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Abstract

A type-based alias analysis uses the types of variables in a program to assist in determining

the alias relations of those variables. The C standard restricts the types of expressions

that may access objects in memory, with the intent of specifying when two objects may

be aliased. In practice, however, many C programs do not conform to these restrictions,

making type-based alias analysis unsound for those programs. As a result, type-based alias

analysis is frequently disabled.

This thesis presents SafeType, a sound approach for compile-time detection of violations

of the C standard’s type-based restrictions on memory access; describes an implementation

of SafeType in the IBM XL C compiler, with flow- and context-sensitive queries to handle

variables with type void *; evaluates that implementation, showing that it scales to pro-

grams with hundreds of thousands of lines of code; and identifies a previously unreported

violation in the 470.lbm benchmark in SPEC CPU2006.
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Chapter 1

Introduction

Alias analysis is a static program analysis that is used at compile time to determine whether

expressions may refer, at runtime, to the same memory location. Alias analysis is essential

to enable many program transformations, and to widen the scope of many others. With-

out aliasing information (or its close relative, points-to information), the effects of indirect

memory operations must be conservatively approximated, leading to missed opportunities

for transformation. Thus, accurate aliasing information improves the precision of later anal-

yses and transformations, which in turn improves the quality of the compiled code.

One form of alias analysis is type-based alias analysis. Type-based alias analysis relies

on the idea that memory references with different types should not alias. For example,

consider the code in Listing 1.1. An optimizing compiler may wish to eliminate a load by

rewriting the call to bar in line 5 as bar(1), using the constant value 1 assigned to a in line

3. This transformation is only safe if the assignment in line 4 does not affect the value of a.

Can b point to a? Intuitively, if the type of b is int *, then b can point to a. If the type

of b is some other type, such as double *, that is not compatible with int, then b cannot

point to a, and it is safe to rewrite the call to bar.

Listing 1.1: Type-Based Alias Analysis
1 i n t a ;
2 void foo ( ∗ b) {
3 a = 1 ;
4 ∗b = 2 ;
5 bar ( a ) ;
6 }

To formalize this intuition, the C standard (in section 6.5p7) imposes type-based re-

strictions on memory access [17]. Objects in memory have types; if an object is accessed

using an expression with a type that does not conform to the restrictions, the behaviour

of the program is undefined. These restrictions are explicitly included in the C standard

to enable type-based alias analysis. The C standard imposes no requirements on undefined

behaviour. A compiler is therefore permitted to ignore accesses to memory that violate
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these type-based restrictions, and to assume that such accesses do not exist. In this way,

the C standard’s type-based restrictions on memory access enable the compiler to use a

type-based alias analysis to prove that expressions of different types do not alias.

Unfortunately, in practice, many C programs do not conform to the C standard with

respect to type-based restrictions on memory access, and still expect a compiler to generate

functional code. In some cases, the existence and identity of violations is known. For

example, in the SPEC CPU2006 benchmark suite, the list of known portability issues for

the 400.perlbench benchmark includes the following warning:

There are some known aliasing issues. The internal data structures that repre-

sent Perl’s variables are accessed in such as a way as to violate ANSI aliasing

rules. Compilation with optimizations that rely on strict compliance to ANSI C

aliasing rules will most likely produce binaries that will not validate.

Similarly, prior to Python 3, the reference implementation of Python used a representation

of Python objects that violated aliasing rules [27]. In both of these cases, the existence of

violations was known. However, there are other cases in which the presence of violations is

uncertain. Violations may occur due to programmer error, or ignorance of the restrictions.

Violations may also occur in legacy programs written prior to the creation of the C standard.

In many cases, the effort required to rewrite those programs to be compliant is prohibitive.

This obstacle is particularly relevant for the largest and most important code-bases.

When applied to programs that violate the C standard’s type-based restrictions, type-

based alias analysis is unsafe. Its use may unintentionally alter program semantics, leading

to the introduction of difficult-to-diagnose bugs. One example, reported by Reinig, comes

from the 176.gcc benchmark in SPEC CPU1995. In one function, 176.gcc clears the

contents of a structure by casting the structure to an array of int and assigning 0 to each

element of the array. Because an array of int cannot be legally aliased to an arbitrary

structure, the DEC C/C++ compiler undertook a series of seemingly valid transformations

that left uninitialized data in the structure[28].

Bugs introduced by unsafe type-based alias analysis can be difficult to diagnose and

correct. An incorrect alias analysis is not harmful on its own; a bug is only introduced when

incorrect alias information is used to enable a code transformation that alters program

semantics. Thus, the set of bugs that may be introduced by unsafe type-based alias analysis

is highly sensitive to small changes in a program, or in the set of transformations applied to

that program. As a result, type-based alias analysis is frequently turned off. This situation

is unfortunate. Even in non-standard-compliant programs where type-based alias analysis

is unsafe, there remain many aliasing situations where type-based alias could provide useful

information.

It is therefore useful to be able to automatically identify code that may violate the C
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standard’s type-based restrictions. If code that violates the standard can be isolated, it

becomes possible to make informed decisions about when to use type-based alias analysis.

Furthermore, it also becomes possible to identify the code changes that must be made to

ensure that type-based alias analysis can be safely applied to a program.

Chapter 2 gives background information on alias analysis. Chapter 3 presents a formal

definition of the problem of identifying violations, and introduces a static analysis, SafeType,

that soundly identifies such violations. Chapter 4 describes a prototype implementation of

SafeType, including the flow-sensitive and context-sensitive extensions necessary to safely

and precisely analyze variables of type void *. Chapter 5 evaluates a prototype imple-

mentation of SafeType, demonstrates that it scales to programs of hundreds of thousands of

lines of code, and identifies a previously unreported violation of the C standard’s type-based

restrictions on memory access in the 470.lbm benchmark from SPEC CPU2006. Chapter 6

describes related work on points-to analysis and safety analysis for C. Chapter 7 presents

the conclusions of the thesis.
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Chapter 2

Background

This chapter presents background information. Section 2.1 presents the history of type-

based alias analysis. Section 2.2 describes fundamental concepts underlying alias analysis

in C. Section 2.3 introduces operational semantics.

2.1 Type-Based Alias Analysis

Although the idea of type-based alias analysis has been mentioned in passing for decades [4],

the first publication to present an algorithm or evaluate the benefits of type-based alias

analysis was an implementation for Modula by Diwan et al. [7]. They present three versions

of the analysis. The first version is purely type-based: two memory references may alias if

and only if they have the same declared type, or if the declared type of one is a subtype of the

declared type of the other. The second version improves the precision of the analysis using

additional high-level information: for example, whether the address of a variable is ever

taken. The third version uses a flow-insensitive algorithm to exclude aliases between a type

T and a subtype S of T unless a statement assigns a reference of subtype S to a reference

of type T . Each of the three versions is evaluated as the only alias analysis in a Modula

compiler. All three algorithms are flow-insensitive, context-insensitive, and field-sensitive.

The first implementation of type-based alias analysis for C to be described in the lit-

erature is by Reinig for the DEC C and DIGITAL C++ compilers [28], The DEC imple-

mentation operates on each function independently and creates a set of effects classes

and associated effects signatures. Each effects class represents a set of memory lo-

cations or a type. Every memory access in the analyzed function is assigned to an effects

class. The effects signature for an effects class is a set of other effects classes.

The effects signatures are constructed such that if two memory assignments may refer

to the same location in memory, then the intersection of the effects signatures of their

respective effects classes must be non-null. This approach allows the DEC compiler

to efficiently represent both type-based alias analysis and structural aliasing. Like Diwan’s
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analysis, this analysis is flow-insensitive, context-insensitive, and field-sensitive.

Although no paper was published, gcc introduced type-based alias analysis in the same

time period as the DEC compiler [10]. In gcc’s implementation, alias information pro-

duced by the C front end based on the type assigned to an object by the programmer was

propagated into the optimization passes. This information was used in conjunction with

a pre-existing “base address” alias analysis, which eliminated a different set of impossible

alias pairs. The combination of the two analyses was more precise than either analysis

independently.

Type-based alias analysis has gone on to become a common feature of production C com-

pilers. For example, it is present in IBM’s XL C compiler, the Intel Itanium compiler [11],

and, as of April 2011, LLVM’s Clang compiler [23]. Type-based alias analysis is also used for

other languages: for example, it is incorporated into the state-of-the-art DOOP framework

for Java [2].

The most important evaluation of the benefits of type-based alias analysis comes from

Ghiya [11]. In the context of the Intel Itanium compiler, Ghiya evaluates seven complemen-

tary strategies for memory disambiguation: disambiguation of direct references; a simple

base-offset analysis; an array data-dependence analysis; an intraprocedural version of An-

dersen’s points-to analysis modified to be field-based; a global address-taken analysis; an

interprocedural version of Andersen’s analysis; and a type-based alias analysis. Each of

these techniques is applied to the twelve C/C++ benchmarks from the SPEC CINT2000

benchmark suite. Ghiya determines that type-based alias analysis “pays off” for five of the

twelve benchmarks, eliminating alias pairs that no combination of the other six methods

can disambiguate. In particular, type-based alias analysis is important for disambiguating

pointers against scalar objects. Ghiya concludes that a suite of disambiguation techniques

– including type-based alias analysis – is the optimal approach.

2.2 Alias Analysis

The C standard defines an object as a region of data storage in the execution environment.

The contents of an object represent a value when interpreted as having a particular type.

An lvalue is an expression that refers to such an object. An access is an execution-time

action reading or modifying the value of an object in memory. A modification is an access

that assigns a new value to an object (including cases where the new value being stored is

the same as the old value). A read is an access that uses the current value of an object.

An expression in a program is a memory reference if its execution accesses memory. In an

assignment x = y, there are two memory references: one that reads y, and one that modifies

x. Two memory references are aliased if they may refer to the same memory location.

A program analysis is an automatic analysis that proves a particular property about the

5



behaviour of a program. Program analyses can be divided into two categories. A dynamic

analysis is performed by executing a program and examining aspects of its execution. A

static analysis is performed without executing a program, by examining its source code or

an intermediate representation of its source code.

Frequently, properties examined using static analysis cannot be proven precisely in the

general case. As a result, the output of a static analysis is typically an approximation of

a program’s actual behaviour. A static analysis may deduce the presence or absence of a

particular behaviour, or it may be unable to conclude one way or the other. An analysis that

may deduce the absence of a property that is present during the execution of a program, or

vice versa, is unsafe. An analysis that only deduces true facts is safe.

Definition 1. An alias analysis is a static program analysis that determines which memory

references may be aliased in a program. For a program P , the outcome of an alias analysis

A is represented as an output set O(P ) of unordered pairs of the form 〈x, y〉, where x and

y are memory references in P , such that 〈x, y〉 ∈ O(P ) if A determines that x and y may

alias.

Definition 2. An alias analysis A is safe if, for every pair of memory references x, y in a

program P such that x and y alias in some execution of P , 〈x, y〉 ∈ O(P ). If a safe alias

analysis cannot prove that a pair of memory references do not alias, it must conservatively

include them in its output set. Thus, a more precise analysis will have a smaller output

set. Given two safe alias analyses A1 and A2 with output sets O1(P ) and O2(P ), the set

O3(P ) = O1(P ) ∧O2(P ) is also safe, and will be a more precise result.

An analysis is flow-sensitive if it considers the order of statements in a program, and

computes information for each program point. An analysis that computes one set of in-

formation for the entire program is flow-insensitive. An analysis is context-sensitive if it

considers the calling context of a function while computing information for that function.

An analysis that does not distinguish between calling contexts is context-insensitive. An

alias analysis is field-sensitive if it considers each instance of a field in an aggregate (in

C, a struct) as a unique variable. An analysis that considers each aggregate as a unique

variable, but does not distinguish between fields within that variable, is field-insensitive.

An analysis that considers each field as a unique variable, but does not distinguish between

the aggregates that contain that field, is field-based [25].

2.3 Inference Rules and Operational Semantics

Determining the safety of a program analysis frequently requires the use of formal proofs.

One common form of notation for expressing these proofs, used in this thesis, is the use

of inference rules. These rules express deductions in terms of premises and conclusions.
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(SIMPLE)
premise

conclusion

(COMPLEX)
premise premise

conclusion conclusion
(AXIOM) axiom

Figure 2.1: Inference Rules

They are written as shown in Figure 2.1. Premises are written above a line. The conclusions

that can be drawn if those premises are true are written below the line. Axioms, statements

that are true without any premise, omit the line. To make it simple to refer to specific

rules, they are given names, typically written to the left. As can be seen in (COMPLEX),

rules may have more than one premise, in which case the inference rule requires a logical

conjunction of the premises. Rules may also have more than one conclusion, in which case

each conclusion holds when the premises are true.

Inference rules are commonly used to represent structural operational semantics. A struc-

tural operational semantics describes a formal systems in terms of states, and transitions

between those states [26]. For example, the behaviour of a program in a given programming

language can be formally represented using a structural operational semantics O. This rep-

resentation is accomplished in two parts. In the first part, a representation is introduced for

the state of the program at a single point. In the second part, a set of inference rules are

introduced which express the computational steps that are taken to move from one state to

another. If S, S ′ range over program states, and s ranges over statements, these rules take

the following general form:

(TRANSITION)
premise∗
〈S, s〉 → S ′

This rule says that, if each of the premises is true, and the program execution is currently

in some state S, then the execution of the statement s updates the state to a new state S ′.

Each type of statement s in the language being formalized corresponds to its own rule or set

of rules. The execution of a program is expressed as the result of a series of transitions from

one state to the next. This representation can be used to construct formal proofs about

program behaviour.
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Chapter 3

SafeType: An analysis to enable
type-based alias analysis

This chapter presents a formal definition for the problem of identifying code that makes

type-based alias analysis unsound, and introduces SafeType, a static analysis that soundly

identifies such violations. Section 3.1 describes the assumptions made during the design of

SafeType. Section 3.2 establishes notation for describing the behaviour of a C program.

Section 3.3 uses that notation to formally define the scope of the problem. Section 3.4

introduces SafeType and shows that SafeType can be used to identify code that makes

type-based alias analysis unsound.

This chapter deliberately omits discussion about how to handle variables of type void *.

Chapter 4 describes the steps necessary to handle such variables correctly.

3.1 Assumptions

It is important to highlight the assumptions that underpin the analysis. The goal of Safe-

Type is to identify code that causes type-based alias analysis to be unsound, but that is

otherwise safe. To this end, SafeType assumes the absence of illegal memory operations:

dereferences of undefined pointers, dereferences of freed memory, and array-bounds viola-

tions. As discussed in Section 6.2, many techniques already exist to detect these errors,

and programmers have experience identifying and fixing them. By considering only those

type-unsafe accesses that are otherwise defined behaviour, this new approach is simpler,

more tractable, and more precisely focused on the problem it aims to solve.

3.2 Preliminaries

In what follows, τ ranges over types, P ranges over programs, F ranges over functions,

x ranges over variables, e ranges over expressions, a ranges over addresses, s ranges over

statements, v ranges over values, S ranges over states,M ranges over stores, and Γ ranges
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over type environments.

Definition 3. Types in C are basic types or derived types. The basic types are the character

types, the arithmetic types, and the void type. Derived types are constructed from basic or

derived types. The derived types are:

• Pointer types: Given a type τ , a pointer to τ , represented as *τ , represents an object

whose value is interpreted as the address of an object of type τ .

• Structure and union types: Structure types represent a sequentially allocated,

non-empty set of member objects. Union types represent an overlapping, non-empty

set of member objects. Both structure and union types are represented as an ordered

set of n pairs M = {(x1, τ1), . . ., (xn, τn)}. Each pair (xi, τi) represents a member

object with name xi and type τi.

• Function types: Function types are characterized by their return types and the

number and types of their parameters, and represented as a pair 〈τR, {τ1, . . . , τn}〉,

where τR is the return type, and {τ1, . . . , τn} is an ordered set of n parameter types.

Definition 4. The C standard defines the effective type of an object in memory as the

declared type of that object, if it exists. Objects allocated on the heap have no declared

type. For such objects, the effective type is set whenever a value is stored into that object

through an lvalue with a type that is not a character type.

The abstract syntax in Figure 3.1 defines a program in C. Without loss of generality,

typecasts and modifications of memory are restricted to assignment statements. Selection

statements (if and switch), iteration statements (do, for, and while), and jump state-

ments (goto, break, and continue) are relevant for a flow-sensitive analysis, but do not

have any direct effect on the aliasing behaviour of a program, and are therefore omitted

here. The definition for function includes two lists of declarations: the first represents

the set of arguments to the function, and the second represents the local variables declared

inside the function.

The state of a program at a given point is represented as a tuple S = (M,Γ, E). M is the

state of memory, represented as a map from addresses to values. Γ is the type environment,

representing the types of lvalues, such that Γ ` l : τ means that the type of an lvalue l in the

scope represented by Γ is τ . E stores the effective types of objects in memory, represented

as a map from addresses to types. For an address a, E(a) is the effective type of the memory

object stored at that address.

The contents of the store M are modified at assignment statements. The contents of

the type environment Γ are modified at function boundaries. The contents of the effective

type map E are modified at function boundaries for addresses corresponding to variables on

9



program ::= decl-list × function*

function ::= decl-list × decl-list × stmt

decl-list ::= (identifier, type)*

stmt ::= stmt; stmt
| assignment-stmt
| selection-stmt
| iteration-stmt
| jump-stmt

assignment-stmt ::= lval = [ε | * | (type)] expr
| lval = function(expr*)

...

lval ::= variable
| * lval
| lval[expr]
| lval.identifier

expr ::= constant-value
| identifier
| &lval
| unary-operator expr
| expr binary-operator expr
| expr.identifier
| expr[expr]

Figure 3.1: Abstract Syntax
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the stack, and are modified at assignment statements for addresses corresponding to objects

allocated on the heap.

Given a state S and an expression e, the rules describing the evaluation of e to obtain

a value v of type τ , written be,Sc ⇒ 〈v, τ〉, are straightforward but extensive. We omit

them here, noting only that by construction the evaluation of an expression can have no

side-effects. The type of an expression depends only on Γ, and not on M or E . In cases

where only the type is required, we write Γ ` e : τ to indicate that the type of expression e

is τ .

An lvalue is an expression that refers to an object in memory. In this representation, the

address accessed by an lvalue l is given by the function ρ(l). For a variable x, ρ(x) is the

address of that variable on the stack. For a dereference *l, ρ(*l) isM(ρ(l)). For a member

reference l.x, ρ(l.x) is ρ(l) + off , where off is the offset of member x. For an array index

expression l[e], if bS, ec ⇒ 〈v, τ〉, then ρ(l[e]) = ρ(l) + v ∗ sizeof(l).

S[element = value; . . .] represents updates to elements of S, such that S[M(a) = v] is the

state S where the value of M(a) has been updated to v. Shorthand notation S[def(x, τ)]

represents S[Γ ` x : τ ; E(ρ(x)) = τ ]. The notation S[E(a) ↼ τ ] indicates that the value of

E(a) becomes τ if address a is on the heap, and stays unchanged if a is on the stack.

We define the behaviour of our abstract syntax using a structural operational semantics.

Selected rules are shown in Figure 3.2. These rules are written using the standard form

for inference rules as described in Section 2.3: premises are listed above the horizontal

line, and the conclusions that can be derived if the premises are true are listed below the

horizontal line. The transition relation 〈S, s〉 → S ′ indicates that the execution of statement

s has taken the state from S to S ′. Rules that do not have a direct effect on S — loops,

conditionals, and other control flow statements — are omitted. Rule (ASST) describes a

basic assignment: l = e. If expression e, evaluated in state S, gives a value v of type τ ,

then the assignment l = e updates state S such thatM(ρ(l)), the value of memory at the

address a that l accesses, becomes v. Furthermore, if a is on the heap, E(ρ(l)), the effective

type of a, is updated to τ (as indicated by the use of ↼). Rule (LOAD) describes the case in

which the assigned expression dereferences a pointer: l = *e. In this case, the value of the

expression e is an address, which is looked up in M to determine the value assigned to l.

The operational semantics of typecasts as defined in (CAST) are completely standard; (CAST)

is written as a separate rule to facilitate our later discussion of type safety. Rule (CALL)

describes a function call. The body of the called function is evaluated in the appropriate

context, and the updated state is returned. For clarity, the rule is written for a function

with one argument xa and one local variable xl. However, the rule extends straightforwardly

to functions with multiple arguments and/or multiple local variables.
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(ASST)
be,Sc ⇒ 〈v, τ〉

〈S, l = e〉 → S[M(ρ(l)) = v; E(ρ(l)) ↼ τ ]

(LOAD)
be,Sc ⇒ 〈a, ∗τ〉 M(a) = v

〈S, l = ∗e〉 → S[M(ρ(l)) = v; E(ρ(l)) ↼ τ ]

(CAST)
be,Sc ⇒ 〈v, τorig〉

S ′ = S[M(ρ(l)) = cast(τc, v); E(ρ(l)) ↼ τc] 〈S, l = (τ)e〉 → S ′

(CALL)

be,Sc ⇒ 〈v,_〉
f = 〈{(xa, τa)}, {(xl, τl)}, s〉 〈S[M(ρ(xa)) = v; def(xa, τa); def(xl, τl)], s〉 → S ′

〈S, f(e)〉 → S ′

Figure 3.2: Transition Relation

3.3 Problem Statement

As described in Section 3.1, the C standard imposes restrictions on the types of lvalue

expressions that may access objects in memory. Using the notation established in Section 3.2,

these restrictions can be characterized as follows:

Definition 5. Define the type compatibility relation ≡t such that τi ≡t τj iff types τi and

τj belong to the same equivalence class: that is, if they have the same C type, ignoring

qualifiers (const, volatile, restrict) and the signedness of integer types.

Definition 6. Define the can-access relation . such that for two types τl and τo, τl . τo iff:

• τl ≡t τo;

• τl is an structure or union type, and there exists a member m = (xm, τm) ∈ τl such

that τo ≡t τm; or

• τl is a character type.

Definition 7. Define safe(l) to be true for an lvalue l if l is permitted to access the value

of the object to which it refers. Given that Γ ` l : τl, l is permitted to access the value of

the object in memory at address ρ(l), with effective type E(ρ(l)) = τo, iff τl . τo.

Less formally: an lvalue l is permitted to access an object in memory o if l and o have

the same type, ignoring qualifiers and signedness. An exception is made if l is an expression

with structure or union type. The intent of this exception is to acknowledge the existence

of structural aliasing, in which aggregate and union variables are by nature aliased to their

member variables. An assignment to a struct variable will necessarily modify the value of
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int double unsigned
int const double

int i;
double d;
struct foo {

unsigned int ui;
const double d;

}; int * struct foo * double *

Figure 3.3: Typing Rules

its member variables. Finally, an exception is made for character pointers, to allow for their

common use in bytewise manipulation of objects in memory.

A visual example of Definition 6 can be seen in Figure 3.3. A set of variables is defined

on the left. Those variables are laid out as objects in memory on the right. Below that

representation of memory, there is a set of pointer types. An arrow is drawn from a pointer

type in the bottom right to an object in memory if a dereference of a pointer of that type is

permitted to access that memory object. The arrow from struct foo * is drawn differently

to indicate that it does not directly access either member of the struct; instead, it directly

accesses the struct as a whole, which implicitly accesses each member. A char * pointer

would have an arrow to each of the four objects in memory, but is omitted for clarity.

Figure 3.4 defines the conditions under which safe(l) is true for an lvalue l:

(VAR) : An lvalue consisting only of a variable use x is always permitted to access the

memory to which it refers. Variables are stored on the stack, and effective types

on the stack do not change. Γ is also constant within a function. Thus, because

E(ρ(x)) = τo and Γ ` x : τl are assigned the same type τ by (CALL) upon function

entry, it will always be the case that τl ≡t τo, and thus τl . τo.

(MEMBER) : If l is a structure or union, and safe(l), then ρ(l) is the address of a struct or

union in memory, and its members can be accessed.

(DEREF) : A dereference *l is permitted iff the type of l is a pointer to some type τ1, the

effective type of the object in memory to which l points is τ2, and τ1.τ2. The address of

the object in memory to which l points isM(ρ(l)). Thus, unlike (VAR) and (MEMBER),

(DEREF) depends onM.

(SUBSCRIPT) : According to the C standard, a[b] is semantically identical to *(a + b). As

described in Chapter 1, SafeType assumes that array-bounds violations do not occur.

Thus, a+ b will have the same type as a, and the same restrictions are applied in this

case as in (DEREF).

An inspection of the rules in Figure 3.4 shows that the only non-trivial premises are the
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(VAR)
x is a variable

safe(x)

(MEMBER)
Γ ` l : struct or union type safe(l)

safe(l.x)

(DEREF)

safe(l) E(ρ(l)) = *τ1 E(M(ρ(l))) = τ2
τ1 . τ2

safe(∗l)

(SUBSCRIPT)

safe(l) E(ρ(l)) = *τ1 E(M(ρ(l))) = τ2
τ1 . τ2

safe(l[e])

Figure 3.4: Lvalue Safety

identical conditions found in (DEREF) and (SUBSCRIPT). Thus, we can precisely define the

type-safety property for a program P :

Definition 8. A program P will violate the C standard’s type-based restrictions on memory

access iff P accesses memory through an lvalue l such that E(ρ(l)) 6 . *E(M(ρ(l))).

Less formally: a program is safe unless it dereferences a pointer pointing to an object

of an incompatible type. Thus, to determine whether or not a program violates the C

standard’s type-based restrictions on memory, it is sufficient to determine whether such a

pointer is ever dereferenced. In turn, the presence or absence of violations in a program is

sufficient to determine whether the application of type-based alias analysis is sound.

3.4 Static Analysis

By itself, Definition 8 is not particularly helpful. This section shows that this property can

be verified at compile time by examining individual assignment statements, and verifying

that they preserve the invariant that every non-null pointer in memory points to an object

that it is permitted to access. We name the resulting analysis SafeType.

Definition 9. Given a state S = (M,Γ, E), the safe-memory property safe-mem(S) is true

iff for every address a in the domain of E , if E(a) = ∗τ , then M(a) = 0 ∨
(
τ . E(M(a))

)
.

That is, for every object in memory whose effective type is a pointer type *τptr, either it

is a null pointer, or the value of that pointer is the address of an object in memory with

effective type τobj such that τptr . τobj. By definition, safe-mem(S0) is true for the initial

state of a program S0.
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Lemma 1. For a program state S, if safe-mem(S), then the evaluation of an expression e

in state S will never violate the C standard’s type-based restrictions on memory.

By Definition 9, every pointer value in memory points to an object that it is permitted

to access. As can be seen in Figure 3.1, no mechanism is available to an expression that

could generate a pointer value that points to an object that it is not permitted to access.1

Thus, evaluating an expression e in a state S cannot violate the C standard if safe-mem(S).

Lemma 2. For a program state S, if safe-mem(S), then for every lval l, where Γ ` l : τ ,

τ . E(ρ(l)).

Lemma 2 follows directly from the definition of safe-mem and the rules in Figure 3.4.

The possibility of using SafeType to verify that a program is safe follows directly from

Lemmas 1 and 2. The program starts in a state where memory is safe – that is, safe-

mem(S0). Then, SafeType attempts to prove that for every step 〈S, a〉 → S ′, safe-mem(S)

implies safe-mem(S ′). Therefore, if SafeType succeeds in its proof, then the entire program

is safe by induction.

As can be seen in Figure 3.2, in each transition rule that updates memory, the update

takes the form S[M(ρ(l)) = v; E(ρ(l)) ↼ τv] for some lvalue l and value v of type τv. By

Lemma 1, if τv is a pointer type, then v must be an address a such that τv . E(M(a)).

Thus, to determine whether safe-mem(S) implies safe-mem(S ′) for the resulting state S ′, it

is sufficient to determine whether the effective type τl of the object accessed by l is permitted

to access an object of type τv: in short, whether τl . τv.

In summary: SafeType determines the presence or absence of violations in a program

P by examining each assignment statement in P independently. If every such statement

assigns an expression with a type τe to an lvalue with a type τl, and τl.τe, then the program

does not violate the C standard’s type-based restrictions on memory. If, for any statement,

τl .τe, then a violation may occur. This approach is in general context- and flow-insensitive:

there are no dependencies between individual assignments. The necessity of on-demand

flow-sensitive queries to determine the type of some expressions is described in Section 4.3.

1It is for this reason that typecasts are isolated to assignment statements in our abstract syntax.
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Chapter 4

A Prototype Implementation of
SafeType

This section describes a prototype implementation of the approach to an analysis that iden-

tifies code that makes type-based alias analysis unsafe presented in Chapter 3. Section 4.1

describes the necessary inputs to the SafeType analysis and the representation of types.

Section 4.2 describes the basic flow-insensitive analysis. Section 4.3 explains the need for

a flow-sensitive analysis to correctly handle void pointers and outlines that analysis. Sec-

tion 4.4 extends that analysis to be fully context-sensitive. Section 4.5 provides a small

example illustrating the flow-sensitive and context-sensitive aspects of SafeType.

4.1 Preliminaries

In addition to the abstract syntax tree of a program P , SafeType requires data flow infor-

mation for each function in P . For a function f , let S(f) be the set of statements in f ,

augmented with a dummy statement s0 representing the entry point of f . For a use of a

variable v in a statement s ∈ S(f), the use-def function D(v, s) is the subset of statements

in S(f) that define a value for v such that this value may reach s without an intervening

assignment to v. These definitions may occur as the result of an explicit assignment, or as

the result of a side-effect of a function call. They may also represent the pre-existing value

of v at the entry point of the function. The implementation of SafeType takes advantage of

the factored single static assignment (SSA) representation generated by the XL compiler.

In principle, the use of factored SSA is not necessary. The required information could be

obtained from another form of SSA, from def-use and use-def chains, or by traversals of the

abstract syntax tree.

SafeType also requires the construction of the static call graph of P . The call graph for

a program P is a directed multi-graph CP = (V,E,Call), where V is the set of functions,

E is the set of call edges, and Call is the set of call sites within those functions. Each edge

(f, g, c) ∈ E represents a possible call from a function call statement c ∈ Call in function
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>

{τ2}{τ1} {π}

{τ1, π}{τ1, τ2} {τ2, π}

⊥

Figure 4.1: Type Lattice

f to function g, where f, g ∈ V . Cycles in the call graph represent function recursion; a

self-recursive function will be represented by an edge (f, f, c). Multiple edges may exist from

a function f to a function g if f calls g from multiple distinct call sites. Multiple edges may

also exist from a call site c in a function f if the call site may call more than one function

(due to the use of function pointers).

Let TC be the set of C types present in a program. Let TPf
be the set of placeholder

types present in a function f , as defined in Section 4.4. For a function f , let Tf = TC ∪ TPf

be the set of types present in f . Let the power set of Tf be ordered such that for two sets

A,B ∈ 2Tf , A ≤ B iff A ⊃ B. The result is a lattice L(f) bounded by the null set (>) and

by Tf itself (⊥). Each element of this lattice represents a subset of Tf . The lattice for a

program with two C types τ1 and τ2 and a placeholder type π can be seen in Figure 4.1.

4.2 Flow-Insensitive Analysis

Section 3.4 justifies an approach in which each assignment statement is inspected to de-

termine whether it may create a pointer in memory that cannot be legally dereferenced.

SafeType examines four types of assignment statements. Each statement generates one or

more constraints.

• Explicit assignments: for an lvalue l and an expression e, where Γ ` l : τl and

Γ ` e : τe, an assignment of the form l = e generates the constraint τl . τe.

• Function calls: for a function f with type 〈τR, {τf1 , . . . , τfn}〉 and a set of expressions

e1 , . . . , en, where Γ ` ei : τei
, a function call of the form f(e1 , . . . , en) generates the

set of constraints {τfi
. τei

| 1 ≤ i ≤ n}.

• Return statements: for an expression e evaluated in a function f with return type

τR, where Γ ` e : τe, a return statement of the form return e generates the constraint

τR . τe.
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1 i n t foo ( i n t ∗ arg ) {
2 re turn ∗ arg + 1 ;
3 }
4
5 void main ( ) {
6 i n t i = 1 ;
7 double ∗dp ;
8 i = foo (& i ) ;
9 dp = ( double ∗) &i ;
10 ∗dp = 1 . 0 ;
11 }

return *arg + 1 −→ int . int
i = 1 −→ int . int

foo(&i) −→ int* . int*
i = foo(&i) −→ int . int

(double *) &i −→ double* . int*
dp = (double *) &i −→ double* . double*

*dp = 1.0 −→ double . double

Figure 4.2: Constraint Generation

Listing 4.1: Non-compliant
1 void ∗vp ;
2 i n t i ;
3 double ∗dp ;
4
5 vp = &i ;
6 dp = ( double ∗) vp ;
7 ∗dp = 1 . 0 ;

Listing 4.2: Compliant
1 void ∗vp ;
2 double d ;
3 double ∗dp ;
4
5 vp = &d ;
6 dp = ( double ∗) vp ;
7 ∗dp = 1 . 0 ;

Figure 4.3: Void Pointers

• Type casts: for a type τc and an expression e, where Γ ` e : τe, a typecast of the

form (τc) e generates the constraint τc . τe.

Each constraint is evaluated according to the definition of . in Section 3.3. For any

constraint that is not satisfied, a warning is produced to indicate that the assignment may

make type-based alias analysis unsound. This warning includes the location of the statement

in the source code, and the two types being compared.

An example of the constraint generation process can be seen in Figure 4.2. The source

code on the left generates the set of constraints on the right. In line 10, i is accessed through

an lvalue of type double. SafeType detects this violation and attributes it to the cast on

line 9, due to the unsatisfiability of the constraint double* . int*.

4.3 Flow-Sensitive Analysis

The preceding discussion implicitly assumes that each object in memory representing a

pointer has an effective type. This is not, however, the case for objects of type void *.

A void pointer can never be dereferenced without casting it to a non-void type, but is

permitted to point to any object in memory. This flexibility creates a problem. Consider

the example in Listing 4.1. The code includes three assignments: the assignment of &i to

vp, the cast of vp to double *, and the assignment of the cast expression to dp. This code
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violates the C standard. After line 6, dp points to i. When dp is dereferenced on line 7,

an object of type int is accessed through an lvalue of type double, which violates the rules

laid out in Definition 6. Conversely, in Listing 4.2, dp points to d, with type double, and

the dereference in line 7 complies with the C standard.

As described above, the safe-mem invariant is maintained by ensuring that each pointer

always points to an object that it is permitted to access. This approach is insufficient for

void pointers, because they can point to any address and can never be dereferenced. As

can be seen in Listings 4.1 and 4.2, the type of a void pointer, at the point at which it is

cast to a non-void pointer, is a flow-sensitive property depending on previous assignments.

Thus, it is necessary, in the specific case of void pointers, to extend SafeType to make it

flow-sensitive.

Flow-sensitivity is attained in SafeType using on-demand flow-sensitive queries. Con-

sider an expression e that uses a variable v with declared type τ . If τ = void *, then

a flow-sensitive query is necessary to determine the actual type of the object to which v

points.

Definition 10. Given a variable v and a definition d of that variable (such that d ∈ D(v, s)

for some statement s), the types function T (v, d) is a lattice element representing the possible

types of the value assigned to v by definition d. This section describes the implementation of

T in the case where d is an assignment statement. Section 4.4 describes the implementation

of T in the case where d is a function call statement or a function entry point.

Definition 11. Given a variable v and a statement s, the flow-sensitive query function

F(v, s) is defined as follows:

F(v, s) =
∨

d∈D(v,s)

T (v, d)

The definition of T (v, d) is straightforward for assignment statements. Given a statement

v = e, where Γ ` e : τe, T (v, v = e) = {τe}. If e also uses a void pointer, additional flow-

sensitive queries may be necessary to determine τe. SafeType uses a worklist algorithm and

caches results to enable flow-sensitive queries to be performed efficiently.

4.4 Context-Sensitive Analysis

The definition of T in Section 4.3 is sufficient for void pointers that are defined and used

entirely within a single function. A flow-sensitive query F(v, s) for a variable v of type

void * used in a statement s may require interprocedural dataflow in two situations:

• A call site defines v, and that definition reaches s.

• v is live upon entry to the function, and the entry definition reaches s.
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To handle these cases, SafeType uses two ideas: placeholder types, and transfer functions.

Placeholder types are used to represent the unknown types of void pointer variables which

are live upon function entry. Each placeholder type is defined in the context of a single

function. For a function f , placeholder types are used in two cases:

1. A formal parameter vp has type void *. For any call to f , the type of the object to

which vp points depends on the expression assigned to that parameter at the call site.

2. A global variable vg used in a function has type void *. For any call to f , the type

of the object to which vg points depends on the value of that global variable at the

point immediately preceding the call site.

Each function f has a set of placeholder types TPf
. Let Vp be the set of formal parameters

of f with type void *. Let Vg be the set of global variables with type void * that are used

or defined in f , or in a function called by f . For each variable v ∈ Vg ∪ Vp, the placeholder

type πv ∈ TPf
represents the type of v for an arbitrary call to f .

Transfer functions summarize the effects of a function call at a call site. Unlike points-

to analysis, which depends on the value of each pointer and is not amenable to succinct

summarization [31], SafeType concerns itself with types. As a result, it can represent each

function in a compact form, and use that summary at each individual call site to efficiently

achieve full context-sensitivity. For a function f , the transfer function T (f) is a function

A→ (τR, C,E), where:

• A is an assignment of types to the placeholder types in f , such that for each input

variable v ∈ Vg ∪ Vp, A(v) is a type τinv
.

• τR is the return type of F .

• C is a set of delayed constraints of the form τ1 . τ2, where τ2 includes at least one

placeholder type π ∈ TPf
.

• E is a map representing the exit types of each global variable used or defined in f ,

such that for each input variable v ∈ Vg, E(v) is a type τoutv
.

The transfer function for a function f is constructed while performing the analysis of f :

• Return type: If SR = {return e1, . . . , return en} is the set of return statements in

f , and for each ei, Γ ` ei : τi, then

τR =
∨

s∈SR

τi

• Delayed Constraints: If a constraint τ1 . τ2 is generated such that τ2 is a place-

holder type, it cannot be evaluated outside a particular calling context. Instead, the

constraint is added to C, and evaluated at each call site of f independently.
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• Exit types: For each variable v in Vg, E(v) = F(v, sexit), where sexit is a dummy

node representing the exit of f .

Each of the three outputs of a transfer function may include one or more placeholder

types. Where this is the case, each placeholder type is replaced with the actual type of the

corresponding input argument at the call site. The type of a formal parameter is available

directly from the call statement. When the type of a global variable is required, a flow-

sensitive query is performed for that variable, starting at the call site.

The use of transfer functions makes it possible to define the types function T for function

call statements and function entry points. Given a statement f(e1, . . . , en) which defines

a variable v, if Γ ` ei : τi and T (f) = (τR, C,E), then T (v, f(e1, . . . , en)) = E(v). For a

function entry point d that defines v, T (v, d) = πv.

To ensure that the transfer function for a called function f is available at its call site in

each calling function g, SafeType uses a post-order traversal of the call graph to generate

the order in which each function is analyzed. However, self-recursive or mutually recursive

functions create cycles in the call graph and make a post-order traversal impossible. To solve

this problem, SafeType collapses strongly connected components of the call graph into a

single node, and uses a post-order traversal on the modified call graph (which is cycle-free).

Within strongly connected components, transfer functions may have cyclic dependencies.

SafeType therefore uses a worklist algorithm to find a fixed point for the transfer functions.

This algorithm works as follows. Initially, each transfer function is initialized to be blank:

τR = >, C = ∅, and for all v ∈ Vg, E(v) = >. Each function in the strongly connected

component is analyzed. Whenever the analysis of a function causes its transfer function

to change, the callers of that function are inserted into the worklist for reanalysis. This

continues until the worklist is empty, meaning that a fixed point has been reached.

Termination is addressed in three ways. First: define the size of a transfer function

T (f) as the sum of the number of possible return types in τR, the number of delayed

comparisons in C, and the total number of possible exit types in E. The size of a transfer

function is monotically increasing over the course of the analysis: return types and exit

types may increase in size, and new delayed comparisons may be added, but existing types

and comparisons are never removed. If Tf is the (finite) set of types present in f and TPf

is the (finite) set of placeholder types present in f , then the maximum size of a transfer

function T (f) is reached when the return type τR = ⊥, E(v) = ⊥ for all v ∈ Vg, and a delayed

constraint τ1 .τ2 exists for each τ1 ∈ Tf , τ2 ∈ TPf
. Because the size of each transfer function

monotonically increases towards a finite maximum, termination is guaranteed. Second:

to ensure termination in practice, an iteration count is maintained. If the analysis of a

strongly connected component exceeds a set number of iterations (which scales with the size

of the strongly connected component), a warning is produced. Each transfer function in
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the strongly connected component is then conservatively approximated such that τR = ⊥,

E(v) = ⊥ for all v ∈ Vg, and C = ∅. Third: as described in Section 5.2, it is empirically

rare that this algorithm causes a function to be analyzed more than twice. Although the

conservative approximation escribed above could cause spurious warnings to appear at each

call site of a function, in practice the iteration limit is simply precautionary and has no

impact on the results of the analysis.

4.5 Example

Consider the following (highly contrived) code:

Listing 4.3: Context-sensitive Example
1 void ∗g_in , ∗g_out ;
2
3 void ∗ f oo ( void ∗p_in , void ∗cond ) {
4 g_out = p_in ;
5 i n t i = ∗( i n t ∗) cond ;
6 i f ( i )
7 re turn p_in ;
8 e l s e
9 re turn g_in ;

10 }

• foo may return either p_in or g_in. The return type of foo is therefore the lattice

element πp_in ∨ πg_in. The values of these placeholder types will vary between call

sites of foo.

• The only global variable defined in foo is g_out. The exit type of g_out is E(g_out) =

πp_in. The global variable g_in is used, but not defined, in foo. Its exit type is

E(g_in) = πg_in.

• There is one delayed constraint in foo, arising in line 5: int * . πcond. At each call

site of foo, that constraint must be evaluated to verify the safety of casting cond to

an int *.

The combination of the return type, the exit types, and the delayed constraints of foo

are sufficient to create a transfer function that precisely characterizes the behaviour of foo.

Using that transfer function, the effects of a call to foo can be determined for any number

of call sites without requiring any further analysis of foo.
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Chapter 5

Experimental Evaluation

This experimental evaluation uses a 64-bit, 32-processor, 2.3 GHz POWER 5 machine with

640 GB of memory running AIX 6.1.7.15. The experiments evaluate SafeType on C bench-

marks from SPEC CPU2006. Additionally, it evaluates SafeType on Python 2.7.5 and GNU

Emacs 24.3 to increase the number of large programs in the test set. Other large programs

were considered, but were incompatible either with the XL compiler (for example, the Linux

kernel) or with the Power architecture (for example, WINE). Lines of code are counted us-

ing the open-source tool CLOC. For emacs and python, lines of code written in Emacs Lisp

and Python, respectively, are subtracted from the overall total, because SafeType is only

applicable to the portion of a program written in C.

During compilation, compiler flags are chosen to disable other optimizations and mini-

mize the amount of work done outside SafeType. This is done to reflect the expected use

case of SafeType. To speed development, programs are typically compiled and tested with

a minimal set of optimizations. After a program has been written and tested, higher levels

of optimization are used to create a production version of the program. SafeType is best

used during the transition from development to optimization, to verify that it is safe to use

type-based alias analysis to enable the transformations that are turned on at higher levels

of optimization. The actual compilation of the optimized version of a program should not

use SafeType. Instead, the optimized compilation will benefit from being able to safely use

a type-based alias analysis to enable other optimizations.

5.1 Output

Table 5.1 contains the experimental results for the prototype implementation of SafeType.

For each benchmark, four counts are listed. The Total column lists the number of possible

violations flagged for each benchmark. These violations are classified into three disjoint

sets: true positives, necessary false positives, and implementation-based false positives. The

True column represents true positives: statements reported as potential violations which do
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Table 5.1: Violations Detected by SafeType
Name Total True Nec Impl
400.perlbench 52938 3463 166 49309
401.bzip2 14 1 0 13
403.gcc 16463 0 2 16461
429.mcf 13 0 0 13
433.milc 179 0 0 179
445.gobmk 10255 0 0 10255
456.hmmer 53 0 0 53
458.sjeng 321 0 0 321
462.libquantum 0 0 0 0
464.h264ref 2721 0 0 2721
470.lbm 57 30 0 27
482.sphinx3 1149 0 0 1149
emacs 74402 0 0 74402
python 16554 9089 0 7465

Listing 5.1: Necessary False Positive
1 i n t i ;
2 i n t ∗ ip = &i ;
3 double ∗dp = ( double ∗) ip ;
4 ip = ( i n t ∗) dp ;
5 ∗ ip = 1 ;

violate the C standard’s type-based restrictions on memory access. These are the statements

that SafeType is designed to detect. If a program does not have any true positives, it is safe

to use a type-based alias analysis while compiling that program.

The prototype implementation of SafeType also produces a number of false positives:

assignments that are flagged as potentially unsafe, but that are actually safe. These false

positives are subdivided into two categories: necessary false positives, and implementation-

based false positives. A false positive is necessary if it is caused by an inherent limitation

of the SafeType analysis. For example, consider the code in Listing 5.1. The int pointer

ip is cast to a double pointer, cast back to an int pointer, and then dereferenced. Because

the value of i is never accessed through the double pointer, this code does not violate the

C standard’s type-based restrictions. However, SafeType works by proving that non-null

pointers in memory are always safe to dereference. Thus, SafeType must conservatively

emit a warning for lines 3 and 4 of Listing 5.1. These cases are sufficiently rare that the

substantial increase in tractability justifies the small decrease in precision. Necessary false

positives are listed in column Nec of Table 5.1.

In addition to necessary false positives, the current implementation of SafeType also

produces a number of implementation-based false positives, listed in column Impl of Ta-

ble 5.1. SafeType requires data-flow and call-graph information to accurately perform flow-
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and context-sensitive analysis. This information is not available until the optimization phase

of the compilation, after the source code has already been converted into an internal rep-

resentation. This internal representation is non-language-specific, and does not perfectly

preserve type information. As a result, some type information is lost. To remain sound,

it is therefore necessary for SafeType to conservatively emit a warning in cases where the

missing type information is necessary to prove correctness. This requirement is a limitation

of the prototype implementation of SafeType, rather than the underlying analysis.

SafeType automatically flags many false positives as implementation-based during the

course of its analysis. The remaining cases are categorized using a combination of manual

inspection and automated post-processing scripts.

5.1.1 Case Studies

This section highlights a selection of true positives and necessary false positives.

Python and Perl: As mentioned in Chapter 1, the implementation of Python objects

in versions of Python prior to 3.0 violated the C standard’s restrictions on memory access,

and the internal data structures representing Perl’s variables are accessed in such a way

as to violate aliasing rules in 400.perlbench. As can be seen in Table 5.1, SafeType

correctly identifies these violations. These violations typically take the form of a struct of

one type being cast to a struct of another type. In addition to the large number of true

positives, 400.perlbench also includes an example of another important type of necessary

false positive. As seen in Listing 5.2, 400.perlbench uses tagged void pointers to represent

scalar values. The SV struct includes a void pointer (sv_any) that represents a value, and a

tag (sv_flags) to indicate the type of the variable being pointed to. The value of sv_flags

is used in control-flow statements to determine the type of sv_any, as in line 9 of Listing 5.2.

This code construct causes difficulties for SafeType. As a result of the test in line 9, the

block beginning at line 10 may be able to safely cast sv_any to a particular type. However,

to determine if such a cast is safe, SafeType would have to examine the condition in line

9, and then prove the existence of an invariant relationship between that condition and the

type of the object pointed to by sv_any. In the general case, computing such invariants is

infeasible. As a result, SafeType must conservatively emit a warning for a cast that occurs

within the block beginning on line 10.

gcc: gcc contains a real-life instance of the example provided in Listing 5.1. Listing 5.3

demonstrates the situation. In cfg.c, gcc manages a pool of structs representing basic

blocks. In the functions expunge_block_nocompact and alloc_block, unused basic blocks

are added to and removed from a linked list. To save memory, gcc uses a pointer variable

that already exists as a member of the basic_block struct to store the links in the linked

list. However, the member in question is defined as a pointer to a different type of struct,
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Listing 5.2: Necessary False Positive in 400.perl
1 s t r u c t SV {
2 void ∗ sv_any ; /∗ po in t e r to something ∗/
3 U32 sv_re fcnt ; /∗ how many r e f e r e n c e s to us ∗/
4 U32 sv_f lags ; /∗ what we are ∗/
5 } ;
6
7 s t r u c t SV sv ;
8 . . .
9 i f ( sv−>sv_f lags == . . . ) {

10 . . .
11 }

Listing 5.3: Necessary False Positive in 403.gcc
1 s t r u c t basic_block_def {
2 . . .
3 s t r u c t edge_def ∗ succ ;
4 . . .
5 } ;
6
7 s t r u c t basic_block_def ∗block , ∗head ;
8 block−>succ = ( s t r u c t edge_def ∗) head ;

the edge_def struct, which represents an edge between basic blocks. SafeType identifies the

assignment in line 8 of Listing 5.3 as a violation. However, because the value of block->succ

is never dereferenced, no actual violation occurs.

lbm: SafeType identifies a true type violation in 470.lbm that, to our knowledge, has

not been previously reported. The header file lbm_1d_array.h defines a macro SET_FLAG.

A use of that macro expands to the code in Listing 5.4. The variable grid is an array of

double. The address of a member of grid is taken in line 4. That pointer is cast, first

to void *, then to int *. Finally, the new int * value is used to set a flag bit. That

use constitutes a modification of a double object in memory by an lvalue of type int; as

described in Chapter 3, such a modification is a violation of the C standard. Although we

are not aware of a compiler that takes advantage of the incorrect invariant generated by

a type-based alias analysis in this case, a sufficiently aggressive optimizing compiler could

theoretically eliminate or reorder uses of SET_FLAG in a way that does not preserve the

semantics of the program.

5.2 Performance

Table 5.2 shows the time necessary to run SafeType on each benchmark. Column LoC is

the number of lines of code in each benchmark. Column Total is the time taken to compile

the benchmark. The following two columns show the time spent inside SafeType: first as an
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Listing 5.4: Violation in 470.lbm
1 double g r id [N ] ;
2 i n t f l a g = 1 << M;
3 {
4 i n t ∗ const _aux_ = ( ( i n t ∗) ( ( void ∗) (&( g r id [ . . . ] ) ) ) ) ;
5 (∗_aux_) |= f l a g ;
6 }

Table 5.2: Performance of SafeType
Name LoC Total (s) SafeType (s) %
400.perlbench 138480 3939.0 3819.9 96.9
401.bzip2 5882 10.6 1.7 15.9
403.gcc 387777 650.9 304.8 46.8
429.mcf 1669 2.7 0.1 3.5
433.milc 9746 15.5 1.1 7.2
445.gobmk 157792 109.6 25.8 23.5
456.hmmer 20793 29.1 1.8 6.1
458.sjeng 10630 13.8 1.0 7.2
462.libquantum 2732 4.2 0.2 4.3
464.h264ref 36162 74.8 20.7 27.7
470.lbm 1006 2.9 0.15 5.1
482.sphinx3 13240 22.2 1.6 13.9
emacs 326779 338.2 90.1 26.7
python 514345 390.8 263.9 67.5

Table 5.3: Timing Breakdown
Flow-Sensitive Context-Sensitive

Name Data FSQuery Other Rec Time Rec Freq
(%) (%) (%) (%) (%)

400.perlbench 0.4 95.3 4.3 99.6 81.3
401.bzip2 59.8 21.0 19.2 0.0 0.0
403.gcc 22.3 38.6 39.1 74.3 75.5
429.mcf 38.6 10.9 50.5 2.0 2.8
433.milc 33.6 28.2 38.2 0.0 0.0
445.gobmk 18.7 32.0 49.3 76.3 80.9
456.hmmer 38.1 20.4 41.5 3.8 2.9
458.sjeng 27.0 18.6 54.4 10.0 4.4
462.libquantum 43.7 10.9 45.4 9.8 11.3
464.h264ref 20.9 50.1 29.0 2.5 6.7
470.lbm 24.1 23.1 52.8 0.0 0.0
482.sphinx3 24.3 11.9 63.8 1.6 2.9
emacs 16.3 13.8 69.9 75.9 70.3
python 7.7 55.8 36.5 91.8 82.4
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absolute value, and then as a percentage of the total compilation time. As mentioned above,

compilation time is measured for a compilation with optimizations turned off. With less

compilation time spent on other optimizations, the percentage of compilation time spent

inside SafeType is larger.

Table 5.3 categorizes the time spent inside SafeType in two ways. The first three columns

divide the time spent inside SafeType into three categories that demonstrate the behaviour

of the flow-sensitive analysis. Data is the percentage of the execution time of SafeType

spent building the data structures necessary to analyze data flow. In a normal compilation,

the time spent building these data structures would normally be amortized over each analysis

that uses them. However, as described above, no other analysis using these data structures

was enabled during the evaluation. FSQuery is the percentage of the execution time of

SafeType spent performing flow-sensitive queries as described in Section 4.3. Other is the

percentage of the execution time of SafeType that does not fall into one of the previous two

categories.

The remaining columns of Table 5.3 illuminate the behaviour of the context-sensitive

analysis. Rec Time is the percentage of the execution time of SafeType spent analyzing

recursive functions: that is, functions that are part of a strongly connected component in

the call graph. This category includes both self-recursive and mutually recursive functions.

As a point of comparison, Rec Freq is the percentage of functions in the program that are

recursive, measured as a static count.

The values in Tables 5.2 and 5.3 can be contextualized by an examination of the the-

oretical complexity of the SafeType analysis. The complexity of the non-flow-sensitive,

non-context-sensitive component of SafeType is O(n) in the size of the program: it exam-

ines each statement once and performs an amount of work proportional to the size of the

abstract syntax tree for that statement.

The complexity of the context-sensitive component is more complicated to character-

ize. As described in Section 4.4, recursive functions must be analyzed until their transfer

functions reach a fixed point. Each function must be analyzed at least once. If the anal-

ysis of a function F updates the transfer function for F , then the callers of F must be

reanalyzed using the more precise transfer function. Thus, after the first analysis of F , F

will be reanalyzed only if the previous analysis of F updated the transfer function for F

and (directly or indirectly) caused an update to a callee of F . For a strongly connected

component of the call graph containing O(n) functions, each of which has O(m) arguments,

the pathological worst-case behaviour of the fixed point computation is O(nmt) reanalyses

of each function, where t is the number of types in the program. In practice, however,

the worst-case behaviour does not occur. Figures 5.1 and 5.2 demonstrate the empirical

behaviour of SafeType on the test programs. Each bar in Figures 5.1 and 5.2 represents the

28



total number of recursive functions that were analyzed a certain number of times, across

the entire set of benchmarks. For example, the first bar of Figure 5.1 shows the number

of recursive functions that were only analyzed once. Within each bar, the total number of

functions is partitioned by colour to represent the number of functions from each individual

benchmark program. The difference between the highest and lowest values makes it im-

possible to display all of the results in a single graph. Thus, Figure 5.1 shows the precise

number of functions with iteration counts 1 to 5, and collects the remaining functions in

the 6+ bar. Figure 5.2 shows the precise iteration counts for the functions in the 6+ bar

of Figure 5.1. Functions that are neither self-recursive nor mutually recursive are always

analyzed exactly once, but are omitted from Figure 5.1 to avoid compressing the scale.

More than half of all recursive functions are analyzed a single time. In the majority of

test programs, no function must be analyzed more than twice. The benchmark 445.gobmk

includes three functions that must be analyzed three times each. emacs includes a number

of functions that must be analyzed three times, and two that must be analyzed four times

each. gcc includes functions that must be analyzed up to five times. In each of these cases,

the functions that must be analyzed more than twice are part of large mutually recursive

cycles. Amortized across each of the functions in a strongly connected component of the

call graph, the average number of iterations per function necessary to find a fixed point in

these cases is always two or less.

This is not true for 400.perlbench or python. Figure 5.1 shows that the benchmarks

400.perlbench and python both have a significant number of functions that must be ana-

lyzed six or more times. The distribution of these functions is shown in Figure 5.2. As in

Figure 5.1, higher numbers of iterations are substantially less commmon than lower num-

bers. However, 400.perlbench includes a number of functions that require many iterations

to find a fixed point, including one function that requires 33 iterations to find a fixed point.

Empirically, functions that require a large number of iterations occur in strongly connected

components of the call graph that are large and contain a large number of calls through

function pointers. It is possible that the number of iterations could be reduced in these

cases by carefully ordering the reanalysis of functions, or by improving the precision of the

points-to sets of function pointers. Regardless, amortized over an entire strongly connected

component, the average number of iterations per function necessary to find a fixed point in

400.perlbench or python never surpasses 3.5. Thus, the process of finding a fixed point

for recursive transfer functions contributes only a constant factor to the overall complexity

of SafeType.

The complexity of the flow-sensitive analysis is highly implementation-dependent. As can

be seen in Table 5.2, the benchmarks for which SafeType requires the greatest percentage

of compilation time are also the benchmarks for which FSQuery represents the greatest
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Figure 5.1: Iterations necessary to find a fixed point

percentage of the execution of SafeType. Further work may be necessary to improve the

performance of the flow-sensitive analysis. However, even the current prototype scales to

programs of hundreds of thousands of lines of code.
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Figure 5.2: Iterations necessary to find a fixed point
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Chapter 6

Related Work

This chapter summarizes related work on type-based alias analysis and points-to analysis.

6.1 Points-to Analysis

A closely related idea to alias analysis is points-to analysis. Where an alias analysis de-

termines if two memory references point to the same location, a points-to analysis ap-

proximates, for each pointer in the program, the set of locations to which it could point

at runtime [8]. Thus, a points-to analysis can be used to determine aliasing information,

although the converse is not in general true.

A precise points-to analysis with multiple-level pointers is NP-hard even in restricted

cases [19]. Such an analysis is undecidable for programs with dynamically allocated mem-

ory [18]. Many frameworks for approximating points-to information have therefore been

proposed [16]. These frameworks may be classified based on the approximations they use

and the degrees of sensitivity they emphasize.

The most scalable points-to analyses are flow- and context-insensitive. These analyses

build up a points-to graph based on the set of assignments present in the analyzed code.

Within this category, a division exists between unification-based and inclusion-based anal-

yses, which differ based on how they represent assignments. In a unification-based analysis,

such as Steensgaard’s [29], an assignment such as x = y will unify the nodes representing

x and y in the points-to graph. In an inclusion-based analysis, such as Andersen’s [1], an

assignment such as x = y will establish a subset constraint x ⊆ y, represented as an edge

in a constraint graph. The dynamic transitive closure of the graph is then computed.

Steensgaard’s unification-based analysis runs in nearly linear time (O(Nα(N,N)), where

α is the inverse Ackermann’s function) and scales to millions of lines of code. However, it is

relatively imprecise. The scalability of inclusion-based alias analysis depends primarily on

its ability to quickly compute the dynamic transitive closure of the constraint graph. The

greatest gains come from detecting and collapsing cycles, which will have identical solutions.
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Hardekopf and Lin present a state-of-the-art analysis [13] that scales to programs containing

over a million lines of code.

Other approximations can also be made. Das presents a “one-level flow” analysis that

is unification-based, except in the case of single-level pointers, under the assumption that

multi-level pointers are less important in C programs [5]. Das’ evaluation indicates that this

analysis is nearly as scalable as Steensgaard’s, and nearly as precise as Andersen’s.

A more precise result can be obtained using a flow-sensitive analysis. The scalability of

traditional flow-sensitive alias analyses has been limited by the need to propagate points-to

information through every node in the control flow graph, which is prohibitively expensive

both with respect to execution time and with respect to memory usage. One solution is to

perform the analysis on a sparse graph instead of the full control-flow graph. Hardekopf

and Lin present a semi-sparse analysis in which top-level (non-address taken) variables are

represented in SSA form, and other variables are not [14]. They also present an improved

sparse analysis in which a preliminary flow-insensitive points-to analysis is used to convert

address-taken variables into SSA form, and a flow-sensitive analysis is then performed on

the sparse representation [15]. The latter approach scales to programs with over a million

lines of code.

An alternative approach is due to Lhotak [21]. Lhotak observes that the precision benefit

of a flow-sensitive points-to analysis derives from its ability to represent points-to relation-

ships which are overwritten by strong updates and are not true at every point in a program.

Because strong updates are usually only applicable when a points-to set is a singleton, Lho-

tak’s analysis is flow-sensitive with respect to singleton points-to sets, and flow-insensitive

elsewhere. This approach, implemented in the LLVM compiler, scales as well as the existing

non-flow-sensitive approach and improves points-to precision for 98% of the program points

that are improved by a full flow-sensitive analysis.

Each of the preceding flow-sensitive analyses is context-insensitive (although Hardekopf

and Lin discuss the possibility of extending their analyses to be both flow and context-

sensitive). Research has also been done on context-sensitive points-to analysis. Foster

examines the consequences of adding context-sensitivity to Steensgaard and Andersen’s

analyses, and concludes that context-sensitivity improves the precision of unification-based

analyses more significantly than it improves inclusion-based analyses [9]. Recent research

in flow-insensitive context-sensitive points-to analysis has focused on the use of binary de-

cision diagrams (BDDs) to compactly represent the large number of contexts that can be

generated [3]. Zhu and Calman present a BDD-based context-sensitive approach that scales

to tens of thousands of lines of code [32]. However, to do so they merge strongly-connected

components in the call graph, effectively analyzing function calls within strongly connected

components in a context-insensitive manner. Independently, Whaley and Lam present an
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identical approach[30]. Lhotak shows that this approximation has a significant negative ef-

fect on precision when applied to pointer analysis in Java [22]; however, no such evaluation

has been done for C.

Finally, work has also been done on analyses that are both flow and context sensitive.

Landi and Ryder present an algorithm that differentiates contexts for single-level point-

ers, but may propagate information to extraneous call sites in the presence of multi-level

pointers [20]. Emami achieves context sensitivity by re-analyzing a procedure for each of

its calling contexts [8]. This approach ensures precision, but is only practical for small pro-

grams. Wilson and Lam present an analysis that creates partial transfer functions and must

only re-analyze a procedure if the aliasing relations among its inputs do not correspond to

any pre-existing partial transfer function for that procedure [31]. This approach scales up

to programs with thousands of lines of code.

6.2 Safety Analysis of C

Much work has been done on the more general question of analyzing the safety of C pro-

grams. Of particular relevance are analyses that aim to detect illegal memory operations:

dereferences of undefined pointers, dereferenced of freed memory, and array-bounds viola-

tions.

Valgrind is an open-source instrumentation framework for building dynamic analysis

tools [24]. Memcheck, the default Valgrind tool, instruments each memory access to detect

a variety of common errors, including (among others) invalid pointer dereference and the

use of uninitialized values. However, Memcheck is not designed to detect memory accesses

through pointers of incompatible type. The addition of this instrumentation leads to a 10-

50 times slowdown in program execution. Thus, Valgrind is useful as a developer’s tool to

detect bugs, rather than being used to run production code.

Cyclone is a type-safe programming language derived from C [12]. Cyclone aims to

preserve the low-level control of data representation and resource management available in

C, while eliminating safety violations such as incorrect type-casts, buffer overruns, dangling

pointer dereferences, and memory leaks. This safety is accomplished by dividing memory

into regions and requiring that pointer variables be annotated with information about the

region into which they point. Empirically, porting C code into Cyclone requires alterations

in approximately 8% of the lines of code in a program. Compared to the original C program,

a network or I/O bound Cyclone application runs with little to no overhead, but compute-

intensive applications may be three times slower than the C version. This overhead comes

from bounds-checks inserted into the code, as well as garbage collection and fat pointers.

CCured is a program transformation system that adds type-safety guarantees to existing

C programs. CCured extends the type system of C to separate pointer types based on
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their usage; it then attempts to use static analysis to verify that programs adhere to that

type system. Run-time checks are inserted in cases where static analysis is insufficient:

these checks include null checks, bounds checks, and type checks. CCured replaces manual

memory management with a garbage collector and requires the programmer to annotate

custom allocators. CCured also requires wrappers around calls to external library functions

to preserve the metadata associated with runtime checks. Like Cyclone, CCured imposes

little overhead on network- and I/O-bound applications, but causes a slowdown of 5 to 87%

on most compute-intensive benchmarks, increasing to a ten times slowdown in pathological

cases.

SafeCode is a compilation strategy for C programs that uses static analysis and run-time

checking to ensure the accuracy of the points-to graph, call graph, and the available type

information [6]. SafeCode uses automatic pool allocation to partition heap memory into

fine-grained pools, while retaining explicit memory management (rather than introducing

a garbage collector). SafeCode requires no code modifications and imposes less than 30%

overhead. Unlike Cyclone and CCured, SafeCode does not guarantee the absence of dangling

pointer references.

In comparison to each of the above, our SafeType algorithm limits its scope to consider

exclusively type violations. In doing so, SafeType does not introduce any runtime checks,

does not impose any overhead on execution, and does not require any modifications to

existing code. The previous approaches are useful in cases where users wish to exchange

performance for memory safety. However, the primary use of type information is in alias

analysis, which in turn is used by various transformations to improve performance. Thus,

it is useful to have a specialized analysis that a programmer can use to verify the safety

of type-based alias analysis without incurring a performance penalty. Certain aspects of

the static analysis of CCured and SafeCode resemble the flow-insensitive component of

SafeType. However, they do not have any static analogue to SafeType’s flow-sensitive,

context-sensitive approach to pointers of type void *. Instead, CCured and SafeCode

verify the safety of such pointers using runtime checks.
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Chapter 7

Conclusion

Type-based alias analysis is a useful tool for enabling and improving the precision of pro-

gram transformations in optimizing compilers. However, type-based alias analysis is unsafe

when applied to programs that violate the C standard’s type-based restrictions on memory

access. As a result, programs are frequently compiled without the benefits of type-based

alias analysis.

SafeType is a sound and scalable static analysis that identifies violations of the C stan-

dard’s type-based restrictions on memory access. To do so, SafeType verifies that each

non-null pointer in the program can be safely dereferenced. This verification uses a flow-

insensitive analysis in the general case, augmented with flow-sensitive queries to safely ana-

lyze pointer variables of type void *. These flow-sensitive queries are made context-sensitive

through the use of precise, compact transfer functions.

A prototype implementation of SafeType in the IBM XL C compiler was created and

evaluated. Although the architecture of the implementation leads to a number of false pos-

itives, this prototype implementation demonstrates the utility of the SafeType approach by

identifying previously unreported violations in the 470.lbm benchmark of SPEC CPU2006.

The prototype implementation scales to programs with hundreds of thousands of lines of

code. Work is underway to improve the performance further for programs with call graphs

containing strongly connected components with a large number of function pointers.

The description of the SafeType approach in this thesis, along with the discoveries made

with the performance evaluation of the prototype implementation, are a solid basis for a

robust and precise analysis that will enable the safe use of type-based alias analysis in

commercial compilers.
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