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Abstract

Exposure to air pollution has become an exceedingly inescapable part of urban
living. An important facet of the control and abatement of urban air pollution (UAP) is
the use of modelling. Current modelling techniques generally use mathematics to
describe transport and dispersion mechanisms of pollutants, and predict their levels at
given locations away from a source. However, due to mathematical constraints, these
models have limited success in dealing with complex airsheds containing many point and

non-point sources of UAP.

Artificial Neural Network (ANN) modelling is a technique that effectively models
non-linear type processes, such as those governing complex urban air pollution situations.
The objective of this study was to investigate the use of ANN to model UAP, namely
oxides of nitrogen, in the Strathcona Industrial Area, east of the City of Edmonton. This
study found that ANN is a promising and effective technique for modelling hourly oxide

of nitrogen fluctuations in an urban environment.
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1.0 Introduction

1.1  Thesis Organisation

This document reports on the feasibility of using of Artificial Neural
Networks to model urban air pollution in the form of hourly oxides of nitrogen in the
Strathcona Industrial Area of the City of Edmonton. It is split into 5 major sections.
In the first section a brief introduction of this topic is given. The second section
contains a detailed literature review analysing facets of urban air pollution (UAP)
and Artificial Neural Network (ANN) modelling. It also contains information from
literature pertaining more specifically to aspects of the problem at hand. The third
section looks at the detailed modelling process of this study, outlining the methods
used in the different stages of modelling. The fourth section of this document
discusses a sensitivity analysis of the developed model. The fifth section provides

general conclusions as well as recommendations for future research in the area.

1.2 Project Background and Summary

The modelling of UAP is an important facet of air pollution control and
abatement. Models provide a means of predicting and forecasting measures of urban
air quality. Current techniques used for modelling UAP use dispersion
characteristics of pollutants to predict pollutant levels at locations away from defined
sources. They work well in relatively simple situations with few sources in
consideration. However it is very difficult for these models to handle the

mathematics in an airshed with many point and non-point sources of UAP.

This study investigates and presents the results of applying ANN modelling
to an airshed in the City of Edmonton, Alberta. The airshed comprises of an area



containing industries such as oil refineries and power plants, and a residential zone.
The Strathcona Industrial Association (SIA), consisting of ten industry members, has
monitored air quality in and around the airshed since 1979. Currently, seven
continuous air monitoring stations and twenty-one static air monitoring stations are
operated by the SIA, and they measure many common air quality indicators,
including NO, (oxides of nitrogen). Hourly NO, was chosen to be the output
parameter for this study because data are readily available and it has diverse sources,
principally from the transportation and industrial sectors. Of particular interest to
this study was attempting to determine the influence of traffic volumes in the airshed

on observed hourly NOy levels.

The reproduction of NO, concentrations by the model requires a vari :ty of
input data to be evaluated over the same time period. This includes local
meteorological data (wind speed, wind direction, atmospheric stability, temperature),
industrial emission data, and local traffic flow data in the airshed. Meteorological
data sets were available from Environment Canada monitoring stations, industrial
emission data were available from SIA members, and traffic flow data were available
from the City of Edmonton Transportation Department and the County of Strathcona
Engineering and Environmental Planning Department.

ANN modelling is a technique that offers advantages in modelling non-linear
type processes such as those that govern complex urban air pollution situations.
ANN modelling uses historical data and then extrapolates and "learns" the pattemns
that occur between given inputs and outputs of the model. The method is a “black-
box™ method, where equations describing the complex situations are not known or
required. Therefore, ANN may be suitable for air pollution modelling of situations

where the governing equations are too complex to solve or expensive to derive.



1.3 Research Objectives

The main objective of this study was to assess the feasibility of using ANN to
model UAP in the Strathcona Industrial Area. As part of this objective, another
objective of this study was to apply ANN modelling to reproduce ambient hourly
NOx concentrations measured at a selected monitoring station in the Strathcona
Industrial area. The ANN model developed provided a mapping between model
input parameters (the parameters that affect the hourly NO, concentration at a
monitoring station) and the hourly NO, concentration reported at the monitoring
station. The study modelled hourly NO concentrations so that distinct variations of
levels during a day could be seen. The last objective of this study was to use the
results of the ANN model to provide a means of evaluating the effect of proposed
control measures on urban air quality in the monitored area. Specifically, a
sensitivity analysis was done to evaluate how sensitive hourly NOy readings in the
area were to motor vehicle traffic counts on roadways directly adjacent to the air

monitor.



2.0 Literature Review

2.1 Organisation of Literature Review

This literature review comprises of three main areas: ANN modelling, UAP,
and an investigation of information more specific to the study at hand. As an aside,
it is noted that there were very few references that encompassed both ANN
modelling and UAP at the same time, as the application of ANN modelling to UAP
is a relatively new undertaking.

The literature review of ANN modelling had to be general as well as specific
to environmental engineering applications. Topics such as a history of ANN, general
artificial intelligence modelling, types of learning and training in ANN models, and
designing with various model architectures were all examined. Successful

applications of ANN modelling were also investigated.

In exploring UAP for the purposes of this literature review, it was important
to search out general information as well as information specific to the Edmonton
region. Topics such as a history of UAP, measures of UAP, natural and
anthropogenic sources of UAP, and current modelling techniques were all

investigated.

Finally, the literature review contains information specific and pertinent to
this study. Topics such as the selection of an appropriate output parameter, selection
of model input parameters, and climatological and meteorological data for the City
of Edmonton were all investigated.



2.2  Artificial Neural Network Modelling

2.2.1 General Overview

Artificial Neural Network (ANN) modelling is a technique that falls in the
subset of Artificial Intelligence (AI) modelling. AI modelling has come to the
forefront as a viable modelling technique in many areas. Al systems have three
general subsets, and those are knowledge based (expert) systems, fuzzy-logic
systems, and the aforementioned ANN systems.

The knowledge based or expert systems use an external human judgement
skill pool to determine a set of rules. These rules are then followed to solve the
situations that are demonstrated in the data set. Typically then, the set of rules is
quite site specific making transference to another problem or site quite difficult. The
fuzzy-logic technique encodes an ambiguity into the decision making process and
composes inferences from the data set based on the fuzzy logic procedure. In other

words, a fact need not be true or false, but it can be mostly true or mostly false.

ANN models show strength in solving non-linear processes efficiently,
accurately, and rapidly (Rege and Tock, 1996). Resurgence in the application of
ANN modelling techniques is currently in progress, in various fields of civil
engineering and many other areas (Garrett, 1992). The ANN technique is unique in
that is simulates the learning process that takes place inside the human brain in an
effort to learn patterns directly from the data set. The key facet of ANN models that
makes them desirable is their ability to learn patterns from a data set and apply these
patterns to accurately forecast future events. An ANN model comprises of
interconnected neuron-type processing units. These neurons, known as perceptrons,
function on recognition of patterns in a data set through use of computations such as

threshold logic and summation (Zhang, 1996). Once interconnected with each other,



the result is a highly powerful processor with the ability to self-organise and to learn

from an extensive data set.

ANN models work differently than traditional urban air models, which are
based on mathematics or statistical methods. ANN models are essentially
nonparametric regression models, or “black box” models. ANN models are not
programmed, nor do they have set functions that attempt to approximate real-life
situations. They learn directly from historical data, analysing the relationships
between the inputs and the outputs of the situation at hand. They require significant
knowledge on the factors that impact the process being modelled. Once the model
has leamned from the historical data, it can then be applied to forecast future events.

ANN models offer advantages over other current modelling techniques due to
their rapid information processing, and their ability to construct 2 map between the
input factors and the output factors initially fed into the network. This mapping not
only provides a means for forecasting, it also gives a general idea of how important

each of the inputs is to the model.

It is important to recognise that ANN models work best in certain situations,
but may not be applicable in others. Successful applications of ANN modelling tend

to fall in the following areas:

1) The algorithm to solve the problem is unknown, complex, or expensive to
discover.

2) The heuristics or rules that are required to solve the problem are unknown or
difficult to express.

3) There is a good base of data (in terms of quality and quantity) available for the

given problem.



Some areas where ANN may not be applicable are:

1) Linear problems for which it would be much faster and easier to solve the
problem using linear problem solving techniques.

2) Problems where it is unknown as to what inputs may be affecting the output.

3) Those problems which need precise mathematical computation. It is important to
remember that ANN modelling can be seen as a black-box type approach. No
information about the mathematics behind the effect of the inputs on the outputs is

known.

ANN applications are abundant in the realm of the stock market and are just
now gaining acceptance into engineering, and in particular, environmental
engineering. There are many examples of ANN applications in environmental
engineering. Rege and Tock (1996) applied ANN modelling to estimate emission
rates of H;S and NH; from point sources. Boznar et al. (1993) used ANN modelling
for short term predictions of ambient SO, concentration in highly polluted industrial
areas in Slovenia. Zhang (1996) applied ANN modelling to the field of water
treatment.

2.2.2 ANN Model Components

ANN models essentially consist of perceptrons and the interconnections
between them. The weights of the interconnections between the neurons or
perceptrons modify inputs into each of them (Daniell, 1991). A simple neural
network is conceptually composed of perceptrons organised into an input layer,

hidden layer(s), and an output layer. A simple neural network is shown in Figure 1:



Figure 1. Schematic of a Simple Artificial Neural Network (modified from Zhang,
1996)

Error Backpropagation

The input layer is where the data are brought into the model. The data are
transformed into an input pattern that can then be used by the hidden layer(s). The
hidden layer(s) are where the majority of processing is done. The hidden layer(s)
then transfer a new pattern to the output layer, which in tumn creates an output

pattern.



2.2.3 Learning and Training an ANN Model

There are two distinct learning techniques that can be used by ANN models.
One is known as supervised learning, and the other is known as unsupervised
learning. In supervised leamning, input and actual output data are available for
learning. This means that there is a set of input data and a set of actual output data,
and the model can adjust itself and predict the output values based on the input
values. The output pattern from the model can be used to readjust the input pattern
to help the model improve its predictive ability. The model therefore learns from
itself and readjusts itself so as to get closer to the actual output values. In
unsupervised learning, there are no available actual output values, so the model must
make guesses and categories based on the inputs (Zhang, 1996). In other words,
outputs are generated by the network during the course of training (Daniell, 1991).
This type of learning has limited applications in most engineering problems. As data
are available for the output parameter, NO, supervised learning was used for this

study.

In supervised learning, the training of the model occurs in phases. Initially, a
detailed set of data consisting of input and output values is fed into the network.
These data are split into three sets, the training set, the testing set, and the production
set. The model uses the training set in the actual training of the model. It then uses
the test set to check the model and make corrections. The production set is kept
separate from the learning process and is used after the model is developed to assess
model performance on entirely new data that the model has never seen before. The
ANN model uses an attribute based object recognition technique (Zhang, 1996).
Various levels of the different inputs to the model result in perceptrons being either
stimulated or not stimulated by each learning event. When stimulated, the pattern is
recognised and stored for future reference.



Supervised learning consists of the General Backpropagation (GB) technique
and its variations. GB neural network models are known to be very effective at
capturing the non-linear relationships that exist between variables in complex
systems (Cote et. al., 1994). During the learning stage, the model outputs are
compared to the actual outputs. The network learns from itself, readjusts internal
weighting factors, and attempts to predict again. This “backpropagation” minimises
the mean square error between the generated output in the output layer and the
desired or ideal output, from the data set (Boznar et. al., 1993). This technique makes
adjustments to the hidden layers in a backward propagation to allow the ANN model

to learn how to predict the output more effectively.

This technique continues until the number of learning stages (epochs) reaches
a specified value, or the error of the model output compared to the actual output
reaches a desired minimum value. Variations of the GB technique are the recurrent
network and jump connection network. In these cases, there are some
interconnections between the input and output layer perceptrons that bypass the
hidden layer(s), and there are some backward connections that feed the data
backward through the network. In these cases, the network may take longer to

converge, but might model time-series data more accurately (Zhang, 1996).

2.2.4 Topology

The input layer, output layer, and hidden layer design is referred to as the
topology design of the ANN model. Topology determines the number of hidden
layers, the number of neurons in the hidden layers, the number of neurons in the
input and output layers, the type of learning, and the type of functions that determine
the weighting of the data in the network. Selection of the best topology for the

system being modelled is an important component of the modelling process. Many

10



factors make up the topology of the model. Therefore a systematic approach must be
used to determine the characteristics of the ANN model that are important for a
given modelling situation. In this study, factorial design concepts were used to
assess model topology and its effect on model performance in Stage 1 of the
modelling process. More detail can be found in Zhang and Stanley (1997).

2.2.5 Successful Applications of ANN Models for UAP

As mentioned previously, environmental engineering applications of ANN
modelling techniques are growing. In the realm of urban air pollution modelling,
there are a few successful applications worth mentioning. Rege and Tock (1996)
applied ANN modelling to develop a simple neural network to estimate emission
rates of hydrogen sulphide (H,S) and ammonia (NH3) from single point sources.
They used a supervised, simple backpropagation type model. The inputs used in the
model were downwind distance, crosswind distance, wind speed, downwind
concentration, atmospheric stability, ambient temperature, and relative humidity.
They found that for the test set of data, the predictions of most emission rates w :re
found to be within 10% of measured values, with worst case predictions within 20%

of measured values.

ANN modelling was also applied to develop a model to predict ambient
sulphur dioxide concentrations (SO;) in highly polluted industrial areas with
complex terrain in Slovenia (Boznar et. al., 1993). Traditional Gaussian type
dispersion modelling was attempted but was found ineffective due to the complexity
of the problem, specifically in the interaction of the pollutants and the terrain. The
results obtained showed promise for the use of ANN modelling to predict short-term
concentrations of any urban air pollutant. On the basis of these two papers and the
literature review, the prospects of applying ANN modelling to predict NOy

concentrations were positive.

11



2.3  Urban Air Pollution

2.3.1 Definition and History of Urban Air Pollution

Urban air pollution can be defined as the infusion of pollutants into the air,
from natural and anthropogenic sources within an urban area. This infusion can
adversely affect human health, affect animal and plant health, damage materials and
structures, and cause an aesthetic nuisance in and around urban centres. Urban air
pollution is a problem that has increased in the last century. From a global
perspective, it is also a problem that will continue to grow in the future due to the
detrimental environmental effects of the rapid onset of urbanisation and
industrialisation. The United Nations Environment Programme and World Health
Organisation estimate that by the year 2000, 47% of the global population will be
living in urban areas (UNEP & WHO, 1992). This creates the potential for a
significant increase in the levels of air pollution in the urban environment from
industry, transportation, power generation, and other sources. This rapid influx of
people into urban areas also causes a significant rise in the number of people that
will be exposed to urban air pollution (UNEP & WHO, 1992).

The study of urban air pollution as an environmental engineering issue is
relatively new. Urban air pollution issues have their roots in England, the first area
to undergo an industrial revolution that drastically affected air quality in an urban
environment. The combustion of coal resulted in highly increased emissions of
particulate matter and sulphur dioxide (SO,). The effects of these emissions on
human health were quite pronounced in many cases. For example, an urban air
quality episode during the industrial revolution in England in 1880 resulted in a 27
percent increase in mortality during a two-week period. Another urban air quality
episode resulted in 1300 excess deaths in a four-day period of heavy fog (Henry and
Heinke, 1989). In addition to the health effects of some of these incidents, there

have been other associated effects, which include significant damage to forest and
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crops, detrimental effects on animals, and damage to materials. It is estimated that
these effects have cost in the billions of dollars (Halvorsen and Ruby, 1982).

This has led the way to the development of standards for air quality. These
standards attempt to control ambient air quality through setting limits for emissions
of certain air pollutants. Early emphasis in these standards was almost solely based
on controlling sulphur dioxide, nitrogen oxide, and particle counts in the air to a
level that was safe for humans (Henry and Heinke, 1989). The British Clean Air act
was passed in 1956, the U.S. Clean Air act was passed in 1963, and the Canadian
Clean Air act was passed in 1971. Amendments to these acts have followed, as more
is understood about the complexity of urban air pollution problems. It is important
to note that the science of setting urban air pollution standards is still relatively new.
Many of the instruments used to measure urban air pollution indicators have been
developed in the last two decades. Therefore, as more is understood about the nature

of UAP, many of the standards are continually changing.

2.3.2 Urban Air Pollution Modelling

2.3.2.1 General Overview

Pollutants that are emitted into the air undergo the processes of transport,
dispersion, transformation, and wet and dry deposition (Lyons and Scott, 1990). The
need to understand these physical and chemical processes and how they affect the
ambient concentration of urban air pollutants has led to the development of urban air

pollution models.
Urban air pollution models can provide the user with a scientific means of

relating source emissions to changes in the overall urban air quality. These models

can be either empirical or deterministic. In an empirical model, measurements of
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gases and particles are done at the source and at the air monitor to estimate the
contribution of the source to the readings at the monitor (Patrick, 1994). ANN
models are purely empirical models, where the relationship between the inputs and
the output are found by the model. Deterministic models, which are the more
commonly used in terms of air pollution modelling, use mathematical processes to

mimic the physical and chemical processes that affect urban air pollutant levels.

Deterministic urban air pollution models generally begin by analysing the
physical processes of transport and dispersion in the atmospheric boundary layer.
Then, an understanding of the chemical processes and the removal processes that
affect air pollutants are incorporated. This leads to an air pollution model that
accounts for many of the processes that affect urban air pollutant levels, even if only

in a broad sense.

The complexity of the deterministic air pollution model depends on the
number of processes that are simulated and the sophistication of the numerical
methods employed (Lape, 1994). Specifically, air pollution models have been
developed and applied in many variations of time frames and distances (Lape, 1994).
The air pollution monitor location, or the location at which the predictions of air
quality are to be made, can vary from a few metres to hundreds of kilometres from
air pollution sources, depending on the model type. In other words, certain models
can be applied at very short distances or at far distances from the emission sources
being considered. They can be also be applied through time frames ranging from
hours to years (Lape, 1994).

2.3.2.2 Gaussian Plume Dispersion

When a pollutant is released into the air, it generally has defined boundaries

inside which it is contained. This is known as the plume of the emission if the
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release is continuous, and a puff if the release is instantaneous (Lape, 1994). The
key to traditional urban air models is in the modelling of the dispersion and
movement of pollutants from their source within the plume or puff. There are
various ways that this can be approximated, and the most popular method is through
Gaussian Plume Dispersion. This approximation assumes that the concentration of
an urban air pollutant once it leaves a source spreads out in the shape of a normal
distribution or bell curve. According to Lyons and Scott (1990), the Gaussian
function provides a general description of average dispersion, because of the random
nature of this phenomenon, by analogy with the central limit theorem of statistics.
Figure 2 shows the Gaussian distributions in the horizontal and vertical directions.

Figure 2. Coordinate System showing Gaussian Distributions in the Horizontal
and Vertical Directions (modified from Lyons and Scott, 1990)
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The general equation of Gaussian dispersion is shown below (Lyons and Scott,
1990):

2 2 2
zZ= ﬁexp(— G (22;:? )+ exp(- %»
= concentration in grams/cubic metre [M/L’]
Y,Z= Cartesian coordinates
Q= source strength in grams [M/T]
u= mean wind speed [L/T]
o2 = variance of distribution of dispersing cloud in n direction [LZ]
h= elevation of the source above the ground plane [L]

The strength of Gaussian dispersion is in its ability to give a general idea of
the concentration of urban air pollutants at various distances away from the source.
The weakness comes from the implicit assumptions made when using Gaussian

dispersion. These are identified in Lyons and Scott, 1990:

1) A plume-diffusion formula assumes that the release and sampling times are long
compared with travel time from source to receptor. If the release or sampling
time is short compared to the travel time then we are considering an
instantaneous puff and cannot neglect diffusion in the direction of travel. This
represents one of the differences between continuous plume diffusion and puff
diffusion.

2) The material diffused is a stable gas or aerosol (less that 20pm diameter), which
remains suspended in the air over long periods of time.

3) The equation of continuity holds. That is, none of the material emitted is
removed from the plume and there is complete reflection at the ground.

4) Except where specifically mentioned, the plume constituents are assumed to have
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5)

7

8)

9)

a Gaussian distribution in both the crosswind and vertical directions.

The Gaussian approach assumes steady-state conditions during the time interval
for which the model is used, usually one hour. Of course, during rapidly
changing meteorological conditions, such as the passage of a front or the arrival
of a sea breeze, this assumption does not hold.

A constant wind speed, @ , is assumed. However, we have seen that wind speed
increases with height near the surface. Hence for a moderate to strong vertical
wind shear this assumption may introduce a considerable error. Furthermore,
when the wind speed is variable, so no mean direction can be specified, and
when the wind speed approaches zero, so the denominator in the Gaussian Plume
equation approaches zero, the model cannot be applied.

The surface-wind direction in the xy plane is assumed constant. Thisisa
reasonable assumption for a uniform mesoscale area under steady conditions.
However, hills and valleys have a profound influence on the surface-wind
direction and tend to channel flow.

The wind-shear effect on horizontal diffusion is not considered. This is a good
approximation over short distances, but it becomes significant at distances
greater than 10km.

The dispersion parameters 6y and o are assumed to be independent of z and
functions of x (and hence # ) alone. However, eddy diffusivity increases with
height near the surface. When # , oy, or G, are considered independent of height,
boundary-layer flow in the first several hundred metres may not be simulated. In
addition o, and &, are functions of surface roughness, so that for varying terrain

(for example when the plume crosses a lakeshore) they are not constant.

10) The averaging time of all quantities (# , 6y, G2, 7 ) is the same.

Other dispersion prediction techniques have also been used. The most

sophisticated techniques use numerical techniques such as finite difference analysis.

This analysis requires extensive data and computer resources, as well as technical
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expertise (Lape, 1994).

Gaussian plume dispersion and other dispersion prediction techniques are
what can be referred to as a predictive approach. This approach uses mathematics in
an effort to simulate the dispersion and transport of urban air pollutants. As
mentioned before, the ANN modelling approach is an empirical approach, where
simulation of the process is not used. What is used is an understanding of the
relationship between the factors that affect urban air pollutants and the pollutants

themselves.

2.3.2.3 Types of Traditional Models

Many of the dispersion models that have been developed can be classified as
screening or refined models based on their level of refinement. Refined models can

be classified as climatological, time-series, mesoscale, or traffic (Davies, 1984).

1) Screening Models

These models address point sources of pollutants or point sources in
combination with area sources and line sources. They are quick and fairly
inexpensive models to use, and have the ability to generally distinguish between
problem areas and non-problem areas. These models are designed to assist in the
initial design of air quality management systems. They tend to overestimate the
actual concentrations due to the assumptions made. Some examples of Alberta
Environmental Protection (AEP) screening models used during the 1980’s are the
STACKS model, the FLARES model, and the PLUMES model. They were all
steady state Gaussian type dispersion models (Davies, 1984). The USEPA currently
uses a model known as SCREEN3. SCREENS3 allows the user to select one of a
number of pre-set scenarios that fit the situation to be evaluated. The SCREEN3
model allows the user to input the wind speed and stability, and can treat building
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downwash, buoyancy induced dispersion, fumigation, and plume impact on elevated
terrain. It determines maximum concentrations of urban air pollutants under worst-
case scenario meteorological conditions (Lape, 1994). The “worst-case” scenario is
one that may not even occur for the situation being modelled. However, by
evaluating this “worst-case,” the model provides a quick method of identifying if the
situation could be a problem. The United States Environmental Protection Agency
(USEPA) approaches modelling using a tiered approach, which allows the user to

begin with a simple analysis and move into more complex analyses where needed.

2) Climatological Models

As with the screening models, the climatological models address point
sources, area sources, and/or line sources. These models use general meteorological
data to try to determine the short-term and/or long-term urban air quality impact of
various pollutant discharges. The generalised meteorological information includes
things such as general wind direction, general wind speed, and general stability of
the overlying air mass. Some examples of AEP climatological screening models
used are the SULDEP model and the SULDEP2 model, which both use a rectangular
plume model to determine the distribution of sulphur deposition from a conventional
stack. Note that some of the simplifying assumptions made in these models are that
there is flat terrain and that there is no chemical transformation of the pollutants that
takes place (Davies, 1984). The USEPA uses the RAM model to determine both
short and long term concentrations, for single or multiple point, line or area sources.
The RAM model applies the user-specified locations for sources and monitors and
calculates concentrations based on the distance between them. The CDM 2.0 model
is exclusively used by the USEPA to calculate long term concentrations for multiple
sources in an urban environment. The Industrial Source Complex (ISC3) models are
the most commonly used refined USEPA models for simple and/or complex terrain
applications. The ISC3 models evaluate dry deposition, building downwash

conditions, stack tip downwash, and chemical transformation (using exponential
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decay). These models are also the preferred models to evaluate complicated sources

in which refined models are not adequate to use (Lape, 1994).

3) Time Series Models

These models can only address point sources, or point sources in combination
with area and line sources. Time series models attempt to simulate the urban air
quality changes that occur on an hourly basis. They use previous data in the form of
hourly data from a representative year. The hourly predictions obtained can be
multiplied to represent time periods that are multiples of an hour, for example daily
and weekly values. In the 1980’s, AEP used a time series model that had 3 model
components. These were GLCGEN, FRQDTN, and TIMSER. GLCGEN was a
steady state Gaussian model that predicted the hourly concentrations based on single
or muitiple point sources. FRQDTN used the ground level concentration file
produced by GLCGEN and generated average ground level concentrations for
selected averaging times. The TIMSER model used the hourly concentration data
files and put them into a time series file which could then be used by FRQDTN
(Davies, 1984). The USEPA uses the previously mentioned SCREEN3 model to
evaluate and predict the maximum 1-hour concentration of an air pollutant at the
source of the air pollutant or a user defined location. AEP now uses the ISC models

as time series models.

4) Mesoscale Models

Mesoscale models are specifically designed to look at impacts of urban air
pollution from effluent sources over a large area. This differs from the first three
types of models discussed as they focus on smaller areas. Screening, climatological,
and time series models are generally applied at distances up to 10 km away (some
models have been applied at distances up to 100 km) (Davies, 1984). Mesoscale
models are generally designed for prediction of medium and long-range pollution
transport/removal processes at distances of up to 1,000 km away. Mesoscale models
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should not be applied for this type of prediction close to the sources, because many

simplifying assumptions are made that give poor results near the source and better

results in the 100 km to 1,000 km ranges. There are other applications of mesoscale

models at close proximity to sources. Table 1 shows the applications of

meteorological mesoscale type models.

Table 1.  Applications of Meteorological Mesoscale Models (adapted from Jandali
and Hrebenyk, 1985)

Scales (km)

A'pplication

2.5t025

25 to0 250

250 to 2500

All scales

power plant siting
highway siting
industrial plant siting
windmill siting

urban heat island

lake breeze

mountain valley breeze

sea breeze
short-range weather prediction
medium-range pollution transport/removal

subsynoptic weather prediction
long-range pollution transport/removal

mesoscale climatology

severe weather

trajectory calculations

dynamics/energetics of mesoscale systems

Some examples of the United States Environmental Protection Agency
(USEPA) mesoscale models used are the MESOPLUME, MESOPUFF, MESOPAC,

and MESOFILE models (Lape, 1994).
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S) Traffic Models

Traffic models are designed to simulate urban air quality changes due to non-
point pollutant sources, specifically those derived from urban automobile traffic.
These sources are considered line sources for single highways, and area sources for
urban areas. AEP currently recommends use of the MOBILE-SC model, while some
examples of USEPA traffic models are the APRAC, HIWAY, and ROADWAY
models (Davies, 1984).

2.3.2.4 Previous Urban Air Pollution Modelling in Edmonton

Modelling urban air pollution in the City of Edmonton has essentially been
restricted to the application of dispersion modelling techniques (Jandali and
Hrebenyk, 1985). Western Research and Development Ltd. applied a simple
advective, non-diffusive air column trajectory method to try to predict concentration
of nitrogen oxides, carbon monoxide, and excess water vapour as a function of the
meteorological variables (Western Research, 1976). Some of the assumptions made
by this model were species conservation (i.e. chemical stability), constant spatial and
temporal horizontal wind velocity, and uniform pollutant distribution in the mixing
layer. The model concluded with some general observations, such as that the highest
concentrations of the three parameters occurred downwind of the city (coincidentally
the location of the Strathcona Industrial Area). The R? value, a measure of the fit of
the model to the data, was 0.36, indicating a fairly poor fit (a value of 1.0 indicates
an exact fit, and a value of 0 indicates an extremely poor fit). More information on

R? is contained in Section 3.5: Discussion of Error Analysis.

Another study was conducted by Western Research that made some additions
to the previous model. The atmospheric assimilative capacity, based on the stability
of the overlying air mass, was considered (thermal inversions). The model also

accounted for chemically reactive pollutants. One conclusion of this model was that
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the worst urban air quality conditions in the area were attributed to the presence of a
stable air mass. This coupled with temperature inversions tends to trap the pollutants
close to the surface where they remain until the air mass dissipates. Another relevant
conclusion of this model was that the contributions of industrial source emissions of

the Strathcona Industrial Area were relatively small under most conditions.

The final study that will be noted is the one by Hage and Hopps (1981). This
study used a numerical modelling approach for predicting surface concentrations of
carbon monoxide from lower level area sources in the city. The model was applied
during stable atmospheric conditions, the scenarios most likely to produce extreme
pollution events. This study had an R? value of 0.62 for predicting CO

concentrations.

2.3.3 Urban Air Pollutants

Indicators of urban air pollution have evolved as the standards of urban air
pollution control have progressed. In the past, urban air pollution indicators were
largely based on the human senses. For example, an indicator of urban air pollution
could be the colour of the sky or the smell of the air. Presently, urban air pollution
standards have taken advantage of developments in measurement instrumentation,

and measure levels of the actual urban air pollutants.

Essentially, urban air pollutants can be identified as primary air pollutants,
secondary air pollutants, or air toxics. A primary urban air pollutant is defined as
one that is produced directly in the form it remains. An example of a primary urban
air pollutant is sulphur dioxide (SO2). A secondary urban air pollutant is defined as
one that is produced through a reaction of primary air pollutants and other factors.
An example of a secondary urban air pollutant is ground level ozone (O;), which is
formed by the photochemical reaction of nitrogen oxides, volatile organic
compounds (VOC’s), and sunlight. An air toxic is defined through the use of four



major criteria (Patrick, 1994). These criteria are as follows:

1) It is measurable in the air
2) Itis for the most part produced by the activities of man
3) Itis not a primary or secondary air quality pollutant as defined by the USEPA

4) It causes serious adverse human health effects

2.4 Research Focus

2.4.1 Strathcona Climatological and Geographical Information

The region or airshed modelled in this study is located at the east-end of the
City of Edmonton. Edmonton is the fifth largest city in Canada, with a population of
635,000, and total population of 890,000 if surrounding communities are included.
Edmonton is geographically situated at 53°34° N latitude and 113°35° W longitude.
The metropolitan area of the City is approximately 400km>. Elevations in the city
and surrounding areas vary from 633m above sea level to 709m above sea level
(Klemm and Gray, 1982).

The climate in the city can be described as sub-arctic continental. The
humidity of the region is of a dry to sub-humid nature. The mean annual
precipitation is 40 to 46cm. Mean summer temperatures average 13°C, while
average winter temperatures fall down to -10°C. Winds are westerly 70% of the
time, and the average wind velocity is 16km/h (Klemm and Gray, 1982).

Temperature inversions are important meteorological phenomena that occur

frequently in this region. The mixing layer (layer the pollutants are contained in) is
greatly reduced in this situation, and tends to trap the pollutants close to the ground
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surface. Inversions can be expected to occur almost every night of the year in this

region, as well as during the day in cold winter periods.

The airshed modelled is comprised of industries such as oil refineries,
chemical plants, fibreglass plants, and power plants. It also contains a residential
zone, which is located east of the industrial area. The Strathcona Industrial
Association (SIA), consisting of ten industry members, has monitored air quality in
and around the airshed since 1979. Two continuous monitoring stations operated by
the SIA are located in the airshed along with a station monitored by the Alberta
Environmental Protection Agency (AEP). These monitors were used as sources of

data for the ANN model.

2.4.2 Choosing an Qutput Parameter for the ANN Model

Literature has identified many urban air pollutants. As a whole, there is some
consensus on what are considered major urban air pollutants. Those that have been
consistently identified are as follows. The designation of these pollutants as primary

or secondary is also noted below:

Sulphur Dioxide (SO2) Primary
Carbon Monoxide (CO) Primary
Ground Level Ozone (O3) Secondary
Volatile Organic Compounds (VOC) / Total Hydrocarbons (THC) Primary
Airborme Particulate Matter (PM) Primary
Oxides of Nitrogen (NO and NO;) Primary and
Secondary

The modelling of urban air pollution using Artificial Neural Networks

requires the definition of an output parameter, or a parameter that will be modelled.



One criterion for choosing this output parameter is that it must have readily available
and complete data sets. This is because the quality of an ANN model is entirely
dependent on the quality and quantity of data available. The data had to be available
in the hourly form, as the goal of this study was to model urban air pollution hourly
so that the distinct variations of levels during a day could be seen. Another criterion
is that the output parameter must adequately represent sources from various sectors
of urban air pollution, such as transportation related, or industrial related. This is so
the resulting model can be used to extrapolate information about a large range of air
pollution sources. For these reasons, no air toxics could be used as the output
parameter. An in-depth analysis of each of the 7 major pollutants was conducted, so

that an output parameter could be chosen.

2.4.2.1 Sulphur Dioxide (§O2)

Description:

SO, is the most common of the sulphur oxides found in the lower
atmosphere. The sulphur oxides are compounds of the sulphur molecule and the
oxygen molecule. SO, is a colourless gas that can be detected by taste and even
smell in fairly small concentrations of 1,000 pg/m>. If the concentrations surpass
10,000 pg/m’, the result is a pungent smell (World Bank, 1996). SO is a major
precursor to acid rain. About 30% of the total concentration in the atmosphere is
converted to a sulphate acid aerosol which can be carried for many miles and
deposited by wet or dry deposition. The mechanism for this transformation in the
atmosphere is that SO, is converted to SO;, which is then rapidly converted to
sulphuric acid (H,SO,) (World Bank, 1996).
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Guidelines:

Alberta Environmental Protection has adopted the most stringent objectives
of Environment Canada in setting guidelines for SO, emissions. Alberta
Environmental Protection currently uses a volume/volume relationship to express
concentration guidelines of air pollutants (i.e. ppm or ppb). To convert to
appropriate SI units (ug/L) at 0°C and 1 atm pressure, the following conversion was

done for all of the air pollutants discussed (Zumdahl, 1989):

22.4L/ mol . 1

y(ppm) = x(ug/m*)e

MW, 1000
y= concentration of air pollutant in parts per million by volume (ppm)
X= concentration of air pollutant in SI units of micrograms/litre (ug/m’)

22.4 L/mol = ideal gas constant at 0°C and 1 atm pressure
MW, = molar weight of the pollutant (grams/mole)

The 1-hour average concentration guideline is 490 pg/m’ (0.17 ppm). The
24-hour average concentration guideline is 170 pg/m3 (0.06 ppm). The annual
average concentration guideline is 29 pg/m?’ (0.01 ppm) (Myrick and Byrne, 1996).

Sources:

Many sources of SO, have been described in literature. UNEP & WHO
(1992) identified combustion in stationary sources, industrial as well as domestic
wood and coal use, as being major sources of SO,. Henry and Heinke (1989)
acknowledged that sulphur dioxides are emitted primarily from the combustion of
fuel oil and coal at stationary sources, and also noted that small amounts of SO, and
SO; are emitted from the combustion of gasoline and diesel fuels. Kosteltz and
Deslauriers (1990) reported that of total SO, emissions in Canada, about 70% were
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associated with industrial and manufacturing processes. In general, most references
indicate that SO, is primarily an industrial effluent, and that it is associated with the
combustion at stationary sources of coals, woods, and fuel oils. In addition to the
anthropogenic sources of SO, some natural sources of SO, are volcanoes and forest
fires. Figure 3 shows the distribution of anthropogenic SO; emissions based on
source category in Canada and in Alberta.

Figure 3. Canadian and Alberta Emissions by Source Category for SO in 1985
(adapted from Kosteltz and Deslauriers, 1990)
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Health Effects:

Exposure to elevated SO, levels in the urban air regime can adversely affect
human health directly and indirectly. An example of a direct pathway that can affect
human health is exposure through direct inhalation (UNEP & WHO, 1992). An
example of an indirect pathway is exposure through drinking water contamination
and food contamination (UNEP & WHO, 1992). Most adverse health effects from
SO, exposure occur in brief, high exposure situations. Exposure has been associated
with decreased lung function, irritation of the eyes, nose, and throat, and increased
irritation in asthmatics, children, and the elderly. Acid aerosols of SO; have been
known to affect respiratory and sensory functions. Table 2 shows some of the health

effects associated with certain concentrations of SOs.
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Table 2. Summary of reported effects of inhalation of SO, (adapted from Jandali
and Hrebenyk, 1985)

Concentration Effect or Comments
(ug/m’ at 1atm, 0°C)

100 WHO-estimated threshold for respiratory effects from long-
term exposure (increased respiratory symptoms in adults and
children above this level)

230 WHO-estimated threshold for worsening the condition of

patients with existing respiratory disease from short-term
exposure (e.g., increased asthma attack rate, increased
illness score among bronchitics)

510 WHO-estimated threshold for excess mortality among the
elderly or chronically sick from short-term exposure
1000 Mortality rate three times normal in epidemiological study,
London, England
860 -2,800 Detectable by taste

2,100 - 2,800 Lowest level causing detectable decrease in FEV, FVC, and
MMFR in human lab studies (2-h exposure)

23,000 - 34,000 Immediate irritation to throat

57,000 - 140,000 Immediate irritation to eyes, nose, and throat, inducing
sneezing, rhinorrhea, and cough
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Ecological and Other Effects:

SO, is believed to cause adverse impacts to forest area, crops, and other
vegetation. The WHO (1996) reported that high ambient concentrations of SO;
could cause a loss in productivity and foliage in many types of vegetation. The
acidic aerosols are even more harmful through wet and dry deposition. Sulphuric
acid can damage not only vegetation, but also freshwater lake and stream systems.

In terms of materials, SO, and the sulphate aerosols may damage stone and iron
structures, which can affect many buildings and even historical monuments. Marble,
limestone, paper, and leather, are other materials that may be affected by SO; and its

other forms.

Suitability as an Output Parameter:

SO, data was readily available for use, and it was in the hourly form, which
was needed for this study. However, the problem with using SO, as the output
parameter is that it does not have a range of sources that adequately represent the
broad sources of urban air pollution. Essentially, SO, represents the industrial side
of urban air pollution well, but not the transportation side. If an ANN model were
run using hourly SO, as the output parameter, the resulting model would only
address the contribution of industrial sources of urban air pollution. Therefore SO,

was not chosen as the output parameter.

2.4.2.2 Carbon Monoxide (CO)

Description:

Carbon monoxide (CO) is a colourless and odourless gas indicative of urban

air pollution. It is emitted in greater quantities than any other urban air pollutant
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(Alberta Environment, 1983). It is predominantly formed from the incomplete
combustion of fossil fuels.

Guidelines:

Alberta Environmental Protection has adopted the most stringent objectives
of Environment Canada in setting guidelines for CO emissions. The maximum
permissible concentrations are as follows. The 1-hour average concentration
guideline is 16,000 pg/m® (13.0 ppm). The 8-hour average concentration guideline
is 6,000 pg/m’ (5.0 ppm) (Myrick and Byme, 1996).

Sources:

The majority of carbon monoxide found in the air is from anthropogenic
sources. Only trace quantities are due to natural sources (Furmanczyk, 1994).
Alberta Environment (1983) indicated that of the anthropogenic sources in the
Edmonton area, 96.4% came from vehicular emissions, 1.0% came from fireplaces,
1.0% came from major industrial sources, and 0.8% came from natural gas
combustion and others. A common issue mentioned in many references was the
discrepancy between carbon monoxide readings from sensors at elevated levels as
compared to those from street levels. At elevated levels, the CO readings may
appear to be within guideline values, but at the street level close to the source, CO
readings can be extremely high (Jandali and Hrebenyk, 1985). Figure 4 shows the
anthropogenic source category emissions for carbon monoxide in Alberta and in
Canada in 1985.
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Figure4. Canadian and Alberta Emissions by Source Category for Carbon
Monoxide in 1985 (adapted from Kosteltz and Deslauriers, 1990)
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Health Effects:

Carbon monoxide is a highly toxic gas that can be harmful in small amounts
over a certain period of time. It has a high affinity for the hemoglobin in blood, and
is able to displace oxygen from the blood. The results can be cardiovascular
problems and neurobehavioral effects. With high enough concentrations over a
given period of time, carbon monoxide can lead to death. CO has also been known
to cause headaches and dizziness (UNEP & WHO, 1992).
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Suitability as an Output Parameter:

CO data was readily available for use, and it was also available in the hourly
form. However, the problem with using CO as the output parameter is that it does
not have a broad range of sources that adequately represent the sources of urban air
pollution. CO represents the transportation side of urban air pollution but not the
industrial side. This is opposite to the situation with sulphur dioxide. Essentially, a
model developed using CO as an output parameter would only provide information
and make observations based predominantly on the transportation side of urban air

pollution. Therefore CO was not chosen as the output parameter.

2.4.2.3 Ground Level Ozone (03)

Description:

Ozone (0») is a colourless reactive gas and oxidant, and at ground levels is a
major contributor to atmospheric smog. Ozone does have a characteristic sharp
odour when it is highly concentrated, such as during lightning storms (Myrick and
Bymne, 1996). It is formed through the photochemical reaction of oxides of nitrogen,
volatile organic compounds (VOC), and sunlight.

Guidelines:

The guidelines for ozone are as follows. The 1-hour average concentration

guideline is 180 ug/m’ (0.082 ppm). The 24-hour average concentration guideline is
50 pg/m® (0.025 ppm) (Myrick and Byme, 1996).
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Sources:

Ground level ozone can be formed thousands of kilometres away from the
source of its precursors. It is different than the other major urban air pollutants
because it is not directly emitted, but rather formed from other urban air pollutants.
The following simplified sequence outlines the formation of ozone from its

precursors (Henry and Heinke, 1989):

2NO + O; = 2NO;
NO, + short wave radiation > NO + O
O + 03 + VOC catalyst = O; + VOC catalyst

Both natural and anthropogenic sources can act as precursors to ozone
formation. In terms of the anthropogenic sources, automobile emissions have been
widely identified as the largest precursor source. Other anthropogenic sources of
precursors include emissions from chemical and petroleum industries, and organic
solvents from sources such as drycleaners (World Bank, 1996). It is interesting to
note that Edmonton is reported to have naturally high background ozone levels
(Alberta Environment, 1983).

Health Effects:

Ambient ozone has a marked effect on the pulmonary function of human
beings. Short-term concentration spikes can cause eye and respiratory irritation,
coughing, eye and chest discomfort, thoracic pain, and headaches (World Bank,
1996). As well, besides short term impacts, the potential for irreversible damage

over the longer term is a concern with ozone.
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Ecological and Other Effects:

Agriculture and crops can be affected by elevated ozone exposures. These
exposures can cause damage to leaves and other vegetation, and this damage is
manifested visibly in defoliation and plant discolouring (World Bank, 1996). Ozone
may also decrease plant resistance to bacteria, viruses, and insects. This can result in
reduced plant growth and inhibited yield.

Suitability as an Output Parameter:

O3 data was readily available in the hourly form. However, the value of
hourly ozone depends on the concentration of other urban air pollutants hours before,
and this creates a difficulty in modelling on an hourly basis. Ozone concentrations in
an area may be due to precursors from entirely different areas that are transported
into the area of interest. Therefore it is difficult to use this as the output parameter,
as it is not entirely known where the precursors that affect ozone originate.

Therefore, ozone was not chosen as the output parameter.

2.4.2.4 Volatile Organic Compounds (VOC) / Total Hydrocarbons (THC)

Description:

VOC'’s are chemicals that contain hydrogen, carbon, and possibly other
elements, that evaporate easily. There are many hundreds of these compounds in the
atmosphere (Alberta Environment, 1993). THC’s refers to a broad range of
chemicals that contain carbon and hydrogen atoms (Myrick and Byme, 1996).
Methane is by far the largest (by mass) form of THC. VOC’s can be seen as the
volatile component of the THC measure. Therefore the two measures are closely

related. VOC’s contribute to the formation of ground level ozone in urban areas, as
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they react with nitrogen oxides and sunlight to form ozone.

Guidelines:

Alberta Environmental Protection currently does not have any guidelines for

ambient VOC concentrations or THC concentrations.

Sources:

Natural sources of VOC’s and THC’s include fossil fuel deposits (including
oil sands), volcanoes, vegetation, and bacteria. The anthropogenic sources are
transportation, solvent use, industrial processes, and gasoline evaporation. In terms
of the relative VOC and THC amounts produced by different sources, a breakdown
for Canada and Alberta in 1985 is shown in Figure 5.

Figure 5. Canadian and Alberta Emissions by Source Category for VOC’s and
THC’s in 1985 (adapted from Kosteltz and Deslauriers, 1990)
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Health Effects:

First and foremost, VOC’s act as a precursor to ozone formation, and this is
the primary means by which VOC'’s and therefore THC’s present a human health
risk. In addition, long-term exposure to certain VOC’s is believed to be a threat to
human health. According to the Alberta Environment (1993), benzene has been
implicated as a cancer-causing agent, and hexane has been implicated in the

formation of nervous system disorders.

Suitability as an Output Parameter:

Data sets for VOC are not readily available in the hourly form. Data sets for
the closely related measure of THC were available in the hourly form. VOC’s and
THC’s are indicative of petroleum industries and the transportation sector. In other
words, using THC’s and VOC'’s as the output parameter would give a complete
representation of all the sources that contribute to urban air pollution. However,
because of the fact that there is currently no VOC or THC guideline set by Alberta
Environmental Protection, the analysis of the results would have less of a
significance than with an urban air pollutant with a guideline. Therefore the VOC

measure was not chosen as the output parameter.

2.4.2.5 Airborne Particulate Matter

Description:

Airborne particles are defined as those particles which are small and light
enough to remain suspended in the atmosphere. They include dust, dirt, soot, and
liquid droplets emitted into the air (World Bank, 1996). Particles greater than 2.5

pm (PM,5) in aerodynamic diameter are considered to be coarse particulate and
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those smaller than 2.5 pum are considered fine particulate. The coarse particulate is
composed of approximately 90% crustal material, and the fine particulate is
composed of 60% to 90% soot and combustion by-products (Furmanczyk, 1994).
Historically and presently, airborne particulate is the most identifiable form of urban
air pollution. The particulate matter manifests itself by interfering with visibility,
soiling material, and acting as a respiratory irritant (Alberta Environment, 1983).
Particles that are airborne tend to interact with the gaseous or solid compounds in the
air, thus forming organic and inorganic chemical compounds. Many of the fine
particles combine with sulphates. Products of incomplete combustion may make up
the carbonaceous portion of the particles (World Bank, 1996). Many of the coarse
particles tend to be comprised of silicon, aluminium, calcium, and iron, reflecting

elemental components of the Earth’s crust.

Sources:

Natural sources for airborne particulate matter include evaporated water
spray, wind-borne pollen, dust, forest fires, soil cultivation, and volcanic eruptions.
In most cases, particulate matter that is natural in origin tends to be coarse. The
anthropogenic sources of airborne particulate matter mainly stem from combustion
processes. These may include space heating, agricultural burning, engine
combustion for transportation, thermal power generation facilities, cement
manufacturing facilities, and metallurgical processes. One point of interest is that in
Edmonton, the use of particulate matter levels as an index for urban air pollution
may not be effective simply due to the large amount of airborne particulate matter
that is derived from the soil and the geography (Jandali and Hrebenyk, 1985). Figure
6 outlines the source breakdown of anthropogenic sources of airborne particulate

matter:



Figure 6. Canadian and Alberta Emissions by Source Category for Airborne
Particulate Matter 1985 (adapted from Kosteltz and Deslauriers, 1990)
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Health Effects:

Airbome particles primarily enter humans through the respiratory system.
According to the particle size, shape, density, and the breathing pattern of the
individual, deposition may occur at various points throughout the respiratory system
(World Bank, 1996). It has been found that although most particles smaller than 10
pm (PM,0) can enter the respiratory system, only those particles in the fine range
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will be retained. Figure 7 illustrates the deposition characteristics of particles based

on their size.

Figure 7. Aerodynamic deposition of particles by size in the respiratory tract
(modified from Henry and Heinke, 1989)
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PIC’s, or products of incomplete combustion, can form a large portion of fine
airborne particulate matter. They can contribute significantly to the health effects
associated with exposure to smaller particles. Mortality rates have been found to
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significantly increase in areas with high concentrations of airborne particulate matter.
Heart disease and lung disease have also been documented as being caused by higher
particulate levels. It has been said also that it is possible that there may be no safe
threshold below which particulate matter does not damage human health (World

Bank, 1996).

Ecological and Other Effects:

In terms of vegetation, plants exposed to wet and dry deposition of particulate
matter may be injured, especially in the cases where other pollutants have attached to
the particulate matter. Gas exchange can be disturbed, thus stunting growth in
vegetation. Heavy metals and other toxic substances can infiltrate the soil, which
may also lead to reduced plant growth and yield. Other effects may be reduced

visibility and soiling and erosion of buildings and materials.

Suitability as an Output Parameter:

The measure of PM,, or particulate matter that is smaller than 10 pm in
diameter, is readily available in the hourly form. However, as mentioned previously,
high background levels of particulate matter may interfere with the use of this
measure as an indicator of urban air pollution. As well, similar to the situation with
VOC’s, there are no guidelines set by Alberta Environmental Protection on airborne
particulate matter. This means that the analysis of the results would have less of a
significance than with using an urban air pollutant with a guideline. Therefore,
airborne particulate matter was not chosen as the output parameter for the ANN

model.
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2.4.2.6 Oxides of Nitrogen (NOy)

Description:

Oxides of Nitrogen (NOy) are formed by natural and human activities. The
natural activities that form NO, include bacterial action in the soil, lightning, and
volcanic eruptions. The human activities that lead to NOx formation occur during
combustion processes when oxygen (O:) and nitrogen (N,) combine at temperatures
generally greater than 1000°C (Elsom, 1992). In ambient air, the two most important
forms of NO, for pollution studies are nitric oxide (NO) and nitrogen dioxide (NO;).
This is because the other forms of NO, such as nitric acid (HNO3), nitrous oxide
(N,0), dinitrogen trioxide (N>O3), dinitrogen tetroxide (N;Oj4) and dinitrogen
pentoxide (N>Os) are not known to have any biological significance (Elsom, 1992).
Nitric oxide (NO) is colourless and odourless. It is the most predominant nitrogen
oxide emitted at the source of the emission. It is however, readily converted into the

nitrogen dioxide (NO,) form.

Nz + O, + heat <> NO,
2NO + Oz = 2NO,

NO; has an orange brown colour and a very pungent odour, and many have
thought that it contributes to the familiar discoloration of the sky associated with
urban air pollution. NQO, is a more toxic form than NO (Alberta Environment, 1983).
A portion of the nitrogen dioxide in the atmosphere is converted to nitric acid
(HNOs) which, like the sulphate aerosols, contributes to acid rain through deposition
in the wet and dry forms. Oxides of Nitrogen are also precursors to ozone (Os)

formation.



Guidelines:

Alberta Environmental Protection has guidelines for NO, emissions based on
prevention of human health effects. Therefore the guidelines are placed on the NO;
form of NO,. The 1-hour average concentration guideline is 430 pg/m’ (0.21 ppm).
The 24-hour average concentration guideline is 230 pg/m’ (0.11 ppm). The annual
average concentration guideline is 60 pg/m® (0.03 ppm) (Myrick and Byme, 1996).

Sources:

According to Godish (1991), anthropogenic or man made sources make up
about 10% of total NO, emissions. The other 90% of NO, emissions is accounted
for by natural sources, such as anaerobic biological processes, lightning, and
volcanoes. In an urban environment however, most of the NO, concentration can be
attributed to anthropogenic sources. Many sources pinpoint the combustion of fossil
fuels as the leading man-made source of NO, compounds (Myrick and Byrmne, 1996).
UNEP & WHO (1992) identified the automobile as the major source of MO,

emissions in an urban environment.

Other sources of nitrogen oxides are industrial boilers, incineration, space
heating, electricity generation, and mining explosives (World Bank, 1996). In
Edmonton in 1995, Alberta Environmental Protection estimated that 43% of nitrogen
emissions were from transportation, 37% from industrial sources, and 20% from
power plants and other sources in the Edmonton area (Myrick and Byme, 1996).
Figure 8 shows the distribution of anthropogenic nitrogen oxide emissions based on
source category in Canada and in Alberta (note that fuel combustion includes

stationary fuel sources including those from industry).
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Figure 8. Canadian and Alberta Emissions by Source Category for Oxides of
Nitrogen in 1985 (adapted from Kosteltz and Deslauriers, 1990)
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Objectives for NOy concentrations for Canada are set out in the National
Ambient Air Quality Objectives. These objectives outline what are considered as
desirable, acceptable, tolerable, and intolerable levels of NOy in terms of annual
means, daily (24hr) means, and hourly means. Table 3 shows the percentage of
stations across Canada falling within the various ranges for NO; levels. Note that all

values of concentration in pg/m® are for 0°C and 1atm pressure.
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Table3. Nitrogen Dioxide — Percentage of Stations with Reading in Various
Ranges with Respect to the National Ambient Air Quality Objectives (1984 to 1990)
(adapted from Furmanczyk, 1994)

Range (ug/m) 1984 1985 1986 1987 1988 1989 1990

A) Annual Means

0 to 68* 87 90 89 87 86 88 91

68 to 110** 13 10 11 13 14 12 9

>110 - - - - - - -
No. of Stations 39 41 36 32 44 42 34
B) 24-hour Maximum

0 to 220** 96 96 100 100 100 88 100

220 to 330*** 4 4 - - - 10 -

>330 - - - - - 2 -
No. of Stations 51 51 50 49 51 52 45
C) 1-hour Maximum

0 to 440* 98 100 100 100 100 100 100

440 to 1090** 2 - - - - - -

>1090 - - - - - - -
No. of Stations 51 51 50 49 51 52 45

*  desirable level
** acceptable level
*** tolerable level

In recent years, many changes have occurred in technology to decrease the
release of NO, compounds to the urban air environment. However, the general
increase in automobile numbers and industry in urban centres has continued to
contribute to the rise in NOy levels. The 1994 Progress Report on the Canada-United
States Air Quality Agreement reports that NO, emissions are actually expected to
decline slightly by the year 2000, and then begin to rise in both of the countries (Air
Quality Committee, 1994). NO, emissions in Canada are expected to reach 2.2
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million tonnes per annum by the year 2010. Figure 9 shows NO, emission trends
from 1980 until predicted values in 2010 for both the United States and Canada:

Figure 9. NOy Emission Estimates (modified from Air Quality Committee, 1994)
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Health Effects:

The health effects associated with exposure to NOy in the urban air
environment are mainly associated with pulmonary function. NO; is the form of
NOx that is predominantly associated with health effects. As one of the components
of smog, the NO, component of NO, can cause an irritation of lungs and an
increased susceptibility to respiratory infections (Alberta Environment, 1993).

Asthmatics, the very young, and the elderly are the most sensitive in terms of
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pulmonary effects to NO,. According to World Bank (1996), levels above 3,760
pg/m’ cause normal subjects to show significant changes in pulmonary function.
Table 4 lists some of the health effects of NO; at various concentrations. Note that

all values of concentration in pg/m> are for 0°C and 1atm pressure.

Table 4. Summary of reported effects of inhalation of NO, (adapted from Jandali
and Hrebenyk, 1985)

Concentration Effect or Comments
(ug/m’® at 1atm, 0°C)
100 to 155 No effect on prevalence of chronic respiratory symptoms
155 to 310 Increased respiratory disease in children
225-860 Odour threshold
1,025 WHO-estimated threshold for respiratory effects of short-

term exposure

1,440 to 10,300 Increased airways resistance in laboratory studies after 10
min to 2 hour exposure

20,500 to 41,000 No discomfort

205,000 to 308,000 Delayed pulmonary edema after 30 min to 60 min exposure
410,000 to 1,400,000 Fatal pulmonary edema after less than one minute exposure

More than 3,500,000 Lethal in minutes

Ecological and Other Effects:

Oxides of nitrogen are major precursors to acid rain and deposition, as well

as to ozone production, both of which can injure plants and materials. Agriculture,

49



in terms of growth, is not adversely affected as the nitrogen contained in the nitrogen
oxides is well below levels applied in the form of fertilisers. NO, also can cause
discoloration and harm to fabrics. It is a serious enough problem that industry has
devoted research and resources to developing textiles and dyes that are more

resistant to NO, exposure.

Suitability as an Output Parameter:

Data sets for NO, were readily available in the hourly form, which is a
requirement of an output parameter for this study. Also, NO, is representative of a
broad range of urban air pollution sources, ranging from the transportation sector, to
the industrial sector, to power generation. A model that used NO, as the output
parameter would therefore be able to show the effect of these sectors on urban air
pollution as a whole. There also are guidelines set by Alberta Environmental
Protection on NO,. Analysis from a model developed using NOy as the output
parameter would have more of an impact than with an urban air pollutant without a
guideline. The effect of reducing NOy levels could be seen relative to the NO,
guideline. Therefore NO, was chosen as the output parameter. Specifically, the
hourly NO, was chosen as the output parameter, as it allows for the prediction of
variations during a typical day, related to the cyclic bi-modal variation in motor

vehicle traffic along roadways.

2.4.3 Parameters Affecting NO,

The selection of NOy as the output parameter for this study was one of the
first steps in the development of an ANN model for a specific situation. The next
step was the identification of the factors that affect the output in general and in
specific in the area of concem. This is because ANN relates the model output to the
model inputs and identifying the patterns that exist between them. The parameter of

hourly NO, was used as the measurable output of the model, therefore the factors
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that affect hourly NO, concentrations in ambient air were identified as the model
inputs. Literature identifies many of these input parameters, or parameters that affect
hourly NOy levels. These parameters generally fall into three general classes:
industry and power related, traffic related, and meteorologically related. The
industry, power, and traffic related parameters represent where the NOy is produced,
and the meteorologically related parameters represent how the NOy disperses and

travels to the monitor where it is measured.

The ANN model is only as effective as the data incorporated into it. It is
crucial that an understanding of the problem is well incorporated into the model
through the input parameters chosen. One could choose an input parameter to be the
NOx concentration the day before, but that does not give a true representation of
what actually physically affects NOx concentrations. Parameters such as traffic
counts or ambient air temperature have an actual effect on the NOx concentrations in
a physical sense, and these are the types of parameters that helped to create a flexible

model with broad applications.

2.4.3.1 Industry Related Parameters

The industry and power related inputs represented the effect that industry and
power generation has on the hourly NOy levels. The availability of data from these
sources was limited. Data were collected in the form of stack tests from major
industries and power generating facilities that emit NO, within the study airshed.
However, it was not possible to get an hourly emission breakdown, as stack tests are
typically done twice a year. The data from these stack tests were collected and
average hourly values were extrapolated from them. These average values were not
a true representation of the actual hourly NO, emissions. This is because some
variation in hourly emission rates would be expected relative to rates measured

during stack tests. However, industries and power generating facilities in the area all
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stated that production was quite steady with major fluctuations only due to plant
shutdowns (for which data was not available). Hourly fluctuations could then be
considered small for normal operating conditions for the industries in question.
These fluctuations appear even smaller when compared to the fluctuations of other
input parameters used. Therefore it was judged that the average hourly values
extrapolated from the stack tests were a satisfactory estimate of actual hourly values
for normal operating conditions, and would be sufficient for the use in this study.

2.4.3.2 Transportation Related Parameters

The traffic related inputs represented the effect that traffic and transportation
has on hourly NO, levels. Hourly traffic counts for the City of Edmonton and the
adjacent County of Strathcona were available from the City of Edmonton
Transportation Department and the Strathcona County Engineering and
Environmental Planning Department. The traffic counts record the number of
vehicles that pass a point on a given roadway, travelling in a given direction. The
counts typically are done for a three to seven day period every few years, and usually
incorporate a weekday and a weekend. Traffic counts were the best way to represent
the amount of traffic in the study area. The dilemma came in addressing which
traffic counts should be used. Traffic counts for the study area were available, as
were traffic counts from outside the study area, which also could affect NO, through
transport processes. An ANN model takes the inputs into the model and scales them
to a value between 0 and 1. Therefore, the difference of using 20 road counts or 2
road counts is negligible as long as the relative increases and decreases in hourly
traffic flow are the same among the roads. It was decided that the nearfield traffic
counts would be used. These are counts from roads that are surrounding and within

a Skm radius of the air monitoring station where the output parameter was measured.
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2.4.3.3 Meteorological Related Parameters

The meteorologically related inputs represented the effect that meteorology
has on transport and transformation of NO,. Literature has identified many
meteorological parameters that may affect air pollution in general. The key was to

identify the parameters with the greatest effect and use those in the model.

One aspect of meteorology that has been frequently cited in literature as
significant in its effect on NOy is the temperature profile and mixing height or the
atmospheric boundary layer of the atmosphere. It is defined as the space between the
Earth’s surface and the lowest level in the atmosphere at which the ground surface
no longer influences the meteorological variables through the turbulent transfer of
mass (Lyons and Scott, 1990). It can also be defined as the mixing layer because it
is the layer where urban air pollutants mix and dilute (Lape, 1994). Figure 10 shows
the idea of a conceptual mixing or atmospheric boundary layer.

Figure 10. Schematic of a Mixing Layer (adapted from Western Research and
Development Ltd., 1976)
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Both the horizontal and vertical variation of the urban temperature field have
an effect on the levels of urban air pollution, specifically NOx concentrations (Jandali
and Hrebenyk, 1985). The ambient temperature profile in the atmosphere defines the
height of the mixing layer. Based on the conditions of this mixing layer, the
dispersion and transport characteristics of the urban air pollutants contained within it
will be different. Therefore, model inputs were needed that described the mixing
layer, the stability of the air, and the atmospheric temperature. The first input chosen
for use in the ANN model was ambient air temperature. These data were available in

the hourly form from Environment Canada at the Edmonton City Centre Airport.

A closely related meteorological aspect to temperature profile that needed to
be addressed in the ANN model is the stability of the air. This is defined as the
tendency of the air to resist vertical movement or suppress existing turbulence. The
stability of the atmosphere is one of the most important meteorological
characteristics in terms of air pollution, as it directly affects the dispersion
characteristics of pollutants in the atmosphere (Wark and Warner, 1981).
Atmospheric stability can be described through the use of the dry adiabatic lapse
rate. This is the rate of temperature decrease in the atmosphere with elevation
wherein there is no heat added or removed from a parcel of air (Lyons and Scott,
1990). If the dry adiabatic lapse rate is compared to the actual lapse rate in the
atmosphere at a given time, it can be used to indicate the stability of the atmosphere.
If the actual lapse rate is greater than the dry rate, the atmosphere is unstable, which
enhances the dispersion of air pollutants. On the other hand, a strongly stable
atmosphere would have an adiabatic lapse rate inverse to the dry adiabatic lapse rate,
which causes pollutants to remain trapped in close to the ground. In other words,
when temperature increases with altitude, the lapse rate is negative, and the

atmospheric condition is termed an inversion.

Inversions are quite common in the Edmonton area, more common in the
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autumn and winter (Klemm and Gray, 1982). They produce stagnant atmospheric
conditions that have the potential to create elevated urban air pollution episodes.
The mixing layer is greatly reduced in these situations, and tends to trap the
pollutants close to the ground surface. Inversions can be expected to occur almost
every night of the year, as well as during the day in cold winter periods. There are
two main forms of inversions. Subsidence inversions are where an air mass acts as a
cap to the air below it and as it sinks, the air below is trapped. In cases where this
condition prevails for days, it is possible for a pollution episode to occur. These
types of inversions generally occur in the wintertime, and occur above the mixing
layer. Another type of inversion that can occur is a radiation inversion. This is
where surface layers of the atmosphere are warmed through various means by the
Earth’s surface. The lower atmosphere then may cool during a clear night, and the
lower layer of the Earth’s atmosphere may be cooler than the upper layers. These
types of inversions mostly occur during cloudless and windless nights, and tend to

occur directly in the mixing layer (Wark and Warner, 1981).

In defining input parameters that described the stability of the atmosphere,
issues of availability and suitability needed to be addressed. Alberta Environmental
Protection did not have representative data on atmospheric temperature profiles at
the location of the monitor in the Strathcona Industrial Area. Data were not
consistent with the period of record for which data on other modelled variables were
available. Alberta Environmental Protection measures horizontal wind direction
fluctuations and computes the standard deviation of these fluctuations to define local
stability conditions. It is important to note that because of the anisotropy of
boundary layer turbulence, horizontal wind fluctuations may not always be a suitable
representation of the vertical wind fluctuations for certain situations. However, data
on horizontal wind direction fluctuations were available, and in most situations give
an idea of the stability of the air based on its gustiness (Angle and Sakiyama, 1991).

Table 5 shows turbulence classifications based on horizontal wind fluctuations.
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Table 5. Turbulence classifications based on wind fluctuations (adapted from

Angle and Sakiyama, 1991)

Stability Description Standard Deviation of Standard Deviation of
the Horizontal Wind the Vertical Wind
Direction Fluctuations Direction Fluctuations
(in degrees) (in degrees)
Very unstable Greater than 22.5 Greater than 11.5
Moderately unstable 17.5 to 22.5 10.0to 11.5
Slightly unstable 125t017.5 7.8 t0 10.0
Neutral 7.5t012.5 50t07.8
Slightly stable 38t0 7.5 2.4t05.0
Moderately stable 2.1t03.8 1.2to2.4
Very stable <21 <1.2
Notes:
(1) These criteria are appropriate for steady-state conditions, a measurement height of

10m, level terrain, and an aerodynamic surface roughness length of 15cm. Care
should be taken that the wind sensor is responsive enough for use in measuring

wind direction fluctuations.

3] A surface roughness factor of (zy/ 15cm)® where z, is the average surface roughness
measured in centimetres within a radius of 1-3 km of the source, may be applied to

the tabulated values.

3) For nighttime hours with horizontal wind fluctuations indicated to be unstable, the

following corrections should be applied:

If the indicated Stability = And the Wind Speed at Then the Corrected
Category is: 10 m is: (m/s) Stability Category is:
Extremely unstable <24 Very stable
24t029 Moderately stable
29t03.6 Slightly stable
> or equal to 3.6 Neutral
Moderately unstable <24 Moderately stable
241t03.0 Slightly stable
> or equal to 3.0 Neutral
Slightly stable <24 Slightly stable
> or equal to 2.4 Neutral
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Therefore, the input parameter of standard deviation of horizontal wind
direction was chosen. Measurements of the horizontal wind direction are taken
every 5 minutes, and the standard deviation of these measurements inside of an hour
is the value recorded every hour at the Alberta Environmental Protection monitoring

station.

The next aspect of meteorology that needed to be incorporated in some form
as an input parameter was the dispersion and transport of the pollutants from their
respective sources to the air pollution monitor in the Strathcona Industrial Area. The
input parameters of hourly horizontal wind speed and hourly horizontal wind
direction were chosen as they describe the travel of pollutants to the monitoring
station. At the same time, these two input parameters also give an idea of the

stability of air.
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3.0 ANN Modelling of NO, in the Strathcona Industrial

Area

3.1 Organisation of Section

This section discusses the application of ANN Modelling to model hourly
NO, concentrations in the Strathcona Industrial Area. The modelling protocol used
to develop the ANN model is outlined. The results of the various stages of model
development are also presented. The neural network development software package
used for this entire modelling study was Neuroshell ® 2 developed by the Ward
Systems Group ®.

3.2 Modelling Protocol

ANN modelling is a very subjective process. There are a number of possible
ways to design a model, so it is of utmost importance that a protocol be developed to
provide a direction. Without a protocol, ANN modelling becomes more of a random
trial and error process that may not identify the best solutions for the modelling
situation. The modelling protocol allows the user to develop a model that works
with the available data and the modelling situation. The process used in this study is

as follows:

1) Literature Review of Problem

2) Collection of Data

3) Source Data Analysis

4) Stage 1 Modelling: Identification of General Model Architecture Type
5) Stage 2 Modelling: ANN Feasibility Through ANN Pilot Model
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6) Stage 3 Modelling: Full-Scale ANN Model

The literature review was the first step of this modelling protocol. This
identified the input and output parameters for the model. In other words, this step
identified what was to be modelled (output), and what affected that parameter
(inputs). The second step of the modelling protocol was the collection of data. Both
these steps for the modelling of hourly NO; in the Strathcona Industrial Area were
already outlined in the Literature Review (Section 2.0), particularly in the Research
Focus (Section 2.4).

3.3 Source Data Analysis

Source data analysis investigates the situation to be modelled along with the
data available, and allows the user to determine the feasibility of ANN modelling for
the situation. Source data analysis also allows the user to get a general sense as to
the type of backpropagation model that would best be able to model the situation.

The source data analysis answers the following questions:

1) Is ANN modelling applicable in this situation?

2) Is the domain study an open system or a closed system?

3) What are the cause-effect relationships in the study domain?
4) What is the behaviour or characteristics of the output?

5) Is there any unusable data?

6) Are all the input data used justifiable?

The feasibility of modelling of hourly NOy in the Strathcona Industrial Area

and the factors used in modelling it are discussed below:

1) Is ANN modelling applicable in this situation?

59



ANN modelling may be applicable in cases where there are no other cheaper
and more efficient modelling techniques available. This means that the study
domain is quite complex with various cause/effect relationships that may not all be
understood, or that the governing mathematical equations are too complex or
expensive to discover. In this situation, the mini-airshed in question has many inputs
that act differently and that are interrelated. It would be difficult to apply other
modelling techniques, such as Gaussian plume dispersion models, to this situation as
the airshed is complex and there are many input factors to consider. The non-
linearity of the modelling situation also lends itself well to the application of ANN
modelling.

2) Is the domain study an open system or a closed system?

An open system is one where the relationships between the model inputs and
the model outputs are not fully understood. A closed system is one where more is
known about these relationships, and the domain is restricted to an area that is
understood well. The domain in question is an open system. In other words, there
are many input factors that are known to affect the NO, levels in the airshed, but the

relationships between the inputs and outputs are not fully understood.

3) What are the cause-effect relationships in the study domain?

This relates to knowing what inputs affect the output. As stated previously,
this is more of an open system, so the exact relationships between the inputs and the
outputs are not known. As outlined in the research focus (Section 2.4), the input
parameters of importance are split into three major classes: industry related, transport
related, and meteorologically related. All of these input parameters are known to
affect the hourly NOy levels at the monitor. The input parameters chosen are listed

as follows:



INPUT PARAMETER UNITS SOURCE

Atmospheric Temperature degrees C* | Environment Canada

Wind Speed km/h* AEP and SIA

Wind Direction Sector no units AEP and SIA

Wind Direction Degree degrees* | AEP and SIA

Atmospheric Stability (standard degrees AEP

deviation of horizontal wind (hourly

direction) average)

Industry Emission Data kg/s SIA

Traffic Data traffic City of Edmonton and
counts County of Strathcona

* data sampled and archived at the beginning of every hour

It is known that an increase of atmospheric stability results in the potential of
an increase in hourly NO, levels. An increase in traffic volume also results in the
potential increase in hourly NOy levels. An increase in industry emissions may
result in an increase in the background NO, concentrations seen by the model.
Certain wind directions may cause the hourly NOy readings at the monitors to be
higher based on the source of the NO,. A higher wind speed generally results in
potentially lower NO,, as mixing in the atmosphere is promoted and pollutant
dispersion is enhanced. And generally speaking, a lower temperature can promote a
higher level of NOy because winter conditions result in predominantly more stable

air in the Edmonton area.

4) What is the behaviour or characteristics of the output?

The output seems to sway between lower values with slight variation to
higher values associated with events, which can last for days on end and have sharp
variations. The lower values are likely situations in which the stability of the

atmosphere is low, and the higher values are likely from inversions.
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5) Is there any unusable data?

There are some cases where there are data gaps in the records. For example,
there may be a few days where the temperature readings go off-line, so that even
though all of the other input data are available, the entire set of data for those time
periods cannot be used. Generally speaking, there seem to be very few of these data
, 8aps over the entire record. All of the input and output data for situations where
there was a data gap for a given hour were taken out of the set so that the model had

complete data sets to work with.

6) Are all the input data used justifiable?

All the input data used is justifiable. The standard deviation of horizontal
wind direction and the wind speed and direction indicate the mixing characteristics
of the atmosphere. The temperature data gives an indication of the weather patterns
present and the stability of the atmosphere. The actual horizontal wind direction also
indicates the significance of different inputs that are in different directions from the
monitor. The traffic and industry emissions indicate the source of NOx in the

system.

3.4 Detailed Overview of General Backpropagation Networks

There are different general architecture types of ANN models that can be
used to model a given situation. The general model architecture type investigated in
this study was the backpropagation architecture, due to its’ strength in modelling
non-linear situations. Backpropagation networks are able to generalise well for a
wide variety of problem types. They are classified as supervised networks, which
means that there are both inputs and an output that are used to train the model.
Within the realm of backpropagation architecture, there are many sub-types that are
classified based on the connections between the layers of the network. The
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backpropagation network sub-types investigated in detail in this study were as

follows:

1. Standard 4-layer Backpropagation Network
2. Standard 3-layer Backpropagation Network
3. 4 layer Jump-Connection Network

3.4.1 Variable Parameters in Backpropagation Networks

Backpropagation training requires many parameters to be set or defined for
model training to take place. Some of these parameters are schematically shown in

Figure 11.

Figure 11. Detailed Schematic of a Backpropagation Network
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The parameters that need to be set or defined for model training are as follows:

1) Number of neurons in the hidden layer(s)

2) Input Scale Function

3) Hidden Layer and Output Layer Activation Functions
4) Learning and Momentum Rates in Layer Links

5) Pattern Selection and Weight Updates

6) Stop Training Criteria

1) Number of neurons in the hidden layer(s)

The number of neurons in the input layer is equal to the number of inputs
used for the modelling, and the number of neurons in the output layer is equal to the
number of outputs used. Therefore the only numbers that vary are the numbers of
neurons in the hidden layer(s). General heuristic rules exist that can help provide a
direction for selecting the number of neurons, but generally speaking, this is a trial
and error process. Some of the heuristics suggest using the same number of hidden
layer neurons as there are in the input and output layers. Other heuristics attempt to
use a formula to set the number of hidden layer neurons based on the number of
neurons in the input layer. For networks with 2 or more hidden layers, some
heuristics suggest that each subsequent layer should be 75% or the previous hidden
layer. However, the specific set-up for a particular problem will vary, and the best
way to find the optimum is through experimenting with the problem.

2) Input Scale Function

The input scale function of the input layer serves to adjust the scale of all the
inputs so that they can be fed into the hidden layers where the processing takes place.
There are two main types of scaling functions: those that scale the inputs from -1 to
1 and those that scale the inputs from O to 1. Because the input data used for this



study can have negative values (temperature), the scaling functions should scale the
inputs from -1 to 1. Therefore, the choices of scale functions are the linear function
and the tanh function. The linear function may be further subdivided into two

functions. The linear{-1,1] denotes that the network will cut off numbers below and
above the ranges it encounters later in new data. The linear <-1,1> denotes that new

data falling outside the range will be accepted into the model.

3) Hidden Layer and Qutput Layer Activation Functions

The hidden layer and output layer activation functions represent how the data
will be propagated within the network. Essentially, the hidden layers produce an
output that is based on the sum of the weighted values from the preceding
connection. The activation function is then applied, re-scaling the sums into an
output that is then fed into the next layer. The different functions are as follows
(Ward Systems Group Inc., 1996):

a) logistic

b) linear

¢) tanh

d) tanhl$

e) sine

f) symmetric logistic
g) Gaussian

h) Gaussian complement

4) Learning and Momentum Rates in Layer Links

Each connection between layers in a model has its own learning rate and
momentum rate. Learning rate refers to the rate that the network leamns and retains
patterns from the data. A slower learning rate is generally needed for more complex

and noisy inputs, and a quicker learning rate can be used for simpler problems.
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Momentum rate is analogous to momentum in physics. A high momentum rate will
give the network a higher inertia or tendency to proceed in a straight direction. A
low momentum rate results in a slower modelling process, but a reduced probability

of being stuck in a local minimum as a solution.

5) Pattern Selection and Weight Updates

The pattern selection refers to the method by which data are input into the
model. A rotational input refers to a method whereby every n™ input pattern is used
on a rotational basis. An input pattern is defined as data from all of the inputs for a
single output data point. A random input refers to a method whereby random
patterns are chosen to input into the network. Certain pattern selections fit with
certain methods for weight updates. The weight update types analysed in this study
were the momentum method and the Turboprop method. The momentum method is
suggested for use with a random pattern selection. The momentum method makes
use of the learning and momentum rates input into the network. The Turboprop
method is only used with rotational weight updates. This method uses different
weights rather than a single learning and momentum rate. The results are generally
poorer with the Turboprop method, but generally faster. The Turboprop method also
gives the user a general idea of how the model type being used is working at
modelling the situation.

6) Stop Training Criteria

The criteria with which the training of the model is ended are referred to as
the stop training criteria. The model training process can be terminated based on the
error in the training set or the error in the testing set. This study uses the testing set
error as the criteria for ending training, as it is a more accurate representation of
actual model performance, rather than an assessment of training set fit. The actual
testing set error value that terminates training can be specified. The number of

intervals since the minimum testing error can also be specified.
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3.5 Discussion of Error Analysis

Reporting results from the different stages of modelling required a consistent
means of error measurement that would allow comparison between models and
evaluation of model effectiveness. The quality of the models throughout the
optimisation process was measured through an analysis of the errors. The errors had
to be analysed within the model and then across the model. The main statistical
values used for measuring the error across the model were the R? error and the root

mean square error (RMS).

The R? error is a statistical indicator that is usually applied in multiple
regression analysis (Ward Systems Group Inc., 1996). A perfect model fit would
result in an R? of 1. An R? of 0 indicates that the model predicts no better than using
the mean of all the outputs as the model output. The R? value can be seen as a
method of comparing the model output values to an arbitrary benchmark, the average
of the output values. The formula used by the ANN modelling software
Neuroshell® 2 is shown as follows (Ward Systems Group Inc., 1996):

where SSE =Z(y - )*

SSy =Z(y-y)*

y = actual value of output
y = predicted value of y

y = mean of all the y values
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The root mean square error (RMS) is a statistical measure of the differences
between the actual output values and the model output values. It is defined as the
mean of the squares of all of the residuals between actual outputs and the model

outputs. The formula can be shown as follows:

1
" (actual - predicted)’
RMS ==

n

where n = total number of output values
actual = the actual output values
predicted = the model predicted output values

The use of these measures of error across the model enables a model that has
relatively well distributed prediction errors to be chosen, as large areas are strongly
penalised (Zhang, 1996). To measure the error within the model, two types of
residual plots were done. These were the residual error versus time, and the residual
error versus NO, concentration. In Stage 1 of the modelling, the R? error was used
as the means of error analysis because only a preliminary indication of future model
direction was needed. In later stages, a more detailed error analysis was conducted

to give a complete indication of model performance.

3.6 Input Data for the ANN Model

The inputs into the model were temperature, wind speed, wind direction,
standard deviation of horizontal wind direction, and traffic counts of motor vehicles
in nearfield roadways. These were in fact the inputs for all of the models throughout
this study, as they were identified as the most important inputs from the literature

review.
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The NOy data were obtained from the Alberta Environmental Protection
(AEP) monitor located in the Strathcona Industrial Area. The NO, data are in parts
per million (ppm) as NO,, and are measured to the nearest thousandth of a ppm. The
temperature data were obtained from the Environment Canada City Centre Airport
monitor, located approximately 10 km from the Strathcona Industrial Area. The
temperature data are in degrees Celsius, and are measured to the nearest 1/ 10" of a
degree. The wind speed data were obtained from the AEP monitor in the Strathcona
Industrial Area, and are measured to the nearest 1/10™ of a kilometre per hour.

The wind direction data were obtained from the AEP monitor as well and
were recorded hourly to the nearest degree from north (bearing). There was an
additional issue with wind direction. An ANN model looks at the data from a purely
numerical point of view. A reading of 359 degrees from North is numerically very
different from a reading of 1 degree from North. However, in reality the two values
point to almost exactly the same direction. This discrepancy needed to be
incorporated into the model. Boznar et. al. (1993) identified the same problem in the
modelling of ambient SO; in Slovenia. It was decided that two inputs would be
created from the wind direction input. The two inputs would be a sector and a

degree reading. This is schematically shown in Figure 12.
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Figure 12. Schematic Representation of Wind Direction Input
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Therefore an angle of 45 degrees would become sector 1, 45 degrees. An
angle of 185 degrees would become sector 2, 5 degrees. In this way, the discrepancy
is remedied, and the model should find it easier to decipher and use the wind
direction data.

Traffic data were obtained from the City of Edmonton Transportation
Department and the Strathcona County Engineering and Environmental Planning
Department. The traffic counts were recorded in terms of vehicles per hour. As
described in the research focus section of the literature review (Section 2.4), it was
decided that traffic counts from nearfield sources to the monitor would be used.
Counts from roads directly adjacent to the monitor were used. These were as

follows:
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1) Station 8545E (City of Edmonton) at 17 Street North of Baseline Road

2) Station 13S (County of Strathcona) at Baseline Road East of Broadmoor
Boulevard

3) Station 8S (County of Strathcona) at 17 Street South of 90 Avenue

4) Station 512E (City of Edmonton) at Baseline Road East of 34 Street

Refer to the map in Appendix A to observe the location of the traffic counts
in relation to the AEP monitor location. This map also shows the location of the

Strathcona Industrial Area in relation to the City of Edmonton.

3.7 Stage 1 Modelling

3.7.1 Overview

There were two main purposes of Stage 1 of the modelling process. This
stage allowed the identification of the general architecture type that fit the modelling
situation the best. It also allowed for a preliminary indication of the feasibility of the
use of ANN modelling in this situation.

The source data analysis prepared the data for use in an ANN model. The
next step was to create an input file with the data in the form that was to be used for
this stage of the modelling process. To assess the feasibility of applying ANN to this
situation, it was decided that a trial data set be made consisting of data from two
specific hours every day from a given year be used. In other words, instead of using
all 24 hours in a day to conduct the modelling, only 2 hours were used, with the time
frame of the data set being the year 1995. The two hours used corresponded to the
general high and low NO, hours during a day and these were assumed to correspond
with the high and low traffic the data from 4am and from 5pm. Appendix B contains
a sample of the actual data set used for Stage 1 modelling.
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One point of interest for all the models in Stage 1 and the other stages of the
modelling process is mentioned. The industry emission input, as previously
discussed in the research focus (Section 2.4), was in the form of a continuous, static
input (averaged from stack tests). The ANN models developed reduce the industry
emissions to zero when the input function is applied because there is no change in
the emission. In other words, the model extrapolates that the change in NOy from
one hour to the next cannot be attributed to a change in industry emissions because
industry emissions are static. The model uses other inputs to account for the
variance in NO,. The sensitivity analysis at the end of Stage 3 allows the
background levels of NO, due to industry to be extrapolated. Therefore the models
did not use industry emissions to predict hourly NO, concentrations, but this does

not mean that industries do not affect the levels of NO,.

In Stage 1 of the ANN modelling process, three types of backpropagation
networks were investigated in detail. These were the standard 4-layer, standard 3-
layer, and 4-layer jump connection networks. Parameters within these models were
varied. These parameters were discussed in Section 3.4.1: Variable Parameters in
Backpropagation Models. Varying these parameters gave an idea as to what factors
were important to backpropagation networks in general and specific to the types of
backpropagation models investigated. This also gave a means of comparison
between the three backpropagation model types investigated. A factorial design
approach was used to facilitate Stage 1 of the modelling process. This allowed an
investigated into the factors as well as the interaction between the factors. A
fractional factorial design of 2*' was used throughout Stage 1. For more information
on Factorial Design Analysis, refer to Box et. al. (1978).

Detailed results of the factorial design analysis and the results from all of the
tested ANN models are shown in Appendix B.
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3.7.2 Results

3.7.2.1 Standard 4-layer Backpropagation Network

The standard 4-layer backpropagation network consists of an input layer, 2

hidden layers, and an output layer (Refer to Section 2.2.4: Topology for more

information on layers). Various factors within the network were varied. These

factors were:

1)

2)
3)
4)
5)
6)
7
8)

The use or omission of the standard deviation of horizontal wind direction as an
input

The use or omission of atmospheric temperature as an input

The number of hidden layer neurons in the two hidden layers

The ratio of the neurons between these layers

The activation functions in the two hidden layers and the output layer

The input scale function

The percentage of source data split into the training, test, and production sets

The momentum and learning rates of the links in the network

Stage 1 of the modelling process for standard 4-layer backpropagation

networks indicated that the preliminary best-fit model, with an R? of 0.42, had the

following major properties:

1)
2)

3)
4)
5)

linear [-1,1] input scale function

Gaussian — Logistic — Gaussian activation functions in the 2 hidden layers and
the output layer respectively

50% of source data for training set, 30% for testing, and 20% for production
60 neurons in the first hidden layer and 12 neurons in the second hidden layer

momentum rate = 0.2, learning rate = 0.2
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Although the R? demonstrated a fairly average fit, this stage of the modelling
process provided a direction for 4-layer Backpropagation models to be used in the
next step of modelling. It was noted that many of the R? values for the 4-layer
backpropagation networks were above 0.3. This indicated that the 4-layer

backpropagation models were fairly consistent and stable.

3.7.2.2 Standard 3-layer Backpropagation Network

The standard 3-layer backpropagation network consists of an input layer, a
hidden layer, and an output layer. Various factors within the network were varied.

These factors were:

1) The use or omission of the standard deviation of horizontal wind direction as an
input

2) The use or omission of atmospheric temperature as an input

3) The number of hidden layer neurons in the hidden layer

4) Turboprop or momentum learning

5) The activation functions in the hidden layer and the output layer

6) The input scale function

7) The percentage of source data split into the training, test, and production sets

Stage 1 of the modelling process for standard 3-layer backpropagation
networks indicated that the preliminary best-fit model, with an R? of 0.31, had the

following major properties:
1) linear <-1,1> input scale function

2) Logistic — Logistic activation functions in the hidden layer and the output layer
respectively
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3) 50% of source data for training set, 30% for testing, and 20% for production
4) 15 peurons in the hidden layer

5) momentum learning

Although the R? demonstrated a poor fit, this stage of the modelling process
provided a direction for 3-layer Backpropagation models to be used in the next step
of modelling. It also provided a means of comparison between the use of this type of

backpropagation model and the use of the other types investigated.

3.7.2.3 4-layer Jump Connection Network

The 4-layer Jump connection network consists of an input layer, 2 hidden
layers, and an output layer. It is different from a standard 4-layer backpropagation
network in that there are additional connections between layers. These connections
are from the input layer to the second hidden layer and the output layer, as well as
from the first hidden layer to the output layer (Refer to Section 2.2.4: Topology for

more information on layers). Various factors within the network were varied. These

factors were:

1) The use or omission of the standard deviation of horizontal wind direction as an
input

2) The number of hidden layer neurons in the two hidden layers

3) The activation functions in the output layer

4) The input scale function

Stage 1 of the modelling process for 4-layer jump connection networks
indicated that the preliminary best-fit model, with an R? of 0.45, had the following

major properties:
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1) linear [-1,1] input scale function

2) Logistic — Logistic — Logistic activation functions in the 2 hidden layers and the
output layer respectively

3) 70% of source data for training set, 20% for testing, and 10% for production

4) 40 neurons in the first hidden layer and 60 neurons in the second hidden layer

The R? value indicated a fairly good fit. However, it was noted that a slight
variance from this exact architecture would cause the R? value to drop substantially.

This indicated a very unstable network type. Results are detailed in Appendix B.

Based on the results of Stage 1 of the modelling process, it was decided that
the 4-layer backpropagation network was the best type of network to model this
particular situation. This was because of the stability of the 4-layer backpropagation
models and their stability in modelling the problem at hand. However, after Stage 1,
it was still not known if ANN was feasible to use in modelling hourly NOy in the
Strathcona Industrial Area. This was because the results in terms of R? were quite
average. A typical R? value should be 0.60 or higher to indicate a good model fit.
Therefore Stage 2 of the modelling process needed to address raising the RZ.

3.8 Stage 2 Modelling

3.8.1 Overview

This stage allowed a further investigation into the feasibility of ANN
modelling for this situation. In other words, it expanded on the results from Stage 1
of the modelling process to further investigate not only if ANN was viable, but how
well it modelled. It also looked at a data optimisation process for distributing data
within the training, test, and production sets in an effort to aid model training. This
data optimisation process involved splitting up the data into the three sets, so that
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each set had a similar breakdown of data based on the number and properties of the
input data. This was done in an effort to aid model training and increase model
performance. This stage also made an attempt to model urban air pollution in a real
time format. This meant using a continuous set of data with all hours of the day
used, rather than only a few points per day.

The first model developed in Stage 2 of the modelling process looked at a
pilot data set with two data points per day over a given year. In this case, the hours
of 7am and 7pm were used, and the year used was 1995. This is because further
analysis of the input data showed that maximum and minimum values of NO, occur
closer to 7am and 7pm then 4am and Spm (used in Stage 1). Based on the previous
modelling stage, a 4-layer standard backpropagation network was chosen for
modelling. As in the last modelling stage, there were many settings that had to be
optimised. These were the scaling function, the activation functions, the number of
neurons in the two hidden layers, and the breakdown of the data set into the training,

testing and production sets.

The first model developed in Stage 2 of the modelling process was developed
using not only the R? as a measure of model fit, but also the RMS error and residual
plots. Further discussion on error analysis is contained in Section 3.5: Discussion of
Error Analysis. It was decided that factorial design analysis would not be used in
this stage of the modelling process. This is because the major properties of the
model had already been determined in Stage 1, and only a fine-tuning of the model
was needed. The best-fit model (based on the error analysis) specifics for this first
model developed in Stage 2 are shown in Figure 13:



Figure 13.  Architecture of Neural Network, Stage 2 Modelling, Model 1
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3.8.2 Results

The results of this model showed that ANN was feasible and provided a fairly
good fit between the actual output data and the model predicted data. The error
analysis of the model was done on the production set of data. The production set of
data is that data which the model has not seen during the model training. Detailed
analysis of this first model developed in Stage 2 of the modelling process is shown in
Appendix C.

The use of R? as a measure of model fit should be done cautiously. A model
may have a high R? but not be able to model the peak values of the output set
effectively. It is important to have a model with not only a high R?, but also one that
follows the general trends of the actual output data well. Therefore, the analysis of

78



the model that was developed had to show this. Figure 14 shows a graph of the
actual output data plotted with the model output data.

Figure 14.  Actual Output Compared with Predicted Model Output, Stage 2
Modelling, Model 1
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By looking at Figure 14, it can be seen that the model generally followed the
trends of the actual data quite well. The model identified the times when actual NOy
was fairly low and also when it was fairly high. This indicated that the model was
able to extrapolate from the inputs those values that caused high and low values of
hourly NOy to occur. The model had a slight bit of difficulty assessing the exact
value of the extreme peak events, and seemed to slightly underestimate in those

cases.
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The next step in the analysis of this model was to look at the residuals versus
NOx and time to get an idea of the model fit within the model. Figure 15 shows a

graph of the residuals (actual-predicted output) versus the actual NO,.

Figure 15. Residuals vs. Actual NO,, Stage 2 Modelling, Model 1
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This residuals plot shows that most of the data fall within a residual of 0.05
and —0.05. It also shows a fan shape where the higher the NOy concentration, the
higher the residual. Again, this could be attributed to the model having a slight bit of
difficulty in predicting the magnitude of the extreme NO concentration events. The

next residual plot, Figure 16, shows the residuals plotted versus time.
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Figure 16. Residuals vs. Time, Stage 2 Modelling, Model 1
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This residuals plot shows that most of the data are in a tight band around the
x-axis, indicating that there is no time dependency in the residuals. In terms of the

error across the model, the values for R? and the RMS Error are as follows:

R Square: 0.67
Root Mean Square Error: 4.8E-4 ppm as NO,

This first model developed in Stage 2 of the modelling process was deemed
successful in determining the feasibility of ANN modelling to this situation, and
improving the fit of the model output to the actual output data.

The next step in Stage 2 modelling was to attempt to model hourly NOy in a
real time situation. The models created to this point were based on only 2 hours of
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data a day for a given time period. Therefore, attempting to create a model that used
all 24 hours of data in a given day and modelled them sequentially was the next step.
By doing this, a better understanding of real time model performance would be
gained, which was the final goal of the modelling process.

This model was developed using trial set of data, consisting of hourly input
and output data from the month of March in 1995. The reason for choosing March
was because through an analysis of the data, it was found that March contained
within it the most variations and fluctuations of the data than any other month. As
with previous models, the model type chosen was a four-layer backpropagation net.
The model was developed through a fine-tuning process of the architecture used in
the previous model developed in Stage 2 modelling. The architecture of the best-fit
model developed on the data from March 1995 is shown in Figure 17.

Figure 17.  Architecture of Neural Network, Stage 2 Modelling, Model 2
Input Layer Hidden Layer Hidden Layer Output Layer
1 2
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As with the previous models, the R? error and the root mean square error
(RMS) were the main statistical values used for measuring the error across the
model. As well, residual error plots of error versus time and error versus NOx
concentration were done to measure error within the model. Figure 18 shows a plot

of the actual output plotted with the model output.

Figure 18.  Actual Output Compared with Predicted Model Output, Stage 2
Modelling, Model 2
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Figure 18 shows that the model output fit the actual output very well. In
many cases, the model was able to predict the occurrence and magnitude of the
extreme events, which is an improvement over the previous model developed in

Stage 2 modelling. The model was successful in predicting the occurrence of either
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extreme events or low events. Figure 19 shows a plot of residuals versus the actual

NOx in an effort to learn more about the fit within the model.

Figure 19. Residuals vs. Actual NO,, Stage 2 Modelling, Model 2
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This residuals plot shows that most of the residuals are between 0.05 and —
0.05, which is similar to the model developed at the beginning of Stage 2 modelling.
Again, a fan shape is present indicating that the higher NOy values tend to have
higher residuals. This is natural as the model has a harder time in predicting the
magnitude of extreme NO, event than it does for more typical NOy values. The next
plot, Figure 20, shows the residuals plotted versus time.
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Figure 20. Residuals vs. Time, Stage 2 Modelling, Model 2
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The plot shows that most of the data are in a fairly tight band around the x-
axis, which is desirable. It also shows that there is not trend of an increasing residual
with time. This indicates no time dependency of the residuals. The values for error
across the model (RMS error and R?) were as follows:

R Square: 0.70
Root Mean Square Error: 3.7E-4 ppm as NO,

3.9 Stage 3 Modelling

3.9.1 Overview
The main purpose of Stage 3 of the modelling process was to develop a real
time working model for the modelling of hourly NO, in the Strathcona Industrial

Area. This model would then be used in a sensitivity analysis to gain insight into the
parameters that affect NO, in the Strathcona Industrial Area.
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The set of data used for Stage 3 modelling used the months of January and
July for the year 1995. These two months were chosen as they essentially represent
the maximum range of the input and output parameters. Appendix D contains a

sample of the data used for modelling.

The inputs for this model were essentially the same as the inputs from
previous models developed in Stage 1 and 2 of the modelling process, with two
exceptions. The first exception was an additional input called the season index. The
season index was a numerical value of 1, 2, or 3 that was dependent on the season of
the particular data used. A season index value of 1 signified data from the months of
November to February inclusive. A season index value of 2 signified data from the
months of March to June inclusive, and a value of 3 represented data from the
months of July to October inclusive. The reason that this index was added was that it
was found to improve results of some of the initial models tested early in Stage 3
modelling. Data from the winter months tended to contain the majority of extreme
NO, events due to atmospheric inversions and stable air tendencies. This index
helped the model to distinguish events based on season in addition to the other input

factors.

The second exception was that instead of four separate inputs for traffic
counts in nearfield streets, a single, summation input was used. In previous models
developed in Stage 1 and 2, there were four separate inputs, representing traffic
counts in four nearfield quadrants surrounding the air monitoring station. It was
found that a better model fit could be achieved in Stage 3 modelling by adding the
four nearfield traffic count inputs into a single input.

Stage 3 of the modelling process used previous models developed in Stage 1
and 2 of the modelling process and fine-tuned them in an effort to create a
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satisfactory working model. The results in Stage 3 modelling were expected to drop
slightly from Stage 2 (in terms of R? and model fit) due to the fact that there were
many extreme events that occurred in January 1995. The same data optimisation
process used in Stage 2 modelling was used again in Stage 3. The only difference
was that Stage 2 modelling split the data into three approximately equal in number
sets (training, test, and production), and Stage 3 modelling had an approximate ratio
of 2:1:1 between the three sets respectively. The reason that more data were used in
the training set than in Stage 2 was that the data were extremely noisy with sharp
fluctuations and many extreme events. By including more data in the training set,
the model was to use more data in the learning process and was able to improve

model prediction from initial models attempted in Stage 3 modelling.

The specifics of the best-fit model developed in Stage 3 of the modelling

process (based on an overall error analysis) are shown in Figure 21.

Figure 21.  Architecture of Neural Network, Stage 3 Modelling
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3.9.2 Results

The results of this model were obtained from a complete evaluation of the
actual output data versus the model output. The error analysis of this model was
done on the production set of data. Figure 22 shows a graph of the actual output data
plotted with the model output data.

Figure 22. Actual Output Compared with Predicted Model Output, Stage 3
Modelling
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Figure 22 shows that the model once again was able to predict the occurrence
of either extreme NO, events or low NO, events. The model was fairly successful in
predicting the magnitude of extreme NO, events except between patterns 130 and
140, where the model under predicted the magnitude of two events. Figure 23 shows
a residual plot of the residuals versus the actual NOy.
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Figure 23. Residuals vs. Actual NO, Stage 3 Modelling
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The residuals plot shows the typical fan shape that has been characteristic to
many of the models developed in the various stages of the modelling process. This
fan shape indicates that at higher values of NOy, the value of the residuals tends to
increase. The model tends to predict the occurrence of extreme NOy events, but not
quite catch the magnitude of some of these events. The next plot, Figure 24, plots
the residuals versus time.
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Figure 24. Residuals vs. Time, Stage 3 Modelling
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The plot shows most of the data within a fairly tight band around the x-axis.
It shows that there is no apparent time dependency of the model. The values for

error across the model (RMS error and R?) are as follows:

R Square: 0.63
Root Mean Square Error: 1.8E-3 ppm as NO,

These values indicated that the model output fit the actual output well, and
that a model was successfully developed for use in the sensitivity analysis. There
was a slight drop in model performance from the models developed in Stage 2 of the
modelling process. The change in these values can mainly be attributed to two
things. The RMS error and R? value tend to heavily punish those instances where
the error is quite large. The model had fairly significant errors in predicting the
magnitude of two extreme events, as previously mentioned. The R? and RMS values
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would have been significantly higher were it not for the two events. Another reason
for the change was the fact that winter months tend to contain the majority of
extreme NO, events. Half of the data used to develop this model was from the
month of January 1995, which is one of the more difficult months for the model to
predict in.
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4.0 Model Application

4.1 Organisation of Section

This section applies a model developed in Stage 3 of the modelling process to
extrapolate information about the nature of urban air pollution in the Strathcona
Industrial Area. A sensitivity analysis allowed an analysis on the dependence of
hourly NO, values on traffic counts of nearfield streets. This analysis also allowed

for an investigation into the relative input of NOy from industrial and other sources.

This section begins by applying the ANN model developed in Stage 3
modelling to an arbitrary week of data not seen before by the model. The traffic
counts are changed in positive and negative increments to observe the effect on
hourly NO, values. Following that, the model uses a value for the expected increase
in traffic by the year 2020 to predict the increase in average hourly NOy
concentrations. Finally, the model is used to predict the relative input of industrial

and other emissions to hourly NOy values.

4.2  Sensitivity Analysis

4.2.1 Description

There were essentially two main phases in the sensitivity analysis. The first
phase was to apply the model to a randomly chosen week of data. The model input
of nearfield traffic counts was then varied in increments of 5% in the positive and
negative direction in an effort to understand the sensitivity of NOy to these counts.
This step included adjustment of the counts to the value corresponding to the
expected growth in traffic estimated in the City of Edmonton in the year 2020, and
calculating the increase in average hourly NOy concentration. The second phase of

the sensitivity analysis was to back-calculate (based on the sensitivity of the traffic
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counts to the hourly NO,) the influence of other factors on hourly NO, (industry and
other).

4.2.2 Sensitivity of Hourly NO, to Nearfield Street Traffic Counts

The ANN model developed in Stage 3 of the modelling process was applied
to an arbitrarily chosen week of data. The week of February 8" to 14" in 1995 was
the week of data chosen. This data set contained data on the 7 input parameters used
to develop the model from Stage 3 modelling. A dynamic link library (DLL) file
was created to link the ANN model developed in Stage 3 modelling to the
spreadsheet file containing the week of data. This allowed the model to be used to
predict the hourly NO, based on the data. Appendix E contains a sample of the data
set used.

The performance of the model used was evaluated based on a visual
observation of the actual hourly NO, for the week of data used and the model
predicted hourly NO,. This is because the detailed evaluation of the model was
already completed in Stage 3 modelling, which found the model to be quite
satisfactory for use. Essentially, the visual check of model fit was done to ensure
that the model was able to follow the general trends of the data well, and to ensure
the proper functioning of the DLL file. Figure 25 shows a graph of the actual NOy
values plotted with the model predicted NO, values. Note that patterns (x-axis) are
in real-time order such that pattern 1 refers to hour 1 on February 8", 1995.
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Figure 25. Actual Output Compared with Predicted Model Output, Sensitivity
Analysis
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Figure 25 shows that the model fit the data quite well, in that it was able to
predict extreme NOy events and normal events. It was also able to predict the
magnitude of extreme NOy events satisfactorily, with the exception of an over-
prediction at pattern 17 and an under-prediction at pattern 63. This step showed that

the model was functioning well and could be used for the sensitivity analysis.

The next step was to begin varying the input of traffic counts on nearfield
streets and observing the effect on the NOy concentration for the week of data used.
The counts were varied in increments of 5% from -40% to +40% of original counts.
Appendix E shows the changed traffic count data. Figure 26 shows a graph of the
initial hourly NO, model output compared with the output in the case where the
traffic data is increased by 40%.
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Figure 26. Original Model Output Compared to Output for 40% Increased Traffic
Counts
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Figure 26 shows that an increase in the traffic counts of nearfield streets
caused an increase in the overall hourly NO, concentrations throughout the test.
There were instances where the hourly NO, values were almost unchanged, and the
logical inference was that those particular hourly NOy values were not strongly
influenced by traffic counts on nearfield streets. One thing to note is that Pattern 17
exceeded the range of the model when increased by 40%, and the model responded
by keeping the NO, concentration at the same level as before the traffic increase.
There were also instances where the hourly NO, values were significantly changed
by the increase in NO,. The logical inference in that case was that for those
particular hours, the hourly NO, values read at the monitor were strongly dependent
on the traffic counts on nearfield streets. Figure 27 shows the initial output
compared to the new output when the traffic data is decreased by 40%.
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Figure 27. Original Model Output Compared to Output for 40% Decreased Traffic

Counts
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Figure 27 shows that a decrease in the traffic counts of nearfield streets

decreased the overall hourly NO, concentrations during the test week. What was

interesting to note was that some peaks were substantially decreased while others

remained relatively unchanged, which was analogous to the case with a traffic

increase.

The City of Edmonton Transportation Department has an overall general

estimate for the increase in vehicular traffic expected between 1997 and the year
2020, and that is a 60% increase. Applying this to the model, it predicted a 26%

increase in overall average NOy concentrations would occur with a 60% increase in

traffic (assuming vehicular traffic on nearfield streets follows the same percent
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increase as the rest of the city). Figure 28 shows graphically the change in NO,

concentrations that would occur.

Figure 28. Original Model Output Compared to Output for 60% Increased Traffic
Counts (forecast for 2020)
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4.2.2 Extrapolating the Influence of Other Sources

The second phase of the sensitivity analysis involved taking the results from
the first phase and extrapolating the influence of factors other than nearfield traffic
counts on hourly NO, values. Traffic counts were varied from an increase of 40% to
a decrease of 40%. The resulting plot showed the effect of the change in traffic
counts on the average hourly NO concentration for the week. Figure 29 shows the

relationship between average NOy concentration and change in traffic counts.
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Figure 29. Effect of Change in Traffic Counts on Average Hourly NO,
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A linear regression was done on the points to give the linear relationship
between average NO, and traffic count change. From the 40% increase to the 40%
decrease (80% decrease total) in traffic counts, the average hourly NO, decreased by
32% (calculated through use of the linear relationship). A 100% reduction in traffic
counts would therefore decrease the average hourly NOy concentration by 40%. The
model therefore concluded that for the test week in February, 1995, 40% of the
hourly NO, concentrations were from the input from vehicle emissions and the other
60% were from other sources. This breakdown is similar to findings reported by
Myrick and Byrne (1996) indicating that 43% of NOx emissions in Edmonton during
1995 were from transportation sources. The other sources could include industrial
emissions, power generation, and space heating. Other possible sources of NOy in an

urban environment are outlined in Section 2.4.2.6 — Oxides of Nitrogen.
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5.0 Conclusions

5.1 General Conclusions

This study had three main objectives, outlined in Section 1.3 — Research
Objectives. The main objective of the study was to assess the feasibility of
modelling urban air pollution, specifically hourly NOy concentrations, in the
Strathcona Industrial Area of the City of Edmonton, using ANN modelling. This
objective was successfully met through Stages 1 and 2 of the modelling process,
Sections 3.7 and 3.8. The measure of success was the error analysis of the models

developed in these stages.

Models developed in Stages 1 of the modelling process focussed on three
main backpropagation architecture types. The first was a standard 4-layer
backpropagation network, and this type achieved an R20f0.42. The next was a
standard 3-layer backpropagation network, and this achieved an R?0f0.31. The last
type was the 4-layer jump connection network, which had an R20f0.45. It was
decided at the end of Stage 1 to pursue modelling with a 4-layer backpropagation
network, because of the overall stability in the results compared with the 4-layer
jump connection network. If any of the inputs were varied slightly, the 4-layer jump
connection network would not converge and would give an R? of 0. The 4-layer
backpropagation network however was more stable and continued to converge with

slight variations of the input parameters.

Stage 2 of the modelling process was able to further prove the feasibility of
using ANN to model the problem. The first model created in Stage 2 was able to
model better than the 4-layer backpropagation network developed in Stage 1. This
first model used a data optimisation process that enhanced the learning process of the

model, and was able to significantly improve the performance of the model in all
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aspects. This model had an R? of 0.67, a RMS error of 4.8E-4 ppm as NO,, and
residual plots that showed no apparent time dependency trends.

The next objective of this study was to apply ANN modelling to reproduce
hourly NOx concentrations in a real-time format. Essentially this meant using all
available data from a given day to model, rather than two points per day, as was used
in Stage 1 and the first model of Stage 2. The second model developed in Stage 2
used data from the month of March in 1995 in a real-time format. The model had an
R? 0f 0.70, a RMS error of 3.7E-4 ppm as NO,, and residual plots that again showed
no apparent time dependency trends.

Stage 3 of the modelling process (Section 3.9) also sought to model hourly
NOx in a real-time format. This stage used data from the months of January and July
1995 to develop the model. The model developed was expected to drop in
performance from the second model of Stage 2 modelling because of the fact that
many extreme events (high NO, concentrations) occur during the winter months, and
January 1995 was no exception. The data was markedly noisier with more severe
fluctuations than the data set used to model the second model in Stage 2. This model
had an R? of 0.63 and a RMS error of 1.8E-3 ppm as NO,, and residual plots that
again showed no apparent time dependency trends.

The last objective of this study was to use the results from an ANN model to
provide a means of evaluating the effect of proposed control measures on urban air
quality (measured in terms of hourly NOy) specifically in terms of traffic counts on
nearfield streets. The model developed in Stage 3 of the modelling process was
applied to an arbitrary week of data, and then the effect of varying the traffic counts
was found (Section 4.2). A straight-line relationship was developed through use of a
linear regression, and it was concluded that a 100% drop in traffic would resultin a
40% drop in average hourly NO, concentrations. This was important, in that it also
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showed the percentage of hourly NOy concentrations that could be attributed to
inputs other than the transportation sector. It also showed the sensitivity of average
hourly NO, concentrations to the traffic counts.

Another part of the sensitivity analysis involved obtaining an estimate for the
average increase in vehicular traffic expected by the year 2020 from the City of
Edmonton Transportation Department. Once the estimate was obtained, the effect of
this increase on the average hourly NO, concentration was found. The estimate was
an increase in vehicular traffic of 60%. The corresponding modelled increase in

average hourly NOy concentrations was 26%.

Overall, the objectives set out for this study were met. There are, however,
some recommendations for future research in the field that are outlined in the next

section.

5.2 Recommendations for Future Research

It is important to note that this study was essentially an introduction into the
use of ANN modelling to model urban air pollution. The main objective of the
study, as mentioned before, was to assess the feasibility of using ANN modelling in
the field of urban air pollution modelling. There are many possible avenues for

future research in this area, and following are some recommendations.

1) Investigate the use of other output factors and observe whether they can be
successfully modelled. This includes O3, PM, SO,, VOC/THC, and CO. Itis
possible that these other outputs may be able to be modelled successfully using
either the current set of inputs or a different set. This could generate more
information as to the characteristics of urban air pollution in the Strathcona

Industrial Area in a more thorough manner.
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2)

3)

4)

3)

Investigate the use of other input factors on model performance. This can
include measures such as relative humidity, atmospheric pressure, hours of bright
sunshine, and various other meteorological measures. These other input
parameters may provide the model with more information on the creation,
dispersion, and transport of urban air pollutants in the Strathcona Industrial Area.
The model that was developed was a single model used to predict hourly NO, for
many situations throughout a year. A possible avenue for investigation would be
the development of separate ANN models that model for different levels of
inputs. For example, a model could be developed for use throughout the winter
months, where the characteristics of hourly NO, concentrations in the Edmonton
area are drastically different than in the other times of the year. By developing
different models for different times of the year, the model fit may turn out to be
much better.

Another interesting avenue for research could be the application of this model to
other geographical areas. The model could extrapolate characteristics that are
common between the other area and the Strathcona Industrial Area. It would
shed light onto what characteristics are important to hourly NO, concentrations
specific to the Strathcona Industrial Area and what characteristics are important
to concentrations regardless of location.

The sensitivity analysis was done specifically on vehicle counts on streets
adjacent to the monitor used to measure hourly NO, concentrations. The analysis
of sensitivity could be expanded to other inputs in the model. This may also give
more information regarding the effect of all inputs on the hourly NOy
concentrations.

This study focussed on the use of general backpropagation type neural networks.
Future studies could attempt to use other types of ANN models and see how they
function. Examples are GRNN type models and the use of genetic algorithms.
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APPENDIX A — The Study Airshed in the Strathcona
Industrial Area of the City of Edmonton and the County of

Strathcona
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APPENDIX B — Detailed Results and Analysis from Stage 1

of the ANN Modelling Process
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Standard 4-layer Backpropagation Network: Results and Analysis

DEV =

HL =

Act.=

Last Error Tm. =
Min. Error Tm. =
Min. Error Tst. =

standard deviation of horizontal wind direction

hidden layer

activation function

last average training error

minimum average training error

minimum average testing error

R? value from applying the model to the production set
X:y ratio between neurons in hidden layers 1 and 2
percentage of input data used for test set

percentage of input data used for production set
momentum rate

leaming rate

Gaussian — Gaussian — Gaussian activation functions in
hidden layers 1 and 2 and the output layer

Gaussian — Logistic — Gaussian activation functions in
hidden layers 1 and 2 and the output layer
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Architecture Type 1 - Standard 4 layer backpropagation net

Positive Negative
A with DEV without DEV
B 40 neurons HL1 60 neurons HLL1
C 40 neurons HL2 60 neurons HL2
D=ABC Gaussian Act. Logistic Act.
Results:

Last Error Tm. Min. Error Tm. Min. Error Tst. R2 Production
Trial 1 0.0016003 0.0013497 0.2597
Trial 2 0.0193618 0.0193618 0.0280005 0
Trial 3 0.0048306 0.0040126 0.0115825 0.2881
Trial 4 0.0015144 0.0015144 0.0072485 0.1239
Trial § 0.0017543 0.0016935 0.0074151 0.2564
Trial 6 0.0019683 0.0016515 0.0113582 0
Trial 7 0.0031952 0.0031952 0.0114674 0
Trial 8 0.0011614 0.001137 0.0070806 0.2494
Significant A effect The effect of having the DEV data are to actually reduce the R2.
Effects:

nets.
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Architecture Type 1.1 - Standard 4 layer backpropagation net

Positive
A 2:1 ratio
B 30 neurons HL1
C Linear{-1,1]
D=ABC Gaussian Act.
Results:

Last Error Tm.
Trial 1 0.0208282
Trial 2 0.005569
Trial 3 0.0071127
Trial 4 0.0434505
Trial 5 0.0189367
Trial 6 0.005569
Trial 7 0.0070325
Trial 8 0.0434505
Significant C effect
Effects:

A effect

Negative

3:1 ratio

36 neurons HL1

Linear<-1,1>

Tanh Act.

Min. Error Tm. Min. Error Tst. R2 Production
0.0208282 0.0532618 0.3353
0.0050089 0.012229 0.0432
0.0049247 0.0108558 0.2933
0.0228035 0.0434453 0.1469
0.0189367 0.045788 0.1887
0.0050089 0.012229 0.0432
0.0034753 0.0118333 0
0.0228035 0.0434453 0.1469

AB The linear [-1,1] scale function is

effect preferred

AC as is the 3:1 neuron ratio.

effect
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Architecture Type 1.2 - Standard 4 layer backpropagation net

Positive Negative
A 3:1 ratio 4:1 ratio
B 36 neurons HL1 48 neurons HL1
C N=20,M=10 N=30,M=20
D=ABC withtemp without temp
Results:

Last Error Tm. Min. Error Tm. Min. Avg. Tst. R2 Production
Trial 1 0.0049359 0.0049359 0.0128032 0.1023
Trial 2 0.0033392 0.0025959 0.0107425 0.3374
Trial 3 0.003951 0.001678 0.0109563 0.2513
Trial 4 0.0043338 0.0043338 0.0124708 0.1533
Trial 5 0.0074633 0.002944 0.0111988 0
Trial 6 0.0061319 0.0061203 0.0147946 0.1824
Trial 7 0.0055939 0.0055939 0.0149316 0.082
Trial 8 0.0028541 0.0028541 0.0122117 0.043
Significant C effect AB The strongest effect is the interaction AB. It tends
Effects: effect

A effect be better at the lower settings of A and B, so a

higher

Number of neurons, and a 4:1 ratio. However, A is
Important at 3:1 as well. N=30 and N=20 also is
better.

113



Architecture Type 1.3 - Standard 4 layer backpropagation net

Positive Negative
A G-G-G G-L-G
B mom=0.15, 1=0.15 mom=0.2, 1=0.2
C 2:1 ratio 5:1 ratio
D=ABC 50 neurons 60 neurons
Results:

Last Error Trn. Min. Error Tm. Min. Error Tst. R2 Production
Trial 1 0.0036294 0.0019316 0.009943 0.4153
Trial 2 0.0011295 0.0010761 0.0098675 0.3383
Trial 3 0.0158977 0.0126049 0.0154211 0.0334
Trial 4 0.0014809 0.0011603 0.104317 0.2955
Trial § 0.0204516 0.0065013 0.0109372 0.3281
Trial 6 0.0065709 0.0023669 0.0087533 0.2063
Trial 7 0.0204509 0.0069881 0.0111085 0.3191
Trial 8 0.0028324 0.0016914 0.0102605 0.2922
Significant BC The interaction between B and C is significant. The other
Effects: effect significant

B effect effect is the learning and momentum rate, which strongly
favour the

setting of 1=0.2 and mom=0.2 over [=0.15 and mom=0.15.
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Standard 3-layer Backpropagation Network: Results and Analysis

DEV =

HL =

Act. =

Last Error Tm.

Min. Error Tm.
Min. Error Tst.

standard deviation of horizontal wind direction
hidden layer

activation function

last average training error

minimum average training error

minimum average testing error

R? value from applying the model to the production set
X:y ratio between neurons in hidden layers 1 and 2
percentage of input data used for test set

percentage of input data used for production set
momentum rate

learning rate

Logistic — Gaussian activation functions in the hidden
layer and the output layer

Logistic — Logistic activation functions in the hidden
layer and 2 and the output layer
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Architecture Type 2 - Standard 3 layer backpropagation net

C effect The effect of having a Gaussian Activation

Positive
A with DEV
B 40 neurons HL 1
C Gaussian Act.
D=ABC Linear [-1,1]
Results:

Last Error Tm.
Run 1 0.0031318
Run 2 0.002015
Run 3 0.0028117
Run 4 0.0035537
Run § 0.016563
Run 6 0.0019684
Run 7 0.0349752
Run 8 0.0238983
Significant
Effects:

B effect

BC
effect

Negative
without DEV
60 neurons HL 1
Logistic Act.
Linear <-1,1>

Min. Error Tm. Min. Error Tst.
0.0031318 0.0080706
0.0018796 0.0068654
0.0024513 0.0076051
0.0033196 0.007067
0.0108009 0.0231428
0.0019684 0.010438
0.0069808 0.0133807
0.0150034 0.0279355

function is to

decrease the R2. The effect of having 40 neurons

is to

R2 Production

0.2457
0.1729
0.1942
0.1921

0
0.0419
0.1887

0

increase the R2. Therefore the direction for future 3

hidden

layer tests is towards Logistic Activation functions and

less neurons.
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Architecture Type 2.1 - Standard 3 layer backpropagation net

Positive
A 20 neurons HL
B Logistic HL
C Logistic output

D=ABC Linear [-1,1]

Results:

Last Error Trn.
Run 1 0.0251556
Run 2 0.0234767
Run 3 0.0163245
Run 4 0.0161196
Run 5 0.0036295
Run 6 0.0043797
Run 7 0.0032607
Run 8 0.0026998
Significant ABC
Effects: effect

BC effect

Negative

30 neurons HL
tanh HL

tanh output
Linear <-1,1>

Min. Error Trn. Min. Error Tst.
0.0203517 0.0450785
0.0234767 0.0489733
0.0162778 0.0466555
0.0149541 0.0473099
0.0033505 0.0078942
0.0043797 0.0077654
0.0032542 0.007235
0.0026798 0.0075419

R2 Production

0.306
0.3056
0.2101

0.277
0.0759
0.2821
0.3074
0.2849

Having a linear <-1,1> is seen to be quite significant in

improving

the value of R2. The next set of tests will use the linear <-

11>

as well as tanh output, and between 15 and 25 neurons in the

hidden layer.
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Architecture Type 2.2 - Standard 3 layer backpropagation net

Positive Negative
A 15 neurons HL 25 neurons HL
B N=20,M=10 N=30,M=20
C with temp without temp
D=ABC turboprop momentum
Results:

Last Error Tm. Min. Error Tm. Min. Error Tst. R2 Production
Run 1 0.007661 0.0039927 0.0074991 0.139
Run 2 0.0057091 0.0057091 0.0075891 0.1495
Run 3 0.0050825 0.0050825 0.0090064 0.2319
Run 4 0.0073509 0.0035311 0.0089838 0.1019
Run § 0.0018717 0.0016884 0.0062993 0.2996
Run 6 0.0049929 0.0031284 0.0066385 0.3142
Run 7 0.0056459 0.0029365 0.0079316 0.1557
Run 8 0.0032607 0.0032542 0.007235 0.3074
Significant C effect It seems that the largest effect is from the combination of
Effects: having no

B effect temp included as well as having a larger production and test
set.
BC effect As well, it seems that it is more advantageous to have a larger

production and test set as well as including temperature.
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Architecture Type 2.3 - Standard 3 layer backpropagation net

Positive Negative
A mom=0.15 mom=0.3
B 1=0.15 1=0.3
C 12 neurons 18 neurons
D=ABC L-L L-G
Results:
Last Error Tm. Min. Error Trn. Min. Error Tst. R2 Production
Run1 0.0143385 0.0065455 0.0101396 0.2341
Run 2 0.0038546 0.0017137 0.0057759 0.1345
Run 3 0.0049465 0.0028584 0.0062819 0.2403
Run 4 0.0112971 0.0052907 0.0096167 0.1885
Run s 0.0028449 0.0016912 0.0058981 0.0859
Run 6 0.0261568 0.0057475 0.0102559 0.2174
Run 7 0.010304 0.0052039 0.0094363 0.1534
Run 8 0.0042496 0.0018248 0.0058804 0.1327
Significant AC effect The largest effect is the confounded interaction between A
Effects: and C.
ABC The next significant effect is the number of neurons, which
effect favours

C effect 18 over 12. As well, the activation functions (ABC) appear
significant towards having L-G instead of L-L.
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4-layer Jump Connection Network: Results and Analysis

DEV =
I-II_‘ =
Act. =

Last Error Trn. =
Min. Error Tmn. =
Min. Error Tst. =
R2 Production =

Xx:y ratio =

standard deviation of horizontal wind direction

hidden layer

activation function

last average training error

minimum average training error

minimum average testing error

R? value from applying the model to the production set
X:y ratio between neurons in hidden layers 1 and 2

Architecture Type 3 - 4 Layer Jump Connection Net

Positive

with DEV

40 neurons HL1
40 neurons HL2
ABC Gaussian Act.

g0 >

Results:

Last Error Tr.

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8

Significant
Effects:

0.0012878
0.0131341
0.0036059
0.0013245
0.0018566
0.0087632
0.0075357
0.0009128

Negative

without DEV

60 neurons HL1

60 neurons HL2

Logistic Act.

Min. Error Tm. Min. Error Tst. R2 Production
0.0012774 0.0081268 0.024
0.0122305 0.0248806 0.0165
0.0011149 0.0128805 0
0.0012197 0.0069536 0.4519
0.0018566 0.0072116 0.3223
0.0087632 0.028 0
0.0075313 0.0153239 0
0.0009128 0.0067342 0.2887

AC effect It seems that in this case, the 2 factor interactions are

BC effect

AB effect

significant

There is a confounding pattern, so the AC is confounded with
BD

the BC is confounded with the AD, and the AB is confounded
with

the CD. A full factorial design should be

conducted.

120



Architecture Type 3.1 - 4 Layer Jump Connection Net

Positive Negative
A 2:1 ratio 3:1 ratio
B 30 neurons HL1 36 neurons HL1
C Linear [-1,1] Linear <-1,1>
D=ABC Gaussian Act. Tanh Act.
Results:
Last Error Tm. Min. Error Trm. Min. Error Tst. R2 Production
Model 1 0.1188676 0.118775 0.2102616 0
Model 2 0.0098821 0.0076381 0.0181293 0.0554
Model 3 0.0064628 0.0051434 0.0199645 0
Model 4 0.160058 0.1580243 0.1864138 0
Model 5 0.1188676 0.118775 0.2102616 0
Model 6 0.0098821 0.0076381 0.0181293 0.0554
Model 7 0.0064628 0.0051434 0.0199645 0
Model 8 0.160058 0.1580243 0.1864138 0
Significant A effect  This particular set of runs seemed to greatly reduce the values
Effects: of R2.
B effect  Therefore, it is prudent that the first set of results be used for
the 4
AB effect layer backpropagation net, and a different direction be

chosen.
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Architecture Type 1 - Standard 4 layer backpropagation net

A
B
C
D=ABC
Results:

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8

Positive

with DEV

40 neurons HL1
40 neurons HL2
Gaussian Act.

Negative
without DEV
60 neurons HL1
60 neurons HL2
Logistic Act.

Last Avg. Error Trn. Min. Avg. Error Tm.  Min. Avg. Error Tst.  R2 Production

0.0016003
0.0193618
0.0048306
0.0015144
0.0017543
0.0019683
0.0031952
0.0011614

0.0013497
0.0193618
0.0040126
0.0015144
0.0016935
0.0016515
0.0031952

0.001137

Architecture Type 2 - Standard 3 layer backpropagation net

A
B
C
D=ABC
Results:

Run1l
Run2
Run3
Run4
Run5
Runé
Run?7
Run 8

Positive

with DEV

40 neurons HL1
Gaussian Act.
Linear [-1,1]

Negative
without DEV
60 neurons HL1
Logistic Act.
Linear <-1,1>

0.0280005
0.0115825
0.0072485
0.0074151
0.0113582
0.0114674
0.0070806

0.2597
0
0.2881
0.1239
0.2564
0
0
0.2494

Last Avg. Error Tm. Min. Avg. Error Tm.  Min. Avg. Error Tst.  R2 Production

0.0031318

0.002015
0.0028117
0.0035537

0.016563
0.0019684
0.0349752
0.0238983

Architecture Type 3 - 4 Layer Jump Connection Net

A
B
C
D=ABC

Results:

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8

Positive

with DEV

40 neurons HL1
40 neurons HL2
Gaussian Act.

0.0031318
0.0018796
0.0024513
0.0033196
0.0108009
0.0019684
0.0069808
0.0150034

Negative

without DEV

60 neurons HL1

60 neurons HL2

Logistic Act.

0.0080706
0.0068654
0.0076051

0.007067
0.0231428

0.010438
0.0133807
0.0279355

0.2457
0.1729
0.1942
0.1921

0
0.0419
0.1887

0

Last Avg. Error Trn. Min. Avg. Error Trn. Min. Avg. Error Tst.  R2 Production

0.0012878
0.0131341
0.0036059
0.0013245
0.0018566
0.0087632
0.0075357
0.0009128

0.0012774
0.0122305
0.0011149
0.0012197
0.0018566
0.0087632
0.0075313
0.0009128
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0.0081268
0.0248806
0.0128805
0.0069536
0.0072116

0.028
0.0153239
0.0067342

0.024
0.0165
0
0.4519
0.3223
0

0
0.2887



Architecture Type 1.1 - Standard 4 layer backpropagation net

A
B
C
D=ABC

Results:

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8

Positive

2:1 ratio

30 neurons HL1
Linear{-1,1}
Gaussian Act.

Negative

3:1 ratio

36 neurons HL1
Linear<-1,1>
Tanh Act.

Last Avg. Error Trn. Min. Avg. Error Tm. Min. Avg. Error Tst.  R2 Production

0.0208282

0.005569
0.0071127
0.0434505
0.0189367

0.005569
0.0070325
0.0434505

0.0208282
0.0050089
0.0049247
0.0228035
0.0189367
0.0050089
0.0034753
0.0228035

Architecture Type 2.1 - Standard 3 layer backpropagation net

A
B
C
D=ABC

Results:

Runl
Run 2
Run3
Run 4
Run 5
Run 6
Run?7
Run 8

Positive

20 neurons HL
Logistic HL
Logistic output
Linear [-1,1]

Negative

30 neurons HI
tanh HL

tanh output
Linear <-1,1>

0.0532618
0.012229
0.0108558
0.0434453
0.045788
0.012229
0.0118333
0.0434453

0.3353
0.0432
0.2933
0.1469
0.1887
0.0432

0
0.1469

Last Avg. Error Tm. Min. Avg. Error Trn.  Min. Avg. Error Tst. R2 Production

0.0251556
0.0234767
0.0163245
0.0161196
0.0036295
0.0043797
0.0032607
0.0026998

0.0203517
0.0234767
0.0162778
0.0149541
0.0033505
0.0043797
0.0032542
0.0026798

Architecture Type 3.1 - 4 Layer Jump Connection Net

A
B
C
D=ABC

Results:

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8

Positive

2:1 ratio

30 neurons HL1
Linear [-1,1]
Gaussian Act.

Negative

3:1 ratio

36 neurons HL1
Linear <-1,1>
Tanh Act.

0.0450785
0.0489733
0.0466555
0.0473099
0.0078942
0.0077654

0.007235
0.0075419

0.306
0.3056
0.2101

0.277
0.0759
0.2821
0.3074
0.2849

Last Avg. Error Trn. Min. Avg. Error Tm.  Min. Avg. Error Tst.  R2 Production

0.1188676
0.0098821
0.0064628

0.160058
0.1188676
0.0098821
0.0064628

0.160058

0.118775
0.0076381
0.0051434
0.1580243

0.118775
0.0076381
0.0051434
0.1580243
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0.2102616
0.0181293
0.0199645
0.1864138
0.2102616
0.0181293
0.0199645
0.1864138

0
0.0554



Architecture Type 1.2 - Standard 4 layer backpropagation net

Negative

4:1 ratio

48 neurons HL1
N=30,M=20
without temp

Last Avg. Error Tm. Min. Avg. ErrorTm.  Min. Avg. Error Tst.  R2 Production

Positive
A 3:1 ratio
B 36 neurons HL1
C N=20,M=10
D=ABC with temp
Results:
Trial 1 0.0049359
Trial 2 0.0033392
Trial 3 0.003951
Trial 4 0.0043338
Trial 5 0.0074633
Trial 6 0.0061319
Trial 7 0.0055939
Trial 8 0.0028541

0.0049359
0.0025959

0.001678
0.0043338

0.002944
0.0061203
0.0055939
0.0028541

Architecture Type 2.2 - Standard 3 layer backpropagation net

Negative

25 neurons HL
N=30,M=20
without temp
momentum

0.0128032
0.0107425
0.0109563
0.0124708
0.0111988
0.0147946
0.0149316
0.0122117

0.103
03374
0.2513
0.1533
0
0.1824
0.082
0.043

Last Avg. Error Tm. Min. Avg. ErrorTrn. Min. Avg. Error Tst.  R2 Production

Positive
A 15 neurons HL
B N=20,M=10
C with temp
D=ABC turboprop
Results:
Run1 0.007661
Run2 0.0057091
Run3 0.0050825
Run4 0.0073509
Run S 0.0018717
Runé6 0.0049929
Run?7 0.0056459
Run$8 0.0032607

Architecture Type 4 - 3 Layer Jump Connection Net

0.0039927
0.0057091
0.0050825
0.0035311
0.0016884
0.0031284
0.0029365
0.0032542

Negative

25 neurons

N=30,M=20

without temp

momentum

0.0074991
0.0075891
0.0090064
0.0089838
0.0062993
0.0066385
0.0079316

0.007235

0.139
0.1495
0.2319
0.1019
0.2996
03142
0.1557
0.3074

Last Avg. Error Tmn. Min. Avg. ErrorTrn. Min. Avg. Error Tst.  R2 Production

Positive
A 30 neurons
B N=20,M=10
C with temp
D=ABC turboprop
Results:
Model 1 0.0215683
Model 2 0.0266969

0.0107682
0.0115191

* This type of model ruled out after trial Model 2
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0.0158367
0.0135914

0
0.031



Architecture Type 1.3 - Standard 4 layer backpropagation net

A
B
C
D=ABC
Results:

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8

Positive

G-G-G
mom=0.15, |=0.15
2:1 ratio

50 neurons

Negative
G-LG
mom=0.2, 1=0.2
5:1 ratio

60 neurons

Last Avg. Error Trn. Min. Avg. Eror Tm.  Min. Avg. Error Tst.  R2 Production

0.0036294
0.0011295
0.0158977
0.0014809
0.0204516
0.0065709
0.0204509
0.0028324

0.0019316
0.0010761
0.0126049
0.0011603
0.0065013
0.0023669
0.0069881
0.0016914

Architecture Type 2.3 - Standard 3 layer backpropagation net

A
B
C
D=ABC

Results:

Run1l
Run?2
Run3
Run4
Run5
Run 6
Run?7
Run8

Positive
mom=0.15
1=0.15

12 neurons
L-L

Negative
mom=0.3
1=03

18 neurons
L-G

0.009943
0.0098675
0.0154211

0.104317
0.0109372
0.0087533
0.0111085
0.0102605

0.4153
0.3383
0.0334
02955
03281
0.2063
03191
0.2922

Last Avg. Error Trn. Min. Avg. Error T, Min. Avg. Error Tst.  R2 Production

0.0143385
0.0038546
0.0049465
0.0112971
0.0028449
0.0261568

0.010304
0.0042496

0.0065455
0.0017137
0.0028584
0.0052907
0.0016912
0.0057475
0.0052039
0.0018248
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0.0101396
0.0057759
0.0062819
0.0096167
0.0058981
0.0102559
0.0094363
0.0058804

0.2341
0.1345
0.2403
0.1885
0.0859
0.2174
0.1534
0.1327



APPENDIX C — Detailed Results and Analysis from Stage 2

of the ANN Modelling Process
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Sample of Data Used For Stage 2 Modelling, Models 1 and 2

YR MTH DAY HR DEV Tmp(Muni) WDR WORDeg WDR Sec WSP NOX TRSec? TRSec2 TRSecl TRSec 4 Class

95 1 1 17 10 95 262 98 2 152 0.016 1832 254 67 2653 T
5 1 2 4 9 -143 253 107 2 104 001 122 8 25 76 P
95 1 3 17 88 -18.8 247 113 2 04 0177 1832 254 367 2853V
95 1 ] 4 14 -155 229 131 2 7.4 0058 122 8 25 %P
a5 1 5§ 17 24 -128 226 134 2 63 0081 1832 254 367 2653 P
a5 1 7 4 10 -13.3 218 141 2 185 0014 122 8 25 T
95 1 8 4 12 -23.9 309 51 2 29 0.093 122 8 25 76 P
95 1 11 4 28 121 319 41 2 2 002 122 8 25 7% P
95 1 12 4 20 -12.1 260 100 2 08 0053 122 8 25 |V
95 1 13 4 N -8 180 180 2 01 o002 122 8 25 76T
- 1 8 177 11 -102 324 38 2 1.2 0.114 1832 254 367 2653 V
95 1 19 4 45 -10 248 112 2 24 0023 122 8 25 76T
95 1 24 17 13 83 328 M 2 03 0.126 1832 254 367 W53V
a5 1 25 4 4 -16.2 225 135 2 0 0221 122 8 25 76T
95 1 2 17 17 -102 320 40 2 14 0122 1832 254 367 2653 P
95 1 30 4 7 56 196 164 2 125 0027 122 8 25 %V
95 1 30 17 13 45 205 155 2 54 0.058 1832 254 367 2653V
a5 1 31 4 67 33 340 20 2 07 0.102 122 8 25 T
95 2 1 4 68 09 339 21 2 34 0035 122 8 25 6P
95 2 2 W7 8 54 267 93 2 94 0047 1832 254 367 2653V
95 2 4 4 9 1.1 207 153 2 154 0.016 122 8 25 76 P
95 2 4 17 8 33 201 159 2 154 0.021 1832 254 367 2853 P
95 2 5 4 18 45 185 175 2 8.1 0.052 122 8 25 7.V
95 2 6 17 10 63 305 55 2 37 0479 1832 254 367 2653 T
95 2 8 4 9 1.1 201 159 2 176 0.012 122 8 25 %V
95 2 9 4 10 1.8 229 131 2 328 0.005 122 8 25 76T
9% 2 9 17 10 88 242 118 2 149 0.026 1832 254 387 2653 T
95 2 10 4 9 -16 238 122 2 19 0.005 122 8 25 %P
95 2 10 17 10 -147 268 92 2 119 0.021 1832 254 367 2653 P
95 2 1 4 18 -21.3 248 114 2 4 0.04 122 8 25 m|V
95 2 1 17 9 -189 258 102 2 183 0.01 1832 254 367 2853V
85 2 12 4 10 209 223 137 2 17 0.007 122 8 25 76T
95 2 122 w7 12 -17.2 220 140 2 162 0.009 1832 254 367 2653 T
85 2 14 17 69 -13.6 191 169 2 1.5 0.055 1832 254 367 2653V
95 2 15 17 22 -158 312 48 2 4.1 0.047 1832 254 367 2653 T
95 2 16 4 16 -17.8 321 39 2 44 0027 122 8 25 %P
95 2 16 17 36 -19.3 198 162 2 34 0.049 1832 254 367 2653 P
95 2 18 4 20 -135 270 90 2 29 0.043 122 8 25 %T
85 2 19 17 13 74 210 150 2 124 0018 1832 254 387 2653 P
85 2 22 4 L) 03 204 156 2 216 0.006 122 8 25 76 P
95 2 2 17 14 1.1 269 9 2 171 0.031 1832 254 367 2653 P
85 2 25 17 15 58 217 143 2 144 0.01 1832 254 367 2653 P
95 2 26 4 10 -155 224 136 2 179 0.006 122 8 25 7%V
85 2 28 117 14 -188 270 90 2 148 0007 1832 254 367 2853V
85 2 27 17 12 -13.1 278 82 2 86 0018 1832 254 a67 2653 T
a5 3 1 4 5 -19.9 190 170 2 119 0.025 122 8 25 %V
95 3 1 17 9 -21 293 67 2 181 0.02 1832 254 67 2653 Vv
95 3 2 4 4 76 204 156 2 149 0.028 122 8 25 76T
95 3 2 17 9 -26 350 10 2 142 0027 1832 254 367 2653 T
95 3 S 4 12 236 192 168 2 5.7 0.009 122 8 25 76T
95 3 s 17 9 7.7 220 140 2 11 0.021 1832 254 387 2653 T
95 3 6 4 1" 246 197 183 2 9.1 0.016 122 8 25 76 P
85 3 6 17 12 -146 338 24 2 98 0037 1832 254 367 2653 P
95 3 7 4 3 226 216 144 2 57 0.061 122 8 25 76V
95 3 1 17 33 789 220 140 2 82 0033 1832 254 3e7 26537
95 3 12 4 s 2.2 196 164 2 14 0.026 122 8 25 %P
95 3 16 4 10 31 283 m 2 15 0.026 122 8 25 7.V
95 3 16 117 13 5 360 0 2 126 0.016 1832 254 67 2653 V
85 3 17 17 43 74 195 165 2 44 0027 1832 254 367 2653 T
85 3 19 4 12 06 191 169 2 34 0013 122 8 25 76V
95 3 19 17 4 118 322 38 2 69 0.009 1832 254 387 2653V
85 3 22 4 15 0.7 281 7% 2 135 0.021 122 8 25 mVv
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Sample of Qutput from Best-Fit Model, Model 1

0.016487
-0.010359
0.01017
0.006678
0.016482
0.062796
-0.002665
0.017133
0.000356
0.082388
-0.010574
0.005269
0.027489
0.018595
-0.006319
-0.000729
0.006764
-0.010453
-0.02394
0.008833
0.012762
0.012783
-0.0134
-0.004543
-0.004743
-0.005317
-0.007131
0.001931
-0.001771
0.004023
-0.023821
0.016101
-0.010627
-0.037095
-0.026171
0.008424
0.052701
-0.004344
-0.001074
-0.011142
0.002138
-0.004144
-0.002294
-0.001552
0.1184
-0.007676
-0.00859
-0.000373

Production Test Training
Actual(1) Network(1) Act-Net(1) Actual(1) Network(1) Act-Net(1) Actual(1) Network(1) Act-Net(1)
0.032 0.023575 0.008425 0.018 0.0243228 -0.006323 0.061 0.0445127
0.027 0.0237046 0.003295 0.02 0.0244973 -0.004497 0.018 0.0283588
0.025 0.022324 0.002676 0.026 0.020485 0.005515 0.028 0.0178303
0.079 0.0765366 0.002463 0.011 0.0203528 -0.009353 0.024 0.0173216
0.014 0.0198035 -0.0058 0.022 0.0116968 0.010303 0.059 0.0425184
0.027 0.0239734 0.003027 0.03 0.0221595 0.007841 0.139 0.0762038
0.063 0.0794308 -0.01643  0.043 0.0225458 0.020454 0.033 0.0356646
0.01 0.0123132 -0.00231 0.076 0.1039746 -0.027975 0.039 0.0218665
0.012 0.0149376 -0.00294 0.012 0.0127131 -0.000713 0.04 0.039644
0.02 0.0125474 0.007453 0.005 0.0105728 -0.005573 0.138 0.055612
0.005 0.0201481 -0.01515 0.006 0.0130294 -0.007029 0.008 0.0185743
0.006 0.0120204 -0.00602 0.006 0.0119017 -0.005902 0.038 0.0327313
0.026 0.0121975 0.013803 0.01 0.0209371 -0.010937 0.047 0.0195107
0.179 0.1082391 0.070761 0.016 0.0164862 -0.000486 0.157 0.1384054
0.006 0.0122708 -0.00627 0.018 0.0346166 -0.016617 0.037 0.0433194
0.007 001382 -0.00682 0.021 0.0292965 -0.008296 0.047 0.0477289
0.017 0.01832 -0.00132 0.043 0.0365033 0.006497 0.071 0.0642357
0.018 0.0156177 0.002382 0.004 0.0144819 -0.010482 0.006 0.0164526
0.027 0.0255302 0.00147  0.011 0.0113804 -0.00038 0.021 0.0449397
0.114 0.1262659 -0.01227 0.016 0.0194705 -0.00347 0.025 0.0161673
0.013 0.0932829 -0.08028 0.021 0.02522 -0.00422 0.027 0.014238
0.014 0.0100956 0.003904 0.022 0.0216543 0.000346 0.029 0.016217
0.005 0.010671 -0.00567 0.016 0.0263853 -0.010385 0.005 0.0184001
0.016 0.0163801 -0.00038 0.019 0.0588368 -0.039837 0.006 0.0105426
0.017 0.0147739 0.002226 0.031 0.0132468 0.017753 0.006 0.0107432
0.007 0.0160956 -0.0091 0.015 0.0285625 -0.013563 0.007 0.0123166
0.011 0.0138533 -0.00285 0.016 0.0163057 -0.000306 0.01 0.017131
0.014 0.0240447 -0.01004 0.021 0.021169 -0.000169 0.014 0.0120687
0.056 0.0333007 0.022699 0.033 0.0153161 0.017684 0.016 0.0177707
0.01 0.0109016 -0.0009 0.037 0.0227276 0.014272 0.026 0.021977
0.021 0.0141516 0.006848 0.013 0.0094578 0.003542 0.014 0.0378207
0.005 0.0180904 -0.01309 0.016 0.0103314 0.005669 0.031 0.0148992
0.04 0.0485896 -0.00859 0.019 0.0308597 -0.01186 0.009 0.0196269
0.005 0.018728 -0.01373  0.025 0.0118528 0.013147 0.009 0.0460946
0.011 0.0127312 -0.00173  0.126 0.1417608 -0.015761 0.019 0.0451707
0.017 0.0097983 0.007202 0.156 0.0503889 0.105611 0.024 0.0155763
0.018 0.0088606 0.009139 0.058 0.1045658 -0.046566 0.093 0.0402995
0.183 0.1373765 0.045623 0.003 0.0109576 -0.007958 0.007 0.0113444
0.013 0.0136831 -0.00068 0.007 0.0111759 -0.004176 0.018 0.0190736
0.02 0.0144902 0.00551 0.018 0.0128035 0.005197 0.007 0.018142
0.052 0.0429314 0.009069 0.031 0.0156924 0.015308 0.012 0.0098624
0.036 0.0386467 -0.00265 0.059 0.0365297 0.02247 0.02 0.0241441
0.01 0.0124339 -0.00243 0.01 0.0310982 -0.021098 0.027 0.0292939
0.015 0.0111256 0.003874 0.01 0.0113498 -0.00135 0.013 0.0145522
0.02 0.0114009 0.008599 0.03 0.0217109 0.008289 0.236 0.1176003
0.011 0.0099797 0.00102 0.027 0.0323536 -0.005354 0.012 0.0196763
0.011 0.0195625 -0.00856 0.004 0.009699 -0.005699 0.04 0.0485896
0.014 0.0096813 0.004319 0.005 0.0101007 -0.005101 0.012 0.0123727
0.021 0.0111266 0.009873 0.02 0.0123751 0.007625 0.018 0.0123521
0.031 0.0307879 0.000212 0.013 0.0126207 0.000379 0.122 0.1316927
0.017 0.010475 0.006525 0.005 0.0100512 -0.005051 0.006 0.0110078
0.01 0.0112496 -0.00125 0.053 0.1033636 -0.050364 0.022 0.0327515
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Training and Test Set Actual NO, and Predicted NO,, Model 1
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APPENDIX D — Detailed Results and Analysis from Stage 3

of the ANN Modelling Process
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Sample of Data Used For Stage 3 Modelling

Yr  Mth Day Hour Temp NOX PPM WSP KPH WDR SEC WDR DEG DEV DEG sum transport Season Index Class

1985 1 1 1 122 0.127 8.5 1 158 21 718.3010084 17T
1985 1 1 2 126 0.109 89 1 128 6 651.9056681 17
1985 1 1 3 139 0.083 9.1 1 128 7 420.1656479 1V
1985 1 1 4 -148 0.064 9.6 1 125 4 269.3354311 iv
1985 1 1 § -143 0.051 9.8 1 122 3 300.2339375 1T
18 1 1 6 -154 0.048 10.7 1 127 3 356.8569695 1v
1985 1 1 7 -16.1 0.038 1.8 1 121 3  887.80509 1V
1985 1 1 8 -155 0.031 12 1 117 6 1195.807182 1P
1995 1 1 9 -16.2 0.038 133 1 128 3 136868.39152 17
1995 1 1 10 -154 0.037 134 1 135 5 1483.989981 1P
1985 1 1 11 -163 0.064 10.8 2 180 18 2323.145147 1P
1995 1 1 12 -125 0.035 85 2 150 14 2466.991325 1P
1985 1 1 13 -114 0.029 121 2 121 19 2742060078 1v
1995 1 1t 14 85 0.014 18 2 92 14 2935.911401 17T
1985 1 1 15 8.1 0.011 226 2 84 8 3004.09567 17T
1995 1 1 16 86 0.011 19 2 85 10 3058.555484 17T
1995 1 1 17 82 0.016 15.2 2 a8 10 2951.027746 17T
1995 1 1 18 -85 0.011 208 2 84 8 2892431249 1V
1985 1 1 19 -108 0.013 18 2 84 9 2080.746124 17T
195 1 1 20 -100 0.011 16.5 2 82 8 1573.088522 1P
1995 1 1 21 -106 0.014 129 2 a3 8 1245.228279 17T
1985 1 1 22 -113 0.012 133 2 101 8 1046.317437 1P
1995 1 1 23 125 0.012 138 2 92 8 8256113452 17T
1995 1 2 1 -120 0.008 13.2 2 96 1 469.3 17
1985 1 2 2 -130 0.009 125 2 a3 13 2726 17T
1995 1 2 3 -140 0.009 10 2 9 13 198.4 1T
1995 1 2 4 -150 0.01 104 2 107 9 194.7 1T
1996 1 2 5 -140 0.008 8.9 2 104 12 271.7 17
1985 1 2 6 -14.0 0.01 8.1 2 112 12 652.2 1v
1986 1 2 7 -145 0.012 73 2 118 16 21979 17
1986 1 2 8 -145 0.013 5.7 2 122 19 4211.7 17T
1995 1 2 9 -151 0.017 24 2 104 18 3259.7 17T
1986 1 2 10 -155 0.018 14 2 104 41 2477 1T
1995 1 2 11 151 0.046 4.3 1 151 126 2596.4 1T
1985 1t 2 12 153 0.038 8.6 1 143 12 2953.7 17
1995 1 2 13 154 0.032 9.7 1 125 8 3156.2 1T
1995 1 2 14 154 0.024 10.1 1 113 12 3117 1T
1995 1 2 15 -153 0.021 11.2 1 110 9 3278.8 1V
1995 1 2 16 -149 0.017 9.7 1 97 1 4055.1 1P
1995 1 2 17 154 0.018 86 1 79 12 55739 1v
1995 1 2 18 -16.0 0.025 9.8 1 76 8 5161.6 17
1995 1 2 19 -186 0.015 15.8 1 79 6 32614 1v
1986 1 2 20 -180 0.022 10.2 1 ag 1 2144.9 1V
1995 1 2 21 -156 0.015 10.2 1 80 11 1708.1 1v
1995 1 2 22 157 0.015 9.1 1 86 1 1604 1P
1965 1 2 23 185 0.02 47 1 69 14 11785 1T
1995 1 2 24 ‘118 0.007 14.3 2 94 11 708.0058839 17T
1995 1 3 1 -184 0.026 4.5 1 682 32 469.3 17T
1995 1 3 2 179 0.051 3.2 1 118 12 2728 17
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Sample of Qutput from Best-Fit Model, Stage 3 Modelling

0.026758
0.031464
-0.01406
-0.02401
0.003454
0.001222
0.000606
0.003846
0.003036
0.001192
-4.2E-05
-0.00423
-0.00406
-0.01052
-0.01025
-0.01698
-0.03656
-0.07325
-0.11861
-0.12062
-0.05564
-0.08717
-0.06926
-0.03885
-0.02554
-0.01057
-0.00428
-0.00679
-0.04517
-0.03893
-0.05582
-0.01502
-0.05474
-0.0841
0.108024
0.052755
0.000892
-0.0249
-0.02652
-0.00961
-0.01182
0.045434
0.087205
0.027294
0.021028
-0.03362
0.08509

Production Test Training
Actual(1) Network(1) Act-Net(1) Actual(1) Network(1) Act-Net(1) Actual(1) Network(1) Act-Net(1)
0.083 0.0748091 0.008191 0.031 0.0481199 -0.01712 0.127 0.100242
0.064 0.0698064 -0.00581 0.037 0.0679598 -0.03096 0.109 0.077536
0.048 0.0666322 -0.01863 0.064 0.0615599 0.00244 0.051 0.065064
0.039 0.0555696 -0.01657 0.035 0.0426 -0.0076 0.036 0.060013
0.029 0.0165654 0.012435 0.011 0.0101239 0.000876 0.014 0.010546
0.011 0.009967 0.001033 0.012 0.012652 -0.0006S5 0.011 0.009778
0.01 0.0324478 -0.02245 0.017 0.0475583 -0.03056 0.011 0.010394
0.021 0.0565174 -0.03552 0.015 0.0185673 -0.00357 0.016 0.012054
0.018 0.0594478 -0.04145 0.085 0.0903661 -0.00537 0.013 0.009964
0.015 0.0142352 0.000765 0.274 0.1795884 0.094412 0.014 0.012808
0.022 0.0189221 0.003078 0.142 0.1483001 -0.0063 0.012 0.012042
0.015 0.0145537 0.000446 0.175 0.1795306 -0.00453 0.008 0.012234
0.175 0.1665469 0.008453 0.141 0.1174688 0.023531 0.009 0.013058
0.113 0.1620654 -0.04907 0.177 0.1968236 -0.01982 0.009 0.019516
0.129 0.1302647 -0.00126 0.047 0.0224708 0.024529 0.01 0.020254
0.121 0.1426309 -0.02163 0.02 0.0154689 0.004531 0.008 0.024976
0.029 0.0132903 0.01571 0.032 0.0598384 -0.02784 0.012 0.048558
0.073 0.0818579 -0.00886 0.065 0.0649105 8.95E-05 0.013 0.086245
0.161 0.1224495 0.03855 0.128 0.1023915 0.025609 0.017 0.135609
0.213 0.09369 0.11931 0.201 0.1483758 0.052624 0.018 0.138622
0.152 0.0871854 0.064815 0.282 0.1037561 0.178244 0.046 0.101639
0.128 0.1052626 0.022737 0.334 0.0926259 0.241374 0.038 0.125168
0.276 0.1987621 0.077238 0.065 0.0934148 -0.02841 0.032 0.101259
0.067 0.1031727 -0.03617 0.051 0.0736618 -0.02266 0.024 0.06285
0.049 0.0816083 -0.03261 0.065 0.1071496 -0.04215 0.025 0.050538
0.114 0.1070579 0.006942 0.114 0.097258 0.016742 0.02 0.030574
0.041 0.0872462 -0.04625 0.117 0.1075118 0.009488 0.007 0.011277
0.018 0.0608219 -0.04282 0.01 0.0166866 -0.00669 0.026 0.032795
0.038 0.1409581 -0.10296 0.019 0.0725809 -0.05358 0.051 0.096166
0.027 0.0570262 -0.03003 0.029 0.0798883 -0.05089 0.075 0.113927
0.023 0.0661584 -0.04316 0.054 0.1151927 -0.06119 0.063 0.118824
0.041 0.0524806 -0.01148 0.021 0.0108689 0.010131 0.066 0.081016
0.07 0.0422175 0.027783 0.021 0.0183367 0.002663 0.124 0.178742
0.04 0.0232314 0.016769 0.02 0.0181809 0.001819 0.105 0.189102
0.028 0.0158783 0.012122 0.033 0.1191522 -0.08615 0.179 0.069976
0.012 0.0145993 -0.0026 0.094 0.0744228 0.019577 0.105 0.052245
0.031 0.039618 -0.00862 0.044 0.0595385 -0.01554 0.041 0.040008
0.034 0.0199849 0.014015 0.118 0.1874344 -0.06943 0.031 0.055901
0.041 0.0516157 -0.01062 0.043 0.1064119 -0.06341 0.064 0.090525
0.086 0.1074787 -0.02148 0.037 0.0973256 -0.06033 0.076 0.085608
0.071 0.004847 -0.02385 0.012 0.0115653 0.000435 0.045 0.056823
0.023 0.171292 -0.14829 0.022 0.0112964 0.010704 0.106 0.060566
0.011 0.0110108 -1.1E-05 0.008 0.0100532 -0.00205 0.182 0.094795
0.011 0.0101896 0.00081 0.01 0.0131924 -0.00319 0.115 0.087706
0.007 0.0111551 -0.00416 0.007 0.0164174 -0.00942 0.117 0.095972
0.011 0.0285212 -0.01752 0.018 0.0437144 -0.02571 0.171 0.204616
0.025 0.0814948 -0.05649 0.011 0.0239096 -0.01291 0.292 0.20691
0.01 0.0284455 -0.01845 0.018 0.0625714 -0.04457 0.221 0.101441
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Training and Test Set Actual NO, and Predicted NO,

Actual vs. Predicted NOx Readings: Training Set
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APPENDIX E - Detailed Results and Analysis from

Sensitivity Analysis
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Sample of Data Set Used in Model Application for the Sensitivity Analysis

YR MTH DAY HOUR Temp WSP WDR WDR DEV Sum Season Index Actual
Sec Deg Trans NOx
95 2 8 1 15 106 2 161 10 469.3 1 0.026
95 2 8 2 14 14 2 162 8 2726 1 0.015
95 2 8 3 11 165 2 167 11 1984 1 0.014
95 2 8 4 10 176 2 159 9 194.7 1 0.012
95 2 8 5 11 176 2 163 10 271.7 1 001
95 2 8 6 04 171 2 159 9 652.2 1 0.017
95 2 8 7 -03 153 2 156 9 21979 1 0.021
95 2 8 8 -08 153 2 154 11 4211.7 1 0.036
95 2 8 9 -15 147 2 158 10 3259.7 1 0.046
95 2 8 10 -12 155 2 156 1 2477 1 0.035
95 2 8 11 -04 146 2 157 " 2596.4 1 0.03
95 2 8 12 07 16 2 158 10 2953.7 1 0.031
95 2 8 13 21 166 2 155 10 3156.2 1 0.02
95 2 8 14 32 142 2 156 12 3117 1 0.027
95 2 8 15 36 103 2 161 15 3278.8 1 0.038
95 2 8 17 33 112 1 126 11 5573.9 1 0.115
g5 2 8 18 26 11.6 1 97 7 5161.6 1 0.097
95 2 8 19 24 178 1 93 8 3261.4 1 0.055
95 2 8 20 20 229 1 98 6 2144.9 1 0.031
95 2 8 21 11 203 1 111 1 1708.1 1 0.035
95 2 8 22 09 184 1 119 7 1604 1 0.03
95 2 8 23 03 179 1 124 6 1178.5 1 0.029
95 2 8 24 24 195 1 151 19 782.4 1 0.038
95 2 9 1 42 242 2 163 1 469.3 1 0.014
g5 2 9 2 55 29.7 2 145 10 272.6 1 0.007
95 2 9 3 45 36.6 2 127 8 198.4 1 0.005
95 2 9 4 24 328 2 131 10 194.7 1 0.005
95 2 9 5 18 31.1 2 143 9 271.7 1 0.006
95 2 9 6 14 329 2 137 12 652.2 1 0.007
95 2 9 7 19 30 2 126 12 2197.9 1 001
95 2 9 8 11 347 2 96 8 4211.7 1 0.012
95 2 9 9 -24 328 2 86 10 3259.7 1 0.011
95 2 9 10 43 324 2 83 9 2477 1 0.009
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Data for Relationship between Traffic Counts and Average Hourly NO,

Percent Increase or Decrease Average Hourly NOx Concentration

40% 0.043933553
35% 0.043115096
30% 0.042269783
25% 0.041421563
20% 0.040629659
15% 0.039891927
10% 0.039206034

5% 0.038501885

0% 0.037780349
-5% 0.036913786
-10% 0.036065663
-15% 0.035245015
-20% 0.03446298
-25% 0.033730919
-30% 0.033060206
-35% 0.032457773
-40% 0.031922972
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Sample of Model Output for Varying Traffic Counts

15% 10% 5% -5% -10% -15%
Traffic Traffic Traffic Traffic Traffic Traffic
0.02076 0.020739 0.020719 0.020681 0.020662 0.020645
0.013925 0.013908 0.013892 0.01386 0.013845 0.013829
0.011251 0.011241 0.011232 0.011219 0.011219 0.011219
0.010527 0.01052 0.010513 0.010506 0.010506 0.010506
0.010633 0.010621 0.010609 0.010587 0.010576 0.010565
0.011429 0.011386 0.011345 0.011267 0.011229 0.011193
0.018674 0.018004 0.017393 0.016331 0.015871 0.015452
0.05397 0.047551 0.041957 0.032993 0.029475 0.026497
0.033896 0.031191 0.028806 0.024871 0.02326 0.02185
0.019676 0.018812 0.018034 0.016704 0.016137 0.015628
0.022358 0.021257 0.020269 0.018591 0.01788 0.017244
0.026306 0.02439 0.022696 0.019886 0.018728 0.017711
0.026841 0.024631 0.022694 0.019527 0.018244 0.017128
0.027388 0.025323 0.023515 0.020552 0.019345 0.018292
0.036813 0.034126 0.031781 0.02796 0.026415 0.025075
0.222579 0.222579 0.222579 0.213118 0.201347 0.187603
0.137953 0.137953 0.133109 0.113015 0.101705 0.090375
0.041948 0.038545 0.03541 0.029915 0.027538 0.025396
0.023638 0.022679 0.021781 0.020158 0.019428 0.018748
0.030362 0.029158 0.028014 0.025899 0.024929 0.024014
0.042322 0.040686 0.039101 0.036093 0.034676 0.03332
0.0396 0.038467 0.037365 0.035261 0.03426 0.033294
0.049729 0.048843 0.047964 0.046231 0.045378 0.044534
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