EK7-1A-2  63.08 0.82 16.25 6.32 0.18 1.91 5.02 4.58 1.58 0.26 100 1.78   

 EK7-1A-5  63.10 0.84 16.05 6.36 0.15 2.02 4.89 4.69 1.61 0.28 100 1.99   

 EK7-1A-1  63.13 0.86 16.02 6.40 0.17 2.09 4.75 4.62 1.68 0.28 100 2.29   

 EK7-1A-33  63.29 0.81 16.17 6.04 0.07 1.94 5.07 4.69 1.66 0.26 100 2.53   

 EK7-1A-26  63.33 0.86 16.01 6.27 0.23 1.99 4.73 4.68 1.63 0.28 100 1.21   

 EK7-1A-7  63.53 0.91 15.88 6.25 0.13 1.94 4.68 4.67 1.76 0.26 100 2.06   

 
Mean 63.11 0.86 16.19 6.23 0.17 1.99 4.91 4.64 1.64 0.27 100.00 1.91 9 Main population 

 
StDev 0.26 0.04 0.22 0.12 0.05 0.09 0.15 0.06 0.06 0.02 0.00 0.43 

  

 EK7-1A-20  74.49 0.20 13.70 1.88 0.09 0.47 2.25 3.91 2.48 0.53 100 1.40  Scattered analyses 

 EK7-1A-14  77.84 0.00 12.41 0.58 0.22 0.11 1.62 5.28 1.90 0.05 100 1.24  

some shards have 

affinity to higher 

SiO2 Crater 

 EK7-1A-12  67.32 0.62 16.32 3.79 0.14 1.10 3.57 4.73 2.15 0.26 100 2.82  

Peak population 

but difficult to 

determine 

 EK7-1A-13  68.46 0.39 17.36 3.35 0.07 1.25 2.14 4.10 2.80 0.08 100 1.17  

Likely mostly 

detrital glass 

 EK7-1A-29  70.48 0.65 16.15 3.23 0.04 0.65 1.38 3.29 4.12 0.02 100 2.04  

This is common 

feature of the 

reference material 

as well 



187 

  

Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK7-1A-16  72.05 0.56 15.01 2.52 0.04 0.64 1.58 2.81 4.73 0.05 100 1.74   

 EK7-1A-32  73.26 0.30 14.49 3.11 0.07 0.50 1.14 3.57 3.52 0.02 100 2.23   

 EK7-1A-6  73.63 0.20 14.80 2.25 0.06 0.49 1.71 3.67 3.12 0.07 100 1.43   

 EK7-1A-18  73.91 0.24 14.42 2.10 0.08 0.43 1.07 3.17 4.56 0.03 100 3.32   

 EK7-1A-19  73.91 0.23 14.58 1.93 0.03 0.40 1.00 3.08 4.79 0.04 100 1.94   

 EK7-1A-9  73.94 0.82 14.32 1.44 0.12 0.63 1.36 2.96 4.40 0.02 100 1.68   

 EK7-1A-24  74.12 0.29 13.78 2.07 0.03 0.20 1.22 4.38 3.64 0.25 100 3.40   

 EK7-1A-25  74.14 0.30 13.71 2.02 0.09 0.22 1.25 4.33 3.73 0.22 100 4.45   

 EK7-1A-8  74.19 0.71 14.03 1.50 0.11 0.65 1.34 2.90 4.55 0.02 100 2.23   

 EK7-1A-21  74.20 0.36 13.72 2.60 0.11 0.60 1.32 2.98 4.09 0.03 100 1.34   

 EK7-1A-31  74.21 0.40 13.72 2.94 0.08 0.54 1.32 2.56 4.20 0.03 100 2.04   

 EK7-1A-34  74.33 0.36 13.84 2.44 0.15 0.38 0.91 3.28 4.28 0.02 100 2.47   

 EK7-1A-10  74.46 0.56 14.04 2.36 0.16 0.34 1.30 2.65 4.07 0.06 100 4.38   

 EK7-1A-11  76.29 0.26 13.31 1.41 0.00 0.33 1.02 4.26 2.98 0.15 100 1.30   

 EK7-1A-3  76.34 0.24 13.35 1.36 0.00 0.28 0.73 3.44 4.23 0.02 100 2.21   

 EK7-1A-30  76.69 0.20 12.56 1.79 0.00 0.30 0.64 2.81 5.01 0.02 100 1.49   

 EK7-1A-22  77.09 0.30 12.41 1.65 0.07 0.27 1.20 3.97 2.85 0.19 100 1.64   

 EK7-1A-23  80.17 0.28 10.53 1.22 0.02 0.42 0.94 2.72 3.67 0.02 100 2.00   

                

UA 3048 EK7-1B-18  61.95 0.78 16.85 6.24 0.11 2.04 5.32 4.92 1.56 0.22 100 1.91  

Spurr/Crater Peak 

1992 correlative 

population 

EK14-03A-1H: 

21.8-22.4 cm EK7-1B-14  62.82 0.84 16.27 6.30 0.16 2.03 5.08 4.71 1.54 0.25 100 1.71  Day 1, set 1/2 

 EK7-1B-10  62.89 0.86 16.29 6.28 0.19 1.94 4.98 4.70 1.63 0.23 100 1.86   

 EK7-1B-28  62.93 0.87 15.76 6.58 0.12 2.01 4.79 5.00 1.72 0.22 100 1.60   

 EK7-1B-21  63.08 0.79 16.06 6.24 0.23 2.09 4.87 4.70 1.62 0.33 100 2.46   

 EK7-1B-29  63.12 0.83 15.84 6.22 0.17 2.21 4.95 4.83 1.55 0.27 100 2.35   

 EK7-1B-32  63.15 0.84 16.49 6.17 0.14 1.91 4.99 4.54 1.52 0.24 100 2.15   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK7-1B-5  63.94 0.87 15.73 6.04 0.14 1.97 4.69 4.50 1.90 0.22 100 2.16   

 EK7-1B-9  64.13 0.86 15.96 6.04 0.17 1.66 4.77 4.49 1.69 0.24 100 2.41   

 EK71B-18  61.56 0.73 17.17 6.11 0.17 1.98 5.79 4.88 1.38 0.23 100 1.32  Day 2 set 2/3 

 EK71B-20  61.87 0.87 17.50 6.22 0.20 2.02 4.99 4.51 1.57 0.25 100 2.46   

 EK71B-44  62.39 0.94 16.19 6.55 0.15 2.09 5.07 4.68 1.73 0.21 100 2.33   

 EK71B-31  62.41 0.87 16.80 6.22 0.19 1.92 4.98 4.74 1.62 0.26 100 1.35   

 EK71B-45  62.57 0.96 15.95 6.62 0.16 1.93 5.05 4.74 1.71 0.31 100 5.61   

 EK71B-35  62.66 0.81 16.37 6.19 0.18 2.12 5.26 4.58 1.60 0.25 100 2.22   

 EK71B-19  62.76 0.83 16.41 6.20 0.17 1.99 5.13 4.60 1.64 0.28 100 2.42   

 EK71B-25  62.93 0.79 15.99 6.44 0.18 1.98 5.03 4.73 1.64 0.30 100 3.22   

 EK71B-13  62.95 0.85 16.10 6.34 0.16 2.00 5.05 4.73 1.61 0.23 100 2.66   

 EK71B-40  63.22 0.80 16.28 6.28 0.14 1.95 4.92 4.50 1.63 0.27 100 2.67   

 EK71B-12  63.27 0.92 16.01 6.37 0.15 1.92 4.80 4.49 1.77 0.29 100 4.08   

 EK71B-17  63.32 0.86 15.58 6.67 0.13 1.90 4.86 4.74 1.73 0.22 100 3.09   

 EK71B-14  63.34 0.88 16.11 6.46 0.19 1.90 4.82 4.32 1.73 0.24 100 2.19   

 EK71B-6  63.35 0.72 16.10 6.04 0.18 2.14 4.99 4.71 1.55 0.21 100 1.71   

 EK71B-26  63.37 0.79 16.02 6.25 0.21 1.91 4.96 4.61 1.62 0.26 100 3.04   

 EK71B-15  63.42 0.90 15.92 6.24 0.20 1.79 4.71 4.75 1.83 0.24 100 2.46   

 EK71B-22  63.64 0.89 15.80 6.45 0.17 1.86 4.91 4.28 1.80 0.19 100 2.46   

 EK71B-4  63.65 0.86 15.65 6.50 0.17 1.78 4.72 4.69 1.74 0.24 100 3.63   

 EK71B-32  64.20 0.75 16.54 6.41 0.21 1.84 5.15 3.07 1.55 0.29 100 3.78   

 EK71B-9  64.52 0.94 14.64 6.85 0.22 2.19 3.91 4.36 2.04 0.34 100 2.32   

 EK71B-10  65.23 0.89 14.64 6.49 0.11 2.19 3.87 4.25 2.02 0.31 100 2.51   

 
Mean 63.16 0.85 16.10 6.33 0.17 1.98 4.91 4.58 1.67 0.25 100 2.54 30  

 
StDev 0.77 0.06 0.59 0.20 0.03 0.13 0.35 0.34 0.14 0.04 0 0.88 

  

 EK7-1B-34  69.51 0.53 16.27 3.24 0.09 0.70 1.19 3.29 5.16 0.02 100 2.24  Scattered analyses 

 EK7-1B-20  69.56 0.08 16.56 2.72 0.10 0.84 2.49 6.32 1.29 0.05 100 1.54  

some shards have 

affinity to higher 

SiO2 Crater 

 EK7-1B-15  70.87 0.52 15.89 2.08 0.05 0.52 0.85 4.25 4.97 0.01 100 2.27  

Peak population 

but difficult to 

determine 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK7-1B-33  72.42 0.53 14.88 2.20 0.05 0.47 1.25 3.41 4.78 0.01 100 2.83  

Likely mostly 

detrital glass 

 EK7-1B-16  73.22 0.28 16.10 1.20 0.04 0.13 0.63 3.46 4.88 0.07 100 3.64   

 EK7-1B-25  73.52 0.42 13.59 3.07 0.06 0.63 1.47 2.69 4.28 0.27 100 2.72   

 EK7-1B-6  73.71 0.23 14.46 2.03 0.04 0.34 1.64 4.32 3.02 0.22 100 2.99   

 EK7-1B-27  73.87 0.63 13.98 2.20 0.05 0.46 1.23 3.23 4.34 0.02 100 2.30   

 EK7-1B-26  74.21 0.43 14.09 2.19 0.09 0.45 1.15 3.06 4.33 0.02 100 2.79   

 EK7-1B-19  74.37 0.25 13.70 2.24 0.02 0.63 1.11 3.12 4.48 0.06 100 2.02   

 EK7-1B-4  74.42 0.38 13.70 2.72 0.01 0.41 1.08 2.79 4.47 0.01 100 1.53   

 EK7-1B-30  74.47 0.54 13.64 3.33 0.00 0.65 1.42 3.60 2.34 0.01 100 1.43   

 EK7-1B-22  75.34 0.39 13.54 2.28 0.06 0.49 1.20 2.92 3.78 0.01 100 2.21   

 EK7-1B-1  75.68 0.43 13.38 1.97 0.07 0.56 1.10 3.33 3.39 0.10 100 2.18   

 EK7-1B-17  75.98 0.33 13.20 1.78 0.02 0.38 0.87 2.66 4.76 0.02 100 2.41   

 EK7-1B-31  76.50 0.24 13.23 1.36 0.00 0.13 1.02 2.48 5.02 0.03 100 3.32   

 EK7-1B-3  76.62 0.29 12.72 2.20 0.05 0.40 0.96 3.04 3.72 0.00 100 1.51   

 EK7-1B-2  77.37 0.34 12.37 1.47 0.00 0.20 1.13 4.01 2.93 0.18 100 0.82   

 EK7-1B-35  79.51 0.16 13.09 1.17 0.10 0.21 0.54 1.15 3.97 0.11 100 10.33   

 EK71B-30  69.07 0.35 15.80 3.61 0.10 0.73 2.75 4.30 3.01 0.27 100 2.31  Day 2 set 2/3 

 EK71B-36  70.17 0.61 14.68 3.56 0.08 0.83 2.59 4.79 2.43 0.26 100 3.53   

 EK71B-43  70.71 0.60 15.94 2.10 0.16 0.53 0.83 4.22 4.87 0.03 100 2.07   

 EK71B-11  71.74 0.29 15.02 3.29 0.09 0.56 1.20 2.95 4.86 0.01 100 3.30   

 EK71B-1  72.55 0.46 13.88 2.16 0.04 0.41 1.73 3.94 4.43 0.39 100 2.51   

 EK71B-34  72.82 0.59 14.14 3.71 0.04 0.80 1.96 3.68 2.20 0.06 100 2.24   

 EK71B-5  73.58 0.37 13.52 2.67 0.04 0.47 1.67 4.52 2.85 0.31 100 2.51   

 EK71B-28  73.88 0.53 13.90 2.07 0.08 0.58 1.44 4.65 2.78 0.09 100 2.16   

 EK71B-7  74.37 0.59 13.73 2.61 0.10 0.56 1.08 2.91 4.03 0.02 100 2.30   

 EK71B-29  74.38 0.51 14.00 2.05 0.04 0.50 1.34 4.35 2.73 0.10 100 2.04   

 EK71B-42  74.48 0.40 14.19 1.43 0.01 0.44 0.93 2.97 5.12 0.03 100 2.71   

 EK71B-38  75.90 0.32 12.88 2.16 0.06 0.40 0.92 2.78 4.56 0.02 100 2.47   

 EK71B-8  76.18 0.19 13.06 1.28 0.04 0.14 0.87 4.54 3.47 0.23 100 1.96   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK71B-27  76.19 0.12 12.32 1.34 0.02 0.21 0.84 2.33 6.51 0.11 100 1.87   

 EK71B-21  76.22 0.25 12.56 2.74 0.09 0.37 0.96 2.92 3.75 0.14 100 2.65   

 EK71B-33  76.27 0.18 13.25 1.30 0.04 0.15 0.98 2.63 5.14 0.06 100 1.69   

 EK71B-39  76.35 0.29 12.86 2.13 0.05 0.36 0.93 2.54 4.47 0.00 100 3.45   

 EK71B-3  77.29 0.27 13.03 0.85 0.02 0.22 0.57 4.32 3.40 0.04 100 3.40   

 EK71B-2  79.46 0.20 11.08 0.42 0.09 0.18 0.55 1.70 6.24 0.08 100 3.19   

                
Of both 

samples =  Total Mean 63.14 0.85 16.12 6.31 0.17 1.98 4.91 4.59 1.67 0.26 100.00 2.39 39  

  StDev 0.69 0.06 0.52 0.19 0.04 0.12 0.31 0.30 0.13 0.03 0.00 0.84     

                

Tephra 2                

UA 3049 EK7-2A-10  73.97 0.24 13.93 2.01 0.12 0.23 1.24 4.37 3.65 0.24 100 5.27  Redoubt 1989-90 

EK14-02A-1G: 

19.2-19.8 cm EK7-2A-11  74.12 0.24 13.86 1.93 0.07 0.23 1.26 4.26 3.82 0.22 100 3.69  Day 1 set 2/3 

 EK7-2A-28  74.37 0.21 13.55 1.93 0.06 0.23 1.29 4.53 3.53 0.31 100 2.79   

 EK7-2A-33  74.96 0.36 13.98 1.11 0.04 0.04 1.75 4.42 3.28 0.06 100 0.63   

 EK7-2A-17  75.77 0.39 13.23 1.31 0.06 0.29 1.39 4.10 3.27 0.20 100 2.25   

 EK7-2A-2  76.69 0.36 12.43 1.55 0.02 0.24 0.78 3.90 3.83 0.21 100 2.32   

 EK7-2A-30  76.85 0.19 12.99 1.13 0.09 0.21 1.44 3.96 3.00 0.14 100 2.36   

 EK7-2A-1  76.88 0.41 11.95 1.63 0.09 0.21 0.74 3.93 3.98 0.19 100 1.93   

 EK7-2A-7  77.30 0.39 12.13 1.25 0.10 0.12 0.93 3.78 3.93 0.07 100 1.24   

 EK7-2A-15  77.47 0.35 12.19 1.23 0.03 0.18 0.80 3.96 3.66 0.13 100 1.62   

 EK7-2A-9  77.72 0.33 12.29 1.07 0.07 0.12 1.06 3.80 3.46 0.09 100 0.54   

 EK7-2A-6  77.78 0.44 12.10 1.27 0.06 0.12 0.74 3.71 3.72 0.07 100 1.91   

 EK7-2A-24  77.88 0.24 12.25 1.12 0.04 0.10 0.87 3.86 3.54 0.10 100 1.81   

 EK7-2A-32  77.96 0.39 12.04 1.13 0.02 0.09 0.80 3.71 3.79 0.07 100 1.62   

 EK7-2A-31  78.08 0.17 12.09 1.11 0.03 0.11 0.73 4.25 3.18 0.25 100 6.58   

 EK7-2A-16  78.14 0.24 12.18 1.05 0.09 0.14 0.79 3.72 3.57 0.09 100 1.83   

 EK7-2A-20  78.23 0.37 11.88 1.15 0.04 0.13 0.77 3.55 3.76 0.12 100 0.92   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK7-2A-26  78.25 0.38 11.61 1.06 0.10 0.17 0.80 3.74 3.82 0.07 100 1.03   

 EK7-2A-18  78.33 0.15 11.92 1.18 0.00 0.17 0.98 3.71 3.37 0.19 100 1.44   

 EK7-2A-19  78.33 0.36 12.03 1.07 0.07 0.12 0.77 3.49 3.68 0.07 100 1.27   

 EK7-2A-25  78.41 0.42 11.62 1.11 0.00 0.10 0.66 3.59 4.00 0.09 100 2.10   

 EK7-2A-12  78.44 0.29 11.62 1.28 0.06 0.16 0.65 3.61 3.85 0.05 100 0.69   

 EK7-2A-21  78.49 0.36 11.61 1.16 0.05 0.20 0.75 3.54 3.75 0.09 100 1.34   

 EK7-2A-5  78.66 0.19 11.86 0.93 0.03 0.14 0.73 3.71 3.64 0.10 100 1.40   

 EK7-2A-22  78.84 0.21 11.74 1.09 0.05 0.07 0.67 3.56 3.67 0.08 100 1.02   

 EK7-2A-4  79.12 0.27 11.40 0.92 0.02 0.13 0.64 3.80 3.55 0.15 100 2.21   

 EK7-2A-8  79.29 0.30 11.40 0.93 0.02 0.10 0.68 3.56 3.56 0.16 100 1.92   

UA 3050 EK7-2B-17  74.21 0.28 14.45 1.02 0.01 0.14 2.12 4.53 3.12 0.12 100 2.13  Day 1 set 2/3 

EK14-03A-1H: 

23.6-24.6 cm EK7-2B-10  75.58 0.39 13.35 1.65 0.07 0.34 1.87 3.98 2.62 0.15 100 1.23   

 EK7-2B-4  75.95 0.24 13.27 1.45 0.06 0.26 1.39 4.08 3.15 0.15 100 1.31   

 EK7-2B-5  76.04 0.39 13.31 1.43 0.07 0.30 1.39 3.89 3.08 0.11 100 1.64   

 EK7-2B-1  76.49 0.21 13.17 1.09 0.04 0.25 1.19 4.07 3.31 0.17 100 0.75   

 EK7-2B-12  77.20 0.43 12.46 1.19 0.00 0.11 0.91 3.91 3.68 0.10 100 1.20   

 EK7-2B-30  77.20 0.32 12.88 1.10 0.00 0.18 0.97 3.67 3.54 0.15 100 3.40   

 EK7-2B-18  77.39 0.27 12.59 1.12 0.03 0.24 1.23 3.68 3.32 0.13 100 1.96   

 EK7-2B-29  77.53 0.31 12.25 1.05 0.07 0.23 1.09 3.85 3.47 0.14 100 2.37   

 EK7-2B-8  77.54 0.21 12.71 1.08 0.05 0.20 1.12 3.55 3.42 0.11 100 3.05   

 EK7-2B-15  77.61 0.24 12.49 1.05 0.06 0.19 1.04 3.80 3.37 0.15 100 2.19   

 EK7-2B-19  77.62 0.24 12.35 1.17 0.06 0.23 1.15 3.67 3.37 0.12 100 1.22   

 EK7-2B-27  77.70 0.31 12.31 1.14 0.06 0.13 1.08 3.78 3.41 0.09 100 1.47   

 EK7-2B-32  77.71 0.21 12.64 0.97 0.06 0.18 1.14 3.61 3.31 0.17 100 1.75   

 EK7-2B-16  77.72 0.23 12.44 1.11 0.07 0.21 1.09 3.77 3.21 0.15 100 1.40   

 EK7-2B-13  77.74 0.25 12.26 1.15 0.06 0.17 0.83 3.69 3.74 0.11 100 1.95   

 EK7-2B-33  77.95 0.25 12.29 1.06 0.04 0.20 1.02 3.70 3.43 0.07 100 1.69   

 EK7-2B-31  78.00 0.28 12.14 1.05 0.03 0.18 0.98 3.68 3.55 0.12 100 1.70   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK7-2B-23  78.20 0.20 12.25 0.98 0.07 0.18 0.99 3.55 3.46 0.13 100 1.73   

 EK7-2B-20  78.23 0.43 11.77 1.27 0.05 0.18 0.77 3.45 3.72 0.15 100 2.52   

 EK7-2B-7  78.37 0.39 11.71 1.18 0.04 0.12 0.58 3.62 3.86 0.13 100 1.67   

 EK7-2B-14  78.38 0.42 11.79 1.27 0.06 0.11 0.69 3.44 3.71 0.12 100 1.72   

 EK7-2B-25  78.38 0.19 12.06 1.00 0.04 0.17 0.92 3.67 3.46 0.10 100 2.14   

 EK7-2B-22  78.39 0.24 11.92 1.10 0.05 0.13 0.70 3.59 3.74 0.15 100 1.41   

 EK7-2B-24  78.47 0.24 11.86 1.14 0.08 0.13 0.67 3.66 3.67 0.08 100 1.69   

 EK7-2B-9  78.53 0.34 11.62 1.15 0.05 0.08 0.74 3.66 3.74 0.08 100 1.40   

 EK7-2B-3  78.69 0.38 11.51 1.16 0.09 0.11 0.59 3.65 3.71 0.10 100 1.37   

 EK7-2B-26  78.82 0.17 11.80 0.88 0.08 0.13 0.92 3.83 3.29 0.09 100 0.67   

 EK7-2B-11  79.15 0.32 11.41 1.09 0.09 0.10 0.55 3.33 3.80 0.17 100 1.71   

 EK7-2B-34  79.23 0.30 11.54 0.91 0.03 0.09 0.81 3.50 3.53 0.06 100 2.64   

 EK72B-21  73.04 0.26 15.47 0.89 0.05 0.13 2.33 5.22 2.55 0.06 100.00 0.78  Day 2 set 1/2 

 EK72B-23  74.21 0.32 14.16 1.60 0.06 0.26 1.12 5.10 3.04 0.12 100.00 4.25   

 EK72B-2  74.37 0.16 14.85 0.88 0.03 0.05 2.10 4.62 2.85 0.08 100.00 1.16  

potential mixed 

analysis 

 EK72B-7  74.48 0.29 14.10 0.99 0.07 0.12 2.31 4.60 2.94 0.07 100.00 0.22  

potential mixed 

analysis 

 EK72B-15  75.26 0.34 13.78 1.52 0.08 0.31 1.76 3.86 2.96 0.14 100.00 2.43   

 EK72B-17  75.35 0.29 13.49 1.58 0.05 0.35 1.56 3.92 3.27 0.14 100.00 1.46   

 EK72B-10  76.03 0.29 13.36 1.50 0.03 0.31 1.60 3.75 3.02 0.12 100.00 2.31   

 EK72B-16  76.05 0.33 13.18 1.39 0.05 0.29 1.37 3.93 3.30 0.11 100.00 1.86   

 EK72B-31  76.42 0.25 13.04 1.06 0.08 0.09 1.46 4.13 3.41 0.05 100.00 1.87   

 EK72B-6  76.71 0.41 12.88 1.28 0.03 0.06 1.21 3.95 3.35 0.11 100.00 1.75   

 EK72B-34  76.93 0.27 12.73 1.21 0.02 0.21 1.26 3.80 3.41 0.15 100.00 0.96   

 EK72B-35  77.30 0.25 12.48 1.14 0.08 0.25 1.26 3.70 3.39 0.16 100.00 1.46   

 EK72B-33  77.44 0.26 12.49 1.03 0.10 0.23 1.17 3.74 3.39 0.16 100.00 1.45   

 EK72B-30  77.46 0.24 12.56 1.04 0.06 0.17 1.09 3.88 3.32 0.17 100.00 0.99   

 EK72B-19  77.46 0.32 12.08 1.32 0.08 0.15 0.87 3.70 3.90 0.13 100.00 1.62   

 EK72B-38  77.48 0.21 12.69 1.06 0.04 0.21 1.34 3.68 3.14 0.16 100.00 1.67   

 EK72B-18  77.59 0.23 12.19 1.23 0.06 0.17 1.00 3.87 3.53 0.14 100.00 1.62   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK72B-28  77.65 0.25 12.53 1.09 0.05 0.16 1.05 3.55 3.53 0.14 100.00 1.87   

 EK72B-26  77.69 0.19 12.57 1.04 0.11 0.19 1.09 3.72 3.27 0.13 100.00 2.07   

 EK72B-9  77.70 0.28 12.33 1.19 0.08 0.13 0.96 3.64 3.62 0.05 100.00 1.52   

 EK72B-27  77.89 0.17 12.40 1.04 0.00 0.17 1.15 3.74 3.28 0.15 100.00 2.40   

 EK72B-40  77.93 0.18 12.30 1.04 0.07 0.15 1.08 3.67 3.46 0.11 100.00 1.72   

 EK72B-29  77.97 0.26 12.31 1.06 0.01 0.16 1.10 3.65 3.41 0.07 100.00 1.92   

 EK72B-3  78.07 0.13 12.13 1.06 0.09 0.13 0.92 4.02 3.26 0.19 100.00 2.48   

 EK72B-25  78.08 0.28 12.13 1.12 0.00 0.17 0.93 3.54 3.60 0.15 100.00 1.63   

 EK72B-1  78.08 0.36 11.89 1.31 0.01 0.15 0.81 3.70 3.58 0.10 100.00 1.52   

 EK72B-11  78.21 0.21 12.12 0.83 0.00 0.08 0.92 4.00 3.55 0.07 100.00 1.65   

 EK72B-4  78.22 0.20 11.98 1.04 0.02 0.14 0.91 3.85 3.40 0.24 100.00 2.40   

 EK72B-37  78.42 0.26 11.88 1.20 0.02 0.11 0.76 3.52 3.69 0.16 100.00 1.88   

 EK72B-20  78.51 0.41 11.73 1.22 0.00 0.09 0.76 3.43 3.73 0.13 100.00 1.09   

 EK72B-22  78.61 0.48 11.39 1.29 0.05 0.12 0.62 3.56 3.79 0.09 100.00 1.35   

 EK72B-8  78.62 0.31 11.70 1.16 0.03 0.12 0.68 3.48 3.84 0.04 100.00 0.27   

 EK72B-36  78.68 0.38 11.66 1.27 0.04 0.12 0.61 3.31 3.84 0.10 100.00 1.07   

 EK72B-14  78.72 0.29 11.66 1.16 0.08 0.12 0.67 3.35 3.81 0.14 100.00 2.07   

 EK72B-5  78.78 0.25 11.55 1.07 0.07 0.13 0.74 3.41 3.91 0.10 100.00 2.15   

 EK72B-39  78.97 0.31 11.64 1.13 0.06 0.11 0.64 3.17 3.85 0.13 100.00 2.68   

 Mean 77.43 0.29 12.43 1.18 0.05 0.16 1.04 3.80 3.49 0.13 100.00 1.81 93  

  StDev 1.38 0.08 0.82 0.22 0.03 0.07 0.38 0.34 0.29 0.05 0.00 0.91     

Redoubt 

reference                

 UA 2754-27  75.56 0.39 13.41 1.39 0.01 0.16 1.19 4.03 3.64 0.21 100.00 2.38  Redoubt 1989-90 

 UA 2754-24  75.87 0.31 13.39 1.05 0.03 0.10 1.20 4.64 3.31 0.09 100.00 4.81  Day 2 set 1/2 

 UA 2754-25  75.91 0.33 13.40 1.00 0.02 0.13 1.05 4.57 3.46 0.14 100.00 4.26   

 UA 2754-9  76.44 0.30 13.24 1.01 0.03 0.15 1.40 4.36 3.01 0.06 100.00 1.68   

 UA 2754-6  76.50 0.27 13.09 1.13 0.06 0.14 1.27 4.14 3.28 0.12 100.00 0.99   

 UA 2754-8  76.92 0.27 12.88 1.02 0.04 0.18 0.89 3.74 3.97 0.08 100.00 1.99   

 UA 2754-40  77.29 0.22 12.59 1.09 0.10 0.12 1.23 3.87 3.40 0.10 100.00 1.55   

 UA 2754-19  77.31 0.30 12.71 1.15 0.05 0.20 1.10 3.84 3.22 0.11 100.00 2.23   
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K2O       Cl     
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Source/Analytical 
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 UA 2754-31  77.40 0.25 12.76 0.85 0.06 0.19 0.93 4.30 3.15 0.10 100.00 9.33   

 UA 2754-26  77.44 0.43 12.41 1.02 0.05 0.05 1.05 4.04 3.46 0.05 100.00 1.98   

 UA 2754-18  77.57 0.28 12.40 1.18 0.02 0.22 1.13 3.84 3.27 0.09 100.00 2.32   

 UA 2754-14  77.57 0.24 12.44 1.22 0.02 0.21 0.95 3.91 3.35 0.09 100.00 5.53   

 UA 2754-29  77.59 0.44 11.86 1.08 0.04 0.12 0.79 4.10 3.88 0.11 100.00 4.84   

 UA 2754-10  77.69 0.24 12.27 1.08 0.05 0.19 0.99 3.95 3.45 0.11 100.00 2.04   

 UA 2754-23  77.69 0.24 12.41 0.90 0.05 0.21 1.07 3.92 3.45 0.06 100.00 2.18   

 UA 2754-20  77.73 0.30 12.17 1.09 0.09 0.17 0.98 3.82 3.56 0.10 100.00 3.23   

 UA 2754-7  77.76 0.28 12.10 1.10 0.01 0.12 0.71 3.50 4.35 0.07 100.00 0.90   

 UA 2754-13  77.81 0.27 12.18 1.25 0.07 0.17 1.00 3.82 3.35 0.08 100.00 5.19   

 UA 2754-38  77.84 0.31 12.17 1.15 0.08 0.08 0.81 3.85 3.57 0.12 100.00 2.14   

 UA 2754-4  77.85 0.25 12.45 0.97 0.01 0.15 1.05 3.78 3.37 0.12 100.00 0.62   

 UA 2754-21  77.85 0.23 12.33 1.10 0.02 0.16 0.99 3.78 3.43 0.11 100.00 3.67   

 UA 2754-36  77.87 0.21 12.36 0.97 0.06 0.10 1.08 3.97 3.28 0.12 100.00 2.26   

 UA 2754-30  77.89 0.15 12.35 1.05 0.07 0.15 1.06 3.77 3.41 0.11 100.00 1.82   

 UA 2754-39  77.96 0.30 12.13 1.20 0.05 0.13 0.97 3.50 3.66 0.10 100.00 1.79   

 UA 2754-11  77.96 0.27 11.98 1.42 0.04 0.08 0.87 3.74 3.52 0.11 100.00 2.41   

 UA 2754-22  78.06 0.22 12.29 0.91 0.02 0.17 1.08 3.85 3.37 0.04 100.00 1.64   

 UA 2754-34  78.09 0.21 12.17 1.09 0.04 0.13 0.91 3.72 3.53 0.12 100.00 3.00   

 UA 2754-35  78.12 0.21 12.07 1.11 0.01 0.11 0.98 3.70 3.59 0.10 100.00 2.92   

 UA 2754-37  78.12 0.27 12.33 1.05 0.04 0.10 0.84 3.68 3.48 0.09 100.00 2.96   

 UA 2754-16  78.29 0.21 11.93 0.98 0.05 0.10 0.81 3.91 3.59 0.13 100.00 2.09   

 UA 2754-1  78.39 0.39 11.47 1.30 0.08 0.14 0.66 3.56 3.91 0.11 100.00 3.17   

 UA 2754-17  78.75 0.39 11.33 1.28 0.03 0.11 0.54 3.47 3.97 0.12 100.00 1.95   

 UA 2754-28  78.78 0.41 11.38 1.16 0.06 0.09 0.54 3.56 3.95 0.08 100.00 2.49   

 
Mean 77.57 0.28 12.38 1.10 0.04 0.14 0.97 3.89 3.52 0.10 100.00 2.80 33  

 
StDev 0.77 0.07 0.53 0.13 0.02 0.04 0.19 0.28 0.28 0.03 0.00 1.68 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 UA 2754-2  68.85 0.52 15.57 3.31 0.15 0.99 3.23 4.66 2.56 0.16 100.00 1.56   

 UA 2754-3  69.14 0.48 15.57 3.13 0.06 1.03 3.30 4.53 2.59 0.15 100.00 1.23   

  UA 2754-32  70.11 0.49 14.97 2.95 0.13 0.75 2.82 4.83 2.78 0.17 100.00 2.83     

Crater Peak 

Reference                

 UA 2619-16  62.52 0.84 16.62 6.08 0.17 1.78 5.24 5.01 1.55 0.21 100.00 2.39  

Spurr/Crater Peak 

1992 

 UA 2619-8  62.55 0.76 16.71 6.02 0.10 2.10 5.32 4.64 1.53 0.27 100.00 3.35  Day 2 set 2/3 

 UA 2619-17  62.63 0.85 16.14 6.37 0.21 1.97 4.98 4.91 1.67 0.26 100.00 3.42   

 UA 2619-25  62.84 0.72 16.51 6.06 0.18 1.92 5.11 4.89 1.53 0.23 100.00 4.05   

 UA 2619-24  62.85 0.81 15.96 6.51 0.19 2.05 5.05 4.69 1.65 0.26 100.00 5.14   

 UA 2619-18  62.93 0.86 16.12 6.45 0.17 1.99 4.93 4.67 1.62 0.26 100.00 3.74   

 UA 2619-26  63.13 0.81 16.02 6.36 0.21 1.96 5.03 4.57 1.65 0.27 100.00 3.88   

 UA 2619-13  63.18 0.83 15.86 6.31 0.18 1.97 4.93 4.78 1.69 0.25 100.00 3.73   

 UA 2619-20  63.22 0.81 15.92 6.21 0.20 1.98 4.88 4.91 1.65 0.22 100.00 3.32   

 UA 2619-21  63.27 0.83 15.68 6.59 0.18 1.81 4.88 4.75 1.74 0.28 100.00 2.93   

 UA 2619-22  63.33 0.90 15.98 6.22 0.12 1.89 4.78 4.81 1.75 0.23 100.00 2.97   

 UA 2619-23  63.33 0.93 15.58 6.57 0.16 2.06 4.84 4.54 1.75 0.24 100.00 3.30   

 UA 2619-15  63.41 0.82 15.69 6.35 0.21 2.00 4.78 4.75 1.74 0.26 100.00 2.13   

 UA 2619-3  63.64 0.81 15.81 6.15 0.14 1.94 4.97 4.73 1.57 0.25 100.00 2.47   

 UA 2619-12  63.82 0.77 16.17 5.85 0.10 1.53 4.79 4.99 1.72 0.26 100.00 2.97   

 UA 2619-7  64.52 0.95 15.96 5.32 0.22 1.82 4.21 5.06 1.67 0.28 100.00 7.46   

 
Mean 63.20 0.83 16.04 6.21 0.17 1.92 4.92 4.79 1.65 0.25 100.00 3.58 16 Main population 

 
StDev 0.51 0.06 0.33 0.32 0.04 0.14 0.25 0.16 0.08 0.02 0.00 1.27 

  

 UA 2619-2  69.86 0.67 14.46 4.11 0.16 0.85 2.56 4.60 2.51 0.20 100.00 2.43  

scattered 

secondary 

population 

 UA 2619-4  69.92 0.62 15.21 3.06 0.17 0.75 2.61 3.57 3.97 0.12 100.00 5.54   

 UA 2619-1  69.97 0.69 14.18 4.33 0.14 0.87 2.52 4.52 2.57 0.20 100.00 3.21   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 UA 2619-11  70.06 0.47 14.87 2.47 0.20 0.44 1.74 6.36 3.22 0.17 100.00 3.19   

 UA 2619-10  70.62 0.65 14.98 3.20 0.15 0.77 2.38 3.13 3.96 0.16 100.00 9.44   

 UA 2619-9  71.09 0.65 14.71 3.16 0.09 0.85 2.13 3.12 4.03 0.16 100.00 6.11   

 
Mean 70.26 0.62 14.74 3.39 0.15 0.76 2.32 4.22 3.38 0.17 100.00 4.99 9  

  StDev 0.49 0.08 0.37 0.70 0.04 0.16 0.33 1.24 0.71 0.03 0.00 2.62     

"Tephra 3" - 

not a primary 

unit                

UA 3051 EK8-3A-34  73.80 0.28 13.91 2.02 0.08 0.22 1.21 4.60 3.64 0.24 100.00 5.15  Day 1, set 3/4 

EK14-02A-1G: 

57-57.6 cm EK8-3A-17  73.89 0.22 13.67 2.09 0.02 0.25 1.29 4.37 3.98 0.22 100.00 7.81  

This "tephra 3" 

does not correlate 

to the other 

"tephra 3" 

 EK8-3A-16  73.89 0.24 13.97 2.09 0.02 0.20 1.23 4.48 3.68 0.20 100.00 5.23  

This sample 

contains two 

different 

populations 

 EK8-3A-35  73.95 0.25 13.60 1.98 0.06 0.26 1.23 4.54 3.92 0.22 100.00 4.45  

A "Dawson tephra 

(Emmons)" 

population. Higher 

hydration - 

reworked older 

Dawson? 

 EK8-3A-10  74.09 0.26 13.67 1.98 0.08 0.26 1.25 4.38 3.81 0.21 100.00 5.20   

 EK8-3A-32  74.10 0.33 13.85 1.98 0.02 0.21 1.25 4.16 3.84 0.25 100.00 7.69   

 EK8-3A-14  74.18 0.33 13.61 1.97 0.02 0.21 1.23 4.55 3.70 0.19 100.00 7.42   

 EK8-3A-12  74.26 0.26 13.56 1.93 0.04 0.16 1.19 4.48 3.86 0.26 100.00 6.07   

 EK8-3A-7  74.31 0.26 13.64 1.93 0.01 0.18 1.21 4.40 3.84 0.22 100.00 6.62   

 EK8-3A-11  74.31 0.25 13.54 1.95 0.11 0.20 1.17 4.48 3.76 0.23 100.00 4.12   

 EK8-3A-36  74.37 0.24 13.58 1.99 0.03 0.18 1.19 4.53 3.67 0.21 100.00 5.19   

 EK8-3A-31  74.45 0.11 13.58 1.94 0.03 0.22 1.28 4.52 3.62 0.24 100.00 6.70   

 EK8-3A-4  74.50 0.24 13.72 2.10 0.08 0.21 1.34 3.86 3.67 0.28 100.00 8.97   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK8-3A-8  74.59 0.24 13.68 1.97 0.10 0.21 1.19 4.13 3.71 0.19 100.00 6.36   

 EK8-3A-2  74.59 0.22 13.65 1.93 0.16 0.23 1.16 4.19 3.63 0.23 100.00 3.33   

 Mean 

74.22 0.25 13.68 1.99 0.06 0.21 1.23 4.38 3.76 0.23 100.00 6.02 

15 

Population 1 - 

Dawson tephra 

(Emmons) 

 StDev 0.26 0.05 0.13 0.06 0.04 0.03 0.05 0.21 0.11 0.03 0.00 1.55 
  

 EK8-3A-29  76.43 0.43 12.52 1.78 0.08 0.25 1.30 4.03 2.95 0.23 100.00 1.96   

 EK8-3A-28  76.48 0.40 12.55 1.69 0.09 0.28 1.28 4.22 2.85 0.16 100.00 1.84   

 EK8-3A-33  77.11 0.30 12.26 1.63 0.02 0.20 1.17 4.08 2.99 0.24 100.00 1.15   

 EK8-3A-23  77.13 0.34 12.44 1.65 0.04 0.26 1.25 3.66 3.01 0.21 100.00 3.08   

 EK8-3A-22  77.13 0.41 12.25 1.63 0.01 0.22 1.28 3.97 2.92 0.19 100.00 2.85   

 EK8-3A-25  77.37 0.24 12.60 1.03 0.05 0.26 1.10 3.90 3.32 0.14 100.00 2.97   

 EK8-3A-5  77.43 0.36 12.06 1.63 0.05 0.24 1.22 3.90 2.91 0.19 100.00 1.68   

 EK8-3A-27  77.92 0.37 12.29 1.57 0.06 0.21 1.20 3.13 3.05 0.19 100.00 3.70   

 EK8-3A-1  78.05 0.17 12.01 1.14 0.09 0.18 1.04 3.91 3.20 0.22 100.00 3.30   

 EK8-3A-20  78.29 0.14 12.11 1.11 0.05 0.09 0.69 4.15 3.16 0.20 100.00 3.51   

 EK8-3A-13  78.40 0.19 11.92 1.14 0.03 0.13 0.72 4.09 3.17 0.21 100.00 2.58   

 EK8-3A-30  78.40 0.15 12.02 1.12 0.01 0.10 0.70 4.03 3.24 0.22 100.00 2.09   

 Mean 

77.51 0.29 12.25 1.43 0.05 0.20 1.08 3.92 3.06 0.20 100.00 2.56 

12 

Population 2 plots 

with the high SiO2 

population of 

Katmai 1912 

 StDev 0.70 0.11 0.23 0.28 0.03 0.06 0.24 0.29 0.15 0.03 0.00 0.81 
  

 EK8-3A-15  69.34 0.30 16.19 2.92 0.10 0.94 2.75 4.83 2.39 0.26 100.00 3.15  

Outlier, plots with 

3b-20 

 EK8-3A-9  73.95 0.45 13.76 1.97 0.07 0.32 2.06 3.69 3.49 0.24 100.00 2.14  

outlier with high 

Ca 

 EK8-3A-3  77.81 0.37 11.23 1.68 0.09 0.40 2.06 2.70 3.45 0.22 100.00 2.15  outlier 

 EK8-3A-6  77.62 0.40 12.47 0.34 0.06 0.21 0.50 2.33 5.87 0.18 100.00 3.04  

outliers high K, 

very low FeO 

 EK8-3A-21  78.17 0.31 12.29 0.23 0.00 0.15 0.25 2.83 5.68 0.10 100.00 4.06   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

                
EK14-03A-1H: 

66.8-67.4 cm EK8-3B-18  73.92 0.24 13.94 2.10 0.06 0.24 1.22 4.44 3.60 0.25 100 6.17  Mixed 

Not accessioned EK8-3B-16  74.19 0.29 13.59 2.09 0.07 0.20 1.21 4.51 3.60 0.25 100 4.91  Day 1, set 3/4 

 EK8-3B-22  74.26 0.25 13.67 2.02 0.07 0.23 1.24 4.38 3.66 0.22 100 6.34   

 Mean 74.12 0.26 13.73 2.07 0.07 0.22 1.22 4.44 3.62 0.24 100.00 5.80 3  

 StDev 0.18 0.03 0.18 0.04 0.01 0.02 0.01 0.07 0.04 0.02 0.00 0.78 
  

 EK8-3B-33  74.26 0.47 13.97 2.71 0.05 0.44 0.95 3.29 3.83 0.04 100 2.01   

 EK8-3B-10  74.38 0.47 13.82 2.71 0.06 0.45 1.07 2.64 4.38 0.03 100 3.56   

 EK8-3B-6  74.43 0.35 13.52 2.91 0.05 0.44 0.96 2.68 4.65 0.01 100 3.83   

 EK8-3B-7  74.70 0.31 13.49 2.78 0.05 0.41 0.97 2.76 4.54 0.01 100 3.03   

 Mean 74.44 0.40 13.70 2.78 0.05 0.43 0.99 2.84 4.35 0.02 100.00 3.11 4  

 StDev 0.18 0.08 0.24 0.10 0.01 0.02 0.06 0.30 0.36 0.02 0.00 0.80 
  

 EK8-3B-17  66.25 0.76 15.79 4.17 0.13 1.17 2.98 4.73 3.43 0.59 100 2.78  

scattered 

populations 

difficult to see if 

any affinities 

 EK8-3B-20  69.56 0.28 16.26 2.90 0.11 0.82 2.79 5.08 2.02 0.18 100 2.30   

 EK8-3B-32  69.89 0.53 15.16 2.52 0.05 0.65 1.98 4.51 4.57 0.15 100 3.29   

 EK8-3B-14  71.70 0.40 14.93 1.67 0.06 0.47 1.40 5.24 3.73 0.41 100 3.46   

 EK8-3B-29  71.97 0.52 14.61 2.10 0.09 0.53 1.97 4.20 3.90 0.12 100 2.86   

 EK8-3B-2  72.14 0.39 15.07 2.78 0.09 0.50 1.99 4.15 2.73 0.16 100 3.21   

 EK8-3B-27  72.82 0.48 13.78 2.08 0.04 0.38 1.41 3.31 5.54 0.16 100 2.25   

 EK8-3B-35  73.05 0.49 14.31 3.04 0.07 0.61 1.58 3.02 3.79 0.04 100 3.44   

 EK8-3B-36  73.28 0.56 13.54 3.35 0.14 0.50 1.35 2.52 4.56 0.21 100 2.31   

 EK8-3B-30  73.34 0.35 13.72 2.04 0.05 0.43 2.00 3.83 3.97 0.28 100 2.60   

 EK8-3B-19  73.42 0.31 13.73 2.59 0.07 0.29 1.62 4.90 2.90 0.18 100 2.44   

 EK8-3B-31  73.61 0.39 13.67 1.84 0.07 0.45 1.93 3.86 3.91 0.27 100 2.05   

 EK8-3B-13  73.80 0.44 13.75 3.37 0.11 0.60 1.50 3.30 3.13 0.00 100 3.16   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK8-3B-5  74.59 0.54 13.99 1.20 0.05 0.60 1.22 4.09 3.65 0.07 100 2.53   

 EK8-3B-7  74.70 0.31 13.49 2.78 0.05 0.41 0.97 2.76 4.54 0.01 100 3.03   

 EK8-3B-26  75.57 0.21 13.54 1.12 0.16 0.24 0.47 3.42 5.23 0.03 100 2.03   

 EK8-3B-3  76.20 0.48 13.77 0.48 0.02 0.49 0.88 4.08 3.52 0.08 100 3.96   

 EK8-3B-15  76.49 0.32 12.74 1.15 0.01 0.23 1.18 3.80 3.94 0.14 100 2.13   

 EK8-3B-1  76.73 0.18 12.33 1.14 0.07 0.19 0.50 3.74 5.03 0.09 100 2.31   

 EK8-3B-23  76.87 0.20 12.36 1.43 0.07 0.15 0.73 4.82 3.05 0.34 100 2.67   

 EK8-3B-9  76.88 0.28 12.29 0.83 0.03 0.20 0.57 3.16 5.47 0.28 100 2.26   

 EK8-3B-24  77.42 0.39 11.71 1.15 0.09 0.21 1.11 2.87 4.84 0.21 100 2.73   

 EK8-3B-4  77.46 0.24 12.41 1.08 0.25 0.32 0.59 3.46 4.09 0.10 100 2.73   

 EK8-3B-25  77.48 0.45 12.34 0.24 0.02 0.36 0.81 3.12 4.98 0.19 100 2.07   

 EK8-3B-8  74.99 0.46 12.76 1.84 0.03 0.50 1.42 1.76 6.16 0.08 100 2.80   

 EK8-3B-34  75.06 0.45 13.17 1.21 0.05 0.16 0.53 1.45 7.86 0.05 100 3.02   

 EK8-3B-12  75.93 0.67 12.69 1.13 0.02 0.10 0.48 1.30 7.66 0.02 100 2.54   

 EK8-3B-11  76.92 0.63 12.26 1.00 0.04 0.09 0.40 1.12 7.51 0.03 100 2.87   

  EK8-3B-28  77.51 0.19 12.94 1.45 0.09 0.32 2.21 3.60 1.58 0.11 100 2.00     

Tephra 4                

UA 3052 EK8-4A-3  76.61 0.37 12.91 1.16 0.02 0.19 1.28 4.06 3.28 0.11 100 2.04  Redoubt 

EK14-02A-1G: 

91.8-92.4 cm EK8-4A-14  76.62 0.31 12.93 1.33 0.04 0.23 1.29 3.82 3.32 0.12 100 1.86  Day 1, set 4/5 

 EK8-4A-18  76.88 0.25 12.78 1.21 0.09 0.25 1.26 4.03 3.13 0.11 100 1.98   

 EK8-4A-36  77.18 0.22 12.76 1.12 0.03 0.21 1.14 4.00 3.27 0.07 100 2.04   

 EK8-4A-34  77.27 0.26 12.72 1.07 0.04 0.19 1.22 3.82 3.32 0.07 100 2.19   

 EK8-4A-25  77.31 0.24 12.53 1.08 0.09 0.20 1.21 3.95 3.27 0.13 100 2.00   

 EK8-4A-23  77.32 0.25 12.39 1.18 0.02 0.24 1.10 3.97 3.39 0.14 100 1.46   

 EK8-4A-5  77.35 0.27 12.64 1.12 0.00 0.21 1.10 3.79 3.37 0.15 100 2.20   

 EK8-4A-27  77.35 0.27 12.37 1.07 0.09 0.16 1.11 4.04 3.40 0.14 100 1.87   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK8-4A-4  77.41 0.22 12.59 1.05 0.07 0.20 1.22 3.96 3.17 0.11 100 1.90   

 EK8-4A-16  77.41 0.22 12.57 1.09 0.08 0.18 1.15 3.86 3.30 0.13 100 2.36   

 EK8-4A-6  77.42 0.18 12.60 1.14 0.07 0.17 1.19 3.73 3.36 0.14 100 2.11   

 EK8-4A-32  77.43 0.28 12.53 1.07 0.09 0.19 1.10 3.95 3.25 0.13 100 1.27   

 EK8-4A-17  77.49 0.30 12.36 1.12 0.08 0.21 1.01 3.92 3.36 0.14 100 2.46   

 EK8-4A-26  77.53 0.24 12.31 1.24 0.02 0.22 1.02 3.83 3.45 0.13 100 1.93   

 EK8-4A-28  77.57 0.21 12.46 1.17 0.05 0.20 1.07 3.80 3.30 0.16 100 2.15   

 EK8-4A-9  77.59 0.23 12.56 0.98 0.04 0.18 1.21 3.77 3.37 0.07 100 2.16   

 EK8-4A-13  77.60 0.23 12.46 1.03 0.09 0.18 1.08 3.82 3.40 0.12 100 2.34   

 EK8-4A-10  77.64 0.27 12.60 1.03 0.01 0.16 1.09 3.77 3.34 0.09 100 1.92   

 EK8-4A-31  77.64 0.25 12.51 1.12 0.03 0.21 1.09 3.88 3.18 0.09 100 1.27   

 EK8-4A-2  77.72 0.28 12.45 0.98 0.03 0.16 1.01 3.95 3.28 0.14 100 1.71   

 EK8-4A-20  77.73 0.19 12.35 1.03 0.11 0.19 1.05 3.95 3.25 0.16 100 1.99   

 EK8-4A-12  77.77 0.23 12.29 1.06 0.12 0.19 1.05 3.90 3.29 0.12 100 1.44   

 EK8-4A-15  77.77 0.22 12.38 1.01 0.06 0.18 1.04 3.83 3.43 0.09 100 1.48   

 EK8-4A-24  77.80 0.21 12.37 1.00 0.06 0.16 0.98 3.87 3.41 0.14 100 1.52   

 EK8-4A-11  77.86 0.16 12.22 1.07 0.04 0.22 1.11 3.84 3.34 0.14 100 2.96   

 EK8-4A-35  77.87 0.15 12.51 1.01 0.06 0.15 1.03 3.75 3.31 0.17 100 1.97   

 EK8-4A-8  77.90 0.24 12.55 1.03 0.04 0.20 1.11 3.65 3.18 0.10 100 2.56   

 EK8-4A-33  78.00 0.21 12.19 1.10 0.03 0.21 0.96 3.76 3.37 0.15 100 2.05   

 EK8-4A-19  78.00 0.22 12.24 1.01 0.00 0.16 1.00 3.87 3.37 0.14 100 2.15   

UA 3053 EK8-4B-28  75.69 0.27 13.35 1.49 0.11 0.32 1.57 4.05 3.04 0.12 100 1.75  Day 1, set 4/5 

EK14-03C-1P-

1: 130-130.6 cm EK8-4B-23  76.24 0.35 12.77 1.71 0.07 0.29 1.31 4.25 2.83 0.18 100 2.74   

 EK8-4B-24  76.48 0.31 12.53 1.70 0.03 0.30 1.35 3.98 3.08 0.24 100 3.02   

 EK8-4B-4  76.57 0.39 12.39 1.72 0.10 0.24 1.22 4.13 2.97 0.28 100 2.47   

 EK8-4B-6  76.76 0.34 12.75 1.28 0.05 0.22 1.19 3.86 3.41 0.14 100 1.55   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK8-4B-33  76.80 0.26 12.95 1.16 0.08 0.23 1.17 3.97 3.21 0.18 100 2.38   

 EK8-4B-25  76.98 0.28 12.68 1.32 0.05 0.25 1.26 3.80 3.26 0.12 100 1.82   

 EK8-4B-2  77.17 0.23 12.70 1.17 0.04 0.22 1.22 3.92 3.21 0.13 100 2.01   

 EK8-4B-16  77.25 0.25 12.73 1.14 0.07 0.24 1.08 3.81 3.31 0.11 100 1.92   

 EK8-4B-11  77.26 0.30 12.67 1.17 0.02 0.25 1.15 3.83 3.23 0.11 100 2.11   

 EK8-4B-26  77.31 0.18 12.57 1.05 0.03 0.22 1.13 3.62 3.77 0.12 100 2.58   

 EK8-4B-8  77.32 0.29 12.64 1.07 0.00 0.17 1.13 3.89 3.39 0.09 100 3.24   

 EK8-4B-5  77.35 0.21 12.48 1.10 0.07 0.20 1.16 3.87 3.44 0.13 100 1.29   

 EK8-4B-34  77.36 0.26 12.26 1.55 0.10 0.20 1.07 4.02 2.97 0.20 100 1.77   

 EK8-4B-19  77.48 0.20 12.73 0.90 0.03 0.18 0.97 4.02 3.47 0.04 100 2.82   

 EK8-4B-14  77.56 0.28 12.48 1.11 0.07 0.19 1.07 3.99 3.11 0.14 100 2.47   

 EK8-4B-7  77.57 0.27 12.60 1.02 0.05 0.21 1.05 3.78 3.31 0.13 100 1.82   

 EK8-4B-18  77.60 0.25 12.49 1.03 0.03 0.19 1.08 3.96 3.24 0.13 100 2.54   

 EK8-4B-29  77.64 0.27 12.29 1.02 0.06 0.16 1.01 4.04 3.40 0.11 100 2.56   

 EK8-4B-35  77.64 0.26 12.48 1.07 0.06 0.22 1.04 3.71 3.41 0.10 100 3.18   

 EK8-4B-27  77.69 0.14 12.64 0.96 0.06 0.19 1.06 3.47 3.70 0.09 100 3.38   

 EK8-4B-3  77.72 0.34 12.43 1.06 0.07 0.22 1.08 3.75 3.16 0.16 100 1.82   

 EK8-4B-13  77.73 0.25 12.22 1.06 0.04 0.21 1.08 3.88 3.41 0.12 100 2.46   

 EK8-4B-17  77.76 0.21 12.28 1.14 0.07 0.20 1.10 3.69 3.40 0.16 100 2.67   

 EK8-4B-30  77.76 0.18 12.25 1.08 0.11 0.18 1.05 4.06 3.20 0.13 100 2.62   

 EK8-4B-12  77.82 0.20 12.32 1.05 0.00 0.20 1.03 3.77 3.49 0.11 100 2.32   

 EK8-4B-31  77.88 0.18 12.19 0.96 0.06 0.19 1.04 3.91 3.42 0.17 100 3.12   

 EK8-4B-9  77.94 0.21 12.34 1.10 0.02 0.20 1.04 3.76 3.27 0.13 100 1.47   

 EK8-4B-10  78.03 0.24 12.27 1.02 0.06 0.18 0.97 3.63 3.48 0.13 100 2.01   

 EK8-4B-1  78.10 0.24 12.30 0.96 0.01 0.16 1.10 3.76 3.27 0.11 100 2.65   

 EK8-4B-36  78.12 0.17 12.19 1.01 0.07 0.23 0.97 3.77 3.37 0.11 100 2.57   

 EK8-4B-21  78.30 0.26 12.91 1.18 0.07 0.22 1.08 2.46 3.40 0.12 100 2.68   



202 

  

Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK8-4B-15  78.77 0.21 11.75 0.85 0.05 0.14 0.76 3.58 3.80 0.08 100 4.61   

 Mean 77.47 0.25 12.50 1.12 0.05 0.20 1.11 3.84 3.32 0.13 100.00 2.22 63  

 StDev 0.51 0.05 0.25 0.18 0.03 0.03 0.12 0.22 0.16 0.04 0.00 0.59 
  

 EK8-4B-20  73.97 0.29 13.81 1.97 0.06 0.22 1.22 4.43 3.73 0.30 100 5.20   

 EK8-4B-32  74.61 0.27 13.58 1.90 0.04 0.20 1.18 4.29 3.66 0.26 100 6.70   

 EK8-4A-22  75.60 0.43 13.03 1.58 0.11 0.30 1.46 4.15 3.23 0.10 100 1.08   

 EK8-4A-29  76.02 0.41 13.19 1.38 0.03 0.30 1.23 3.92 3.39 0.14 100 1.96   

 EK8-4A-7  77.37 0.17 12.60 0.93 0.05 0.11 1.29 4.16 3.24 0.07 100 1.54   

 EK8-4A-30  76.75 0.27 12.91 1.15 0.06 0.26 0.99 4.05 3.47 0.08 100 1.29   

  EK8-4A-21  77.59 0.20 12.31 0.96 0.04 0.18 1.06 3.66 3.84 0.16 100 2.02     

                

Tephra 5                

UA 3054 

EK2A-

137.4-3  
70.43 0.47 14.97 2.81 0.10 0.88 2.97 4.51 2.71 0.15 100.00 3.31 

 Redoubt 

EK14-02A-2P-

1: 137.4-138 cm  

EK2A-

137.4-24  
72.47 0.42 14.87 2.17 0.07 0.49 2.33 4.22 2.82 0.15 100.00 2.06 

 Day 3, set 2/3 

 

EK2A-

137.4-26  
72.89 0.42 14.54 2.02 0.08 0.45 2.23 4.35 2.86 0.15 100.00 2.07 

  

 

EK2A-

137.4-9  
73.46 0.30 14.54 1.78 0.09 0.38 1.98 4.32 2.96 0.18 100.00 1.87 

  

 

EK2A-

137.4-5  
73.75 0.44 14.11 1.83 0.12 0.39 1.88 4.31 2.99 0.18 100.00 2.10 

  

 

EK2A-

137.4-1  
73.93 0.36 14.05 1.74 0.07 0.38 2.07 4.39 2.86 0.15 100.00 1.57 

  

 

EK2A-

137.4-2  
74.00 0.39 13.95 1.66 0.06 0.37 1.90 4.37 3.11 0.18 100.00 1.99 

  

 

EK2A-

137.4-23  
74.47 0.27 14.20 1.54 0.03 0.33 1.68 4.24 3.05 0.17 100.00 1.63 

  

 

EK2A-

137.4-18  
74.62 0.32 13.86 1.57 0.10 0.33 1.78 4.25 3.03 0.14 100.00 1.89 

  

 

EK2A-

137.4-6  
74.83 0.26 13.71 1.64 0.04 0.28 1.74 4.39 2.94 0.17 100.00 2.23 

  

 

EK2A-

137.4-19  
75.00 0.27 13.66 1.48 0.05 0.28 1.67 4.40 3.05 0.14 100.00 1.57 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2A-

137.4-27  
75.14 0.37 13.77 1.44 0.12 0.26 1.63 4.03 3.08 0.15 100.00 1.37 

  

 

EK2A-

137.4-7  
75.50 0.24 13.54 1.41 0.03 0.26 1.57 4.14 3.13 0.17 100.00 2.02 

  

 

EK2A-

137.4-25  
75.85 0.23 13.42 1.37 0.07 0.33 1.57 4.07 2.97 0.11 100.00 2.70 

  

 

EK2A-

137.4-13  
76.01 0.18 13.31 1.40 0.11 0.26 1.48 3.99 3.10 0.16 100.00 2.52 

  

 

EK2A-

137.4-16  
76.14 0.21 13.35 1.22 0.07 0.29 1.43 4.21 2.95 0.12 100.00 2.20 

  

 

EK2A-

137.4-21  
76.65 0.21 13.08 1.07 0.10 0.22 1.26 4.10 3.15 0.17 100.00 1.60 

  

 

EK2A-

137.4-17  
77.11 0.14 12.86 1.09 0.06 0.17 1.20 3.95 3.29 0.12 100.00 3.86 

  

 

EK2A-

137.4-11  
77.15 0.18 12.81 0.98 0.07 0.20 1.13 4.03 3.35 0.10 100.00 4.82 

  

 

EK2A-

137.4-8  
77.28 0.14 12.69 1.01 0.05 0.18 1.15 4.14 3.25 0.11 100.00 1.43 

  

 

EK2A-

137.4-22  
77.36 0.18 12.52 1.04 0.07 0.18 1.09 3.93 3.52 0.11 100.00 5.57 

  

 

EK2A-

137.4-10  
77.44 0.18 12.60 1.00 0.06 0.14 1.03 3.98 3.43 0.14 100.00 1.94 

  

 

EK2A-

137.4-12  
77.48 0.18 12.67 0.99 0.07 0.18 1.10 3.93 3.35 0.06 100.00 4.63 

  

 

EK2A-

137.4-15  
77.71 0.16 12.42 0.94 0.04 0.21 1.07 3.91 3.41 0.12 100.00 4.47 

  

 

EK2A-

137.4-29  
77.72 0.25 12.68 1.02 0.08 0.16 1.03 3.26 3.62 0.17 100.00 7.83 

  

 

EK2A-

137.4-30  
77.81 0.20 12.49 0.87 0.09 0.13 0.96 3.83 3.51 0.11 100.00 1.02 

  

 

EK2A-

137.4-14  
77.95 0.24 12.32 0.87 0.07 0.14 1.01 3.82 3.45 0.12 100.00 1.11 

  

 

EK2A-

137.4-31  
77.95 0.22 12.62 0.91 0.07 0.17 1.02 3.54 3.41 0.09 100.00 6.58 

  

 

EK2A-

137.4-20  
77.98 0.13 12.29 0.95 0.06 0.14 0.94 3.91 3.51 0.09 100.00 1.26 

  

 

EK2A-

137.4-28  
78.01 0.22 12.28 0.91 0.09 0.14 0.98 3.85 3.45 0.07 100.00 1.00 

  

UA 3055 

EK3C-

108.6-30  
72.31 0.40 14.73 2.17 0.07 0.57 2.28 4.49 2.81 0.18 100.00 1.30 

 Day 3, set 3/4 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

EK14-03C-2P-

1: 108.6-109.4 

cm 

EK3C-

108.6-23  

72.36 0.30 15.42 1.72 0.09 0.27 2.49 4.54 2.67 0.14 100.00 1.54 

  

 

EK3C-

108.6-17  
72.43 0.38 14.54 2.16 0.10 0.54 2.37 4.58 2.78 0.12 100.00 1.34 

  

 

EK3C-

108.6-25  
72.79 0.38 14.63 1.92 0.09 0.47 2.09 4.48 2.97 0.17 100.00 4.66 

  

 

EK3C-

108.6-19  
72.90 0.37 15.16 1.75 0.11 0.38 2.07 4.24 2.89 0.13 100.00 2.04 

  

 

EK3C-

108.6-1  
73.12 0.36 14.55 1.74 0.08 0.40 2.16 4.53 2.85 0.21 100.00 5.22 

  

 

EK3C-

108.6-26  
73.24 0.31 14.43 1.87 0.06 0.46 2.30 4.35 2.84 0.14 100.00 2.90 

  

 

EK3C-

108.6-14  
73.33 0.31 14.15 1.82 0.08 0.57 2.22 4.47 2.89 0.17 100.00 2.60 

  

 

EK3C-

108.6-29  
73.70 0.23 14.36 1.85 0.09 0.34 1.97 4.37 2.91 0.18 100.00 1.26 

  

 

EK3C-

108.6-24  
74.74 0.35 13.89 1.52 0.07 0.36 1.73 4.05 3.15 0.15 100.00 2.24 

  

 

EK3C-

108.6-21  
75.44 0.25 13.57 1.44 0.05 0.27 1.59 4.31 2.95 0.13 100.00 1.63 

  

 

EK3C-

108.6-22  
75.53 0.24 13.66 1.36 0.08 0.26 1.60 4.10 3.04 0.15 100.00 0.89 

  

 

EK3C-

108.6-16  
75.64 0.31 13.23 1.40 0.07 0.28 1.59 4.22 3.13 0.14 100.00 2.10 

  

 

EK3C-

108.6-8  
75.94 0.31 13.23 1.37 0.05 0.20 1.61 4.07 3.08 0.14 100.00 2.21 

  

 

EK3C-

108.6-18  
76.11 0.19 13.32 1.22 0.07 0.26 1.37 4.16 3.16 0.15 100.00 0.84 

  

 

EK3C-

108.6-13  
76.20 0.22 13.20 1.26 0.10 0.24 1.44 4.01 3.16 0.17 100.00 1.68 

  

 

EK3C-

108.6-15  
76.34 0.25 12.98 1.24 0.07 0.22 1.40 4.13 3.23 0.15 100.00 2.20 

  

 

EK3C-

108.6-28  
76.66 0.22 13.10 1.22 0.03 0.25 1.33 3.83 3.22 0.14 100.00 1.77 

  

 

EK3C-

108.6-20  
76.75 0.23 12.94 1.22 0.07 0.18 1.36 3.93 3.14 0.17 100.00 3.00 

  

 

EK3C-

108.6-9  
77.00 0.22 12.84 1.05 0.06 0.17 1.29 3.98 3.26 0.15 100.00 1.30 

  

 

EK3C-

108.6-4  
77.14 0.18 12.66 1.11 0.09 0.21 1.25 4.01 3.23 0.12 100.00 2.05 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK3C-

108.6-2  
77.38 0.16 12.54 1.15 0.09 0.20 1.24 3.85 3.21 0.17 100.00 1.57 

  

 

EK3C-

108.6-31  
77.41 0.20 12.59 0.96 0.06 0.17 1.17 4.03 3.26 0.16 100.00 2.27 

  

 

EK3C-

108.6-6  
77.53 0.19 12.76 0.96 0.06 0.18 1.03 3.75 3.41 0.12 100.00 3.47 

  

 

EK3C-

108.6-32  
77.54 0.20 12.76 1.03 0.11 0.15 1.10 3.47 3.50 0.14 100.00 6.81 

  

 

EK3C-

108.6-7  
77.62 0.20 12.63 1.02 0.07 0.17 1.09 3.69 3.40 0.12 100.00 4.47 

  

 

EK3C-

108.6-5  
77.95 0.13 12.44 0.95 0.10 0.12 1.00 3.81 3.35 0.16 100.00 0.43 

  

 

EK3C-

108.6-10  
77.99 0.15 12.28 1.02 0.08 0.19 1.09 3.80 3.25 0.14 100.00 0.61 

  

 

EK3C-

108.6-27  
78.00 0.13 12.47 0.89 0.02 0.11 0.99 3.65 3.63 0.10 100.00 1.11 

  

 

EK3C-

108.6-12  
78.07 0.17 12.30 0.99 0.08 0.15 1.06 3.84 3.18 0.16 100.00 2.45 

  

 

EK3C-

108.6-11  
78.91 0.18 11.86 0.90 0.08 0.15 0.74 3.49 3.64 0.06 100.00 7.17 

  

UA 3056 

EK4C-73.5-

24  
71.39 0.42 15.07 2.29 0.09 0.61 2.65 4.53 2.65 0.29 100.00 8.78 

 Day 3, set 3/4 

EK14-04C-2P-

1: 73.2-74 cm  

EK4C-73.5-

28  
72.31 0.30 15.42 1.71 0.08 0.27 2.82 4.42 2.55 0.12 100.00 1.76 

  

 

EK4C-73.5-

20  
73.00 0.35 14.77 1.90 0.09 0.40 2.07 4.36 2.91 0.14 100.00 2.02 

  

 

EK4C-73.5-

4  
73.20 0.38 14.65 1.84 0.10 0.48 2.07 4.23 2.91 0.13 100.00 0.97 

  

 

EK4C-73.5-

7  
74.00 0.32 14.11 1.67 0.09 0.35 1.88 4.40 3.06 0.12 100.00 1.01 

  

 

EK4C-73.5-

1  
74.20 0.29 14.28 1.57 0.08 0.37 1.81 4.13 3.04 0.24 100.00 8.05 

  

 

EK4C-73.5-

10  
74.21 0.29 14.09 1.74 0.06 0.38 1.91 4.21 2.92 0.19 100.00 1.54 

  

 

EK4C-73.5-

9  
74.31 0.35 14.15 1.58 0.06 0.36 1.72 4.30 3.04 0.14 100.00 2.26 

  

 

EK4C-73.5-

5  
74.40 0.33 13.98 1.61 0.07 0.31 1.81 4.39 2.94 0.16 100.00 2.56 

  

 

EK4C-73.5-

12  
75.47 0.26 13.51 1.41 0.05 0.29 1.53 4.17 3.16 0.15 100.00 3.45 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK4C-73.5-

16  
75.59 0.22 13.45 1.46 0.06 0.26 1.62 4.19 2.95 0.20 100.00 2.22 

  

 

EK4C-73.5-

15  
75.68 0.21 13.42 1.38 0.07 0.26 1.53 4.23 3.09 0.13 100.00 2.12 

  

 

EK4C-73.5-

31  
75.81 0.23 13.54 1.27 0.13 0.27 1.42 4.08 3.09 0.16 100.00 1.95 

  

 

EK4C-73.5-

26  
76.08 0.22 13.11 1.29 0.09 0.26 1.52 4.21 3.09 0.13 100.00 2.28 

  

 

EK4C-73.5-

6  
76.25 0.27 13.34 1.26 0.09 0.22 1.34 4.00 3.08 0.15 100.00 1.21 

  

 

EK4C-73.5-

14  
76.47 0.21 13.23 1.26 0.05 0.22 1.36 4.01 3.02 0.16 100.00 3.03 

  

 

EK4C-73.5-

17  
76.53 0.25 13.11 1.17 0.03 0.23 1.34 4.01 3.20 0.13 100.00 6.30 

  

 

EK4C-73.5-

32  
76.53 0.27 13.21 1.11 0.09 0.18 1.33 4.02 3.13 0.14 100.00 1.12 

  

 

EK4C-73.5-

29  
77.21 0.21 12.51 1.05 0.06 0.21 1.22 4.11 3.26 0.16 100.00 3.90 

  

 

EK4C-73.5-

11  
77.23 0.20 12.70 1.08 0.06 0.21 1.19 3.92 3.25 0.16 100.00 2.12 

  

 

EK4C-73.5-

23  
77.38 0.15 12.59 1.06 0.09 0.15 1.10 4.01 3.32 0.15 100.00 2.47 

  

 

EK4C-73.5-

22  
77.69 0.19 12.53 0.96 0.06 0.17 1.09 3.86 3.29 0.15 100.00 4.55 

  

 

EK4C-73.5-

21  
77.77 0.22 12.36 0.99 0.07 0.14 1.00 3.85 3.48 0.13 100.00 1.10 

  

 

EK4C-73.5-

25  
77.84 0.19 12.61 0.89 0.11 0.17 1.07 3.56 3.43 0.12 100.00 4.56 

  

 

EK4C-73.5-

27  
77.90 0.23 12.27 0.92 0.11 0.09 0.99 3.85 3.52 0.12 100.00 1.72 

  

 

EK4C-73.5-

19  
78.29 0.18 12.72 0.96 0.09 0.15 1.10 2.87 3.55 0.10 100.00 1.19 

  

UA 3057 20C-T5_029 71.75 0.48 14.97 2.26 0.08 0.55 2.37 4.61 2.77 0.17 100.00 1.11  Day 4, set 1/2 

EK14-20C-2P-

1: 138.5-139.3 

cm 20C-T5_016 72.10 0.41 14.90 2.17 0.07 0.60 2.25 4.56 2.77 0.16 100.00 0.65   

 20C-T5_019 72.41 0.30 15.44 1.47 0.12 0.32 2.62 4.50 2.67 0.15 100.00 0.91   

 20C-T5_025 72.50 0.43 14.70 2.01 0.06 0.49 2.15 4.56 2.83 0.28 100.00 7.78   

 20C-T5_027 72.73 0.30 15.09 1.63 0.04 0.38 2.59 4.33 2.78 0.14 100.00 1.92   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 20C-T5_015 73.17 0.43 14.25 1.94 0.06 0.45 2.10 4.57 2.87 0.16 100.00 4.42   

 20C-T5_002 73.60 0.34 14.52 1.70 0.08 0.43 1.95 4.22 2.98 0.18 100.00 1.68   

 20C-T5_017 73.73 0.35 14.39 1.82 0.07 0.44 2.03 4.05 3.01 0.11 100.00 2.08   

 20C-T5_008 74.31 0.34 13.90 1.59 0.06 0.37 1.76 4.33 3.15 0.19 100.00 6.74   

 20C-T5_003 74.56 0.25 13.96 1.59 0.11 0.36 1.75 4.24 3.05 0.14 100.00 1.15   

 20C-T5_009 75.99 0.22 13.46 1.27 0.07 0.29 1.48 4.00 3.07 0.15 100.00 3.22   

 20C-T5_021 76.17 0.26 13.36 1.30 0.05 0.33 1.53 3.86 2.99 0.16 100.00 0.68   

 20C-T5_006 76.44 0.21 13.28 1.20 0.08 0.27 1.37 3.97 3.02 0.16 100.00 2.41   

 20C-T5_001 77.25 0.21 12.80 1.07 0.07 0.19 1.09 4.01 3.18 0.14 100.00 1.89   

 20C-T5_004 77.35 0.21 12.68 0.99 0.06 0.18 1.03 3.88 3.51 0.12 100.00 4.53   

 20C-T5_013 77.49 0.26 12.87 0.99 0.03 0.18 1.11 3.71 3.27 0.10 100.00 2.30   

 20C-T5_024 77.77 0.18 12.39 0.94 0.03 0.16 0.99 4.11 3.30 0.12 100.00 -0.03   

 20C-T5_020 77.94 0.22 12.38 0.96 0.09 0.19 0.99 3.69 3.40 0.14 100.00 1.25   

UA 3058 21C-T5_023 71.54 0.43 15.01 2.40 0.09 0.64 2.52 4.43 2.76 0.19 100.00 0.58  Day 4, set 1/2 

EK14-21C-2P-

2: 33.6-34.2 cm 21C-T5_007 73.52 0.40 14.37 1.80 0.08 0.43 1.98 4.32 2.90 0.21 100.00 2.00   

 21C-T5_001 73.73 0.37 14.30 1.69 0.06 0.41 1.99 4.51 2.84 0.11 100.00 1.39   

 21C-T5_008 73.97 0.32 14.16 1.65 0.05 0.43 1.87 4.46 2.92 0.17 100.00 2.12   

 21C-T5_025 75.15 0.28 13.67 1.51 0.07 0.32 1.67 4.20 2.98 0.14 100.00 1.24   

 21C-T5_020 75.66 0.23 13.43 1.28 0.12 0.28 1.51 4.39 2.99 0.11 100.00 0.51   

 21C-T5_004 75.70 0.24 13.19 1.27 0.08 0.28 1.50 4.51 3.07 0.16 100.00 0.62   

 21C-T5_029 76.03 0.17 13.48 1.27 0.05 0.23 1.39 4.11 3.11 0.14 100.00 0.62   

 21C-T5_027 76.10 0.26 13.36 1.27 0.08 0.27 1.37 4.03 3.12 0.13 100.00 0.31   

 21C-T5_019 76.15 0.25 13.00 1.16 0.11 0.27 1.39 4.31 3.18 0.16 100.00 0.81   

 21C-T5_022 76.76 0.20 12.93 1.11 0.10 0.22 1.28 4.08 3.18 0.14 100.00 0.61   

 21C-T5_028 76.97 0.21 12.88 1.21 0.09 0.25 1.26 3.87 3.16 0.11 100.00 2.17   

 21C-T5_005 77.15 0.27 12.76 1.10 0.04 0.22 1.22 3.85 3.22 0.17 100.00 0.74   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 21C-T5_010 77.18 0.18 12.71 1.13 0.06 0.20 1.14 4.05 3.24 0.11 100.00 0.38   

 21C-T5_013 77.31 0.21 12.79 1.00 0.03 0.19 1.13 3.87 3.35 0.12 100.00 0.68   

 21C-T5_014 77.40 0.25 12.68 0.93 0.06 0.21 1.02 4.01 3.39 0.05 100.00 3.10   

 21C-T5_024 77.43 0.27 12.70 1.05 0.06 0.20 1.19 3.90 3.11 0.11 100.00 1.19   

 21C-T5_021 77.46 0.22 12.56 1.07 0.04 0.22 1.12 3.72 3.44 0.13 100.00 7.27   

 21C-T5_018 77.53 0.20 12.54 1.08 0.07 0.19 1.12 3.94 3.19 0.13 100.00 -0.27   

 21C-T5_006 77.68 0.18 12.36 0.97 0.02 0.18 1.03 4.14 3.30 0.14 100.00 -0.12   

 21C-T5_015 78.01 0.22 12.54 0.95 0.07 0.19 1.03 3.56 3.39 0.05 100.00 2.77   

 
Mean 75.67 0.26 13.44 1.37 0.07 0.28 1.54 4.10 3.13 0.14 100.00 2.40 126 

 

  StDev 1.97 0.08 0.88 0.40 0.02 0.13 0.49 0.30 0.23 0.04 0.00 1.87     

"Tephra 6" not 

a primary 

tephra 

            

  
EK14-04C-2P-

1: 81.8-82.4 cm UA3013_014 67.15 1.07 14.93 5.15 0.19 1.13 3.16 4.08 3.01 0.16 100.00 3.82  Mixed 

 UA3013_004 69.22 0.82 15.18 3.60 0.17 0.84 2.75 4.42 2.87 0.17 100.00 1.42  Day 5, set 1/2 

 UA3013_001 69.42 0.56 15.30 2.86 0.12 0.85 3.15 4.90 2.71 0.17 100.00 2.08   

 UA3013_015 69.63 0.71 15.78 3.49 0.14 0.79 2.52 3.98 2.80 0.20 100.00 3.10   

 UA3013_012 69.74 0.55 15.77 3.55 0.17 1.07 3.21 3.04 2.64 0.31 100.00 8.38   

 UA3013_002 69.94 0.88 15.69 3.68 0.15 0.83 2.60 3.14 2.84 0.35 100.00 9.91   

 UA3013_013 70.05 0.59 15.40 3.04 0.08 0.86 3.01 4.06 2.76 0.19 100.00 3.26   

 UA3013_022 70.49 0.60 14.74 3.60 0.12 0.90 2.96 3.62 2.83 0.19 100.00 3.55   

 UA3013_021 70.97 0.69 14.31 3.75 0.10 0.99 3.72 3.40 1.78 0.38 100.00 2.09   

 UA3013_016 71.55 0.61 14.46 2.94 0.10 0.83 2.59 4.12 2.70 0.14 100.00 2.41   

 UA3013_005 71.62 0.48 14.77 2.73 0.07 0.73 2.56 4.03 2.87 0.18 100.00 2.09   

 UA3013_011 74.11 0.40 14.12 2.10 0.07 0.51 2.11 3.44 3.02 0.17 100.00 2.88   

 UA3013_024 74.42 0.32 13.63 2.06 0.06 0.21 1.18 4.28 3.67 0.24 100.00 5.20   

 UA3013_003 74.53 0.35 14.16 1.79 0.08 0.42 1.87 3.63 3.01 0.22 100.00 2.19   

 UA3013_025 74.72 0.23 13.66 2.10 0.11 0.26 1.21 3.94 3.58 0.23 100.00 6.30   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 UA3013_026 74.74 0.38 13.41 1.52 0.06 0.37 1.68 4.44 3.25 0.18 100.00 1.29   

 UA3013_030 74.76 0.39 13.71 1.51 0.05 0.35 1.62 4.30 3.14 0.23 100.00 2.86   

 UA3013_010 74.83 0.32 13.55 1.82 0.07 0.43 1.88 4.07 2.82 0.25 100.00 2.01   

 UA3013_006 74.90 0.40 13.69 1.79 0.07 0.41 1.78 3.99 2.84 0.18 100.00 0.72   

 UA3013_029 75.23 0.27 13.28 1.43 0.08 0.30 1.65 4.51 3.11 0.18 100.00 0.55   

 UA3013_008 75.28 0.30 14.20 1.67 0.11 0.37 1.72 3.26 2.93 0.20 100.00 0.87   

 UA3013_028 75.50 0.57 12.47 2.58 0.09 0.55 1.98 3.79 2.28 0.27 100.00 2.55   

 UA3013_009 75.50 0.40 12.99 2.27 0.03 0.53 2.32 3.69 2.02 0.33 100.00 2.05   

 UA3013_007 75.77 0.42 12.91 2.31 0.07 0.59 2.44 3.18 1.96 0.44 100.00 4.96   

 UA3013_023 76.32 0.61 12.10 2.31 0.08 0.44 1.70 3.94 2.28 0.28 100.00 1.42   

 UA3013_020 76.40 0.30 13.09 1.38 0.08 0.29 1.42 3.60 3.26 0.23 100.00 3.69   

 UA3013_018 77.22 0.30 12.57 1.81 0.06 0.34 1.89 3.66 1.97 0.23 100.00 3.23   

 UA3013_019 77.24 0.23 12.58 1.77 0.05 0.37 1.88 3.72 2.01 0.18 100.00 2.24   

 UA3013_017 77.73 0.23 12.44 1.51 0.06 0.34 1.81 3.77 1.96 0.20 100.00 3.34   

 
Mean 73.41 0.48 13.96 2.49 0.09 0.58 2.22 3.86 2.72 0.23 100.00 3.12 

  

 
StDev 2.95 0.21 1.09 0.93 0.04 0.27 0.66 0.44 0.50 0.07 0.00 2.13 

  

 UA3013_027 60.87 1.16 15.74 7.63 0.19 2.68 5.94 3.84 1.86 0.11 100.00 1.88  

unique basaltic 

andesite, plots 

with BA 

population in UA 

3014 

                
EK14-20C-2P-

2: 9.5-10.3 cm UA3014_004 67.50 0.88 15.45 4.15 0.15 1.04 3.17 4.89 2.64 0.18 100.00 1.56  mixed 

 UA3014_029 67.54 1.14 15.10 4.48 0.02 1.40 3.58 3.59 3.02 0.14 100.00 2.32  Day 5, set 1/2 

 UA3014_032 67.59 1.15 14.44 4.42 0.02 1.38 3.22 3.78 3.93 0.09 100.00 2.29   

 UA3014_031 67.88 0.93 15.36 4.27 0.20 0.99 2.92 4.33 2.98 0.17 100.00 2.63   

 UA3014_003 68.37 0.79 15.16 3.81 0.10 0.97 2.82 5.06 2.77 0.20 100.00 1.05   

 UA3014_033 68.78 0.72 14.98 3.63 0.14 0.84 2.53 5.42 2.79 0.20 100.00 2.13   

 UA3014_005 69.15 0.68 14.96 3.83 0.15 0.87 2.67 4.68 2.86 0.20 100.00 1.45   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 UA3014_026 69.18 0.81 14.80 3.56 0.18 0.83 2.61 5.13 2.73 0.21 100.00 1.71   

 UA3014_008 69.84 0.58 14.87 3.12 0.06 0.89 2.96 4.82 2.72 0.19 100.00 2.78   

 UA3014_030 70.23 0.51 15.00 3.09 0.11 0.90 2.86 4.48 2.68 0.19 100.00 1.62   

 UA3014_021 70.27 0.50 14.90 2.87 0.07 0.85 2.80 4.83 2.75 0.20 100.00 1.38   

 UA3014_023 70.61 0.70 13.85 3.64 0.07 0.98 3.47 4.38 1.97 0.41 100.00 1.21   

 UA3014_002 70.66 0.60 14.98 3.00 0.08 0.87 3.03 4.05 2.59 0.18 100.00 2.19   

 UA3014_019 70.83 0.62 14.95 3.03 0.02 0.89 2.88 4.07 2.56 0.20 100.00 2.20   

 UA3014_009 71.40 0.45 14.65 2.69 0.10 0.66 2.81 4.57 2.52 0.20 100.00 2.10   

 UA3014_007 72.54 0.45 14.45 2.47 0.07 0.67 2.35 4.19 2.70 0.15 100.00 1.72   

 UA3014_020 72.80 0.45 14.69 2.21 0.06 0.56 2.26 3.91 2.95 0.14 100.00 1.96   

 UA3014_012 74.49 0.24 13.65 1.82 0.06 0.48 2.30 4.08 2.47 0.52 100.00 2.47   

 UA3014_016 74.65 0.46 13.32 2.39 0.04 0.60 2.52 3.74 2.00 0.36 100.00 1.67   

 UA3014_013 74.81 0.35 13.84 1.68 0.12 0.44 1.78 3.74 3.05 0.22 100.00 7.85   

 UA3014_010 75.39 0.42 13.16 2.27 0.05 0.48 2.33 3.66 1.97 0.36 100.00 1.89   

 UA3014_034 75.54 0.37 12.86 2.17 0.04 0.54 2.46 3.77 1.92 0.40 100.00 3.55   

 UA3014_039 75.77 0.32 13.31 1.53 0.06 0.34 1.50 3.92 3.11 0.18 100.00 2.02   

 UA3014_040 76.53 0.18 13.02 1.55 0.07 0.38 1.97 3.24 2.64 0.54 100.00 7.29   

 UA3014_025 77.12 0.21 12.97 1.59 0.10 0.39 2.38 3.57 1.56 0.14 100.00 2.68   

 UA3014_018 77.34 0.30 12.43 1.62 0.03 0.30 1.90 3.91 2.05 0.16 100.00 2.25   

 UA3014_035 77.40 0.28 12.25 1.56 0.09 0.31 1.83 4.15 1.99 0.20 100.00 1.54   

 UA3014_037 77.76 0.24 12.30 1.53 0.08 0.35 2.10 3.68 1.72 0.31 100.00 2.57   

 UA3014_038 77.91 0.33 12.05 1.66 0.04 0.34 2.04 3.69 1.75 0.23 100.00 2.81   

 
Mean 72.41 0.54 14.06 2.75 0.08 0.71 2.55 4.18 2.53 0.24 100.00 2.45 

  

 
StDev 3.59 0.27 1.07 0.99 0.05 0.31 0.51 0.55 0.52 0.11 0.00 1.52 

  

 UA3014_001 59.02 1.23 16.01 8.52 0.16 2.92 6.54 3.87 1.66 0.10 100.00 1.27  

relatively coherent 

basaltic-andesite 

population 

 UA3014_015 59.13 1.21 15.97 8.27 0.14 2.83 6.09 4.43 1.77 0.18 100.00 5.17  

some variation 

may represent 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

minor microlite 

incorporation 

 UA3014_036 59.56 1.17 15.66 8.22 0.19 2.99 6.47 4.05 1.61 0.11 100.00 2.11   

 UA3014_011 59.77 1.25 16.10 7.72 0.23 2.71 6.06 4.27 1.80 0.10 100.00 1.87   

 UA3014_041 60.00 1.15 15.64 8.11 0.21 2.64 6.21 4.10 1.80 0.18 100.00 1.21   

  UA3014_006 60.99 1.11 15.81 7.46 0.19 2.60 5.73 4.24 1.81 0.10 100.00 1.49     

Tephra 7                

UA 3059 02B-T7_009 70.46 0.56 14.62 3.43 0.05 0.99 3.61 4.22 1.81 0.25 100.00 1.34  Day 4, set 1/2 

EK14-02B-2P-

1: 38.6-39.2 cm 02B-T7_006 71.33 0.47 14.28 3.08 0.09 0.88 3.53 4.31 1.72 0.30 100.00 1.82   

 02B-T7_023 71.94 0.34 15.76 1.82 0.08 0.41 3.74 4.10 1.58 0.22 100.00 -0.35   

 02B-T7_028 71.94 0.54 14.12 2.98 0.08 0.82 2.96 4.28 1.92 0.36 100.00 2.61   

 02B-T7_004 72.66 0.51 13.64 2.55 0.05 0.68 2.80 4.89 1.93 0.29 100.00 0.99   

 02B-T7_007 73.03 0.49 13.85 2.76 0.08 0.72 2.78 4.07 1.87 0.35 100.00 0.82   

 02B-T7_018 73.25 0.57 13.58 2.62 0.06 0.63 2.70 4.35 1.89 0.36 100.00 -0.32   

 02B-T7_013 73.53 0.48 13.63 2.55 0.05 0.69 2.86 3.98 1.91 0.32 100.00 0.01   

 02B-T7_014 73.69 0.41 13.94 2.25 0.07 0.51 2.43 4.46 1.96 0.29 100.00 -0.06   

 02B-T7_010 73.88 0.23 13.74 2.07 0.10 0.24 1.21 4.80 3.50 0.21 100.00 0.94   

 02B-T7_027 74.09 0.56 13.36 2.33 0.06 0.59 2.46 4.37 1.88 0.29 100.00 2.36   

 02B-T7_002 74.19 0.46 13.75 2.22 0.07 0.57 2.38 4.21 1.95 0.22 100.00 -0.10   

 02B-T7_008 74.25 0.43 13.40 2.32 0.06 0.53 2.54 4.20 1.86 0.40 100.00 1.39   

 02B-T7_026 74.29 0.46 13.07 2.15 0.08 0.51 2.46 4.83 1.78 0.37 100.00 -0.56   

 02B-T7_016 74.34 0.53 13.21 2.25 0.05 0.60 2.50 4.30 1.84 0.38 100.00 -0.29   

 02B-T7_015 74.41 0.41 13.24 2.31 0.07 0.59 2.42 4.32 1.90 0.33 100.00 0.98   

 02B-T7_003 74.49 0.46 13.37 2.16 0.06 0.61 2.37 4.28 1.93 0.27 100.00 1.47   

 02B-T7_012 74.51 0.36 13.03 2.19 0.11 0.53 2.30 4.50 2.02 0.46 100.00 4.69   

 02B-T7_022 74.51 0.45 13.30 2.25 0.04 0.52 2.43 4.25 1.90 0.35 100.00 0.07   

 02B-T7_017 74.56 0.35 13.14 2.27 0.04 0.52 2.54 4.23 2.01 0.33 100.00 0.20   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 02B-T7_019 74.69 0.41 12.99 2.13 0.02 0.48 2.23 4.78 1.92 0.34 100.00 -0.86   

 02B-T7_001 74.71 0.35 13.18 2.18 0.06 0.56 2.44 4.30 1.89 0.32 100.00 0.47   

 02B-T7_021 74.79 0.42 13.35 2.18 0.03 0.54 2.45 4.05 1.92 0.26 100.00 0.78   

 02B-T7_020 75.26 0.37 12.98 1.96 0.05 0.42 2.24 4.47 1.95 0.30 100.00 -0.02   

UA 3060 03B-T7_012 70.86 0.64 14.69 3.18 0.10 0.86 3.25 4.28 1.81 0.32 100.00 1.20  Day 4, set 2/3 

EK14-03B-2P-

1: 112.8-113.5 

cm 03B-T7_011 71.02 0.58 14.61 3.08 0.07 0.87 3.30 4.38 1.75 0.35 100.00 -0.18   

 03B-T7_020 72.09 0.60 14.25 2.81 0.08 0.76 2.94 4.42 1.78 0.27 100.00 0.09   

 03B-T7_019 72.67 0.48 13.71 2.80 0.07 0.71 3.01 4.38 1.86 0.30 100.00 -0.23   

 03B-T7_001 72.72 0.55 13.66 2.68 0.05 0.76 3.00 4.53 1.74 0.31 100.00 -0.77   

 03B-T7_027 72.93 0.56 13.91 2.66 0.06 0.72 2.72 4.32 1.80 0.31 100.00 1.60   

 03B-T7_018 73.13 0.47 13.61 2.46 0.08 0.65 2.82 4.66 1.80 0.32 100.00 0.95   

 03B-T7_017 73.31 0.51 13.74 2.54 0.07 0.66 2.81 4.25 1.81 0.30 100.00 0.78   

 03B-T7_008 73.37 0.52 13.70 2.49 0.06 0.62 2.68 4.34 1.91 0.30 100.00 -0.07   

 03B-T7_021 73.53 0.34 13.64 2.84 0.03 0.70 2.40 4.04 2.05 0.44 100.00 9.04   

 03B-T7_028 74.01 0.42 13.46 2.38 0.06 0.59 2.57 4.35 1.90 0.26 100.00 0.06   

 03B-T7_015 74.35 0.40 13.27 2.21 0.04 0.52 2.41 4.44 1.95 0.41 100.00 0.54   

 03B-T7_026 74.49 0.49 13.21 2.37 0.07 0.57 2.40 4.07 1.95 0.37 100.00 3.86   

 03B-T7_007 74.51 0.48 13.29 2.27 0.02 0.56 2.47 4.14 1.91 0.34 100.00 0.28   

 03B-T7_010 74.59 0.40 13.09 2.20 0.08 0.55 2.29 4.56 1.91 0.33 100.00 0.75   

 03B-T7_016 74.59 0.47 13.19 2.19 0.04 0.53 2.41 4.33 1.85 0.39 100.00 -0.29   

 03B-T7_003 74.77 0.46 13.06 2.22 0.07 0.61 2.30 4.30 1.96 0.26 100.00 -0.18   

 03B-T7_002 74.80 0.40 13.10 2.18 0.08 0.50 2.31 4.37 1.98 0.29 100.00 0.01   

 03B-T7_004 74.81 0.38 13.19 2.27 0.06 0.56 2.41 4.07 1.95 0.30 100.00 0.32   

 03B-T7_023 74.86 0.39 13.26 2.15 0.06 0.47 2.36 4.22 1.92 0.30 100.00 0.61   

 03B-T7_009 75.10 0.37 13.16 2.02 0.04 0.51 2.34 4.11 1.99 0.37 100.00 -0.07   

 03B-T7_014 75.33 0.30 13.39 1.51 0.05 0.34 1.55 4.35 3.03 0.13 100.00 0.22   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 03B-T7_013 75.46 0.40 13.01 2.07 0.04 0.47 2.20 4.13 1.93 0.28 100.00 0.51   

 03B-T7_022 75.63 0.34 13.01 2.16 0.09 0.53 2.19 3.89 1.85 0.30 100.00 0.38   

 03B-T7_006 76.49 0.39 13.21 2.25 0.06 0.50 2.21 2.82 1.71 0.37 100.00 0.90   

UA 3061 04C-T7_018 70.48 0.66 14.53 3.13 0.08 0.93 3.34 4.78 1.74 0.33 100.00 0.58  Day 4, set 2/3 

EK14-04C-2P-

2: 131.3-132.1 

cm 04C-T7_014 71.20 0.42 15.84 2.06 0.03 0.45 4.07 4.12 1.60 0.21 100.00 0.54   

 04C-T7_030 72.61 0.55 13.91 2.66 0.12 0.71 2.83 4.47 1.87 0.27 100.00 0.00   

 04C-T7_025 72.95 0.54 13.71 2.60 0.09 0.73 2.85 4.43 1.79 0.29 100.00 0.00   

 04C-T7_016 73.48 0.46 13.50 2.53 0.05 0.66 2.66 4.43 1.91 0.33 100.00 -0.04   

 04C-T7_028 73.94 0.43 13.94 2.22 0.05 0.58 2.41 4.28 1.83 0.32 100.00 -0.51   

 04C-T7_012 74.21 0.34 13.30 2.22 0.09 0.53 2.47 4.60 1.92 0.32 100.00 -0.72   

 04C-T7_015 74.21 0.38 14.17 2.14 0.04 0.72 2.21 4.20 1.80 0.14 100.00 0.90   

 04C-T7_020 74.25 0.50 13.32 2.32 0.07 0.56 2.47 4.38 1.82 0.31 100.00 -0.83   

 04C-T7_003 74.30 0.42 13.35 2.26 0.06 0.52 2.46 4.39 1.89 0.35 100.00 1.79   

 04C-T7_002 74.41 0.36 13.30 2.28 0.05 0.57 2.49 4.24 1.93 0.35 100.00 0.18   

 04C-T7_022 74.41 0.50 13.43 2.29 0.04 0.54 2.41 4.19 1.90 0.29 100.00 -0.59   

 04C-T7_019 74.61 0.49 13.26 2.29 0.05 0.61 2.52 4.04 1.77 0.34 100.00 -0.52   

 04C-T7_004 74.66 0.37 13.31 2.33 0.05 0.58 2.51 3.95 1.93 0.30 100.00 0.89   

 04C-T7_006 74.70 0.48 13.19 2.16 0.08 0.48 2.31 4.39 1.90 0.31 100.00 0.40   

 04C-T7_024 74.80 0.45 13.18 2.18 0.04 0.55 2.39 4.26 1.81 0.34 100.00 -1.31   

 04C-T7_008 74.80 0.43 13.10 2.16 0.07 0.52 2.36 4.27 1.93 0.35 100.00 0.71   

 04C-T7_010 75.07 0.40 13.14 2.03 0.07 0.47 2.27 4.26 2.00 0.30 100.00 -0.60   

 04C-T7_029 75.11 0.42 13.08 2.19 0.04 0.51 2.29 4.07 1.97 0.33 100.00 0.38   

 04C-T7_011 75.17 0.42 13.01 2.12 0.05 0.50 2.34 4.08 1.95 0.37 100.00 0.86   

 04C-T7_007 75.18 0.42 13.19 2.05 0.02 0.51 2.36 4.04 1.86 0.36 100.00 0.65   

 04C-T7_001 75.30 0.35 13.14 2.11 0.08 0.48 2.33 4.00 1.85 0.34 100.00 1.53   

 04C-T7_021 75.35 0.31 12.97 2.09 0.08 0.51 2.34 4.14 1.86 0.34 100.00 0.22   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 04C-T7_027 75.41 0.40 12.77 2.08 0.05 0.46 2.22 4.37 1.89 0.35 100.00 -0.32   

 04C-T7_017 75.44 0.35 12.90 2.06 0.09 0.48 2.15 4.33 1.87 0.34 100.00 -1.21   

 04C-T7_009 77.22 0.20 12.91 1.37 0.03 0.35 2.33 3.85 1.62 0.12 100.00 1.82   

UA 3062 20B-T7_005 70.33 0.61 14.51 3.19 0.09 1.00 3.36 4.81 1.74 0.36 100.00 0.26  Day 4, set 2/3 

EK14-20B-2P-

2: 17.7-18.3 cm 20B-T7_009 71.38 0.58 14.34 3.04 0.07 0.86 3.09 4.57 1.79 0.29 100.00 0.54   

 20B-T7_004 72.01 0.50 14.13 2.94 0.08 0.83 3.15 4.27 1.73 0.37 100.00 0.53   

 20B-T7_008 72.06 0.54 14.24 2.98 0.03 0.80 3.08 4.18 1.84 0.24 100.00 0.45   

 20B-T7_006 72.86 0.50 13.82 2.68 0.06 0.71 2.90 4.19 1.92 0.36 100.00 0.74   

 20B-T7_030 73.37 0.44 13.75 2.52 0.03 0.62 2.75 4.40 1.80 0.33 100.00 0.69   

 20B-T7_011 73.95 0.38 13.90 1.85 0.13 0.38 1.83 4.44 2.97 0.18 100.00 1.38   

 20B-T7_012 73.96 0.42 13.76 1.77 0.10 0.44 1.86 4.61 2.84 0.24 100.00 0.45   

 20B-T7_021 74.25 0.52 13.33 2.26 0.06 0.57 2.54 4.29 1.83 0.35 100.00 -0.48   

 20B-T7_001 74.29 0.46 13.37 2.41 0.09 0.55 2.50 4.14 1.85 0.33 100.00 -0.11   

 20B-T7_024 74.39 0.40 13.16 2.32 0.10 0.57 2.44 4.36 1.94 0.34 100.00 0.38   

 20B-T7_013 74.42 0.44 13.31 2.21 0.08 0.57 2.40 4.33 1.92 0.33 100.00 0.94   

 20B-T7_010 74.51 0.43 13.27 2.26 0.03 0.52 2.34 4.54 1.77 0.32 100.00 0.68   

 20B-T7_028 74.51 0.42 13.15 2.11 0.07 0.56 2.34 4.53 1.93 0.37 100.00 0.23   

 20B-T7_020 74.54 0.40 12.93 2.16 0.05 0.50 2.47 4.72 1.88 0.36 100.00 0.10   

 20B-T7_016 74.56 0.44 13.24 2.29 0.04 0.57 2.51 4.17 1.85 0.34 100.00 1.02   

 20B-T7_023 74.72 0.38 13.10 2.17 0.05 0.51 2.33 4.41 1.93 0.39 100.00 1.29   

 20B-T7_014 74.76 0.43 13.18 2.12 0.06 0.54 2.37 4.19 1.97 0.38 100.00 0.68   

 20B-T7_025 74.78 0.39 13.10 2.29 0.04 0.52 2.40 4.32 1.88 0.30 100.00 1.61   

 20B-T7_002 74.81 0.40 13.19 2.21 0.03 0.56 2.33 4.25 1.91 0.31 100.00 -0.56   

 20B-T7_017 75.09 0.42 13.19 2.05 0.07 0.50 2.39 3.93 1.98 0.38 100.00 0.06   

 20B-T7_029 75.11 0.41 13.08 2.18 0.04 0.48 2.23 4.30 1.92 0.24 100.00 -0.14   

 20B-T7_003 75.17 0.36 13.06 2.03 0.03 0.51 2.25 4.32 1.93 0.33 100.00 -0.12   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 20B-T7_026 75.22 0.43 13.15 2.16 0.04 0.49 2.32 3.94 1.97 0.28 100.00 0.14   

 20B-T7_031 75.42 0.39 12.83 1.99 0.05 0.45 2.17 4.46 1.94 0.30 100.00 0.41   

 20B-T7_027 76.00 0.40 12.72 1.92 0.05 0.42 2.08 4.11 1.99 0.32 100.00 -0.19   

 
Mean 74.04 0.44 13.49 2.33 0.06 0.58 2.53 4.29 1.92 0.31 100.00 0.54 101 

 

  StDev 1.33 0.08 0.55 0.35 0.02 0.14 0.42 0.26 0.26 0.06 0.00 1.25     

"Tephra 8" not 

a primary 

tephra               
EK14-03B-2P-

2: 11.1-12.1 EK5-1-30  
73.67 0.31 13.72 2.04 0.07 0.22 1.24 4.63 3.87 0.25 100.00 4.31 

 

Dawson tephra 

(Emmons) 

not accessioned EK5-1-15  73.82 0.27 13.82 2.00 0.10 0.20 1.24 4.46 3.90 0.20 100.00 4.61 
 Day 6, set 1/2 

 EK5-1-27  

73.88 0.29 13.73 1.97 0.10 0.23 1.25 4.44 3.89 0.23 100.00 5.85 

 

All Tephra 8 

sample were 

VERY poor in 

glass. 

 EK5-1-25  74.03 0.26 13.87 1.93 0.06 0.17 1.23 4.55 3.68 0.22 100.00 3.64 
  

 EK5-1-1  74.08 0.26 13.71 2.05 0.07 0.19 1.22 4.42 3.72 0.27 100.00 5.81 
  

 EK5-1-26  74.16 0.27 13.63 2.00 0.08 0.20 1.25 4.32 3.83 0.25 100.00 5.45 
  

 EK5-1-22  74.18 0.28 13.63 2.16 0.06 0.20 1.22 4.28 3.73 0.26 100.00 5.67 
  

 EK5-1-16  74.23 0.25 13.70 2.00 0.06 0.24 1.25 4.25 3.75 0.29 100.00 3.89 
  

 EK5-1-6  74.23 0.26 13.75 2.01 0.04 0.21 1.25 4.34 3.70 0.20 100.00 1.88 
  

 EK5-1-7  74.27 0.29 13.64 1.92 0.10 0.19 1.30 4.47 3.60 0.23 100.00 2.20 
  

 EK5-1-28  74.30 0.32 13.57 1.88 0.05 0.22 1.22 4.36 3.83 0.24 100.00 5.55 
  

 EK5-1-35  74.32 0.29 13.82 1.92 0.08 0.20 1.17 4.30 3.70 0.20 100.00 5.11 
  

 EK5-1-19  74.34 0.26 13.79 2.01 0.10 0.20 1.18 4.01 3.89 0.22 100.00 7.24 
  

 EK5-1-17  74.49 0.24 13.75 1.90 0.00 0.19 1.23 4.20 3.75 0.24 100.00 6.95 
  

 EK5-1-29  74.60 0.20 13.38 1.90 0.02 0.16 1.20 4.44 3.84 0.26 100.00 3.17 
  

 Mean 74.17 0.27 13.70 1.98 0.07 0.20 1.23 4.37 3.78 0.24 100.00 4.76 
  

 StDev 0.25 0.03 0.12 0.07 0.03 0.02 0.03 0.15 0.09 0.03 0.00 1.58 15  

 EK5-1-2  68.14 0.75 15.17 4.19 0.04 1.28 4.00 4.30 1.83 0.30 100.00 1.14 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK5-1-5  69.72 0.45 16.42 2.18 0.13 0.49 3.60 4.39 2.46 0.17 100.00 1.91 
 mixed  

 EK5-1-9  71.51 0.40 15.13 1.87 0.09 0.43 3.01 4.71 2.54 0.31 100.00 2.89 
  

 EK5-1-8  72.33 0.47 14.49 2.21 0.01 0.44 1.55 4.74 3.55 0.21 100.00 2.34 
  

 EK5-1-10  72.84 0.40 14.37 2.03 0.13 0.53 2.23 4.40 2.91 0.16 100.00 3.44 
  

 EK5-1-23  73.10 0.18 15.48 1.34 0.05 0.48 2.08 4.44 2.79 0.05 100.00 2.62 
  

 EK5-1-24  73.40 0.23 15.33 1.28 0.03 0.38 2.10 4.49 2.74 0.04 100.00 4.49 
  

 EK5-1-14  75.26 0.42 13.19 2.06 0.05 0.41 2.39 3.92 1.97 0.33 100.00 3.39 
  

 EK5-1-21  75.35 0.61 13.45 1.39 0.06 0.60 1.05 3.43 4.05 0.00 100.00 3.32 
  

 EK5-1-20  75.39 0.53 13.38 1.44 0.06 0.67 1.10 3.39 4.02 0.02 100.00 2.91 
  

 EK5-1-11  75.46 0.27 13.80 0.90 0.00 0.08 2.06 4.29 2.84 0.30 100.00 2.41 
  

 EK5-1-33  76.23 0.25 13.53 1.51 0.10 0.41 2.36 3.88 1.58 0.16 100.00 3.32 
  

 EK5-1-32  77.10 0.41 14.09 1.67 0.02 0.45 0.08 2.86 3.17 0.14 100.00 3.05 
  

 EK5-1-3  77.54 0.22 13.01 1.27 0.10 0.31 1.97 3.79 1.62 0.18 100.00 7.49 
  

 EK5-1-31  77.89 0.27 12.35 1.54 0.04 0.26 2.02 3.76 1.65 0.22 100.00 3.23 
  

 EK5-1-13  78.04 0.21 12.81 1.32 0.09 0.23 2.27 2.62 2.23 0.17 100.00 9.15 
  

 EK5-1-34  74.11 0.41 13.79 2.34 0.08 0.54 2.60 3.91 1.87 0.35 100.00 2.83 
  

  
            

  
EK14-02B-2P-

2: 60.6-61.2 EK5-2-29  
73.29 0.31 13.64 2.03 0.11 0.20 1.31 5.06 3.76 0.29 100.00 5.76 

 

Dawson tephra 

(Emmons) 

not accessioned EK5-2-8  73.86 0.27 13.90 2.01 0.08 0.21 1.27 4.44 3.75 0.21 100.00 4.99 
 Day 6, set 1/2 

 EK5-2-32  73.87 0.33 13.67 1.91 0.05 0.18 1.28 4.70 3.74 0.28 100.00 5.30 
  

 EK5-2-16  73.88 0.26 13.71 2.09 0.03 0.22 1.29 4.54 3.75 0.24 100.00 4.45 
  

 EK5-2-24  73.92 0.25 13.77 2.04 0.06 0.24 1.25 4.55 3.71 0.21 100.00 2.43 
  

 EK5-2-31  73.93 0.24 13.74 2.07 0.09 0.18 1.29 4.34 3.83 0.29 100.00 6.92 
  

 EK5-2-17  73.93 0.21 13.82 1.98 0.10 0.22 1.23 4.39 3.85 0.25 100.00 5.96 
  

 EK5-2-34  74.07 0.33 13.56 2.03 0.12 0.21 1.24 4.53 3.73 0.20 100.00 4.54 
  

 EK5-2-9  74.07 0.29 13.97 1.97 0.07 0.23 1.25 4.28 3.65 0.22 100.00 5.89 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK5-2-20  74.10 0.34 13.60 1.98 0.05 0.16 1.20 4.43 3.87 0.26 100.00 4.93 
  

 EK5-2-23  74.10 0.29 13.71 2.00 0.05 0.24 1.31 4.33 3.71 0.26 100.00 2.73 
  

 EK5-2-25  74.15 0.26 13.89 2.00 0.04 0.17 1.23 4.37 3.65 0.24 100.00 2.40 
  

 EK5-2-21  74.16 0.29 13.87 2.03 0.00 0.23 1.22 4.27 3.69 0.24 100.00 4.06 
  

 EK5-2-6  74.17 0.28 13.50 2.05 0.07 0.21 1.26 4.45 3.75 0.27 100.00 6.21 
  

 EK5-2-26  74.23 0.29 13.68 2.05 0.08 0.17 1.21 4.57 3.52 0.21 100.00 3.03 
  

 EK5-2-7  74.26 0.22 13.67 1.85 0.04 0.20 1.22 4.43 3.83 0.26 100.00 6.14 
  

 EK5-2-33  74.34 0.31 13.70 1.94 0.07 0.22 1.26 4.06 3.84 0.27 100.00 7.41 
  

 EK5-2-10  74.44 0.23 13.65 1.95 0.05 0.21 1.17 4.38 3.70 0.23 100.00 4.05 
  

 Mean 74.04 0.28 13.73 2.00 0.06 0.21 1.25 4.45 3.74 0.24 100.00 4.84 18  

 StDev 0.25 0.04 0.13 0.06 0.03 0.02 0.04 0.21 0.09 0.03 0.00 1.51 
  

 EK5-2-4  77.69 0.19 12.34 0.99 0.02 0.17 1.04 4.00 3.37 0.19 100.00 4.24 
  

 EK5-2-11  77.78 0.19 12.50 0.88 0.08 0.19 1.01 3.74 3.51 0.13 100.00 2.13 
  

 EK5-2-3  78.08 0.20 12.14 0.93 0.08 0.16 0.97 3.71 3.51 0.21 100.00 3.99 
  

 EK5-2-2  78.23 0.20 12.02 0.91 0.07 0.12 0.94 3.84 3.46 0.20 100.00 3.53 
  

 Mean 77.95 0.20 12.25 0.92 0.06 0.16 0.99 3.82 3.46 0.18 100.00 3.48 4 Redoubt-like 

 StDev 0.25 0.01 0.21 0.05 0.03 0.03 0.04 0.13 0.07 0.04 0.00 0.94 
  

 EK5-2-13  72.08 0.38 14.73 2.36 0.12 0.37 1.77 4.53 3.37 0.28 100.00 2.51 
 detrital shards 

 EK5-2-14  72.15 0.36 14.71 2.39 0.03 0.43 1.73 4.50 3.47 0.23 100.00 3.09 
  

 EK5-2-1  66.64 1.10 15.12 4.26 0.05 1.39 3.86 4.52 2.97 0.07 100.00 1.36 
  

 EK5-2-15  71.71 0.61 14.23 3.39 0.12 0.41 1.75 4.63 2.99 0.16 100.00 2.33 
  

 EK5-2-28  72.80 0.48 14.57 2.47 0.05 0.59 1.07 3.40 4.56 0.00 100.00 1.76 
  

 EK5-2-30  73.16 0.47 13.78 2.56 0.07 0.74 2.90 4.21 1.82 0.30 100.00 1.64 
  

 EK5-2-27  73.43 0.49 13.69 2.57 0.09 0.66 2.86 4.00 1.87 0.35 100.00 3.29 
  

 EK5-2-5  74.78 0.49 13.37 2.98 0.07 0.53 1.04 2.93 3.77 0.05 100.00 3.03 
  

 EK5-2-22  74.82 0.41 13.23 2.15 0.04 0.51 2.38 4.19 1.90 0.38 100.00 3.63 
  

 EK5-2-35  77.41 0.21 12.75 1.52 0.04 0.35 1.99 3.84 1.70 0.19 100.00 3.10 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK5-2-12  78.16 0.23 12.16 1.16 0.05 0.10 1.47 3.47 2.87 0.32 100.00 2.61 
  

  
            

  

  
            

  
EK14-20B-2P-

2: 61.3-62.3 EK5-3-2  
74.33 0.33 13.83 1.52 0.06 0.23 1.14 4.88 3.46 0.24 100.00 2.16 

 Almost no glass 

not accessioned  
            

  

  
            

  
EK14-04B-3P-

1: 144.4-145.4 EK6-2-22  72.10 0.49 14.06 2.95 0.06 0.81 3.27 4.05 1.87 0.35 100.00 3.08  Augustine 

not accessioned EK6-2-12  72.32 0.52 14.02 2.97 0.09 0.79 3.09 4.03 1.88 0.28 100.00 3.52  Day 7, set 1/2 

 EK6-2-15  73.15 0.44 14.02 2.75 0.05 0.65 2.94 3.77 1.88 0.34 100.00 5.41   

 EK6-2-3  73.27 0.43 13.75 2.66 0.02 0.65 2.85 4.22 1.85 0.32 100.00 2.44   

 EK6-2-11  74.77 0.48 13.28 2.29 0.09 0.49 2.45 3.86 1.94 0.35 100.00 2.13   

 EK6-2-29  74.80 0.42 13.51 2.18 0.07 0.47 2.47 3.87 1.87 0.32 100.00 1.81   

 EK6-2-31  75.13 0.35 13.17 2.09 0.07 0.46 2.45 4.00 1.91 0.37 100.00 3.22   

 EK6-2-9  75.71 0.42 13.15 1.99 0.11 0.48 2.25 3.71 1.96 0.24 100.00 3.35   

 Mean  73.91 0.44 13.62 2.49 0.07 0.60 2.72 3.94 1.89 0.32 100.00 3.12 8  

 StDev 1.37 0.05 0.39 0.40 0.03 0.14 0.37 0.17 0.04 0.04 0.00 1.11   

 EK6-2-24  69.22 0.54 15.34 3.24 0.14 0.89 3.43 4.60 2.41 0.21 100.00 3.28  mixed 

 EK6-2-2  71.08 0.50 15.49 2.45 0.11 0.58 1.70 4.79 3.08 0.21 100.00 2.01   

 EK6-2-8  71.32 0.45 15.32 2.56 0.13 0.75 2.68 3.96 2.70 0.14 100.00 1.19   

 EK6-2-27  71.79 0.52 14.74 1.69 0.05 0.70 1.18 2.87 6.32 0.14 100.00 2.24   

 EK6-2-28  72.03 0.75 14.46 1.84 0.05 0.71 1.13 2.62 6.30 0.11 100.00 2.81   

 EK6-2-16  72.41 0.52 14.49 3.54 0.12 0.65 1.52 3.02 3.72 0.00 100.00 2.75   

 EK6-2-13  72.45 0.54 14.55 2.02 0.05 0.45 1.54 4.90 3.29 0.20 100.00 2.61   

 EK6-2-5  72.61 0.47 14.59 2.21 0.04 0.53 2.38 4.24 2.77 0.15 100.00 2.77   

 EK6-2-4  73.95 0.45 14.02 3.27 0.03 0.58 1.01 3.34 3.35 0.00 100.00 2.64   

 EK6-2-14  74.10 0.43 13.62 2.88 0.01 0.36 1.01 2.54 4.88 0.17 100.00 3.25   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK6-2-20  74.43 0.28 13.43 1.28 0.04 0.24 0.43 2.25 7.47 0.15 100.00 2.27   

 EK6-2-30  75.02 0.25 13.70 1.66 0.08 0.36 2.22 3.64 2.62 0.45 100.00 2.98   

 EK6-2-1  76.47 0.34 12.84 1.75 0.04 0.28 0.83 2.68 4.75 0.02 100.00 2.53   

 EK6-2-19  77.04 0.11 12.04 1.14 0.06 0.15 0.30 1.86 7.23 0.07 100.00 2.02   

 EK6-2-21  77.54 0.14 11.64 1.15 0.06 0.18 0.29 2.02 6.90 0.07 100.00 1.67   

 EK6-2-7  74.41 0.31 13.88 1.58 0.07 0.34 1.73 4.50 3.00 0.18 100.00 2.18   

 EK6-2-25  75.16 0.38 13.36 1.60 0.08 0.33 1.53 4.12 3.29 0.15 100.00 2.67   

  EK6-2-10  75.74 0.23 13.28 1.29 0.06 0.22 1.32 4.51 3.18 0.18 100.00 3.43     

"Tephra 9" not 

a primary 

tephra               
EK14-03C-3P-

2: 11.7-12.3 cm EK6-3-16  73.75 0.29 13.69 2.15 0.05 0.20 1.18 4.74 3.70 0.24 100.00 4.25  

Dawson tephra 

(Emmons) 

not accessioned EK6-3-17  73.82 0.30 13.98 2.09 0.08 0.18 1.23 4.42 3.66 0.24 100.00 5.55  Day 7, set 1/2 

 EK6-3-21  73.97 0.21 13.71 2.21 0.07 0.21 1.29 4.61 3.51 0.21 100.00 3.39  

sample poor in 

glass 

 EK6-3-29  73.97 0.19 13.68 2.08 0.11 0.22 1.27 4.40 3.84 0.25 100.00 2.07   

 EK6-3-19  73.99 0.28 13.79 2.13 0.14 0.19 1.19 4.59 3.45 0.24 100.00 2.67   

 EK6-3-22  74.00 0.28 13.76 2.16 0.04 0.18 1.27 4.42 3.63 0.25 100.00 3.55   

 EK6-3-5  74.01 0.31 13.61 1.94 0.03 0.17 1.22 4.74 3.78 0.20 100.00 3.44   

 EK6-3-23  74.05 0.27 13.58 2.02 0.09 0.23 1.24 4.58 3.71 0.23 100.00 3.69   

 EK6-3-28  74.10 0.30 13.67 2.07 0.07 0.18 1.28 4.61 3.49 0.23 100.00 2.72   

 EK6-3-12  74.16 0.27 13.71 2.06 0.03 0.14 1.23 4.43 3.70 0.28 100.00 5.42   

 EK6-3-15  74.16 0.19 13.69 2.03 0.05 0.19 1.19 4.58 3.70 0.22 100.00 2.30   

 EK6-3-1  74.30 0.23 13.58 2.01 0.11 0.19 1.24 4.56 3.59 0.20 100.00 3.65   

 EK6-3-18  74.42 0.26 13.65 2.03 0.09 0.22 1.15 4.34 3.61 0.23 100.00 4.78   

 EK6-3-26  74.46 0.21 13.59 1.93 0.12 0.19 1.19 4.46 3.66 0.21 100.00 4.96   

 Mean  74.08 0.26 13.69 2.06 0.08 0.19 1.23 4.53 3.64 0.23 100.00 3.75   

 StDev 0.20 0.04 0.11 0.08 0.03 0.02 0.04 0.12 0.11 0.02 0.00 1.12   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK6-3-10  69.86 0.56 15.26 3.06 0.18 0.91 2.94 4.39 2.59 0.25 100.00 6.00  mixed 

 EK6-3-25  69.91 0.51 15.33 3.18 0.11 0.91 2.97 4.25 2.63 0.20 100.00 2.51   

 EK6-3-11  70.28 0.48 15.40 2.99 0.09 0.81 2.88 4.41 2.55 0.11 100.00 1.81   

 EK6-3-6  71.66 0.45 14.81 2.51 0.08 0.60 2.69 4.64 2.36 0.19 100.00 2.35   

 EK6-3-24  73.97 0.40 14.01 1.83 0.09 0.40 1.92 4.22 2.97 0.19 100.00 1.34   

 EK6-3-4  74.88 0.36 13.57 1.60 0.03 0.32 1.52 4.41 3.13 0.19 100.00 2.21   

 EK6-3-30  74.32 0.33 14.01 1.60 0.10 0.30 1.69 4.29 3.18 0.18 100.00 4.84   

 EK6-3-2  75.08 0.25 13.67 1.50 0.06 0.30 1.59 4.30 3.09 0.16 100.00 2.10   

 EK6-3-3  75.21 0.25 13.55 1.61 0.04 0.34 1.60 4.18 3.06 0.17 100.00 1.35   

 EK6-3-7  77.63 0.25 12.32 1.45 0.14 0.24 2.07 3.96 1.75 0.20 100.00 3.50   

 EK6-3-13  77.65 0.29 12.52 1.52 0.05 0.27 1.95 3.73 1.76 0.26 100.00 3.40   

 EK6-3-8  73.14 0.34 15.37 1.68 0.07 0.31 1.64 4.24 3.06 0.15 100.00 2.16   

 EK6-3-14  74.20 0.34 13.93 2.71 0.09 0.26 1.66 3.89 2.75 0.17 100.00 2.32   

                
EK14-02A-3P-

1: 58.2-59.4 cm EK6-4-16  68.58 0.59 15.30 3.56 0.06 1.17 3.34 4.50 2.66 0.24 100.00 3.80  mixed 

not accessioned EK6-4-29  69.66 0.61 15.44 3.13 0.15 0.89 2.99 4.40 2.52 0.20 100.00 1.98  Day 7, set 1/2 

 EK6-4-14  69.98 0.57 15.34 3.01 0.18 0.81 3.05 4.42 2.50 0.13 100.00 2.67   

 EK6-4-13  70.16 0.50 15.33 3.00 0.12 0.88 3.12 4.22 2.52 0.15 100.00 2.39   

 EK6-4-17  71.61 0.53 14.95 2.73 0.03 0.68 2.60 4.03 2.67 0.16 100.00 1.92   

 EK6-4-27  72.85 0.44 14.33 2.25 0.11 0.49 2.20 4.34 2.71 0.28 100.00 6.63   

 EK6-4-11  73.33 0.47 14.01 2.23 0.12 0.49 2.28 4.35 2.54 0.18 100.00 2.17   

 EK6-4-9  73.54 0.35 14.31 1.97 0.10 0.45 2.10 4.16 2.83 0.18 100.00 2.75   

 EK6-4-12  73.88 0.50 13.93 1.98 0.03 0.43 2.05 4.28 2.74 0.20 100.00 2.49   

 EK6-4-7  69.69 0.75 14.40 4.23 0.04 0.55 2.30 4.18 3.54 0.32 100.00 2.14   

 EK6-4-23  73.19 0.44 14.29 2.12 0.10 0.48 2.12 4.04 3.01 0.22 100.00 7.09   

 EK6-4-15  73.91 0.26 13.70 2.13 0.10 0.20 1.26 4.41 3.79 0.23 100.00 3.97   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK6-4-5  73.82 0.54 14.91 2.49 0.13 0.64 2.64 2.29 2.28 0.27 100.00 4.24   

 EK6-4-2  74.71 0.36 13.01 2.00 0.07 0.34 1.55 3.71 3.94 0.31 100.00 1.48   

 EK6-4-4  75.32 0.27 13.70 1.47 0.06 0.29 1.55 4.09 3.11 0.14 100.00 1.53   

 EK6-4-25  75.66 0.16 12.93 1.48 0.03 0.17 1.14 3.44 4.58 0.41 100.00 5.88   

 EK6-4-24  75.74 0.22 13.43 1.65 0.06 0.36 2.04 3.56 2.64 0.31 100.00 1.97   

 EK6-4-22  75.98 0.34 13.08 1.74 0.06 0.30 1.50 3.98 2.82 0.22 100.00 2.23   

 EK6-4-6  76.79 0.40 12.01 1.56 0.03 0.15 0.65 3.08 5.01 0.31 100.00 6.68   

 EK6-4-3  76.82 0.41 12.19 1.84 0.06 0.29 1.33 3.82 3.04 0.22 100.00 3.48   

 EK6-4-20  76.84 0.10 13.44 1.04 0.10 0.20 1.60 3.84 2.68 0.15 100.00 2.96   

 EK6-4-1  76.97 0.23 12.48 1.41 0.00 0.22 1.29 4.13 3.05 0.21 100.00 2.75   

 EK6-4-18  77.25 0.16 13.25 1.33 0.07 0.26 1.57 4.35 1.56 0.18 100.00 7.32   

 EK6-4-30  77.34 0.24 12.70 1.59 0.03 0.29 2.07 3.78 1.70 0.27 100.00 4.82   

 EK6-4-19  77.44 0.21 13.15 1.32 0.06 0.27 1.56 4.23 1.61 0.14 100.00 8.04   

 EK6-4-21  77.66 0.22 13.26 1.25 0.09 0.21 1.42 3.93 1.84 0.11 100.00 7.54   

 EK6-4-26  77.70 0.09 13.28 0.96 0.04 0.20 1.17 3.74 2.60 0.21 100.00 7.69   

 EK6-4-28  77.77 0.13 12.04 1.30 0.01 0.22 0.90 4.00 3.42 0.21 100.00 2.82   

  EK6-4-8  77.78 0.31 12.38 1.55 0.03 0.29 1.95 3.55 1.91 0.24 100.00 2.67     

Tephra 10  
            

  

UA 3063 

EK2A-141-

19  
75.11 0.35 13.44 1.57 0.07 0.31 1.56 4.20 3.19 0.19 100.00 2.81 

 Day 3, set 2/3 

EK14-02A-3P-

1: 141.8-142.8 

cm  

EK2A-141-

21  

75.14 0.21 13.87 1.16 0.04 0.19 1.96 4.25 3.00 0.17 100.00 1.73 

  

 

EK2A-141-

11  
75.24 0.27 13.20 1.51 0.09 0.39 1.72 4.49 2.91 0.18 100.00 4.83 

  

 

EK2A-141-

18  
75.98 0.29 12.93 1.46 0.05 0.32 1.52 4.01 3.27 0.15 100.00 2.73 

  

 

EK2A-141-

27  
76.09 0.29 12.96 1.38 0.04 0.28 1.47 4.04 3.22 0.22 100.00 5.63 

  

 

EK2A-141-

29  
76.13 0.18 13.19 1.19 0.07 0.22 1.56 4.07 3.21 0.17 100.00 2.82 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2A-141-

10  
76.27 0.29 13.03 1.21 0.04 0.22 1.38 4.12 3.31 0.13 100.00 2.40 

  

 

EK2A-141-

22  
76.53 0.26 12.81 1.21 0.07 0.23 1.36 4.10 3.26 0.18 100.00 2.93 

  

 EK2A-141-2  76.60 0.26 12.77 1.34 0.06 0.27 1.38 3.97 3.18 0.16 100.00 2.40 
  

 

EK2A-141-

20  
76.69 0.28 12.69 1.33 0.10 0.24 1.31 3.83 3.34 0.19 100.00 2.90 

  

 

EK2A-141-

17  
76.78 0.27 12.71 1.18 0.08 0.20 1.23 4.00 3.35 0.20 100.00 1.83 

  

 

EK2A-141-

26  
76.78 0.25 12.64 1.28 0.10 0.22 1.29 3.95 3.33 0.17 100.00 5.22 

  

 EK2A-141-5  76.83 0.27 12.53 1.28 0.06 0.20 1.28 4.15 3.25 0.15 100.00 1.59 
  

 EK2A-141-4  76.94 0.27 12.05 1.54 0.08 0.31 1.29 4.08 3.29 0.16 100.00 2.67 
  

 

EK2A-141-

24  
76.96 0.19 12.54 1.40 0.04 0.31 1.28 3.86 3.23 0.17 100.00 2.25 

  

 EK2A-141-1  77.00 0.24 12.66 1.30 0.00 0.22 1.31 3.76 3.31 0.20 100.00 2.33 
  

 

EK2A-141-

25  
77.09 0.28 12.56 1.15 0.06 0.22 1.22 3.79 3.44 0.20 100.00 2.27 

  

 

EK2A-141-

16  
77.14 0.26 12.42 1.23 0.03 0.22 1.21 4.06 3.27 0.17 100.00 1.86 

  

 EK2A-141-6  77.23 0.28 12.28 1.14 0.03 0.24 1.26 4.03 3.37 0.14 100.00 2.04 
  

 

EK2A-141-

28  
77.46 0.24 12.23 1.22 0.07 0.26 1.13 3.87 3.37 0.16 100.00 2.05 

  

 

EK2A-141-

14  
77.54 0.26 11.93 1.18 0.02 0.21 1.08 4.05 3.57 0.16 100.00 4.49 

  

 EK2A-141-7  77.60 0.22 12.21 1.08 0.05 0.16 1.01 3.90 3.57 0.19 100.00 5.39 
  

 

EK2A-141-

30  
77.65 0.28 12.02 1.09 0.09 0.20 1.08 3.90 3.54 0.16 100.00 2.36 

  

 

EK2A-141-

15  
77.72 0.18 12.09 1.06 0.03 0.18 1.02 4.11 3.44 0.17 100.00 2.96 

  

 

EK2A-141-

23  
77.89 0.24 11.93 1.06 0.08 0.17 1.14 3.89 3.49 0.12 100.00 4.72 

  

 EK2A-141-3  77.91 0.27 11.90 1.04 0.02 0.17 0.99 4.04 3.45 0.19 100.00 2.41 
  

 EK2A-141-9  78.18 0.27 11.96 1.02 0.05 0.17 0.84 3.69 3.62 0.20 100.00 8.09 28  

 EK2A-141-8  78.21 0.23 11.94 0.95 0.08 0.16 0.84 3.84 3.60 0.16 100.00 4.04 
  

UA 3064 EK3B-81-31  73.59 0.42 13.95 2.00 0.09 0.48 2.01 4.36 2.99 0.11 100.00 1.22 
 Day 3, set 2/3 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

EK14-03B-3P-

1: 81-82 cm  EK3B-81-22  
75.67 0.28 13.31 1.28 0.00 0.22 1.67 4.31 3.10 0.16 100.00 1.46 

  

 EK3B-81-26  76.50 0.31 12.83 1.22 0.04 0.24 1.28 4.06 3.35 0.18 100.00 2.58 
  

 EK3B-81-16  76.68 0.30 12.73 1.24 0.08 0.23 1.21 4.07 3.31 0.15 100.00 2.56 
  

 EK3B-81-13  76.71 0.28 12.40 1.33 0.08 0.34 1.30 4.04 3.33 0.18 100.00 2.46 
  

 EK3B-81-15  76.73 0.29 12.69 1.27 0.05 0.32 1.19 4.06 3.28 0.13 100.00 2.54 
  

 EK3B-81-19  76.74 0.24 12.60 1.37 0.08 0.31 1.44 3.91 3.16 0.15 100.00 2.20 
  

 EK3B-81-5  76.93 0.19 12.61 1.22 0.08 0.22 1.23 3.97 3.37 0.18 100.00 3.56 
  

 EK3B-81-1  76.94 0.34 12.52 1.17 0.05 0.22 1.17 4.03 3.39 0.16 100.00 1.87 
  

 EK3B-81-30  77.14 0.20 12.53 1.28 0.06 0.25 1.29 3.84 3.22 0.19 100.00 3.70 
  

 EK3B-81-29  77.19 0.27 12.56 1.11 0.03 0.21 1.17 3.97 3.30 0.18 100.00 2.12 
  

 EK3B-81-17  77.21 0.33 12.26 1.12 0.04 0.14 1.06 4.13 3.61 0.09 100.00 3.16 
  

 EK3B-81-6  77.23 0.27 12.38 1.08 0.09 0.19 1.17 4.02 3.40 0.17 100.00 2.17 
  

 EK3B-81-25  77.52 0.24 12.49 1.03 0.08 0.19 1.07 3.84 3.40 0.14 100.00 2.02 
  

 EK3B-81-18  77.53 0.24 12.38 1.09 0.06 0.19 1.11 3.79 3.42 0.18 100.00 2.58 
  

 EK3B-81-9  77.61 0.23 12.46 1.00 0.06 0.19 1.14 3.76 3.35 0.19 100.00 2.26 
  

 EK3B-81-20  77.77 0.26 12.20 1.13 0.06 0.18 0.96 3.86 3.43 0.16 100.00 2.91 
  

 EK3B-81-7  77.77 0.22 12.19 0.94 0.05 0.16 1.00 4.08 3.40 0.19 100.00 3.77 
  

 EK3B-81-3  77.78 0.23 12.30 1.07 0.04 0.15 0.94 3.93 3.41 0.14 100.00 1.38 
  

 EK3B-81-11  77.78 0.24 12.28 0.98 0.05 0.15 1.09 3.87 3.41 0.14 100.00 2.43 
  

 EK3B-81-23  77.85 0.27 12.24 1.02 0.07 0.17 1.05 3.80 3.36 0.18 100.00 3.48 
  

 EK3B-81-28  77.88 0.21 12.21 1.09 0.06 0.15 1.00 3.86 3.35 0.19 100.00 2.14 
  

 EK3B-81-12  78.02 0.24 11.98 1.08 0.06 0.15 1.03 4.06 3.20 0.17 100.00 3.97 
  

 EK3B-81-21  78.08 0.27 12.04 1.04 0.05 0.13 0.88 3.84 3.52 0.16 100.00 2.06 
  

 EK3B-81-27  78.11 0.20 12.25 0.92 0.02 0.18 0.92 3.79 3.43 0.19 100.00 2.84 
  

 EK3B-81-4  78.16 0.31 12.04 1.09 0.05 0.13 0.86 3.70 3.58 0.07 100.00 4.66 
  

 EK3B-81-8  78.31 0.27 11.90 0.96 0.02 0.11 0.95 3.84 3.49 0.15 100.00 3.76 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 EK3B-81-2  78.40 0.24 11.74 1.04 0.02 0.11 0.78 3.86 3.70 0.12 100.00 3.87 
  

 EK3B-81-24  78.45 0.19 11.75 0.94 0.02 0.10 0.55 3.78 4.11 0.11 100.00 3.39 29  

UA 3065 

EK4B-

121.8-30  
74.61 0.39 13.60 1.72 0.04 0.35 1.71 4.37 3.03 0.18 100.00 1.28 

 Day 3, set 2/3 

EK14-04B-4P-

1: 121.8-122.8 

cm  

EK4B-

121.8-17  

76.06 0.36 12.85 1.36 0.06 0.26 1.42 4.16 3.26 0.21 100.00 4.76 

  

 

EK4B-

121.8-21  
76.15 0.22 13.03 1.20 0.08 0.20 1.39 4.19 3.34 0.20 100.00 1.01 

  

 

EK4B-

121.8-13  
76.17 0.28 12.69 1.53 0.08 0.33 1.47 4.11 3.20 0.14 100.00 2.17 

  

 

EK4B-

121.8-31  
76.18 0.29 13.15 1.30 0.03 0.29 1.42 4.00 3.18 0.16 100.00 2.27 

  

 

EK4B-

121.8-29  
76.25 0.32 12.87 1.27 0.05 0.24 1.45 4.09 3.29 0.16 100.00 2.47 

  

 

EK4B-

121.8-22  
76.31 0.34 12.98 1.31 0.08 0.25 1.42 4.00 3.16 0.15 100.00 1.66 

  

 

EK4B-

121.8-25  
76.45 0.28 12.79 1.37 0.06 0.27 1.36 3.96 3.29 0.17 100.00 1.99 

  

 

EK4B-

121.8-3  
76.45 0.25 12.77 1.26 0.05 0.28 1.36 4.16 3.25 0.18 100.00 1.63 

  

 

EK4B-

121.8-7  
76.61 0.22 12.71 1.29 0.04 0.19 1.27 4.07 3.43 0.17 100.00 3.19 

  

 

EK4B-

121.8-18  
76.74 0.34 12.73 1.14 0.03 0.22 1.19 4.08 3.34 0.19 100.00 2.24 

  

 

EK4B-

121.8-5  
77.00 0.27 12.76 1.22 0.04 0.21 1.21 3.87 3.27 0.16 100.00 2.28 

  

 

EK4B-

121.8-26  
77.08 0.24 12.55 1.22 0.04 0.22 1.21 3.77 3.48 0.19 100.00 2.09 

  

 

EK4B-

121.8-15  
77.10 0.34 12.24 1.23 0.08 0.23 1.16 3.94 3.53 0.16 100.00 3.28 

  

 

EK4B-

121.8-8  
77.14 0.22 12.45 1.17 0.00 0.20 1.26 3.87 3.45 0.25 100.00 6.34 

  

 

EK4B-

121.8-2  
77.19 0.25 12.64 1.06 0.06 0.19 1.20 3.93 3.33 0.15 100.00 2.76 

  

 

EK4B-

121.8-11  
77.34 0.18 12.37 1.11 0.07 0.23 1.15 4.06 3.32 0.18 100.00 1.41 

  

 

EK4B-

121.8-6  
77.34 0.26 12.50 1.17 0.07 0.21 1.13 3.89 3.25 0.17 100.00 0.99 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK4B-

121.8-9  
77.39 0.23 12.48 1.14 0.08 0.20 1.17 3.90 3.23 0.19 100.00 1.75 

  

 

EK4B-

121.8-19  
77.43 0.33 12.35 1.07 0.04 0.11 0.91 3.95 3.75 0.07 100.00 4.34 

  

 

EK4B-

121.8-24  
77.50 0.27 12.29 1.08 0.02 0.18 1.12 3.99 3.39 0.14 100.00 1.68 

  

 

EK4B-

121.8-12  
77.53 0.16 12.37 1.12 0.03 0.20 1.09 3.86 3.46 0.17 100.00 2.01 

  

 

EK4B-

121.8-14  
77.65 0.31 12.21 1.10 0.07 0.17 0.99 3.84 3.49 0.18 100.00 3.45 

  

 

EK4B-

121.8-32  
77.90 0.32 11.83 1.22 0.02 0.18 0.74 3.87 3.78 0.14 100.00 3.40 

  

 

EK4B-

121.8-10  
77.90 0.23 12.11 1.07 0.05 0.12 0.87 3.91 3.58 0.16 100.00 2.90 

  

 

EK4B-

121.8-16  
77.94 0.30 12.05 1.06 0.00 0.09 0.85 3.96 3.65 0.10 100.00 1.79 

  

 

EK4B-

121.8-23  
78.12 0.21 12.24 0.98 0.06 0.17 0.94 3.66 3.42 0.21 100.00 3.56 

  

 

EK4B-

121.8-20  
78.17 0.19 11.95 1.01 0.03 0.11 0.84 3.95 3.57 0.19 100.00 4.73 

  

 

EK4B-

121.8-1  
78.22 0.15 12.19 0.90 0.02 0.12 0.87 4.04 3.31 0.18 100.00 1.86 

  

 

EK4B-

121.8-28  
78.22 0.22 11.91 0.98 0.07 0.10 0.87 3.90 3.56 0.16 100.00 3.91 

  

 

EK4B-

121.8-4  
78.23 0.11 12.03 0.99 0.04 0.20 0.88 3.79 3.55 0.18 100.00 4.46 

  

 Mean 77.11 0.26 12.49 1.19 0.05 0.21 1.18 3.97 3.37 0.17 100.00 2.87 88  

  StDev 0.90 0.05 0.45 0.18 0.02 0.07 0.26 0.15 0.18 0.03 0.00 1.26     

Tephra 11                

UA 3015 UA3015_009 73.40 0.45 14.04 2.04 0.10 0.51 1.98 4.52 2.81 0.20 100.00 1.23  

Dawson tephra 

(Emmons) 

EK14-02A-3P-

2: 125.6-126.2 

cm UA3015_004 73.75 0.31 13.69 2.12 0.07 0.26 1.23 4.65 3.73 0.25 100.00 1.54  Day 10, set 1/2 

 UA3015_007 73.77 0.30 13.63 2.18 0.08 0.25 1.25 4.64 3.73 0.22 100.00 1.33   

 UA3015_008 73.77 0.29 13.60 2.13 0.09 0.23 1.24 4.62 3.86 0.22 100.00 3.55   

 UA3015_017 73.82 0.31 13.63 2.25 0.05 0.23 1.21 4.60 3.71 0.23 100.00 2.04   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 UA3015_006 73.88 0.27 13.64 2.00 0.07 0.20 1.29 4.55 3.93 0.21 100.00 5.84   

 UA3015_001 73.97 0.26 13.57 2.09 0.00 0.21 1.28 4.61 3.83 0.24 100.00 3.02   

 UA3015_010 73.99 0.23 13.60 2.03 0.06 0.23 1.19 4.76 3.73 0.23 100.00 1.45   

 UA3015_019 74.02 0.26 13.48 2.18 0.05 0.21 1.22 4.62 3.74 0.28 100.00 9.22   

 UA3015_002 74.07 0.22 13.74 2.09 0.07 0.20 1.24 4.56 3.61 0.24 100.00 3.86   

 UA3015_003 74.12 0.25 13.66 2.05 0.06 0.22 1.21 4.61 3.64 0.23 100.00 4.14   

 UA3015_014 74.20 0.27 13.48 2.13 0.03 0.21 1.19 4.73 3.58 0.24 100.00 2.63   

 UA3015_015 74.32 0.26 13.51 2.00 0.08 0.19 1.15 4.63 3.66 0.26 100.00 2.47   

 UA3015_011 74.33 0.28 13.48 2.05 0.05 0.21 1.24 4.41 3.78 0.22 100.00 5.07   

 UA3015_018 74.37 0.33 13.40 2.03 0.05 0.21 1.15 4.60 3.69 0.24 100.00 3.12   

 UA3015_016 74.44 0.26 13.47 2.04 0.09 0.17 1.27 4.47 3.59 0.24 100.00 3.84   

 UA3015_005 74.89 0.30 13.53 1.57 0.06 0.35 1.55 4.38 3.19 0.23 100.00 2.69   

 UA3015_013 75.18 0.28 13.49 1.49 0.07 0.33 1.51 4.28 3.22 0.18 100.00 2.58   

UA 3016 UA3016_015 73.86 0.26 13.74 2.06 0.10 0.24 1.19 4.70 3.68 0.21 100.00 2.02  Day 10, set 1/2 

EK14-03C-4P-

1: 37.2-37.8 cm UA3016_008 73.90 0.27 13.60 2.13 0.08 0.20 1.20 4.71 3.73 0.23 100.00 3.00   

 UA3016_009 73.91 0.30 13.60 2.01 0.08 0.26 1.25 4.70 3.73 0.20 100.00 1.60   

 UA3016_014 73.92 0.28 13.59 2.07 0.07 0.19 1.26 4.73 3.70 0.23 100.00 2.66   

 UA3016_006 73.93 0.30 13.63 2.16 0.08 0.23 1.26 4.44 3.81 0.21 100.00 4.24   

 UA3016_005 73.96 0.28 13.80 2.13 0.04 0.26 1.26 4.40 3.68 0.25 100.00 8.38   

 UA3016_016 73.99 0.31 13.55 2.17 0.09 0.22 1.24 4.60 3.66 0.22 100.00 2.31   

 UA3016_002 74.00 0.23 13.52 2.13 0.09 0.23 1.27 4.67 3.70 0.22 100.00 2.48   

 UA3016_013 74.01 0.27 13.56 2.15 0.06 0.23 1.23 4.59 3.75 0.20 100.00 2.38   

 UA3016_012 74.05 0.34 13.63 2.07 0.09 0.19 1.23 4.56 3.66 0.23 100.00 3.37   

 UA3016_001 74.06 0.27 13.59 2.11 0.05 0.23 1.22 4.72 3.58 0.23 100.00 3.73   

 UA3016_003 74.21 0.30 13.50 2.12 0.10 0.21 1.21 4.39 3.77 0.24 100.00 4.75   

 UA3016_018 74.33 0.28 13.47 2.13 0.05 0.19 1.23 4.53 3.61 0.24 100.00 2.57   

 UA3015_020 74.42 0.24 13.48 1.96 0.06 0.21 1.19 4.63 3.64 0.23 100.00 2.56   

 UA3016_011 74.52 0.21 13.54 2.04 0.03 0.21 1.22 4.41 3.64 0.22 100.00 2.03   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 UA3016_007 74.54 0.24 13.43 1.99 0.05 0.17 1.17 4.49 3.75 0.23 100.00 5.08   

 UA3016_004 74.97 0.49 13.50 1.64 0.09 0.31 1.44 4.24 3.19 0.17 100.00 1.80   

 UA3016_017 75.27 0.36 13.41 1.58 0.04 0.32 1.54 4.15 3.21 0.15 100.00 1.91   

UA 3017 UA3017_010 73.89 0.30 13.59 2.08 0.12 0.23 1.23 4.63 3.76 0.22 100.00 1.95  Day 10, set 1/2 

EK14-03C-4P-

1: 38-39 cm UA3017_004 73.91 0.33 13.68 2.08 0.08 0.26 1.27 4.32 3.93 0.18 100.00 1.43   

 UA3017_012 73.91 0.23 13.69 2.06 0.10 0.22 1.24 4.60 3.76 0.26 100.00 4.45   

 UA3017_003 73.95 0.31 13.53 2.17 0.07 0.22 1.21 4.69 3.69 0.22 100.00 2.12   

 UA3017_006 74.00 0.18 13.57 2.15 0.07 0.26 1.25 4.53 3.80 0.23 100.00 1.88   

 UA3017_002 74.01 0.28 13.57 2.12 0.06 0.25 1.28 4.68 3.55 0.25 100.00 2.35   

 UA3017_011 74.02 0.34 13.68 2.10 0.04 0.23 1.23 4.45 3.73 0.22 100.00 5.55   

 UA3017_016 74.13 0.33 13.65 2.08 0.03 0.24 1.25 4.46 3.66 0.23 100.00 4.40   

 UA3017_009 74.14 0.23 13.69 2.10 0.08 0.24 1.25 4.35 3.74 0.24 100.00 7.27   

 UA3017_005 74.16 0.29 13.75 2.16 0.06 0.21 1.19 4.18 3.82 0.22 100.00 5.43   

 UA3017_013 74.18 0.25 13.60 2.11 0.07 0.23 1.27 4.27 3.87 0.20 100.00 5.66   

 UA3017_008 74.24 0.24 13.49 2.07 0.04 0.23 1.24 4.64 3.61 0.25 100.00 3.76   

 UA3017_014 74.28 0.23 13.59 1.98 0.05 0.21 1.21 4.57 3.74 0.20 100.00 2.08   

 UA3017_017 74.29 0.30 13.63 2.03 0.04 0.21 1.16 4.32 3.82 0.26 100.00 5.32   

 UA3017_001 74.54 0.26 13.42 1.98 0.06 0.17 1.17 4.53 3.69 0.24 100.00 2.48   

 UA3017_018 74.97 0.28 13.57 1.52 0.07 0.33 1.60 4.33 3.20 0.18 100.00 1.71   

 
Mean 74.17 0.28 13.59 2.04 0.07 0.24 1.27 4.53 3.65 0.22 100.00 3.35 52  

  StDev 0.37 0.05 0.11 0.17 0.02 0.06 0.14 0.15 0.21 0.02 0.00 1.79     

Tephra 12                

UA 3066 

EK2B-

105.7-24  
73.93 0.34 14.02 1.68 0.12 0.35 1.92 4.58 2.88 0.17 100.00 2.10 

 Day 3, set 1/2 

EK14-02B-3P-

1: 105.7-106.9 

cm  

EK2B-

105.7-9  

74.00 0.32 13.91 1.68 0.11 0.36 1.76 4.46 3.26 0.16 100.00 1.42 

  

 

EK2B-

105.7-6  
74.00 0.34 13.63 1.98 0.11 0.33 1.78 4.59 3.10 0.14 100.00 1.31 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2B-

105.7-7  
74.03 0.27 13.99 1.78 0.06 0.33 1.67 4.63 3.06 0.19 100.00 3.13 

  

 

EK2B-

105.7-15  
74.25 0.28 14.29 1.51 0.05 0.25 1.76 4.41 3.02 0.17 100.00 2.52 

  

 

EK2B-

105.7-14  
74.28 0.25 13.65 2.00 0.08 0.33 1.74 4.49 3.04 0.14 100.00 1.49 

  

 

EK2B-

105.7-17  
74.37 0.33 13.76 1.59 0.17 0.33 1.78 4.51 3.00 0.15 100.00 2.43 

  

 

EK2B-

105.7-25  
74.43 0.38 13.79 1.68 0.08 0.35 1.74 4.33 3.08 0.16 100.00 1.45 

  

 

EK2B-

105.7-20  
74.44 0.37 13.72 1.67 0.05 0.38 1.68 4.46 3.04 0.19 100.00 2.05 

  

 

EK2B-

105.7-16  
74.46 0.31 13.84 1.69 0.10 0.39 1.77 4.41 2.86 0.18 100.00 2.21 

  

 

EK2B-

105.7-30  
74.47 0.33 13.92 1.66 0.07 0.31 1.70 4.28 3.05 0.21 100.00 2.14 

  

 

EK2B-

105.7-12  
74.48 0.29 13.80 1.79 0.07 0.36 1.72 4.38 2.93 0.18 100.00 1.82 

  

 

EK2B-

105.7-18  
74.71 0.31 13.58 1.65 0.05 0.31 1.69 4.53 3.03 0.14 100.00 1.70 

  

 

EK2B-

105.7-29  
74.72 0.23 13.79 1.67 0.06 0.30 1.65 4.31 3.11 0.16 100.00 3.03 

  

 

EK2B-

105.7-28  
74.73 0.35 13.72 1.75 0.14 0.33 1.57 4.28 3.00 0.13 100.00 1.33 

  

 

EK2B-

105.7-1  
74.86 0.31 13.65 1.58 0.10 0.33 1.66 4.25 3.09 0.17 100.00 1.45 

  

 

EK2B-

105.7-21  
74.87 0.29 13.42 1.60 0.05 0.30 1.61 4.46 3.23 0.16 100.00 1.99 

  

 

EK2B-

105.7-10  
74.88 0.32 13.46 1.77 0.12 0.28 1.55 4.43 3.02 0.16 100.00 1.35 

  

 

EK2B-

105.7-23  
74.96 0.29 13.59 1.60 0.08 0.26 1.48 4.42 3.16 0.17 100.00 1.40 

  

 

EK2B-

105.7-26  
74.98 0.26 13.44 1.54 0.05 0.30 1.56 4.46 3.25 0.16 100.00 2.01 

  

 

EK2B-

105.7-3  
75.16 0.28 13.62 1.50 0.04 0.28 1.56 4.33 3.10 0.13 100.00 2.36 

  

 

EK2B-

105.7-27  
75.17 0.28 13.36 1.82 0.10 0.28 1.50 4.34 3.00 0.15 100.00 1.68 

  

 

EK2B-

105.7-5  
75.39 0.30 13.27 1.54 0.08 0.27 1.54 4.41 2.99 0.21 100.00 3.30 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2B-

105.7-4  
75.62 0.24 13.28 1.48 0.06 0.24 1.47 4.15 3.29 0.17 100.00 2.93 

  

 

EK2B-

105.7-8  
75.62 0.27 13.22 1.55 0.05 0.31 1.56 4.17 3.11 0.14 100.00 1.77 

  

UA 3067 

EK3C-124.6 

-9 
73.21 0.42 13.93 2.58 0.08 0.40 1.80 4.44 3.01 0.13 100.00 1.12 

 Day 3, set 1/2 

EK14-03C-4P-

1: 124.6-126.2 

cm  

EK3C-124.6 

-19 

74.04 0.32 14.16 1.80 0.10 0.31 1.76 4.32 3.04 0.13 100.00 3.60 

  

 

EK3C-124.6 

-15 
74.24 0.33 14.05 1.68 0.10 0.31 1.76 4.42 2.94 0.17 100.00 2.51 

  

 

EK3C-124.6 

-1 
74.42 0.32 13.89 1.70 0.07 0.31 1.66 4.40 3.07 0.16 100.00 1.62 

  

 

EK3C-124.6 

-16 
74.49 0.38 13.58 1.61 0.07 0.33 1.69 4.68 2.99 0.18 100.00 1.54 

  

 

EK3C-124.6 

-21 
74.52 0.21 13.90 1.62 0.07 0.38 1.71 4.43 3.00 0.17 100.00 1.47 

  

 

EK3C-124.6 

-2 
74.55 0.25 13.35 1.89 0.07 0.34 1.59 4.57 3.17 0.21 100.00 1.42 

  

 

EK3C-124.6 

-24 
74.62 0.31 13.76 1.63 0.08 0.35 1.70 4.35 3.05 0.14 100.00 1.85 

  

 

EK3C-124.6 

-18 
74.76 0.33 13.71 1.66 0.11 0.38 1.75 4.20 2.94 0.16 100.00 2.46 

  

 

EK3C-124.6 

-14 
74.78 0.30 13.69 1.61 0.04 0.34 1.65 4.38 3.04 0.16 100.00 2.06 

  

 

EK3C-124.6 

-8 
74.83 0.31 13.42 1.94 0.05 0.31 1.65 4.25 3.07 0.17 100.00 2.40 

  

 

EK3C-124.6 

-23 
74.90 0.27 13.70 1.59 0.12 0.34 1.58 4.18 3.16 0.16 100.00 1.61 

  

 

EK3C-124.6 

-13 
75.02 0.30 13.56 1.55 0.06 0.28 1.48 4.38 3.18 0.19 100.00 1.96 

  

 

EK3C-124.6 

-20 
75.03 0.29 13.19 1.77 0.09 0.28 1.56 4.49 3.10 0.20 100.00 1.40 

  

 

EK3C-124.6 

-11 
75.04 0.39 13.34 1.56 0.08 0.33 1.73 4.46 2.92 0.15 100.00 4.59 

  

 

EK3C-124.6 

-12 
75.08 0.27 13.67 1.57 0.06 0.32 1.68 4.09 3.07 0.18 100.00 1.87 

  

 

EK3C-124.6 

-5 
75.26 0.28 13.43 1.69 0.09 0.29 1.56 4.29 2.96 0.15 100.00 1.77 

  

 

EK3C-124.6 

-3 
75.62 0.28 13.18 1.42 0.14 0.27 1.54 4.29 3.10 0.16 100.00 2.95 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK3C-124.6 

-7 
76.06 0.29 13.22 1.41 0.08 0.27 1.43 4.17 2.95 0.14 100.00 2.02 

  

UA 3068 

EK4C-14.7-

3  
73.33 0.39 14.34 1.94 0.12 0.41 1.89 4.59 2.80 0.20 100.00 3.41 

 Day 3, set 1/2 

EK14-04C-4P-

2: 14.7-16.1 cm 

EK4C-14.7-

12  
73.47 0.36 14.40 1.77 0.03 0.47 1.86 4.44 3.00 0.21 100.00 2.85 

  

 

EK4C-14.7-

29  
73.82 0.27 14.14 1.97 0.09 0.34 1.74 4.48 3.01 0.15 100.00 2.06 

  

 

EK4C-14.7-

18  
74.00 0.32 14.09 1.61 0.10 0.39 1.76 4.46 3.11 0.16 100.00 1.21 

  

 

EK4C-14.7-

25  
74.03 0.33 14.00 1.85 0.03 0.37 1.69 4.35 3.16 0.19 100.00 2.65 

  

 

EK4C-14.7-

21  
74.13 0.24 14.10 1.61 0.09 0.33 1.71 4.60 3.01 0.16 100.00 3.02 

  

 

EK4C-14.7-

17  
74.20 0.25 13.90 1.69 0.09 0.34 1.83 4.31 3.19 0.21 100.00 1.78 

  

 

EK4C-14.7-

1  
74.24 0.26 13.58 1.96 0.09 0.52 1.67 4.43 3.05 0.19 100.00 1.08 

  

 

EK4C-14.7-

11  
74.29 0.33 13.78 1.86 0.14 0.28 1.72 4.34 3.11 0.16 100.00 2.32 

  

 

EK4C-14.7-

10  
74.42 0.36 13.82 1.69 0.05 0.35 1.71 4.48 2.95 0.15 100.00 2.10 

  

 

EK4C-14.7-

9  
74.43 0.30 13.98 1.67 0.07 0.31 1.62 4.42 3.03 0.17 100.00 2.19 

  

 

EK4C-14.7-

20  
74.49 0.35 13.88 1.49 0.08 0.26 1.66 4.49 3.10 0.21 100.00 4.25 

  

 

EK4C-14.7-

6  
74.52 0.27 13.87 1.80 0.05 0.29 1.76 4.32 2.94 0.19 100.00 1.98 

  

 

EK4C-14.7-

26  
74.57 0.31 13.72 1.55 0.09 0.37 1.66 4.39 3.12 0.21 100.00 2.96 

  

 

EK4C-14.7-

23  
74.60 0.26 13.62 1.61 0.14 0.37 1.63 4.40 3.19 0.19 100.00 3.14 

  

 

EK4C-14.7-

7  
74.69 0.26 13.64 1.68 0.07 0.33 1.71 4.33 3.11 0.18 100.00 2.03 

  

 

EK4C-14.7-

24  
74.71 0.29 13.83 1.75 0.08 0.34 1.70 4.08 3.05 0.16 100.00 2.57 

  

 

EK4C-14.7-

30  
74.85 0.24 13.58 1.83 0.04 0.28 1.44 4.29 3.19 0.25 100.00 7.72 

  

 

EK4C-14.7-

13  
74.87 0.27 13.54 1.69 0.10 0.33 1.61 4.43 2.93 0.23 100.00 1.85 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK4C-14.7-

5  
74.92 0.26 13.68 1.58 0.05 0.31 1.68 4.28 3.08 0.15 100.00 1.41 

  

 

EK4C-14.7-

2  
74.99 0.23 13.71 1.46 0.08 0.34 1.63 4.37 3.04 0.15 100.00 2.53 

  

 

EK4C-14.7-

8  
75.00 0.26 13.58 1.67 0.02 0.26 1.50 4.38 3.18 0.16 100.00 1.88 

  

 

EK4C-14.7-

4  
75.01 0.33 13.73 1.51 0.07 0.32 1.62 4.30 2.95 0.17 100.00 1.40 

  

 

EK4C-14.7-

27  
75.07 0.30 13.54 1.65 0.10 0.31 1.49 4.39 3.03 0.12 100.00 1.56 

  

 

EK4C-14.7-

14  
75.08 0.28 13.61 1.67 0.09 0.24 1.53 4.35 2.98 0.18 100.00 2.68 

  

 

EK4C-14.7-

28  
75.11 0.23 13.49 1.57 0.06 0.24 1.60 4.29 3.21 0.20 100.00 4.87 

  

 

EK4C-14.7-

22  
75.58 0.25 13.22 1.58 0.02 0.31 1.48 4.26 3.12 0.17 100.00 2.69 

  

 

EK4C-14.7-

19  
75.64 0.30 13.35 1.40 0.11 0.27 1.47 4.20 3.09 0.18 100.00 2.46 

  

 Mean 74.66 0.30 13.70 1.68 0.08 0.32 1.65 4.38 3.06 0.17 100.00 2.27 72  

  StDev 0.54 0.04 0.28 0.18 0.03 0.05 0.11 0.12 0.10 0.03 0.00 1.02     

Tephra 17                

UA 3069 

EK2A-

121.7-16  69.30 0.59 15.28 3.22 0.13 0.90 3.17 4.57 2.65 0.20 100.00 3.16  Redoubt 

EK14-02-4P-1: 

121.7-122.5  

EK2A-

121.7-27  69.40 0.51 15.56 3.21 0.13 0.95 3.20 4.37 2.45 0.21 100.00 5.07  Day 9, set 2/3 

 

EK2A-

121.7-12  69.48 0.60 15.39 3.15 0.14 0.89 3.14 4.53 2.52 0.17 100.00 2.36   

 

EK2A-

121.7-21  69.53 0.45 15.40 3.22 0.12 0.85 3.11 4.55 2.59 0.18 100.00 2.74   

 

EK2A-

121.7-22  69.98 0.59 15.49 3.04 0.10 0.84 2.93 4.36 2.50 0.17 100.00 3.95   

 

EK2A-

121.7-9  70.26 0.47 15.11 2.87 0.12 0.83 2.88 4.74 2.56 0.17 100.00 2.69   

 

EK2A-

121.7-5  70.33 0.53 14.90 2.93 0.12 0.77 2.94 4.65 2.66 0.18 100.00 2.13   

 

EK2A-

121.7-20  70.49 0.60 14.94 3.05 0.11 0.82 2.96 4.33 2.53 0.17 100.00 2.52   

 

EK2A-

121.7-24  70.51 0.49 15.14 3.00 0.08 0.78 2.89 4.28 2.65 0.19 100.00 2.29   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2A-

121.7-17  70.93 0.41 15.65 2.38 0.05 0.44 2.87 4.52 2.58 0.17 100.00 2.18   

 

EK2A-

121.7-23  70.93 0.46 15.00 2.72 0.07 0.62 2.56 4.78 2.64 0.22 100.00 2.95   

 

EK2A-

121.7-6  71.58 0.48 14.88 2.50 0.11 0.60 2.46 4.54 2.70 0.16 100.00 2.34   

 

EK2A-

121.7-3  71.71 0.52 14.90 2.56 0.04 0.60 2.49 4.22 2.79 0.18 100.00 3.02   

 

EK2A-

121.7-14  77.14 0.18 12.21 1.09 0.03 0.11 0.65 4.06 4.23 0.30 100.00 2.90   

 

EK2A-

121.7-15  77.94 0.31 11.94 1.02 0.02 0.13 0.61 3.61 4.13 0.29 100.00 5.82   

UA 3070 

EK2A-

122.5-7  69.75 0.46 15.41 2.90 0.12 0.84 3.10 4.70 2.54 0.16 100.00 2.84  Day 9, set 2/3 

EK14-02A-4P-

1: 122.5-122.7 

cm  

EK2A-

122.5-30  69.77 0.48 15.27 3.01 0.07 0.88 3.27 4.57 2.55 0.13 100.00 1.68   

 

EK2A-

122.5-28  69.78 0.52 15.16 3.14 0.15 0.82 3.05 4.55 2.70 0.13 100.00 2.14   

 

EK2A-

122.5-20  69.96 0.49 15.16 2.98 0.12 0.88 3.05 4.73 2.49 0.15 100.00 1.26   

 

EK2A-

122.5-24  70.08 0.55 15.21 2.97 0.12 0.85 3.11 4.36 2.60 0.14 100.00 2.51   

 

EK2A-

122.5-1  70.09 0.56 15.39 3.03 0.14 0.83 3.04 4.21 2.55 0.17 100.00 3.27   

 

EK2A-

122.5-5  70.31 0.52 15.07 3.05 0.10 0.81 2.97 4.41 2.58 0.17 100.00 1.55   

 

EK2A-

122.5-21  70.36 0.56 15.34 2.74 0.13 0.75 2.82 4.53 2.59 0.18 100.00 0.48   

 

EK2A-

122.5-4  70.47 0.52 15.11 3.03 0.09 0.80 2.84 4.29 2.69 0.15 100.00 2.04   

 

EK2A-

122.5-16  70.51 0.49 15.30 2.88 0.11 0.73 2.83 4.41 2.53 0.20 100.00 0.57   

 

EK2A-

122.5-22  70.71 0.49 15.22 2.69 0.00 0.73 2.85 4.46 2.67 0.18 100.00 2.86   

 

EK2A-

122.5-11  70.77 0.45 14.90 2.85 0.05 0.70 2.87 4.53 2.70 0.18 100.00 2.19   

 

EK2A-

122.5-18  70.86 0.49 14.93 2.84 0.12 0.72 2.75 4.58 2.56 0.14 100.00 2.58   

 

EK2A-

122.5-6  71.09 0.44 15.14 2.63 0.10 0.62 2.83 4.30 2.69 0.15 100.00 2.98   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2A-

122.5-19  71.13 0.47 15.01 2.70 0.09 0.58 2.63 4.60 2.63 0.16 100.00 3.74   

 

EK2A-

122.5-3  71.33 0.52 14.81 2.61 0.08 0.66 2.59 4.54 2.68 0.17 100.00 2.51   

 

EK2A-

122.5-2  72.56 0.52 14.36 2.30 0.11 0.50 2.21 4.50 2.79 0.16 100.00 1.94   

 

EK2A-

122.5-27  72.66 0.37 14.39 2.32 0.10 0.50 2.27 4.50 2.72 0.17 100.00 2.12   

UA 3071 

EK2A-

122.7-31  69.33 0.50 15.39 3.16 0.13 0.92 3.22 4.65 2.48 0.22 100.00 3.02  Day 9, set 2/3 

EK14-02A-4P-

1: 122.7-123.5 

cm  

EK2A-

122.7-3  69.87 0.52 15.31 3.17 0.14 0.92 3.09 4.36 2.47 0.16 100.00 2.93   

 

EK2A-

122.7-20  69.92 0.52 15.34 3.15 0.10 0.79 2.92 4.47 2.56 0.22 100.00 4.50   

 

EK2A-

122.7-1  70.04 0.50 15.11 3.24 0.08 0.80 3.08 4.40 2.58 0.17 100.00 2.25   

 

EK2A-

122.7-12  70.09 0.51 15.12 3.07 0.10 0.80 2.94 4.64 2.57 0.17 100.00 1.03   

 

EK2A-

122.7-19  70.23 0.45 15.18 3.16 0.10 0.82 2.99 4.47 2.48 0.13 100.00 2.01   

 

EK2A-

122.7-18  70.36 0.54 14.99 3.14 0.09 0.88 3.07 4.37 2.40 0.16 100.00 1.92   

 

EK2A-

122.7-5  70.57 0.62 14.97 3.01 0.09 0.69 2.79 4.45 2.65 0.15 100.00 1.59   

 

EK2A-

122.7-11  70.63 0.46 15.21 2.86 0.06 0.69 2.62 4.55 2.71 0.20 100.00 2.17   

 

EK2A-

122.7-16  70.65 0.51 14.98 3.00 0.07 0.77 2.78 4.43 2.68 0.13 100.00 1.37   

 

EK2A-

122.7-8  70.80 0.41 14.98 2.87 0.11 0.79 2.82 4.47 2.60 0.16 100.00 1.89   

 

EK2A-

122.7-25  70.88 0.49 15.02 3.08 0.10 0.72 2.69 4.26 2.56 0.19 100.00 1.68   

 

EK2A-

122.7-29  71.24 0.48 15.03 2.55 0.07 0.67 2.61 4.48 2.70 0.17 100.00 1.54   

 

EK2A-

122.7-13  71.32 0.52 14.88 2.69 0.11 0.73 2.45 4.49 2.62 0.19 100.00 1.42   

 

EK2A-

122.7-30  71.38 0.50 14.99 2.58 0.11 0.64 2.51 4.39 2.67 0.22 100.00 1.96   

 

EK2A-

122.7-17  71.50 0.52 15.06 2.59 0.11 0.62 2.55 4.37 2.54 0.16 100.00 1.74   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK2A-

122.7-22  72.13 0.43 14.62 2.63 0.10 0.58 2.32 4.36 2.68 0.17 100.00 0.69   

UA 3072 

EK1C-46.5-

4  69.32 0.55 15.41 3.28 0.17 0.92 3.23 4.42 2.54 0.18 100.00 3.57  Day 9, set 1/2 

EK14-1C-2U-2-

A-46.5cm 

EK1C-46.5-

31  69.40 0.56 15.42 3.27 0.10 0.86 3.24 4.37 2.54 0.24 100.00 6.63   

 

EK1C-46.5-

6  69.41 0.49 15.44 3.26 0.10 0.82 3.20 4.49 2.64 0.15 100.00 1.93   

 

EK1C-46.5-

14  69.53 0.52 15.42 3.22 0.12 0.87 3.08 4.54 2.55 0.15 100.00 1.85   

 

EK1C-46.5-

10  69.53 0.49 15.37 3.10 0.09 0.87 3.18 4.70 2.50 0.18 100.00 2.60   

 

EK1C-46.5-

32  69.63 0.58 15.33 3.13 0.08 0.86 3.05 4.48 2.69 0.17 100.00 2.75   

 

EK1C-46.5-

16  69.69 0.54 15.23 3.33 0.07 0.88 3.14 4.43 2.57 0.12 100.00 2.78   

 

EK1C-46.5-

3  69.71 0.54 15.45 2.98 0.03 0.88 3.10 4.60 2.51 0.19 100.00 2.62   

 

EK1C-46.5-

40  69.76 0.49 15.50 2.84 0.09 0.85 3.15 4.51 2.58 0.22 100.00 0.63   

 

EK1C-46.5-

33  69.79 0.62 15.39 2.95 0.07 0.92 2.96 4.46 2.65 0.21 100.00 7.18   

 

EK1C-46.5-

18  69.79 0.58 15.30 3.06 0.08 0.89 3.04 4.56 2.55 0.16 100.00 1.56   

 

EK1C-46.5-

23  69.81 0.58 15.28 2.97 0.09 0.83 3.19 4.58 2.51 0.16 100.00 1.24   

 

EK1C-46.5-

17  69.92 0.49 15.01 3.31 0.04 0.91 3.20 4.44 2.50 0.18 100.00 1.93   

 

EK1C-46.5-

8  69.94 0.56 15.36 2.96 0.15 0.87 3.16 4.16 2.59 0.24 100.00 5.78   

 

EK1C-46.5-

36  69.94 0.53 15.36 2.95 0.10 0.84 3.05 4.60 2.46 0.17 100.00 3.15   

 

EK1C-46.5-

21  70.06 0.52 15.09 3.13 0.12 0.91 2.97 4.47 2.55 0.18 100.00 1.74   

 

EK1C-46.5-

5  70.09 0.55 15.20 2.89 0.07 0.84 3.16 4.37 2.65 0.20 100.00 1.91   

 

EK1C-46.5-

22  70.10 0.56 15.00 2.94 0.12 0.84 3.19 4.54 2.54 0.17 100.00 1.25   

 

EK1C-46.5-

20  70.21 0.57 15.05 3.33 0.13 0.81 2.96 4.23 2.58 0.13 100.00 1.44   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK1C-46.5-

24  70.24 0.55 15.10 3.17 0.11 0.77 2.67 4.45 2.74 0.20 100.00 5.16   

 

EK1C-46.5-

29  70.26 0.41 15.29 2.85 0.11 0.84 2.95 4.50 2.63 0.15 100.00 2.14   

 

EK1C-46.5-

38  70.32 0.55 15.45 3.02 0.10 0.77 2.89 4.27 2.49 0.13 100.00 1.57   

 

EK1C-46.5-

7  70.42 0.53 15.21 2.94 0.10 0.90 2.83 4.29 2.63 0.16 100.00 3.00   

 

EK1C-46.5-

28  70.45 0.50 15.13 2.99 0.09 0.87 2.75 4.49 2.48 0.25 100.00 7.57   

 

EK1C-46.5-

12  70.58 0.46 15.21 2.80 0.04 0.81 2.77 4.46 2.65 0.21 100.00 1.86   

 

EK1C-46.5-

9  70.68 0.52 15.02 3.03 0.10 0.77 2.73 4.27 2.71 0.18 100.00 2.14   

 

EK1C-46.5-

13  71.75 0.44 14.96 2.43 0.08 0.58 2.51 4.31 2.74 0.17 100.00 2.63   

 

EK1C-46.5-

39  71.76 0.50 14.67 2.58 0.11 0.62 2.43 4.42 2.73 0.19 100.00 4.77   

 

EK1C-46.5-

2  72.59 0.43 14.75 2.23 0.09 0.49 2.16 4.23 2.83 0.20 100.00 4.28   

 

EK1C-46.5-

35  72.87 0.37 14.52 2.15 0.09 0.50 2.22 4.23 2.84 0.20 100.00 1.42   

 

EK1C-46.5-

15  74.13 0.39 13.96 1.87 0.09 0.29 1.79 4.31 2.99 0.18 100.00 2.36   

 

EK1C-46.5-

34  74.29 0.32 14.05 1.76 0.06 0.36 1.79 4.24 2.89 0.25 100.00 3.65   

 Mean 70.72 0.50 15.04 2.85 0.10 0.75 2.79 4.44 2.65 0.18 100.00 2.61 82  

 StDev 1.48 0.07 0.56 0.43 0.03 0.17 0.47 0.17 0.26 0.03 0.00 1.40   

  

EK1C-46.5-

19  76.97 0.43 12.48 1.47 0.01 0.28 1.02 3.83 3.33 0.18 100.00 2.71   

outlier but on 

trend 

Tephra 18                

UA 3073 

EK1D-

119.5-6  74.37 0.21 13.82 1.72 0.06 0.40 2.23 4.15 2.55 0.50 100.00 8.66  Hayes, tephra H 

EK14-1D-2U-1-

A-119.5 cm 

EK1D-

119.5-16  74.39 0.21 13.84 1.73 0.08 0.43 2.32 3.97 2.51 0.52 100.00 2.79  Day 9, set 1/2 

 

EK1D-

119.5-7  74.45 0.10 13.94 1.82 0.10 0.45 2.27 3.94 2.45 0.47 100.00 2.29   

 

EK1D-

119.5-9  74.49 0.28 13.95 1.71 0.08 0.41 2.22 3.88 2.44 0.53 100.00 4.33   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK1D-

119.5-27  74.54 0.22 13.84 1.84 0.08 0.40 2.27 3.96 2.36 0.49 100.00 1.81   

 

EK1D-

119.5-11  74.67 0.21 13.60 1.83 0.09 0.43 2.25 4.02 2.44 0.46 100.00 1.65   

 

EK1D-

119.5-10  74.69 0.24 13.86 1.67 0.08 0.39 2.24 3.92 2.44 0.48 100.00 1.88   

 

EK1D-

119.5-3  74.75 0.22 13.74 1.76 0.05 0.37 2.28 3.86 2.44 0.51 100.00 5.61   

 

EK1D-

119.5-39  74.77 0.20 13.72 1.74 0.06 0.41 2.19 3.82 2.66 0.44 100.00 2.26   

 

EK1D-

119.5-34  74.77 0.22 13.84 1.74 0.07 0.44 2.13 3.87 2.45 0.47 100.00 1.83   

 

EK1D-

119.5-18  74.92 0.20 13.62 1.76 0.09 0.43 2.19 3.86 2.45 0.49 100.00 5.31   

 

EK1D-

119.5-37  74.92 0.19 13.43 1.87 0.07 0.39 2.14 4.02 2.51 0.46 100.00 2.30   

 

EK1D-

119.5-22  74.94 0.27 13.71 1.71 0.07 0.41 2.24 3.78 2.46 0.43 100.00 2.17   

 

EK1D-

119.5-29  75.03 0.27 13.49 1.70 0.08 0.35 2.23 3.86 2.55 0.44 100.00 1.63   

 

EK1D-

119.5-35  75.13 0.17 13.49 1.68 0.07 0.42 2.12 3.82 2.71 0.39 100.00 4.94   

 

EK1D-

119.5-28  75.32 0.22 13.50 1.63 0.06 0.41 2.05 3.81 2.56 0.44 100.00 1.94   

 

EK1D-

119.5-20  75.51 0.22 13.48 1.66 0.07 0.35 1.94 3.69 2.60 0.48 100.00 9.19   

 

EK1D-

119.5-17  75.54 0.23 13.33 1.55 0.09 0.39 1.97 3.83 2.66 0.42 100.00 4.23   

 

EK1D-

119.5-21  75.59 0.19 13.49 1.57 0.06 0.37 2.02 3.90 2.44 0.39 100.00 1.81   

 

EK1D-

119.5-23  75.65 0.18 13.37 1.45 0.05 0.32 1.90 4.02 2.63 0.43 100.00 2.18   

 

EK1D-

119.5-24  75.85 0.15 13.42 1.50 0.06 0.32 1.79 3.85 2.64 0.42 100.00 2.30   

 

EK1D-

119.5-25  76.30 0.18 13.37 1.19 0.06 0.26 1.72 3.88 2.68 0.36 100.00 2.31   

 Mean 75.03 0.21 13.63 1.67 0.07 0.39 2.12 3.90 2.53 0.46 100.00 3.34 22  

 StDev 0.52 0.04 0.20 0.15 0.01 0.05 0.17 0.10 0.10 0.04 0.00 2.20   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK1D-

119.5-12  66.65 0.49 16.51 3.38 0.13 1.85 4.45 4.16 2.01 0.37 100.00 3.79  

glass, somewhat 

on trend, may be 

related 

 

EK1D-

119.5-4  68.59 0.32 15.69 2.83 0.09 1.58 4.08 4.42 2.11 0.30 100.00 2.79  as above 

 

EK1D-

119.5-8  71.38 0.23 14.42 2.47 0.11 1.24 3.14 4.33 2.28 0.41 100.00 2.70  as above 

  

EK1D-

119.5-19  77.79 0.22 12.03 1.36 0.11 0.24 1.28 3.07 3.52 0.38 100.00 2.70   as above 

Tephra 19                

UA 3074 

EK1C-119-

22  71.04 0.40 14.95 2.74 0.10 0.68 2.97 4.48 2.41 0.22 100.00 1.94  Redoubt 

EK14-1C-3U-1-

A-119 cm 

EK1C-119-

33  71.18 0.52 14.85 2.55 0.09 0.68 2.82 4.59 2.51 0.21 100.00 2.40  Day 9, set 1/2 

 EK1C-119-1  71.28 0.48 14.98 2.61 0.12 0.68 2.76 4.53 2.40 0.16 100.00 2.48   

 

EK1C-119-

12  71.32 0.48 14.84 2.74 0.11 0.73 2.82 4.40 2.34 0.22 100.00 1.94   

 EK1C-119-6  71.34 0.51 14.84 2.80 0.07 0.69 2.92 4.19 2.46 0.17 100.00 2.50   

 

EK1C-119-

38  71.51 0.43 14.96 2.73 0.11 0.65 2.74 4.21 2.44 0.21 100.00 2.87   

 

EK1C-119-

27  71.53 0.44 14.89 2.58 0.07 0.66 2.79 4.35 2.48 0.21 100.00 1.98   

 

EK1C-119-

10  71.59 0.55 14.86 2.63 0.09 0.62 2.79 4.24 2.42 0.22 100.00 1.48   

 

EK1C-119-

16  71.61 0.37 14.88 2.69 0.11 0.63 2.71 4.35 2.44 0.21 100.00 0.28   

 

EK1C-119-

34  71.62 0.36 14.73 2.78 0.10 0.64 2.71 4.44 2.37 0.23 100.00 2.29   

 

EK1C-119-

30  71.64 0.48 14.89 2.55 0.13 0.60 2.74 4.18 2.60 0.20 100.00 2.90   

 

EK1C-119-

15  71.66 0.48 14.76 2.61 0.08 0.70 2.69 4.30 2.54 0.17 100.00 1.24   

 

EK1C-119-

35  71.85 0.53 14.56 2.60 0.14 0.63 2.54 4.44 2.53 0.19 100.00 1.90   

 

EK1C-119-

19  72.09 0.41 14.38 2.44 0.12 0.56 2.51 4.72 2.54 0.23 100.00 6.04   

 

EK1C-119-

26  72.16 0.43 14.67 2.42 0.10 0.58 2.56 4.25 2.57 0.25 100.00 4.26   

 EK1C-119-9  72.48 0.41 14.59 2.29 0.14 0.52 2.39 4.40 2.59 0.20 100.00 2.80   
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

 

EK1C-119-

40  72.50 0.43 14.35 2.37 0.10 0.45 2.43 4.42 2.77 0.17 100.00 0.92   

 

EK1C-119-

23  72.54 0.45 14.46 2.40 0.05 0.56 2.48 4.36 2.55 0.16 100.00 2.18   

 EK1C-119-3  72.79 0.41 14.34 2.11 0.09 0.48 2.26 4.66 2.65 0.21 100.00 1.98   

 

EK1C-119-

13  72.80 0.44 14.51 2.24 0.13 0.45 2.21 4.46 2.60 0.16 100.00 2.44   

 

EK1C-119-

20  73.22 0.34 13.89 2.11 0.06 0.56 2.20 4.65 2.75 0.22 100.00 4.47   

 

EK1C-119-

39  73.23 0.37 14.28 2.19 0.07 0.47 2.27 4.27 2.68 0.16 100.00 2.19   

 EK1C-119-7  73.51 0.39 14.15 2.05 0.07 0.45 2.19 4.21 2.80 0.19 100.00 2.63   

 

EK1C-119-

11  73.53 0.34 14.18 2.03 0.11 0.48 2.05 4.36 2.71 0.21 100.00 2.44   

 

EK1C-119-

29  73.98 0.40 13.96 1.96 0.07 0.43 2.06 4.34 2.57 0.22 100.00 2.43   

 

EK1C-119-

31  74.15 0.35 13.86 1.88 0.09 0.35 2.02 4.31 2.77 0.22 100.00 1.77   

 

EK1C-119-

18  74.15 0.42 13.66 2.04 0.08 0.43 2.07 4.22 2.73 0.21 100.00 1.96   

 EK1C-119-4  74.16 0.32 13.82 1.98 0.13 0.37 1.95 4.26 2.78 0.22 100.00 2.29   

 EK1C-119-8  74.52 0.42 13.72 1.78 0.09 0.45 1.84 4.05 2.95 0.19 100.00 5.28   

 

EK1C-119-

24  75.59 0.29 13.33 1.53 0.06 0.30 1.46 4.32 2.90 0.22 100.00 5.10   

 

EK1C-119-

21  76.18 0.25 12.91 1.53 0.07 0.24 1.40 4.27 2.98 0.16 100.00 7.65   

 

EK1C-119-

37  76.20 0.25 13.03 1.51 0.06 0.32 1.46 4.07 2.85 0.23 100.00 1.31   

 

EK1C-119-

32  76.41 0.28 12.88 1.63 0.06 0.26 1.42 3.91 2.97 0.19 100.00 6.15   

 

EK1C-119-

36  76.51 0.28 12.83 1.44 0.04 0.21 1.32 4.19 3.00 0.20 100.00 3.56   

 EK1C-119-2  76.78 0.29 12.61 1.47 0.05 0.22 1.31 4.12 2.95 0.21 100.00 3.24   

 Mean 73.10 0.40 14.21 2.23 0.09 0.51 2.28 4.33 2.65 0.20 100.00 2.84 35  

 StDev 1.77 0.08 0.71 0.43 0.03 0.15 0.51 0.18 0.20 0.02 0.00 1.59   

 

EK1C-119-

28  71.01 0.53 15.06 2.33 0.14 0.75 2.59 5.06 2.35 0.17 100.00 7.22  outliers 
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Tephra 

name/Accession 

# / original 

sample number Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff n 

Source/Analytical 

day and 

bracketing 

standard sets 

  

EK1C-119-

17  71.51 0.41 15.24 2.14 0.06 0.34 2.86 4.87 2.29 0.27 100.00 6.34   not related? 

 

C.3.2. Standard data (reference) 

Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

ID 3506 74.10 0.07 13.10 1.55 0.07 0.04 0.74 4.06 5.13 0.34 99.09   

Reference 0.96 0.03 0.34 0.06 0.03 0.02 0.05 0.28 0.26 0.03     

             

Old Crow 75.15 0.31 13.14 1.70 0.05 0.29 1.48 3.84 3.72 0.28 100.00 4.12 

Reference 1.00 0.05 0.34 0.14 0.03 0.03 0.05 0.26 0.26 0.05     

 

C.3.3. Standard data (collected) 

Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

DAY 1               

set 1 ID3506-1  74.04 0.00 13.08 1.48 0.07 0.04 0.74 3.98 5.23 0.35 98.92 1.08 

 ID3506-2  74.85 0.03 13.30 1.57 0.06 0.06 0.72 4.02 5.39 0.35 100.25 -0.25 

 ID3506-3  74.14 0.10 13.33 1.64 0.01 0.04 0.74 3.83 5.17 0.33 99.27 0.73 

 ID3506-4  74.57 0.11 13.19 1.46 0.09 0.03 0.73 4.04 5.27 0.32 99.74 0.26 

 ID3506-5  74.12 0.13 13.18 1.53 0.09 0.05 0.73 3.88 5.30 0.34 99.27 0.73 

 ID3506-6  74.38 0.05 13.06 1.58 0.02 0.03 0.72 3.98 5.13 0.33 99.21 0.79 

 ID3506-7  74.45 0.04 13.27 1.58 0.03 0.05 0.70 3.91 5.13 0.34 99.42 0.58 

 ID3506-8  74.52 0.07 13.12 1.55 0.06 0.04 0.71 4.07 5.31 0.34 99.71 0.29 

 Mean 74.38 0.06 13.19 1.55 0.05 0.04 0.72 3.96 5.24 0.34 99.48 0.52 

 StDev 0.27 0.04 0.10 0.06 0.03 0.01 0.01 0.08 0.09 0.01 0.41 0.41 

 OldCrow-1  75.08 0.35 13.03 1.73 0.08 0.25 1.44 3.91 3.84 0.28 100.00 3.13 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OldCrow-2  75.25 0.34 13.17 1.49 0.08 0.28 1.50 3.80 3.81 0.28 100.00 3.95 

 OldCrow-3  75.12 0.27 13.15 1.66 0.01 0.29 1.56 3.83 3.84 0.28 100.00 3.82 

 OldCrow-4  75.23 0.41 13.24 1.69 0.06 0.27 1.49 3.73 3.61 0.27 100.00 4.52 

 Mean 75.17 0.34 13.15 1.64 0.06 0.27 1.50 3.82 3.77 0.28 100.00 3.86 

 StDev 0.08 0.06 0.09 0.11 0.03 0.02 0.05 0.07 0.11 0.01 0.00 0.57 

              

set 2 ID3506-9  74.10 0.09 13.08 1.56 0.02 0.05 0.72 3.99 5.17 0.35 99.05 0.95 

 ID3506-10  74.16 0.09 13.15 1.69 0.06 0.04 0.70 4.06 5.24 0.32 99.44 0.56 

 ID3506-11  73.56 0.01 13.29 1.56 0.09 0.04 0.73 3.72 5.30 0.32 98.55 1.45 

 ID3506-12  74.31 0.09 13.04 1.57 0.05 0.03 0.72 4.03 5.19 0.31 99.26 0.74 

 Mean 74.03 0.07 13.14 1.60 0.05 0.04 0.72 3.95 5.23 0.33 99.08 0.92 

 StDev 0.33 0.04 0.11 0.07 0.03 0.01 0.01 0.16 0.06 0.02 0.39 0.39 

             
 

set 3 ID3506-13  73.99 0.04 13.29 1.49 0.07 0.03 0.68 4.08 5.28 0.37 99.24 0.76 

 ID3506-14  73.87 0.11 13.04 1.55 0.09 0.04 0.70 3.98 5.12 0.34 98.77 1.23 

 ID3506-15  73.04 0.09 13.23 1.58 0.05 0.04 0.72 3.91 5.29 0.36 98.21 1.79 

 ID3506-16  73.89 0.11 13.15 1.48 0.00 0.04 0.74 3.83 5.38 0.30 98.84 1.16 

 ID3506-17  73.67 0.11 13.26 1.58 0.02 0.03 0.72 3.82 5.29 0.31 98.75 1.25 

 Mean 73.69 0.09 13.19 1.53 0.05 0.04 0.71 3.93 5.27 0.34 98.76 1.24 

 StDev 0.38 0.03 0.10 0.05 0.04 0.01 0.03 0.11 0.09 0.03 0.37 0.37 

 OldCrow-6  75.36 0.33 12.89 1.67 0.02 0.25 1.43 3.98 3.76 0.30 100.00 1.86 

 OldCrow-7  75.34 0.27 13.02 1.69 0.06 0.29 1.49 3.76 3.76 0.31 100.00 4.30 

 OldCrow-8  75.40 0.32 13.11 1.72 0.04 0.31 1.56 3.43 3.82 0.28 100.00 5.36 

 Mean 75.37 0.31 13.00 1.70 0.04 0.29 1.49 3.72 3.78 0.30 100.00 3.84 

 StDev 0.03 0.03 0.11 0.02 0.02 0.03 0.07 0.28 0.04 0.02 0.00 1.79 

              

set 4 ID3506-19  74.17 0.00 12.99 1.52 0.04 0.07 0.72 3.94 5.19 0.34 98.91 1.09 

 ID3506-20  73.51 0.00 13.10 1.57 0.06 0.03 0.67 3.96 5.30 0.29 98.42 1.58 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 ID3506-21  73.58 0.09 12.91 1.56 0.09 0.05 0.72 4.11 5.25 0.31 98.60 1.40 

 ID3506-22  73.69 0.04 13.19 1.62 0.07 0.06 0.73 3.91 5.24 0.36 98.82 1.18 

 Mean 73.74 0.03 13.05 1.57 0.07 0.05 0.71 3.98 5.24 0.33 98.69 1.31 

 StDev 0.30 0.04 0.12 0.04 0.02 0.02 0.02 0.09 0.04 0.03 0.22 0.22 

              

set 5 ID3506-23  73.80 0.03 13.33 1.49 0.04 0.04 0.71 4.05 5.08 0.33 98.84 1.16 

 ID3506-24  73.82 0.09 13.09 1.58 0.07 0.04 0.73 3.75 5.22 0.35 98.67 1.33 

 ID3506-25  74.11 0.06 12.90 1.56 0.10 0.06 0.68 4.11 5.25 0.31 99.06 0.94 

 ID3506-26  73.96 0.09 13.19 1.50 0.03 0.05 0.73 3.90 5.37 0.38 99.12 0.88 

 ID3506-27  74.18 0.07 13.30 1.59 0.09 0.04 0.73 3.98 5.33 0.34 99.56 0.44 

 ID3506-28  74.45 0.09 12.96 1.61 0.03 0.04 0.69 3.77 5.18 0.31 99.06 0.94 

 ID3506-29  74.07 0.11 13.14 1.65 0.08 0.03 0.73 3.99 5.12 0.31 99.16 0.84 

 ID3506-30  73.43 0.08 12.99 1.64 0.10 0.02 0.71 3.91 5.29 0.36 98.45 1.55 

 Mean 73.98 0.08 13.11 1.58 0.07 0.04 0.71 3.93 5.23 0.34 98.99 1.01 

 StDev 0.30 0.02 0.16 0.06 0.03 0.01 0.02 0.13 0.10 0.03 0.34 0.34 

 OldCrow-9  75.43 0.31 12.99 1.72 0.03 0.28 1.47 3.81 3.68 0.28 100.00 3.62 

 OldCrow-10  74.98 0.39 13.09 1.86 0.04 0.27 1.44 3.85 3.82 0.26 100.00 2.30 

 OldCrow-11  75.28 0.34 13.06 1.75 0.06 0.27 1.45 3.75 3.81 0.23 100.00 4.80 

 OldCrow-12  75.13 0.31 13.09 1.73 0.08 0.27 1.44 3.83 3.81 0.32 100.00 5.72 

 OldCrow-13  75.45 0.29 13.06 1.67 0.04 0.31 1.40 3.67 3.84 0.29 100.00 5.76 

 OldCrow-14  75.57 0.32 13.15 1.64 0.06 0.28 1.43 3.53 3.75 0.26 100.00 5.38 

 Mean 75.31 0.33 13.07 1.73 0.05 0.28 1.44 3.74 3.78 0.27 100.00 4.60 

  StDev 0.22 0.04 0.05 0.08 0.02 0.01 0.02 0.12 0.06 0.03 0.00 1.38 

 
             

DAY 2              

set 1 ID3506-9  74.31 0.11 13.05 1.54 0.02 0.02 0.74 4.02 5.30 0.40 99.43 0.57 

 ID3506-10  74.06 0.06 13.18 1.54 0.12 0.03 0.72 4.14 5.29 0.33 99.39 0.61 

 ID3506-11  74.20 0.06 12.94 1.54 0.08 0.02 0.70 3.98 5.27 0.35 99.06 0.94 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 ID3506-12  74.25 0.07 12.94 1.54 0.02 0.03 0.70 3.90 5.31 0.34 99.03 0.97 

 ID3506-13  73.80 0.06 13.13 1.44 0.08 0.05 0.72 4.05 5.28 0.32 98.84 1.16 

 ID3506-14  74.47 0.06 13.18 1.50 0.10 0.03 0.74 3.99 5.13 0.35 99.48 0.52 

 Mean 74.18 0.07 13.07 1.52 0.07 0.03 0.72 4.01 5.26 0.35 99.21 0.79 

 StDev 0.23 0.02 0.11 0.04 0.04 0.01 0.02 0.08 0.07 0.03 0.26 0.26 

 Old Crow-7  75.18 0.35 13.01 1.65 0.14 0.27 1.46 3.93 3.71 0.30 100.00 3.48 

 Old Crow-8  75.07 0.25 12.96 1.75 0.07 0.25 1.48 4.15 3.75 0.27 100.00 2.89 

 Old Crow-9  75.32 0.32 13.09 1.68 0.04 0.27 1.43 3.88 3.68 0.29 100.00 4.29 

 Old Crow-10  75.25 0.32 13.13 1.74 0.08 0.29 1.45 3.63 3.84 0.27 100.00 5.40 

 Old Crow-11  75.26 0.21 12.89 1.74 0.05 0.26 1.50 3.94 3.88 0.27 100.00 5.22 

 Old Crow-12  74.92 0.29 13.04 1.69 0.04 0.31 1.43 4.00 4.01 0.27 100.00 4.26 

 Mean 75.17 0.29 13.02 1.71 0.07 0.28 1.46 3.92 3.81 0.28 100.00 4.26 

 StDev 0.15 0.05 0.09 0.04 0.04 0.02 0.03 0.17 0.12 0.01 0.00 0.97 

             
 

set 2 ID3506-15  74.16 0.06 13.08 1.57 0.03 0.00 0.76 4.09 5.34 0.34 99.35 0.65 

 ID3506-16  73.76 0.02 13.03 1.60 0.07 0.01 0.75 4.00 5.32 0.35 98.83 1.17 

 ID3506-17  73.66 0.01 13.14 1.55 0.08 0.01 0.78 3.75 5.02 0.31 98.25 1.75 

 ID3506-18  73.76 0.09 12.98 1.65 0.08 0.01 0.73 3.85 5.17 0.36 98.61 1.39 

 ID3506-19  73.86 0.08 13.02 1.54 0.06 0.03 0.76 3.78 5.20 0.28 98.55 1.45 

 ID3506-20  74.37 0.01 13.02 1.57 0.09 0.05 0.70 3.78 5.06 0.32 98.90 1.10 

 Mean 73.93 0.04 13.05 1.58 0.07 0.02 0.75 3.88 5.19 0.33 98.75 1.25 

 StDev 0.28 0.04 0.06 0.04 0.02 0.02 0.03 0.14 0.13 0.03 0.37 0.37 

 Old Crow-13  74.95 0.22 13.24 1.74 0.04 0.29 1.51 3.90 3.84 0.27 100.00 5.51 

 Old Crow-14  75.29 0.18 12.94 1.74 0.10 0.31 1.53 3.90 3.72 0.30 100.00 4.31 

 Old Crow-15  74.57 0.30 13.14 1.69 0.10 0.31 1.53 4.22 3.90 0.24 100.00 3.95 

 Old Crow-16  75.12 0.31 13.07 1.72 0.08 0.29 1.49 3.78 3.82 0.30 100.00 6.28 

 Old Crow-17  75.49 0.26 12.98 1.70 0.08 0.27 1.41 3.80 3.75 0.27 100.00 4.60 

 Old Crow-18  75.28 0.33 13.10 1.64 0.09 0.30 1.47 3.67 3.87 0.27 100.00 5.09 

 Mean 75.12 0.26 13.08 1.71 0.08 0.29 1.49 3.88 3.82 0.27 100.00 4.96 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 StDev 0.32 0.06 0.11 0.04 0.02 0.02 0.04 0.19 0.07 0.02 0.00 0.85 

             
 

set 3 ID3506-21  74.13 0.09 12.93 1.65 0.07 0.00 0.80 3.87 5.29 0.30 99.06 0.94 

 ID3506-22  73.80 0.08 13.01 1.56 0.01 0.05 0.73 3.91 5.10 0.34 98.52 1.48 

 ID3506-23  74.87 0.06 13.07 1.54 0.05 0.02 0.69 3.95 5.22 0.37 99.75 0.25 

 ID3506-24  73.73 0.05 13.13 1.46 0.09 0.05 0.74 3.92 5.20 0.35 98.64 1.36 

 ID3506-25  73.66 0.11 13.14 1.57 0.06 0.06 0.73 3.87 5.23 0.34 98.69 1.31 

 ID3506-26  73.61 0.07 13.07 1.50 0.04 0.04 0.73 3.91 5.18 0.32 98.41 1.59 

 Mean 73.97 0.08 13.06 1.55 0.05 0.04 0.74 3.90 5.20 0.34 98.84 1.16 

 StDev 0.48 0.02 0.08 0.07 0.03 0.02 0.04 0.03 0.06 0.02 0.49 0.49 

 Old Crow-19  75.29 0.28 13.07 1.70 0.06 0.26 1.41 3.93 3.73 0.26 100.00 4.73 

 Old Crow-20  75.46 0.30 12.99 1.65 0.03 0.28 1.40 3.94 3.68 0.26 100.00 3.12 

 Old Crow-21  75.19 0.31 13.00 1.73 0.08 0.28 1.45 3.91 3.78 0.27 100.00 4.56 

 Old Crow-22  75.53 0.33 13.04 1.61 0.06 0.24 1.50 3.51 3.88 0.31 100.00 4.20 

 Old Crow-23  75.58 0.31 12.87 1.77 0.00 0.29 1.50 3.82 3.61 0.25 100.00 4.92 

 Old Crow-24  75.37 0.33 13.08 1.71 0.07 0.20 1.45 3.73 3.82 0.24 100.00 3.60 

 Mean 75.40 0.31 13.01 1.70 0.05 0.26 1.45 3.81 3.75 0.26 100.00 4.19 

  StDev 0.15 0.02 0.08 0.05 0.03 0.03 0.04 0.16 0.10 0.02 0.00 0.70 

              

DAY 3              

set 1 ID3506-11  74.05 0.09 13.16 1.58 0.13 0.00 0.70 4.06 5.15 0.33 99.17 0.83 

 ID3506-12  73.73 0.06 13.26 1.53 0.01 0.03 0.74 4.01 5.03 0.34 98.68 1.33 

 ID3506-13  73.59 0.06 13.35 1.49 0.10 0.01 0.69 3.94 5.12 0.31 98.58 1.42 

 ID3506-14  74.43 0.10 13.40 1.42 0.06 0.01 0.70 3.95 5.15 0.34 99.49 0.51 

 ID3506-15  73.70 0.03 13.31 1.53 0.08 0.02 0.72 3.98 5.19 0.31 98.79 1.21 

 ID3506-16  74.19 0.09 13.18 1.69 0.07 0.02 0.70 3.97 5.19 0.33 99.37 0.63 

 Mean 73.95 0.07 13.28 1.54 0.07 0.01 0.71 3.98 5.14 0.33 99.01 0.99 

 StDev 0.33 0.03 0.10 0.09 0.04 0.01 0.02 0.04 0.06 0.02 0.38 0.38 

 OldCrow-1  75.18 0.35 13.05 1.73 0.08 0.25 1.41 3.80 3.93 0.28 100.00 3.15 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OldCrow-2  75.34 0.34 13.19 1.49 0.08 0.28 1.47 3.70 3.90 0.28 100.00 3.92 

 OldCrow-3  75.21 0.27 13.17 1.67 0.01 0.29 1.52 3.73 3.92 0.28 100.00 3.80 

 OldCrow-4  75.33 0.41 13.26 1.69 0.06 0.27 1.45 3.63 3.69 0.27 100.00 4.45 

 Mean 75.26 0.34 13.17 1.64 0.06 0.27 1.46 3.72 3.86 0.28 100.00 3.83 

 StDev 0.08 0.06 0.09 0.11 0.03 0.02 0.05 0.07 0.11 0.01 0.00 0.53 

              

set 2 ID3506-17  74.30 0.05 12.93 1.47 0.02 0.03 0.77 3.96 5.08 0.32 98.86 1.14 

 ID3506-18  74.34 0.09 12.93 1.53 0.11 0.02 0.72 4.08 5.07 0.33 99.16 0.84 

 ID3506-19  74.17 0.09 12.90 1.54 0.07 0.05 0.67 3.84 5.10 0.31 98.66 1.34 

 ID3506-20  73.83 0.14 13.01 1.54 0.08 0.00 0.70 3.91 5.06 0.33 98.54 1.46 

 ID3506-21  73.96 0.02 13.33 1.51 0.08 0.03 0.73 3.93 5.10 0.35 98.96 1.04 

 Mean 74.12 0.08 13.02 1.52 0.07 0.03 0.72 3.94 5.08 0.33 98.84 1.16 

 StDev 0.22 0.04 0.18 0.03 0.03 0.01 0.04 0.09 0.02 0.01 0.24 0.24 

 OldCrow-6  75.46 0.33 12.90 1.67 0.02 0.25 1.39 3.88 3.85 0.30 100.00 1.96 

 OldCrow-7  75.44 0.27 13.03 1.70 0.06 0.29 1.45 3.66 3.85 0.32 100.00 4.25 

 OldCrow-8  75.49 0.32 13.13 1.72 0.04 0.31 1.52 3.34 3.91 0.28 100.00 5.19 

 Mean 75.46 0.31 13.02 1.70 0.04 0.29 1.45 3.63 3.87 0.30 100.00 3.80 

 StDev 0.02 0.03 0.11 0.02 0.02 0.03 0.06 0.27 0.04 0.02 0.00 1.66 

              

set 3 ID3506-22  74.09 0.06 12.88 1.58 0.16 0.04 0.67 3.98 5.09 0.34 98.82 1.18 

 ID3506-23  74.28 0.09 12.84 1.43 0.07 0.00 0.70 4.20 5.07 0.34 98.95 1.05 

 ID3506-24  74.43 0.07 13.08 1.57 0.05 0.04 0.75 4.08 5.12 0.30 99.42 0.58 

 ID3506-25  74.34 0.08 13.23 1.56 0.08 0.00 0.71 4.03 5.19 0.29 99.45 0.55 

 ID3506-26  74.11 0.00 13.24 1.55 0.09 0.03 0.73 4.04 5.16 0.32 99.20 0.80 

 Mean 74.25 0.06 13.06 1.54 0.09 0.02 0.71 4.07 5.12 0.32 99.17 0.83 

 StDev 0.15 0.03 0.19 0.06 0.04 0.02 0.03 0.08 0.05 0.02 0.28 0.28 

 OCt-10 75.33 0.37 13.16 1.67 0.04 0.27 1.47 3.63 3.79 0.27 100.00 5.08 

 OCt-11 75.68 0.30 12.90 1.60 0.06 0.30 1.46 3.81 3.60 0.30 100.00 5.16 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OCt-12 75.24 0.31 13.00 1.72 0.01 0.23 1.55 4.06 3.60 0.28 100.00 4.62 

 OCt-13 75.41 0.34 13.11 1.58 0.07 0.26 1.44 3.81 3.72 0.27 100.00 5.07 

 OCt-14 75.22 0.30 13.18 1.54 0.07 0.21 1.49 3.84 3.86 0.30 100.00 4.99 

 Mean 75.38 0.32 13.07 1.62 0.05 0.26 1.48 3.83 3.71 0.28 100.00 4.98 

 StDev 0.18 0.03 0.12 0.07 0.02 0.04 0.04 0.16 0.12 0.02 0.00 0.21 

              

set 4 ID3506-27  73.86 0.03 13.05 1.51 0.13 0.06 0.72 3.86 5.14 0.33 98.62 1.38 

 ID3506-28  74.30 0.10 13.01 1.63 0.12 0.04 0.73 3.95 5.09 0.34 99.23 0.77 

 ID3506-29  74.33 0.05 13.18 1.56 0.08 0.04 0.72 3.81 5.19 0.34 99.23 0.77 

 Mean 74.16 0.06 13.08 1.57 0.11 0.05 0.72 3.87 5.14 0.34 99.03 0.97 

 StDev 0.26 0.03 0.09 0.06 0.02 0.01 0.00 0.07 0.05 0.01 0.35 0.35 

 OCt-15 75.28 0.29 13.13 1.72 0.09 0.25 1.48 3.91 3.61 0.24 100.00 4.78 

 OCt-16 75.36 0.33 13.10 1.66 0.07 0.24 1.44 3.85 3.68 0.26 100.00 4.69 

 OCt-17 75.22 0.33 13.01 1.70 0.05 0.26 1.45 4.00 3.72 0.26 100.00 3.81 

 OCt-18 75.01 0.30 13.03 1.75 0.03 0.27 1.44 4.12 3.77 0.27 100.00 2.29 

 OCt-19 75.15 0.29 13.11 1.74 0.05 0.27 1.45 3.88 3.82 0.25 100.00 3.53 

 Mean 75.20 0.31 13.08 1.71 0.06 0.26 1.45 3.95 3.72 0.26 100.00 3.82 

 StDev 0.13 0.02 0.05 0.03 0.02 0.01 0.02 0.11 0.08 0.01 0.00 1.01 

              

set 5 ID3506-30  74.16 0.05 13.11 1.47 0.07 0.03 0.66 3.97 5.21 0.33 99.00 1.00 

 ID3506-31  74.02 0.08 13.06 1.57 0.03 0.00 0.70 3.97 5.16 0.28 98.81 1.19 

 ID3506-32  73.92 0.06 13.13 1.51 0.08 0.05 0.72 4.10 5.12 0.31 98.91 1.09 

 ID3506-33  73.93 0.06 12.90 1.49 0.07 0.01 0.73 3.92 5.08 0.29 98.41 1.59 

 ID3506-34  73.81 0.06 13.14 1.49 0.06 0.04 0.71 3.77 5.02 0.32 98.32 1.68 

 ID3506-35  73.84 0.05 13.09 1.55 0.08 0.03 0.73 3.98 5.07 0.33 98.69 1.31 

 Mean 73.95 0.06 13.07 1.51 0.06 0.03 0.71 3.95 5.11 0.31 98.69 1.31 

 StDev 0.13 0.01 0.09 0.04 0.02 0.02 0.03 0.11 0.07 0.02 0.27 0.27 

 OCt-20 75.36 0.32 12.93 1.65 0.05 0.28 1.53 3.95 3.66 0.27 100.00 3.98 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OCt-21 75.65 0.30 12.91 1.66 0.04 0.24 1.44 3.91 3.63 0.24 100.00 4.50 

 OCt-22 75.24 0.31 12.99 1.68 0.05 0.26 1.57 3.77 3.83 0.30 100.00 3.50 

 OCt-23 75.47 0.29 12.91 1.62 0.08 0.24 1.55 3.82 3.73 0.30 100.00 4.53 

 OCt-24 75.16 0.26 12.98 1.64 0.04 0.28 1.42 4.07 3.90 0.25 100.00 4.30 

 Mean 75.38 0.29 12.94 1.65 0.05 0.26 1.50 3.90 3.75 0.27 100.00 4.16 

  StDev 0.19 0.02 0.04 0.02 0.02 0.02 0.07 0.11 0.12 0.03 0.00 0.43 

DAY 4              
Na TDI, data was 

corrected to 

compensate for 

this run's 

overcompensation 

of Na-loss- 

corrected Old 

Crow standard 

values shown, 

uncorrected 

ID3506 values 

shown 

              

Set 1 ID3506_001 74.77 0.08 12.97 1.56 0.11 0.03 0.73 4.04 5.17 0.35 99.73 0.27 

 ID3506_002 74.93 0.10 13.19 1.64 0.06 0.02 0.71 4.34 5.24 0.32 100.48 -0.48 

 ID3506_003 74.69 0.08 13.13 1.61 0.05 0.03 0.71 4.22 5.06 0.36 99.86 0.14 

 ID3506_004 74.35 0.00 13.27 1.55 0.07 0.03 0.74 4.17 5.07 0.31 99.49 0.51 

 ID3506_005 73.58 0.07 12.95 1.61 0.10 0.04 0.73 3.92 5.18 0.34 98.44 1.56 

 ID3506_006 74.57 0.13 13.18 1.55 0.07 0.02 0.71 4.34 5.09 0.38 99.95 0.05 

 Mean 74.48 0.08 13.11 1.59 0.08 0.03 0.72 4.17 5.13 0.34 99.66 0.34 

 StDev 0.48 0.04 0.13 0.04 0.02 0.01 0.01 0.17 0.07 0.02 0.68 0.68 

 OldCrow_001 75.54 0.32 13.12 1.76 0.09 0.27 1.46 3.44 3.76 0.25 100.00 4.81 

 OldCrow_002 75.10 0.27 13.18 1.79 0.03 0.29 1.50 3.90 3.69 0.25 100.00 4.02 

 OldCrow_003 74.97 0.32 13.32 1.71 0.06 0.30 1.51 3.85 3.70 0.27 100.00 5.22 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OldCrow_004 74.83 0.28 13.02 1.84 0.04 0.25 1.50 4.14 3.82 0.26 100.00 3.40 

 OldCrow_005 75.24 0.30 13.04 1.75 0.06 0.28 1.45 3.83 3.74 0.31 100.00 4.50 

 OldCrow_006 75.17 0.29 13.01 1.72 0.07 0.29 1.46 4.02 3.68 0.28 100.00 4.16 

 Mean 75.14 0.30 13.11 1.76 0.06 0.28 1.48 3.86 3.73 0.27 100.00 4.35 

 StDev 0.24 0.02 0.12 0.05 0.02 0.02 0.02 0.24 0.05 0.02 0.00 0.64 

              

set 2 ID3506_007 75.70 0.07 13.26 1.58 0.08 0.04 0.73 4.38 5.20 0.29 101.26 -1.26 

 ID3506_008 75.41 0.10 13.22 1.59 0.07 0.03 0.73 4.05 5.05 0.32 100.50 -0.50 

 ID3506_009 74.70 0.03 13.06 1.57 0.12 0.03 0.66 4.06 5.15 0.39 99.68 0.32 

 ID3506_010 75.19 0.08 13.14 1.67 0.11 0.02 0.69 4.39 5.13 0.33 100.68 -0.68 

 ID3506_011 75.16 0.11 13.25 1.62 0.10 0.04 0.69 4.29 5.27 0.27 100.76 -0.76 

 Mean 75.23 0.08 13.19 1.61 0.10 0.03 0.70 4.24 5.16 0.32 100.58 -0.58 

 StDev 0.37 0.03 0.09 0.04 0.02 0.01 0.03 0.17 0.08 0.04 0.57 0.57 

 OldCrow_007 74.93 0.32 12.97 1.72 0.09 0.27 1.49 4.06 3.84 0.31 100.00 2.21 

 OldCrow_008 75.24 0.35 12.92 1.77 0.06 0.29 1.50 3.88 3.73 0.29 100.00 2.22 

 OldCrow_009 75.13 0.32 12.97 1.70 0.09 0.31 1.49 3.96 3.75 0.28 100.00 0.75 

 OldCrow_010 75.33 0.27 13.14 1.76 0.03 0.28 1.45 3.80 3.65 0.29 100.00 3.87 

 OldCrow_011 75.31 0.26 12.95 1.68 0.06 0.30 1.44 3.90 3.79 0.30 100.00 0.04 

 Mean 75.19 0.30 12.99 1.73 0.06 0.29 1.48 3.92 3.75 0.29 100.00 1.82 

 StDev 0.17 0.03 0.09 0.04 0.03 0.02 0.03 0.10 0.07 0.01 0.00 1.49 

              

set 3 ID3506_012 74.53 0.10 13.15 1.63 0.04 0.01 0.70 4.20 4.93 0.33 99.55 0.45 

 ID3506_013 74.64 0.09 13.31 1.63 0.04 0.03 0.69 4.59 5.12 0.34 100.41 -0.41 

 ID3506_014 74.26 0.10 13.12 1.66 0.09 0.04 0.67 4.06 5.14 0.32 99.40 0.60 

 ID3506_015 74.43 0.10 13.25 1.62 0.07 0.04 0.73 4.35 4.98 0.30 99.83 0.17 

 ID3506_016 74.47 0.08 13.27 1.59 0.06 0.03 0.70 4.38 5.15 0.33 100.00 0.00 

 ID3506_017 74.71 0.04 13.31 1.58 0.12 0.02 0.72 4.40 5.05 0.33 100.21 -0.21 

 Mean 74.51 0.09 13.24 1.62 0.07 0.03 0.70 4.33 5.06 0.33 99.90 0.10 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 StDev 0.16 0.02 0.08 0.03 0.03 0.01 0.02 0.18 0.09 0.01 0.39 0.39 

 OldCrow_012 75.06 0.37 13.10 1.72 0.06 0.30 1.48 3.80 3.81 0.30 100.00 3.82 

 OldCrow_013 75.20 0.29 12.98 1.77 0.05 0.31 1.51 3.75 3.81 0.32 100.00 3.54 

 OldCrow_014 74.97 0.28 13.16 1.69 0.08 0.29 1.54 3.86 3.84 0.29 100.00 3.96 

 OldCrow_015 75.17 0.30 13.15 1.70 0.08 0.25 1.48 3.95 3.63 0.29 100.00 3.67 

 OldCrow_016 75.26 0.39 12.98 1.78 0.03 0.25 1.51 3.75 3.77 0.28 100.00 5.03 

 OldCrow_017 74.93 0.31 13.06 1.66 0.05 0.34 1.48 4.17 3.71 0.29 100.00 4.38 

 Mean 75.10 0.32 13.07 1.72 0.06 0.29 1.50 3.88 3.76 0.30 100.00 4.07 

  StDev 0.13 0.04 0.08 0.05 0.02 0.03 0.02 0.16 0.08 0.01 0.00 0.55 

DAY 5              

set 1 ID3506_013 73.96 0.10 13.06 1.64 0.06 0.04 0.93 4.37 5.12 0.27 99.50 0.50 

 ID3506_014 73.79 0.04 12.91 1.65 0.08 0.03 0.94 4.22 5.06 0.37 99.00 1.00 

 ID3506_015 74.09 0.02 12.85 1.63 0.07 0.03 0.94 3.70 5.11 0.31 98.67 1.33 

 ID3506_016 73.78 0.09 13.05 1.60 0.06 0.06 0.94 3.95 5.02 0.34 98.82 1.19 

 Mean 73.90 0.06 12.97 1.63 0.06 0.04 0.94 4.06 5.08 0.32 99.00 1.00 

 StDev 0.15 0.04 0.11 0.02 0.01 0.01 0.00 0.29 0.05 0.04 0.36 0.36 

 OldCrow_011 75.19 0.34 13.16 1.80 0.05 0.30 1.54 3.63 3.78 0.28 100.00 5.74 

 OldCrow_012 75.23 0.35 13.08 1.71 0.02 0.33 1.47 4.01 3.60 0.25 100.00 5.32 

 OldCrow_014 74.96 0.32 13.16 1.71 0.06 0.31 1.52 4.07 3.67 0.29 100.00 5.54 

 Mean 75.13 0.34 13.13 1.74 0.05 0.31 1.51 3.90 3.68 0.27 100.00 5.54 

 StDev 0.15 0.01 0.04 0.05 0.02 0.02 0.04 0.24 0.09 0.02 0.00 0.21 

              

set 2 ID3506_017 74.32 0.09 12.82 1.56 0.08 0.07 0.92 4.42 5.28 0.32 99.80 0.20 

 ID3506_018 74.95 0.11 12.74 1.63 0.08 0.02 0.93 3.76 5.12 0.31 99.57 0.43 

 ID3506_019 74.41 0.11 12.93 1.46 0.06 0.04 0.94 3.70 5.14 0.32 99.04 0.96 

 ID3506_020 74.49 0.08 12.76 1.58 0.03 0.02 0.89 4.21 5.36 0.34 99.67 0.33 

 ID3506_021 74.45 0.11 12.99 1.51 0.06 0.07 0.89 4.11 5.21 0.34 99.65 0.35 

 ID3506_022 73.90 0.10 12.99 1.60 0.11 0.05 0.96 4.19 5.12 0.32 99.27 0.73 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 Mean 74.42 0.10 12.87 1.56 0.07 0.04 0.92 4.06 5.21 0.32 99.50 0.50 

 StDev 0.33 0.01 0.11 0.06 0.03 0.02 0.03 0.28 0.10 0.01 0.29 0.29 

 OldCrow_015 75.41 0.36 12.92 1.79 0.08 0.29 1.49 3.79 3.63 0.29 100.00 4.40 

 OldCrow_016 75.10 0.32 12.96 1.74 0.05 0.31 1.49 3.98 3.83 0.28 100.00 3.33 

 OldCrow_017 75.07 0.35 12.92 1.69 0.08 0.33 1.49 4.00 3.81 0.32 100.00 1.64 

 OldCrow_019 75.70 0.27 13.11 1.79 0.09 0.31 1.52 3.29 3.69 0.29 100.00 4.90 

 Mean 75.32 0.33 12.98 1.75 0.08 0.31 1.50 3.77 3.74 0.29 100.00 3.57 

  StDev 0.30 0.04 0.09 0.05 0.02 0.01 0.01 0.33 0.10 0.02 0.00 1.44 

DAY 6              

set 1 ID3506-15  73.49 0.06 12.90 1.57 0.09 0.01 0.72 3.77 5.19 0.32 98.03 1.97 

 ID3506-16  74.44 0.11 13.08 1.59 0.06 0.04 0.77 3.81 5.13 0.32 99.26 0.74 

 ID3506-17  73.37 0.04 12.96 1.50 0.05 0.05 0.74 3.92 5.28 0.31 98.15 1.85 

 ID3506-18  73.55 0.06 12.99 1.64 0.01 0.00 0.69 3.99 5.26 0.32 98.44 1.56 

 Mean 73.71 0.07 12.98 1.57 0.05 0.02 0.73 3.87 5.22 0.32 98.47 1.53 

 StDev 0.49 0.03 0.08 0.06 0.03 0.02 0.03 0.10 0.07 0.00 0.55 0.55 

 Old Crow-13  75.40 0.31 12.97 1.68 0.04 0.25 1.46 3.87 3.74 0.27 100.00 4.63 

 Old Crow-14  75.78 0.28 12.95 1.63 0.02 0.24 1.44 3.79 3.61 0.27 100.00 3.59 

 Old Crow-15  75.37 0.31 13.02 1.66 0.08 0.30 1.48 3.73 3.76 0.29 100.00 5.09 

 Old Crow-16  75.04 0.35 13.00 1.81 0.10 0.23 1.53 4.06 3.56 0.31 100.00 2.30 

 Old Crow-17  75.43 0.35 13.12 1.61 0.04 0.23 1.50 3.59 3.87 0.26 100.00 5.64 

 Mean 62.92 0.27 10.86 1.41 0.05 0.21 1.24 3.19 3.10 0.23 83.43 3.63 

 StDev 30.58 0.12 5.28 0.67 0.03 0.10 0.59 1.52 1.49 0.11 40.60 1.92 

              

set 2 ID3506-20  74.30 0.12 13.16 1.46 0.08 0.03 0.75 3.94 5.14 0.34 99.26 0.74 

 ID3506-21  73.74 0.07 12.77 1.58 0.07 0.04 0.71 3.80 5.14 0.35 98.19 1.81 

 ID3506-22  73.58 0.13 13.02 1.55 0.08 0.03 0.74 3.56 5.10 0.34 98.05 1.95 

 ID3506-23  74.07 0.07 13.13 1.46 0.09 0.03 0.70 3.82 5.22 0.26 98.80 1.20 

 ID3506-24  74.19 0.11 13.13 1.58 0.05 0.01 0.74 3.85 4.98 0.36 98.93 1.07 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 ID3506-25  73.64 0.15 13.04 1.61 0.04 0.02 0.72 3.89 5.10 0.31 98.46 1.54 

 Mean 73.92 0.11 13.04 1.54 0.07 0.03 0.73 3.81 5.11 0.33 98.61 1.39 

 StDev 0.31 0.03 0.14 0.07 0.02 0.01 0.02 0.13 0.08 0.04 0.46 0.46 

 Old Crow-18  75.38 0.43 13.03 1.71 0.07 0.25 1.50 3.61 3.77 0.26 100.00 5.06 

 Old Crow-19  75.43 0.32 13.06 1.68 0.08 0.22 1.51 3.66 3.78 0.27 100.00 3.80 

 Old Crow-20  75.03 0.34 13.18 1.72 0.07 0.25 1.51 3.83 3.76 0.31 100.00 4.83 

 Old Crow-21  75.70 0.23 12.98 1.73 0.00 0.25 1.47 3.54 3.82 0.26 100.00 5.35 

 Old Crow-22  75.24 0.31 13.14 1.76 0.09 0.26 1.44 3.75 3.72 0.29 100.00 4.44 

 Old Crow-23  75.40 0.30 12.99 1.67 0.10 0.24 1.45 3.83 3.74 0.27 100.00 5.98 

 Mean 75.36 0.32 13.06 1.71 0.07 0.25 1.48 3.70 3.76 0.28 100.00 4.91 

  StDev 0.22 0.06 0.08 0.03 0.04 0.02 0.03 0.12 0.03 0.02 0.00 0.75 

DAY 7              

set 1 ID3506-16  74.43 0.03 13.14 1.54 0.07 0.04 0.75 3.65 5.19 0.37 99.13 0.87 

 ID3506-17 74.34 0.05 13.13 1.53 0.06 0.00 0.75 3.97 5.07 0.31 99.15 0.85 

 ID3506-18 74.84 0.09 13.01 1.58 0.11 0.03 0.71 3.68 5.19 0.32 99.49 0.51 

 ID3506-19 74.76 0.07 12.95 1.66 0.09 0.03 0.73 3.82 5.20 0.34 99.56 0.44 

 ID3506-20 74.85 0.07 13.19 1.56 0.06 0.02 0.76 3.81 5.26 0.36 99.86 0.14 

 Mean 74.64 0.06 13.08 1.57 0.08 0.02 0.74 3.79 5.18 0.34 99.44 0.56 

 StDev 0.24 0.02 0.10 0.05 0.02 0.01 0.02 0.13 0.07 0.03 0.31 0.31 

 

SK Old 

Crow_16  75.05 0.31 13.11 1.72 0.05 0.28 1.44 3.92 3.82 0.30 100.00 5.16 

 

SK Old 

Crow_17  75.09 0.30 13.21 1.68 0.08 0.23 1.44 3.79 3.84 0.34 100.00 6.16 

 

SK Old 

Crow_18  75.35 0.29 13.30 1.68 0.07 0.20 1.38 3.62 3.87 0.26 100.00 7.16 

 

SK Old 

Crow_19  75.29 0.31 13.07 1.72 0.14 0.25 1.49 3.77 3.68 0.28 100.00 8.16 

 

SK Old 

Crow_20  75.46 0.38 12.98 1.59 0.06 0.26 1.46 3.82 3.68 0.29 100.00 9.16 

 Mean 75.25 0.32 13.13 1.68 0.08 0.24 1.44 3.78 3.78 0.29 100.00 7.16 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 StDev 0.17 0.03 0.12 0.05 0.04 0.03 0.04 0.11 0.09 0.03 0.00 1.58 

              

set 2 ID3506-21  74.19 0.10 12.96 1.57 0.05 0.03 0.72 3.85 5.20 0.32 98.91 1.09 

 ID3506-22  74.17 0.11 13.12 1.55 0.09 0.05 0.77 3.85 5.34 0.31 99.28 0.72 

 ID3506-23  74.47 0.08 12.91 1.59 0.05 0.05 0.73 3.61 5.10 0.28 98.81 1.19 

 ID3506-24  73.95 0.04 13.08 1.57 0.07 0.02 0.70 3.86 5.02 0.32 98.56 1.44 

 ID3506-25  74.57 0.04 12.95 1.72 0.04 0.05 0.72 3.92 5.07 0.31 99.33 0.67 

 ID3506-26  74.66 0.11 13.15 1.52 0.07 0.04 0.71 3.70 5.05 0.28 99.23 0.77 

 Mean 74.34 0.08 13.03 1.59 0.06 0.04 0.72 3.80 5.13 0.30 99.02 0.98 

 StDev 0.27 0.03 0.10 0.07 0.02 0.01 0.02 0.12 0.12 0.02 0.31 0.31 

 Old Crow-21  75.16 0.32 13.14 1.69 0.08 0.27 1.50 3.93 3.64 0.26 100.00 5.16 

 Old Crow-22  75.05 0.28 13.21 1.64 0.06 0.31 1.50 3.89 3.78 0.28 100.00 6.16 

 Old Crow-23  75.62 0.29 13.03 1.64 0.09 0.27 1.48 3.65 3.70 0.24 100.00 7.16 

 Old Crow-24  75.62 0.30 12.98 1.63 0.05 0.23 1.40 3.88 3.65 0.26 100.00 8.16 

 Old Crow-25  74.96 0.32 13.28 1.64 0.04 0.25 1.46 3.99 3.79 0.26 100.00 9.16 

 Old Crow-26  75.14 0.28 13.13 1.69 0.11 0.27 1.46 3.91 3.73 0.27 100.00 10.16 

 Mean 75.26 0.30 13.13 1.66 0.07 0.27 1.47 3.88 3.72 0.26 100.00 7.66 

  StDev 0.29 0.02 0.11 0.03 0.03 0.03 0.04 0.12 0.06 0.01 0.00 1.87 

DAY 8              

set 1 ID3506_011 74.65 0.05 13.22 1.56 0.07 0.06 0.71 4.15 5.25 0.33 99.97 0.03 

 ID3506_012 74.55 0.11 13.11 1.58 0.08 0.04 0.73 4.00 5.19 0.37 99.68 0.32 

 ID3506_013 74.50 0.05 12.92 1.70 0.08 0.03 0.76 3.78 5.35 0.37 99.46 0.54 

 ID3506_014 74.20 0.08 13.24 1.61 0.11 0.06 0.75 4.19 5.12 0.33 99.61 0.39 

 Mean 74.47 0.07 13.12 1.61 0.08 0.05 0.74 4.03 5.23 0.35 99.68 0.32 

 StDev 0.19 0.03 0.14 0.06 0.02 0.01 0.02 0.19 0.10 0.02 0.21 0.21 

 OldCrow_007 75.66 0.33 12.90 1.71 0.02 0.28 1.41 3.78 3.70 0.27 100.00 2.66 

 OldCrow_008 75.37 0.27 13.13 1.75 0.07 0.25 1.41 3.84 3.68 0.29 100.00 2.71 

 OldCrow_009 75.54 0.31 12.98 1.72 0.07 0.30 1.46 3.70 3.70 0.27 100.00 2.64 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OldCrow_010 75.29 0.32 13.15 1.72 0.06 0.28 1.52 3.76 3.69 0.26 100.00 5.09 

 Mean 75.47 0.31 13.04 1.73 0.06 0.28 1.45 3.77 3.69 0.27 100.00 3.27 

 StDev 0.17 0.03 0.12 0.02 0.02 0.02 0.05 0.06 0.01 0.01 0.00 1.21 

              

set 2 ID3506_015 73.43 0.12 12.95 1.49 0.05 0.04 0.73 3.95 5.14 0.33 98.16 1.84 

 ID3506_016 73.27 0.08 12.89 1.51 0.11 0.01 0.73 4.16 5.11 0.31 98.10 1.90 

 ID3506_017 73.28 0.05 12.94 1.60 0.00 0.04 0.73 4.07 5.18 0.32 98.14 1.86 

 ID3506_018 72.82 0.07 12.93 1.56 0.03 0.04 0.71 3.97 5.10 0.28 97.44 2.56 

 ID3506_019 73.13 0.02 12.93 1.58 0.03 0.02 0.69 4.05 5.27 0.35 97.98 2.03 

 ID3506_020 73.76 0.07 12.91 1.50 0.06 0.04 0.71 3.96 5.28 0.31 98.53 1.47 

 Mean 73.28 0.07 12.93 1.54 0.05 0.03 0.72 4.03 5.18 0.31 98.06 1.94 

 StDev 0.31 0.03 0.02 0.05 0.04 0.01 0.02 0.08 0.08 0.02 0.36 0.36 

 OldCrow_011 75.27 0.35 13.01 1.71 0.09 0.25 1.51 3.82 3.76 0.30 100.00 3.97 

 OldCrow_012 75.08 0.35 12.98 1.72 0.08 0.30 1.48 3.98 3.81 0.29 100.00 3.85 

 OldCrow_013 74.99 0.32 13.11 1.81 0.04 0.29 1.53 3.91 3.78 0.28 100.00 3.74 

 OldCrow_014 75.17 0.31 13.11 1.72 0.04 0.28 1.48 3.96 3.72 0.28 100.00 2.95 

 Mean 75.13 0.33 13.05 1.74 0.06 0.28 1.50 3.92 3.77 0.29 100.00 3.63 

  StDev 0.12 0.02 0.06 0.04 0.03 0.02 0.03 0.07 0.04 0.01 0.00 0.46 

DAY 9              

set 1 ID3506-12  73.33 0.09 13.22 1.57 0.07 0.03 0.70 3.99 5.12 0.36 98.40 1.60 

 ID3506-13  73.17 0.07 13.36 1.65 0.09 0.03 0.70 4.06 5.06 0.32 98.46 1.54 

 ID3506-14  73.48 0.09 13.33 1.60 0.12 0.00 0.72 3.95 4.91 0.34 98.46 1.54 

 ID3506-15  73.62 0.07 13.52 1.55 0.06 0.01 0.73 3.93 5.01 0.34 98.76 1.24 

 ID3506-16  74.08 0.05 13.37 1.57 0.07 0.04 0.74 3.79 5.19 0.39 99.20 0.80 

 Mean 73.54 0.08 13.36 1.59 0.08 0.02 0.72 3.94 5.06 0.35 98.66 1.34 

 StDev 0.35 0.02 0.11 0.04 0.02 0.02 0.02 0.10 0.11 0.03 0.33 0.33 

 OCt-6 75.05 0.24 13.24 1.68 0.12 0.24 1.50 3.98 3.69 0.26 100.00 2.50 

 OCt-7 74.83 0.30 13.30 1.69 0.09 0.29 1.50 3.95 3.74 0.31 100.00 4.21 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 OCt-8 75.13 0.33 13.30 1.63 0.07 0.24 1.50 3.66 3.92 0.22 100.00 5.54 

 OCt-9 75.27 0.27 13.17 1.76 0.06 0.29 1.47 3.74 3.67 0.30 100.00 2.31 

 OCt-10 75.04 0.38 13.12 1.67 0.05 0.26 1.47 3.98 3.73 0.30 100.00 2.96 

 Mean 75.06 0.31 13.22 1.69 0.08 0.26 1.49 3.86 3.75 0.28 100.00 3.50 

 StDev 0.16 0.06 0.08 0.05 0.03 0.03 0.02 0.15 0.10 0.04 0.00 1.36 

              

set 2 ID3506-17  73.15 0.07 12.93 1.58 0.10 0.02 0.71 3.94 5.09 0.36 97.87 2.13 

 ID3506-18  73.43 0.13 12.98 1.58 0.08 0.01 0.70 3.95 5.08 0.39 98.25 1.75 

 ID3506-19  73.08 0.10 13.18 1.56 0.07 0.02 0.72 3.88 5.03 0.30 97.87 2.13 

 ID3506-20  73.13 0.09 13.25 1.47 0.05 0.02 0.70 3.82 5.16 0.31 97.94 2.06 

 ID3506-21  73.25 0.09 13.21 1.55 0.02 0.00 0.72 4.06 5.08 0.35 98.26 1.74 

 Mean 73.21 0.10 13.11 1.55 0.06 0.02 0.71 3.93 5.09 0.34 98.04 1.96 

 StDev 0.14 0.02 0.14 0.05 0.03 0.01 0.01 0.09 0.05 0.04 0.20 0.20 

 OCt-11 75.28 0.34 13.22 1.68 0.10 0.24 1.47 3.69 3.68 0.30 100.00 5.58 

 OCt-12 75.12 0.33 13.07 1.70 0.00 0.23 1.50 3.88 3.87 0.30 100.00 4.08 

 OCt-13 75.35 0.23 13.06 1.72 0.03 0.28 1.46 3.84 3.79 0.26 100.00 4.98 

 OCt-14 75.50 0.28 13.02 1.75 0.06 0.25 1.48 3.77 3.63 0.26 100.00 3.10 

 OCt-15 75.72 0.27 13.20 1.70 0.04 0.25 1.46 3.29 3.79 0.29 100.00 3.74 

 Mean 75.39 0.29 13.11 1.71 0.04 0.25 1.47 3.69 3.75 0.28 100.00 4.29 

 StDev 0.23 0.05 0.09 0.03 0.04 0.02 0.02 0.24 0.10 0.02 0.00 0.99 

              

set 3 ID3506-22  73.46 0.10 13.17 1.47 0.13 0.03 0.71 3.81 5.19 0.32 98.32 1.68 

 ID3506-23  73.13 0.06 13.00 1.69 0.09 0.06 0.66 4.00 5.08 0.35 98.03 1.97 

 ID3506-24  73.27 0.11 13.13 1.61 0.11 0.06 0.71 3.87 5.05 0.31 98.16 1.84 

 ID3506-25  73.40 0.01 13.19 1.53 0.05 0.02 0.71 4.02 4.97 0.32 98.14 1.86 

 ID3506-26  73.23 0.03 13.24 1.52 0.02 0.02 0.70 3.94 5.06 0.32 98.01 1.99 

 ID3506-27  74.30 0.09 13.22 1.58 0.08 0.03 0.70 4.04 5.19 0.36 99.51 0.49 

 Mean 73.47 0.07 13.16 1.57 0.08 0.04 0.70 3.95 5.09 0.33 98.36 1.64 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 StDev 0.42 0.04 0.09 0.08 0.04 0.02 0.02 0.09 0.08 0.02 0.57 0.57 

 OCt-16 75.40 0.29 13.20 1.65 0.07 0.26 1.46 3.70 3.72 0.25 100.00 4.61 

 OCt-17 75.28 0.31 13.08 1.67 0.07 0.24 1.48 3.74 3.87 0.26 100.00 4.29 

 OCt-18 75.02 0.30 13.17 1.78 0.11 0.28 1.50 3.68 3.86 0.30 100.00 4.84 

 OCt-19 75.24 0.30 12.98 1.69 0.08 0.22 1.46 3.92 3.81 0.30 100.00 0.63 

 OCt-20 75.39 0.26 13.17 1.61 0.03 0.29 1.51 3.89 3.57 0.27 100.00 4.40 

 OCt-21 75.17 0.30 12.92 1.67 0.05 0.32 1.54 3.85 3.87 0.30 100.00 4.87 

 Mean 75.25 0.29 13.09 1.68 0.07 0.27 1.49 3.80 3.78 0.28 100.00 3.94 

  StDev 0.14 0.02 0.11 0.06 0.03 0.04 0.03 0.10 0.12 0.02 0.00 1.64 

DAY 10              

set 1 ID3506_007 74.60 0.08 13.30 1.62 0.07 0.03 0.73 3.98 5.33 0.32 100.00 0.32 

 ID3506_008 74.61 0.09 13.22 1.65 0.06 0.05 0.73 4.09 5.21 0.37 100.00 0.59 

 ID3506_009 74.72 0.13 13.12 1.66 0.10 0.03 0.71 4.04 5.21 0.34 100.00 0.26 

 ID3506_010 74.69 0.05 13.28 1.63 0.08 0.05 0.71 4.06 5.19 0.31 100.00 0.27 

 Mean 74.66 0.09 13.23 1.64 0.08 0.04 0.72 4.04 5.24 0.34 100.00 0.36 

 StDev 0.06 0.03 0.08 0.02 0.02 0.01 0.01 0.05 0.07 0.03 0.00 0.16 

              

 OldCrow_007 75.66 0.33 12.90 1.71 0.02 0.28 1.41 3.78 3.70 0.27 100.00 2.66 

 OldCrow_008 75.37 0.27 13.13 1.75 0.07 0.25 1.41 3.84 3.68 0.29 100.00 2.71 

 OldCrow_009 75.54 0.31 12.98 1.72 0.07 0.30 1.46 3.70 3.70 0.27 100.00 2.64 

 OldCrow_010 75.29 0.32 13.15 1.72 0.06 0.28 1.52 3.76 3.69 0.26 100.00 5.09 

 Mean 75.47 0.31 13.04 1.73 0.06 0.28 1.45 3.77 3.69 0.27 100.00 3.27 

 StDev 0.17 0.03 0.12 0.02 0.02 0.02 0.05 0.06 0.01 0.01 0.00 1.21 

              

set 2 ID3506_011 74.67 0.05 13.22 1.56 0.07 0.06 0.71 4.15 5.25 0.33 100.00 0.03 

 ID3506_012 74.78 0.11 13.15 1.59 0.08 0.04 0.74 4.01 5.21 0.37 100.00 0.32 

 ID3506_013 74.90 0.05 12.99 1.71 0.09 0.03 0.76 3.80 5.38 0.37 100.00 0.54 

 ID3506_014 74.49 0.08 13.29 1.61 0.11 0.06 0.75 4.21 5.14 0.33 100.00 0.39 
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Day/set Sample 

   

SiO2   

   

TiO2   

   

Al2O3  

   

FeOt    

   

MnO    

   

MgO    

   

CaO    

   

Na2O   

   

K2O       Cl     

  

Total   H2Odiff 

 Mean 74.71 0.07 13.17 1.62 0.09 0.05 0.74 4.04 5.24 0.35 100.00 0.32 

 StDev 0.17 0.03 0.13 0.06 0.02 0.01 0.02 0.18 0.10 0.02 0.00 0.21 

              

 OldCrow_011 75.27 0.35 13.01 1.71 0.09 0.25 1.51 3.82 3.76 0.30 100.00 3.97 

 OldCrow_012 75.08 0.35 12.98 1.72 0.08 0.30 1.48 3.98 3.81 0.29 100.00 3.85 

 OldCrow_013 74.99 0.32 13.11 1.81 0.04 0.29 1.53 3.91 3.78 0.28 100.00 3.74 

 OldCrow_014 75.17 0.31 13.11 1.72 0.04 0.28 1.48 3.96 3.72 0.28 100.00 2.95 

 Mean 75.13 0.33 13.05 1.74 0.06 0.28 1.50 3.92 3.77 0.29 100.00 3.63 

 StDev 0.12 0.02 0.06 0.04 0.03 0.02 0.03 0.07 0.04 0.01 0.00 0.46 
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Figure C.4. Sample stratigraphy from Eklutna Lake core localities 1 and 2 

 

Sample stratigraphy and magnetic susceptibility (MS) from Eklutna Lake core localities 1 and 2 

(as indicated on the inset map). These two cores collectively contain all the tephra examined in 

this study, although the data are from all the cores indicated on the map. Red italicized “tephra” 

were sampled and analyzed but are comprised of multiple populations and/or detrital glass, thus 

are not interpreted as primary deposits. Only core 1 contains the older tephra sequence. Figure 

elements and data adapted from Boes et al. (2018) and Fortin et al. (2019). 
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Appendix D   

Models D.1. Archived final R models. 

The trained machine learning models, informed by the entire training dataset, are available 

for download at the following URL. 

https://doi.org/10.7910/DVN/ANQZKI 

https://doi.org/10.7910/DVN/ANQZKI

