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Abstract

This thesis considers proportional reinsurance that insurance companies might employ in

order to reduce risks and limit the impact of large claims. An insurance company is a typical

example of a financial corporation, which can choose a production policy from an available set

of control policies with different expected profit and risks. In this setting, this thesis considers

two main cases depending whether the company pays dividends to the shareholders or not. For

both cases, the main aim lies in measuring the impact of the liability and/or the random horizon.

The liability payments could reflect the mortgage on the company’s property or the amortization

bond, while the random horizon could model the default of a firm or the death time of an agent.

When the company pays dividends, its objective consists of maximizing the expected aggregate

discounted dividend distributions. However, when there is no dividend payments, the objective

resides in maximizing the expected total discounted cash reserve up to the bankruptcy time or

the random horizon (whoever comes first). Thanks to the Bellman’s principal, the control prob-

lems in all cases are reduced to Hamilton-Jacobi-Bellman equations. Smooth solutions to these

equations, which take various forms depending on the interactions between the parameters of the

corporation’s model and the random horizon, are explicitly derived. Furthermore, the optimal

policies for each control problem are explicitly derived.
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Chapter 1

Introduction

Insurance is a natural human response to the uncertainty that dominates our future, and when

it comes to business, not taking uncertainty in consideration can lead to severe losses. This kind

of protection is represented as a contract also known as policy that is written by an insurance

provider to a company or the beneficial of this policy. The insured promise to pay periodical

fixed amount of payment called premiums in return for the insurer to pay an agreed upon sum of

money in case there was a claim by the insured. This kind of transaction, along with identifying,

assessing and hedging risks is part of the risk management responsibilities in a firm. Thus, an

insurance company can be seen as a typical example of a financial corporation in the problem of

optimal risk control/dividend distribution. In order to face large claims or catastrophic events, in-

surance companies employ reinsurance, as a major risk-management tool that permits insurance

companies to be protected against adverse fluctuations.
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Introduction

1.1 Reinsurance models

As insurance companies might get exposed to cover claims that are too large to be handled,

they find the urge to lower this risk by distributing it to other insurance companies, in return for

sharing the premium paid (profits). This process is called reinsurance. To elaborate on how this

process works, through a broker, the company that wishes to purchase reinsurance, called the

cedent and one or more other insurance companies (the reinsurers) enter a contract agreement

that states the details of the transaction. This tool of risk hedging do not just increases the value

of the cedent and contributes for it to remain solvent, but also increases its ability to withstand the

financial burden in case unusual or catastrophic events occur. In general, the reinsurance process

is considered as an important risk-management tool in the insurance world. Thus, naturally, one

can ask why reinsurance is so important for insurance companies? It is important, because it

allows them to perform the following protective tasks.

• Hedging adverse fluctuation that may incur in the course of business.

• Dealing with the appearance of excessively large claims such as catastrophic risks, or an

unusually large number of claims. The most dangerous risk comes from the large claims

and also a large number of claims can lead to a disastrous situation.

• Increase the capacity of the company by offering more services to its clients.

• Deal with financial distress due to unexpected changes in premium collection or profit.

Reinsurance can be classified into two major cases, proportion reinsurance and non-proportional

reinsurance. In proportional reinsurance the sharing of risk between the ceding company and the

reinsurer is determined at issue (i.e. a coverage against a fixed percentage of losses). However,

2



Introduction

in a non-proportional reinsurance scheme –such as excess-of-loss reinsurance– the sharing of the

risk between the cedent and the reinsurer is done in a more sophisticated manner. To specify

more this classification, we go back to the first mathematical model for cash reserve with and

without reassurance, that was developed by Cramer-Lundberg. This model, when there is no risk

sharing is given by

R(t) = R(0)+ pt −
Nt

∑
i=1

Ui.

Here R(0) is the initial cash reserve, p is the premium rate, while Ui is the size of the ith claim

and N is the Poisson process that counts the claims happening. This model assumes that the

company takes full risk. However, when the company considers reinsurance it bares the risk that

is associated with the claim, and we denote that by U (a) where a is the retention level (i.e. the net

amount of liability that results from an insurance claim or claims which is retained by a ceding

company after reinsuring the balance amount of the liability) and the risk proportion that is left

U −U (a) is diverted to the reinsurer. Thus, the model after reinsurance takes the following form

R(a)(t) = R(0)+ p(a)t −
Nt

∑
i=1

U
(a)
i .

For more details about the Cramer-Lundberg model we refer the reader to D. Dickson [9],

Grandall [14], and A. Melnikov [23].

From this model, one can clearly define the proportional reinsurance (pro rata), as the case

where U
(a)
i = aUi for a∈ [0,1]. As its name suggests, under this type of coverage, an agreed upon

percentage of the premiums and losses will be shared with the reinsurance company or compa-

nies. In other words, by a contractual agreement, the cedent pays a% of the claim and receives

the same percentage of the premium and the reinsurance company would have the obligation for

the rest of (1 - a)% of claim size and receives the same percentage of the premium.
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Excess-of-loss reinsurance is an example of non proportional reinsurance , that consists of di-

verting losses excess of the ”retention” level a to the re-insurer, while the cedent will cover losses

up to this retention level. Mathematically, this boils down to U
(a)
i = min(a,Ui), for a retention

level a ∈ (0,+∞).

It is well known nowadays that the Cramer-Lundberg model do not really captures the activ-

ities of the insurance company very well, since a claim’s size is more likely to be insignificant

compared to the reserve amount. Furthermore, as we scale the time to a continuous time the

reserve process will become a stochastic process with drift and diffusion coefficients. Thus, the

resulting diffusion models are more adequate for the case of big portfolios. For more details

about these models, we refer the reader to [10, 12, 13], [14], [18], [19], [24], [28], [29]. In this

thesis, we consider these diffusion models following the footsteps of [1, 6, 15, 17].

1.2 Dividend models

Dividend distribution form a very important business activity in any company that has share-

holder looking forward to realize their investment in terms of profit and since dividend is the

only form of income received by the shareholders of a company, it is the firm’s responsibility

to account for optimal distribution of dividends as part of their financial activities. Dividends

are paid from the liquid reserve of the company, therefore, the optimal distribution of dividend

heavily depends on the level of the reserve corresponding to certain thresholds. When modeling

for the optimal dividend distribution for a company, it is mainly about finding the policy that
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maximizes the expected cumulative discounted dividend payouts up to the time of bankruptcy.

During the last two decades there was a great interest in diffusion models for optimal divi-

dend optimization and/or risk control techniques (see Jeanblanc Piqué and Shiryaev [20], As-

mussen and Taksar [1], Radner and Shepp [27], Boyle, Elliott, and Yang [4], Højgaard and Tak-

sar [15], [17], [16], Paulsen and Gjessing [25], and Taksar and Zhou [31], Choulli, Taksar and

Zhou [6], [7], [8]. In those models the liquid assets of the company are modeled by a Brownian

motion with constant drift and diffusion coefficients. The drift term corresponds to the expected

profit per unit time, while the diffusion term is considered as risk. The larger the diffusion co-

efficient the greater the business risk the company takes on. If the company wants to decrease

the risk from its business activities, it also faces a decrease in its profit. In other words, different

business activities in this model correspond to changing simultaneously the drift and the diffu-

sion coefficients of the underlying process.

In this setting, we consider the model developed by B. Højgaard and M. Taksar [15] and [17] , to

which we add the random horizon and suppose that the company is facing a liability payments

at a constant rate δ . This extends those existing models, and measures the impact of random

horizon and its interplay with the liability.

1.3 Summary

This thesis has five Chapters including the introductory chapter. Chapter 2 (the next chapter)

reviews the most important mathematical and statistical concepts that will be used throughout

the thesis. Furthermore, it recalls some important results from the mathematical and statistical

literature that plays crucial roles in the analysis of this thesis.
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Chapter 3 is the first contribution of this thesis, and considers the model of the reserve process

for a proportional reinsurance ( the case of corporation model without dividend payouts). The

main features of this model of reinsurance –in this thesis– consists of allowing the insurance

company top pay liability at a constant rate δ , and being subject to a random horizon τ . This

extends the results of B. Højgaard and M. Taksar (see [15]) to this interesting setting, and leads

to challenging mathematical questions that are solved explicitly. In fact, the objective of the

company in this case is to maximize the expected discounted total reserve up to the bankruptcy

time or the random horizon, whoever comes first. This control problem, that depends on a risk

control component which allows risk management at the company to assess the risk according

to different levels of reserve, is transformed into solving the Hamilton-Jacobi-Bellman (HJB

hereafter) equation. This equation is solved explicitly, and its solution depends on the interplay

between the parameters of the cash reserve, the random horizon and the liability rate δ .

Chapter 4 is the second contribution of this thesis, and continues in the same spirit of Chapter

3 by considering the same model with random horizon, but without liability rate while adding

constraints on risk control instead. Here again, the control problem with random horizon and

constraints on risk is transformed into the HJB equation.This equation is solved explicitly and

takes various forms depending on the interplay between all the parameters of the model.

In Chapter 5, we investigate the dividend distribution model, considered in B. Højgaard and

M. Taksar [17], when the company faces liability payment are a constant rate δ and is subject

to a random horizon. Similarly as in the previous chapters, the control problem is reduced to

constructing the solution to an HJB equation. This equation is solved explicitly and the optimal

policies are determined as well. This chapter not only extends B. Højgaard and M. Taksar [17]

to this complex setting of random horizon and liability, but also presents a different approach

compared to those papers.
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Chapter 2

Mathematical Preliminaries

In this chapter we introduce the mathematical concepts and tools that will be used in the

following chapters. Most of these definitions and theorems are used in many stochastic calculus

books, see for instance A. Melnikov [23], R. Korn and E. Korn [22] and J. Michael Steele [30].

2.1 Stochastic basis

Our financial model is based on the probability space

(Ω,F ,P).

Here Ω represents all of the possible outcomes ω , also called the sample space. Let F be a σ -

algebra on Ω. (The elements of F are called events). In addition, we use a probability measure,

that is, a (finite) measure P on (Ω,F ) satisfying P(Ω) = 1.

7
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2.2 Filtration and stopping time

To model the evolution of the financial information over time, we introduce the following

Definition 2.2.1. A filtration (Ft)t≥0 of (Ω,F ) is a family of sub-σ -algebras of F satisfying

Fs ⊆ Ft , for any t ≥ s ≥ 0.

In the probabilistic literature, the quadruplet

(Ω,F ,(Ft)t≥0,P) (2.1)

is called a filtered probability space. Anther important probability tool we might use later in the

thesis is the stopping time. Since our model is a stochastic model, then the time we use here is

stochastic as well.

Definition 2.2.2. Consider the filtered probability space given in (2.1), and let T⊂ R+.

1) A random variable τ : Ω → T∪{+∞} is called a random time.

2) A random time is said to be a stopping time with respect to the filtration (Ft)t≥0 if

{τ ≤ t}= {ω ∈ Ω : τ(ω)≤ t} ∈ Ft for every t ∈ T.

Stochastic processes are families of random variables indexed by time. The following are

some important definitions that we need to introduce.

Definition 2.2.3. 1) Suppose Ft∈T is a filtration of the measurable space (Ω,F ), and that X is

a process defined on (Ω,L ). Then X is said to be adapted to Ft∈T if Xt is Ft-measurable for

each t ∈ T.

2) A real-valued stochastic process {Xt}t∈T is said to be a super-martingale with respect to the

8
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filtration (Ft)t∈T if

a) each Xt is Ft-measurable, i.e. (Xt)t∈T is adapted to (Ft)t∈T,

b) E[|Xt |]<+∞, for all t ∈ T, and

c) Xt ≥ E[Xs|Ft ] almost surely for s ≥ t.

If ”≥” in property (3) is replaced by ”≤”, then X is said to be a sub-martingale. If the process

X is both a sub-martingale and a super-martingale, then it is called a martingale.

3) Let (Xt)t≥0 be a stochastic process. This stochastic process is called measurable if the mapping

[0,∞)×Ω −→ R

(s,ω) 7→ Xs(ω)

is B([0,∞))
⊗

F −B(R)-measurable.

4) Let {Xt} be a stochastic process. This stochastic process will be called progressively measur-

able if for all t ≥ 0 the mapping

[0, t]×Ω −→ R

(s,ω) 7→ Xs(ω)

is B([0, t])
⊗

Gt −B(R)-measurable, where Gt ⊆ F .

2.2.1 Brownian motion and Itô’s formula

We start this subsection with introducing a popular example of martingales that is the Brow-

nian motion.

Definition 2.2.4. A continuous-time stochastic process {Wt : 0 ≤ t < T} is called a Standard

Brownian Motion on [0,T ) if it has the following four properties:

9
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1) W0 = 0.

2) The increments of Wt are independent, i.e., for any finite set of times 0 ≤ t1 < t2 < ... < tn < T

the random variables Wt2 −Wt1 , Wt3 −Wt2 , ... Wtn −Wtn−1
, are independent.

3) For any 0 ≤ s ≤ t < T the increment Wt −Ws, has the Gaussian distribution with mean 0 and

variance t − s.

4) For all ω in a set of probability one, Wt(ω) is a continuous function of t.

A stochastic process {Xt} is called an Itô’s process if for all t ≥ 0 it admits the following

representation

Xt = X0 +
∫ t

0
Ksds+

∫ t

0
HsdWs,

where X0 is F0-measurable and {Kt} and {Ht} are progressively measurable processes with

∫ t

0
|Ks|ds <+∞,

∫ t

0
H2

s <+∞ P−a.s.

Theorem 2.2.1. Let Wt be a one dimensional Brownian motion, and Xt a real-valued Itô process

with

Xt = X0 +
∫ t

0
Ksds+

∫ t

0
HsdWs.

Let f : R→ R be twice continuously differentiable. Then , for all t ≥ 0 we have

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)d〈X〉s

= f (X0)+
∫ t

0

[
f ′(Xs)Ks +

1

2
f ′′(Xs)H

2
s

]
ds+

∫ t

0
f ′(Xs)HsdWs P−a.s.

2.3 Stochastic differential equations

The equation

dXt = µ(t,Xt)dt +σ(t,Xt)dWt , t ≥ 0, with X0 = x,

10
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is called a stochastic differential equation, where X = (Xt)t≥0 is a stochastic process. In this

thesis, we will encounter a reflecting SDE that we recall its definition below.

Definition 2.3.1. A pair of continuous Ft-adapted processes ((Rt ,Ct); t ≥ 0) is a solution of the

SDE

dRt = µ(t,Rt)dt +σ(t,Rt)dWt +dCt , t ≥ 0, (2.2)

with reflection at 0 and initial condition R0 = x if

1) Rt ≥ 0, t ≥ 0.

2) C is non-decreasing, C0 = 0.

3)
∫ t

0 1{Rs>0}dCs = 0, t ≥ 0.

The following theorems, that we borrow fro the literature, give sufficient conditions for the

SDE to admit a solution.

Theorem 2.3.1. Consider the stochastic differential equation

dXt = µ(t,Xt)dt +σ(t,Xt)dBt X0 = x0, 0 ≤ t ≤ T. (2.3)

If the following space-variable Lipschitz condition

|µ(t,x)−µ(t,y)|2 + |σ(t,x)−σ(t,y)|2 ≤ K|x− y|2

and the spatial growth condition

|µ(t,x)|2 + |σ(t,x)|2 ≤ K(1+ |x|2),

then there exists a continuous adapted solution Xt for (2.3) satisfying

sup
0≤t≤T

E[X2
t ]<+∞.

11
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Moreover, if Xt and Yt are both continuous satisfying the above L2-boundedness condition and

are solutions to (2.3), then

P(Xt = Yt for all t ∈ [0,T ]) = 1.

For the proof and more details about this existence and uniqueness result, we refer the reader

to Theorem 9.1 in [30].

Theorem 2.3.2. Let R0 be a non-negative F0-measurable random variable. Assume that the

measurable functions µ = µ(t,x), σ = σ(t,x) satisfy the

1) Lipschitz condition in x, uniformly in time:

∃K > 0 ∀t ≥ 0 ∀x1,x2 ∈ R+ : |µ(t,x1)−µ(t,x2)|+ |σ(t,x1)−σ(t,x2)| ≤ K|x1 − x2|,

2) and the linear growth condition in x, uniformly in time:

∃K > 0 ∀t ≥ 0 ∀x ∈ R+ : |µ(t,x)|+ |σ(t,x)| ≤ K(1+ |x|).

Then there exists a unique solution to the reflecting SDE (2.2).

We refer the reader to [26] for more details about this result and related topics.

12



Chapter 3

Impact of liability and random horizon

This chapter considers the case of a proportional reinsurance, where the insurance company

(cedent) faces liability payments at a constant rate δ and is subject to a random horizon. This

model extends the model discussed in [15], see also the references therein for related discussion

on the model.

This chapter is divided into four sections. The first section introduces the model (mathematically

and economically), as well as the objectives that are presented in terms of a control problem.

Afterwards, it performs some preliminary analysis for this model. The second section discusses

the solution to a Hamilton-Jacobi-Bellman (HJB) associated to the main control problem. The

third section states the optimal policies for the main control problem, and the last section presents

some graphical illustration of the results.

13



Reinsurance with debt

3.1 The mathematical model and its preliminary analysis

This section introduces the mathematical and economical model, defines our main objective,

and presents our first analysis of the model afterwards.

3.1.1 The mathematical model and our objective

We first begin by introducing the model. Consider a firm with reserve Rt at any time t where

Rt = (Rt)t≥0 is a stochastic process that is a solution to the following stochastic differential

equation:

dRt = (µ −δ )dt +σdWt , t ≥ 0, R0 = x. (3.1)

For a risk exposure aπ
t , at time t, and control policy π = (aπ

t , t ≥ 0), our reserve equation be-

comes:

dRπ
t = (aπ

t µ −δ )dt +σdWt , Rπ
0 = x, (3.2)

and the bankruptcy time is given by

τπ = inf
{

t ≥ 0 : Rπ
t = 0

}
.

Here, by convention, we put inf( /0) = +∞.

The model for random horizon. Throughout this chapter, τ is a random time that is independent

of the reserve process R=(Rt , t ≥ 0) (or equivalently F∞ =σ(Wt , t ≥ 0)), and has an exponential

distribution with mean λ−1, i.e., E[τ] = λ−1. Thus, the survival probability for this random time

is given by

Gt := P(τ ≥ t|Ft) = exp(−λ t), t ≥ 0. (3.3)

14
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We define the return function of an initial reserve x under a control policy π as the total

discounted cash reserve from time 0 to the default (random horizon) time τ or the bankruptcy

time τπ (whichever comes first).

The objectives. Our objectives consist of finding the optimal return function V , defined below,

and describing the optimal policy π∗ ∈ A such that

V (x) := sup
π∈A

E

[∫ τπ∧τ

0
e−γtRπ

t dt

]
= E

[∫ τ∧τπ∗

0
e−γtRπ∗

t dt

]
. (3.4)

where A denotes the set of all admissible control policies.

3.1.2 Properties of the optimal return function V

Proposition 3.1.1. The following assertions hold.

(a) The function V , defined in (3.4), is concave and satisfies

V (x) = sup
π∈A (x)

E

[∫ τπ

0
e−(γ+λ )tRπ

t dt

]
.

(b) The optimal value function V , defined in (3.4), satisfies

x

γ +λ
≤V (x)≤ x

(γ +λ )
+

|µ −δ |
(γ +λ )2

, ∀x ≥ 0. (3.5)

Proof. This proof has two parts where we prove assertions (a) and (b) respectively.

Part 1. The equality in assertion (a) comes from the fact that

E

[∫ τπ∧τ

0
e−γtRπ

t dt

]
= E

[∫ τπ

0
e−γtGtR

π
t dt

]
= E

[∫ τπ

0
e−(γ+λ )tRπ

t dt

]
,

see (3.3). The remaining of the proof proves concavity. Put Vπ(x) := E

[
∫ τπ

0 e−(γ+λ )tRπ
t dt

]
. Let

x1 and x2 two positive initial reserves and η ∈ (0,1). For any positive number ε there exist

15
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π1 = (aπ1(t), t ≥ 0) ∈ A (x1) and π2 = (aπ2(t), t ≥ 0) ∈ A (x2) such that

V (x1)− ε ≤Vπ1
(x1) and V (x2)− ε ≤Vπ2

(x2). (3.6)

Consider the policy πη = (aπη (t), t ≥ 0) given by

aπη (t) := ηaπ1
(t)+(1−η)aπ2

(t).

Then the reserve process for πη is given by

R
πη
t = ηR

π1
t +(1−η)Rπ2

t , t ≥ 0, (3.7)

whose bankruptcy time is given by

τπη = max(τπ1 , τπ2).

Thanks to (3.6) and (3.7), we derive

ηV (x1)+(1−η)V (x2)− ε ≤ ηVπ1
(x1)+(1−η)Vπ2

(x2) =Vπη (ηx1 +(1−η)x2)

≤ sup
π∈A (x)

Vπη (ηx1 +(1−η)x2) =V (ηx1 +(1−η)x2).

Since both sides, right and left, don’t depend on ε , we let ε go to zero and get concavity of V .

Part 2. Due Rπ
τπ

= 0 on {τπ ≤ t}, it is clear that Rπ
t 1{t≤τπ} = Rπ

t∧τπ
. Hence, on the one hand, we

derive

E

[∫ τπ

0
e−(γ+λ )tRπ

t dt

]
= E

[∫ +∞

0
e−(γ+λ )tRπ

t 1{t≤τπ}dt

]
=

∫ +∞

0
e−(γ+λ )t

E

[
Rπ

t∧τπ

]
dt. (3.8)

On the other hand, remark that

x ≤ E

[
Rπ

t∧τπ

]
= x+E

[∫ t∧τπ

0
(aπ

u µ −δ )du

]
+E

[
σ

∫ t∧τπ

0
aπ

u dWu

]

= x+E

∫ t∧τπ

0
(aπ

u µ −δ )du ≤ x+ |µ −δ |t.
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Thus, by inserting this inequality in (3.8), and using

∫ +∞

0
te−(γ+λ )tdt =

1

(γ +λ )2
and

∫ +∞

0
e−(γ+λ )tdt =

1

γ +λ
,

we get

x

(γ +λ )
≤V (x)≤ x

γ +λ
+

|µ −δ |
(γ +λ )2

, ∀x ≥ 0.

This proves assertion (b) and ends the proof of the proposition.

For the case when the liability rate is large enough, i.e. δ ≥ µ , the solution to the HJB (3.9)

takes the following form.

Lemma 3.1.1. If δ ≥ µ , then the optimal return function V -defined by (3.4)- is given by

V (x) =
x

γ +λ
∀x ≥ 0.

Proof. Due to δ ≥ µ , for any π ∈ A ,

E

[∫ τπ∧τ

0
e−γtRπ

t dt

]
= E

[∫ +∞

0
e−(γ+λ )tRπ

t∧τπ
dt

]
.

However,

E

[
Rπ

t∧τπ

]
≤ x+E

[∫ τπ∧t

0
(aπ

t µ −δ )ds

]
+E

[∫ τπ∧t

0
aπ

t σdWs

]
≤ x,

and hence, we get for any π ∈ A

E

[∫ τπ∧τ

0
e−γtRπ

t dt

]
= E

[∫ +∞

0
e−(γ+λ )tRπ

t∧τπ
dt

]
≤

∫ +∞

0
e−(γ+λ )txdt =

x

γ +λ
.

By combining this with the left hand side of (3.5), the lemma follows.
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Proposition 3.1.2. Suppose that V , defined in (3.4), is twice continuously differentiable on

(0,+∞). Then V satisfies the following HJB equation

max
0≤a≤1

(
1

2
a2σ2V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)+ x

)
= 0, V (0) = 0. (3.9)

Proof. Thanks to Proposition 3.1.1, the return function defined in (3.4) can be transformed to a

function similar to that of B. Højgaard and M. Taksar [15] with the only difference is the increase

of the discount factor by an amount of λ . Therefore, V satisfies (3.9) and the proof can be obtain

from [15].

3.2 Construction of the smooth solution to the HJB (3.9)

The aim of this section resides in constructing the solution to this HJB equation (3.9). This

construction depends heavily on the relationship between the parameters of the model. Through-

out this section, we define the following operator, for any a ∈ R,

L
aV (x) :=

1

2
a2σ2V ′′(x)+(aµ −δ )V ′(x)− cV (x)+ x; c := γ +λ . (3.10)

Besides this operator, the maximizer function a(x), that is defined and given by

a(x) := argmax
a∈R

L
aV (x) =− µV ′(x)

σ2V ′′(x)
≥ 0, (3.11)

plays a central role in our forthcoming analysis. Thus, we start by deriving some of its properties

in the following.

Proposition 3.2.1. Suppose that δ < µ . Then the following assertions hold.

(a) a(x)≥ 2δ
µ for all x ≥ 0.

18
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(b) If 2δ
µ ≥ 1, then a(0) = µ

2(µ−δ ) (we always have
µ

2(µ−δ ) ≥
2δ
µ ).

(c) If 2δ
µ < 1, then a(0) = 2δ

µ .

Proof. Put for any x ≥ 0,

ã := ã(x) := arg max
0≤a≤1

L
aV (x)

Therefore, we get (
ã2σ2

2
V ′′(x)+(ãµ −δ )V ′(x)− cV (x)+ x

)
= 0.

The latter is equivalent to

σ2

2
V ′′(x)

(
ã2 +(ãµ −δ )

2V ′(x)
σ2V ′′(x)

− 2
(
cV (x)− x

)

σ2V ′′(x)

)
= 0.

By inserting (3.11) into the latter equation we get

σ2

2
V ′′(x)

(
ã2 −2(ãµ −δ )

a(x)

µ
− 2

(
cV (x)− x

)

σ2V ′′(x)

)
= 0.

However, we know that by the definition of V , V ′′(x)< 0, thus

(
ã2 −2(ãµ −δ )

a(x)

µ
− 2

(
cV (x)− x

)

σ2V ′′(x)

)
= 0.

Or more conveniently,

(
ã(x)−a(x)

)2

−a(x)

(
a(x)− 2δ

µ

)
=

2
(
cV (x)− x

)

σ2V ′′(x)
.

This equation implies that a(x) ≥ 2δ
µ for all x ≥ 0, and assertion (a) is proved. If a(x) ≤ 1, then

ã(x) = a(x) and

a(x)

(
a(x)− 2δ

µ

)
=−2

(
cV (x)− x

)

σ2V ′′(x)
.

Then either a(0) = 0 or a(0) = 2δ
µ , since V (0) = 0. If a(x)> 1, then ã(x) = 1, and

1−2a(x)
(
1− δ

µ

)
=

2
(
cV (x)− x

)

σ2V ′′(x)
.
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Or equivalently,

a(x) =
µ

2(µ −δ )

(
1− 2

(
cV (x)− x

)

σ2V ′′(x)

)
≥ µ

2(µ −δ )
. (3.12)

In the following, we distinguish two cases depending on whether, 2δ
µ ≥ 1 or 2δ

µ < 1.

1) If 2δ
µ ≥ 1, then thanks to assertion (a), we have a(x)≥ 1 and hence, ã(x) = 1 for all x ≥ 0 and

(3.12) holds. By substituting x = 0 in (3.12) we get a(0) = µ
2(µ−δ ) . This proves assertion (b).

2) If 2δ
µ < 1, then either a(0)≤ 1 or a(0)> 1. If a(0)≤ 1, then ã(0) = a(0) and hence a(0) = 2δ

µ .

If a(0) > 1, then ã(0) = 1 and a(0) = µ
2(µ−δ ) , however, the latter implies that 2δ > µ and that

contradicts the assumption 2δ
µ < 1. This implies that, when 2δ

µ < 1, we always have a(0) = 2δ
µ .

This ends the proof of the proposition.

3.2.1 The case when
µ
2
≤ δ < µ (medium liability rate)

This subsection addresses the case where
µ
2
≤ δ < µ , which corresponds to the case of

medium liability rate.

Theorem 3.2.1. Suppose that
µ
2
≤ δ < µ . Then the smooth solution to (3.9) is given by

V (x) =
x

(γ +λ )
+

µ −δ

(γ +λ )2

(
1− er−x

)
, x ≥ 0, (3.13)

where

r± =
−(µ −δ )±

√
(µ −δ )2 +2σ2(γ +λ )

σ2
. (3.14)

Proof. Put c := (γ+λ ). In the case of 2δ
µ ≥ 1, thanks to Proposition (3.2.1)-(a), we have a(x)≥ 1

for all x ≥ 0. Thus, we get 0 = max0≤a≤1 L aV (x) = L 1V (x) = 0. Or equivalently,

1

2
σ2V ′′(x)+(µ −δ )V ′(x)− cV (x)+ x = 0.
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The general solution for this linear second order ODE is given by

V (x) =
x

c
+

µ −δ

c2
+C1er+x +Cer−x, x ≥ 0. (3.15)

Here C1 and C are free parameters to be determined below, while r+ and r− are given in (3.14).

Thanks to Proposition 3.1.1-(b), V (x)/x converges to 1/c when x goes to +∞. This allows us to

deduce that C1 = 0, and hence our function becomes

V (x) =
x

c
+

µ −δ

c2
+Cer−x, x ≥ 0.

By using the fact that V (0) = 0, we calculate C and get C = −(µ − δ )/c2. This proves that the

smooth (twice differentiable) solution to (3.9) in this case takes the form of (3.13). To prove the

converse, we remark that V given by (3.13) is twice continuously differentiable, and satisfies

V ′(x) =
1

c
− µ −δ

c2
r−er−x > 0, and V ′′(x) =−µ −δ

c2
r2
−er−x < 0, ∀ x ≥ 0.

This proves that V of (3.13) is twice continuously differentiable and concave. Furthermore,

a(x) =− µV ′(x)
σ2V ′′(x)

=
µce−r−x

σ2(µ −δ )r2
−
− µ

σ2r−
,

and hence, a(x) is an increasing function with

a(0) =
µc

σ2(µ −δ )r2
−
− µ

σ2r−
=

µ

2(µ −δ )
≥ 2δ

µ
≥ 1.

This guarantees the fact that V having the form (3.13) satisfies (3.9).

3.2.2 The case δ < µ
2

(small liability rate)

This subsection deals with the case when the liability rate δ is small enough, i.e., δ < µ
2

. In

this case, the construction of the solution to the HJB (3.9), relies on the following proposition.

21



Reinsurance with debt

Proposition 3.2.2. Suppose δ < µ
2

, and let r− be defined by (3.14) and g and ∆ be given by

g(y) := exp

(
2σ2

µ2
(γ +λ ) ln(y)− 2σ2

µ2
y

)
, y > 0, and ∆ := (γ +λ )

(
1+

µ

σ2r−

)
. (3.16)

Then the following assertions hold.

(a) The equation L(y) = 0, where L(y) is given by

L(y) := H(y)− µ

2δ
H(∆) and H(y) :=

1

yg(y)
−

∫ ∆

y

dt

t2g(t)
y > 0, (3.17)

has a unique root y0 ∈ (0,∆), (i.e., y0 = H−1( µ
2δ

H(∆)) exists).

(b) The function F(y) defined by

F(y) :=
2σ2δ

µ2

∫ y

y0

[
1

y0g(y0)
−
(∫ t

y0

du

u2g(u)

)]
g(t)dt, (3.18)

is invertible on [0,∆] and F−1 is well defined on [0,F(∆)].

Proof. Throughout this proof, we consider the notation

b =
2σ2

µ2
, and c = γ +λ .

This proof has two parts, part 1) and part 2), where we prove assertions (a) and (b) respectively.

Part 1. Here, we prove assertion (a). On the one hand, it is clear that H is continuous on (0,+∞),

H(∆) = 1/∆g(∆), and

H(0+) = lim
y−→0+

[
1

yg(y)

(
1− yg(y)

∫ ∆

y

dt

t2g(t)

)]
=+∞

(
1− 1

1+bc

)
=+∞.

On the other hand, H is differentiable and

H ′(y) =−(1+bc−by)g(y)

y2
[
g(y)

]2
+

1

y2g(y)
=

b(y− c)

y2g(y)
.
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Then, we deduce that L is strictly decreasing on (0,∆), since ∆ ∈ (0,c) and L′(y) = H ′(y) < 0,

for any y ∈ (0,∆). Furthermore,

L(0+) = +∞, and L(∆) = H(∆)− µ

2δ
H(∆) = H(∆)

(
1− µ

2δ

)
< 0. (3.19)

This proves that there exists a unique root y0 ∈ (0,∆) such that L(y0) = 0.

Part 2. Here, we prove assertion (b). To this end, it is enough to prove that F is strictly monotone

on [0,∆], as it is clearly continuous on this interval. Thus, for any y ∈ (0,∆), we have

F ′(y) = bδ

[
1

y0g(y0)
−

∫ y

y0

du

u2g(u)

]
g(y) = bδ

[
H(y0)+

∫ ∆

y

du

u2g(u)

]
g(y),

see (3.17) for the definition of H(y). Hence, F ′(y) > 0 for any y ∈ (0,∆) due to
∫ ∆

y
du

u2g(u)
> 0

H(y0)> 0 and as it is a consequence of L(y0) = 0. In fact, this equation implies

H(y0) =
µ

2δ
H(∆) =

µ

2δ∆g(∆)
> 0.

Therefore, F is strictly increasing on the interval (0,∆). This proves that F is invertible on [0,∆].

Furthermore, the function F−1 is well defined on [F(0),F(∆)] and

F(0) =−
∫ y0

0

[
bδ

y0g(y0)
+bδ

(∫ y0

t

du

u2g(u)

)]
g(t)dt < 0.

This proves that F−1 is well defined on [0,F(∆)], and the proof of the proposition is complete.

Now, we state the solution for the HJB equation (3.9).

Theorem 3.2.2. Suppose that δ < µ
2

. Let r− and F be given by (3.14) and (3.18) respectively.

Then the smooth solution to (3.10) is given by

V (x) =





∫ x
0

dt
F−1(x)

, if 0 ≤ x ≤ xFR,

x
γ+λ

+ µ−δ
(γ+λ )2 − µ

(σ2r−+µ)(γ+λ )r−
er−(x−xFR), if x > xFR,

(3.20)

23



Reinsurance with debt

where

xFR = F

[
(γ +λ )

(
1+

µ

σ2r−

)]
. (3.21)

Proof. For the sake of simplicity, throughout this proof, we put

c := (γ +λ ), b :=
2σ2

µ2
and ∆ := (γ +λ )

(
1+

µ

σ2r−

)
. (3.22)

Since a(0) = 2δ
µ , see Proposition 3.2.1-(c). Then, in a neighborhood of zero, we have a(x) < 1

and hence L a(x)V (x) = 0. Thus,

a(x) =
2δ

µ
+

2

µ

(
cV (x)− x

V ′(x)

)
.

By combining this equation with (3.11), we get

V ′2(x)
V ′′(x)

+b

(
δV ′(x)+ cV (x)− x

)
= 0. (3.23)

By performing the change of variable V ′(X(z)
)
= e−z, which implies that V ′′(X(z)

)
=−e−z/X ′(z),

then we get

−X ′(z)e−z +b

(
δe−z + cV

(
X(z)

)
−X(z)

)
= 0.

By differentiating and applying the above change of variable again, we obtain

−X ′′(z)e−z +X ′(z)e−z +b

(
−δe−z + cX ′(z)e−z −X ′(z)

)
= 0.

Or equivalently,

X ′′(z)−
(

1+bc−bez

)
X ′(z)+bδ = 0. (3.24)

The general solution to this second order linear ODE, takes the form of

X ′(z) = k1(z)e
(1+bc)z−bez

, z ∈ R, (3.25)
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where k1(z) is a positive function to be determined. By differentiating (3.25) and inserting it with

its resulting derivative in (3.24) afterwards, we get

k′1(z) =−bδexp

(
− (1+bc)z+bez

)
, z ∈ R.

Therefore, by integrating over (z0,z], where z0 ∈ R is a free constant to be determined later on,

we get

k1(z) = k1 −bδ

∫ z

z0

e−(1+bc)t+bet

dt, k1 := k1(z0)> 0.

By using the change of variable u = et in this equation, we get

k1(z) = k1 −bδ

∫ ez

ez0

t−(2+bc)ebtdt, z ∈ R.

Therefore, by inserting this in (3.25), we obtain

X ′(z) = k1e(1+bc)z−bez −bδe(1+bc)z−bez
∫ ez

ez0

t−(2+bc)ebtdt, z ∈ R.

By integrating this equation over (z0,z] where z0 ∈ R, we get

X(z) = k1

∫ z

z0

e(1+bc)t−bet

dt −bδ

∫ z

z0

e(1+bc)t−bet

(∫ t

z0

u−(2+bc)ebudu

)
dt +X(z0).

An application of the change of variable as before, leads to

X(z) = k1

∫ ez

ez0

tbce−btdt −bδ

∫ ez

ez0

tbce−bt

(∫ t

ez0

u−(2+bc)ebudu

)
dt +X(z0), z ∈ R.

By using the notation in (3.16) and (3.22), the function X(z) becomes

X(z) = k1

∫ ez

ez0

g(t)dt −bδ

∫ ez

ez0

g(t)

(∫ t

ez0

du

u2g(u)

)
dt +X(z0), ∀z ∈ R.

Consider the following function

F0(y) :=
∫ y

ez0

[
k1 −bδ

(∫ t

ez0

du

u2g(u)

)]
g(t)dt, y > 0. (3.26)
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Then X(z) = F0(e
z)+X(z0), and by combining this with V ′(X(z)

)
= e−z, we obtain

V ′(x) =
1

F−1
0 (x−X(z0))

.

By integrating this equation and using V (0) = 0, we get

V (x) =
∫ x

0

dt

F−1
0 (t −X(z0))

, for 0 ≤ x ≤ xFR. (3.27)

For x > xFR, max0≤a≤1 L a(x)V (x) = L 1V (x) = 0. Thus we solve the following

1

2
σ2V ′′(x)+(µ −δ )V ′(x)− cV (x)+ x = 0.

Similar to the previous subsection, the solution to this ODE is given by

V (x) =
x

c
+

µ −δ

c2
+ k2er−(x−xFR)+ k3er+(x−xFR), for x > xFR,

where r± are defined in (3.14) that we recall below

r± =
−(µ −δ )±

√
(µ −δ )2 −2σ2c

σ2
.

Thanks to Proposition 3.1.1-(a), we have lim
x→+∞

V (x)/x = 1/c. Hence k3 should be null, otherwise

V (x)/x will go to infinity when x goes to infinity. Thus, our function V becomes

V (x) =
x

c
+

µ −δ

c2
+ k2er−(x−xFR), for x > xFR. (3.28)

The remaining part of the proof focuses on determining the remaining free parameters k1, k2, xFR

and X(z0) and shows that F0 coincides to F that is defined in (3.18). By combining (3.28), (3.11)

and the fact that a(xFR) = 1, we get

1 =−µ
(

1
c
+ k2r−

)

σ2
(
k2r2

−
) .
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This allows us to calculate completely k2 as follows

k2 =− µ

(σ2r−+µ)cr−
. (3.29)

This proves (3.20) on (xR,+∞).

Since V (x) is continuously differentiable, the equality V ′(xFR−) =V ′(xFR+) implies that

F−1
0 (xFR −X(z0)) =

c

1+ k2cr−
= ∆, or equivalently xFR = F0(∆)+X(z0). (3.30)

On the one hand, by combining (3.11) and the fact a(0) = 2δ/µ , we get

2δ

µ
=− µV ′(0)

σ2V ′′(0)
=

µ

σ2
F ′

0

[
F−1

0 (−X(z0))
]
F−1

0 (−X(z0)).

By using (3.26), we get

g
[
F−1

0 (−X(z0))
]
F−1

0 (−X(z0))

[
k1 −bδ

∫ F−1(−X(z0))

ez0

du

u2g(u)

]
= bδ

Thus,

bδ

K0g(K0)
+bδ

∫ K0

ez0

du

u2g(u)
− k1 = 0, where K0 = F−1

0 (−X(z0)) (3.31)

By combining the fact that a(xFR) = 1 and (3.11), we get

F ′
0[F

−1
0 (xFR −X(z0))]F

−1
0 (xFR −X(z0)) =

σ2

µ
,

and by using (3.30) and the derivative of (3.26), this becomes

g(∆)∆

[
k1 −bδ

∫ ∆

ez0

du

u2g(u)

]
=

σ2

µ
,

or equivalently

k1 −bδ

∫ ∆

ez0

du

u2g(u)
− σ2

µ∆g(∆)
= 0. (3.32)
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By adding equations (3.31) and (3.32) to each other, we obtain

bδ

K0g(K0)
− σ2

µ∆g(∆)
+bδ

∫ K0

∆

du

u2g(u)
= 0,

which is equivalent to

1

K0g(K0)
−

∫ ∆

K0

du

u2g(u)
=

µ

2δ∆g(∆)
. (3.33)

This equation has the same form as (3.17), therefore H(K0) = µH(∆)/2δ and the solution to it

(see Proposition 3.2.2) implies that F−1
0 (−X(z0)) = K0 = y0. Hence

xFR = F0(∆)−F0(y0), where −X(z0) = F0(y0). (3.34)

By substituting K0 = y0 in (3.31), we get

k1 =
bδ

y0g(y0)
+bδ

∫ y0

ez0

du

u2g(u)
.

Then by using this equation, we derive

F0(y)−F0(y0) =
∫ y

ez0

[
k1 −bδ

(∫ t

ez0

du

u2g(u)

)]
g(t)dt −

∫ y0

ez0

[
k1 −bδ

(∫ t

ez0

du

u2g(u)

)]
g(t)dt

=
∫ y

y0

[
k1 −bδ

(∫ t

ez0

du

u2g(u)

)]
g(t)dt

= F(y)

This proves that

y ≥ 0, F(y) = F0(y)−F0(y0) = x,

or equivalently

F−1
0 (x+F0(y0)) = F−1(x) for all x ≥ 0.

As a result, we get (3.21) (i.e. xFR = F0(∆)−F0(y0) = F(∆)), and

V (x) =
∫ x

0

dt

F−1
0

(
t −X(z0)

) =
∫ x

0

dt

F−1(t)
, for x ∈ [0,xFR].
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This proves that the solution to (3.9), in this case of δ < µ
2

, takes the form of (3.20). To prove

the converse, it is enough to remark that V is twice differentiable, and satisfies

V ′(x) =





1
F−1(x)

> 0, if 0 < x ≤ xFR,

1
c
− µ

c(σ2r−+µ)
er−(x−xFR) > 0, if x > xFR,

since σ2r−+µ < 0, and

V ′′(x) =





− 1

F ′

[
F−1(x)

][
F−1(x)

]2 < 0 if x ≤ xFR,

− µr−
c(σ2r−+µ)

er−(x−xFR) < 0 if x > xFR.

Hence V given by (3.20) is strictly concave, strictly increasing and twice continuously differen-

tiable. Furthermore, we derive

a(x) =





µ
σ2 F−1(x)F ′

[
F−1(x)

]
if x ≤ xFR,

1
σ2r−

[
µ(σ2r−+µ)e−r−(x−xFR)

]
if x > xFR.

Hence a(x) is increasing and a(XFR) = 1. This guarantees that V given by (3.20) satisfies (3.9)

when δ < µ
2

.

Remark 3.2.1. The integral on the right hand side of (3.26) is not defined at −∞, therefore, we

take the integral from z0 >−∞ such that
∫ z

z0
e−(1+bc)t+bet

dt is defined.
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3.3 Optimal policy and verification theorem

In this section, we construct the optimal control policy based on the solution of the HJB

equation obtained in the previous sections. For each, x ≥ 0 we define

a∗(x) := arg max
0≤a≤1

(
1

2
a2σ2V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)+ x

)
. (3.35)

The function a∗(x) represents the optimal feedback control function for the control component

aπ
t , t ≥ 0. More precisely, the value a∗(x) is the optimal risk that one should take when the value

of the current reserve is x. Thanks to the previous section, we get the following.

Proposition 3.3.1. Suppose that δ < µ . Let ∆ be given by (3.16), and the functions F and a∗ be

defined in (3.18) and (3.35) respectively. Then the following assertions hold.

(a) If δ ≥ µ
2

, then a∗(x) = 1, for all x ≥ 0.

(b) If δ < µ
2

, then

a∗(x) =





µ
σ2 F ′[F−1(x)

]
F−1(x), if x ≤ F(∆),

1, if x > F(∆).

Proof. Since our V is twice continuously differentiable, V ′(x) > 0, and V ′′(x) < 0 for all x ≥ 0.

Then for any x ∈ [0,+∞), as a function of a ∈ R, the following

L
aV (x) =

σ2a2

2
V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)+ x,

is a concave function with a maximum attained at a(x), and it is increasing on [0,a(x)] and

decreasing on [a(x),+∞). Therefore, when 2δ
µ ≥ 1, that implies a(x) ≥ 1 (see (3.2.1)), we get

a∗(x) = 1, on the one hand. On the other hand, when 2δ
µ < 1, we get a(x)< 1 for x < F(∆) and

a(x)≥ 1 for x ≥ F(∆). Thus, similarly as above, this implies

a∗(x) = a(x) =
µ

σ2
F ′[F−1(x)

]
F−1(x), for x ≤ F(∆),
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and a∗(x) = 1 for x > F(∆). This completes the proof.

Theorem 3.3.1. Let a∗ be defined in (3.35). Then the following assertions hold.

(a) The following SDE

dXt =

(
a∗(Xt)µ −δ

)
dt +a∗(Xt)σdWt , X0 = x, (3.36)

has a unique solution that we denote by R∗ = (R∗
t )t≥0.

(b) R∗ is the optimal cash reserve, and π∗ =

(
a∗(R∗

t ); t ≥ 0

)
is the optimal risk control satisfying

E

∫ τ∗

0
e−(γ+λ )tR∗

t dt =V (x), ∀x ≥ 0, (3.37)

where

τ∗ = inf{t ≥ 0 : R∗
t = 0}.

Proof. The proof of this theorem has two parts, where we prove assertion (a) and (b).

Part 1. Here, we prove assertion (a). Since µ and σ are constants and not functions of x then

the coefficients of our stochastic differential equation (3.36) is a∗(x). Hence, thanks to Theorem

2.3.1, the existence and uniqueness of the solution to this SDE boils down to prove that the

following Lipschitz and growth conditions hold

|a∗(x1)−a∗(x2)|2 ≤ K|x1 − x2|2, |a∗(x)|2 ≤ K(1+ |x|2) for all x1,x2 ≥ 0. (3.38)

In order to prove these two conditions, it is enough to prove the following

|a∗(x1)−a∗(x2)| ≤ K1|x1 − x2|, x1,x2 ≥ 0. (3.39)

In fact, under this condition, the Lipschitz condition (the first condition of (3.38)) becomes ob-

vious, while for the growth condition (the second condition) we take x1 = x and x2 = 0 and
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get

|a∗(x)| ≤ |a∗(0)|+K1|x| ≤ max(1,K1)(1+ |x|),

since a∗(0) = 1 for δ ≥ µ/2 and a∗(0) = 2δ
µ for δ < µ/2. Hence, the remaining part of this

part focuses on proving (3.39). For x1,x2 > F(∆), we get a∗(x1) = a∗(x2) = 1, and hence (3.39)

is satisfied. Remark that the cases when x1 > F(∆) and x2 ≤ F(∆), and when x1 ≤ F(∆) and

x2 > F(∆) reduce to x1,x2 ≤ F(∆), since a∗ is a constant over [F(∆),+∞). For the case when x1

and x2 belong to [0,F(∆)] we use Taylor’s expansion and get

|a∗(x1)−a∗(x2)|= |(x1 − x2)
d

dy
a∗(y)|

where y = αx1 + (1−α)x2, and α ∈ (0,1). Therefore, it is enough to show that d
dy

a∗(y) is

bounded over [0,F(∆)]. To this end, we calculate

d

dy
a∗(y) =

d

dy

[
− µV ′(y)

σ2V ′′(y)

]
=

µ

σ2

d

dy

[
F ′(F−1(y)

)
F−1(y)

]
=

µ

σ2
+

µ

σ2

F ′′(F−1(y)
)
F−1(y)

F ′(F−1(y)
) .

By taking the supremum over 0 ≤ y ≤ F(∆) on both sides, we get

sup
0≤y≤F(∆)

| d

dy
a∗(y)| ≤ µ

σ2
+

µ

σ2
sup

0≤y≤F(∆)

|F
′′(F−1(y)

)
F−1(y)

F ′(F−1(y)
) |.

Since F−1is increasing on [F(0),F(∆)] and F−1(0) = y0. This inequality becomes

sup
0≤y≤F(∆)

| d

dy
a∗(y)| ≤ µ

σ2
+

µ

σ2
sup

y0≤z≤∆

|F
′′(z)z

F ′(z)
|. (3.40)

Direct calculation of |F ′′(z)z
F ′(z) |, leads to

|F
′′(z)z

F ′(z)
|= |

[
(bc

z
−b)F ′(z)− bδ

z2

]
z

F ′(z)
|= |b(c− z)− bδ

zF ′(z)
| ≤ b(c−∆)+

bδ

|zF ′(z)|

≤ b(c−∆)+
[
y0g(y0)

]−1

[
|H(y0)+

∫ ∆

z

du

u2g(u)
|
]−1

(3.41)
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Remark that the function

K(z) :=

[
H(y0)+

∫ ∆

z

du

u2g(u)

]
,

is strictly decreasing (since K′(z) =−1/z2g(z)< 0),and hence we get,

1

y0g(y0)
≥ K(z)≥ K(∆) = H(y0) =

µ

2δ
H(∆) =

µ

2δ∆g(∆)
> 0.

By inserting the lower inequality in (3.41), we get

|F
′′(z)z

F ′(z)
| ≤ b(c−∆)+

[
y0g(y0)

]−1 2δ∆g(∆)

µ
.

Then by combining this with (3.40), we deduce that d
dy

a∗(y) is bounded over [0,F(∆)] by a

constant K. This completes the proof of assertion (a).

Part 2. Here, we prove assertion (b). By applying Itô to e−(γ+λ )t∧τ∗V (R∗
t∧τ∗), we deduce

e−(γ+λ )t∧τ∗V (R∗
t∧τ∗) =

V (x)−
∫ t∧τ∗

0
(γ +λ )e−(γ+λ )sV (R∗

s )ds+
∫ t∧τ∗

0
e−(γ+λ )s

(
a∗(R∗

s )µ −δ

)
V ′(R∗

s )ds

+
∫ t∧τ∗

0

1

2
e−(γ+λ )sσ2

(
a∗(R∗

s )
)2

V ′′(R∗
s )ds+

∫ t∧τ∗

0
e−(γ+λ )sσa∗(R∗

s )V
′(R∗

s )dWs. (3.42)

Since 0 ≤V ′(x)≤ K1, where K1 = max

(
1
y0
, σ2r−
(γ+λ )(σ2r−+µ)

)
, we deduce that

∫ t∧τ∗

0
σ2

(
a∗(R∗

s )
)2

V ′2(R∗
s )ds ≤ σ2K1t,

and hence,
∫ t∧τ∗

0 e−(γ+λ )sσa∗(R∗
s )V

′(R∗
s )dWs is a martingale which implies

E

[∫ t∧τ∗

0
e−(γ+λ )sσa∗(R∗

s )V
′(R∗

s )dWs

]
= 0.
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Therefore, by using this equation and taking the expectation in both sides of (3.42), we obtain

E

[
e−(γ+λ )t∧τ∗V (R∗

t∧τ∗)

]
=V (x)−E

[∫ t∧τ∗

0
(γ +λ )e−(γ+λ )sV (R∗

s )ds

]

+E

∫ t∧τ∗

0
e−(γ+λ )s

[
σ2

(
a∗(R∗

s )
)2

2
V ′′(R∗

s )+

(
a∗(R∗

s )µ −δ

)
V ′(R∗

s )

]
ds.

=V (x)+E

[∫ t∧τ∗

0
e−(γ+λ )s

(
L

a∗(R∗
s )V (R∗

s )−R∗
s

)
ds

]
, (3.43)

where we recall

L
aV (y) =

σ2a2

2
V ′′(y)+(aµ −δ )V ′(y)− (γ +λ )V (y)+ y, a ≥ 0,x ≥ 0.

Since L a∗(y)V (y) = 0 for all y ≥ 0, and in particular for y = R∗
s , (3.43) becomes

E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
=V (x)−E

[∫ t∧τ∗

0
e−(γ+λ )sR∗

s ds

]
,

or equivalently

E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
+E

[∫ t∧τ∗

0
e−(γ+λ )sR∗

s ds

]
=V (x). (3.44)

The first term on the left hand side of this equation can be written as

E

[
e−(γ+λ )τ∗V (R∗

τ∗)1{τ∗<t}+ e−(γ+λ )tV (R∗
t )1{t≤τ∗}

]
.

A combination of this with the fact that V (0) = 0 and on {τ∗ <+∞}, R∗
τ∗ = 0 p-a.s, we get

0 ≤ E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
= E

[
e−(γ+λ )tV (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

E

[
V (R∗

t )

]
.

By using the fact that V (x)≤ x
(γ+λ ) +

µ−δ
(γ+λ )2 in the last inequality, we get

0 ≤ E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
= E

[
e−(γ+λ )tV (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

[
E
[
R∗

t

]

γ +λ
+

µ −δ

(γ +λ )2

]
.

(3.45)
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Remark that,

E[R∗
t ] = x+E

∫ t

0

(
a∗(R∗

s )µ −δ
)
ds ≤ x+(µ −δ )t, t ≥ 0.

Then by inserting this in (3.45), we get

E

[
e−(γ+λ )tV (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

[
x

(γ +λ )
+

(µ −δ )t

(γ +λ )
+

µ −δ

(γ +λ )2

]
. (3.46)

By combining (3.45) and (3.46) and taking the t −→ +∞, we get (3.37). Thanks to (3.37) and

(3.36) it is obvious that π∗ = (a∗(R∗
t ), t ≥ 0) is the optimal policy and R∗ is the optimal cash

reserve that corresponds to it. This ends the proof.

3.4 Graphical illustrations

In this section we present some sensitivity analysis of the added parameters to the model

λ and δ for the case of δ < µ/2. Here we do not illustrate the interplay of the other model

parameters as similar work has been previously done (see for example B. Højgaard and M. Taksar

[15]).
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The above graph illustrates the interaction between the reserve level x and the optimal return

function V (x) for different insurance intensity rates λ . As we can see, the optimal return function

decreases drastically in value as λ increases as well as it becomes flatter for a large enough

intensity rate.
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Similar to the previous Graph, The optimal return function V decreases in value as the liability

increases. However, unlike the case for different λ , the optimal return function decreases the

same amount that corresponds to the change of δ and does not change shape, it remains concave

for larger liability rates.
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This graph illustrates the full risk threshold as a function of λ . The threshold level xR de-

creases as λ increase. In other words, as the intensity rate becomes bigger, the level of taking

full risk becomes smaller.
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Similar full risk level reaction to the increase in liability rate, xR decreases when δ increases.

However, the full risk level decreases much slower (concavely shaped) than that corresponding

to an increase of intensity rate (convex shaped).
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Chapter 4

Interplay between random horizon and

constraints on risk control

This chapter alters the model of Chapter 3 by putting δ = 0 and adding constraints on the

risk control (aπ
t )t≥0. These constraints consists of a allowing aπ

t to belong to [α,β ] only, where

0 < α < β . The lower bound α might reflect the fact that the company should do minimum

business α . This situation occurs when the company is public for instance.

Four sections are developed in this chapter. The first section defines the model (mathemat-

ically and economically) and the objectives in terms of a control problem. The second section

explores the solution to a Hamilton-Jacobi-Bellman (HJB) associated to the main control prob-

lem. The third section determines the optimal policies for this control problem, while the last

section presents some graphical illustration of the results.
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4.1 The mathematical model and its preliminary analysis

As in the previous chapter, this section introduces the mathematical and economical model,

defines our main objective, and presents our first analysis of the model afterwards.

4.1.1 The mathematical model and our objective

Similar to Chapter 3, we start by introducing the model. Consider a firm with reserve Rt at

any time t where Rt is a stochastic process and a solution to the following stochastic differential

equation:

dRt = µdt +σdWt , R0 = x. (4.1)

For a risk exposure aπ
t at time t and control policy π = (aπ

t , t ≥ 0), our reserve equation becomes:

dRπ
t = aπ

t (µdt +σdWt), Rπ
0 = x, (4.2)

and the bankruptcy time is given by

τπ = inf
{

t ≥ 0 : Rπ
t = 0

}
.

Here, by convention, we put inf( /0) = +∞.

The model for random horizon. Throughout this chapter, τ is a random time that is independent

of the reserve process R=(Rt , t ≥ 0) (or equivalently F∞ =σ(Wt , t ≥ 0)), and has an exponential

distribution with mean λ−1, i.e., E[τ] = λ−1. Thus, the survival probability for this random time

is given by

Gt := P(τ > t|Ft) = exp(−λ t), t ≥ 0. (4.3)
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We define the return function of an initial reserve x under a control policy π as the total

discounted reserve from time 0 to the default time or the random time τ (whichever comes first).

The objective. Our objective consists of finding the optimal return function and describing

the optimal policy π ∈ A such that

V (x) := sup
π∈A

E

[∫ τπ∧τ

0
e−γtRπ

t dt

]
= E

[∫ τ∧τπ∗

0
e−γtRπ∗

t dt

]
. (4.4)

where A denotes the set of all admissible control policies.

4.1.2 Properties of the function V

Proposition 4.1.1. The following assertions hold.

(a) The optimal value function V , defined in (4.4), satisfies

x

γ +λ
≤V (x)≤ x

γ +λ
+

µβ

(γ +λ )2
, ∀x ≥ 0. (4.5)

(b) The function V is concave and satisfies

V (x) = sup
π∈A

E

[∫ τπ

0
e−(γ+λ )tRπ

t dt

]
.

Proof. The proof of this proposition is similar to Proposition (3.1.1) from Chapter 3.

Proposition 4.1.2. Suppose that V , defined in (4.4), is twice continuously differentiable on

(0,+∞). Then V satisfies the following HJB equation

max
α≤a≤β

(
1

2
a2σ2V ′′(x)+aµV ′(x)− (γ +λ )V (x)+ x

)
= 0, V (0) = 0. (4.6)

Proof. The proof follows directly from Proposition 3.1.2 by putting α = 0 and β = 1.
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4.2 Construction of the smooth solution to the HJB (4.6)

The aim of this section lies in constructing the smooth solution to this HJB equation (4.6).

Throughout this section, we define the following operator, for any a ∈ R,

L
aV (x) :=

1

2
a2σ2V ′′(x)+aµV ′(x)− cV (x)+ x; c := γ +λ . (4.7)

Besides this operator, the maximizer function a(x), that is defined and is given by

a(x) := argmax
a∈R

L
aV (x) =− µV ′(x)

σ2V ′′(x)
≥ 0, (4.8)

plays a central role in our forthcoming analysis. Thus, we start by deriving some of its properties

in the following section.

Proposition 4.2.1. It holds that

a(0) =
α

2
.

Proof. Put

ã = arg max
α≤a≤β

L
aV (0).

Thus, we get

σ2ã2

2
V ′′(0)+µ ãV ′(0) = 0. (4.9)

From (4.8), we get a(0) = − µV ′(0)
σ2V ′′(0) , and by inserting it in (4.9), we deduce ã2/2− ãa(0) = 0.

Since ã cannot be zero as it belongs to [α,β ], then a(0) = ã
2
. Now, we discuss the following

cases. If a(0)≤ α , then ã = α and as a result, a(0) = α
2

. If α ≤ a(0)≤ β , then a(0) = ã and this

contradicts the fact that a(0) = ã
2
. Thus, we certainly have a(0) = α

2
. This completes the proof

of the proposition.
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4.2.1 Solution of the HJB equation

We start this section by deriving an intermediate lemma. To this end, we define the following

notation

G(y) :=
∫ y

0
g(t)dt, g(t) = exp

(
2σ2

µ2
(γ +λ ) ln(t)− 2σ2

µ2
t

)
, t > 0, (4.10)

and

H(y) := yg(y), K(y) :=
G(y)

H(y)
, y ≥ 0, c := γ +λ and ∆ :=

√

1+
2σ2

µ2
c. (4.11)

Lemma 4.2.1. Let K be the function defined by (4.11). If the condition

K

(
H−1

(
αH(c∆/∆+1)/β

))
>

1

∆+1
ln

(
2∆

∆−1

)
(4.12)

holds, then there exists ỹ ∈ (0,c∆/(∆+1)) such that

L(ỹ) = 0, (4.13)

where

L(y) := (∆−1)2

(
y− c∆

∆−1

)
e(∆−1)K(y)+(∆+1)2

(
c∆

∆+1
− y

)
e−(∆+1)K(y)+4∆ye−2K(y).

(4.14)

Proof. Put

y0 :=
c∆

∆+1
.

Since

lim
y→0

K(y) =
1

1+bc
=

1

∆2
,
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then

L(0+) = lim
y→0

L(y) =

[
− c∆(∆−1)e

1
∆ + c∆(∆+1)e−

1
∆

]
e
− 1

∆2

= c∆[(∆+1)e−
1
∆ − (∆−1)e

1
∆ ]e

− 1

∆2 .

Notice that L(0+)> 0 if and only if (∆+1)e−
1
∆ − (∆−1)e

1
∆ > 0 which is equivalent to

ln

(
∆+1

∆−1

)
− 2

∆
> 0.

Let l(∆) = ln
(
(∆+1)/(∆−1)

)
−2/∆. Then

l′(∆) =
−2

(∆−1)2

∆+1
∆−1

− 2

∆
=

−2

∆2 −1
+

2

∆
< 0.

This proves that the function l is strictly decreasing and l(+∞) = 0 and l(1+) = +∞. Hence,

l(∆)> 0 which implies that L(0+)> 0. Further,

L(y0−) =

[−2c∆(∆−1)

∆+1
e∆K(y0)+

4c∆2

∆+1
e−K(y0)

]
e−K(y0).

Since L(y0−) < 0 if and only if K(y0) > ln(2∆/(∆− 1))/(∆+ 1) where H−1
(
αH(y0)/β

)
<

H−1
(
H(y0)

)
= y0. Thus, to prove that L(y) = 0 has a root ỹ, it is enough to prove that the

function K is increasing. From the definition of K(y) (4.11), we get

K′(y) =
g(y)

(
H(y)−G(y)(1+bc−by)

)

H ′2(y)
.

K′(y) > 0 if and only if k(y) = H(y)−G(y)(1+ bc− by) > 0. By differentiating this equation,

we get k′(y) = g(y)(1+bc−by)−g(y)(1+bc−by)+bG(y) which implies k′(y) = bG(y)> 0.

Thus, K is increasing. This ends the proof.
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The following theorem states the form of the smooth solution to the HJB equation (4.6),

which has three different forms depending on the level of the cash reserve.

Theorem 4.2.1. Let G, H and K be the functions defined in (4.10)-(4.11). Suppose (4.12) holds,

and α = βH(ỹ)/H(c∆/(∆+1)), where ỹ is a root to L(y) = 0 in Lemma 4.2.1.

Then the smooth solution to (4.6) is given by

V (x) =





x

γ +λ
+

αµ

(γ +λ )2
(1− er−(α)x)+C1(e

r+(α)x − er−(α)x), i f 0 ≤ x ≤ xα ,

∫ x

xα

dt

G−1
(
t/k1

) +V (xα), i f xα < x ≤ xβ ,

x

γ +λ
+

β µ

(γ +λ )2
+

exp(r−(β )(x− xβ ))

(γ +λ )∆r−(β )
, i f x > xβ .

Here

r±(κ) =
−µ ±

√
µ2 +2σ2c

κσ2
(4.15)

k1 =
βσ2

µH(c∆/(∆+1))
, (4.16)

C1 =
ασ2[−1+2∆(∆−1)−1 exp(−(∆+1)K(ỹ))]

cµ∆[(∆−1)exp((∆−1)K(ỹ))− (∆+1)exp(−(∆+1)K(ỹ))]
, (4.17)

xα =
ασ2

µ
K(ỹ), and xβ =

βσ2

µ
K(c∆/(∆+1)). (4.18)

Proof. This proof has three parts. Part 1 constructs the smooth solution to (4.6), and shows

that it has the form described in the theorem. Part 2 determines the constants involved in the

construction performed in part 1. Part 3 checks the concavity and the smoothness of the obtained
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function and argue that is in fact a solution to the HJB.

Part 1. This part constructs the smooth solution to the HJB. Throughout the proof, we put

c := γ +λ , b :=
2σ2

µ2
, y0 :=

c∆

∆+1
, and ∆ :=

√
1+bc. (4.19)

Put

xα := inf{x ≥ 0 : a(x)> α}.

Then for any x ∈ [0,xα), a(x) ≤ α , and due to the continuity of a(x) we have a(xα) = α . This

implies

max
α≤a≤β

L
aV (x) = L

αV (x) = 0,

or equivalently

1

2
α2σ2V ′′(x)+αµV ′(x)− cV (x)+ x = 0.

This is a second order linear non-homogeneous ODE that has a solution of the form

V (x) =
x

c
+

αµ

c2
+C1er+(α)x +C2er−(α)x, 0 ≤ x ≤ xα , (4.20)

where r±(α) are given by (4.15). Due to V (0) = 0, we get C2 =−C1−αµ/c2. By inserting this

in (4.20), our function becomes

V (x) =
x

c
+

αµ

c2
(1− er−(α)x)+C1(e

r+(α)x − er−(α)x), 0 ≤ x ≤ xα . (4.21)

The first and second derivatives of the latter equation are given as

V ′(x) =
1

c
− αµr−(α)

c2
er−(α)x +C1(r+(α)er+(α)x − r−(α)er−(α)x),

and

V ′′(x) =−αµr2
−(α)

c2
er−(α)x +C1(r

2
+(α)er+(α)x − r2

−(α)er−(α)x).
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By combining these two equations with a(xα) = α and a(x) =− µV ′(x)
σ2V ′′(x)

, we get

− ασ2

µ

[
− αµr2

−
c2

er−(α)xα +C1(r
2
+er+(α)xα − r2

−er−(α)xα )

]

=
1

c
− αµr−

c2
er−(α)xα +C1(r+(α)er+(α)xα − r−(α)er−(α)xα )

or equivalently

0 =
1

c
− αµr−(α)

c2
er−(α)xα

(
1+

ασ2r−(α)

µ

)

+C1

[
r+(α)er+(α)xα

(
1+

ασ2r+(α)

µ

)
− r−(α)er−(α)xα

(
1+

ασ2r−(α)

µ

)]
.

By combining this equation with ∆ from (4.19) and (4.15), we get

0 =
1

c
+

αµr−
c2

er−(α)xα ∆+C1

[
r+(α)er+(α)xα ∆+ r−(α)er−(α)xα ∆

]
.

Hence, we obtain

C1 =−
1

c∆
+ αµr−

c2 er−(α)xα

r+er+(α)xα + r−er−(α)xα
. (4.22)

Consider

xβ := inf{x ≥ 0 : a(x)> β},

and assume that,

α ≤ a(x)≤ β for x ∈ [xα ,xβ ]. (4.23)

For xα ≤ x ≤ xβ , we assume that α ≤ a(x)≤ β , and hence L a(x)V (x) = 0. By substituting (4.8)

in this equation, we get

− µ2V ′2(x)
2σ2V ′′(x)

− cV (x)+ x = 0. (4.24)

Consider the change of variable V ′(X(z)) = e−z, which implies that V ′′(X(z)) =−e−z/X ′(z). By

substituting these two equations in (4.24) and using (4.19), we get

X ′(z)e−z −bcV +bX(z) = 0.
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By differentiating and performing the change of variable again, we obtain

X ′′(z)− (1+bc−bez)X ′(z) = 0.

Since X ′(z) =−e−z/V ′′(X(z)
)
> 0, then

X ′′(z)
X ′(z)

= (1+bc−bez), z ∈ R,

which results in

ln
(
X ′(z)

)
= (1+bc)z−bez + k, ∀z ∈ R.

By taking the exponent in both sides, we get

X ′(z) = k1e(1+bc)z−bez

, ∀z ∈ R,

where k1 is a positive free parameter to be determined later. By integrating the above equation,

we get

X(z) = k1

∫ z

−∞
e(1+bc)t−bet

dt + k2.

For the remaining part of the proof, we assume k2 = 0. Then by performing the change of variable

u = et , we get

X(z) = k1

∫ ez

0
tbce−btdt.

Then, by using the functions g and G defined in (4.10), we get

X(z) = k1G(ez).

In other words, this equation can be written as

x = k1G(ez), G(ez) =
x

k1
, for xα ≤ x ≤ xβ .
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Therefore,

1

V ′(x)
= ez = G−1

( x

k1

)
, for xα ≤ x ≤ xβ .

Hence, our solution to the HJB (4.6) on [xα ,xβ ] takes the following form

V (x) =
∫ x

xα

1

G−1
(

t
k1

)dt +V (xα), xα ≤ x ≤ xβ .

We know that a(x) =− µV ′(x)
σ2V ′′(x) , therefore,

a(x) =
µk1

σ2
g

[
G−1

( x

k1

)]
G−1

( x

k1

)
.

By differentiating this equation, we deduce

a′(x) =
µ

σ2

[
1+bc−bG−1

( x

k1

)]
. (4.25)

This implies that a(x) is increasing on (0,k1G
(
c+ 1

b

)
). Suppose that

a(x)≥ β , for x > xβ . (4.26)

Then V is the solution to

L
βV (x) =

1

2
β 2σ2V ′′(x)+β µV ′(x)− cV + x = 0.

By using the same method as for the case 0 ≤ x ≤ xα , the solution is given by

V (x) =
x

c
+

β µ

c2
+C3er−(β )(x−xβ )+C4er+(β )(x−xβ ), (4.27)

where r±(β ) are given in (4.15). Since, V (x)≤ x/c+µβ/c2 (see (4.1.1)), then V (x)/x converges

to 1/c when x −→+∞. This forces C4 to be null. Thus, our function becomes

V (x) =
x

c
+

β µ

c2
+C3er−(β )(x−xβ ), x > xβ . (4.28)
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Since a(xβ ) = β =− µV ′(xβ )

σ2V ′′(xβ )
, we derive

β =−µ
(

1
c
+C3r−(β )

)

σ2
(
C3r2

−(β )
) .

This implies that

C3 =− µ

c
(
r2
−(β )βσ2 +µr−(β )

) =
1

c∆r−(β )
.

where r±(β ) are given in (4.15).

Part 2. Here, we determine the remaining constants k1, xα and xβ . Since V ′(xβ−) = V ′(xβ+),

we get

1

G−1
( xβ

k1

) =
1

c
+

1

c∆
. (4.29)

Or equivalently

xβ

k1
= G

(
c∆

1+∆

)
. (4.30)

Furthermore, by combining V ′′(xβ+) =V ′′(xβ−) and (4.29), we get

k1 =− c∆

g

(
c∆

∆+1

)(
c∆

∆+1

)2

r−(β )

=
βσ2

g

(
c∆

∆+1

)(
c∆

∆+1

)
µ

,

and by inserting k1 back in (4.30), we obtain xβ given by (4.18). Remark that due to (4.30),

(4.25) and the fact that G is an increasing function, we deduce that xβ < k1G
(
c+ 1

b

)
and hence,

a(x) is increasing over (xα ,xβ ). This proves that assumption (4.23) holds. By using the fact that

a(xα) = α =− µV ′(xα )
σ2V ′′(xα )

, we derive

g

(
G−1

(xα

k1

))
G−1

(xα

k1

)
=

ασ2

µk1
.

A combination of this equation and (4.16), we get

g

(
G−1

(xα

k1

))
G−1

(xα

k1

)
=−ασ2r−(β )

µ

[
g
(

c∆
1+∆

)
c∆

(1+∆)2

]
=

α

β
g
( c∆

1+∆

)( c∆

1+∆

)
. (4.31)
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Recall that g is given by (4.10), and put

F(y) := H(y)− α

β
H(y0), H(y) := yg(y), y ≥ 0, and y0 :=

c∆

1+∆
. (4.32)

It is clear that F ′(y) =H ′(y) = (1+bc−by)g(y) is increasing over the interval (0,c+ 1
b
). Further,

we have F(0) =−α
β

H(y0) =−αy0g(y0)/β < 0 and F(y0) =
β−α

β
y0g(y0)> 0. Thus, there exists

a unique yα ∈ (0,y0), such that F(yα) = 0, or equivalently H(yα) =
α
β

H(y0). By combining this

and (4.31), we deduce that

G−1
(xα

k1

)
= yα = H−1

(α

β
H(y0)

)
,

and we obtain (4.18). Furthermore, by combining (4.22) and (4.18), (4.17) follows.

For x ∈ (xβ ,+∞), a(x) takes the following form

a(x) =

−µ

[
1+ cC3r−(β )e

r−(β )(x−xβ )

]

σ2cC3r2
−(β )e

r−(β )(x−xβ )
.

Direct simplification of this equation, leads to

a(x) =
β∆e−r−(x−xβ )

1+∆
+

β

1+∆
>

β∆

1+∆
+

β

1+∆
= β , for x ≥ xβ .

Hence, a(x) is strictly increasing on [xβ ,+∞] and a(xβ ) = β , and hence assumption (4.26) is

verified.

Part 3. Our next step is to check the concavity and the smoothness of V . It is clear that V is

continuously twice differentiable on (0,xα)∪ (xα ,xβ )∪ (xβ ,+∞),

V ′′(x) =





−αµr2
−(α)

c2 er−(α)x +C1(r
2
+(α)er+(α)x − r2

−(α)er−(α)x), if 0 ≤ x ≤ xα ,

−1

k1g

[
G−1

(
x

k1

)][
G−1

(
x

k1

)]2 < 0, if xα ≤ x ≤ xβ ,

C3r2
−(β )e

r−(β )(x−xβ ) < 0, if x ≥ xβ .
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It is obvious that V ′′ is always negative on (xα ,+∞) which implies the concavity of V on this

interval. Thus, in the following we focus on proving the concavity of V on [0,xα ]. The remaining

part is proving that V ′(x)> 0 and V ′′(x)< 0 for x ∈ [0,xα ]. Recall that

V (x) =
x

c
+

αµ

c2
(1− er−(α)x)+C1(e

r+(α)x − er−(α)x), 0 ≤ x ≤ xα .

Hence,

V ′(x) =
1

c
− αµr−(α)

c2
er−(α)x +C1(r+(α)er+(α)x − r−(α)er−(α)x),

and

V ′′(x) =−αµr2
−(α)

c2
er−(α)x +C1(r

2
+(α)er+(α)x − r2

−(α)er−(α)x).

Since studying the sign of V ′ and V ′′ is related to knowing the sign of C1, then we put

N(x) :=
2∆

∆−1
er−x −1, D(x) := (∆−1)er+x − (∆+1)er−x (4.33)

and using this notation, we get

C1 =
ασ2

µc∆

[
N(xα)

D(xα)

]
.

We start with studying this function in the neighborhood of zero where

V ′′(0) =−αµr2
−

c2
+C1(r

2
+− r2

−), V ′(0) =
1

c
− αµr−

c2
+C1(r+− r−)

By applying the notation r± = µ(−1±∆)/ασ2 and ∆2 = 1+2σ2c/µ on V ′(0), we get

V ′(0) =
(∆+1)D(xα)+2(∆−1)N(xα)

c(∆−1)D(xα)
,

which is equivalent to

V ′(0) =
(∆+1)er+xα − (∆−1)er−xα −2

cD(xα)
.

53



Reinsurance with constraints

The numerator in this equation is increasing for xα , hence

(∆+1)er+xα − (∆−1)er−xα −2 ≥ (∆+1)− (∆−1)−2 = 0.

This proves that

V ′′(0)< 0, if and only if V ′(0)> 0 if and only if D(xα)> 0.

Since V ′′(xα+) =−1/k1g
[
G−1(xα/k1)

][
G−1(xα/k1)

]2
< 0, then by continuity of V ′′(x) we get

V ′′(xα−) =−αµr2
−(α)

c2
er−(α)x +C1(r

2
+(α)er+(α)x − r2

−(α)er−(α)x)< 0.

1) If N(xα)> 0, then V ′′(x) is increasing and hence, V ′′(x)≤V ′′(xα)< 0, for all x ∈ [0,xα ].

2) If N(xα)< 0, then on the one hand,

e−r−xV ′′(x) =−αµr2
−

c2
+C1r2

−
(r2

+

r2
−

e(r+−r−)x −1
)
.

It is clear that the right hand side of this equation is decreasing for x and the highest value is

when x = 0. By combining this fact with Proposition 4.2.1

e−r−xV ′′(x)<V ′′(0) =− 2µ

ασ2
V ′(0)< 0.

Put

Y := K(ỹ).

On the other hand, N(xα) < 0 if and only if Y > ln(2∆/∆− 1)/(∆+ 1) =: Y1, which implies

that Y > Y0 = ln(∆+1/∆−1)/(2∆), (since Y0 < Y1). Hence, D(xα)> 0, as this is equivalent to

Y >Y0. Therefore, in this case when N(xα)< 0, we always have V ′(0)> 0 and hence V ′′(0)< 0.

This ends the proof that V is strictly concave on the interval [0,xα ], and that V ′′ is continuous at

xα .
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To conclude that V defined by (4.21) is a smooth solution to the HJB, it is enough to check the

continuity of V ′ at xα . Put

yα := G−1

(
xα

k1

)
.

The continuity of V ′ at xα is equivalent to V ′(xα−) =V ′(xα+), or

1

c
− αµr−

c2
er−xα +C1

(
r+er+xα − r−er−xα

)
=

1

yα
.

By applying similar notation as before, we deduce

[
1+

2e−(∆+1)Y

∆−1

]
+

(
2

∆−1
e−(∆+1)− 1

∆

)(
(∆−1)e(∆−1)Y +(∆+1)e−(∆+1)Y

)

(∆−1)e(∆−1)Y − (∆+1)e−(∆+1)Y
=

c

yα
,

or equivalently

(∆−1)e(∆−1)Y − (∆+1)e−(∆+1)Y +4e−2Y − 1
∆

(
(∆−1)e(∆−1)Y +(∆+1)e−(∆+1)Y

)

(∆−1)e(∆−1)Y − (∆+1)e−(∆+1)Y
=

c

yα

which can be reduced to

(∆−1)2e(∆−1)Y − (∆+1)2e−(∆+1)Y +4∆e−2Y

(∆−1)e(∆−1)Y − (∆+1)e−(∆+1)Y
=

c∆

yα
, where 0 < yα < y0 =

c∆

∆+1
< c.

This is equivalent to

(∆−1)2

(
yα − c∆

∆−1

)
e(∆−1)Y − (∆+1)2

(
yα − c∆

∆+1

)
e−(∆+1)Y +4∆yαe−2Y = 0,

which is the equation L(Y ) = 0, where L is defined in (4.14). The solution to this latter equation,

denoted by ỹ, is guaranteed under the assumption (4.12) by Lemma 4.2.1 . This ends the proof

of the theorem.
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4.3 Optimal policy and verification theorem

In this section we construct the optimal control policy based on the solution of the HJB

equation obtained in the previous sections. For each, x ≥ 0 we define

a∗(x) := arg max
α≤a≤β

(
1

2
a2σ2V ′′(x)+aµV ′(x)− (γ +λ )V (x)+ x

)
. (4.34)

The function a∗(x) represents the optimal feedback control function for the control component

aπ
t , t ≥ 0. More precisely, the value a∗(x) is the optimal risk that one should take when the value

of the current reserve is x. Thanks to the previous section, we have the following proposition

Proposition 4.3.1. Let G and g be the functions defined in (4.10), and k1, xα and xβ be given in

(4.16), and (4.18) respectively. Then the function a∗(x), defined in (4.34), is given by

a∗(x) =





α, if 0 ≤ x ≤ xα

µk1

σ2 g

[
G−1

(
x
k1

)]
G−1

(
x
k1

)
, if xα ≤ x ≤ xβ ,

β if x > xβ .

Proof. Since our V is twice continuously differentiable, V ′(x) > 0, and V ′′(x) < 0 for all x ≥ 0.

Then for any x ∈ [0,+∞), as a function of a ∈ R, the following

L
aV (x) =

σ2a2

2
V ′′(x)+aµV ′(x)− (γ +λ )+ x,

is a concave function with a maximum attained at a(x), and it is increasing on [0,a(x)] and

decreasing on [a(x),+∞).

Theorem 4.3.1. Let a∗ be defined by Proposition 4.3.1. Then the following assertions hold.

(a) The following SDE

dXt = a∗(Xt)µdt +a∗(Xt)σdWt , X0 = x, (4.35)
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has a unique solution that we denote by R∗ = (R∗
t )t≥0.

(b) R∗ is the optimal cash reserve, and the optimal risk control is given by π∗ =

(
a∗(R∗

t ); t ≥ 0

)

which satisfies

E

∫ τ∗

0
e−(γ+λ )tR∗

t dt =V (x), ∀x ≥ 0,

where

τ∗ = inf{t ≥ 0 : R∗
t = 0}

Proof. This proof has part 1 and part 2, where we prove assertions a and b respectively.

Part 1. Thanks to Theorem 2.3.1 and similar arguments as the previous chapter, proving exis-

tence and uniqueness of the solution to the SDE by using Lipschitz and growth conditions can

be reduced to proving the following inequality

|a∗(x1)−a∗(x2)| ≤ K1|x1 − x2|, x1,x2 ≥ 0. (4.36)

By taking x1 = x and x2 = 0, we obtain |a∗(x)| ≤ |a∗(0)|+K1|x| where a∗(0) = α . Hence the

growth condition is satisfied as soon as (4.36) holds. For x1,x2 > xβ , we get a∗(x1) = a∗(x2) = β

and for 0 ≤ x1,x2 ≤ xα , we get a∗(x1) = a∗(x2) = α and hence for both cases (4.36) is satisfied.

For the case xα ≤ x1,x2 ≤ xβ , similarly to the previous chapter, it is enough to show that d
dy

a∗(y)

is bounded. Hence

d

dy
a∗(y) =

µk1

σ2

d

dy

[
g
(
G−1(

y

k1
)
)
G−1(

y

k1
)

]
=

µ

σ2

[
1+bc−bG−1

( x

k1

)]

Thus,

∣∣ d

dy
a∗(y)

∣∣≤ µ

σ2

[
1+bc+bG−1

( x

k1

)]
≤ µ

σ2

[
1+bc+bG−1

(xβ

k1

)]
=

µ

σ2

[
1+bc+b

( c∆

∆+1

)]

≤ µ

σ2
(1+2bc).
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Hence, d
dy

a∗(y) is bounded by a constant K. This completes the proof of assertion (a).

Part 2.. By applying Itô to e−(γ+λ )t∧τ∗V (R∗
t∧τ∗), we deduce

e−(γ+λ )t∧τ∗V (R∗
t∧τ∗) =V (x)−

∫ t∧τ∗

0
(γ +λ )e−(γ+λ )sV (R∗

s )ds+
∫ t∧τ∗

0
e−(γ+λ )sa∗(R∗

s )µV ′(R∗
s )ds

+
∫ t∧τ∗

0

1

2
e−(γ+λ )sσ2

(
a∗(R∗

s )
)2

V ′′(R∗
s )ds+

∫ t∧τ∗

0
e−(γ+λ )sσa∗(R∗

s )V
′(R∗

s )dWs.

(4.37)

Since 0 ≤V ′(x)≤ K1, where K1 = max

(
1

yα
,sup0≤x≤xβ

|V ′(x)|, 1
y0

)
, we deduce that

∫ t∧τ∗

0
σ2

(
a∗(R∗

s )
)2

V ′2(R∗
s )ds ≤ σ2K1t,

and hence,
∫ t∧τ∗

0 e−(γ+λ )sσa∗(R∗
s )V

′(R∗
s )dWs is a martingale which implies

E

[∫ t∧τ∗

0
e−(γ+λ )sσa∗(R∗

s )V
′(R∗

s )dWs

]
= 0.

Therefore, by using this equation and taking the expectation of (4.37), we obtain

E

[
e−(γ+λ )t∧τ∗V (R∗

t∧τ∗)

]
=V (x)−E

[∫ t∧τ∗

0
(γ +λ )e−(γ+λ )sV (R∗

s )ds

]
+E

[∫ t∧τ∗

0
e−(γ+λ )sa∗(R∗

s )µV ′(R∗
s )ds

]

+E

[∫ t∧τ∗

0

1

2
e−(γ+λ )sσ2

(
a∗(R∗

s )
)2

V ′′(R∗
s )ds

]
.

=V (x)+E

[∫ t∧τ∗

0
e−(γ+λ )s

(
L

a∗(R∗
s )V (R∗

s )−R∗
s

)
ds

]
, (4.38)

where L a(x)V (x) is given by (4.7). Since, L a∗(y)V (y) = 0 for all y ≥ 0, and in particular for

y = R∗
s , equation (4.38) becomes

E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
=V (x)−E

[∫ t∧τ∗

0
e−(γ+λ )sR∗

s ds

]
,

or equivalently

E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
+E

[∫ t∧τ∗

0
e−(γ+λ )sR∗

s ds

]
=V (x). (4.39)
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The first term on the left hand side of this equation can be written as

E

[
e−(γ+λ )τ∗V (R∗

τ∗)1{τ∗<t}+ e−(γ+λ )tV (R∗
t )1{τ∗≥t}

]
.

Since V (0) = 0, then {τ∗ <+∞} we get R∗
τ∗ = 0. Hence

0 ≤ E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
= E

[
e−(γ+λ )(t)V (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

EV (R∗
t ).

By applying the fact that V (x)≤ x
(γ+λ ) +

µβ
(γ+λ )2 on the last inequality, we get

E

[
e−(γ+λ )(t)V (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

[
E[R∗

t ]

(γ +λ )
+

µβ

(γ +λ )2

]
. (4.40)

However,

E[R∗
t ] = x+E

[∫ t

0
a∗(R∗

s )µds

]
≤ x+µβ t.

By inserting this in (4.40), we get

E

[
e−(γ+λ )(t)V (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

[
x

(γ +λ )
+

µβ t

(γ +λ )
+

µβ

(γ +λ )2

]
. (4.41)

By combining (4.37), (4.3) and (4.41) and taking the t −→+∞, we get

V (x) = E

[∫ τ∗

0
e−(γ+λ )sR∗

s ds

]
.

This completes the proof.

4.4 Graphical illustrations

This section demonstrates the impact of the intensity rate on the reserve critical levels xα and

xβ . These reserve thresholds are indicators that are crucial in estimating the amount of risk the

company can handle along with its current activities.
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It is clear from the graph that both xα and xβ decrease as λ increases in value. This means

that as the intensity rate increases, it is more likely that the company will reach bankruptcy.
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Chapter 5

A dividend model under random horizon

In this chapter we look into the dividend distribution model, as we extend the model intro-

duced in B. Højgaard and M. Taksar [17] by considering a company that is subject to liability

payments of a constant rate δ along with adding a random horizon to the model. Afterwards,

we move on to constructing the HJB equation corresponding to the control problem by adapting

some of the techniques used in T. Choulli, M.Taksar, and X.Y Zhou [6]. Then we present the

explicit solution to this equation along with the optimal policies.

This chapter has four sections. The first section presents the model (mathematically and

economically), defines the objectives in terms of a control problem, and singles out some prelim-

inary analysis for this model. The second section solves explicitly a Hamilton-Jacobi-Bellman

(HJB) associated to the main control problem. The third section determines the optimal policies

for the main control problem, while the last section presents some graphical illustration of the

results.
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A dividend model under random horizon

5.1 The model, the objectives and preliminaries

This section has two subsections, where we introduce the model and derive the properties of

the optimal value function respectively.

5.1.1 Mathematical and economic model

We consider a firm with reserve Rt at any time t, where Rt is a stochastic process satisfying

the following stochastic differential equation.

dRt = (µ −δ )dt +σdWt −dCt , R0 = x. (5.1)

Here the constants µ and σ are positive (i.e., they belong to (0,+∞)) and δ ∈ [0,+∞). The

constant µ represents the reserve rate and σ is the reserve’s volatility, while δ is the liability rate

that the firm is paying. C is a non-decreasing process, that is right continuous with left limits,

representing the aggregate dividends the firm distributes to its shareholders. For a risk exposure

aπ
t at time t and control policy π = (aπ

t ,C
π
t , t ≥ 0), our reserve equation (5.1) becomes

dRπ
t = (aπ

t µ −δ )dt +aπ
t σdWt −dCπ

t , Rπ
0 = x, (5.2)

and the bankruptcy time associated with this reserve is given by

τπ := inf
{

t ≥ 0

∣∣∣ Rπ
t = 0

}
. (5.3)

Here, by convention, we put inf( /0) = +∞.

The model for random horizon. Throughout this chapter, τ is a random time that is independent

of the reserve process R=(Rt , t ≥ 0) (or equivalently F∞ =σ(Wt , t ≥ 0)), and has an exponential
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distribution with mean λ−1, i.e., E[τ] = λ−1. Thus, the survival probability for this random time

is given by

Gt := P(τ ≥ t|Ft) = exp(−λ t), t ≥ 0. (5.4)

We define the return function of an initial reserve x under a control policy π as the total

discounted accumulated dividend distribution from time 0 to the default (random horizon) time

τ or the bankruptcy time τπ (whichever comes first).

The objective. Our objectives consist of finding the optimal return function V , defined below,

and describing the optimal policy π ∈ A such that

V (x) := sup
π∈A

E

[∫ τπ∧τ

0
e−γtdCπ

t

]
= E

[∫ τ∧τπ∗

0
e−γtdCπ∗

t

]
. (5.5)

where A denotes the set of all admissible control policies.

5.1.2 Properties of the value function

This subsection derives some properties of the value function V , that will play important role

in our full construction of this function in the next section.

Proposition 5.1.1. The function V , defined in (5.5), is concave and satisfies

V (x) = sup
π∈A

E

[∫ τπ

0
e−(γ+λ )tdCπ

t

]
and V (0) = 0. (5.6)

Proof. This proof has two parts, part 1 and part 2.

Part 1. The equality in the proposition statement is due to the fact that

E

[∫ τπ∧τ

0
e−γtdCπ

t

]
= E

[∫ τπ

0
e−γtGtdCπ

t

]
= E

[∫ τπ

0
e−(γ+λ )tdCπ

t

]
.
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Here we prove concavity. Put Vπ(x) := E

[
∫ τπ

0 e−(γ+λ )tdCπ
t

]
. Let x1 and x2 two positive initial

reserves and η ∈ (0,1). For any ε > 0 there exist π1 = (aπ1 ,Cπ1) ∈ A (x1) and π2 = (aπ2 ,Cπ2) ∈

A (x2) such that

V (x1)− ε ≤Vπ1
(x1) and V (x2)− ε ≤Vπ2

(x2). (5.7)

Consider the policy πη = (aπη ,Cπη ) given by

aπη (t) := ηaπ1
(t)+(1−η)aπ2

(t) and C
πη
t := ηC

π1
t +(1−η)Cπ2

t . (5.8)

Then the reserve process for πη is given by

Rπη = ηRπ1 +(1−η)Rπ2 ,

whose bankruptcy time is given by

τπη = max(τπ1 ,τπ2).

Now we calculate

ηV (x1)+(1−η)V (x2)− ε ≤ ηVπ1
(x1)+(1−η)Vπ2

(x2) =Vπη (ηx1 +(1−η)x2)

≤V (ηx1 +(1−η)x2).

Since both sides right and left don’t depend on ε , we let ε go to zero and get concavity of V .

Part 2. Here we prove the rest of the statements of the proposition. Remark that for any π ∈ A ,

we have the following

E

[∫ τ∧τπ

0
e−γtdCπ

t

]
= E

[∫ τπ

0
e−γtGtdCπ

t

]
= E

[∫ τπ

0
e−(γ+λ )tdCπ

t

]
.

This proves the first equality in (5.6). If x = 0, then for any π ∈ A , Rπ
0 = 0, and hence τπ = 0

(see its definition in (5.3)). Therefore, in this case of x = 0, we have

V (0) = sup
π∈A

E

[∫ τπ

0
e−(γ+λ )tdCπ

t

]
= 0.
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Proposition 5.1.2. If the function V , defined by (5.5), is twice continuously differentiable, then it

satisfies the following HJB equation

0 = max

[
max

0≤a≤1

(
a2σ2

2
V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)

)
,1−V ′(x)

]
, x ≥ 0. (5.9)

Proof. Similar to Chapter 3, the function V , defined by (5.5) can be transformed into (5.6) by

using Proposition 5.1.1. Hence, the resulting value function is the same as the one introduced in

T. Choulli, M.Taksar, and X.Y Zhou [6] with the only difference is a larger discount factor that

results from adding λ to γ . Therefore, the proof of the HJB follows by adapting the same method

as in [6]. This ends the proof of the proposition.

Throughout this chapter, we consider the following reserve threshold

xD := inf{x ≥ 0 : V ′(x)≤ 1}, (5.10)

where by convention we put inf(φ) = +∞.

Proposition 5.1.3. If δ ≥ µ , then

V (x) = x, for all x ≥ 0.

Proof. Suppose that δ ≥ µ . Then we have

a2σ2

2
V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)< 0,

for any a ∈ [0,1] and any x > 0. Hence, the HJB equation (5.9) reduces to

V ′(x) = 1, for all x > 0.
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This implies that xD = 0, and by integrating the above equation and using V (0) = 0, we deduce

that V (x) = x, ∀x ≥ 0. This proves the lemma.

Then, for the case when δ < µ , we state the following proposition.

Proposition 5.1.4. Suppose δ < µ . Then xD > 0, and the function V solution to (5.9) satisfies

V (x) = x− xD +V (xD), if x ≥ xD, (5.11)

and

0 = max
0≤a≤1

(
a2σ2

2
V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)

)
, if 0 ≤ x < xD. (5.12)

Proof. Due to (5.9), it is clear that V ′(x)≥ 1, for all x ≥ 0. Since V is concave (see Proposition

5.1.1), which implies that V ′ is decreasing, we get

1 ≤V ′(x)≤V ′(xD) = 1, for all x ≥ xD.

This implies that V ′(x) = 1, for all x ≥ xD, and (5.11) follows immediately.

The rest of this proof deals with proving (5.12). From the definition of xD (see (5.10)), we get

V ′(x)> 1, for all 0 ≤ x < xD.

Hence, for x ∈ [0,xD), (5.9) becomes

max
0≤a≤1

(
a2σ2

2
V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)

)
= 0, 0 ≤ x < xD.

This proves the lemma.
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5.2 Construction of the smooth solution to the HJB (5.9)

Consider the maximizer function, a(x), defined by

a(x) := argmax
a∈R

L
aV (x), (5.13)

where

L
aV (x) :=

1

2
a2σ2V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x), for all a ∈ R. (5.14)

Since a(x) will play a key role in our analysis, we start deriving some of its properties in the

following lemma.

Lemma 5.2.1. Suppose δ < µ . Then the following assertions hold.

(a) For all x ≥ 0,

a(x) =− µV ′(x)
σ2V ′′(x)

≥ 0. (5.15)

(b) For any 0 ≤ x < xD,

a(x)≥ 2δ

µ
+

2(γ +λ )V (x)

µV ′(x)
.

(c) For x ≥ 0 such that a(x)≤ 1, we have

a(x) =
2δ

µ
+

2(γ +λ )V (x)

µV ′(x)
, 0 ≤ x < xD.

(d) It holds that

a(0) =





2δ
µ if δ < µ

2
,

µ
2(µ−δ ) if δ ≥ µ

2
.
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Proof. This proof is divided into four parts, where we prove the four assertions of the lemma

separately.

Part 1 Since a(x) is the maximizer of L aV (x), then it is the root to

∂

∂a
(L aV (x)) = aσ2V ′′(x)+µV ′(x) = 0.

This together with V ′′(x)< 0 and V ′(x)≥ 1, implies (5.15).

Part 2. By using (5.15), we derive

max
a∈R

L
aV (x) = L

a(x)V (x)

=
1

2

[
− µV ′(x)

σ2V ′′(x)

]2

σ2V ′′(x)+

[
− µV ′(x)

σ2V ′′(x)

]
µV ′(x)−δV ′(x)− (γ +λ )V (x)

=− µ2V ′2(x)
2σ2V ′′(x)

−δV ′(x)− (γ +λ )V (x)

=
µ

2
V ′(x)a(x)−δV ′(x)− (γ +λ )V (x)

=
µV ′(x)

2

(
a(x)− 2δ

µ
− 2(γ +λ )V (x)

µV ′(x)

)
. (5.16)

By combining this equation with the facts that

max
a∈R

L
aV (x)≥ max

0≤a≤1
L

aV (x) = 0, for 0 ≤ x ≤ xD,

and V ′(x)≥ 1 > 0, assertion (b) follows immediately.

Part 3. Due to (5.12), for x ≥ 0 such that a(x)≤ 1, we derive

max
a∈R

L
aV (x) = max

0≤a≤1
L

aV (x) = 0, for all 0 ≤ x < xD.

Then a combination of this with (5.16) implies assertion (c).

Part 4. This part of the proof focuses on calculating a(0). To this end, we put

ã := arg max
0≤a≤1

L
aV (0),
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and derive

0 = L
ãV (0) =

ã2σ2

2
V ′′(0)+(ãµ −δ )V ′(0) = σ2V ′′(0)

(
ã2

2
− ãa(0)+

δ

µ
a(0)

)
. (5.17)

This is equivalent to

ã2 −2ãa(0)+
2δ

µ
a(0) = 0, (5.18)

since V ′′(0)< 0, and hence

(ã−a(0))2 = a(0)(a(0)− 2δ

µ
).

1) Suppose that a(0) ≤ 1. Then, ã = a(0), and hence, either ã = a(0) = 0 or ã = a(0) = 2δ
µ .

From (5.16) and V ′(0) ≥ 1, we deduce that a(0) > 0 when δ > 0 and hence ã = a(0) = 2δ
µ as

soon as a(0)≤ 1.

2) If a(0) > 1, then ã = 1, and hence we get 1− 2a(0) + 2δ
µ a(0) = 0. This is equivalent to

a(0) = µ/2(µ − δ ). However, this is possible only if δ > µ/2. Therefore, we conclude that

when δ < µ/2, we have a(0) ≤ 1 and hence, a(0) = 2δ/µ on one hand. On the other hand,

when δ > µ/2, we get a(0) = µ/2(µ −δ )≥ 1. This ends the proof of the lemma.

This lemma obviously tells us that the solution to the HJB equation (5.9) depends heavily on

the ratio 2δ/µ . This leads to two subsections where the two cases whether 2δ/µ is less that one

or not will be discussed in details.

5.2.1 The case when
µ
2
≤ δ < µ

Thanks to Lemma 5.2.1-(b), in this case, we get a(x)≥ 2δ
µ ≥ 1, and hence

max
0≤a≤1

L
aV (x) = L

1V (x) = 0, if 0 ≤ x ≤ xD.
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By solving this equation, we obtain

V (x) =C2er+(x−xD)+C3er−(x−xD), if 0 ≤ x ≤ xD, (5.19)

where C2 and C3 are free parameters to be determined, and r± are given by

r± =
−(µ −δ )±

√
(µ −δ )2 +2(γ +λσ2)

σ2
.

To calculate the constants C2 and C3, we use the relations V ′(xD) = 1 and V ′′(xD) = 0, which are

equivalent to

C2r++C3r− = 1 and C2r2
++C3r2

− = 0.

By solving these two equations, we get

C2 =− r−
r+(r+− r−)

, and C3 =
r+

r−(r+− r−)
. (5.20)

To calculate xD, we use the fact that V (0) = 0, which implies that

C2e−r+xD +C3e−r−xD = 0.

This is equivalent to

e(r+−r−)xD =−C2

C3
=
(r−

r+
)2,

and hence, we get

xD =
1

r+− r−
ln

((r−
r+

)2

)
.

This proves the following theorem.

Theorem 5.2.1. If µ/2 ≤ δ < µ , then the smooth solution to (5.9) is given by

V (x) =





− r−
r+(r+−r−)

er+(x−xD)+ r+
r−(r+−r−)

er−(x−xD), if 0 ≤ x ≤ xD,

x− xD + 1
r−

+ 1
r+
, if x > xD,
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where

xD :=
1

r+− r−
ln

((r−
r+

)2

)
(5.21)

and

r± =
−(µ −δ )±

√
(µ −δ )2 +2(γ +λ )σ2

σ2
. (5.22)

5.2.2 The case of small liability rate such that δ < µ
2

In this case, we start analyzing the maximizer function a(x) defined in (5.13). To this end,

we need the following notation. Consider the following function

F(u) = u+ c ln(u− c), u > c. (5.23)

It is clear that F is strictly increasing (since F ′(u) = 1+c/(u−c)> 0, for u> c), is continuous on

(c,+∞), F(c+)=−∞ and F(+∞) =+∞. This proves that F : (c,+∞)→ F(c,+∞) = (−∞,+∞)

is invertible.

Lemma 5.2.2. Suppose that δ < µ
2

and let F be given in (5.23). Then , we have

a(x) = F−1

(
µ2 +2(γ +λ )σ2

µσ2
x+F

(
2δ

µ

))
, if 0 ≤ x ≤ xR, (5.24)

where

xR :=
µσ2

µ2 +2(γ +λ )σ2

[
F

(
1

)
−F

(
2δ

µ

)]
< xD. (5.25)

Proof. Thanks to Lemma 5.2.1-(a) we have

V ′′(x) =−µV ′(x)
σ2a(x)

. (5.26)
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By substituting this equation back in L a(x)V (x) = 0, we get

1

2
a2(x)σ2

[
− µV ′(x)

σ2a(x)

]
+(a(x)µ −δ )V ′(x)− (γ +λ )V (x) = 0.

Since our case here is the case when δ < µ/2, we have a(0) = 2δ/µ (see Lemma 5.2.1) and

a(x) is continuous, then in a neighborhood of zero, we have

a(x)µ

2
V ′(x) = δV ′(x)+(γ +λ )V (x).

By differentiating both sides of the above equation, we get

µ

2

[
a′(x)V ′(x)+a(x)V ′′(x)

]
= δV ′′(x)+(γ +λ )V ′(x).

By inserting a(x) =−µV ′(x)/(σ2V ′′(x)) in this equation, we obtain

a′(x)V ′(x)+a(x)

(
− µV ′(x)

σ2a(x)

)
=

2δ

µ

(
− µV ′(x)

σ2a(x)

)
+

2(γ +λ )

µ
V ′(x),

which implies

a′(x) =
µ2 +2(γ +λ )σ2

µσ2
− 2δ

σ2a(x)
.

This is equivalent to

a′(x) =
µ2 +2(γ +λ )σ2

µσ2

(
1− c

a(x)

)
where c :=

2δ µ

µ2 +2(γ +λ )σ2
.

Since a(x) ≥ 2δ/µ > c, for all x ∈ [0,xD] (see Lemma 5.2.1-(b) for details), by integrating the

above equation, we get

a(x)+ c ln(a(x)− c)−a(0)− c ln(a(0)− c) =
µ2 +2(γ +λ )σ2

µσ2
x. (5.27)

By using the notation in (5.23), this equation becomes

F

(
a(x)

)
=

µ2 +2(γ +λ )σ2

µσ2
x+F

(
2δ

µ

)
.

It is clear that a(x) is increasing (since F−1 is increasing) and takes the value 1 at xR, which

solution to the equation a(xR) = 1. This leads to (5.25) and (5.24). This proves the lemma.
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Now, we state our solution to the HJB (5.9), when δ < µ/2, in the following.

Theorem 5.2.2. Suppose that δ < µ/2. Then the smooth solution to the HJB (5.9) is given by

V (x) =





C1

(
2δ
µ − c

) µ

σ2K
∫ x

0

(
F−1(Kt +∆)− c

)− µ

σ2K dt, if 0 ≤ x ≤ xR

− r−
r+(r+−r−)

er+(x−xD)+ r+
r−(r+−r−)

er−(x−xD) if xR < x ≤ xD

x− xD − r−
r+(r+−r−)

+ r+
r−(r+−r−)

if x > xD

where r± are given by (5.22),

C1 =
1− c

(2δ
µ − c)(r+− r−)

(
r+er−(xR−xD)− r−er+(xR−xD)

)
, (5.28)

K :=
µ2 +2(γ +λ )σ2

µσ2
, ∆ :=

2δ

µ
+ c ln

(2δ

µ
− c

)
, c :=

2δ µ

µ2 +2(γ +λ )σ2
, (5.29)

and

xD := xR −
1

r+− r−
ln

(
r+(r−+ µ

σ2 )

r−(r++ µ
σ2 )

)
, xR :=

1

K

[
F

(
1

)
−∆

]
. (5.30)

Proof. From (5.15), we have

V ′′(x)
V ′(x)

=− µ

σ2

1

a(x)
.

Then, by inserting (5.24) in this equation and integrating the resulting equation afterwards, we

obtain

ln
(
V ′(x)

)
=− µ

σ2

∫ x

0

1

F−1

(
Kt +∆

)dt +C.

Consider the change of variable F−1

(
Kt+∆

)
= y. Then Kt+∆ = F(y) and Kdt = F ′(y)dy. By

substituting back in the above equation, we get

ln
(
V ′(x)

)
=− µ

σ2K

∫ F−1(Kx+∆)

F−1(∆)

dy

y− c
+C.
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This implies that

ln
(
V ′(x)

)
= ln

[
F−1(Kx+∆)− c

F−1(∆)− c

]− µ

σ2K

+C,

or equivalently

V ′(x) =C1

[
F−1(∆)− c

F−1(Kx+∆)− c

] µ

σ2K

,

where C1 is a positive constant to be determined. By integrating again, we obtain

V (x) =C1

(
F−1(∆)− c

)p ∫ x

0

dt[
F−1(Kt +∆)− c

]p where p :=
µ

σ2K
.

This proves the theorem for x ∈ [0,xR]. If xR < x ≤ xD, then a(x)≥ 1 and hence the maximum of

L aV (x) is attained at a = 1. Thus, the HJB (5.9), in this case reduces to the following ODE

σ2

2
V ′′(x)+(µ −δ )V ′(x)− (γ +λ )V (x) = 0.

The solution to this ODE is given by

V (x) =C2er+(x−xD)+C3er−(x−xD), if xR < x ≤ xD,

where r± are given by (5.22). To calculate the constants C2 and C3, we use V ′(xD) = 1 and

V ′′(xD) = 0. These are equivalent to

C2r++C3r− = 1 , C2r2
++C3r2

− = 0.

By solving these two equations, we get

C2 =− r−
r+(r+− r−)

, C3 =
r+

r−(r+− r−)
. (5.31)

To calculate xD we use the continuity of V ′ and V ′′ at xR, in other words, we use

V ′(xR−) =V ′(xR+), and V ′′(xR−) =V ′′(xR+).
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These equations with the fact that a(xR) =−µV ′(xR−)/σ2V ′′(xR−) = 1, leads to

C2r+er+(xR−xD)+C3r−er−(xR−xD) =−σ2

µ

(
C2r2

+er+(xR−xD)+C3r2
−er−(xR−xD)

)
.

This is equivalent to

C2r+(1+
σ2r+

µ
)e(r+−r−)(xR−xD) =−C3r−(1+

σ2r−
µ

),

and by combining this equation with (5.31), the first equation in (5.30) follows. The constant C1

can be obtained by using the continuity of V ′ at xR (or equivalently V ′(xR−) =V ′(xR+)). Hence

C1

(
F−1(∆)− c

)p

(F−1(KxR +∆)− c)p
=−r−er+(xR−xD)

(r+− r−)
+

r+er−(xR−xD)

(r+− r−)
.

By combining the value of xR from (5.30) and F−1(∆) = 2δ
µ we obtain F−1(KxR +∆) = 1 and

hence we get (5.28). This ends the theorem.

5.3 Optimal policy and the verification theorem

In this section, we construct the optimal control policy based on the solution of the HJB

equation obtained in the previous section. For each x ≥ 0, we define

a∗(x) := arg max
0≤a≤1

(
1

2
a2σ2V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x)

)
. (5.32)

The function a∗(x) represents the optimal feedback control function for the control component

aπ
t , t ≥ 0. More precisely, the value a∗(x) is the optimal risk that one should take when the value

of the current reserve is x. Thanks to the previous section, we get the following.
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Proposition 5.3.1. Suppose that δ < µ . Let the functions F and a∗ be defined in (5.23) and

(5.32) respectively. Then the following assertions hold.

(a) If δ ≥ µ
2

, then a∗(x) = 1, for all x ≥ 0.

(b) If δ < µ
2

, then

a∗(x) =





F−1

(
µ2+2(γ+λ )σ2

µσ2 x+F

(
2δ
µ

))
, if x ≤ xR,

1, if x > xR.

where

xR =
µσ2

µ2 +2(γ +λ )σ2

[
F

(
1

)
−F

(
2δ

µ

)]
.

Proof. Since our V is twice continuously differentiable, V ′(x) > 0, and V ′′(x) < 0 for all x ≥ 0.

Then for any x ∈ [0,+∞), as a function of a ∈ R, the following

L
aV (x) =

σ2a2

2
V ′′(x)+(aµ −δ )V ′(x)− (γ +λ )V (x),

is a concave function with a maximum attained at a(x). Furthermore, it is increasing on [0,a(x)]

and decreasing on [a(x),+∞). Therefore, when 2δ
µ ≥ 1, that implies a(x)≥ 1, we get a∗(x) = 1,

on the one hand. On the other hand, when 2δ
µ < 1, we get a(x) < 1 for x < xR and a(x) ≥ 1 for

x ≥ xR. Thus, similarly as above, this implies

a∗(x) = a(x) = F−1

(
µ2 +2(γ +λ )σ2

µσ2
x+F

(
2δ

µ

))
, x ≤ xR

and a∗(x) = 1 for x > xR. This completes the proof.

Theorem 5.3.1. The reflecting stochastic differential equation

dR =
(
a∗(Rt)µ −δ

)
dt +a∗(Rt)σdWt −Ct , R0 = x,

Rt ≤ xD,
∫ +∞

0
1{Rs<xD}dCs = 0, (5.33)

has a unique solution that we denote by (R∗,C∗).
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Proof. Remark that by putting Xt := xD −Rt for t ≥ 0, (5.33) becomes

dXt =−
(
a∗(xD −Xt)µ −δ

)
dt −a∗(xD −Xt)σdWt +Ct , X0 = x

Xt ≥ 0,
∫ +∞

0
1{Xs>0}dCs = 0.

Thanks to Theorem 2.3.2, to prove that the reflecting SDE has a unique solution, it is enough to

prove that the coefficients of the SDE satisfy the following Lipschitz and growth conditions

|a∗(x1)−a∗(x2)| ≤ K|x1 − x2|, |a∗(x)| ≤ K(1+ |x|). (5.34)

The growth condition is a consequence of the Lipschitz condition and by taking x1 = x and x2 = 0.

Hence

|a∗(x)| ≤ |a∗(0)|+K1|x| ≤ max(1,K1)(1+ |x|).

In the remaining part of the proof, we focus on proving that the Lipschitz condition hold for

different levels of x1 and x2 compared with the threshold xR. For x1,x2 > xR, we get a∗(x1) =

a∗(x2) = 1 and hence (5.34) is satisfied.

Remark that the cases when x1 > xR and x2 ≤ xR, and when x1 ≤ xR and x2 > xR reduce to

x1,x2 ≤ xR since a∗ is a constant over [xR,+∞). For the case when x1 and x2 belong to [0,xR] we

use Taylor’s expansion, and derive

|a∗(x1)−a∗(x2)|= |(x1 − x2)
d

dy
a∗(y)|,

where y = αx1 +(1−α)x2 for some α ∈ (0,1). Therefore, it is enough to show that d
dy

a∗(y) is

bounded over [0,xR]. To this end, we calculate d
dy

a∗(y)

∣∣da∗(y)
dy

∣∣= 2δ

σ2c

∣∣∣∣1−
c

a∗(y)

∣∣∣∣, where c =
2δ µ

µ2 +2(γ +λ )σ2
.
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Since a∗(y) is an increasing function and a∗(y) ≥ 2δ/µ , we deduce that a∗(y)− c ≥ 2δ/µ − c.

Hence,
∣∣da∗(y)

dy

∣∣= 2δ

σ2c

∣∣∣∣1−
c

a∗(y)

∣∣∣∣≤
2δ

σ2c

(
1+

∣∣ c

a∗(y)

∣∣
)
≤ 2δ

σ2c

(
1+

cµ

2δ

)
.

This ends the theorem.

Theorem 5.3.2. Let V be the concave and twice continuously differentiable solution of the HJB

equation (5.9), and (R∗
t ,C

∗
t ; t ≥ 0) be a solution to the Skorokhod problem (5.33). Then π∗ =(

a∗(R∗
t ),C

∗
t ; t ≥ 0

)
is the optimal policy and

E

[∫ τ∗

0
e−(γ+λ )tdC∗

t

]
=V (x), ∀x ≥ 0, (5.35)

where

τ∗ = inf{t ≥ 0 : R∗
t = 0}.

Proof. By applying Itô to e−(γ+λ )t∧τ∗V (R∗
t∧τ∗), we deduce

e−(γ+λ )t∧τ∗V (R∗
t∧τ∗) =V (x)−

∫ t∧τ∗

0
(γ +λ )e−(γ+λ )sV (R∗

s )ds+
∫ t∧τ∗

0
e−(γ+λ )s

(
a∗(R∗

s )µ −δ

)
V ′(R∗

s )ds

+
∫ t∧τ∗

0

1

2
e−(γ+λ )sσ2

(
a∗(R∗

s )
)2

V ′′(R∗
s )ds+

∫ t∧τ∗

0
e−(γ+λ )sσa∗(R∗

s )V
′(R∗

s )dWs

−
∫ t∧τ∗

0
e−(γ+λ )sV ′(R∗

s−)dC∗
s + ∑

0<s≤t∧τ∗
e−(γ+λ )s

[
V (R∗

s )−V (R∗
s−)−V ′(R∗

s−)∆R∗
s

]
.

(5.36)

Since 0 ≤ V ′(x) ≤ K1, where K1 = max

(
C1,r+

(
1

r++
µ

σ2

)(
r+(r−+µ/σ2)
r−(r++µ/σ2)

)r−/(r+−r−)

,1

)
, we de-

duce that
∫ t∧τ∗

0
σ2

(
a∗(R∗

s )
)2

V ′2(R∗
s )ds ≤ σ2K1t,
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and hence,
∫ t∧τ∗

0 e−(γ+λ )sσa∗(R∗
s )V

′(R∗
s )dWs is a martingale which implies

E

∫ t∧τ∗

0
e−(γ+λ )sσa∗(R∗

s )V
′(R∗

s )dWs = 0.

Therefore, by using this equation and taking the expectation in both sides of (5.36), we obtain

E

[
e−(γ+λ )t∧τ∗V (R∗

t∧τ∗)

]
=V (x)

+E

[
e−(γ+λ )s

(
1

2
σ2

(
a∗(R∗

s )
)2

V ′′(R∗
s )+

(
a∗(R∗

s )µ −δ
)
V ′(R∗

s )− (γ +λ )V (R∗
s )

)
ds

]

+E

[
−

∫ t∧τ∗

0
e−(γ+λ )sV ′(R∗

s−)dC∗
s + ∑

0<s≤t∧τ∗
e−(γ+λ )s

(
V (R∗

s )−V (R∗
s−)−V ′(R∗

s−)∆R∗
s

)]
,

(5.37)

where we recall

L
aV (y) =

σ2a2

2
V ′′(y)+(aµ −δ )V ′(y)− (γ +λ )V (y), a ≥ 0,x ≥ 0.

Since, L a∗(y)V (y) = 0 for all y ≥ 0, and in particular for y = R∗
s , this implies that

E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
=V (x)

+E

[
−

∫ t∧τ∗

0
e−(γ+λ )sV ′(R∗

s−)dC∗
s + ∑

0<s≤t∧τ∗
e−(γ+λ )s

(
V (R∗

s )−V (R∗
s−)−V ′(R∗

s−)∆R∗
s

)]
,

(5.38)

Since V ′(x) = 1 for all x ≥ xD and dC∗
s = 1{R∗

s=xD}dC∗
s , then

V (R∗
s )−V (R∗

s−) =V (R∗
s )−V (R∗

s +∆C∗
s ) =V (xD)−V (xD +∆C∗

s ) = xD − (xD +∆C∗
s ) =−∆C∗

s .

(5.39)

Using a similar argument, we get

V ′(R∗
s−)∆R∗

s =V ′(R∗
s −∆R∗

s )∆R∗
s =−V ′(R∗

s +∆C∗
s )∆C∗

s =−V ′(xD +∆C∗
s ) =−∆C∗

s . (5.40)
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Further,

∫ t∧τ∗

0
e−(γ+λ )sV ′(R∗

s−)dC∗
s =

∫ t∧τ∗

0
e−(γ+λ )sV ′(R∗

s +∆C∗
s )dC∗

s

=
∫ t∧τ∗

0
e−(γ+λ )sV ′(xD +∆C∗

s )dC∗
s

=
∫ t∧τ∗

0
e−(γ+λ )sdC∗

s . (5.41)

By combining (5.38), (5.39), (5.40) and (5.41), we deduce

E

[
e−(γ+λ )t∧τ∗V (R∗

t∧τ∗)

]
+E

[∫ t∧τ∗

0
e−(γ+λ )sdC∗

s

]
=V (x). (5.42)

The first term on the left hand side of this equation can be written as

E

[
e−(γ+λ )τ∗V (R∗

τ∗)1{τ∗<t}+ e−(γ+λ )tV (R∗
t )1{t≤τ∗}

]
.

A combination of this with the fact that V (0) = 0 and on {τ∗ <+∞}, R∗
τ∗ = 0 P-a.s, we get

0 ≤ E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
= E

[
e−(γ+λ )tV (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )t

E

[
V (R∗

t )

]
.

By applying the fact that V (x) ≤ K1x on the last inequality (where V (x) = xV ′(ηx) by using

Taylor, and V ′(x)≤ K1), we get

0 ≤ E

[
e−(γ+λ )(t∧τ∗)V (R∗

t∧τ∗)

]
= E

[
e−(γ+λ )tV (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )tK1E

[
R∗

t

]
. (5.43)

However,

E[R∗
t ] = x+E

[∫ t

0

(
a∗(R∗

s )µ−δ
)
ds

]
−E

[∫ t

0
dC∗

s

]
≤ x+E

[∫ t

0

(
a∗(R∗

s )µ−δ
)
ds

]
≤ x+(µ−δ )t.

By inserting this in (5.43), we get

E

[
e−(γ+λ )tV (R∗

t )1{τ∗≥t}

]
≤ e−(γ+λ )tK1

[
x+(µ −δ )t

]
. (5.44)

By combining (5.43) and (5.44) and taking the t −→ +∞, we get (5.35). Thanks to (5.35) and

(5.33) it is obvious that π∗ = (a∗(R∗
t ), t ≥ 0) is the optimal policy and R∗ is the optimal cash

reserve that corresponds to it.
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5.4 Graphical illustrations

In this section we present visualization of the sensitivity analysis of the optimal dividend

distribution model discussed in this chapter. Here we illustrate the affects of the parameters λ

and δ on the optimal return function and the threshold levels of taking full risk and distribution

of dividends xR and xD respectively. For more details on the interplay of the other parameters,

we refer the reader to [15] and [17].

As the graph illustrates, the optimal return function has a sharp reaction to the change of the

intensity rate. It decreases and becomes less concave as the intensity rate λ increases.
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Similar to the model in Chapter 3, the increase in liability rate has the affects of decreasing

the optimal the optimal return function as well as making it looks less concave.
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As it is shown in this graph, both threshold levels of full risk and dividend distribution xR and

xD respectively decrease when δ increase.
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Presented above, it is clear that the threshold levels xR and xD sharply decrease as the intensity

rate λ increases.
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