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ABSTRACT

Two quasi-static, steady state flow problems of an incom-
pressible, isotropic, elastic-perfectly plastic solid are considered in
this thesis; namely, the plane radial flow through a rough converging
channel and the axially symmetric radial flow through a rough conver-
ging conical channel. The classical PRANDTL-REUSS constitutive equations
are rewritten in a form which is invariant under arbitrary changes of
the frame of reference. This invariant fom is necessary for the
problems considered since the classical fom is applicable only to
problems which involve small deformations and for which the use of the
infinitesimal strain tensor is justified.

The relationship between the form invariant PRANDTL-REUSS
equations and the constitutive equations of a hypo-elastic solid of-
grade two is discussed. Also, two steady state flow problems of a hypo-
elastic solid of grade two are considered: the plane radial flow through
a smooth converging channel with and without consideration of inertia
effects.

A frame indifferent definition of stress rate is of critical
importance in modern theories of hypo-elasticity and elasto-plasticity.
Consequently, a discussion on the definitions of stress rate is contained
in this thesis.

An investigation is made of the nature of the governing equations
for the plane strain flow of an elastic-perfectly plastic solid. The
results of this investigation are applied in part to the plane radial
flow problem of the elastic-perfectly plastic solid.
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CHAPTER 1

CONSTITUTIVE EQUATIONS IN THE FLOW THEORY OF
ELASTIC-PERFECTLY PLASTIC MEDIA FOR INFINITESIMAL STRAIN

This chapter contains a review of the classical elastic-
perfectly plastic theory of PRANDTL-REUSS. This theory is applicable
only to problems involving small deformations since approximations are
made for the actual strains and stress rates. In this chapter all dis-
'placement components ui(i = 1,2,3) are referred to a fixed rectangular
CARTESIAN frame Xi(i = 1,2,3) and are assumed to be single-valued con-
tinuous functions of .the spatial coordinates X4 or the material coordi-
nates a, and time t. The review begins with definitions characterizing
small deformations and the usual CARTESIAN tensor notation is used

throughout.

1.1 INFINITESIMAL STRAIN TENSORS AND STRAIN RATE TENSORS
The classical PRANDTL-REUSS theory is valid for small deforma-

tions, that is, for deformations that involve small displacements, small
strains and small rotations. The precise meaning of the term small is
discussed in TRUESDELL and TOUPIN [1].

GREEN'S strain tensor is given by

and if the terms Eyq EJZ,E12 ﬁjz and R, , Rjz'

where



ou ou.
g o=l 4,0
and
u au
poo=l 4 d
Rij = 3?'(aaj - aai)

can be neglected in comparison with Eij’ then

ALMANSI'S strain tensor is given by

Q
o

3X1 axj

au
LT
&5 "7 (“‘ax\r+

) -

X

Qo
|\)|_a

and for small deformations

ou ou
1 %Y
f(sq*sqi)“

[

The displacements u, = x; - a5 if small imply that

ij aad
and
ax1



Consequently, .

197 %43 " By

where

Q
=

)

ou
1 i
7 5,

J

Q

e'ij

defines the infinitesimal strain tensor and no distinction is made between
spatial and material variables.

The material rate of change of GREEN'S strain tensor is given

by
——.J-DE.i.=d ?ﬁf‘.iﬁ’.
Dt st %a,; 9%a
i
where
v av
=1l s,_t
dsy =3 (axt+ axs) (1.1.1)

are components of the rate of deformation tensor. The rate of defor-
mation tensor is of importance in constitutive equations since it is a
tensor that is independent of the rigid body rotation of a material. .
In plasticity 1iterature dst are usually called the components of:the
strain rate tensor and henceforth in this thesis thi§ terminology will

be used.

The infinitesimal strain increment during the infinitesimal time



increment dt may be defined as

dn1j = d,ij dt
ahd
an. . = 1_[3(d"1) . a(dqj)
ij ~ 2 axj axi

where du; is the displacement increment and x; are spatial variables.

Another definition of finite strain is

where the integration is taken over the strain path.

1.2 ELASTIC STRESS-STRAIN RELATIONS FOR SMALL STRAINS

The stress-strain relation for the classical HOOKEAN solid is

where 044 are components of the stress tensor and A and u are the LAME.
constants. This stress-strain relation can be expressed in terms of. the
stress deviation components sij and the strain deviation components

eid as

S5 = 2u e%j (1.2.1a)



and
p=-K €k * (1.2.1b)

where p £ - %-okk and K = A + %-u is the bulk modulus. For an in-
compressible HOOKEAN solid,

Epk = 0 and t-:,i\1 = eij .

Equations (1.2.1a,b), differentiated with respect to time,

gives

o - 1
S” = 2 f'Ij' f'lj H d'ij - ’S'dkk 6” ’

and (1.2.2a,b)
ba"dek-

. 9s; ‘
The time derivative of stress is si‘1 = -sii-since the deformation 1is

851
“small.  For a HOOKEAN solid, the convected terms v sg-i-may be. neglected,
"k
but for small deformation of an elastic-plastic solid these terms may
not be neglected if the rate of work-hardening is small compared with E,

YOUNG'S modulus of the material.

1.3 PERFECTLY PLASTIC STRESS-STRAIN RATE RELATIONS FOR SMALL DEFORMATIONS

Plasticity theory of the incremental or flow type relates the

plastic strain increment or strain rate components and not the plastic



strain components with the current stress components. ST.-VENANT [2]
proposed that during two dimensional plastic deformation of a solid a
co-axial relationship exists between the strain-rate tensor and the
stress tensor. Independently, LEVY [3] and VON MISES [4] proposed a
similar relationship for three dimensional plastic deformation.

In the following derivations of the constitutive equations for
the perfectly plastic theory of small deformations the approach used
involves the concept of a yield function and its associated flow rule
based on the existence of a potential function taken to be the yield
function. This method is due to VON MISES [5] and MELAN [6].

According to the concept of a yield function there exists a

function f of the stress such that
f(c.ij) = C, C > 0’ (1-3.])

and where C is a material parameter dependent on the strain history.
Relationship (1.3.1) is called a yield criterion. The condition
f(dij) <.C identifies the elastic domain and f(°1j) > C the plastic
domain. For a non-hardening material, C is a material constant and
f(°1j) > C is an inadmissible state of stress. In this thesis, further
discussion is confined strictly to non-hardening materials.

The conditions of isotropy and the independence of plastic

deformation on hydrostatic pressure require f-to be of the form
f(d5, J93) = C (1.3.2)

where



1]
N —

515 543

N -

and

-1
J3 = 3 545 Sik Ski
are respectively the second and third stress deviation invariants.
Absence of .a BAUSCHINGER effect [f(°1j) = f('cij)] requires f to be an
even function in Jé .

Two important yield criteria are the VON MISES yield criterion
and the TRESCA yield criterion. The VON MISES yield criterion is

=1 - L2

which written in terms of the principal stress components o, (i =1,2,3)

is

where k is the yield stress in simple shear. The TRESCA yield criterion,
although it can be expressed in the form of equation (1.3.2), is written

more.conveniently as

g -g =Y (1.3.4)

max min

where Y -is the uniaxial yield stress and Tna and Onin 2Te the maximum

X n



and minimum principal stresses. .

Depicted in a principal stress space with the principal stress
O1s Op» and as‘taken as'rectangular CARTESIAN coordinates, each criterion
represents a surface called a yield surface. The VON MISES yield surface
s a circular cylinder and the TRESCA yield surface is a feguiar'hexagona1-
cylinder both infinite in extent and having their axes:pass through the
origin with direction numbers (1,1,1). Since plastic deformation is in-
dependent of the hydrostatic pressure, any section parallel to the plane-
gy + 0, t oy = 0 may be taken as representative of the stress domain.
It is customary to take the orthogonal projection of a section parallel
to oy = constant onto the gy - o, plane. Figure 1 shows such a pro-
jection, the boundary of which is called a yield locus, and illustrates
the relationship taken between the VON MISES yield locus.and the TRESCA
yield locus. The TRESCA yield locus is.a linearization of  the VON MISES
yield locus.

Convexity of yield surfaces is fundamental in classical plas-

ticity theory. A yield surface f(c1j) = C {is convex if
flofy) - Flogy) 2 (o - oyy) —af;:i (1.3.5)

for any two arbitrary stress states aqd and %43 producing plastic de-
formation. Inequality in relationship (1.3.5) holds only for strictly
convex surfaces. The convexity of the VON MISES and TRESCA yield surfaces
are evident from a geometrical standpoint. However, convexity of.any
general yield surface cannot be shown using assumptions of perfect plas-
ticity alone unless some.additional hypothesis such as the principle of

maximum work [7] is made.
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10
The hypothesis of the existence of a plastic potential states-
that there exists a function g of the stress such that the plastic strain

rate components are given by the flow-rule

d$§)=5—33-5 A,
where A is a non-negative scalar invariant dependent only on.coordinates
Xy and time t. The dependence of g is upon the stress deviation in-
variants Jé and Jé in order that the co-axial relationship between the
plastic strain-rate tensor and the stress deviation tensor be satisfied.
A further hypothesis is made that g is identical to f [8]. Thus in
principal stress space, the principal plastic strain rate vector Ga(dsph
associated with the principal stress vector 3(01) has the same direction
as the outward normal, if defined, to the yield surface f(°1j) = (C at
the point 01(1 = 1,2,3) representing the plastic stress state. The
dgp) (1 = 1,2,3) are the principal components of the plastic strain rate
tensor and the factor G is used to give dimensions of stress to the
plastic strain rate vector iﬂdgp))in principal stress space. The plastic
strain rate components for perfectly plastic materials are thus deter-

mined by

P) of
alP) = 2, (1.3.6)
13 3°1j
where A = 0 if f < C and also if f = C and %-< 0o,
A>0if f=Cand f=0.
An upper dot associated with a quantity denotes differentiation with

respect to time or any other monotonically increasing parameter cor-



10
The hypothesis of the existence of a plastic potential states:
that there exists a function g of the stress such that the plastic strain

rate components are given by the flow-rule
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mined by

ij acij_

A (1.3.6)
where A = 0 if f <C and also if f = C and %-< 0,

A>01if f=Cand f=0.
An upper dot associated with a quantity denotes differentiation with

respect to time or any other monotonically increasing parameter cor-



n
related with progressive deformation. The flow rule -(1.3.6) corresponding

to .the particular yield function f is called the associated flow rule for
£ . The -most-general associated flow rule for f in the  form given by

equation (1.3.2) is

P) . '
( ) AETIT Sij * 'JT (s Sik - 535 8,1

Components of the plastic strain rate tensor are determined
up to an arbitrary non-negative scalar factor at a plastic stress state
provided ng— are uniquely defined: there. This is.possible for all
points on t;e-yield locus if .the corresponding yield surface is a regular:
surface. The VON MISES yield surface is regular; hence the plastic
strain rate components are derivable using the flow rule -(1.3.6) to give

dsg) = A5y (1.3.7)

the.LEVY-MISES flow relation. If, however, the yield surface.is a singu-
lar surface, the corresponding associated flow rule {s given by the
KOITER generalization of the plastic potential [9]. According to this:

generalization, the plastic strain rate components are determined by

(P) 2 (1.3.8)
r .

Ar are non-negative scalar invariants dependent only on coordinates Xy

and time t and

= Q if fr < C and also if fr = C, fr <0,
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Ap > 0 if fr = C and f. = 0.

The summation is taken over all surfaces fﬁ = C whose join forms the

yield surface in the neighbourhood of -the plastic stress point considered.

In principal stress space, the direction of Gﬁ(ng)) at a singular point

must be within the region spanned by the unique normals drawn outwards

to the faces intersecting at the particular singular point consicered. .
There is only one plastic regime available as the stress point.

traverses the VON MISES yield locus. However the TRESCA yield surface is

singular and as the stress point traverses the TRESCA yield locus different

plastic regimes are available. If the stress point lies on a flat of the

yield locus then,from the concept of the plastic potential,

P - P P) _
déai =A=- déi% ’ d$nl"'o ’

(P) (P) (P) . . . .
where dmax , dint and dmin are the maximum, intermediate and minimum
principal components of the plastic strain rate and A > 0 . If the
stress point lies on a corner, for example point B of Figure 1, it

follows from KOITER'S genera]ization of .the plastic potential that
(P) - (P) - (P) .
d] - )\], d2 = Az, d3 == ()\] + Az)

where A, > 0, A, > 0. For point C

Q.
—
O
—
"

(P) _ (P) .
1= A dy T =g, dgit =

where A, > 0, A, > 0.
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The: form of the scalar invariant A in the LEVY-MISES flow
relation (1.3.7) is determined by squaring this equation to give

dff) off

= 91211
j = A 51j Sij ZA J2

Since 7 ] d(P) d(P) z I}

, the second invariant of- d(P) , it follows that
2 i3 i3 2
. /d(P) d(P)
Vol B2
2

A is thus a function of the invariants of .the plastic strain rate tensor
and stress deviation tensor

Alternatively, multiplying both sides of
equation (1.3.7.)‘by.si‘j gives -

(P) - = oy
dij Sij‘- A Sij Sij‘- ZAJZ
from which
d(P) d(P) 1

The LEVY-MISES flow relation for perfectly plastic theory is .now rewritten
as

aP) o
d(P) L *om S..
1J k2 ij

(1.3.9a)
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o AT
dyh) = —2M__Im_ . 1.3.9b
i3 /2 K *13 ( )

Each relation (1.3.9a or b) is homogeneous of .order one in the plastic

strain rates. Thus perfectly plastic flow is inviscid.

1.4 ST. VENANT-LEVY-MISES ELASTIC-PERFECTLY PLASTIC THEORY

The classical theory describing the response of an elastic-
perfectly plastic material in which no account is made for-elastic
effects during plastic deformation is called the ST. VENANT-LEVY-MISES
theory. 'If the yielding of the material is governed by the VON MISES
yield criterion, the theory is referred to as the,LEVY-MISES theory [10].

For analysis employing the ST. VENANT-LEVY-MISES theory, two
sets of constitutive equations are required; one for the region de-
forming elastically and the other for the region deforming plastically.

For the elastic region, the constitutive equations are given by
sij = 2u eij s Epp = 0,
for incompressible deformations and by
S.ij=2ue%j ,p=-Kekk.
for compressible deformations. For the plastic region, the constitutive

equations depend upon the yield criterion used. With the VON MISES

yield criterion (1.3.3) written as



15
f= =%, (1.4.1)
the constitutive equations are the LEVY-MISES relation (1.3.7), namely,
af) = x5y (1.4.2)
where

A >0 for f-= 2k% and f = 0.

With the TRESCA yield criterion (1.3.4), the constitutive equations are

d(P) - 2 (1.4.3)

where
§r >0 for f, =2k and f, = 0.

In any specific elastic-perfectly plastic deformation probiem
where the equations (1.4.3) are used, the plastic regime applicable must
first be determined. However, this is not always possible and an additional
assumption is made to make the problem either statically or kinematically
determinate. This amounts to specifying the singular point or flat used
on the TRESCA yield locus. One such assumption is the HAAR-KRRMRN hypo-
thesis [11] which states that in some axially symmetric perfectly plastic

problems, the circumferential stress is equal to one of the principal
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stresses in the meridional plane. This situation does not occur.for
the LEVY-MISES theory since there is only one plastic regime available.
However, the LEVY-MISES theory has one undesirable property in that the
governing equations for axially symmetric flow problems are non-hyperbolic:
in character thus adding difficulties to the mathematical analysis [12].

A feature of the ST. VENANT-LEVY-MISES theory which causes
difficulty is the determination of.the elastic-plastic boundary.

If in the deformation of an elastic-perfectly plastic material,
elastic deformations are taken as vanishing identically so that the de-
formation of the material is just that due to the perfectly plastic de-
formation, one is then led to the 'rigid-plastic' theory. This theory
is applicable strictly to a hypothetical 'rigid-plastic' material which
remains rigid for stress states below yield and whose elastic moduli are
indefinitely large. The constitutive equations are given by equation
(1.4.2) or equation (1.4.3) with d§§) replaced by d. This theory has
been applied to the problems involving unconstrained plastic flow of an
elastic-perfectly plastic solid where the elastic deformations are small
compared to the plastic deformations and so may be justifiably neglected
provided the analysis is not in the immediate vicinity of the transition

zone between elastic and plastic zones.

1.5 CLASSICAL ELASTIC-PERFECTLY PLASTIC THEORY OF PRANDTL-REUSS

The incorporation of the elastic strains in the stress-rate
of strain relations for a perfectly plastic solid was proposed by
PRANDTL [13] for two dimensional flow problems and by REUSS [14] for
three dimensional flow problems. The definitions of strain and stress

rate used are applicable only for small deformations.



17

During the continued loading of an element of an elastic-
perfectly plastic material deforming plastically, the total displace-
ment of each material point of the element may be represented by

- y(e) 4 ,(P)
R B

where uge) is the displacement vector corresponding to the elastic
deformation, and ugp) is the displacement vector corresponding to the
plastic deformation remaining after unloading. The decomposition of
us into elastic and plastic components is not unique since ugé) and

ugp) are determined up to a rigid body displacement of the whole material.

The same remarks apply to the velocity vector given by

v = vge) + vgp) (1.5.1)
where vge) and vgp) are the velocity vectors corresponding to the elastic
and plastic deformations respectively. Consequentlythe strain rate
tensor defined by equation (1.1.1) is used in formulating the classical
PRANDTL-REUSS equations since it is & tensor .independent of the rigid
body rotation of the material. From equation (1.5.1) it follows that

= q(e) 4 4(P)
where dgﬁ) and dgg) are respectively the uniquely determined components

of the elastic and plastic strain rate tensors defined by

(e) (e)
R av.: ov;
dgg) = 2'(8x; ¥ axi )
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and
(P) (P)
ij J X, ’e

In further discussion,a solid which yields plastically according to
the VON MISES yield criterion will be called a MISES solid and one
which yields plastically according to the TRESCA yield criterion will
be called a TRESCA solid.

For an elastic-perfectly plastic MISES solid which is elasti-
cally compressible and which is deforming plastically, the strain rate’

tensor is obtained from equation (1.5.2) rewritten as

P
dyy = (3) + §-d(e) 814 * gj) (1.5.3)

where fgﬁ) are components of -the elastic strain rate deviation tensor.

From equations (1.2.2a,b) it then follows that

Ds..
=1 i 1 Bp
d " 2u Dt 3K Dt.aij +A Sij . (1.5.4a)
This together with
(e)o _ _1Dp |
dek = dkk =~ K D ~ (1.5.40)

constitute the constitutive equations for the MISES solid. The operator
D )

ot s the material derivative defined by Dt ()= t ( )+ Vi 5;; ( ).
However, differentiation need not be with respect to time t but to any

other monotonically increasing parameter correlated with progressive de-
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formation. This is possible since plastic deformation is inviscid.

If déﬁ) = 0, it follows from.equations (1.5.4a,b) that

Ds
1 Dsyy
diy =25 e * A Syj

and (1.5.5a,b)

kk=0l

Equations (1.5.5a,b) are the constitutive equations for an incompressible
elastic-perfectly plastic MISES solid.

An expression for A in the caée A#0 can be.obtained by
multiplying each side of equation (1.5.4a) or equation (1.5.5a) by 54
and using the result on differentiating materially the VON MISES yield
criterion (1.4.1) that

Ds
Df _ ij
t = 251j t = 0.

This, along.with the VON MISES yield criterion, yields

A= L0 (1.5.6)

For an elastic-perfectly plastic TRESCA solid which is elasti-

cally compressible and deforming plastically, the constitutive equations

are
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21 1 Dp r
dis =20 Bt " I;DOt %45 * 2, Ay 35
and (1.5.7a,b)
=.1Dp
dek = " KDt °

The role of A, is as given in relationship (1.3.8). Equations (1.5.7a,b)
follow analogously from equations (1.5.3) as did équations (1.5.4a,b) on
simply replacing dgg) by its form given in equation (1.3.8).

If dkk = déi) = 0, then from equations (1.5.7a,b) one obtains

Ds of
_ 1 ij r
Ay =z e * LA 53
r ij
and (1.5.8a,b)
dkk = 0.

These are the constitutive equations for an incompressible elastic-
perfectly plastic TRESCA solid. The role of Ar is as given in relation
(1.3.8).

From the constitutive equations of the classical PRANDTL-REUSS
equations considered in the foregoing discussion, those for the rigid
plastic theory are derivable on letting u be indefinitely large, pro-
vided that all stress derivatives and velocities are finite.

asi
On first neglecting convected terms of type Vi 5;—1 , inte-
k
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gration with respect to time t-of equations (1.5.4a,b) or (1.5.7a,b) .

with A, Ar = 0 yjelds

) 1
®1 ° o %4

and
_ P
€&k = "X

These are the constitutive equations of a compressible HOOKEAN-solid
for infinitesmal strains under the usual initial conditions of a stress
free-strain free natural state. Sim11ar1y'from equations (1.5.5a,b)

or (1.5.8a,b), one obtains
€ey = 5= $
id 2w
and

€k © o,
the constitutive equations of an incompressible HOOKEAN solid,

The constitutive equations of the classical PRANDTL-REUSS theory
are similar to those of ST. VENANT-LEVY-MISES theory with the main exception
that elastic deformations.are accounted for in determining the deformations
occurring during plastic flow. There are still two sets of .constitutive
equations needed; one valid for the elastic region and the other in the

plastic region. For loading systems passing from elastic to plastic



states, a determination of the elastic-plastic boundary is sti11 re-
quired. However, the constitutive equations have been made more compli-
cated by the introduction of stress rates.

Attempts at formulating an elastic-perfectly plastic theory
which would lead to a gradual transition from elastic to plastic states
with the use of just a single set of constitutive equations valid for
any stress state not violating the yield criterion, were made by
PRAGER [15] and THOMAS [16]. THOMAS'S work is a generalization and
extension of an earlier work [17] on axiomatizing a perfectly plastic
theory valid for infinitesimal strain. This latter work is presently

considered.

1.6 PERFECTLY PLASTIC THEORY OF T.Y. THOMAS
T.Y. THOMAS [17] proposed a theory aimed at revealing the

possible forms that the constitutive equations of a perfectly plastic
material may take on using established characteristics of this material
under'p1ast1c deformation. To formulate this new mathematical science,
THOMAS proposed:

Axiom 1. Perfectly plastic deformation occurs without volume change,

that is,
(P) ] L]
dkk =03

Axiom 2. The stress deviation tensor is an jsotropic tensor function

of the plastic strain rate deviation tensor, that is,

S5 7 %3 (félp)) ; (1.6.1)
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Axiom 3. Relationship (1.6.1) does not establish a one-to-one.corres-

pondence between the stress deviation tensor and the plastic strain
rate deviation tensor.

With these axioms, THOMAS obtained the constitutive equations
for the LEVY-MISES theory and:constitutive equations for.a perfectly
plastic TRESCA solid. This latter set of constitutive equations differ
from .those given previously in SECTION 1.3. The perfectly plastic
theory proposed by THOMAS is not consistent with the perfectly plastic
theory based on the concept of a plastic potential identified as the
yield function.

Axioms 1 and 2-imply that

Sij = ¢1J(12.I3) (1.6.2)

()

where 12 = d,” (P) and I = d(P) (P) (P)

i i3 jk k1 are the two non-zero basic
invariants of the plastic strain rate.tensor. Since °1J are components
of a symmetric second order tensor and dependent on invariants I2 and

I and since syy = 0, equation (1.6.2) can be expressed [18] as

S19 ° O dgg) ¥ o (d(P) d(P) - o8  (1.6:3)

vhere a; = o (12.13).'1 = 1,2. Multiplication of equation (1.6.3) by
%’Sij and %'Sjk ski.alternately yields

o 2
1 1 2, 2

and
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3
o}
e 1.2 02,1, 2

1 .3
3= 3 I3t gogaly +goe, ).

3 g (1 - 1 1,

(1.6.4b)
By axiom 3, the JACOBIAN A of the equations. (1.6.4a,b) is zero. This
results in a partial differential equation involving the unknown o
and Op. Guided by the existing forms.of the previously established
constitutive equations .of the LEVY-MISES'theory, THOMAS considered the
specific case where a, = 0 and o > 0. The quasi-linear partial dif-
ferential equation

da, 90
2y ar, * Maary o =0

so formed has the general solution

Y,
o) = L == L r—)
2 " T A

for arbitrary differentiable function F. Thus a general form for the

constitutive equations of perfect .plasticity is

= 1 p3y 4(P), (1.6.5)

Squaring equation (1.6.5), one obtains the relation
W

3 2
543 Sij - [F (—== Vf_;

=0 (1.6.6)
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which plays the role of a.yield criterion since it is a restriction on

the stress devjation invariants. For F a constant function defined by
F(Jé,Jé) = /2k, k a material constant,
equation (1.6.6) becomes .
544 544 ° 22 ,

the VON MISES yield criterion with the appropriate interpretation of k.

Also equation (1.6.5) becomes

ABY 4T

(P) . sm
“ m W
p
_ ai) Sen
R

the constitutive equations for the LEVY-MISES theory.

Alternative representations of equation (1.6.5) and equation
(1.6.6) are available if equation (1.6.5) is expressed in terms of .s;
and dgp) , the principal components of the stress deviation tensor and
plastic strain rate tensor respectively. If dgp) are ordered such

that d%P) > dgp) > dgp) , then equation (1.6.5) can be written as

a(@{PralPh
- a{P) (1.6.7)

S
Py

1 - 43

for arbitrary differentiable function G > 0. From this one gets
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Sy ‘
Sy - S3 =.G(§;0 , (1.6.8)

s
a relation analogous to relation (1.6.6). Choosing G(;%) =Y,Ya

material constant,equation (1.6.8) becomes
S] -53 B Y.’

the TRESCA yield criterion for plastic regime AB in Figure 1 for Y
interpreted as the yield stress in simple shear. The corresponding

constitutive equations are

sy * 'TP')"L‘(F)' a{P) (1.6.9)

as follows from equation (1.6.7). These, however, differ from-the
constitutive equations for plastic regime AB using the concept of the
plastic potential since then déP) = 0, whereas from equation (1.6.9),
dép) # 0 necessarily.



CHAPTER I1

CONSTITUTIVE EQUATIONS OF THE ELASTIC-PERFECTLY
PLASTIC THEORY OF PRANDTL-REUSS FOR FINITE STRAIN

The constitutive equations for the finite elastic-perfectly
plastic theory of-?ﬁhﬁDTL-REUSS are developed in this chapter. This
necessarily involves a preliminary discussion on {nvariant forms of
constitutive equations; a topic of recent interest in non-linear field
theory of mechanics. The development of this topic has been varied
both in approach and in notation. |

As seen in Chapter I, the constitutive equations of the classi-
cal PRANDTL-REUSS theory are suitable only for problems involving
infinitesimal strains and rotations. A generalization of these equations
valid with respect to a fixed reference system and applicable for finite
strains has been achieved by THOMAS [18]. Primarily it is the presence
of .the material derivative of the stress tensor that 1ﬁva11dates the
use of the classical PRANDTL-REUSS equations in problems 1nv61v1ng
finite deformation. The reason for this is that these constitutive
equations violate the 'principle of material objectivity', the invariance
principle of constitutive equations under arbitrary changes of the frame
of reference [19].

The local motion of a deforming materf31 element surrouhd{ng
a point P can be resolved into a translation, an instantaneous rigid
body rotation about an axis through P, a spherical d11atat1on’and a pure
shear deviation. The components of this local motion 1nvo1vihg rotation
and translation do not produce deformation of the element, hence con-

stitutive equations can best be formulated with respect to 2 rectangular

27
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CARTESIAN coordinate reference system at P moving such that the*tocal

rotation and translation components vanish. Such a coordinate reference
system has been termed a 'kinematically preferred coordinate system' by
THOMAS [20] and a ‘co-rotational reference system' in TRUESDELL and
TOUPIN [21]. A more general approach was.employed by OLDROYD [22]
whereby the constitutive equations for homogeneous materials are
formulated with respect to a 'convected' coordinate system which moves
and deforms with the material. NOLL [23] in his earlier work on in-
variant forms of .constitutive equations uses the term ‘principle of
isotropy of space' and RIVLIN and ERICKSEN [24] uses the term 'form in-
variance under rotation of the physical system'. Since physical pro-
perties of .material are independent of the coordinate reference system
used, the object of the above works was to determine, within the frame-
work of classical mechanics, quantities associated with the material
which are independent of the rigid body motions of this material. More
generally, OLDROYD sought invariant forms which were independent of any
arbitrary motion of the material. It is to be observed that the less |
restrictive 'principle of material objectivity' mentioned earlier re-
quires that the constitutive equations be invariant under any arbitrary
change of the frame of reference and hence of the observer.

In SECTION 2.1 of this chapter, physical quantities are de-
termined which are invariant under arbitrary rigid body motions con-
sidered as elements of the proper orthogonal transformation grdup.

Such quantities are called objective and attention will be confined

only to those which are needed in the formulation of the constitutive
equations of the PRANDTL-REUSS theory for finite strain. Whether or not
the rigid body motions are subjected to the material body and the applied
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forces or to the coordinate reference system is of no consequence under
this approach. This would not be true, however, if the rigid body
motions were considered as elements of the full orthogonal transfor-
mation group. Reflection would then be a permissible operation but
this is physically meaningless if applied to material bodies. Al1 co-
ordinate reference systems used are rectangular CARTESIAN systems and
time is the absolute time of classical mechanics. Thus the approach
taken here is the same as that considered in THOMAS [20] and ERINGEN
[25] but differs from that in GREEN and ADKINS [26] and NOLL [27].

2.1 OBJECTIVE TENSORS AND STRESS RATES

Consider a deforming material body moving through space and
let X4 and i}(i = 1,2,3) be the spatial coordinates of the same ma-
terial point with respect to two coordinate reference frames S and S.
Then the two motions x, (£1, &5, &g t) = x; (&, t) and E} (g], Eps E5,T) =

§} (51, 1) are said to be objectively equivalent if and only if.
X'i (Ei’ T) = a’ij(t) xj (51 ot) + b.i(t)
where (2.1.1a,b)
aij(t) a'ik(t) = aji(t) aki(t) = ij s |a1J(t)|= + 1
and T = t - a, a being a constant. The absolute times t and t used
with the S and S systems respectively can have different fiducial time

origins. The Ei(i = 1,2,3) are the LAGRANGIAN, convected or material

coordinates of the material particle and may be taken as the coordinates



of the particle in either S or § at some specific 1nstant-of~§1me pro- .
vided a is known. Any tensor associated with the material particle is
also said to be objective if in any two objectively equivalent motions
it obeys its appropriate tensor transformation law for all times.

From equation (2.1.1a), one obtains

_ DX, (1) | Da(t) Db, (t)
Vi) = DiT = ag;(t) v;(t) + x,(t) ;‘1 + D{ (2.1.2)

where‘%;- andv%Eidenote differentiation with respect to time keeping the
coﬁvected coordinates 51 constant. Equation (2.1.2) shows that velocigy
is not objective and it follows likewise using equation (2.1.2) that

acceleration is not objective. Differentiation of equation (2.1.2) with

respect to i&(r) gives

_ ax _(t) Daik(t) axk(t)
Vi, i {0 = ag(t) v gl aY?(r) ot 3%, (0) (2.1.3)
Since
xk(t) = ajk(t) ;J(T) - bj(t) ajk(t)’
equation (2.1.3) is written as
- Da'ik(t)
Vi,j(T) = aik(t) ajm(t) Vk,m(t) + ajk(t) Tt — (2.1.4)

from which

30
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Da,, (t)
¥y g(0) = ag(8) ag(8) vy (6) + ay, (8) —5— . (2.1.)

Moreover, from equation (2.1.1b),

Da,(t) Da,, (t)
it | Sk | Sl
aik(t) i 3¢ Dt (2.1.7)
and on defining
Da k(t)

ag5(t) = ag(t) —f—
equations (2.1.4) and (2.1.5) are written as
Yy 50) = a3 (t) agp(t) vy () - ayylt)
and (2.1.7a,b)
¥y 400) = 28] agpt) vy (8) + ayg(t)

respectively. From equations (2.1.7a,b), one then obtains the ZORAWSKI
relations [28]

a}j(r) = aik(t) ajm(t) dkm(t)
and (2.1.8a,b)

E‘ij(T) = a'ik(t) ajm(t) mkm(t) - a'ij(t) ’
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where W4 are components -of the vorticity tensor -defined by

v, 9V ‘
0y =7 (5% - 5;11) . (2.1.9) -

Thus the strain rate tensor is objective while the vorticity tensor
is not.

With respect to the S system, -the stress components at a
material point P of the stressed medium at time t are denoted by °1j(t)
and with respect to the S system they are denoted by E}J(r) » T =t~ a.
The spatial coordinate dependence of the stress tensors is understood

in the notation. Due to the objective tensor character of stress,
Si5(1) = ag(t) ag(t) oy (t) (2.1.10)

Taking the material derivative of both sides of equation (2.1.10),

one obtains

Do, . (t) Do (t) Da. (t)
T = ay() agy(8) —fi—+ agy(t) —f— ()
Daim(t)
+ ajn(t) —Tt— cmn(t) (2.1.11)

which shows that the material derivative of the stress tensor is not
objective. However, from equation (2.1.11),objective quantities can be -

obtained. For from equations (2.1.4) and (2.1.5),

Da, (t) _
Dg - a‘in(t) vj’-i(T) = aj-i(t) V-i’n(t) ’ (2.1.12a)
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= - a, (t) V”('r) + 'a:j'i(t) Vn.i(t)' (2.1.12b)

Addition of equations (2.1.12a,b) and use of equation (2.1.9) yields

Da, (t) —
—f— = 2y, (8) B (1) - ayy(t) wy (8), (2.1.13)

Substitution of equations (2.1.12a), (2.1.12b) and (2.1.13) alternately
into equation (2.1.11) gives .

|Ow

S G40 = ag,(t) ay () §¢ opglt)

5y4(0) = 2 (8) ayg(t) o (t) (2.1.142,b,c)
and
IE;%E= a;(t) ajs(t) rs * ).
where
$eoy4(t) = PO ) o) - vy at) (),
oij(t)= E‘%{ﬂ+ Vo3 (8) 04u(8) + vy 1 (8) op4(8), (2.1.152,b,c)

and



Do;4(t) Doy.(t)
°11){ - T 4o (8) () + 0gn() wp(8)

8o ~ Do
Thus —3%1 » 044 and —5%1 are components of objective tensors called

.respectively the GREEN-OLDROYD [29], the COTTER-RIVLIN [30] and the
JAUMANN [31] stress rate tensors. There is also the TRUESDELL [32]

stress rate tensor with components

D (t)
5yy(t) - i AL (8 958D = v (8D o8] = vy () op(t)
(2.1.16)

formed from equation (2.1.15a) by addition of expression v_ m(t) o1j(t).
9

In fact from any of .the stress rates defined above others can be formed
by addition of dimensionally correct terms which involve components of -
the strain rate tensor.. If the stressed medium and applied forces
undergo a rigid body motion (dij(t) = 0), all the stress rates tensors
above reduce to the JAUMANN stress rate tensor. Moreover, if S is a
co-rotational reference frame (wij(t) = 0, vi(t) =.0)and the stressed
medium and applied forces undergo a rigid body motion (dij(t) = 0) and
if the stress field %3 is independent of time with respect to S, then
the JAUMANN stress rate tensor vanishes. Being objective tensors, all
the stress rate tensors mentioned vanish with respect to objectively
equivalent reference frames for rigid body motions of the stressed ma-
terial whose stress field is independent of time when referred to a
co-rotational reference frame.

In view of the lack of a unique objective stress rate tensor,

34
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PRAGER [33] considered the implication of using the various derivatives

dé%ined by equations (2.1.15a,b,c) and equation (2.1.16) in the con-
stitutive equations of the theory of plasticity. PRAGER concluded that
the JAUMANN derivative defined by equation (2.1.15c) is the most suitable
for use in the constitutive equations of plasticity since for this de-

rivative only does zero stress rate imply stationary stress invariants.

2.2 CONVECTED TIME DIFFERENTIATION

The stress rate tensors (2.1.15a,b,c) can be derived by a
method attributed to CAUCHY [34] and generalized by OLDROYD [22]. Con-
vected differentiation with respect to time t of a tensor intrinsi-
cally associated with the deforming material is introduced. This
operation involves no dependence on a fixed frame of reference or on
the motion of the material in space.

Restricting discussion to a tensor T with components 7™ i
referred to a fixed curvilinear coordinate system x (i = 1,2,3), the
convected time derivative 61 of T is def1ned as that tensor under all
coordinate transformations which reduces to Dt (or ) in any convected
coordinate system gi(1 = 1,2,3) where T denotes the tensor T in the
convected system and T$§ denotes its components with respect to this
system. T is assumed to be a tensor under all coordinate transformations,

including transformations to convected coordinates. Thus

=8 ax" ax" _ g ax! ax} axJ .
T . (2.2.1)
Y6 85 aEB 13 aEY ag

Differentiating equation (2.2.1) with respect to time t holding con-

vected coordinates constant, indicated by %f , and using



(ax ) aV Bx
t e ax" ag®

one obtains

uv u v
DT&G . 0 3E ax] 'c)x"j DTiJ + T 3P
Dt 5™ ax" 3gY 3€° Pd ot
p m
+ T AV av_ _ bn v_ _ W ay" vy,
P od 1P i3 axP
Since T?g are functions of xi and t,
mn mn mn
DT1j _ T1j N aT1J P
Dt ot axP

Thus, from equation (2.2.2),it is seen that the components

CLAHIE p p
S_qmn - ij . i WP+ T AV av_ 4 77N 3V
5t 1J 3t T P PI oy ip ;;]

- PN oV By - TP .§V_n
1] axp 13 5P

DTm“

(2.2.2)
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reduce to ——-l under transformations from the fixed spatial coordinate

system to a convected coordinate system. The components gt TT?

are

components of an absolute tensor since they are identically equal to the

tensor components’
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Y
—id 4 ™ PP pOn D
5t " TG ¥t T Vit Tip Vg

_hn.m _ _mp n
T3 Vop - T3 Vip

where subscript commas denote covariant differentiation.

For the contravariant stress components omn’

%E' g™ = é%T:—-+ om: v - oPf vmp - o™ vnp (2.2.4)

which with respect to a rectangular CARTESIAN coordinate system are

S mn _ Domn

5t9 Tt " %n Ymp " %mp Yn,p,

the components of the GREEN-OLDROYD objective stress rate tensor. Simi-

tarly, for the covariant stress components O *

s 30

—— = mn p P P
5E%n =5t %m,p ¥ % Vim * Opp V.n  (2:2.5)

which with respect to a rectangular CARTESIAN coordinate system are

Do
8 mn
8t mn bt ' opn vp,m * 0mp vp,n ’

the components of the COTTER-RIVLIN objective stress rate tensor.



38

Let 9un and gmn be respectiveiy the covariant and contravariant
components of the metric tensor for a fixed spatial curvilinear co- .

ordinate system. Then since ngn/Dt = 0 and ng"/Dt =0,

§ .mn _ mn
std T2,
S g =24 (2.2.6a,b,c)
8t “mn mn °? R e
and
S npy - NP S_ S_.np
st Gn o) =0 9t I -

From equations (2.2.6b,c) it follows that

S_.np_¢8_ npy _ , Np
gmn st 6t (gmn o) - 2 dmn ’

showing that the raising and Towering of indices is not commutative
with the convected time derivative operator %f except when the stressed
material executes only a rigid body motion (dij = 0) at P. On trans-
forming equations (2.2.4) and (2.2.5) to a fixed spatial curvilinear
coordinate system such that dij = 0 instantaneously with respect to this

system, one gets

mn _ 9 mn mn .p pPn m mp n ,
= 2_ + - -
g 5t (0] 0"p v g U.)'p (0] U.).p

OrlOn
t+

and (2.2.7a,b)
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where

and the subscript commas denote covariant differentiation. Relation-
ships (2.2.7a,b) define components of absolute tensors which reduce to
the components of the JAUMANN stress rate tensor given by definition
(2.1.15¢) on choosing the spatial coordinate system as rectangular
CARTESIAN. The JAUMANN derivative thus measures the time rate of change
with respect to a set of coordinate axes instantaneously rotating about
itself with the angular velocity of the material. For this reason,
the JAUMANN derivative is referred to as the co-rotational time derivative.
Historically, the co-rotational time derivative was first introduced by
ZAREMBA [35]. 1In this thesis, however, it will be called the JAUMANN
derivative as it is in current plasticity literature. Since the JAUMANN
derivative does not depend upon the components of the strain rate tensor,
it is the simplest of all the objective time derivatives. Moreover,
it is the only objective time derivative which is commutative with the
operation of raising and lowering indices.

For purposes of reference, relationship (2.2.7a) is rewritten

as

i i

Do. 90, . .
i. k i ko ki

which upon expanding the covariant derivatives becomes

Do} a0 %) . . .
b = —al e K S I SR
ikl G mk° - T30 Vo wy - oy ey (2.2.9)

X



with

9g . 3¢ 99.
im(m:j_l_ l.(m_ Jk)

]
axk  axd "

i -]
the CHRISTOFFEL symbols of the second kind.

2.3 PRANDTL-REUSS EQUATIONS AT FINITE STRAIN

Following THOMAS [36], the PRANDTL-REUSS equations for plastic
regions valid for finite strain are obtained by insuring that the classi-
cal PRANDTL-REUSS equations do not violate the 'principle of material
objectivity'. This is accomplished simply by replacing the non-objective
material derivative of stress deviation with the JAUMANN derivative of
stress deviation. The strain rate tensor is not replaced since it is
a measure of the instantaneous rate of change of 1eﬁgths and angles of
material elements in the deforming material [37] and is an objective

tensor. Thus from equations (1.5.4a,b), together with

Dp _ Dp
vt Dt °
one obtains
dij =%ED%11';—K%%513'+’\51J . >\=sz;-,
and (2.3.1a,b)
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the constitutive equations for a compressible elastic-perfectly plastic

MISES solid in finite strain. These reduce to

Ds. . dMsn
_]__ 1] - _nm
Gy mo Tyt
and
k _
dk-o

for an incompressible elastic-perfectly plastic MISES solid.

from equations (1.5.8a,b), one obtains

i l___1)51 D 6 F 7 of .
2u Dt P asij ’
and
d = - R OE -

(2.3.2a,b)

Similarly .

(2.3.3a,b)

the constitutive equations for a compressible elastic-perfectly plastic

TRESCA solid in the plastic range. Equations (2.3.3a,b) are also valid

for an elastic-perfectly plastic solid when the yield surface has any

finite number of surfaces with piecewise continuously turning normals.

For elastic regions, the constitutive equations valid for

finite strain are obtained by employing proper objective tensors in

equations (1.2.3a,b). This gives
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j -
5t = 2 fyy
and (2.3.4a,b)
Dp_ _ g 4
g - - K dy s

the PRANDTL-REUSS equations for an elastic solid.

By adopting the constitutive equations for a hypo-elastic
solid, A.E. GREEN [38] also established the PRANDTL-REUSS equations at
finite strain for a compressible elastic-perfectly plastic MISES solid.
GREEN employed the GREEN-OLDROYD stress rate tensor and derived the

constitutive equations

§ i, Ml | imdd iJ
svY+s fm S fm 2u f'v,

5t
and (2.3.5a,b)
ST
for the non-plastic region where s; sg < 2k2 , and
£sn
[ mj i Cim i o fid _ _nom i)
sTS. tS fo-s T f -Eig- sV, (2.3.6a)

and
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8

S p=-Kdf, (2.3.6b)

for the plastic region where s; s% =.2k2

and d;s{ > 0. If the MISES
solid is incompressible, equations (2.3.5a,b) and (2.3.6a,b) reduce
to equations (2.3.4a,b) and (2.3.2a,b) respectively. A discussion of
the relationship between a hypo-elastic material of grade two and an
elastic-perfectly plastic MISES solid is found in CHAPTER V.

To eliminate the use of .separate sets of constitutive equations
in both the elastic and plastic regions, THOMAS [18] proposed a single
set of constitutive equations valid for both regions. With the as-

sumption that the constitutive equations have the form

Do
1j mn
Dt A1j dmn ¥ B1j mn °

with A1j and Bmn isotropic tensor functions of the stress deviation in-
variants and strain rate deviation invariants, together with plastic in-
compressibility and the VON MISES yield criterion, THOMAS established the

_constitutive equations

Ds. . msn Mg
ij _2nm
7t 2u {f [ L Y(] 5;2_)] S'IJ}
and (2.3.7a,b)
ook ¥ )
+ b o, .
Dt m.n k
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In general v, h, b are invariants dependent on position and time but
for homogeneous material, they must be material constants. For plastic

flow, equations (2.3.7a,b) are such as to reduce to equations (2.3.2a,b).

2.4 PRANDTL-REUSS CONSTITUTIVE EQUATIONS AND FIELD EQUATIONS IN
CURVILINEAR COORDINATES FOR AN INCOMPRESSIBLE ELASTIC-
PERFECTLY PLASTIC MISES SOLID IN FINITE STRAIN

Let x1(1 = 1,2,3) be a fixed curvilinear coordinate system
with g1j and gi\1 the contravariant and covariant components respectively
of the metric tensor. Then the governing equations for the plastic flow
of an incompressible elastic-perfectly plastic MISES solid with respect
to this coordinate system with commas denoting covariant differentiation
with respect to the metric are:

(1) the PRANDTL-REUSS equations (2.3.2a), namely,

peL = 2 (d] - as)) (2.4.12)
with
.1 gen
A= 2k2 dnsm
and
053_53_351 modiy kL, ok ki

as obtained from equation (2.2.10) on replacing o} by s;, and the
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equation of incompressibility

d=0, (2.4.1b)
where
i_1 ,ik +
=79 Wiyt vy
and v1 are the contravariant components of the velocity vector;

(ii) the equations of motion

oi‘j + pgld Fy = p(-g%*' vi.j v) (2.4.2)
where
o' =W pgl, p = Lo o™,

p is the density, and Fi the covariant components of the body force per
unit mass;

(111) the equation of continuity

%, (pvi).,i =0, (2.4.3)
(iv) the VON MISES yield criterion

s;s‘g = 2k | (2.4.4)
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and

(v) the identity
S,l'= 0. ) (2.‘455)

In general, the governing equations must be used to deter-
mine eleven unknowns; namely, the six components sij of -the symmetric
stress deviation tensor, the three velocity components v1. the density
p» and the hydrostatic pressure -p. As listed, the governing equations
consist of -eleven quasi-linear partial differential equations (2.4.1a),
(2.4.1b), (2.4.2) and (2.4.3) and two finite equations (2.4.4) and
(2.4.5). However, equations (2.4.1a) are not independent of the two
finite equations since.on taking the JAUMANN derivative of -both sides
of eduations (2.4.4) and (2.4.5), one obtains

DS
ade Cge

j Us Ds:
sj T —Oandm——o,

<D

showing that there are only four independent PRANDTL-REUSS equations.
Thus there are available nine partial differential equations and two
finite equations for the determination of the eleven unknowns.

For quasi-static, incompressible elastic-perfectly plastic
problems in the absence of body forces, the stress and ve]ocity'field
can be determined with ten of the governing equations; namely, equations

(2.4.1a,b), (2.4.4), (2.4.5) and the equations of equilibrium

ij _
o’j 0.



The density p, if required, is determined by equation (2.4.3). The
-discussion also applies if the flow should be steady.

If in the general case the unknowns are taken as the six in-
dependent components 013 of -the symmetric stress tensor, the three

i

velocity components v’ and the density p, then there are available four

independent .PRANDTL-REUSS equations, three equilibrium equations, one.
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incompressibility equation, the continuity equation and the yield condi-.

tion for the determination of these ten unknowns.

For the general cases considered above, THOMAS [39] remarks
that, as an alternative, five PRANDTL-REUSS equations may be used pro-
vided the VON MISES yield criterion is not used directly but only as a
boundary condition on the surface S enveloping the plastic deforming
region. .

In APPENDIX A of this thesis, the éRANDTL-REUSS equations
(2.4.1a) are expressed in terms of the physical components of the stress
deviation tensor and the velocity vector with respect to a spherical
polar coordinate system (r,6,4) and a cylindrical polar coordinate

system (r,0, z).



CHAPTER III

THE PLANE RADIAL FLOW OF AN INCOMPRESSIBLE
ELASTIC-PERFECTLY PLASTIC MISES SOLID

A stress field for plane flow of an isotropic rigid-perfectly
plastic solid through a converging channel with rough sides was ob-
tained by NADAI [40]. Later HILL [41] obtained a kinematically ad-
missible velocity field associated with this stress field; The stream-
lines of-this velocity field are radii directed through the virtual
apex of the channel and the components of the stress deviation tensor

of the stress field are independent of the radial distance from the
| virtual apex. In this chapter an investigation is undertaken of the:
plane radial flow of an fncompressible elastic-perfectly plastic MISES
solid through a converging channel with perfectly rough sides, that is,
sides on which the frictional stress is equal to the shear yield stress.
The case when the assumed constant frictional stress developed on the
channel walls is less than the shear yield stress is also considered.

The solution of NADAI and HILL is valid for a rigid-perfectly
plastic solid with either the TRESCA or the VON-MISES yield criterion
provided the appropriate value of the shear yield stress is used. How-
ever, this investigation is restricted to a MISES solid, that is, one
whose yield is governed by the VON MISES yield criterion.

3.1 PLANE RADIAL FLOW THROUGH CONVERGING CHANNEL

Referring to Figure 2, let (r, e,‘z) be cylindrical polar
coordinates and let the channel occupy the region - o <6 <awith

the flow parallel to the plane z = 0. The flow is steady and quasi-

48
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static with stream-lines that are radii passing through the virtual
apex of the channel. It is assumed that the VON MISES yield criterion
is satisfied throughout the field and no unloading occurs.

With reference to APPENDIX A, SECTION A.4, the governing
equations in tefms of the non-zero physical components of the stress
deviation Sper Sgs Spgs Sz velocity Ve and stress Ops Tgs Tpgs O, are
the PRANDTL-REUSS equations '

asr i s‘r,e avr
r or r 99

3Vr

9s S, = S, 9V oV
ro.r 0" r_o,ql " r_
Ve o 5e - AEram - Aspe) o
(3.1.1a,b,c,d)
s S.n OV v
8 ré _r_ o, (X
Vo 57t F Tae - M - Asg)
oS
z _ _ .
Ve 3F Zulsz.
the equation of incompressibility
v v
sr_r-i-.r—r‘: 0; (3.].2)
the equilibrium equations
90 9T
r ro -
rar t et (0 - ) =0,
¥3.1.3a,b)
9T 30
ro 9 _
"r t gty =0
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the yield criterion
=22 ; (3.1.4)
and the identity

s, +.s, *+ s-.E,O .

Equation (3.1.2) requires that

v, = a(e) (3.1.5)

r r

and this gives the following non-zero components of strain rate:

dp =.- Sigl » dg = Sigl » dpg =4%_9i§gl . (3.1.6)

Equations (3.1.6) show that ratios of the strain rate components do
not vary along a radius. - The considered solid being elastically and
plastically incompressible, both the elastic and plastic components of
velocity satisfy the incompressibility equation (3.1.2) and the uni-
quely determined:physical components of.the elastic and plastic strain

rate tensor are of the form given by equations (3.1.6). Since

i(P
i i /'Z'kd ( )
/drrr:(P) drrI:(P)

by equation (1.3.9b), s; must be functions of & alone. It follows

S

then, from equation (3.1.1d), that Asz = 0 and since A is non-zero
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where flow occurs

5, = - (sr % se) = 0.

Substitution of s, = - s, in the yield criterion (3.1.4) gives

2 2 _ .2
5, * Seg = ke .

(3.1.7)
Equations (3.1.3a,b) and (3.1.7) are also valid for the corresponding
flow of a rigid-perfectly plastic solid and the stress boundary
conditions Tpg = kate=o and Tog =k at 8 =.- a are the same.

Consequently, the stress field is identical to that obtained by NADAI.

3.2 DETERMINATION OF STRESS FIELD

NADAI'S approach [40] for determining the stress field is as
follows. The stress field is expressed in terms of the angle y between
the direction of the algebraically greatest principal stress and a radius.
The angle y is a function of 6 only and it has the same sign as 6 since
the friction acts so as to oppose the relative motion or tendency for
relative motion between the solid and the channel walls; ¥ is zero on the
axis 8 = 0 and ranges between - /4 and n/4. The yield criterion (3.1.7)
is parametrized in tgrms of ¥ by letting

Speg = k sin 2y
and (3.2.1a,b)

Sp = - se =k cos 2y .
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From the equation of equiiibrium (3.1.3b),

aoe

W - 2k sin 2

from which

g = - 2k [° sin 2y de + h(r)
0

and, hence. from equation (3.2.1b),
o, = 2 cos 2§ - 2k 19 sin 2 do + h(r). (3.2.2)
' 0

Substitution of equations (3.2.1a,b) and (3.2.2) into the equation of
equilibrium (3.7.3a) gives

2k cos 2y %%-+ 2k cos 2y = -r %2 .

Setting each side of this equation equal to a constant 2ck yields

h 2ck

—_— -—F—

d
dr

and (3.2.3a,b)

de _ _cos 2y
dy ¢ - cos

Integration of these differential equations yields
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h{r) = - 2¢ck 2nr + Ao ’

- and

8=-y+ — 't;an'.l (/%%1}- tan lp) ’ (3.2.4) .

¢ -1

where Ao is an arbitrary constant and, since y = /4 on 6 = a, c is

given by

—C tan”! (/2-{—1'-) =T+ (3.2.5)

/cz-l

Also, ¢ varies from « to 1.1922 as o varies from 0 to m/2. Now

® v 2.
£ sin2\pde=£ S'inzl}ltc-g—s—co—s-w dy

=%-cos 2y - %--r%zn ___ngc -ccc_)s :
and, hence
oy " m g (o + 0g)
= 2k [can r + 5 2n (c - cos 2¢y) + A] (3.2.6)
where A is an arbitrary constant. Equations (3.2.1a,b) and (3.2.6)

completely determine the stress field to within an arbitrary hydro-

static pressure.



3.3 DETERMINATION OF VELOCITY FIELD
Elimination of A between equations (3.1.1b) and (3.1.1c) and

substitution of equation (3.1.5) into the result gives

1(0) . 2uS,.q
g(e 2 _ 2"
Spg. = WSp t Sy

(3.3.1)

Substitution of the components of the stress deviation given by

equations (3.2.1a,b) into equation (3.3.1) gives

31'%?‘)' . k_y___&z-z_ -ﬁi'c'os 7 - (3.3.2)

With the use of equation (3.2.4b), this becomes

dg(e) . _ 2 sin g¥ cos 2y dy
gle n - CoS ¢ - cos

> 0 and hence, provided cos 2y # n, integration gives

n
g(6) = D [{%%;—%—W]V*" (3.3.3)

where D is the constant of integration. For n = g,

= |~

where n =

D
9(8) = =

which is the expression obtained by HILL [41] for the rigid-perfectly
plastic solid. From“equations (3.1.5) and (3.3.3),

55
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n_
v, =‘%_[|cos 2y - nlclc-n
(c - cos -2y)

, N #cos 2y , (3.3.4)

where ¢ is given by equation (3.2.6) and D is obtained from the volume
flow per unit thickness and is negative since Ve is negative.
The scalar invariant A, expressed in terms of the physical

components of the strain rate tensor and stress deviation tensor, is

o
A El?- (drsr + 2-d',esr,e + dese) .

Substituting equations (3.1.6) and (3.1.8a) gives

_ ] 9 ‘(o

*'—29‘7)'[59‘%*3'(%)')'%93 »
2k- r

and substituting equations (3.2.1a,b) and (3.3.2) gives:

vr 1 - n cos )

A= or (= cos (3.3.5)

For pléstic flow, A is positive. .

If n = k/u < 1, then according to equation (3.3.4),9113 vV, =0
where eo is the value of 6 corresponding to 2y =-cos']n. In the gegion
- eo <0< eo , the determined velocity field and the stress field satisfy
the governing equations and A > 0. However, in the regions - a < 6 < - eo
and 6 < 6 < a the velocity field and the stress field result in A < 0.
To obtain a positive A it is necessary to take D > 0, but then the friction

shearing stresses Tpg = k at 6 = o and Teg =~ k at 8 = - a do not oppose
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the flow.  Consequently, the velocity field given by equation (3.3.4)
is not admissible in the regions - & <8 < -6, and 8, <6 <o unless
D is zero. From equations.(3.3.2) and (3.3.4), one obtains that

2n-c
g'(6) = —LSIN 2 (o5 2y - )" ,D<0,

£

)C'n

(c - cos2y

in the region - e°.< B < eo where n < cos- 2y < 1. Thus for ¢ < 2n,

lim g'(8) = 0 and the velocity profile is normal to the radii
e+19°

6=tg. Forc=2n, Tim g'(6) = - 20/n2 (1 -n®)Y2 5 0. For
' 0526,

¢c>2n, lim g'(8) = +  and the velocity profile is tangential to the
6+16
)

radii 6 = ¢ eo; Also, infinite values of d g result as the radii 6 = + 6
are approached from the region - eo <0< 60; this is permissible since
the material considered is not viscous. Moreover, the parameter A
undergoes an infinite discontinuity at 6 = £ 8 but this is not incon-.
sistent with the constitutive equations (3.1.1).

If n =1, equation (3.3.5) reduces to

v

from which it follows that v = 0 for - o < 6 < a is the only admissible
velocity field.

If n > 1, then for A > 0 the velocity field is such that the
radial velocity decreases as & varies laterally along a 6 - line from
8 =%8, to 6 =0; 60 is the value of 6 ;orresponding to 2y = cos'] %-.
This is physically unlikely; moreover, s%nce all common elastic-plastic

materials haye small values of n < 1, the phenomenon is of no great

practical importance.
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3.4 CONCLUSION

For the region - 8y < 6 <65 the solution to the converging
radial flow problem involving a channel with perfectly rough sides is
provided by the velocity equation (3.3.4) and by equations (3.2.1a,b)
and equation (3.2.7) which determine the stress field to within an
arbitrary hydrosfatic pressure. For the regions - o < 6 < - 6, and
6,28 §_a.lthefso1ution is provided by v = 0 and the same stress
equations. These solutions indicate that the velocity Ve is zero at
the channel walls whereas the velocity field obtained by HILL for the
corresponding problem involving a rigid-perfectly plastic solid
indicates that there is slip at the channel walls. If n << 1, the
angle o - eo is small compared with a as shown by the values in the
following table. These values are for the particular case of

o = 24°17" (c = 2).

TABLE 1
VARIATION OF o - 6, WITH n = 5
[0 = 24°17" (c = 2)]

n a - 60
0.001 0°0'4.5"
0.01 0°0'12.6"
0.05 0°1'10"

0.1 0°4'40"

Figure 3 shows g(8) for an elastic-perfectly plastic solid
with n = 0.1 and D = -1 and also for an rigid plastic solid for
o =24°17' (c = 2) and D = -1. For smaller values of n, of the order

of 10'3, which are realistic for metals, the difference between the
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velocity profiles for the elastic-perfectly plastic and rigid-perfectly
plastic solid is negligible except near the sides. . |

From the present solution involving the elastic-perfectly
plastic solid, it is possible to find the solution when the constant
frictional stress on the channel walls is'mk (0 <m < 1). The stress
distribution within a sector + 8(8 < a) is the stress field for a
channel of angle 20 and a constant frictional stress‘k sin 2¢. Thus
to find the solution for a channel of angle 28 and frictjona1 stress
mk, it is required to determine ¢ from equation (3.2.4) with
Y = %-sin']m. Then the stress field is given by equations.(3.2.1a,b)
and (3.2.6) and the velocity field by equation (3.3.4) provided m is
such that 0 g.m‘< /{—::Fi n < 1, in which case there is slip along the
channel walls. For m such that /1 - n© <m < 1, there is developed a
non-deforming region and there is no s1ip along the channel walls. In

the deforming region, the velocity field is given by equation (3.3.4).
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CHAPTER IV

ELASTIC-PERFECTLY PLASTIC FLOW THROUGH
A CONVERGING CONICAL CHANNEL

SHIELD [42] considered the axially-symmetric flow of a rigid-
perfectly plastic material forced through a rigid conical channel, out-
1ined the method of solution for a general yield criterion and gave:
solutions using the VON MISES and TRESCA yjeld criteria. These solu-
tions involve streamlines that are radii passing through the virtual:
apex of the cone and a constant friction stress between the channel
wall and the material is assumed. The corresponding problem with an
jncompressible elastic-perfectly plastic MISES solid is considered in
this chapter.

Axially symmetric flow through the converging channel is con-
sidered and the channel is assumed sufficiently long that the inlet and
exit effects can be neglected. It is further assumed that the flow is
steady and quasi-static and that all points in the stress field satisfy
the VON MISES yield criterion and that no unloading is taking place.

A solution with streamlines fhat are radii directed through the virtual

apex of the channel is sought.

4.1 GOVERNING EQUATIONS FOR RADIAL FLOW

Let (r,0,4) be spherical polar ceordinates with the axis of
the chaﬁnel given by 6 = 0 and the conical surface by 6 = o as illustrated
in Figure 4. It is assumed that the friction stress acting on the ma-
terial at the surface of the channel 8 = o is T_, = mk where m is a

ro
constant. Since k is the shear yield stress and Tro is non-negative
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CONVERGING FLOW THROUGH A CONICAL CHANNEL
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for converging flow, m must satisfy 0 <m < 1.

With reference to APPENDIX A, SECTION A.3, the governing
equations for axially symmetric flow, with the assumption that the
velocity component Vo is zero, are

the PRANDTL-REUSS equations

oV avr
Vedr " ¥ 38 - oM [3F_ - >“"'lr'] '

3s S o oV v
8 rée " 'r _ _r_
Ve 3r T 30 =2y [r Ase].
(4.1.1a,b,c,d)
ds S_ =S, OV v
ré r_"e " r_ 1_"r :
Ve gt o35 - M [p g - Asped
3s v
—¢ - ot _
Vo 57 2u[rt As¢] R

where Sps Sgo s¢ and Spg are the noh-zero physical components of.the

stress deviation and Ve is the radial component of velocity;

the equation of incompressibility

v, 2v
r r_ .
F+-—r——0, (4.1.2)
the equilibrium equations
90 9T
r.,1°ro 1 =
T et (B % m Ty * Ty COE E) =0,
(4.1.3a,b)

arre 309

1 1 =0
tret oy Lo - 0y) cot &+ 3t ] =0;



and the VON MISES condition
2 2 2 2 _ o2 _
(°r"°e) + (ce- c¢) + (c¢ - °r) + 67,4 =6k, (4.1.4)

where Ops Ogs Oy and Tpg 3re the non-zero physical components of the

.stress tensor. Only three of the PRANDTL-REUSS equations are indepen- .

dent since the sum of equatiohs (4.1.1a), (4.1.1b) and (4.1.1d) is
f. jdentically zero. Consequently, there are seven independent equations
.for the six unknowns Sy Sg» s¢. Segr P and Vi The prior assumption
that Vg = 0 is the reason for the additional equation. If a solution
with Vg = 0 can be found which satisfies the governing equations
(4.1.1) to (4.1.4).the prior assumption is justified.

Equation (4.1.2) requires that

v, = ‘Q’S‘H 8 (4.1.5)

where g(6) is a function of 6 only and B is-a constant. The components

of the strain rate tensor are then
= 0 _ 0 _ ) _Bg' (s
d, .-232§§l.d¢-aﬂ%l.de-,aﬂ-i-5)-.dre-iﬂ;-§—)-.

The ratios of the strain rate components obtained from equation (4.1.5)
do not vary along a radius. Therefore, following the same argument
given in the two dimensional plane problem, the components of the
stress .deviation tensor can be shown to be functions of & only.
Consequently, eliminating A from equations (4.1.7a) and

(4.1.1c) gives
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. 4y s
d 99 - ré , (4.1.6)

T 3
[spq -7 (20 = 5y + 5]

and from equations (4.1.1a) and (4.1.1b), together with use of .equation

(4.1.2),

-+ 25
1(g) _ 2u or T “So

Equating the right hand sides of equations (4.1.6) and (4.1.7) and

simplifying gives

+ %-s 2. 562 - us,, - 2usg. (4.1.8)

Equation (4.1.8) may be rewritten as

2 2
6s.y = 3(sr + se) - 3(sr +»3se) Sg - 6u (sr + 256).(4.1.9)
Combining equation (4.1.9) with the yield criterion (4.1.4) gives

2 2 2 2
(SY‘ - Se) + (sr + Zse) +(25r + Se) + 3(sr + se)

- 35,5, - 9592 - 6uls, + 25) = 6k (4.1.10)

if the relationship

s, * Sg + S¢ = 0 (4.1.11)




is used. Upon expansion of -each term, equation (4.1.10) simplifies

down to

2 2 -
35, - 2us,, - 2k (4p 35r) S

Consequently,

2 2
3sr - 2usr - 2k

4
S = -, for s # 5 (4.1.12)

and from this and equation (4.1.11),

2
2k™ - 2us
r 4
S¢ = Zﬁ-:-§§:_- for s, #<§E . (4.1.13)

Substituting equation (4.1.12) in equation (4.1.9) and simplifying

gives

2 4 3 2 2 2 2 2
Spg = {- er + 18usr - 12u s, t 15k S, - 24uk Sy
- 4kt 4 162K — }2 (4.1.14)
DR s 1.

The right hand side of equation (4.1.14) can be factored further to

give
2 .((3s.2 - #®) (k2 - @2 + bus,, - 3s 2)hip— Y
Spg TS5, W T OUS,, Sp - §sr

and hence
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o =L ((ak? - 35.2)(3s.% - 6us, + 4t - kz)}]/2(4 1.15)
re ~ - 35, r y " OWS, T OM -l

where the positive root is taken since Spg is non-negative throughout

the field. For Sva to be defined.it is necessary that

(4 - 3n2)(3n® - 68n + 48% - 1) > 0

2. 6fn + 482 - 1 has

discriminant 12 - 1232 <0 if 8> 1. It is assumed that g > 1 as it

s
where n = EL and B E.E- . The second factor 3n

appears that no ;o1ut10n to the flow problem is possible if 8 < 1.
Consequently, the second factor has no zeros and since it has positive
concavity. it is positive for all n. Thus Spg is defined if 4 - 3n2 >0,
that is, if

2
Isrl _<. 75 k’

a condition that is clearly satisfied because of the yield criterion.

From the requirement that v < 0, equation (4.1.2) indicates that

v
s;f-g_o. Then from equation (4.1.1a) together with the further re-

v
quirements that s, . >0 and 555 < 0, one deduces that s, > 0. Con-
sequently, 0 <852 7% k and because of the assumption of axial Sym-

metry,
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or for all 6 if the channel is perfectly smooth, resulting in spherically

symmetric flow.
From the requirement 0 <s, 5,7§'k, it follows from equation

(4.1.15) that

0<s2(1- ;;7)‘/2 k = mk.

Thus a solution cannot be obtained if.the prescribed shearing stress
at the surface is greater than m'k. It is only for the special case
of a rigid-perfectly plastic material (m' = 1) that the prescribed

shearing stress at the surface can be k.

4.2 DETERMINATION OF STRESS FIELD

Integration of the equation of equilibrium (4.1.3b) gives

oy = f(r) - £° {(sg - 5,) cot © + 35 g}de (4.2.1)

since the components of the stress deviation are functions of © only.

From equation (4.2.1) an expression for the hydrostatic pressure;

k

-P =30 is obtained and is

w|—

= _ e . (8 -
- p=flr) - sg £ {(s, s¢) cot 6 + 3s ,}de. (4.2.2)
The equation of equilibrium (4.1.3a) gives

cotd) (4.2.3)

3s
8p - _ (rb
T (55 * 35, * Spg
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r r
equation (4.2.3) is a function of r alone and the right hand side is

since ¢ =S5, P and Zcr - 0g - %% = 3s.. The left hand side of

a function of 6 alone; consequently, .

PR =k (4.2.4) -
and
dsre
-t 3sr * S cot 6 = ck (4.2.5) -

where ¢ is constant. Since for converging flow p must increase as r
decreases, ¢ is positive.

Integration of equation (4.2.4) gives.

p=-ck2n (;—) - h(e)
0

where o is a constant which depends on the specified stress at some

point (r,0,4) in the field and from equation (4.2.2)

h(e) = - s, - ge {(sq - s¢) cot 6 + 3s . }de.  (4.2.6)

In order to obtain Spg 85 @ function of 6, the non-linear
differential equation (4.2.5) with Sp related to Spg by equation

(4.1.15) must be solved subject to the conditions s g=0one=0

r

and s, o = m'k on 6 = a. The constant c in equation (4.2.5) is deter-

mined by o, B and m'.
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Equation (4.2.5) is written in the non-dimensional form

t'(e) +t(8) cot 8 +.3n(8) = ¢ (4.2.7)
= Sre Sy
where 1(0) S - and n(e) = T For the limiting case u + « for
fixed k, it follows from equation (4.1.5) that n(6) + ;%-[1 - 12(6)]]/2.
Thus for the special case of a rigid-perfectly plastic material,

equation (4.2.7) becomes:
' (6) + 1(6) cot 0 + 2/3 [1 - 12(8)1V/2 = ¢

which in non-dimensional form is the equation obtained by SHIELD for
the rigid-perfectly plastic case.

To solve equation (4.2.7) a value of c was chosen and the
equation was integrated numerically to give 6 as a function of T in
the interval 0 < t < m' for a specified B. The solution was started
at 8 =0, T = 0 and continued until T = m' was attained; the value of
6 corresponding to the prescribed T = m' at the surface being the
semi-angle a‘of the conﬁca] channel. This required that %% be known on

8 = 0. From equation (4.2.7),

(dT

) =1im (c - 3n - Tcote)
=0 &0

= ¢ - 2/3 - 1lim Tcote. (4.2.8)
e+0



But
. dt
lim tcotd = (52)
60 e 6=0
- C-2/3

6=0 2
Since T is non-negative in the field, c > 2/3 with equality holding

and thus, from equation (4.2.8), it follows . that (%%

only for spherically symmetric flow. The results of the numerical
integration are shown graphically in Figure 5 for the case BEE-= 10.

The numerical solution of equation (4.2.7) involves the
numerical determination of n from T using equation (4.1.15) and sub-
stitution of the values of n so obtained in equations (4.1.12) and
(4.1.13) gives the corresponding values of Sg and s¢. The results so
obtained are shown graphically in Figures 6 and 7 for the cases B =10
and ¢ = 10 and 7 respectively.

The function h(8) defined by equation (4.2.6) is also shown
graphically in Figure 7 for 8 = 10 and ¢ = 10 and 7.

4.3 DETERMINATION OF THE VELOCITY FIELD

Substituting equation (4.1.12) in equation (4.1.7) gives

2 2

918 S aps, - 2k°
= 3n2 -4
T(n-gl)

Hence

9 2
vr=_B.9.§.e_L=87-exp [-I &_:_3_n1_de]
r

o 1t(n- 39
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FIGURE 5 - FUNCTION t(8) FOR VARIOUS VALUES OF C .
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1/2 48% - 3pn
—

- %2' exp [- A(8)],

where B is a constant depending on the volume flow and is negative
since Ve is negative. For the special case of the rigid-perfectly

plastic MISES material, equation (4.3.1) becomes

v, = Zrexp [- 23 [° (1 - 7%(0))1/% de]
r 0

which is the result obtained by SHIELD. The integrand in equation
(4.3.1) has a singularity at n = %-. For 0 <6 <0, where 0, is.

the value of 8 corresponding to n = = , the integral

w]—

2

6 462 - 3
Aleg) > 5 [(48% - 3)(8% - N1V2 [0 (- 3+ BB 1
0

B

0
= o _de
= y(B) o, + 8(8) [ ° ——
0 n-3
B
where v(B8) and §(B) are positive numbers for a specified B > 1. Now

0 _-¢
do . o 1 de
'ro-——T='|1m I —T(_)dn
0 n- g e+0t o n - B dn

} de (4.3.1)
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0 _-€
. (e _ Ly
(aﬁ%o [lim_"_llog ln 3”0

Consequently.
G
Hm]o -ie'—T=+°°
0-*600 n-g

since %%- is a decreasing function and is finite and negative at
n= %-. Hence the integral A(8) does not converge when the upper limit
of integration is 8, and g(eo) = 0.

The scalar invariant A, expressed in terms of the physical
components of the strain rate tensor and the stress deviation tensor
is

avr sr,e v

o r ZL
A= 2k2 [sr or AT * (Se * S¢) r d

and must be positive during plastic deformation. Using equations

(4.1.5) and (4.1.7), the form of A can be expressed as

v
_'r 3n - 48
A= oy ﬁﬁ;frj—q for v, #0.

Also 3n - 48 is negative for 0 < n 5_7§ , 8 > 1. Thus.in the region
0<8 <8, withv, < 0 and as given by equation (4.3.1), A is positive.
However. in the region eo <9 <o , where o is the value of 6 corres-
ponding to T = m', the ve]ocity field given by equation (4.3.1) and the

stress field result in negative A. If a positive constant B is assumed
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in the region 6, < 6 < a, then Vp > 0 and A is positive, but then the

positive shearing stress at @ = o does not oppose the flow and does

work on the material. Consequently, the velocity field is not admissible
in the region 6 < 6.2 a unless B is zero. Thus the region 6, <8 <a
does not deform during the flow. Similar non-deforming regions were
indicated by the solution for the plane radial flow problem considered

in CHAPTER III. Again the parameter X has an infinite discontinuity

at 6 = e but this is not inconsistent with the equations (4.1.1). Of
interest is the fact that this discontinuity in A occurs when Sh kz/u
in both the plane converging radial flow problem and the axially sym-
metric converging radial flow problem just considered.

The function g(6) in equation (4.3.1) was evaluated numericalIy
for the cases where B = 10 and ¢ = 10 and 7 respectively for the region
0<6x< e and -where the maximum Speg = m'k js attained on the channel
walls. Results so obtained are shown-graphicaily in Figure 8. For
practical values of B = u/k, the angle o - eo is.very small. The re-
lationship between o - 6, and o is shown graphically in Figure 9 for

g = 10 and 100 respectively.
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FIGURE 8 - GRAPHS OF g(6) FOR o = 15°06.7' (B = 10, c = 10)

o = 25°22.2" (B =10, c=7)
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FIGURE 9 - VARIATION OF o - 6 WITH SEMI-ANGLE o
FOR 8 = 100 AND 10 RESPECTIVELY

- B =100
-/
/

/

/ [ 1 1 { 1 1 { \ \
01 02 03 04 05 06 07 08 09

o
(RADIANS)

(a4

. < R
U.

—3 O

- wv
(N
5 «
§ «-8,

A B =10

r—'l,/

./

/

/
{ 1 1 { i t 1 1 ]
01 02 03 04 05 06 07 08 09

o

(RADIANS)



CHAPTER V

PLANE RADIAL FLOW PROBLEMS OF
A HYPO-ELASTIC MATERIAL OF GRADE TWO

In classical elasticity, deformations of a material are
measured from a 'natural' state of the material, taken to be an equi-
Tibrium state without external forces and without stress. ZAREMBA [43]
and JAUMANN [44] suggested dropping the idea of a 'natural' state and
proposed, instead of the usual stress-strain relations, relationships
between the rate of stress and the rate of strain. Generalizing these
works, TRUESDELL [45] proposed the theory of hypo-elasticity. The re-
searches of JAUMANN are applicable to a 'material' classified in current
terminology as hypo-elastic of grade zero. TRUESDELL'S work is appli-
cable to a wider class of materials since the theory of hypo-elasticity
reduces to the classical theory of-elasticity for infinitesimal defor-
mations .of the material measured from the ‘natural’ state configuration
and may even be regarded in special cases as an enlargement of the theory
of large elastic strains. Moreover, hypo-elasticity theory predicts
in special cases a yield-like phenomenon called hypo-elastic yield with-
out the assumption of a yield condition.

In this chapter, the comparison as exhibited by GREEN [46] and
TRUESDELL [47] between a hypo-elastic material of grade two and an
elastic-perfectly plastic MISES material is given. Also, two flow problems
are considered; namely, the steady state, quasi-static, plane radial flow
of an incompressible hypo-elastic material of grade two through a con-.
verging infinite channel with smooth walls and a similar problem with

dynamic-effects considered.

80
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5.1 HYPQO-ELASTICITY AND PLASTICITY

A hypo-elastic material is one whose constitutive equations

may be written in the form.

g?o” = yijmn d (5.1.1)

igmn _ p3imn _ 33nM oo the components of a hypo-elastic re-

where H
sponse function - an isotropic tensor function of the stress components
o', TRUESDELL [48], NOLL [23], and RIVLIN and ERICKSEN [24] have
shown that when the response function is a polynomial function, the
yidmn

components can be represented as .

gigmn _ gim (c]gj" + czcjn + c3°1rcrn)
+ oim(C4gjn + Cscjn +-0603rorn)

+ oisosm(c]gj" + Csoj" +-Cgchorn)

+ "C10(91J mn gmjgin)
+ —-C]](gin m | gmnoj'i + gjmoin + gjiomn)
in Jp m, gndp_ 1, Jdnip . n . Jimp_n
C]z(g o, * g ool +glc o+ golaTay )

where C], cees C12 are called the response coefficients and are poly-

nomials in the stress invariants J], JZ’ and J3 defined as
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- ol 4,z Lalod, 3,2 L o!

Moreover, a hypo-elastic material is said to be of grade n if Hijm"
are polynomia]s’dfudegree n in the stress components 013. For a hypo-
elastic material of grade n, n > 1, the constitutive equations (5.1.1)
are form invariant under a change of objective stress rate. Not being
so for.n = 0, hypo-elastic materials of grade zero are considered in
TRUESDELL and TOUPIN [10] as being physically irrelevant.

Since

s

. ij .
s B Dgt _A(oingmj + onjg1m)d

mn °*?

ij
where vgt js the JAUMANN derivative of stress given by equation (2.2. 9),

the constitutive equations (5.1.1) may be rewritten as

pg'd - (Hijmh ro

i
5T ngm 4 on‘]g ™) don

9

or, on using the mixed components o}, as

i

Do ;
e = gijiPm"d + opdp + ogd; (5.1.2)

Expanding out the right hand side, equation (5.1.2) becomes

.i
(s
- k

L::

8

b~
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i j k ip ip
+ C5<1>oj + Cﬁ‘i'oj + C7qupoj + C8¢opoj

- ip ,4 i ip ip
+ ng°p°j +_C]0dj + C]](dpdj + °pdj) (5.1.3)

1.k P, d-Kep TP 4 oPql
+ C]z(dkcpoj °k°pdj) +.opdj chdp,
where ¢ = c}d% and ¥ = o}oid% are joint invariants of the stress
tensor and the rate of strain tensor.-
For the following particular choice of the response coefficients

C (i =1, ..., 12) as proposed by GREEN [26]:

2 . 2
- 2wy Aua o 442 e, = Sua i
Ci = Tow - 27 (09)%s €y = Gy = Tg— 044

2
= . Suo” = . = -

5
Ci = 0 otherwise,

and with v the POISSON ratio and o a material constant, one.obtains from

equation (5.1.3) the constitutive equations for a class of compressible

hypo-elastic materials of -grade two, namely,

00! . 2
1% . v ked 20 meny i
T 9t T 48y - T (spfpdsy - (5.1.4)

Contraction of equation (5.1.4) yields

k
211 T 1_-2—\)dk (5.].53)
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or simply

k

Dp . .
K dy -

3 (5.1.5b)

Thus from equations (5.1.4) and (5.1.5a), one gets

i

Ds
120 6l L 200 (Melygd
e = 5 - 3 (snfw)s;

which together with equations (5.1.5b) are the constitutive equations
of a compressible hypo-elastic material of grade two. For an incom-

pressible hypo-elastic material of grade two, the constitutive equations

are
1 Ef}_ 2a2 mn
i d (s d )s
and - (5.1.6a,b)
k.
dk-o
2a2 1
which upon identifying =5— with are seen to be equivalent to those

2k
for the incompressible- e]ast1c perfectly plastic MISES solid in a plastic

state. For the hypo-elastic solid the second term on- the right hand
side of equation (5.1.6a) is present for any value of sij that occurs
during deformation whereas for the §1ast1c-perfectly plastic solid it
id = _1___
is zero unless sJ 2k and sJ T
By considering simple shear flow of the hypo-elastic solid

with constitutive equations (5.1.6a,b), TRUESDELL [47] has shown that
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as the shearing strain is increased the corresponding shearing stress
first increases to a maximum value called the hypo-elastic yield and
then decreases. Also, if E-> 1, this shearing stress approaches,
asymptotica]ly. a value lower than the hypo-elastic yield which, along
with the normal stresses required to maintain the shear flow, satis-
fies the VON MISES yield condition. For 1argevva1ues of E-, which -
are typical for metals, the hypo-elastic yield in simple shear flow,
the asymptotic value and the shearing stress predicted by the VON MISES -
yield condition are very nearly equal and the normal stresses required
to maintain shear are negligible. The solutions to the radial flow
problems considered in CHAPTER III and CHAPTER IV are not valid if
E-< 1 and the reason for this Tay‘pe the non-existence of a VON MISES
type yield for fhe hypo-elastic solid if E-< 1. This is not of great
practical importance since all common elastic-plastic solids have large

values of Ep'

5.2 HYPO-ELASTIC FLOW IN AN INFINITE CONVERGING CHANNEL

The steady state, quasi-static plane flow of an incompressible
hypo-elastic material of grade two in a converging infinite channel with
smooth walls is considered. The geometry of the problem is the same as
for the plane flow problem of an elastic-perfectly plastic MISES solid
considered in CHAPTER III.

Since plane incompressible flow is considered, the only non-
zero physical components of stress deviation and velocity are S Sg

and Ve o These components are functions of r alone with Sp = = Sg since

the flow is axially symmetric. The three unknowns Spr Vi and the hydro-

static pressure-p are determined by three governing equations; namely,



the constitutive equation

ds dv 2 dv, v
r. r 2o r ry. 2
Vegr =l - F G -5 L (5.2.1)

the equation of incompressibility

dvr Ve
a.F_-}-r_.: 0, (5.2.2)

and the non-trivial equation of equilibrium
d =
rIF (Sr-p) + Zsr =0, (5.2.3)

together with an arbitrarily assigned initial value for Spe This
condition on Sp compietely determines the stress field to within an
arbitrary hydrostatic pressure.

Equation (5.2.2) requires that

S|

v. = -2, r>0 (5.2.4)

with the constant A > 0 for converging flow. Equation (5.2.1) then

gives

ds
==& 2-d (5.2.5)

where k = %g-, o> 0. Integration of equation (5.2.5) yields
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S

k -1 .
- iﬁ-tanh = log r + log C if |sr| <k,

~l-

(5.2.6a,b,c)
.
- %i coth'] Fr'= log r + log C if |Sr|‘> k,

and
s, = & kif Is,] = k.

C is a positive constant of integration. If Sy =0atr=r,> 0, then

from equation (5.2.6a),
s = k tanh (2 log Toy. (5.2.7)
r ’ r

Figure 10 shows the graph of ;ﬁ plotted against %; and shows that
Sy changes algebraic sign at r.f o and tha: as y + » for fixed k the
curve of F£ approaches po:ntwise the curve FL = 1 in the interval
0 5.%; <1 and the curve FL = - 1 in the interval 1 < %; <o, If
initially s, = ky, Ik]l > k at r = r,, then from equation (5.2.6b) it
follows that Sy is infinitely discontinuous at r = r.. Such behaviours
in s, are considered unrealistic and the solutions (5.2.7) and (5.2.6b)
are considered inadmissible.

The initial condition s_ = k at r = r_ > 0 gives the solution

r o]

Sp = k for all r > O, (5.2.8)

and from equation (5.2.3) it follows that
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p =2k Tog r + log Cl, C] a positive constant.
Ifp = P at r = To then

p=2k1og::—+po

0
and hence
o.=k-2klogi-=-p,
r r 0
0
g, = -k - 2k log L. P
8 r o’
0
and (5.2.9a,b,c)

g, = - 2k log %— - Py
0
The stress field for the corresponding problem involving an elastic-
perfectly plastic MISES solid is obtained from equations (3.2.1a,b and 3.1.3a)
on setting ¢y = 0. It is identical to the stress field defined by
equations (5.2.9a,b,c) if in these eqﬁations the material constant k
is interpreted as the asymptotic value of the shearing stress of.the

hypo-elastic material of grade two in simple shear.

If the above flow problem is not quasi-static and dynamic

effects are taken into consideration, then the equation of motion

d 2, dv,,
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must be used rather than the equation of equilibrium (5.2.3). Since the:

flow is axially symmetric, the velocity vrlis a function of r only and

hence. from the equation of incompressibility (5.2.2),

'
~S|>

(5.2.11)

with the constant A > 0 for converging flow. The stress deviation
component Sy is then as given by equations (5.2.6a,b,c) depending upon
the specified initial value of Sy at r-=r,> 0. For the same reasons

as discussed previously, the only admissible value taken for sr_is
S, = + k (5.2.12)

for all r > 0. Substitution of equations (5.2.11 and 5.2.12) into
equation (5.2.10) and integration.yields

2
p =2k logr --% A§-+-log C], C] a positive constant.
r

If p= Po atr=r, » then

Y
p = 2k 1og-—+ %z— —]2'-']7)‘*'%-
r

The stress components are then: -

o2
-k - r o pA° 1 1
op =k - 2k log y—+ ei_ [ - —_?J = Pg o
0 r O
0, = -k - 2k 1o l‘-\+fﬁ[‘ S
6 g r, 2 ;f - 24 = Po?

0
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CHAPTER VI -

CHARACTERISTIC STUDY FOR PLANE STRAIN FLOW OF AN
INCOMPRESSIBLE ELASTIC-PERFECTLY PLASTIG MISES SOLID

The governing equ;t{ons for the plane plastic flow of a rigid.
perfectly plastic MISES or TRESCA solid form a hyperbolic system and
the characteristics of the stress and velocity fields coincide [49].
The characteristics, called o - 1ines and 8 - lines, are.mutually
orthogonal and are also called s1ip 1ines since their directions at
every point coincide with those of the maximum-shear strain rate. By
convention, if an o - 1ine and B - line are regarded as a pair.of right-
handed curvilinear reference axes, the 1ine of .action of:the algebraically
greatest principal stress lies in the first and third quadrant. The
state of stress at a point in the deforming material is completely speci-
fied by the mean compressive stress-p and the angle ¢ which is taken
to be the anti-clockwise angular rotation of the a - 1ine from the x -
axis of a CARTESIAN coordinate reference system. The two families of

characteristics are defined by

dy . -
ax tan ¢ for o - lines,

and

dy __ - 14
ax cot ¢ for B - lines.

Moreover, for the stress field, the compatibility relations are the

HENCKY equations [50],

92
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dp + 2k d¢ = 0 along an & - line,
and
dp - 2k dp = 0 along a B - line,

with k the appropriate yield stress in pure shear. For the velocity
field, the compatibility relations are the GEIRINGER equations [511,

du - v d¢$

.0 along an a - line,

and

dv + u d¢ 0 along a B - line,
where u and v are velocity components in the positive a- and B-
directions respectively.

In this chapter, a corresponding study is made of the governing
equations for the quasi-static, steady state plastic deformation of an
incompressible elastic-perfectly plastic MISES solid in plane strain.

It is shown that if-l%J <1 this system of equations admits four distinct
families of real characteristics. Also compatibilify re]atiohs along
these characteristics are derived. In the limiting case of the rigid-
perfectly plastic MISES solid (u + =), the GEIRINGER equations are re-
covered and the stress and velocity characteristics coincide. In

this chapter,cylindrical polar coordinates (r,0,z) are used. 1In
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APPENDIX B, the study is undertaken in a different manner and rec-

tangular CARTESIAN coordinates are used.

For axially symmetric flow of a rigid-perfectly plastic MISES:
solid, PARSONS [12] has shown that the governing equations admit no
real characteristics except possibly a curve in a meridional plane
along which the radial velocity is.zero., No corresponding study is
made in this thesis of the system of governing equations for an in-
compressible elastic-perfectly plastic MISES solid deforming in the
plastic state under axially symmetric conditions. In contrast, for a
rigid-perfectly plastic TRESCA solid for which the HAAR-KKRM&N.hypo-
thesis has been adopted, it is known that the governing equations for
stress and velocity are hyperbolic with characteristics which coincide
with the s1ip 1ines in a meridional plane [52]. As yet»fhere are no
published researches pertaining to the plastic flow of an elastic-

perfectly plastic TRESCA solid in finite strain.

6.1 CHARACTERISTICS OF THE STRESS FIELD AND VELOCITY FIELD FOR PLANE
STRAIN DEFORMATION OF AN INCOMPRESSIBLE ELASTIC-PERFECTLY PLASTIC
MISES SOLID

The governing equations, in curvilinear coordinates, for the
plastic flow of an incompressible elastic-perfectly plastic MISES solid
are given in CHAPTER II, SECTION 2.4 of this thesis. In APPENDIX A,
SECTION A.4. these equations are expressed in cylindrical polar coordi-
nates (r,6,z). The number of governing equations is greatly reduced,
however, for steady state, quasi-static plane flow with the deformation
independent of z and parallel to the (r,8) -plane. Since the solid is

incompressible,each incremental distortion in a state of plane strain
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consists only of .a pure shear. The stress .component oi.normal to the
plane of flow is thus equal to the mean hydrostatic pressure -p and -
the stress deviation component s, vanishes identically. Also the
velocity component v, and the stress components Opz and Oy 2re Zero.

It then follows from equatioﬁ'(A.4.3) that

S, == Sg (6.1.1)
and from equation (A.4.2) that

(6.1.2)

With appropriately specified boundary conditions, the unknowns s., V..,

Vo and p are determined by the constitutive equation

as e 3s S ov 1

obtained from the PRANDTL-REUSS equation (A.4.46) with appropriate

substitutions, the equations of equilibrium

9s S 9s 2s
ro_ r r_9 . __¢
T o (6.1.3b)




96

9s
r r 1% 13p._ r
- T raw- - - (6.1.%)
K .s?
r
and the equation of incompressibility,
av v v
r.,1°6__1r
T tree (6.1.3d)

For the determination of the characteristics and compatibility re-
lations along any existing characteristics, the above system of partial

differential equations are supplemented with the relationships

ar 20
(6.1.3e,f,g,h)
ov oV
r r =
37 dr+—56—de = dVr,
v v
6 0 -
Fdf""'aT-de = qu.

The non-zero physical components of the stress deviation tensor are
parametrized in terms of the angle Y between the line of action of the

algebraically greater principal stress and a radius by setting

Sy =k cos 2y (6.1.4)
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and hence»by equation (6.1.2),

Seg = k sin 2.
The characteristics of the stress field are determined from

equations (6.1.3,b,c,e,f). Substituting s, given by equation (6.1.4)

in these equations:
sin pr—g'-- T €08 2¢—9L+-g—':,=+-]r-,cos\2w,
cos 2p & + L sin 2p 3. 128~ - Lsin 24, (6.1.5a,0,¢,d)
Hoar+. o d = &y,
and
3 gr+ 3 do .= ap

where P = —% The coefficient determinant A, of equations (6.1.5a,b,c,d)

is

sin 29 --l-coszw 1 0

1
=|—

cos 2y -:,-sin 2y O

dr de 0 0
0 0 dr de
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and the determinantrequation,AsV= 0 yields, after simplification, the

two ordinary differential equations

and (6.1.6a,b)

g-gﬂ = tan (¥ + ).

Equations (6.1.6a,b) define two families of orthogonal characteristics
curves .of the stress field. The system of equations (6.1.5a,b,c,d) are
field equations governing the stress field and apply to any incompressible
material deforming in plane strain and for which the relationship (6.1.2)
is valid. Since this relationship holds for a rigid-perfectly plastic
MISES or TRESCA solid in plane strain, curves defined by equations
(6.1.6a,b) are also characteristics of the stress field for these solids.
Figure 11 illustrates the geometrical relationship of the characteristic
curves with respect to the cylindrical polar coordinate system and the

CARTESIAN coordinate system. It,is”seén that

p+T=0+y (6.1.7)

and hence the family of characteristics defined by equation (6.1.6a)

are o - lines and the family defined by equation (6.1.6b) are B - lines.
To obtain the compatibility relations along the o - lines and

B - lines of - the stress field, the terms in any one column of the coef-

ficient determinant AS are replaced by the corresponding terms appearing
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FIGURE 11 - DIAGRAM SHOWING RELATIONSHIPS BETWEEN THE
CHARACTERISTICS OF THE STRESS AND VELOCITY FIELDS
AND ALSO CONVENTiON USED

DIRECTION OF
AY ALGEBRAICALLY GREATEST
PRINCIPAL STRESS

~LINE a,- LINE
B B-LINE
%

/ a-LINE

XY
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on the right hand side of equations (6.1.5a,b,c,d). Setting the re-
sulting determinant equal to zero and simplifying yields

dP - (sin 2y + cos 2y de)(de + dy) = (6.1.8)

The compatibility relationship along an o - line is then obtained by
replacing %-%g-given by equation (6.1.6a) in equation (6.1.8) to give

dP+ d(e + ¢) =

or

dp + 2k d$ = 0 , (6.1.8a)
if equation (6.1.7) is used. This is the familar HENCKY relation along
the o - line. Similarly, replacing %-%g given by equation (6.1.6b) in
equation (6.1.8) yields

dp - 2k do = 0, (6.1.8b)
the HENCKY relation along a B - line.

The characteristics of the velocity field are determined

from equations (6.1.3a,d,g,h). Using the expression for s given by

equation (6.1.4), equation (6.1.3a) can be written as

V 1 ky °Vr
(cos v - 2) L+ -sin 2y(cos 20 - -0 —_
u’ 3o
av
k 6 ] 2 8
+ sin 2y (cos 2y + ﬁ) 37 - 7 08 2 55



101

—d

Fsin 2y (cos 2y + —) Vg +lcos 29 v,

(6.1.9)
v
+2—sin Zw%vr*rZ K sin Zw-%’-r—e.

The coefficient determinant A of equations (6.1.9) and (6.1.3d,9,h) is

coszzw-z %— sinzw(coszw-]%) sin2¢(costh+:-i-) - 71- cos?‘zw
1 0 0 I
Av =
dr de 0 0
0 0 dr de

which set equal to zero yields

2 ,de,2 k de . Ky _

(3?) (cos 2y + f) -rgr2siny - (cos 2y - 17) =0 . (6.1.10)
This equation is a quadratic equation in r %% and has discriminant
\/i - ({—)2 . Thus the system of partial differential equations (6.1.9)
and (6.1.3d,g,h) is hyperbolic if |§| < 1, parabolic if |-E-| = 1 and
elliptic if lﬁl > 1. Considering only the case where 0 < '—;— < 1, which

is the most important from the practical standpoint, and on defining

= sin 2y,

=[x

equation (6.1.10) yields the two differential equations:

ge tan ( + vy - —) (6.1.11a)
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and
do _ m
rgy = tan (v -y + z). (6.1.11b)

Equations (6.1.11a,b) determine two non-orthogonal families of charac-
tefistics for the velocity field. Figure 11 shows their geometrical
relationship with respect to the o - and 8 - 1ine of the stress field.
The family of characteristics defined by equations (6.1.11a) are called
- lines and the family defined by equation (6.1.11b) as By - lines.
For the limiting case of a rigid-perfectly plastic MISES solid (y + 0),
the characteristics of the ve]ocify'f1e1d are seen to coincide with

the characteristics of the stress field.

. The compatibility relationships along the o - and By - lines
are found by firstly replacing the terms in any column of the coefficient
determinant Av with the corresponding terms on the right hand side of
equations (6.1.9) and (6.1.3d,g,h). Setting the resulting determinant

equal to zero gives

v
2 sin 2y [v L —g-éwi + (cos 2y + sin 2y)

rar r 96
v dv dv
6 __06 d _ ., doy _1 - r.
[r = & Vrdr - (cos 29 - sin 2y) I 0 (6.1.12)

where s is the arclength along a characteristic. On defining ¢ = %-- /N

equation (6.1.11a) is written

de _
rgr - tan (y - z).
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Hence along an oy - line,

%% Z - 1?- sin (; - -y) (6.].]33)
and
dr
I © °os (z - v). (6.1.13b)

Equation (6.1.12) then becomes

sin 2y [vr ar ,.—e-‘g-] + -:.- sin (g + y)[vg cos (z -v)
(6.1.14)
dv dv
+ v, sin (g - v)] + cos (c+v)——- sin (c+v)———— 0,

if the equations (6.1.13a,b) and the trigometric relations
sin 2y + cos 2y = .2 sin (¢ + v) cos (¢ - v),
sin 2y - cos 2y = - 2 sin (g + y) sin (¢ - ¥),
are used. The velocity is now resolved into the two components u and
v where u is the component along the a - line and v the compohent along
the B] - line. Relationships between these components u and v and the

components Ve and vg are

Vp = U cos (z -v)+vsin(z+y) (6.1.15a)



and
Vg = - u sin (g -y) +vecos (z+y). (6.1.15b)
With the use of these relationships, it follows that

]FS"" (z + y)lvg cos (z - v) + v, sin (g - v)]

= %sin (g + y) cos 2y (6.1.16)

and

dvr dve du
cos (¢ +y) gz— - sin (g +v) I = C0s 2y g5

+ (u sin 2y +v) % . (6.1.17)

Now an expression for %—g-'ahng an oy - line is presently derived

involving the variable P = %F . This leads to a more concise form
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for the compatibility relation along an 4y - line. Since z = n/4 - y, ‘then

Y . _ 3¢
oar ar ?
(6.1.18a,b)
Y . _ 38
a0 28 °*

and the equations (6.1.5a,b) become

g 1 g 3k _ 1
cos 27 T r‘sin 44 56 = o7 rs*ln 2z,



and

gLl g . _123P 1
sin2;3r+r,coszcae v +Y“_

Solving for —;- and —5- gives :

E.E a_P-..]— in .§-P-

oY cos 27 r’sm 2z 30 °
and

-5-— 1 - (r sin 2z 9-P-+ cos 2¢

a8

Hence along an a - line,

&g . 1 1
E=cos (g4 Fr-psin(b+y) 557

Equation (6.1.17) then becomes .

' dvr dve du
cos (£ +7v) g5 - sin (¢ +v) g = cos 2y g5

1

Also from equations (6.1.15a,b) and (6.1.19a,b),

S‘inzY[V % %‘g—] =gin2y[u{-cos(z + ¥) % +

rar r
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(6.1.19a,b)

5P
% -

sin (¢ - v).

- (u sin 2g + v)

(6.1.20)

—ﬂn@-Y)+wsm27+whmk+7%—-lsm(c+ﬂ 8.

3%y

sin(z + v) ¥ 55

|-

s visin(z - v) &+ cos (g - v) 335




+ L fusin(g - v) - v cos(z - y)}H: (6.1.21)

Substitution of equations (6.1.20) and (6.1.21) into equation (6.1.14),

after simplification, results in

cos 2y [%%-f v (%%-cos (- vy) - %%-% sin (g -v)]=0

or, with use of equations (6.1.13a,b),

du oP dr . oP d6yq _
cos 2y [a-s-'i' V(W-a-g"' -aga?)] = 0. (6.].22)

Thus the compatability relation along the a - Tine of the velocity

field is

du . v _dp _
s ka0
or
du +12'-Edp =0, (6.1.23)

As observed earlier for the limiting case for the rigid-plastic MISES

solid (y -~ 0), the characteristics of the velocity field coincide with
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the characteristics of the stress field. Along the o - lines, the HENCKY

relation (6.1.18a) holds and hence, in the limiting case y -~ 0, the

relation (6.1.23) becomes

du" Vd¢=0,
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the GEIRINGER equation for an a - line of the velocity field of a.de-
forming rigid-perfectly plastic MISES solid.

‘The compatibility relation along a By - line may be obtained
in an exactly analogous manner to that given above for the o - 1ine,
It follows from equation (6.1.11b), which must be used rather than

equation (6.1.11a), that

=1
= = cos (g + Y)»

o.la.
nlo

(6.1.24)

%{-= sin (¢ +7v)

with s the arclength along.a 8] - characteristic. Hence from equations

(6.1.5a,b), it follows that

dz - 1 P 1 ap
a§= wcos(z +y) - sin(z - v) 57 - ycos(z - Y) 55 . (6.1.25)

Substitution of equations (6.1.15a,b), (6.1.24) and {6.1.25) into equation
(6.1.14) yields, after simplification, the relation

cos 2y(g%+u-g—§-)=0 ,
or along a B] - line.

dv + %E\dp = 0. (6.1.26)

For the 1imiting case y + =, equation (6.1.26) becomes
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dv + ud¢ = 0,

the GEIRINGER equation for the By - line of the velocity field of a
rigid perfectly plastic MISES solid.

Compatibility relations (6.1.23) and (6.1.26) are-observed
to have exactly the same form as the GEIRINGER equations if the latter
equations are written in terms of u, v and p rather than u, v and 6

as is customary in plasticity literature.

6.2 DETERMINATION OF THE CHARACTERISTICS OF THE STRESS AND VELOCITY
FIELDS FOR THE CONVERGING PLANE FLOW PROBLEM |

In this section, the characteristics of.the stress and.ve-
locity fields are determined for the plane strain flow problem con--
sidered in CHAPTER III and which involved a converging infinite channel
with perfectly rough sides. Since the stress and velocity fields have
already been determined, no use is made of the method of characteristics
in determining these fie]d;.

In SECTION 6.1, the differential equations. for the character-
jstics of.the stress field for the plastic flow of an elastic-perfectly
plastic MISES solid in plane strain are given by equations (6.1.6a,b).
For any specific problem, the differential equations can be solved if
either ¥ is a known function of r and 8 or %%-15 a known function of y.
For the problem considered in CHAPTER III, %%-15 given by equation
(3.2.3b). Hence equations (6.1.6a,b) may be written as

%ﬁ: - (H'%Ll%) dp  for an o - line, (6.2.1a)
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and

dr _ 1 -sin 2y Y

= T cos 2 d) for ap - line (6.2.1b)
where

c > 1.1922.

The constant c appearing in equations (6.2.1a,b) is, of course, a
function of the semi-angle o of the converging infinite channel as
given by equation (3.2.6). With a change of variable from ¢y to z =

tan ¥, equations (6.2.1a,b) become, respectively,

dr z 1 1 4
—=[ YT ]dzforana-]ine,
r 224 22 & ( ) 22 4 ( LI
and
dr z 1 1
L= - . ] dz for a B - Tine
r 2+-| c+l + ( ) Z + ( ]) ’

where the right hand side of each equation is expressed in partial
fraction form. Integration of these two differential equations give

the following equations for the characteristic curves:

c-Cos2y

r=bv ct] exp [ ! tan'1 (v %;%-tan v)] for an o - line,
/ 2

¢ (6.2.2a)

and



r=bvY e+l ox [- ] tan'] (v ctl tany)] for a B - line,
75 EXP v/—i_— c-T

c-C0S
¢-1 - (6.2.2

The constant b is the constant of integration and the angle ¥ varies
between - T to 7 . If ry is the value of r at which an a - 1ine or
B - line intersects the axis'e =¢ =0, then b = ro//%éér.

The equations (6.2.2a,b) are also the equations for the slip
lines of stress field. NADAI [40] obtained equations (6.2.2a,b) as the
equations of the siip lines in the flow problem of a rigid plastic solid
in a perfectly rough converging channel and plotted curves of the slip
lines for the cases where o = 24°17' (c=2) and o = 90° (c=1.1922), It
follows from equations (6.2.2a,b) that for ro > 0 the characteristics
of the stress field terminate on the channel walls at finite distances
from the virtual apex of the converging channel.

The characteristics of the velocity field for the plastic flow
problem of an elastic-perfectly plastic MISES solid in b]ane strain and
for which 0 < §-< 1 are determined from equations (6.1.11a,b). For the

flow problem under consideration, these differential equations, with the

use of equation (3.2.3b), may be expressed as

dr A-n® + sin 2y _cos 2y dy
r n - cos 2y cC - cos &y

and (6.2.3a,b)

for an o - Tine,

dr _ /1-n% - sin 20 cos 2

r CosS 2P - n_C - coS 2V dy

for an 81 - 1line.
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Again ¢ > 1.1922 and is related to o by equation (3.2.5). Alson =

®|x

With a change of variable from y to z = tan ¢, equations (6.2.3a,b)

become
_2z 2 2
+2°)(1 - 2%)
2
£ i o for oy - Ve,

<‘+;,‘ - A&+ D+ D)

_|

(1 + =22+ 221 - 22)
dr _ 1 -n[ /1n2

] dz for.a By - line.

1+n)(c+1 +2%)(1 4 2%)

Integration of these equations give the following characteristic curves

of the velocity field valid provided cos 2¢ # n:
_n

(|tany + /=By
1+n exp [ o //1 -n

(g + tan w)é[ )cosw

(/ C+1 tanw)] for a; - lines,
and (6.2.4a,b)

(|tany - /1 )°' ' /
r = b, | T exp [- == tan
(%i}-+ tan w)i(c n')cosq;

(v %;}‘tanw)]. for B, - lines.
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The constant of integration b1 is related to ro? the value of r at

which the oy - or By - line intersects the axis 9=y =0, by

]
by = ry LR MEE™

For n + 0, it is noted that equations (6.2.4a,b), in the 1imit, be-

come equations (6.2.2a,b). This follows since

1 . /¢t
172 7 c-cos2y

(cosw)(%i%-+ tanzw

and lig b] = b. This result is expected, since for plane strain flow
of a rigid perfectly plastic MISES solid, the characteristics of stress
and velocity coincide.

Figure 12 shows the characteristics of the velocity field of
the flow problem considered in CHAPTER III for an elastic-perfectly
plastic MISES with §-= 0.10 and a perfectly rough channel with semi-

angle o = 24°17'(c=2). In the region -6 <8 < a, corresponding to

- %-cos'] E-g_w <, the a) - Tines are tangent to the radial line

6 =-6, at the virtual apex r = 0 and terminate on the radial line

6 =a. In the region -a <6 <-86, corresponding to - %‘§_¢ <

- %-cos'] ﬁ-, the ay - lines are again tangent to 6 = - eo atr =0

but terminate on 6 = - a.  The By - lines are reflections of a; - lines

about the axis 6 = 0. The radial lines 6 = £ eo are limiting lines of
the velocity characteristic field. Since 6  are values of 6 corres-
ponding respectively to values of ¢ such that as cos?y = E“ these

limiting lines coincide with the inner boundaries of the non-deforming
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FIGURE 12 - CHARACTERISTICS OF THE VELOCITY FIELD FOR
CONVERGING FLOW IN A PERFECTLY ROUGH CHANNEL

1<

~ = 0.10

o = 26°17' {c = 2), n =

=

- LIMITING LINES
O5 *24°12.35"
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regions exhibited in CHAPTER 111. If the frictional shearing stress
on the channel walls is equal to /1 - n2 ks n = E-, then the limiting
lines coincide with the channel walls; if less then they fall outside
the channel walls and the end points of the characteristic curves lie

on the channel walls at finite distances from the virtual apex.

6.3 CONCLUSIONS

The characteristic ;tudy in this chapter has involved a
frame invariant form of the PRANDTL-REUSS equations. Provided that
the incompressible elastic-perfectly plastic MISES solid has a %-va]ue
less than unity, the governing equations for plane flow are hyperbolic
and hence the method of characteristics can be used for solutions of
problems, either rotational or jrrotational, involving finite defor-
mations. Extensive search of the literature jndicates that much of the
researches concerning the application of characteristics to elasto-
plasticity has been restricted to problems involving only small de-
formations. It is hoped that the results developed here can be used
both in extending our knowledge of elasto-plasticity and in solving

many technological problems.



APPENDIX A

GOVERNING EQUATIONS IN- A SPHERICAL POLAR AND A CYLINDRICAL
POLAR COORDINATE: SYSTEM-FOR AN ELASTIC-PERFECTLY PLASTIC
MISES SOLID IN FINITE STRAIN

In CHAPTER II, SECTION 2.4 of this thesis, the governing
equétions for -an elastic-perfectly plastic MISES solid in finite strain-
are given with respect to a general curvilinear coordinate system. In
this APPENDIX A, these governing equations are expressed in both.a
spherical polar and a cylindrical polar coordinate system using the
physical compohents of the vector and tensor quantities involved. . The
detailed transformation of the PRANDTL-REUSS constitutive equationsis:
included. .However, since the field -equations expressed-in these two
coordinate systems are contained in various texts, notably MqCONNELL,[53]_

and LANGLOIS [54], these equations -are only entered -here -for easy. reference.

A.1 CHRISTOFFEL SYMBOLS -AND PHYSICAL COMPONENTS FOR A SPHERICAL POLAR
COORDINATE SYSTEM

For-a spherical polar coordinate system r, 6, ¢ as illustrated

in Figure 4, the line element is given by

2 2,.2

+.r de 2

ds? = dr +r sinzed¢2 .

The covariant and contravariant components of the metric-tensor are

. 2 s g3
g]] = ]’ 922,= PZ,;933 =.r251n 8, gij = 0(1¢J) s

and
115
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W, =Ly, o = ol g = 0 (120

r°sin~e

]
9 s 9
;f

and the non-zero CHRISTOFFEL symbolé of the second kind are

P;Z = - r, rg3l=.- rsinze.
I‘%z = I‘g] s ]F’ rgs s - 51necose,

3 3 .1 .3 _.3.
I‘-|3 = I'3-| = F’ 1'23 I'32 cotl.

In terms of the corresponding covariant and contravariant

components, the physical components of velocity are

. V2 _ 2 V3 3
Vp T v] =V, Vg T rv-, v¢ = Tsine - rsinev™,

Snd the physical components of the symmetric stress tensor are

n 922 _ 2 22 933 2 ..2. 33
G._=047 =0 O, = = p°g ", G4 = = r“sin 60",
r 1 * Vg ri ¢ rzsinze
o o} o
212 12 - 13 _ cinaql3 - 23 _ 2 23
Teg =7 ro =, Tr¢ TsTne rsinéo -, re¢ ;i;;;; r-singe"".

The physical components of the stress deviation tensor, S Sgo s¢,
Sre? sr¢ and se¢. are similarly related to the covariant and contra-
variant components of the stress deviation tensor. From the relation-

ships
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93=93+m”.p=-%%nﬂ".

it follows that
Sy = Oy + Ps Sg = 0g P 3y 0yt s
S

e = Tre? Sre = Tre® Sep T Tes’

with

p = - %-(or + gyt o¢).

The physical components of the symmetric strain rate tensor are

ov v v v v
o 21 _6,._r - L, coté 1 __¢
dr or ° de rd v d¢ r SV * Tsine 9 °
av v v v v v
11 _r,_ 8. _Si r,_%.__¢
deg = Zlr 38 * o7 )s dpy i(rsine % A T )
1 aVe coto

+ 1
r

B
dgg = ATSITRT) M V¢)’

and the physical components of the skew-symmetric vorticity tensor are

BVr

a8

3 1 ov
(rve)]s '2_[ 'a_'( ) - WWY:’]9

| >4

n
N —
=0
mlo}
=

ro

1 v

Wgg = ??E?ﬁﬁ'[5$g - 5% (v sing)].
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A.2 GOVERNING EQUATIONS IN SPHERICAL POLAR COORDINATES

The equations of motion (2.4.2) in terms of the physical com-.

ponents of stress and velocity are'

30 31 ot Dv
r.1._ré 1 ro .1 - r_

v Y ¥ or T vsine 3¢ | F{zor ~ % =% " Tre cot8) = ol = Fp)s

oT

i 806 1 are¢

Dv
] )
3¢ T ¥ T Tsine %6 7L3Teg * (g "°¢)C°t3] = olgg - Fy)s (A.2.1a,b,c)

oT T o Dv

6, 1%, 1 %% 1 v
5t v 30 TeTne 35 T r\3Tpe * 2Tgq 0t8) = plgEm - Fy)s
where

D w W Y Y B g

Dt = ot r or r 236 rsind 3¢ r''o ¢ ’°
Dv v v Vo 9V v v,

Vg Mg V3 Yoo Vo Vo cote 2

Bt -3t T T EF(VVG) *v 38 ' vsine 3¢ r Ve ?

v v

Vo 3
r(rv¢) * vsine 38 (sinev¢) * rs%ne §$g ’

p is the density and Fr’ Fe. F¢ are the physical components of the body
force per unit mass. For quasi-static problems in the absence of body
forces, the right hand sides of equations (A.2.1a,b,c) are zero. These
equations are then called the equations of equilibrium.

The equation of continuity‘(2.4.3) in terms of the density and

the physical components of velocity is
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o
Frl

2 4 2

ot

1N|—'

1 23 1 2 -
er,) + Tsine ﬁ-(sinepve) + Tsine W(pv¢) = 0.

If the solid is incompressible, there is also the equation of incom-

pressibility (2.4.1b),

v ov v 9
r,_r,1_98 v 1 _¢.,.
ar ar r 96 r 6  rsind 93¢

The identity (2.4.5) is

S, t syt S¢ = 0, (A.2.2)

and the VON MISES yield condition (2.4.4) is

52+52+S

2 2
p ¥ Sg sy t2s" s

2 2y _ 9,2

which with use of equation (A.2.2) may be written as
2 2 2 2 2 2y _ L2
(sr-se) + (se-s¢) + (s¢-sr) + 6(s‘(,e *Sgp *Spg ) = 6k° ,
or, alternatively, as

(6,-0)% + (94-0,)% + (0,-0,)% + 6(x,¢P41e, 247, 7) = 6% .

The finite PRANDTL-REUSS constitutive equations (2.4.1a)

in terms of physical components of stress deviation and velocity are
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(a)
os 3, v 3s
R S 6 . r
- - W (rve)] Y [8 (rv¢) sine L) ] r
v, .
= 2 (5 - Asp)s (A.2.3a)
(b) .
9s 3s, V5 9s v 3s
] 8, 8 (8 6 _
3 Vr3r Y (ae + ZSre) + ;g%ﬁg (5$— 2cos9 se¢)
-a__ (rv ) } 8Vr] Sr‘e - [3V9 - _3_ (S'inev )] —s_?_L
r ) 1¢] r 9% a0 ¢’< rsind
=2“(l_e*&"*5) (A.2.3b)
r o6 r ’ .2.
(c)
3s s, Vo35, V 3s
¢ o, 80, 0 (] )
TR S T O T: T (sine 30 + 25r¢ + 2cotd se¢)
1 __r_3 r 8
¥ |:sine 3 ar (VV¢)] vt [55- (s1ne v )] ?E?%%?
v v
= 1 %Y, 'r cote . _
= (rsine 3 tet T Ve KS¢), (A.2.3c)
(d)
3s 3s Vo S
ro ro ‘_e- ro .
stV o tT La6 T (s, - sg)]

v

t Tsing ( 3 - sing sqq - cosds,., )
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oV oV S _~S; v v, S
r r e . ¢ __1 ry —6¢
+(g-- rar - Vol ¥ *.Vy * "3r " Sine 5 T
3VI S
8 _ 29 re_
- - (sinév,)] 7rsing
ov. v v
_ 115, 8 __8 .
(e)
oS oS v oS
ro re . 8 (_re _
5t T Ve Tor T 7 V88 So¢)
v 9s .
o1 __rd .
+ 2 (fr5 5= * Sr - So * OO Sye)
ov S =S oV
9 _ M9 °r 9
+ [ar (rv¢) sing 9¢ ] 2r +'[a¢ (s1nev¢)] 2
VY‘ _9;
- [ae = (rve)]
v. . dv, V
= e b 4y
211 [2 (-—ST"]—' ¢ + 37 P ) }\Srq)], (A.2.3e)
(f)
9s 9s V., 95
99 260 , 8 (B¢
=tV e v e * Spp)

0 | .
T L 5 + (se- s¢)cose * Sy sing]

oV

v S
+ g - 5r ()] 2L - Gy (rvy) - i a¢r] 18

S,- S
* [a¢ ae (s1nev )] 2rsing
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av av,
- 11 0,1 ¢  cotd
=l G traes - o Vo) - Asgele (A.2.3f)

In these equations, the joint invariant A = -l? d1 s‘j ,» expressed in

2ke 4 1
terms of the physical components of the strain rate and stress deviation

tensor, is

v s v $ v
= _r..8 8y .9 1 ¢
A= 2k2 [sr TR (Vr * 5% ) + r (V * cotévy + Sig o0 )
S ov oV oV oV
ro r 8 _ r¢ r _
e gt g - V) v (sine 5% T Ve

ov v
Se¢ 8 ¢ _
2 e 5%t 38 - cotevy)l.

Details of the derivation of the above PRANDTL-REUSS equations
are as follows. Rewritten here, equations (2.4.1a), the PRANDTL-REUSS
constitutive equations with respect to a general curvilinear coordinate

system, are

with
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With x' = r, x~ =6, X3 = ¢ and

SIS
= Q%%l + (:i]] + zr;]sm])v] + (gi;l + arl]nzsm])v2
D ey
= Q%%l + %i}l vl +,v2 (gi;l - 2x]s12) + 3 (zi]] 2x]sin2x 513)
= ;%5-+ v, ;;r-+-;§-(;;£ - 25,4 ?g%ﬁa (a¢ - 2sind Sr¢)’
_ Mgkl 4 gImgkT Moy - 252", - 2539

_ Sre Ve Sré 8 1 Yy
= - L - aw ()] - R I () - g s

v
2u(d]] - As]]) = 2u(3;£ - Asr),

combine to yield equation (A.2.3a);
(2) i=2,j=2,

;ZSZm) V2

22 22
Ds . 8_¢22 (as 2 2m)v1 + (as

+ 2ré.s === +2T
X ml aX



2m
(as + 21l s )v
3x m3
22
= g_t 522 + (35 + 22)V +.(as 21)\’
ax X ax X
22
+ (§§§— -2 sinxzcosx2523)v3
) 9X
9s S 2s S 2s v
T T R Y RS
r r r r r

) 2¢0s0 v
+ 55 (z)'—r Soo] ToinG

m2 22

m2_k2 2m_k2 _
-(s°g - +s%g )wkm =- 2579wy

2 12 32
TGhE e e

Lot B (v, - ol] 4 288 [0 LD (ing v )T}
T3 Spolar \MVo/ ~ 384 T Sine a¢ %0 SING Vyidls

2u (d22 - Aszz) = g%-(%-s—g + L - kse)
r

combine to form equation (A.2.3b);
(3) i=3,3=3

33 33 33
3s m3 3s m3
+ (ax] + 2rm]s W+ (;;f--+ zrmzs W

ps33 - 98
Dt at
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33
+,(§§§—-+42rm3sm3)v
ax
33 33 33
_ 3 28”7 .2 331, (3% 2y,33y.2
_n_t +. (a_x1_+ ;1- S )v o+ (;—‘*‘ 2 Cot(x )S )V
3533 2 13 2,23, 3
+ (Ta + 57577 + 2 cot(x)s™)v
X o« X
os ds, Vv, 9s
- - 6 _¢
= [——‘t + v —i + —
rzsinze at r or r 90
) Tf.@
2 ( 535+ Bypp * 2 COLO se¢)].
(MK ISy, 2sMg3d,
- 2B - 2B %,,
av
2 n¢ r 129
= {2 [ - = aw (rv))]
r251n26 2 rsine 9% r ar ¢
s 3V
0¢ 6 9 .
* Zrsine [a¢ T3 (s1n9v¢)]}
d S
33 _ 33 (o) ¢
2u (d ) = 2u ( )
r251n26 rzsinze
- 2u ( ] av;b Y.r_'. + coté V, - AS,)
rzsinze rsing 3¢ r r 0 ¢

combine to form equation (A.2.3c);



12 12 12 - 12
Ds = _ 9s L 2 Imy 1 3s al m2 2 lmy 2
Dt ot + (axr* rmis Vo o+ (axi * szs + I‘m2$ W
12
3s 1 m2 2 m
+ ( s s )v
ax m3 m3
12 '|2 12
9s 'l '|2 as 'I 11,.2
=8 4 (3 )v+( +(x)s s v
8 o) ;T 5% ;T
3512 1 . 2.2, 32 213
+(F—-xsinx)s +(sinx cosx“s’ )v
X
s s s s. v
= 9 (Zréy . >ro Sra d_(xéy _ _6.,7ra1_6
'at( ) + [ar( -t r]Vr+[ae(r) r+r]r
s .
@ ¢, ré s$ind re
¥ [53 () - %% Sep " cose T rs1ne ’

L (2K 4 Imgk2),

o (5721 4 sMgky L ($22gKT . 12.K2),
K1 k2
AN
1 22 22 11 321 13_22

S N ) Il - 2 (py )]
"2 Se =S¢/ L3g "3y (Mg
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b5, [ (rv,) - o ooty
Se¢ Lor \"Vo! ~ SThE 39 -

Bve_ 3
sr¢ sind E5$~ - 55 (sinev¢)],

ov av v
12 12y _2upl 1°r, "0 "6
ul(d"-2) = FE Gty - AS gl

-

combine to form equation (A.2.3d);
(6) 1=1,j-=3,

+ (953— - x]sinzxzs33 lT s+ cotx s]Z)v

ds re asrl Vg asr[
rsine =t ty

Ve gr oty Se¢)

+
1le_<

]
(sine

3s .
._WQ-Q.S' -'s
3¢ r 6

+.cot® sre)],

m3_k1 Tm_k3 _ 11 _33 23 11 12_33 33 N



v
¢ Sp r
2rsine { r [ (rv¢) s1ne 90 FT.

S ov
ré 8 _2
P g - (sinevy)]

S
- 2 [T” - L (rvp)d,

2u (d]3 - 1513) =

ov oV v
1 r o _ 9y _
rsine [2 (rsine 90 * or r ) - As

combine to form equation (A.2.3e); and for

(6) i=2,3=3

23 23 23
Ds™" _ 23S + (as

2 m3 2m)
= v
Dt ot ax

mls * I‘mlg‘

23
+ (35

X

23
9$
" ax3

:ﬁssms * Tpgs )V’

23 1 s23)v'|

+ (—2+ -]—1- s' + cotx 523)v
X

23
+ (§§§_ - sinxzcosxzs33 + lT S
X

X

21 22)v

+ cotx"s

r¢]
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9s oS, 9s v
1 09 89 , (8%, ‘s
arwl A T 55+ Sro) 7

oS v
+ (ﬁi" (s - S4) €080 + Sy sine) E?Ln'e'] ,

L (s s Mgy e 3¢, - 12683,
- 2B, 33622,
- ;3—17;‘; (g [t - -g-{(rven : s,icg? (rvy) - g%;e-;-:f”-l
+ Z?;: [%%g - %5-(sinev¢)],
and
2u (d23 - k523) = rZ:?ne E% (rélne :;e +'% 2;Q" cgte V¢)
- Ase¢]

combine to form equation (A.2.3f).

A.3 CHRISTOFFEL SYMBOLS AND PHYSICAL'COMPONENTS FOR A CYLINDRICAL

POLAR COORDINATE SYSTEM

For a cylindrical polar coordinate system r, 6,z as illus-

trated in Figure 2, the line element is given by

2 2

2 + dz".

ds2 =.dr” + rzde
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The covariant and contravariant components of.the metric tensor are
and

9]] =1, 922 = rz’ 933}= 1, ¢

ij = 0 (i#]),
g

-1, o2 33

= lg. ¢ =1, ¢' =0 (14);
r
and the non-zero CHRISTOFFEL symbols of the second kind are

1 2 2 1
Top=-"Tp=TyH =5

In terms of the corresponding covariant and contravariant
components, the physical components 6f velocity are

v =] Y2 _ 2
Ve TV RV, v =Sy

1 922, 222 _ _ 33
r G-I] g .Ge-Tr -Y‘O‘ .03‘033"0 »
o
12 _ 12
Trg =y =10

g
s Trz = 0]3 =013’ Tez = —3.3‘: 7‘0'23.
with similar relationships holding between the covariant, contravariant
tensor. Also

and physical components Sy Sgo Szf Spg? Spz* Soz of the stress deviation

o . ]
s9 =g 4 pgll, p=nlg o
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gives

Sp= Op * Py Sg =0t Py S, 0, TP

Sre ~ Tre? Srz T Trz® Sez T

with p = - %-(cr + o + cz).

The physical components of the symmetric strain rate tensor are

v v, v V.
=T ~1_8,r =2
dr T ar? de vr3 TT o dz 3z °
v oV vV ov vV
=11 r 6 "6 sl _z,_r
do =7 G5 * o 7 b, =7l Y )
oV oV
18,1z
doz = 2 (57 *v3 )

A.4 GOVERNING EQUATIONS IN CYLINDRICAL POLAR COORDINATES

The equations of motion (2.4.2) in terms of the physical com-

ponents of stress and velocity are

acr

e
3% T 5z — =0 (gt - F)s



oT 'To] oT Dv
6,176 8z , 2 - 8 _
s vet 5ty Tre - PoE - Fel

oT 3T 90 Dv
rz , 1 °°6z Z, rz _
vtz e Pleg - o)
where
2

vy Dy By e Wy Yy Vg
bt ot r ar r 9 Z.9z r °
Dv v v v, oV ov

6 __6, ra3 6_8 5
5t S5t troar MY tvome T Vzame
sz i avz .y avZ . XQ.EZE.+ , EXE
Dt ot r ar r 9 Yz 3z ?

p is the density and Fr’ Fe, FZ are the physical components of the body
force per-unit mass. For quasi-static problems in the absence of body
forces, the right hand sides of equations (A.4.1a,b,c) are zero and the
equations are called the equations of equilibrium.

The equation of continuity (2.4.3) in terms of the physical

components of velocity is

.13 13 3 =
3t T ¥ or (rov,) + ¥ 55 (pvg) + 33 (pv,) = 0.

Also if the elastic-perfectly plastic solid is incompressibles there is

the equation of incompressibility
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The VON-MISES yield cohdition (2.4.4) -is

2 2 2 2 2 2y _ 9,2
S, *t:5g ts, t2As g st Sgp. ) = 2K (A.4.2)

and the identity (2.4.5) 1is

Sy +.se' *s, = 0. (A.4.3)

The PRANDTL-REUSS constitutive equations (2.4.1a) in terms

of the components of stress deviation and velocity are

(a)

as 3s, V., 9s 3, S., OV
r r, 8 _r. r_re v 3
T A T (53 zsre) *V, 3z — L35~ - 57 (rvg)]
s v 3V
rz oor 3 otV
-+ b - (er)J 2u(mr— - A5 (A.4.4a)
(b)
9s 9s vV, 35 s
8 8, '8 e 5
FTA S T (g5 + 25p0) * V57
$ 3v av
LR R 8 L (e 1z
¥ r [39 T ar (I"Ve)] Sgz ( z r 56 )
1 aVe
2uly (g5 + vp) - Aspls (A.4.4b)
(c)
9s 9s V, 39S 3s 9V v v
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(d)

(e)

(f)

134

9S 9S ' v 9s
re ro 8 re -
52t Ve o T et Se - Se)
S =S v 3 oV v
r°e pe_r_ 8 _ 6z r__z
+—— g5 - 57 ()] - 5= (577 - 5

¥ sr;sz <§:” T 2ul 3:2 ¥ ;;ﬁ) ASppl s (R.4.4)
CE s SEERE
222 [35- %F (rvg)] ;e (2:r z:z)

id
s
2ke 9 1 *
v S v v
1 —r .6 8 2z
A= 2k2 [Sr or * r (ae + Vr) *S, %2
S oV v v oV
re r 9 r
(gt P g Ve) sy, et ez
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av 1 z
+ Sy (g * ?'ar)]

Details of.the derivation of the above PRANDTL-REUSS equations

are as follows. Proceeding as in SECTION A.2 above with x] =r, x2 =8

3

and x -z and

(1) 1=

f
-
-
Ca.
1]
—t
-

11 ]1 n
_ 1 1 2] 1 12, .2, 38 3
Dt - ot +ax1 v +( 2 + TppS” +.Tpps ") V +Tax v

9s os. . BSr 9s

Vv
= 0 _r. 8
=zt Ve st (ga - pe) TV

r
z9z °

Tm 11

mi k1., k]
-(s''g g )wkm - 279wy,

- Ve 2 Svz V. 3
- - 25,5 37 ot - &5 (g1 - 2 gt - B (),

ou(d!l - as'h) = zu(— - 2s,)

combine to form equation (A.4.4a);

(2) i=2,3=2,

22 22 22 22 22
2 1 9s 12 9S

——-|—+2I‘)v+(——2—+2r‘s)v+

X 21 ox 12 X

v3

3s 35, -
1 Be,, Ba, Ve P 3
‘?'[at tu am b (gt 2sp) YV




2 k2 ., .2m k2, 2m 22
- (s™qg + s<Mg )wkm=-2$ 9" Wap
av S v v
S22 e e B oz (o |10z
"2 [- 22 g - 57 ()t + 2 (g5 - v g s
v, V
22 .22, 2, 1% Yr_
2u(d®® - as ).‘;%(ra + =L - asp)
combine to form equation (A.4.4b);
(3) i=3,3=3,
Ds33 - 3533 + 3533 Vk
Dt ot axk
o6 9s vV, 0S 9s
-2 2, 0"z z
=5t FVedr Ty s o Vzize
m3_k3 3m_k3 _ m3 33
(s°g” +s g )“’km 2579 g
v oV oV vV
r z 8 17z
Sez (G570 tSez (o v W)
vV
33 33y _ 5 (2 _
2u(d AsTY) = 211(az >\sz)
combine to form equation (A.4.4c);
(4 i=1,3=2,
12 12 12
B = B G s V!
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s12 1 22 3512 3

1M
(——2—+ T9oS +I‘]Zs )v +;;3—v

3Sre LSS Sp ~Sg )
z oz ’

i 1_(35re ey o, Yo Bre
r por * 88

m2 k1 Tm_k2 _ m2_11 Im_22
- (s7°g0 +sTg wp, = - (sg Wy +5 9wy

1 sr-se avr 3 sez 3vr avz
=[5 g - 57 ()t + 5~ (57 )

T

+SY'Z( e"lr' Z)]’

BV av
R L
combine to form equation (A.4.4d);
(6) 1i=1,3=23

01 _as13, 13513, (3513

bt~ ot 3% X

13
1 232,85 ° 3

+T
2 22 8%

as BS as

vz Ly, rz

3t P ar ( a - Sgz) t 37 Ve

_ (Sm3gk1 + s1mgk3)wk 23 11 33 1 12 33

m- S 9 W59 W3- S g gy - S0 Uy
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v v
2u(d’® - As13) "Zu[%'('a';z"" a—z'r') - As,.,]

combine to form (A.4.4e); and for
(6) 1=2,3=3

Ds:3 . 3%23 +,(§§$i ¢ 12, 4 @2, 2,58) |2
X 3x
. g%;f,+ (§i$3.+ 258! + (:i RN :izs 3
(s m3 k2 | 9k3)‘°km - sm3922 g 52m933w3m

.. 513922m ) - 3¢, - g, - 2283,

s v,

1 ¢orz 9 Svo v,
v - e v o)

$,-S., oV
9 “2 0 'I Ve
3 (az BT )1,

ov
(e - s = 2l (8 128 s

96 ez)

combine to form equation (A.4.4f).




APPENDIX B

CHARACTERISTIC STUDY FOR PLANE STRAIN FLOW OF AN
INCOMPRESSIBLE ELASTIC-PERFECTLY PLASTIC MISES SOLID

In this appendix, a supplementary study of the characteristics
of the governing eqhationsvfor sfeady state, quasi-static plane plastic
flow of an incompressible elastic-perfectly plastic MISES solid is given
using rectangular CARTESIAN coordinates (x,y,z). The procedure is dif-
ferent from that used in CHAPTER VI, SECTION 6:1 and alternate forms for-
the compatibility relationships are derived. .

B.1 GOVERNING EQUATIONS IN RECTANGULAR CARTESIAN COORDINATES

For plane strain flow independent of z and parallel to the (x,y)-

plane

Since dz =0,s,6 =.0and a, is equal to the hydrostatic pressure -p.

z
Consequently,

s, =~ S (B.1.1)

where k is the yield stress in pure shear. s , Sy and Syy are stress
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deviation components.

The governing equations used with appropriate boundary con-

ditions to determine Sy» S -.p and the velocity components Vy and v

xy® y

are the PRANDTL-REUSS equation .

9s ov 2 ov
k X X 2 2 X k X
ﬁ"(vx % T Yy 3y - (2" - S ) 3% - (ﬁ_ - 5y) Sxy By
2 ov ov
k- Y _ g2 ¥Y_g.
+ (u +s,) Sgy T - Sx 531--.0 ; (B.1.3§)
the equations of equilibrium
9s 9s :
X XY _3p_
T 5y 3y 0, (B.1.3b)
as as
X XY L3P .
55" o tay - 0 (B.7.3c)
the equation of incompressibility
v ov
X4+ Y=
T 5y 0; (B.1.3d)

and the VON MISES yield criterion.(B.1.2). Equation (B.1.3a) is obtained
~from equation (2.4.1a) by putting i = j = 1 and X] T Xy Xy = Y, X3 =2
and noting that rectangular CARTESIAN tensor components are physical
components.

The yield criterion (B.1.2) is satisfied identically on defining

s, = - k sin 2¢ (B.1.4a)
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and

Sy z k cos 2¢ (B.1.4b)
where ¢ +\%- is the angle between the direction of the algebraically
greater principal stress in the (x,y) - plane and the positive x-axis.
Substitution of equations (B.1.4a,b) into equations (B.1.3a,b,c) together
with use of equation (B.1.3d) yields respectively

av
ki 3 3¢ X
2 T (vx T vy ay) + 2 cos 2¢ 37
v v
k Xk Y=
+ (u + sin 2¢) %y (u sin 2¢) 5% 0, (B.1.5a,b,c)

3 3 , 3P
cos - 2¢ T + sin 2¢ 5y + X 0,

and

.a_P=0

sin 2¢ %%-- cos - 2¢ %% + 3y s

where P = %F . Considering only the case where 0 < %~< 1 and defining

=|x

= sin 2y, equation (B.1.5a) can be written as

v
3 4y 3% 4 2 cos 2 525

2 sin 2y (vx 5% T Vy 3y

(B.1.6)
v v

+ (sin 2y + sin 2¢) 5§£ - (sin 2y - sin 2¢) 511 =.0.

The four governing equations used to determine the unknowns ¢, P, Vy and
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v, are equations (B.1.6), (B.1.5b,c) and (B.1.3d). For the determination
- of any existing characteristics these governing equations are supplemented

with the relations

oP

3P =

de+§ydy-dP,

%}dxar-g%dywcp,

(8.1.7a,b,c,d)
oV . .QV.
X X _

a—x—dX"'W—dy—de,

oV v
A A =

T dx + 5y dy dvy.

B.2 DETERMINATION OF CHARACTERISTICS AND COMPATIBILITY RELATIONSHIPS

Let T be any member of the family of curves in the (x,y) - plane

governed by the differential equation

%‘% = tan £, ¢ = g(xy),

where dx =.cos ¢ ds, dy = sin £ ds and ds is the elemental arclength

along I'. Along TI' it follows that

%% = - cos(2¢ - Z) %%-- sin(2¢ - z) %%- (B.2.1)

with use of equations (B.1.5b,c) and (B.1.7a) and that

ds . 2, gine
ds = Cos T+ sing 3o (B.2.2)
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with the use of equation (B.1.7b). From equations (B.2.1) and (B.2.2),

¢ _ 1 do- dP
5 = sty Lsin(2-0) v sing Sy
(B.2;3a.b)
%3 = ;ﬁ,—;'((b—_—a- [- cos(2¢-z) %% - Cos L g':j] s
and hence from equations (B.1.5b,c),
P _ 1 do, dp
o Ty [stn ¢ g+ sin(2e-2) &
(B.2.4a,b)

= m [' cos Cg% - Cos (2¢-C) 'cai%]'

o
g ]

It follows from equations (B.2.3a,b) and (B.2.4a,b) that 3 3¢ 2P

ox® 9y’ ox
and -g% are not determinate when ¢ = ¢ and £ = ¢ +.-’2'-41'f
dP +.d¢ = 0 whenzg = ¢
and (B.2.5a,b)
dP - d¢p = 0 whenc=¢+%.

Hence the characteristics of the stress field are defined by

dy _ .-
ny' = tan ¢
and (B.2.6a,b)

%=-cot ¢.

Curves defined by equation (B.2.6a) are called a-lines and those defined
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by equation (B.2:6b) are'called g-lines.and the compatibility relation-.
ships are given by equation (B.2.5a) and equation (B.2.5b) for the a-
and B-lines respectively. For the Timiting case of a rigid-plastic
solid, the characteristics and compatibility relationships, which are
known as the HENCKY equations, are the same as those above.

For any other case, it follows from equation (B.1.6) with

use of equations (B.1.7c,d) that

== [sin(2z-2¢) - sin 2y] + sin 2z sin 2y [v, 5$-+ vy §$J
(B.2.7)
dv dv

+ 2 cos ¢ [sin 2y + sin 2¢] - 2 sing[sin 2y - sin 2¢] =.0.
H__

aVy
If 5 X is determined, then by equations (B.1.7¢,d) and (B.1.3d), so are
Bvx ov v
the part1a1 derivatives , ==& and =¥ . In equation (B.2.7) it is
8y W ey v, av
- ‘ - a x x 2y
seenathat whenc=¢+yorg=¢-y+x 2 » 5% (and hence 5= 3. ° X
and % ) is not determinate if :

dv
sin 2z sin 2y [v 3,y —Q] + cosc[sm 2y + sin 2¢] H_

x 3x Yy dy

dv (8.2.8)
- sin ¢ [sin 2y - sin 2¢] =% = = 0.

Consequently, the characteristics of .the velocity field are defined by

‘-},%= tan (¢ + v)

and (B.2.9a,b)

g-,%= - cot (¢ - v).
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Curves defined by equation (B.2.9a) are called a,-lines and those de-.

fined by equation (B.2.9b) are called ,-1ines. Also, since y # 0,
substitution of equations (B.2.3a,b) into equation (B.2.8) is permissible

and the result is
sin2zsin2 d dP
§13§%$:gf! [{v, sin(2-g) - v, cos(2¢~z)} a%-+ {v, sing-v, cos} e
dvx . dv
+ cosg[sin2y+sing] T sing[sin2y-sin2¢] a§¥-= 0. (B.2.10)

For an a1-11ne, z = ¢ + v and equation (B.2.10) reduces after simplification

to

%; [v, cos (¢-v) + v, sin (¢=v)]

+ [v. cos (¢+y) - v, sin (¢+Y)]-%§-= 0. (B.2.11)

Y
On defining
U= v, cos (¢p=y) + vy sin (¢-v)
and (B.2.12a,b)
V= v, cos (o+y) - v, sin (¢+y),
equation (B.2.11) becomes
du dP _
a-g‘i'Va?-O

or equivalently »
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dU + 3 dp = 0, © (B.2.13)

the -compatibility relation along.an aT-ljne._ Similarly -for a B]-Iine,
for which g = ¢ - vy + %f, equation (B:2:10) reduces to

%g"[vy cos(¢ty) - v, sin (¢+y)].
+ [v, cos(¢-y) +.v, sin(¢-y)] -0
% | +.vy sl 3 =0
With use of equations (B.2.12a,b), this equation is -written simply as

dv dP _
a—s-+Ua's—-0

or equivalently
dv + g dp =0, (B.2.14)

the compatibility relation along a 31f11ne.

Equations (B.2.13) and (B.2.14) are alternate forms of the
compatibility ;elations-along an a]-line and a 81f11ne derived in CHAPTER
VI, SECTION 6.1. From equations -(B.2.12a,b), it is observed that Vv is
the component of the velocity perpendicular to the a]-line aﬁd U is the
component .of velocity perpendicular to the 31-11ne. If, however, the
velocity is resolved into two components u and v where u is the component

along the alfline and v the component along. the B]-line. then-
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[ ==
n

u cos 2y

and

-<
n

v cos 2y.

Use of these relations in equations (B.2.13) and (B.2.14) yield re-
spectively

du + v gE-= 0 along an a1-11ne
and

dv + u %E-= 0 along a B]-line ,

thus recovering the form of the compatibility relations along the velocity

characteristics derived originally in CHAPTER VI.
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