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ABSTRACT
Github is a very popular collaborative software-development
platform that provides typical source-code management and
issue tracking features augmented by strong social-networking
features such as following developers and watching projects.
These features help “spread the word” about individuals and
projects, building the reputation of the former and increasing
the popularity of the latter. In this paper, we investigate
the relation between project popularity and regular, consis-
tent documentation updates. We found strong indicators
that consistently popular projects exhibited consistent docu-
mentation effort and that this effort tended to attract more
documentation collaborators. We also found that frameworks
required more documentation effort than libraries to achieve
similar adoption success, especially in the initial phase.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics— Process metrics

General Terms
Documentation, Human factors

Keywords
Documentation Change, Popularity, Cross Correlation

1. INTRODUCTION
Recently, we have been witnessing the emergence and in-

creased adoption of on-line collaborative software-development
platforms, such as SourceForge, GitHub, and Google Code, to
mention a few. GitHub, based on the Git version-control sys-
tem, affords software-development support (including source
control and issue tracking) but also social interactions. For
example, in addition to forking code repositories and merg-
ing local branches to the master branch with pull requests,
GitHub members can follow other members and subscribe to
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project repositories to watch/star gaze them. These features
distinguish GitHub from conventional repository-hosting plat-
forms, in that they enable a much richer set of interactions
among the community members that has a pronounced effect
on the repositories [1].

In this paper, we study the effect of these social interactions
on project documentation. We examined the projects within
the MSR’14 data-set [3], which is a representative data-set
of projects from different programming languages, to answer
following questions:

RQ1: How does the popularity of a project correlate with its
documentation?

RQ2: Do different types of projects exhibit different doc-
umentation-evolution behaviours?

In the rest of our paper, we place our work in the context
of related studies (Section 2); describe our methodology
(Section 3) and findings (Section 4) and we conclude with a
summary and some ideas for future work (Section 5).

2. RELATED WORKS
To the best of our knowledge, the interplay between project

popularity and software documentation has not yet been stud-
ied on social development platforms like Github. However,
there has been substantial interest in how social features
enhance collaborative software development in general.

Early on, Storey et al.[6] suggested a number of research
questions on interactions between the software development
process and the social aspects offered by these platforms,
including the interplay between traditional project docu-
mentation and informal information sharing through social
media.

Lee et al.[4] discussed the effect of Rockstar users to the
project popularity. Rockstar users have a large number of
followers and are thought of as being particularly skilled;
their reputation may possibly attract more attention to their
projects. The study found that pull requests by Rockstar

developers induces follower activity. Hence, pull requests can
be through of as an important indicator of project popularity.

Dabbish et al.[1] explored the effects of transparency in
GitHub, as a result of following and watching activities. They
surveyed a group of 24 Github developers with different
motivations of participation on Github. They found that
developers make lot of inferences about projects from the
social activity, like liveliness by the commit activity; the
owner’s activeness in the way the pull requests are handled;
and most importantly, the project’s popularity by the fork
and watcher count.



Dagenais et.al.[2] conducted a study on the evolution of the
project documentation, by surveying 22 developers working
on a variety of open-source projects, including applications,
libraries, and/or frameworks. They found that documenta-
tion evolves in three steps: initial effort, incremental changes,
and change bursts. For library projects, the initial documen-
tation phase was difficult, and the documentation evolved
as the requirements became clearer and the library became
more popular. Framework projects required more initial
documentation effort (as frameworks require their users to
compose many parts together). Irrespective of the project
type, the initial effort invested in documentation plays an
important role in project popularity, especially in attracting
users from competing projects.

Shi et al.[5], studied the API documentation evolution,
concluding that API documentation change is quite differ-
ent across the versions with documentation change being
proportional to the difference between version numbers.

In this paper, we look at the evolution with respect to
time, as opposed to the release versions. We use the terms
repository and project interchangeably in this paper.

3. METHODOLOGY
In this section, we first describe the metrics we defined as

measures of documentation evolution and project popularity;
next, discuss our data-collection and analysis methodology.

3.1 Metrics
We define the Change and Popularity metrics to empirically

analyze our questions defined in Section 1. These metrics
are defined per month.

Documentation Change.
We assume that documentation, considering only non-code

documentation, is contained within these file types (matched
by extension): pdf, txt, md, jpg , png, ps and mp4(most of
mp4’s were tutorials).

In devising a documentation-change metric, we had to take
into account not only the size of the change (number of lines
changed) but also the frequency of changes, as an indication
of the contributor activity, and how central documentation
maintenance is considered in the project. We define the
documentation-change (per month) metric as:

Change = N log(

N∑
i=1

ci + 1) (1)
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Figure 1: Vertical axis shows the cross-correlation
between the popularity and documentation change
while the horizontal axis shows the number of
projects

Here, N is the total number of files changed, ci is the net
change per file, i.e. number of lines added minus the number
of lines deleted from the file. We choose net change because
of the way Github counts the deletions and additions; even
reordering the phrases is counted as one addition and one
deletion, and skews the data. We took the log to make
the value range comparable to the popularity metric and
multiplied by N to take into effect of frequency of change.

Popularity.
Inspired by the work of Dabbish et al.[1] who found that

developers perceive number of forks and watchers as an
indicator of project popularity, we defined project popularity
as follows:

Popularity = (#Stars) + (#Forks) + (#Pulls)2 (2)

We also added a term for the pull requests as since Dabbish
et al. [1] and Lee et al. [4] conclude that pull requests are
an important indicator of the activity and popularity of a
project.

3.2 The Data Set
Our data set is based on the MSR’14 Mining Challenge

data set [3] which has 90 projects extracted from Github.
We obtained the commits, forks, watchers and pull requests
for these selected 90 projects. We obtained the individual
file commits with commit timestamps, and number of lines
added and deleted, resulting in about 5 million entries. We
also collected 76 000 forks and 300 000 watchers.

On this data-set, we first calculated the documentation-
change metrics per month per project while filtering log files.
Next, we calculated the project code size for every month
by considering the code files. We control against size in our
linear regression analysis in Section 4.1. Next, we calculated
the project popularity per month. Finally, we constructed
a super joined data-set containing the monthly popularity,
change and size for each project. Project maturity varied
between 2 months to 10 years.

3.3 Approach
To argue that documentation matters with respect to pop-

ularity we have to show their relationship. We chose to
correlate the time-series of popularity with the time series
of documentation change. If popularity matters, then after
an increase in popularity we should see a consistent docu-
mentation change. Thus in order to evaluate RQ1,that is
to establish the similarity between the two time series,we
use cross correlation - the correlation with lag between two
time-series, and is defined as:

ρcross = arg max
τ

ρ(Changet+τ , Popularityt) (3)

where, τ is the time lag for the popularity to have its ef-
fect onto documentation which might vary across a project’s
lifetime. Furthermore, it might be affected by external fac-
tors such as blog posts or marketing. ρcross is maximum
correlation value obtained from 1 ≤ τ ≤ 11.

When evaluating RQ1 we consider only those projects
which are at least one year old, and where most tuples of
(Changet+τ , Popularityt) are not zero (0,0). If we do not
filter out projects with many zero measurements then due to
ties we will get very high correlations. Initially, most projects
do not have much documentation change or popularity. This
leaves us with 48 projects out of 90.



4. ANALYSES AND FINDINGS
This section discusses the findings of our exploration of the

research questions identified in Section 1 using the method-
ology discussed in the previous section.

4.1 RQ1:How does project popularity corre-
late with project documentation?

We use cross-correlation analysis, as discussed in Section
3.3, on the resultant data-set of 48 projects. As we can see
in Figure 1, most projects show a positive correlation. Out
of 48 projects, 7 projects had negative correlation, while 12
projects show correlation between 0 and 0.3; the remaining
29 projects have correlations greater than 0.3.

In order to control for size, we used the project size in our
linear regression model. Popularity and size were independent
variables regressing on the dependent variable of the future
documentation change. We concluded that size does not
have any effect on these two variables as it had negligible
coefficients with insignificant p-values > 0.05 for 75% of the
projects. 35% of the project had models where popularity was

significant, but for more than 80% of the project models the
sign of popularity’s coefficient was stable. The reverse model
of change inducing popularity had even less significant results
and less coefficient stability. This provides evidence that
popularity induces documentation change for some projects.

Careful inspection of the negative-correlation projects re-
vealed cases such as mbostock/d3 that had many pull requests
pending from as long as 2 years and issues pending for 3
years. High positive correlation projects, except for face-

book/folly which had correlation near 1, tended to have a
good track record of resolving issues and merging the pull
requests. folly had high correlation because it had a point
where popularity and changes peaked, after that the project
had very sporadic activity and popularity.

This observation led us to divide the projects in two cate-
gories: those having a sporadic popularity and those with a
consistent popularity. The former category includes project
whose popularity metric has occasional bursts of high val-
ues for a short time but is zero for the major part of the
project life-cycle. We manually categorized projects into
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(a) Documentation Activity (Left) and Change vs Popularity graph(Right) for Node
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(c) Documentation Activity (Left) and Change vs Popularity graph(Right) for akka
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(e) Documentation Activity (Left) and Change vs Popularity graph(Right) for MaNGOS

Figure 2: Left Plot shows the commit average documentation commit activity per day (over a window of 30
days) per each author on the y-axis while Right Plot shows the ln(Change) vs. ln(Popularity) with respect
to project timeline on the x-axis



the consistency and sporadically popular categories and we
found that the projects having the sporadic popularity were
at the bottom of the cross-correlation graph, whereas the
projects having consistent popularity had positive cross-
correlation. However, there were notable exceptions, like
facebook/folly, which had inconsistent activity but it fea-
tures at the top of the graph. Out of 11 projects identified
as sporadically popular, we find 7 at the bottom, 1 in the
middle and 3 at the top range as identified in Figure 1. The
three at the top exhibit a similar behaviour to folly.

Furthermore, the collaborators who were active in the doc-
umentation are quite different in the two groups. The consis-
tent projects tend to have more collaborators who had some
contribution to the documentation. For example, to show
the disparity, let’s consider two projects: mbostock/d3

(sporadic activity) and joyent/node (consistent activity),
with cross-correlations of −0.13 and 0.69, respectively. While
d3 has only one contributor to the documentation, spread
across 10 distinct days of a documentation commits, node
has 64 distinct collaborators having at least one documen-
tation commit, spread across 370 days. Both projects have
a similar number of forks and watchers of around 25000, as
well as similar non-documentation commit activity. We show
in Figure 2a and 2b, the contrast in the activity of these
projects: choosen and node respectively, having correlation
of −0.075 and 0.69. We can see choosen has less activity
and fewer collaborators than node.

From the above analysis, we can see that there is a clear
relationship between the popularity and the documentation
effort: consistently popular projects exhibit higher (and more
consistent) documentation activities and efforts.

4.2 RQ2: Do different project types differ in
their documentation?

Intrigued by the conclusions of Dagenais et al. [2], we
examined if and how documentation behaviours differ across
different project types, i.e., frameworks and libraries. Study-
ing the materials available on the project web sites, we
manually categorized the projects in our data set in three
types: 15 projects were clearly identified as frameworks, 12
as libraries and rest, 21 as neither. Frameworks had a mean
cross-correlation of 0.35, libraries 0.352 and the third group
0.29.

Let us consider two specific projects to see the difference
between libraries and frameworks, if any — akka and Trini-

tyCore: the former is a library/API project and the latter is
a framework project. akka and TrinityCore were chosen for
their maturity of greater than 4 years. We found that most
library projects followed a pattern similar to Figure 2c right
graph, showing the popularity vs. documentation change
over time for the akka project. As can be seen from the graph,
there is very small initial documentation addition, that starts
growing as the project’s popularity shows a consistent uptick
after the project life-cycle midpoint. It is quite interesting to
see that both lines trace each other with a lot of similarity.
Similarly, we found that most framework projects followed a
pattern similar to Figure 2d right graph for the TrinityCore

project. As we can see, there is already a lot of documenta-
tion before the popularity of the repository increases. This
is required in order to document and compose the various
libraries used by the framework. The graph for the third

category is shown in 2e, for the Mangos project. The graph
is included simply for illustrative purposes in comparison to
the other two, as there is no consistent pattern in this group.

Hence, we can say that there is an strong indication that
library projects require less initial documentation than the
frameworks as suggested by Dagenais et al. [2].

4.3 Threats to Validity
There are two types of threats to the validity of our findings.

Internal validity is threatened by the choice of month as
the unit of time, whereas it was possible to have smaller
measurement units like weeks. In addition, the selection of
projects that have at least 50 percent non-zero data points
could possibly have led to filtering out projects that were
important. Our change and popularity metrics could affect
the construct validity of the study. The external validity
of our study is threatened by the choice of the projects in
the MSR’14 data-set. We could mitigate this by considering
more projects that have not been covered in the data-set.

5. CONCLUSIONS AND FUTURE WORK
In this study, we investigate the relationship between

project popularity and changes in its documentation. Based
on the results reported in Section 4.1 to answer RQ1, we can
conclude that popularity does help in the evolution of the
project documentation on GitHub. People read the code,
contribute to it in the form of pull requests and issues, which
in turn prompts the documentation to be changed, at least
for the consistently popular projects.

So in conclusion, consistent popularity attracts consistent
work on documentation. This evolution is different in differ-
ent project types: library projects need less documentation
effort initially than framework projects, but as they gain
popularity, frequent changes have to be made to their docu-
mentation, reaffirming the conclusions of Dagenais et al. [2]
on GitHub.

However, many questions still remain unanswered, includ-
ing whether or not documentation quality improves over time
and whether a project can become more competitive based
on the consistency and quality of its documentation.
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