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ABSTRACT

A.A. Grau [6] defined a ternary Boolean algebra in terms
of one ternary operation and one unary operation by five
postulgtes. In this thesis it is shown that only three of the
five postulates are sufficient to define a ternary Boolean
algebra. The three postulates are shown to be independent.

Other definitions of a ternary Boolean algebra in terms of one
ternary operation and one unary operation by means of three
independent postulates are also given. Either by combining or
permuting the most familiar axioms or by both, the number of

postulates in each case ig reduced to a minimum of two independent

axioms.

A number of sets of independent axioms satisfying
Birkhoff's problem 64 [l] are obtained for a bounded distributive
lattice. Each system is transformed into a system of two

independent postulates in many different ways.

Lattices and semilattices are defined without the law
of commutativity. 112 sets of four independent axioms and
1112 sets of three independent axioms for lattices and two sets

of two independent axioms for gsemilattices are constructed.
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CHAPTER 1

1. TINTRODUCTION

Ordinary axiomatizations of different kinds of lattices
ineluding Boolean algebras may be divided into two classes according
as their original undefined concepts are operations or functions
such as product, sum and complement employed along with a relation
of equality or identity or a relation of inclusion, while of course,
combinations of the two are also‘possible. Examples of the
operational type have been much more numerous. But some  interest
has been attached to definitions of special kinds of lattices and
Boolean algebras in terms of a ternary operation. Ternary operations
are defined in groupoids and groups. But the ternary operation we
are using here is the one introduced by Grau [6]. The tendency has
been for the number of postulates to be much smaller. This thesis
shows a comparable economy as <regards the number of postulates.
That is, the number of axioms finally employed will be two. The
first step will be to give a set of three postulates of more
familiar appeacance. Then a reduction by one will follow. It

does not seem to be possible to reduce the number of axioms to

one in each case.



Chapter II of this thesis deals with sets of axioms for a
ternary Boolean algebra. A.A. Grau [6] defined a ternary Boolean algebra
in terms of a ternary operation and a unary operation by means of five
axioms. In section 5 of the thesis, it is shown that only three of the
five axioms define a ternary Boolean algebra. It is also shown that these
three postulates are independent. Other sets of three independent postu-
lates for a terﬁary Boolean algebra are also obtained. In section 6, some

sets of two independent postulates for a ternary Boolean algebra are

discussed.

Chapter III is devoted to the study of sets of axioms for bounded
distributive lattices. In section 7, G. Birkhoffs problem 64, posed on
p. 138 of the 1948 edition of his book on lattice theory, is mentioned. In
section 8, 297n221utions of this problem, 24 of which are sets of three
independent axioms and the remaining are sets of four independent axioms,

are obtained. In section 9, further sets of two independent postulates for

a bounded distributive lattice are stated.

In chapter IV, postulates for arbitrary semilattices and lattices,
without the law of commutativity, are investigated. D.H. Potts [9]
stated a set of two axioms for semilattices in six variables. In section 11
two sets of two independent axioms without the law of commutativity in only
three variables are obtained. In the same section associative and absorption
laws for the lattice operations of join and meet are combined in 8192 diffe-
rent ways instead of 3200 ways as in the case of A. Petcu [8], and it is
established that 1128 sets of three independent identities and 112 sets of
four independent identitiles in these operations define a lattice. On the
other hand, it is also shown that none of some 48 further sets of four iden~

tities in the same operations is a set of lattice axioms.
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2, DEFINITIONS

Definition 2.1. A ternary operation on a set A is a mapping

of Ax AXx A into A.

Definition 2.2. A ternary operation (abc) on A is

said to be completely commutative iff it is invariant under all

permutations of a, b and c.

3. NOTATIONS

'A' always stands for a set of elements and the lower
case letters a,b,c,d,e,x and y denote the elements of A. The
letters O and I denote the lower and upper bound elements of a bounéed
lattice and O and 1 are the zero and unit of a Boolean
algebra. The complement of an element 'a' of a lattice is
denoted a' if this complement exists and is unique. The binary
lattice operations of join and meet are denoted by the usual

symbols VvV and A , respectively.



CHAPTER II

SETS OF INDEPENDENT AXIOMS FOR A

BOOLEAN ALGEBRA

" 4. INTRODUCTION

A.A. Grau [6] defined a ternary Boolean algebra by a

system of five postulates as follows:

Let A be an algebraic system consisting of a set A,
a ternary operation (abc) and a unary operation a' which

satisfy the following identities:

(4.1) (de(abe)) = ((dea)b(dec))
(4.2) (baa) = a
-(4.3) (aab) = a
(4.4) (abb') = a
(4.5) (b'ba) = a.

Then A is called a ternary Boolean algebra.



He also proved that if two binary operations, 4 and

v , are defined by

a A b= (abb)

(4.6)
aVv b= (ad'b)

where O 1is a fixed element of A, then (A,A,v) is a Boolean
Here

algebra, i.e., a complemented distributive lattice, 0 and O

are the bound elements of this lattice, a' is the complement

of a with respect to this lattice for every a, and

(4.7) (abe) = (aab) v (bac) v (cha)

holds identically.

Conversely, if (A,A,v) 1is any complemented distributive
lattice and a ternary operation (abc) is defined by (4.7) then
(4.1) to (4.6) hold identically, whence A together with this
ternary operation and the operation a - a' 1s a ternary Boolean

algebra.

Later on, by suitable permutations of (4.1) and (4.4),
R. Croisot [5] replaced the system of five postulates for a

ternary Boolean algebra by this system of two postulates:

(4.1.1) (de(bac)) = (b(edc)(dea))



(4.8) (bab') = a.

He also showed that the axioms (4.1.1) and (4.8) are independent.

In this thesis it is shown that the axioms (4.3) and
(4.5) can be derived from the other three postulates, (4.1),
(4.2) and (4.4). In other words, three postulates, (4.1),
(4.2) and (4.4), out of the five postulates of Grau, are
sufficient to define a ternary Boolean algebra. It is also shown

that these three postulates are independent.

A number of new systems of independent axioms consisting

of three identities are also obtained in section five.

In section six, the axiom systems consisting of three
identities which occur in section five are reduced to systems of

two independent postulates in many different ways.

In the following by a "Boolean algebra" is meant a ternary

Boolean algebra in the sense of A.A. Grau [6].

5, SETS OF THREE POSTULATES

In this section, sets of postulates which consist of only

three identities are given.

THEOREM 5.1. 1Let A be any algebraic system consisting of

a set A, a ternary operation (abc) and a unary operation a'



such that

(4.1) (de(abc)) = ((dea)b(dec))
(4.2) (baa) = a

(4.4) (abb') = a

jdentically. Then A is a Boolean algebra.

Proof. It is sufficient to show that (4.1), (4.2) and (4.4)

imply (4.3) and (4.5).

By (4.4), (4.1), (4.4), (4.2), we obtain

(aa(baa'))

(5.1.1) (aab)
= ((aab)a(aaa'))

= ((aab)aa) = a.

By (4.4) (4.2), (4.1), (5.1.1), (4.4), we get
(5.1.2) (ab'b) = ((abb')b' (abb))
= (ab(b'b'b))

= (abb') = a.

By (4.2), (4.1), (4.2), (4.1), (5.1.2) (4.2), (5.1.1),



(5.1.3) (bab') = (ba(ath'))

((baa)b'(bab')

(ab'(bab'))

((ab'b)a(ab'd'))

(aab') = a.
By (4.2) (4.4), (4.1), (5.1.3),
(5.1.4) (abc) = ((caa)b(caa'))
= (ca(aba'))
= (cab).

It follows from (4.2) and (5.1.4) that

(5.1.5) (sba) = a.
By (5.1.3), (4.1), (5.1.5) (5.1.3),

(5.1.6) (abc) = (ab(aca'))
= ((aba)c(aba'))

= (acb).

Now it is clear from (5.1.4) and (5.1.6) that (abe)

ig invariant under all permutations of &, b and ¢, i.e.
completely commutative.

This together with (4.4) dimplies that



(5.1.7) (b'ba) = (abb') = a.

Now (5.1.1) dincludes (4.3) and (5.1.7) includes (4.5).
Hence (4.1), (4.2) and (4.4) imply (4.3) and (4.5) as we

wished to prove.

It will now be shown that the axioms (4.1), (4.2) and
(4.4) are independent. That is, it will be shown that, for
j =1,2,4, it is possible to find an algebra with a ternary
operation (abec) and a unary operation a' such that (4.k)

holds for k e {1,2,4} - {j} while (4.j) does not hold.

Al. Consider the set B = {u,v}, u # v and define a ternary
operation on it by (abc) =u or Vv according as a&atleast two of

a,b,c are u or v and let a' =a for all a ¢ B.

Then, with the symbols a,b,c,d,e denoting any of the

elements u,v, (4.1) and (4.2) are satisfied but (4.4) does

not hold identically.

A Assume again the set {u,v} and define on it a ternary

2.
operation by (abc) = a o c, where o 1is the binary operation
defined by vou=uoVvV=VO0OV=®YV, and uou=u, and a

unary operation by u' =v' = u.

Then (4.1) and (4.4) are evidently satisfied while

(4.2) is not valid.
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A3. Lastly, consider the set B = {u,v,w,2} of four different
elements u,v,w,z, and define thereupon a two operation algebra
t

in the following way: u' =v, v' =u, 2' =w, w' = z, and

(abe) =¢ if c¢=b, (abc) =a if c = b', (abec) = u otherwise.

Then (4.2) and (4.4) are true but (4.1) is false;
for if a=v, b=d=2z, ¢c=w, e =.u, then

(de(abe)) = (zu(vzw)) = (zuv) = z, while

((dea)b(dec)) = ((zuv)z(zuw))

= (zzu) = u,
Thus the axioms (4.1), (4.2) and (4.4) are mutually
independent.

It will now be shown how a Boolean algebra can be defined

by (4.2), (4.4) and a permutation of (4.1).

THEOREM 5.2. Let

(4.2) (baa) = a
(4.4) (abb') = a

and

(4.1.2) (de(abe)) = (a(deb) (dec))



identically. Then

(5.2.1) (abc) = (cba)
(5.2.2) (aab) = a
(5.2.3) (b'ab) = a
(5.2.4) (bab') = a

and

(5.2.5) (abc) = (bca).

11

Proof. By (4.4), (4.1.2), (4.2) (4.4), we get

(abc) (ab(ebb'"))

(c(abb) (abb'))

(cba).

Hence (5.2.1) holds.

(4,2) and (5.2.1) imply (5.2.2).

(4.1.2), (5.2.2), (4.4),

By (4.4) (4.2),
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(b'ab) = (b' (abb') (abb))
= (ab(b'b'b))

= (abb') = a.

Hence (5.2.3) holds.

(5.2.4) now follows from (5.2.3) and (5.2.1). Finally,

(abc) = (a(bec') (becb'))

(bc(ac'b'))

(be(b'c'a))

(b'(bce') (bca))

(b'b(bca))

(bea)

by (4.4) (5.2.4), (4.1.2), (5.2.1), (4.1.2), (4.4), (4.4) (5.2.1).

Hence (5.2.5) holds and the theorem is proved.

Now, by (5.2.1) and (5.2.5) (abc) dis completely
commutative. Therefore. (4.1.2) dimplies (4.1). Thus (4.2),
(4.4) and (4.1.2) dimply the hypotheses of Theorem 5.1. Hence

(4.2), (4.4) and (4.1.2) also define a Boolean algebra.

(4.2), (4.4) and (4.1.2) are independent by A2, Al

and A3.

THEOREM 5.3. Let A be an algebraic system consisting of

a set A, a ternary operation (abe) on A and a unary operation
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a' on A. Then A is a Boolean algebra if and only if the

following three identities hold:

(4.2) (baa) = a
(4.9) (b'ab) = a
(5.3.1) ((bde) (aed)c) = (b(edec) (aed)).

Proof. First a few identities are proved which will be used
in the proof of the theorem. Put a =d' in (5.3.1) and use

(4.9) to obtain

(5.3.2) ((bde)ec) = (b(edc)e).

Again, put b =e' in (5.3.2) to get

(5.3.3) (dec) = (edc)

by (4.9). Bow by (4.2), (5.3.2), (5.3.3), (5.3.2), (5.3.3),

(5.3.2), (4.2),

(5.3.4) (abe) (a(cbb)c)

((abe)cb)

((bac)cb)

(b(cab)c)
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= ((acb)be)
= (a(becc)b)

= (acb).

Thea (5.3.3) and (5.3.4) together imply that (abc)

is completely commutative.

Let O be an element of A. Let A and Vv be the

binary operations on A defined by the identities
aAb= (alb)
(4.6) and

aVvb= (ald'b).

It will now be shown that (A,A,v) 1s a lattice.

By (4.6), (5.3.3) and (5.3.4), we get

aAbm= (aOb) = (bOa) =Db A a

(5.3.5)

aVvb= (a0'b) = (b0'a) = Db V a.

Again by (4.6), (5.3.2) to (5.3.4),

(a0(b0e)) = ((a0b)Oc)..

Hence
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(5.3.6) a A (bac) = (aAb) A c.
Similarly,

(5.3.7) aVv (bve) = (avb) Vv c.
Besides,

(a0(a0'b)) = (b(0'al)a)

= (baa) = a

by (5.3.3) (5.3.4) (5.3.2), (4.9), (4.2).

Hence

(5.3.8) a A (avb) = a.

Similarly, we obtain

(5.3.9) a vV (aAb) = a.

Thus by (5.3.5), A and V are commutative. By (5.3.6) and
(5.3.7), they are associative. They satisfy the absorption

identities, (5.3.8) and (5.3.9). Hence (A,A,v) 1is a lattice.

Now we shall show that (A,A,v) is modular.
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If a < c, then

'(aOc) =aAcCc®=a

(5.3.10) and

(a0'c) =a Vv ec=c.

Now by (4.6), (5.3.10), (5.3.1) (5.3.3) (5.3.4), (4.9),

(5.3.2), (5.3.10), we have

(20' (bOc))

(5.3.11) a v (bAc)

((a0e)0"' (b0c))

(a(cOb) (0'c0))

(a(cOb)e)

((alc)chb)

(ach).

The preceding argument remains valid if a and ¢,

A and V,0 and 0' are interchanged.

Hence if a < ¢,

(5.3.12) ¢ A (bva) = (cab).

By (5.3.3), (5.3.5), (5.3.11) and (5.3.12),

a v (bac) = (avb) A c,
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and (A,A,v) is a modular lattice.

Also by (4.6), (4.2), (4.6), (5.3.3) (5.3.4) (4.9),

aAO = (a00) =0

aAO' = (al0') = a

which imply that the smallest and the greatest elements of A

exist and equal to O and O respectively.

Besides, by (4.6), (5.3.3) (5.3.4) (4.9),

aAa'= (a0a') =0

ava'=(a0'a') =0'.

This shows that a' is a complement of a with respect to
(A,A,V). Moreover, this is the only complement of a. For if

a" is a complement of a, then

aAa'"= (a0a") =0

(5.3.13)

av a'"= (a0'a") =0'.

Now by (4.9), (5.3.13), (5.3.1) (5.3.3)(5.3.4), (4.9) (5.3.13),

(4.9),
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a' = (0'a'0) = ((aO'a")a'(aOa"))
= (0'(a'a"a)(a0a"))

- (0'8."0) = a".

Thus (A,A,V) 1s a uniquely complemented modular lattice. But it
"is known that a uniquely complemented modular lattice is distributive.
See, e.g., [13], P 113, Theorem 51l. Therefore (A,A,V) 1is a

complemented distributive lattice.

Now it follows .that
(aAb) v (bAc) V (cha) = (bac) v (ar(bve)).

As bac<bVve,

<

(5.3.14) (bAc) (an(bve))

((bag) (bve)a)

((bOc)(bO'c)a)

((abc)O(bO'c))
(abc) A (b0'c)

by (5.3.11), (4.6), (5.3.1) (5.3.3) (5.3.4), (4.6). But

(abe) Vv (b0'c) ((abc)O'(bO'c))

(a(b0'c)(b0'c))

(b0'c)
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by (4.6), (5.3.1) (5.3.3) (5.3.4), (4.2). Hence

(abe) A (bO'c) = (abe) .

Therefore by (5.3.14),
(aAb) v (bAc) V (cAc) = (abe).

And by the results of,naéegfive S A is a

ternary Boolean algebra.

Cbnversely, if A is a ternary Boolean algebra then
(4.1), (4.2), (4.4), (5.3.3) and (5.3.4) hold, hence (4.9) and

(5.3.1) hold.
This completes the proof of Theorem 5.3.

Theorem 5.3 shows that the jdentities (4.2), (4.9)

and (5.3.1) form a set of axioms for a Boolean algebra.

The following argument will show that these axioms are

independent.

Bv A, (see.p.9), (4.2) and (5.3.1) are valid but (4.9) is not

satisfied.

A4. Consider the set B = {u,v} , u # v and define on it

a ternary operation by (abc) =u or Vv according as one or all
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of a,b,c are u or V and a unary cperation by a' =a for

all a belonging to B.

Then (4.9) and (5.3.1) are satisfied but (4.2)

is false.

AS' Let B = {0,1} where O and 1 are Boolean zero and
unit,‘respectively, and O # 1, and let (abc) = (ave) A b,
0' =1 and 1' = 0. Then (4.2) eand (4.9) are gatisfied, but

(5.3.1) is not valid; for if a=c=e= 1 and b=d =20,

((bde) (aed)e) = (((OML)A0)VI)A((1V0)AL) = 1,

whereas (b(edc)(aed)) = (OV((1M0)A1))A((1V1)A0) = 0,

Many further sets of axioms of this type can be obtained.
Three of them are stated below. The proof that these are gsets of

axioms for a Boolean algebra is omitted.

Bl. (aba) = a
(abb') = a

((dbe)c(ead)) = ((dbe)a(cde))
B,. (aba) = a
(ab'b) = a

((edc)a(ebd)) = (c(ebd) (dae))
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(aab) = a
(bb'a) = a

((dbe)c(ead)) = ((dbe)a(cde)).

In the following, it will only be shown that, in each of

these three cases, the three axioms are independent.

A Let B = {0,1} where O and 1 are Boolean zero and

6'
unit (0 # 1), and let the ternary operation be defined by

(abc) = (bvec) A a and the unary operation by 0' =1 and 1' = 0.

Then the postulates stated under Bl as well as those

stated under 32 are independent by Al, A4 and A6.

A7. Consider the set B = {u,v,w} of three different elements
and define a ternary operation on B by (abc) = a if a = b,
(abe) = ¢ otherwise, and a unary operation on B by

vy'=w' =u, u' =w

Then the axioms listed under B3 are independent by Al’

A, and A7. That the third axiom listed under B3 is not valid

4
in A7 can be seen as follows: Let a = b=wc=w; d=u and
e = v. Then ((dbe)c(ead)) = ((uwv)w(vwu)) = u. On the other hand,

((dbe)a(cde)) = ((uwv)w(wuv)) = (vwv) = V.

1t should be observed that from each set of postulates

for a ternary Boolean algebra mentioned in this section another
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such set can be obtained by replacing every (x1x2x3) by
(xp(l)xp(z)xp(3)) where p is some permutation of {1,2,3}.
The same applies to the sets of postulates for a Boolean algebra

with which we shall deal in the next section.

6. SETS OF TWO POSTULATES

In this section sets of two independent postulates for
a Boolean algebra in terms of one ternary operation and one
unary operation are obtained. This is done by reducing each
axiom set occuring in the preceding section to a set of two

independent postulates in many different ways.

In the postulate set occuring in Theorem 5.1, (4.2) can
be dispensed with by a suitable re-arrangement of (4.1), and
a similar thing applies to the postulate set occuring in Theorem 5.2.

Thus the five axioms givemn by Grau can be reduced to two postulates.

THEOREM 6.1. Let A be any algebraic system consisting of

a set A, a ternary operation (abc) on A and a unary operation.

a' on A. Then A is a Boolean algebra if and only if

(4.4) (abb') = a

and one of

(4.1.3) (de(abc)) = (b(dea) (ede))
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(4.1.4) (de(abc)) = (b(edc) (dea))

identically hold.

Proof. If A 1is a Boolean algebra (4.4), (4.1.3) and

(4.1.4) obviously hold since (abc) is completely commutative.

Conversely, let us consider the case that (4.4) and one
of (4.1.3) and (4.1.4) identically hold. If we show that, in
either case, (baa) = a identically and the operation (abc) 1is
completely commutative, then it will follow from Theorem 5.1

that A is a Boolean algebra.

First assume (4.4) and (4.1.3) . Then, by (4.4), (4.4),

(4.1.3), (4.4),

(6.1.1) a = (abb') = (ab(b'aa’))
= (a(abb')(baa'))
= (aab).

By (6.1.1), (4.1.3), (6.1.1),

(6.1.2) (baa) = (b(aaa) (aaa))

= (aa(aba)) = a.

By (6.1.2), (4.1.3), (4.4) (6.1.2), (6.1.1),
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(6.1.3) (aba) = (ab(b'aa))
= (a(abb') (baa))

= (aaa) = a.

By (6.1.3), (4.1.3), (6.1.3),

(6.1.4) (abe) = (ab(cye))
= (y(abe) (bac)) = (bac)
if y = (bac).

By (4.4) and (6.1.4),

(6.1.5) (bab') = a,

By (6.1.5), (4.1.3), (6.1.2) (6.1.5),

(6.1.6) (abc) = (ab(bcd'))
= (c(abb)(bab'))

= (cba).

By (6.1.4) and (6.1.6), (abc) 1is completely commutative. This
completes the proof of the first half of the theorem,

Now assume (4.4) and (4.1.4). By (4.4), (4.4),

(4.1.4), (4.4),



(ab(b'aa'))

(6.1.7) a = (abb')
(a(baa')(abb'))

(aba) .

By (4.4), (4.1.4), (4.4), (4.1.4), (6.1.7), (6.1.7),

(6.1.8) (aab) (aa(baa'))
= (a(aaa') (aab))
= (aa(aab))
= (a(aab) (aaa))

= (a(aab)a) = a.

By (6.1.7), (4.1.4), (6.1.8),

(6.1.9) (abe) = (ab(eyc))

= (y(bac) (abc))

= (bac)
if y = (bac).
By (6.1.7) and (6.1.9),
(4.2) (baa) = a.

By (6.1.8), (4.1.4), (4.2), (4.1.4), (4.2),

25
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(6.1.10) (abc)

(ab(cca))

(c(baa) (abe))

(ca(abe))

(b(acc) (caa))

(bca) .

By (6.1.9) and (6.1.10), (abc) 1is completely commutative.

Thus in both cases (4.2) holds and (abc) is invariant
under all permutations of a, b and c¢. Hence the proof is

complete.

Theorem 6.1 shows that the axioms listed in Theorem 5.1
or 5.2 can be reduced to two identities namely (4.4) and a

rearrangement of (4.1).

Either set of axioms involved in Theorem 6.1 is

independeat by Al and A6.

In the following we shall see that the axioms listed in
Theorem 5.1 can also be reduced to (4.2) and a combination of

(4.1) and (4.4).

THEOREM 6.2. The axioms

(4.2) (baa) = a

and one of the following identities,
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(6.2.1) _ (de(abc)) = (((dea)b(dec))xx')

(6.2.2) | _ (de(abc)) = ((dea) (bxx') ((dec)xx"'))
(6.2.3) (de(abec)) = (((dea)xx')(bxx')((dec)xx'))
(6.2.4) ((de(abe))xx') = ((dga)b(dec))
{6.2.5) : (d(exx') ((abe)xx')) = ((dea)b(dec))
(6.2.6)~ ((dxx')(exx')((abc)xx')) = ((dea)b(dec))

define a Boolean algebra.

Proof. We shall prove this theorem by showing that, in
is
each case, the axiom set equivalent to the hypotheses of

Theorem 5.1. For this purpose, it will be sufficient to show

that (4.1) and (4.4) hold in each case.

Let (%) be any one of (6.2.1) ¢to (6.2.6). Assume
(4.2) and (*¥). Put b=c= d=e=a in (%) and use (4.2).
Then we obtain (4.4) and this together with (%) implies (4.1)

and the proof of the theorem is complete.

Each of the six sets of postulates involved in Theorem 6.2

is independent by A2 and AS'
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In'the next two theorems, twelve sets of axioms for
the ternary operation (abc) and the unary operation a' are
stated and it is shown that each of these axiom sets is equivalent
to the set of the axioms 1isted in Theorem 5.2. Therefofe each

of these axiom sets is & get of postualtes for a Boolean algebra.

THEOREM 6.3. The set of two identities consisting of
(4.2) (baa) = a

and one of

(6.3.1) (de(abc)) = ((a(deb)(dec))xx’)

(6.3.2) (de(abc)) = (a((deb)xx') ((dec)xx'))
(6.3.3) (de(abe)) = ((axx') ((deb)xx') ((dec)xx'))
(6.3.4) ((de(abe))xx') = (a(deb)(dec))

(6.3.5) (d(exx") ((abc)xx')) = (a(deb)(dec))
(6.3.6) ((dxx") (exx') ((abc)xx')) = (a(deb) (dec))

is equivalent to the set of the following three identities:
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(4.2) (baa) = a
(4.4) (abb') = a
(4.1.2) (de(abc)) = (a(deb) (dec)).

Proof. The proof is similar to the proof of Theorem 6.2.

Each of the six sets of axioms involved in Theorem 6.3 is independent

by A2 and A5.

THEOREM 6.4. The set of the axioms

(6.4.1) ((bxx')aa) = a

and one of the following identities

(6.4.2) (de(abe)) = ((a(deb) (dec))xx")

(6.4.3) (de(abc) = (a((deb)xx')((dec)xx'))
(6.4.4) ((de(abe)) = ((axx')((deb)xx')((dec)xx'))
(6.4.5) ((de(abe))xx') = (a(deb) (dec))

(6.4.6) (d(exx')((abc)xx')) = (a(deb)(dec))
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(6.4.7) ((dxx')(exx')((abc)xx')) = (a(deb) (dec))

is equivalent to the set of the axioms listed in Theorem 5.2,

Proof. It is sufficient to show that (4.2), (4.4) and

(4.1.2) hold in each case.

Let (%) be any one of (6.4.2) to (6.4.7). Assume
(6.4.1) and (%). Put a = d = (yxx') and b=c=e in (%)
and use (6.4.1). Then we obtain (4.4), and this together with

(6.4.1) and (%) implies (4.2) and (4.1.2).

Each of the six sets of axioms involved in Theorem 6.4

is independent by A2 and AS'

The axioms listed in Theorem 5.3 and other sets of axioms
of this type can be transformed into sets of two postulates by
combining axioms of the types (4.9) and (5.3.1). For the axioms

1isted in Theorem 5.3, this is i1lustrated by the following

theorem:

THEOREM 6.5. The set of two jdentities consisting of
(4.2) (baa) = a
and one of the following identities

(6.5.1) ((bde) (aed)c) = (x' (b(edc) (aed) )x)
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(6.5.2) ((bde) (aed)c) = (b(x' (ede)x) (x' (aed)x))
(6.5.3) ((bde) (aed)c) = ((x"bx) (x' (ede)x) (x* (aed)x))
(6.5.4) (x' ((bde) (aed)c)x) = (b(edc) (aed))

(6.5.5) ((bde) (x' (aed)x) (x'cx)) = (b(edc) (aed))
(6.5.6) ((x' (bde)x) (x' (aed)x) (x'cx)) = (b(edc) (aed))

is equivalent to the set of axioms listed in Theorem 5.3.
Proof. The proof is similar to the proof of Theorem 6.2.

Each of these six sets of identities is independent by

A4 and As.



CHAPTER III

SETS OF AXIOMS FOR DISTRIBUTIVE LATTICES

7. INTRODUCTION

According to G. Birkhoff and S.A. Kiss [2] if O and
if
I are elements of 4, (abc) is a ternary operation on A

which satisfies the identities

(7.1) (0al) = a

(7.2) (aba) = a

(7.3) (abc) = (bca)

(7.4) (abc) = (bac)

(7.5) ((abc)de) = ((ade)b(cde))
if

and A and Vv are the binary operations on A defined by

a A b= (alb)

(7.6)
a Vv b= (alb)
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than (A,A,V) is a distributive lattice, the lower and upper
bounds of A with respect to the corresponding lattice ordering

of A exist and are 0 and I, respectively, and
(7.7) (abc) = (aab) Vv (bAc) Vv (cAa) = (avb) A (bve) A (cva)

identically. Conversely, if (A,A,V) 1is a distributive lattice, if
the lower and upper bounds of A with respect to the corresponding
lattice ordering of A exist and are denoted. 0 and I,
respectively, andif(abc) is the'ternéry operation on A defined

by (7.7), then (7.1) to (7.6) hold identically.

Later on in [l] , Birkhoff posed the following problem as
64: "Show that at least onme of (7.3) and (7.4) can be
dispensed with if, a suitable permutation of (7.5) 1is used".
This question has been answered by many authors and the following

axiom systems solving Birkhoff's problem have been given.

(7.1), (7.2) and one of the following:

((edc)b(eda))

ph. Vassiliou [14]: (d(abc)e) =

R. Croisot [5] ¢+ (d(abc)e) = (b(cde) (ade))

J. Hashimoto [7] : (d(abc)e) = ((ebd)a(ecd))

B. Sobocinski [12]: (d(abc)e) = ((dce) (dae)b).
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In all these systems of postulates both (7.3) and (7.4)

are eliminated by a suitable rearrangement of (7.5).

M. Sholander [10] and B. Sobocinski [12] have also stated
gome sets of two postulates in five variables in terms of a
ternary operation (abc) which are equivalent to (7.1) to (7.5).

Sholander stated without proof that

(0a(Ibl)) = a

(d(abc)e) = ((dbe)c(ade))

is such a postulate set.

Sobocinski has proved that each of the following five sets

of identities has the property stated above.

(1) (O(baa)15

= g
(d(abc)e) = ((dce) (dae)b)

(ii) (0(aab)I) = a
(d(abc)e) = ((dce) (dae)b)

(1il) . (0(aba)I) = a
(d(abc)e) = ((dce) (dae)b)

(iv) (aba) = a
(0(d(abc)e)I) = ((dce) (dae)b)
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(v) (aba) = a
(d(abc)e) = (0((dce) (dae)b)I).

In this thesis a number of sets of two to five postulates
for a distributive lattice with 0 and I are stated and added
to this list. A few of them are shown to be such postulate sets,
while the rest of them are only listed. Most of them do not
jnvolve one or both of (7.3) and (7.4) and consequently, thay

are solutions to Birkhoff's problem.

8. SOLUTIONS OF BIRKHOFF'S PROBLEM 64

In this section only axiom sets which are solutions to

Birkhoff's problem are given.

Consider re-arrangements of (7.5) of the following sort:

(1) The left side ((abec)de) or (d(abc)e) ox (de(abe)).

(i1) The right side is of the foim

((x1x2x3)x4(x5x6x7)) or of the form
((x1x2x3>(x5x6x7)x4) or of the form
(i (xy %30 (65%%;))

where (xl,xz,xa,xa,xs,x6,x7) is some re-arrangement of

(asdae’bscsdse)
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(1i1) d and e occur as factors in (xlxzxs) as well as in
(x5x6x7).
(iv) d and e occur in (x5x6x7) in the same positions as in

(x1x2x3).

According to this formulation, there are three possible
left sides. On the right side, a, b and c can occur in six
different orders. At each such order there are six possible
arrangements of the factors of (x1x2x3), each of which corresponds
to exactly ope arrangement of the factors of (x5x6x7). Hence there
are 6 x 6 x 3 possible right sides, therefore, 6 x 6 x 3 x 3 = 324

re-arrangements of (7.5) of the sort described.

1f the order of a, b, ¢ on the right side of an identity
replacing (7.5) is different from the alphabetic order, then let
us say that a, b, ¢ are permuted in this identity. Similarly,
if the order of a, d, e, on the left side of an equation replacing
(7.5) 1is different from their order in (xlxzxs) if a occurs
in this product and different from their order in the product
arising from (xlxzxs) by replacing b or ¢ by a if b or
¢ occurs in (xlxzxs), then let us say that a, d, e are
permuted in this equation. 1f the permutation of (a,b,c) or
(a,d,e) dinvolved is a cyclic one, let us say that a, b, ¢ oOT

a, d, e, respectively, are cyclically permuted in the equation

considered.

Further, let us say that a permation of (a,b,c) and
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a permutation of (a,d,e) are of the same type if the second
ariges from the first by replacing b and ¢ by d and e,
respectively. For example, the permutations (b,c,a) and
(d,e,a) of (a,b,c) and (a,d,e), respectively, are of the same

type. Otherwise, let us say that the permutations are of different

types.

Now all those 324 identities which are rearrangements

of (7.5) can be divided into the following four groups:

G Those identities in which a, b, ¢ or a, d, e are

1.
permuted, and a, b, ¢ as well as a, d, e are cyclically

permuted if they are permuted.

G The identities in which both a, b, ¢ and a, d, e are

20
S
permuted, the two permutation are of different types, and atleast

one of them is not cyclic.

G The identities in which a, b, ¢ or a, d, e are permuted,

3.
a, b, ¢ as well as a, d, e are not cyclically permuted if they

are permuted, and if both a, b, ¢ and a, d, e are permuted, the

two permutations involved are of the same type.

Gd' The identities in which neither a, b, ¢ nor a, d, e

are permuted.
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Again among those 324 re-arrangements of (7.5),

consider identities of the following five types:

(1) the identities in which (abc) on the left side and the
single factor in the ternary product on the right side are in the
same positions but not in the central positions of the termary
products, the single factor in the ternary product on the right
side is different from the factor in the same position in (abc),

and d and e are in the same positions in the three ternary

products in which they occur as factors;

(i1) the didentities of type (1) with the positions of d and

e interchanged on the right side;

(iii) the identities in which (abc) and the single factor in
the ternary product on the right are in the same positions but not
in the centres of the ternary products and the positions of d and

e interchanged on one side from their positions in the ternary

product or products on the other side;

(iv) the identities‘in which the single factor in the ternary
product on the right side is either a or ¢ and is not in the
central position of this product, and in which the permutation

of (a,b,c) or that of (a,d,e) 1is

of type (a,c,b) | of type (c,b,a) | of type (b,a,c) | of type (c,b,a)
or of type or of type
(a,c,b) (b,a,c)
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if the single factor in the ternary product on the right side is

and (abc) 1is

in the central not in the in the central not in the
position central position central
position position

of the ternary product on the left side;

(v) the identities in which the single factor in the right
ternary product is b and is in the centre but (abe) is not in
the middle of the left ternary product and the permutation of

(a,b,c) or that of (a,d,e) 1is of the type (c,b,a).

The author of this thesis has proved that each of the

following identities together with (7.1) and (7.2) forms a

set of three independent postulates for a distributive lattice with

0 and I, the lattice operations defined by (7.6):

(1) all identities which belong to group G, and are not of

type (1);

(11) all identities which belong to group G2 and are not of

type (ii);
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(III) all identities which belong to group G3 and are of type

(iv) or (V).

The author has also proved that each of the following

jdentities together with (7.1) to (7.3) forms a set of four
independent postulates for a distributive lattice with O and I,

the lattice operations defined in the same way as before.

(IV) all idenmtities which belong to group G2 and are of type
(ii) and also all jdentities which belong to group G3 and are

not of type (iii), (iv) or ).

The identities mentioned under (I) are the following:

(1 ((abc)de) = (a(deb)(dec))
(2) = (a(ebd) (ecd)
(3 = ((ecd)a(ebd))
(&) = ((dec)a(deb))
(5) = ((cde)a(bde))
(65 = ((ebd) (ecd)a)
) = ((deb) (dec)a)
(8) = ((bde)(cde)a)
9 = ((ead)b(ecd))
- (10) = ((dea)b(dec))
(11) = ((ecd) (ead)b)
(12) = ((dec) (dea)b)

(13) = ((cde) (ade)b)



(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

(38)

((abc)de)

(de(abe))

(b(ecd) (ead))
(b(dec) (dea))
((ead) (ebd)c)
((dea) (deb)c)
(c(ead) (ebd))
(c(dea) (deb))
((ebd)c(ead))
((deb)c(dea))
((bde)c(ade))
(a(ebd) (ecd))
(a(bde) (cde))
((ecd)a(ebd))
((dec)a(deb))
((cde)a(bde))
((ebd) (ecd)a)
((bde) (cde)a)
((ead)b(ecd))
((ade)b(cde))
((ecd) (ead)b)
((cde) (ade)b)
(b(ecd) (ead))
(b(dec) (dea))
(b(cde) (ade))
((ead) (ebd)c)

((ade) (bde)c)
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(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)

(63)

(de(abc))

(d(abc)e)

(c(ead) (ebd))
(c(dea) (deb))
(c(ade) (bde))
((ebd)c(ead))
((deb)c(dea))
((bde)c(ade))
(a(edb) (ede))
(a(bed) (ced))
((dce)a(dbe))
((edc)a(edb))
((ced)a(bed))
((dbe) (dce)a)
((edb) (edc)a)
((bed) (ced)a)
((eda)b(edc))
((aed)b(ced))
((dce) (dae)b)
((edc) (eda)b)
((ced) (aed)b)
(b(dce) (dae))
(b(edc) (eda))
(b(ced) (aed))
((eda) (edb)c)
((aed) (bed)c)

(c(dae) (dbe))
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(64)
(65)
(66)
(67)
(68)

(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
a7
(78)
(79
(80)
(81)
(82)
(83)
(84)

(85)

(d(abe)e)

(c(eda) (edb))
(c(aed) (bed))
((dbe)c(dae))

((edb)c(eda))

((bed)c(aed)).

The identities mentioned under (1II)

((abec)de)

(a(dec) (deb))
(a(edc) (edb))
(a(dce) (dbe))
(a(ecd) (ebd))
((dce)a(dbe))
((ebd)a(ecd))
((deb)a(dec))
((edb)a(ede))
((edc)a(edb))
((bed)a(ced))
((ced)a(bed))
((dbe).(dce)a)
((dce) (dbe)a)
((ecd) (ebd)a)
((dec) (deb)a)
((edb) (edc)a)

((bed) (ced)a)
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are the following:



(86)
(87
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98)
(99)
~ (100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)

(110)

((abe)de)

((ced) (bed)a)
((ecd)b(ead))
((dce)b(dae))
((dec)b(dea))
((ced)b(aed))
((dce) (dae)b)
((ead) (ecd)b)
((dae) (dce)b)
((edc) (eda)b)
((dea) (dec)b)
((eda) (ede)b)
((ced) (aed)b)
(b(dce) (dae))
(b(ead) (ecd))
(b(ede) (eda))
(b(dea) (dec))
(b(eda) (edc))
((ebd) (ead)c)
((deb) (dea)c)
((edb) (eda)c)
((bed) (aed)c)
(c(dae) (dbe))
(c(ebd) (ead))
(c(dbe) (dae))

(c(eda) (edb))
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(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
. (123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)

(136)

((abc)de)

(de(abc))

(c(deb) (dea))
((dbe)c(dae))
((dae)c(dbe))
((ead)c(ebd))
((edb)c(eda))
((dea)c(deb))
((eda)c(edb))
((bed)c(aed))
(a(edc) (edb))
(a(ecd) (ebd))
(a(cde) (bde))
(a(ced) (bed))
((dbe)a(dce))
((dce)a(dbe))
((ebd)a(ecd))
((edc)a(edb))
((bde)a(cde))
((bed)a(ced))
((ced)a(bed))
((dce) (dbe)a)
((ecd) (ebd)a)
((dbe) (dce)a)
((bed) (ced)a)
((cde) (bde)a)
((ecd)b(ead))

((dce)b(dae))
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(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)

(161)

(de(abe))

((edc)b(eda))
((cde)b(ade))
((dce) (dae)b)
((ead) (ecd)b)
((ced) (aed)b)
((aed) (ced)b)
((ade) (cde)b)
(b(dce) (dae))
(b(dae) (dece))
(b(ead) (ecd))
(b(edc) (eda))
(b(ced) (aed))
(b(aed) (ced))
(b(ade) (cde))
((ebd) (ead)c)
((dbe) (dae)c)
((bed) (aed)c)
((bde) (ade)c)
(c(dae) (dbe))
(c(dbe) (dae))
(c(ebd) (ead))
(c(eda) (edb))
(c(edb) (eda))
(c(aed) (bed))

(c(bde) (ade))
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(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)
(172)
(173)
(174)
(175)
(176)
(177)
(178)
(179
(180)
(181)
(182)
(183)
(184)
(185)

(186)

(de(abe))

(d(abe)e)

((dbe)c (dae))
((ead)c(ebd))
((edb)c(eda))
((eda)c(edb))
((bed)c(aed))
((aed)c(bed))

((ade)c(bde))

(a(ede) (edb)) |

(a(ecd) (ebd))
a(ced) (bed))

(a(cde) (bde))
((ebd)a(ecd))
((ecd)a(ebd))
((deb)a(dec))
((dec)a(deb))
((edb)a(edc))
((bed)a(ced))
((cde)a(bde))
((ebd) (ecd)a)
((deb) (dec)a)
((dec) (deb)a)
((edc) (edb)a)
((ced) (bed)a)
((bde) (cde)a)

((cde)(bde)a)
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(187)
(188)
(189)
(190)
(191)
(192)
(193)
{194)
(195)
(196)
(197)
(198)
(199)
(200)
(201)
(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)
(210)

(211)

(d(abc)e)

((edc)b(eda))
((dec)b(dea))
((ced)b(aed))
((cde)b(ade))
((ecd) (ead)b)
((ead) (ecd)b)
((dec) (dea)b)
((eda) (ede)b)
((cde) (ade)b)
((aed) (ced)b)
((ade) (cde)b)
(b(ecd) (ead))
(b(ead) (ecd))
(b(dec) (dea))
(b(dea) (dec))
(b(eda) (ede))
(b(cde) (ade))
(b(aed) (ced))
((ebd) (ead)c)
((edb) (eda)c)
((deb) (dea)c)
((bed) (aed)c)
(c(ead) (ebd))
(c(dea) (deb))

(c(deb) (dea))
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(212) (d(abc)e) = (c(edb) (eda))
(213) = (c(ade) (bde))
(214) = ((eda)c(edb))
(215) = ((bde)c(ade))
(216) = ((aed)c(bed))
(217) = ((ade)c(bde))
(218) = (c(bde) (ade))
(219) = (c(bed)(aad))
(220) = ((ebd)c(ead))
(221) = ((ead)c(ebd))
(222) = ((deb)c(dea))

The identities named under (III) are the following:

(223) ((abc)de) = (a(edb)(edc))
(224) = ((edc) (edb)a)
(225) = ((cde)(bde)a)
(226) = ((eda)b(edc))
(227) = ((edc)b(eda))
(228) = ((cde)b(ade))
(229) = ((dae) (dbe)c)
(230) = ((dbe)(dae)c)
(231) = ((eda)(edb)c)
(232) = ((bde) (ade)c)

(233) = (c(edb) (eda))



(234)
(235)
(236)
(237)
(238)
(239)
(240)
(241)
(242)
(243)
(244)
(245)
(246)
(247)
(248)
(249)

(250)

(251)
(252)
(253)
(254)

(255)

(de(abe))

(d(abc)e)

The identities named

((abc)de)

(a(dbe) (dce))
(a(dec) (deb))
(a(dce) (dbe))
(a(bed) (ced))
((ced) (bed)a)
((dec)b(dea))
((aed)b(ced))
((ced)b(aed))
((aed) (bed)c)
(c(deb) (dea))
(c(bed) (aed))
(a(deb) (dec))
(a(dec) (deb))
(a(dce) (dbe))
((dbe) (dae)c)
((ade) (bde)¢)

((bde) (ade)c)
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under (IV) are the following:

(a(dbe) (dce))
((dbe)a(dce))
((bde)a(cde))
((dae)b(dce))

((aed)b(ced))



(256)
(257)
(258)
(259)
(260)
(261)
(262)
(263)
(264)
(265)
(266)
(267)
(268)
(269)
(270)
(271)
(272)
(273)
(274)
(275)
(276)
(277)
(278)
(279)

(280)

((abe)de)

(de(abe))

((aed) (ced)b)
((ade) (cde)b)
(b(dae) (dce))
(b(ced) (aed))
(b(aed) (ced))
((aed) (bed)c)
(c(aed) (bed))
(c(bed) (aed))
((aed)c(bed))
((ade)c(bde))
(a(edb) (edc))
((edb)a(ede))
((deb)a(dec))
((edb) (ede)a)
((edc) (edb)a)
((dae)b(dce))
((eda)b(ede))
((dae) (dce)b)
((ede) (eda)b)
((eda) (ede)b)
(b(dea) (dec))
(b(eda) (edc))
((dae) (dbe)c)
((dae)c(dbe))

((dea)c(deb))
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(281) (d(abc)e) = (a(ebd)(ecd))
(282) = (a(bde) (cde))
(283) = ((dbe)a(dce))
(284) = ((bde)a(cde))
- (285) = ((dce) (dbe)a)
(286) = ((ecd) (ebd)a)
(287) = ((ead)b(ecd))
(288) a ((ecd)b(ead))
(289) = ((dce)b(dae))
(290) = ((dea)b(dec))
(291) = ((ade)b(cde))
(292) | = ((dae) (dce)b)
(293) = ((dea)(dec)b)
(294) = (b(dae) (dce))
(295) = (b(ade) (cde))
(296) = ((ead)(ebd)c)
(297) = ((dea)(deb)c)
(298) = (c(ebd) (ead))
(299) = (c(dbe) (dae))
(300) = ((dae)c(dbe))
(301) = ((dea)c(deb))

Because of lack of space the proof that each of these
301 postulate sets does define a distributive lattice with O

and I, the lattice operations defined by (7.6), cannot be
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produced in this thesls. In the following the proof will be

given for the postulate sets associated with (110), (226), (237),

(253), and (278).

THEOREM 8.1. Let A be an algebraic system consisting of
a set A with elements O and I and a ternary operation (abc)

satisfying the identities,

(7.1) : (0al) = a

(7.2) (aba) = a

and one of

(226) ((abc)de) = ((eda) b(ede))
(110) ((abc)de) = (c(eda) (edb))
(237) (de(abe)) = (a(bed) (ced)).

Let A and Vv be the binary operations on A defined by (7.6).
Then (A,A,vV) 18 a distributive lattice, and O and I have the

properties stated at the beginning of section 7.

Proof. It is sufficient to prove (7.3) to (7.5). Assume
(7.1), (7.2) and (226). Replace b and c¢ by a in (226)

and use (7.2) to get

(8.1.1) (ade) = (eda).
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Then (7.5) follows by (226) and (8.1.1). By (7.1), (226),

(7.1) (8.1.1) (7.2), (7.1),

(8.1.2) (alI) = ((0al)ol)
= ((IOO)G(IOI))
= (0al) = a.

By (7.1), (226) (7.2) (7.1), (7.2,

(8.1.3) (a00) = ((0aI)00)
= (0a0) = O.

By (8.1.2) (8.1.3), (226), (7.1) (8.1.1) (7.2),
(8.1.4) (aal) = ((a0I)a(a00))

= ((Ia0)0a)

= a,
By (7.1), (226), (7.1) (8.1.1) (7.2) (7.2),
(8.1.5) (all) = ((0al)II)

= ((II0)a(III))

= I.

By (7.1), (226), (7.2) (7.1) (7.1),
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(8.1.6) (al0) = ((0aI)I0)
= ((010)a(0I1I))

= 8.

By (8.1.6) (8.1.5), (226), (7.1) (7.2),

(8.1.7) (aal) = ((aI0)a(all))

= ((0al)la) = a.
Then by (8.1.1), (7.1), (226), (8.1.4) (8.1.7) (7.2),
(8.1.8) (aab) = (baa) = ((Obl)aa)
= ((aa0)b(aal))

Now by (8.1.1), (8.1.8), (226) (8.1.1) (8.1.8), (226) (8.1.1)

(8.1.8), (8.1.8), (226) (8.1.8),

(8.1.9) (abec) = (cba) ((ecb)ba)

((cba)cb)

(cb(ach))

((ace)b(ach))

(bca).

Now (8.1.9) includes (7.3), and (8.1.1) and (8.1.9) imply



(7.8).
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Next assume (7.1), (7.2) and (110). By (7.2) and

(110),

(8.2.7)

(baa) (b(aaa) (aaa))

((aab)aa)

(((aaa)ab)aa)

((a(baa)(baa))aa)

((baa)a(aa(baa)))

(a((aa(baa))ab)((aa(baa))aa))

(a((aa(baa))ab)((baa)aa))

(a((aa(baa))ab)(a(aab)a))

(a((aa(baa))ab)a)

= 8.

By putting a =b=c¢ in (110) and using (7.2) and

(8.2.7) we get
(8.2.8)

By (8.2.7), (110)

(110), (8.2.8) (7.

(ade) = (eda).

(8.2.7), (8.2.8) (110), (8.2.7),(8.2.8) (7.2),

1 (7.2),
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(8.2.9) (a0I) = ((0aa)OI)

(a0(I0a))

(a(a01) (a00))

(a(a01)0)

(0(a01) (ala))

((Ia0)0a) = a.
Now by (8.2.9), (110), (8.2.9) (8.2.8),

(8.2.10) (abe) = ((abec)OI)
= (c(I0a)(IO0b))

= (cab).
(8.2.8), (8.2.10) and (110) dimply (7.3) ¢to (7.5).
Lastly assume (7.1), (7.2) and (237). By (7.1),

(237), (7.1) (7.2),

(8.2.1) (100) = (10(00I))
= (0(001)(I101))

= 0.
By (7.1), (237), (8.2.1) (7.2),
(8.2.2) (00b) = (00(0bI))

= (0(b00) (100))

= 0.
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By (7.2), (237), (8.2.2) (7.2),
(8.2.3) (b00) = (bO(0bO))
= (0(bOb) (00b))

= 0,

B& (7.1), (237), (8.2.3), (8.2.3), (237), (7.1) (7.2),

(8.2.4) (baa) (b(0al)(0al))

(Ia(b00))

(1a0)

(Ia(a 00))

(a(0al)(0al))

= a,

Now replace b and ¢ in (237) by a and use (8.2.4) to get

(8.2.5) (dea) = (aed).

By (8.2.5), (7.2), (237) (7.2), (237) (8.2.5) (8.2.4), (8.2.5)

(8.2.4), (237), (8.2.4) (8.2.5),

(cb(aca))
(ac(abc))
(a(bca)c)

(a(acb) (ccb))
(bc(aac)) = (bca).

(8.2.6) (abc) = (cba)
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Now (8.2.6) dincludes (7.3), (8.2.5) and (8.2.6) imply (7.4),

and (7.5) follows from (237) , (8.2.5) and (8.2.6).

let us now consider some independence examples.

As.- Suppose A = {0,1} where 0 and 1 are Boolean zero
and unit (0 # 1), and let 0 as well as I be the identity element
of the Boolean join operation V (the Boolean zero), and define

(abc) as a VvV bV e Then (7.2) does not hold, but (7.1) and

the identities (1) to (250) are all satisfied.

Ag. Again assume a two element Boolean algebra A4, and let

0 and I be the identity element of Vv and A, reapectivgly
(the Boolean zero and unit), and define (abc) as (avb) A c. Then
(7.1) and (7.2) are valid, while the jdentities (1) to (250)
all fail to hold. The non-validity of the identities (1) to
(250) can be seen as follows: let the letters appearing in the
ternary products on the left and right sides of the identity
considered by xl,xz,x3,x4,x5, and yl,yz,y3,Y4,Y5,Y6’Y7’
respectively, in the order in which they occur. There are two
possibilities according as Xg and ¥y are equal or unequal.
Consider the case where Xo = ¥y - X can only be ¢ or e.

1f
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replace all the letters occuring in the identity by the Boolean

unit, except

X, and X, » Vs and Y »

which are replaced by the Boolean zero. Then it is easily seen
that the two sides of the identity are unequal. If Xg ¥ T let
vy " 0, and let the other four of a,b,c,d,e be equal to I. Then

the left side of the equation considered equals I, while the right

gside equals O.

AlO' Consider the set A = {0,1} where O and 1 are Boolean
zero and unit respectively, 0 $ 1., Let O as well as I be either
the Boolean zero oOT unit. Let (abe) be defined as 0 or 1
according as atleast two of a,b,c are 0 or 1. Then (7.1)
does mot hold whereas (7.2) and the jdentities (1) to (250)

are all satisfied. The validity of the identities (1) to (250)
can be proved as follows: as the operation (abc) 1s here

completely commutative, each of (1) to (250) 1is equivalent to

(7.5) end it is easily seen that (7.5) 1is satisfied.

By A8 to AlO’ the set of postulates for a distributive
lattice with O and 1 consisting of (7.1, (7.2) and any one

of (1) to (250) is independent.

Let us now consider sets of four postulates.



61

THEOREM 8.2. The set of the axioms (7.1) to (7.3) and

one of
(253) ((abc)de) = ((bde)a(cde))
(278) (de(abc)) = ((dae)(dbe)c)

is equivalent to the set of the axioms (7.1) to (7.5).

Proof. Assume (7.1) to (7,3) and (253). Then by (253)
d=I,e=0 and by (7.1) and (7.3) (abc) = (bac), which

is (7.4). (7.3), (7.4) and (253) dmply (7.5).

Assume (7.1) to (7.3) and (278). Then
(aab) = (aba) = a by (7.3), (7.2), Putting a=b =c¢ in
(278) and using (aab) = a, we get (dea) = (dae). This together

with (7.3) and (278) dimplies (7.4) and (7.5).

9. OTHER SYSTEMS OF AXIOMS

It has also been proved by the author of this thesis

that (7.2) and

(7.8) (a0I) = a

together with one of
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(1) ((abc)de) = (b(cde) (ade))
(2) = (b(ced)(aed))
(3) = (b(aed)(ced))
(4) = (c(ade) (bde))
(5) = (c(aed) (bed))
(6) = (c(bed) (aed))
and also (7.2) and

(7.9) (0Ila) = a

together with one of

(7) (de(abe)) = ((dec) (dea)b)
(8) = ((edc) (eda)b)
9 = ((eda) (edc)b)
(10) = ((deb) (dec)a)
(1) = ((edb) (edc)a)
(12) = ((edc) (edb)a)

form a set of three independent axioms for a distributive lattice
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with O and I, the lattice operations defined by (7.6). Im

the following, the proofs are given for only two of these twelve
sets. (It is easily verified that the identities (1) to (12)
are exactly the identities of types (1) and (ii) defined on

page 37.

THEOREM 9.1. The set of the axioms

(702) (aba) = 8
(7.8) (a0I) = a
(4) ((abc)de) = (c(ade) (bde))

as well as the set of the axioms

(7.2) (aba) = a
(7.9) (0Ia) = a
(8) (de(abe)) = ((edc) (eda)b)

defines a distributive lattice with O and I, the lattice

operations defined by (7.6).

Proof. Assume (7.2), (7.8) and (4). Then by (7.8), 4),
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(7.8),
(abc) = ((abec)OI)

= (c(aOI) (bOI))

= (cab).

This implies that

(abc) =.(cab) ((cac)ab)

(c(cab)a)

((abe)ac)

(ca(bac))

((bac)ca)

((acb)ca) = (bac).

Therefore (abc) is invariant under all permutations of a, b

and c¢, and this together with (7.8) and (4) implies (7.1)

and (7.3) to (7.5).

Again assume (7.2), (7.9) and (8). By (7.2) and
(8), with a=c=d=e, (agb) = a, which implies that
(dea) = (eda) by (8) with a =b = c. This together with
(7.9) and (8) with d =0, e = I implies that (abe) = (cab)
and therefore the operation (abc) is completely commutative,
and (7.1), (7.3) to (7.5 hold. Therefore (7.2), (7.9) and

(8) define a distributive 1attide with O and I with the
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lattice operations defined by (7.6).

All the twelve sets of axioms are independent by A8 to

10°
The author of this thesis has proved that (7.2), (7.3),

(7.8) and one of

(13) ((abe)de) = (a(cde) (bde))
(14) = (b(ade)(cde))
(15) = (c(bde)(ade));

(7.2), (7.3), (7.9) and one of

(16) (de(abc)) = ((dec) (deb)a)
(17 = ((dea)(dec)b)
(18) = ((deb)(dea)e);

(7.1), (7.3), (baa) = a and one of

(19) ((abc)de) = (a(bed) (ced))

(20) = (a(ced) (bed))
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and, lastly, (7.1), (7.3), (aab) = a and one of
(21) (de(abc)) = ((eda) (edb)e)
(22) : = ((edb)(eda)c)

form sets of four axioms for a distributive lattice with O and
I with the lattice operations defined by (7.6). The proofs
are omitted. The identities (13) to (22) are exactly the

jdentities of type (iii) defined on page 37.

Finally one can easily see that each identity belonging
to group G4 together with (7.1) to (7.4) forms a set of five
postulates for a distributive lattice with O and I with the

lattice operations defined by (7.6).

In the following it will be ghown how, in each set of
axioms, for a distributive lattice with 0 and I, considered in
this and the preceding sectionm, the number of postulates can be
reduced by one by combining or permuting or by both so that the

new axioms are independent.

THEOREM 9.2. Each of the following fifteen sets of identities
is a set of axioms for a distributive lattice with O and I, the

lattice operations defined by (7.6):

(9.2.1) (a(Obl)a) = a



and one of

(1) (0(d(abe)e)I)
(2) (d(abe)e)
(3) ((0d1) (abe) (Oel))
(4) (d(abe)e)
(5) ((0dI) (0(abe) 1) (Oel))
(6) (d(abc)e)

(7.2) and one of

(7N (0(d(abe)e)I)

(8) ((0d1) (abe) (0el))

(9 ((0dI) (0(abe)I)(Oel))

(10) (d(abc)e)

(11) (d(abc)e)

(12) (d(abc)e)

and
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((dbe) c(dae))

(0((abe)c(dae))I)

((dbe)c(dae))

((0(dbe)I)c(0(dae)I))

((dbe) c(dae))

((0(dbe)1)(0cI)(0(dae)1));

((dbe)c(dae))

((dbe)c(dae))

((dbe)c(dae))

(0((dbe)c(dae))I)

((0(dbe)I)c(0(dae)I))

((0(dbe)I) (0cI)(0(dae)l));

(66) (d(abc)e) = ((dbe)c(dae))
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and one of

(13) (0(aba)I) = a
(14) (0(baa)I) = a
(15) (0(aab)I) = a.

Proof. Let (%) be any one of (1) to (6). Assume
(9.2.1) and (*). Replace each of a, b and c by (0al) and
d aswell as e by a in (%) and use (9.2.1). Then we
obtain (7.1). (7.1) and (9.2.1) imply (7.2). (7.1) and

(*) 1mply (66).

Now put d =0 and e=1 in (66) and use (7.1) to

get

(7.3) (abc) = (bca).

By (7.2) (7.3), (66) (7.3), (66) (7.2) (7.3), (7.3), (66) (7.2) (7.3),

(bca)

((abb)c(aab))

(a(cab)b)

(ab(acb))

(b(bac)a)

(achb).



69

Hence (7.4) holds. (7.3), (7.4) and (66) imply (7.5).

In the next six cases, it is gsufficient to prove (7.1)

and (66).

Let © be any one of (7) to (12). Assume (7.2)
and 6. Put a=b=c= d=e in @ and use (7.2) to

get (7.1). Then (7.1) and © dimply (66) .

In the last three cases, it is sufficient to prove (7.1)

and (7.2).

Assume (66) and (13). Then, by (13), (66) (13),

(9.2.1) (aba) = (0((aba)(cbc)(aba))1)

= (c(aba)a).

a = (0(aba)I)
= (0((cbc) (aba)a)I)

= (aac).

Hence (aba) = ((aaa)b(aaa))

= (a(aab)a) = (aaa) = a.

Hence (7.2) holds. (13) and (7.2) dmply (7.1).
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Let (14) and (66) hold. Then, by (14), (66) (14),

(9.2.2) (baa) = (0((bee) (baa) (baa))I)

= (a(baa)c).

Again by (14), (9.2.2), (66) (14),

(9.2.3) (baa) = (0(b(baa)(baa))I)
= (O((baa)(b(baa)(bae))c)I)

= ((baa)ca).

But by (14), (9.2.3), (66) (14),

a = (0(baa)l)
= (0((baa)(bcc)a)l)

= (caa),

which together with (14) 4implies (7.1). We know that (7.0
and (66) dimply (7.3). (7.3) and the identity a = (caa)

imply (7.2).

Lastly, assume (15) and (66). Then, by (13), (66),

@a5s),

(aba) = ((0(aab)I)b(0(aab)I))

= (0((aab) (aab)b)I)
= (aab).
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Therefore (0(aba)I) = a, and this case reduces to the case of

(13). This completes the proof of the theorem.

Each of the first fourteen sets of axioms listed in this
theorem is independent by A8 and Ag. The set of (66) and

(15) 1is independent by As and A8.

By Theorem 9.2, the set of the axioms (7.1), (7.2) and
(66) of the previous section is reduced to a set of two independent

axioms in fifteen different ways.



CHAPTER IV

POSTULATES FOR LATTICES AND SEMILATTICES

10. INTRODUCTION

As it is well known, a lattice is an algebraic system
A consisting of a set A and two binary operations, V and

A, on A which satisfy the identities

L10 (avb) vV ¢ = a v (bve)
LZO (aAb) A ¢ = a A (bAc)
L30 a v (aAb) = a

L40 a A (avhb) = a

L50 avVb=bVva
L60 aAb=bAa

(these six identities imnly the idemnotent laws for V and A )
and a semilattice is an algebraic system S consisitng of a set

S and a binary operation o on S which satisfies the identities
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S10 aoa=a
820 aob=boa
S (acb) o c = ao (boe).

30

A. Petcu [8)] considered the nine variants of LlO’ the
nine variants of LZO’ the three variants of L30, and the three
variants of L40 which arise from LlO’ L20’ L30 and Lao,
respectively, by permuting and grouping a, b and ¢ (in the

~ cases of L30 and L40: a and b) in all possible ways.

The variants of L10 considered by A. Petcu are:

Lll (avb) Vc=aV (evb)
le (avb) Y c=b V (ave)
L13 (avb) Vec=b V (cva)
L14 : (avb) V c = (bve) V a
L15 (avb) Ve = (evb) V a
L16 (avb) V c = (avc) vb
L17 aVv (bvg) =b V (ave)

= c VvV (avb)

L18 a Vv (bve)



19

The

The

31

32

33

aVv (bve) = ¢ Vv (bva).

corresponding variants of L20 are:

(arb) A ¢ = a A (cAb)
(aAb) A c=b A (aAc)
(aAb) A ¢ = b A (cha)
(aAb) A ¢ = (bAc) A 2
(aAb) A c = (cAb) A a
(aAb) A ¢ = (arc) A D
a A (bAc) = b A (aAc)
a A (bAc) = ¢ A (aAb)
a A (bAc) = c A (bAa).

variants of L30 considered by A. Petcu are

a VvV (bra) = a
(aAb) V a = a

(bra) vV a = a.

14
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The corresponding variats of L 40 8re’

L41 - a A (bva) = a
Laz (avb) A a = a
L43 (bva) A a = a.
Let

9yqus = (LraolayLawetan?

for i, §=0,..4,9; k, & = 0,1,2,3.

There are 10 x 10 x 4 x 4 = 1600 sets of this kind. We shall
be interested in the question which of these sets are sets of

axioms for a lattice.

Further, let us consider some combinations of Lli and

L42 and of sz and L3k' Let,for i, j = 0,¢.4,9;

k’ 2' - 0,1,2’3’

1 2 1 2
Ly1;4g Liisag Lo4;3k Loss3k

be the identity arising from
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44

3k

by replacing b by t and a by the left side of

1i 2]
on the
left right left right
side of
4 L3k
and replacing a by the right gide of
14 Loy
on the
right left right left

side of



77

For example, Liz-al ig the following identity:
((avb)ve) A (tv((avb)ve)) = b Vv (ave).

1 2
1f 1¢ {5,6,7,9}, Lli;42. and Lli;&z differ only in
the notation and are, therefore, equivalent. If J e {5,6,7,9},
1l 2
LZ 133k and L2 333k are equivalent for the same reason. Therefore,
it is sufficient to consider the elements of

{Lii;l;z | i LJ 0’1’2,3,4’8; 2, - 0’1’2,3; o= 1’2}

1
v {Ly, 4 | 1 =5,6,7,9; & = 0,1,2,3}

and the elements of

‘{ng;:;k | = 03132’394’8§ k=0,1,2,3; B = 1,2}
v {13 | § = 5,6,7,9; k = 0,1,2,3}
Zj;3k 3045/ 57> slssy .

The number of elements of each of these two sets is

6 x 4x 2+ 4 x 4= 64

Let I:L be the identity a vV a = 8, and let 12 be the
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identity a A a=a .

Let

aBy _ (1% B Y
yikg = (Lisgae0 Logpae T

for i, = 0,...,9; k, 2 = 0,1,2,3; o, B, v = 1,2. When the
ci?{z with ie {5,6,7,9) and a =2 or j ¢ {5,6,7,9} and
B = 2 are disregarded, the number of all these sets of three
jdentities is 64 x 64 x 2 = 8192, We shall be interested in
the question which of these 8192 sets of three identities are

sets of axioms for a lattice.

o
_ A. Petcu [8] disregarded ome of Lli;42’ a=1,2,
even if i ¢ {5,6,7,9) and one of L&, ., 8 =1,2 even if
2333k

j ¢ {5,6,7,9} . Accordingly he considered only 3200 of these

8192 sgets of identities.

It should be observed that none of the sets of three

identities and none of the sets of four ildentities considered

in this section includes LSO or L60'
A. Petcu proved the following two theorems in [8].

THEOREM 1. as well as its dual is a set of lattice

914ks

axioms 1f

ie{2,3}, je {4,5}, k=1,4 =0
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or

ie¢{2,3}, 3ec{8,9}, k=0, 2 =2
or

1¢{1,3}, 3¢ {4,5}, k=3,2=1
or

i¢{1,3}, 3Jec{8,9}, k=2, =3,

11y
ijke

axioms if y ¢ {1,2}, and

THEOREM 2. ¢ as well as its dual is a set of lattice

ie{2,3}, Je{4,5}, k=1, 4 =0

or

ie{2,3}, 3ecd{89}, k=0, 2 =2

ox

ie¢{1,3}, 3¢e{4,5}, k=3,2=1

or



ie{1,3}, 3¢ (8,9, k=2, 2 =3

or
ie{8,9}, 3¢ (4,5, k‘- 3, ¢+ =0
or
1, e {4,5}, k, 2 =1
or

i, ¢ {8,9}, k, L = 2.
He also proved that the sets ¢ ollY i, § = 0,1,...,9;
ijkoq:’ ijkﬁl’ ? gy r oy
k, 2 = 0,1,2,3; vy = 1,2 are all independent. On the other hand,
he stated 557 sets Uijkz and proved that none of these sets is

a set of lattice axioms.

The natural question that now arises is 'what can we say

about the remaining sets of three and four identities?"

Here we shall answer this question partly by gstating 112
further sets of four axioms which define a lattice, 48 further

sets °ijkz which do not define a lattice, and 1128 sets of three

axioms which define a lattice.
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D.H. Potts [9] reduced the three axioms Slo to 830

for a semilattice to the two identities S10 and

40 ((aob)o(cod)) o (eof) = (boa) o ((doc)o(foe)),
the latter in six variables. In this thesis, it is shown that a
semilattice can be defined without - postulating commutativity of
o by considering two variants of 530 which are much simpler

than 840 and involve only three variables.

11. POSTULATES

-

The two variants of 830 we are going to consider are

831 (aob) o ¢ = (boc) 0 a
and
S a o (boc) - ¢ o (aob).

32

The following theorem gives two sets of two postulates

for a semilattice.

THEOREM ll.lt) Let S be an algebraic system consisting of

a set S and a binary operation o on S satisfying the ldentities

S10 aoa=a

*)
This theorem was already proved by L. Byrne in his parver "Two Brief Formu-
lations of Boolean Algebra", Bull, Am, Math, Soc., 52 (1946), 269-272,
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and one of

831 (aob) o ¢ = (boc) o0 a

532 a o (boc) = ¢ o (aob).

Then S is a semilattice.

Proof. It is sufficient to prove S20 and 830' First we

shall show that o is commutative in either case.

Assume SlO and 831. Put ¢=aob in S31 and use

S and S

10 31 to get

(aob) o (aob) (bo(aob)) o a,

"ao b = ((aocb)oa) o b

((aoa)ob) ob

(bob) 0 a

= b 0 a.

Second;y, assume S10 and 832. Put a=boc in 832

and use Slo and 832 toget boc=cob,

Thus, in either case, the identities imply SZO' Then

S follows from 820 and 831 or from S20 and S32.

30

Let us now consider some independence examples.



A Consider the set B = {u,v} , u ¥ v and define on it

11°
a binary operation o, by requiring that a 0, b=a if a and

b are any elements of {u,v}. Then 8,4 is satisfied but none

of 831 and S32 is valid.

A Define a binary operation o, on the set B considered

12°

in A,, by requiring that a o, b =u for a e {u,v},

11
b e {u,v}. Then 831 and 532 are valid while S10 fails to

hold.

By A11 and A12’ the two sets of axioms considered in

Theorem 11.1 are ihdependent.

In the foliowing we shall deal with sets of the forms
aBy
aijkz and °ijk£‘
LEMMA 1. Let k and & be elements of {0,1,2,3} such
that  (k,2) # (0,3),(3.0),(1,1),(2,2). Let L3k and L42 hold.

Then Il and 12 hold.

Proof. This is well-known for the case that k=2 =0,
A proof can, e.g., be found on p.34 of [13]. For each of the other
cases, the proof éan be given in a similar way. Let us, e.g., give
the proof for the case that k = 0 and & =1, Put b =1b' Vla

in L and use L41 to get

30

a Vv (aAr(b'va)) = 8



and

1 avam=a.

Then I1 together with L41 with b = a implies 12.

LEMMA 2. Let the hypotheses of Lemma 1 be satisfied.

84

Let

be an element of {4,8} . Let

1i 23

hold. Then

(A,V) (A7)

igs a semilattice.

Proof. V and A are idempotent by Lemma 1.

14

is
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with

O=V . 0= A,

By Theorem 11.1,

(A,Vv) (A,N)

ig a semilattice.

The following theorem gives 48 sets of four postulates

for lattices.

THEOREM 11.2. Let 1 and j be elements of {4,8}. Let
k and & Dbe elements of {0,1,2,3} such that (k,2) # (0,3),

(3,0), (1,1, (2,2). Then cijkz is a set of lattice axioms.

Proof. Let Lli’ LZJ , L3k and Laz hold. Then, by

Lemma 2, (A,v) and (A,A) are gemilattices. Hence V and A

are commutative. Therefore Lli’ sz, L3k and Lal imply L10’

L and LAO' Hence (A,V,A) 1is a lattice.

L

20° 730

The next theorem gives another 64 new sets of four

postulates for a lattice. First we gshall prove the following four
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lemmata.

LEMMA 3. Let i¢ {4,8}, 3 ¢e{1,3}, ke {1,3} and

2 e {2,3}. Let Lli’ L2j’ L3k and L42 hold. Then L60 holds.

Proof. By Lemma 1, I1 and 12 hold, and by Lemma 2, L50
holds. Hence L42 implies L43, and vice versa. Hence L42 and

L hold in any case. Putting a = a' Ab in L42 and Ly

43
we find that

((a'Ab)Vvb) A (a'Ab) = a' A b

and

(bv(a'Ab)) A (a'Ab) = a' A b,

By L or by L31,

33
b A (a'Ab) = a' A b.

By L.. and IZ, or by L d 12

y 21 0 » © Yy 23 an ’

bAaa' =a' Ab.

Hence L60 holds.

LEMMA 4. Let 1 ¢ {4,8}, J e {2,3}, ke {0,2} and



87

2 e {0,1}. Let Lli’ LZj’ L3k and Laz hold. Then L60 holds.

Proof. By Lemmata 1 and 2 Il, 12 and L50 hold. By LSO’

L is equivalent to Lal' Hence L40 and L41 hold in any case.

40
By putting a =b A a' in Lo and LAl’ we find that

(baa') A ((bAa')Vvb) = b A a'

and

(bAa') A (bv(bra')) = b A a'.

By L32 or by L30,

(bAa') Ab=D A a'.

By L22 and 12, or by Ly, and Iz, this reduces to

a' Ab=bA a', vhich proves Lgn.

LEMMA 5. Let i¢ {4,8, J =5, and k =1 and 2 =0 or

k=3 and 2 = l.
Let Lli’ sz, L3k and Laz hold. Then L60 holds.

Proof. For the same reason as in the proof of Lemma 4, both

L40 and L41

find that

= ]
hold. Putting a=2a' Ab in L40 and L41, we
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(a'Ab) A ((a'Ab)vb) = a' A D

and

(a'Ab) A (bv(a'Ab)) = a' A b,

Now by L33 or le, we obtain

(a'Ab) A b = a' A b.

By L25 and Lemma 1,

bAa= a'Ab.

Hence L60 holds.

Lemma 6. Let 1 ¢ {4,8}, 3 = 9, and

k=0 and & = 2

oY

k=2 and & = 3.

Let Lli’ sz, L3k and L&Z hold. Then L60 holds.

Proof. By Lemma 2, both L42 and L43 hold. Putting

- 1 ]
a=bAa in L"2 and L43 we obtain



((bAa')vb) A (bra') = b A a'

and

(bv(bra')) A (bra') = b A a'.

Then using L32 or L30, we get

b A (bra') =b A a'.

By L29 and Lemma 1, this is transformed into

a' Ab=baAa',

Therefoxe L60 holds.

THEOREM 11.3. Let 4 =4 or i =8, Let

i e (1,3}, ke {1,3}, te {2,3}

or

je{2,3}, ke {0,2}, e {0,1}

or

89
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oY

jm=5 k=3, =1
oY

y=9, k=0, 2 =2
oY

Then °ijk2 as well as its dual is a set of lattice axioms.

Proof. Let Lli’ sz, L3k and L4£ hold. Then it follows

from Lemmata 2 to 6 that L50 and L60 hold. Hence Lli’ sz,

L3k and L42 imply L10 to L40' Hence (A,V,A) 1s a lattice.

By the duality principle, the dual of oijkﬂ, also

defines a lattice.

This theorem states 40 quadruplets (i,3,k,%) for
which cijkl as well as its dual is a set of lattice axioms. But
for 8 of these cases, this is already contained in Petcu's

Theorem 1. These are the following cases:
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(a) 1 =24 (1) 3Je{1,3}, k=1, 2 =3
(1) j ¢ {2,3}, k=0, 2 =1

(b) 1 =38 1) 3e{1,3}, k=3, =2
(41) § e {2,3}, k=2, 2 =0.

Hence only the remaining 32 cases are new, and Theorem 11.3

states only 64 new sets of four lattice axioms.

Thus by Theorems 11.2 and 11.3 we get 112 new sets

of four lattice axioms.

Each set of lattice axioms involved in Theorems 11.2 and
11.3 is independent by propositions 10,11,20 and 2l which occur

on p. 343 of [8].

The following “neorem gives 48 new sets of four identities

which .do not define a lattice.

THEOREM 11.4. Let 41 =0, 3 € {0,1,...,9}, ke {0,1,2,3}

and 2 € {1,3}. Then °1jkz or its dual does not define a lattice.

Proof. Consider the set A = {u,v,w} of three different

elements and define on it two binary operations, V and A , by

a if b =v
avbe=

b otherwise
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and

a if a=b
aAnb=

v otherwise,

where the lettexrs a and b denote any elements of the set A.
Now either side of L10 is equal to aVvb if c =v and equal
to ¢ if c#v. Hence L, holds. Either side of sz is

equal to a if a =b =c and equal to Vv otherwise. Hence

sz holds. It is easily seen that L3k and L424 are also
satisfied. But Vv is non-commutative by definition. Hence (A,V,A)
is not a lattice. Therefore oijkl dows not define a lattice.

By the duality principle, the dual of cijkl does not

define a lattice.

Theorem 11.4 states 156 cases in which cijkz does not
define a lattice. For 108 of those 156 cases, this has already
been proved by A. Petcu. But it is new in the following 24 cases

and thelr duaels:

(1) 41=0, jce {3,4,5,8,9}, ke {0,1}, 2 ¢ {1,3};
(i1) i=0, je{2,7}, k=0, 2 = 1;

(1i1) 4e{1,6}, k=1, 2 =3,

He
[}
o

L J

Now we shall consider sets of three identities of type



93

aBy
oiijQ
The following theorem gives 1152 such sets of lattice
axloms.
THEOREM 11.5. Let 1 e{4,8 and a,B, Y € {1,2}. Let
(a) Je{4,8, k, &¢ {0,1,2,3}
or
() 3¢e{1,3}, ke (1,3}, & e {2,3}
or
(e) 3e{2,3}, ke {0,2}, & ¢ {0,1}
or
(@ 3J=5, ke {1,3}, % ¢ {0,1}
or

€ 3 =9, ke {0,2}, 2e {23}

Then oiglm as well as its dual is a set of lattice axioms.

¢} B Y -
Proof. Let Lli;az’ L2j,3k and I' hold. Let, e.8.,Y 1,
Then, putting a =b = ¢ in Lii°4z and using Il, we obtain
’

o 1
L g and Laz together with Lli;&z and I~ implies L11 and

4

12. Similarly, if v = 2, L3k’ sz and I1 hold. Hence

1
Lygs Loy Lo Laee T
with o=V, L11 and Il imply that (A,v) 1is a semilattice.

and 12 hold in both cases. By Theorem 11.1,

Hence L50 holds.

In case (a), by Theorem 11.1, with o0 = A, sz and 12
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imply L60' In cases (b) and (c), L60 holds by Lemmata 3 and

4, respectively.

Suppose we have case

(). (e).
Then
L31 and L41 L30 and L43
hold. futting
a=a'Ab a=baAa'
in
La L3
and using
L3 L3o

we find that
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(a'ab) Ab=a' Ab b A (bAa') = b A a’.
By
Lyse Logs
(bAb) A a' = a' A b. a' A (bAb) = b A a'.
By Iz,

bAa' =a'Ab,

Hence L60 holds.

Thus L60 holds in all five cases, (a) to (e). Lli’
sz, L3k’ L42’ L50 and L60 imply LlO’ L20, L30 and L40'
Hence (A,v,A) is a lattice.

By the duality principle, the dual of cigiz also defines

a lattice.

Thus, as the set of the 512 cases of (a) is selfdual,
Theorem 11.5 states only 1152 cases in which ci?lk is a set
of lattice axioms. But, for 56 of those 1152 cases, this has

already been proved by A. Petcu. These are the following cases

and their duals:



(1)
(11)
(111)
(iv)
W)
(vi)
(vii)
(viii)
(1x)
(x)
(x1)

Hence only the

[T
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a=pg=1l, ye {1,2},

4, j=8, k=0, 2 =3
=4, k=mg=1

j=8 km=g=2

4, e {1,3}, k=1, 2 =3
4, 3¢{2,3}, k=0, 2 =1
8, je{1,3}, k=3, 2 =2
8, jef{2,3}, k=2, 2=0
4, J =5, k=0=1

8, j=5, k=3, £=0
4, j=9, k=0, 2 =3

8, 3=9, k=g =2,

remaining 1096 cases are new.

Thus

Theorem 11.5 gives 1096 new sets of three lattice axioms.

A. Petcu disregarded 168 sets of three identities in

Theorem 2 of

Theorem 11.5.

(1)
(i)

(111)

(8].

They are the following cases and their duals:

i=3,
i-9, Je

i=5, 3¢

Only 32 of those sets are not contained in

e

{2,3},
{2,3},
{1,3},

k=1,

k = 0,

k =2,

2, y=1,2 and

2 =1
2 =0

2 =3
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(4v) 1 =9, Je{l,3}, k= 3, =2,

These 32 sets also define a lattice and the proof is contained

in the proof of Theorem 2 of [8].

Thus we get 1096 + 32 = 1128 new sets of three lattice

axioms altogether.

Each of these 1128 sets of three axioms is independent

by propositions 9, 10° and 101 of [8].
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