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Abstract 

Time series has become prevalent in a broad range of real-world applications such as 

weather, health care, agricultural production, satellite image analysis, speech recognition, 

industrial process control, and others. This type of data comes as a collection of 

observations obtained chronologically, describing different aspects of a specific 

phenomenon. With the increasing availability of time series data, the discovery and 

extraction of available information (e.g., similar patterns, meaning rules) from them are 

essential to human. In this dissertation, three main time series mining tasks involving (i) 

anomaly detection, (ii) approximation /representation and (iii) predictive modeling will be 

concerned with developing Computational Intelligence (CI) related techniques on the one 

hand and with their application on complex real-world problems on the other hand. The 

primary objectives of this thesis are to develop a series of relatively comprehensive 

frameworks for these mining tasks. 

Anomaly detection in the multivariate time series refers to the discovery of any 

abnormal behavior within the data encountered in a specific time interval. Here we develop 

and carry out two unsupervised and supervised frameworks of multivariate time series 

anomaly detection for amplitude and shape anomalies, namely cluster-centric anomaly 

detection models and Hidden Markov Models based model with the aid of the 

transformation of multivariate time series to univariate time series respectively. In the first 

unsupervised model, the modified Fuzzy C-Means clustering was used to capture the 

structure of multivariate time series. A reconstruction error serves as the fitness function of 

the PSO algorithm and also has been considered as the level of anomaly detected in each 

subsequence. In the other model, several transformation techniques involving Fuzzy 
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C-Means (FCM) clustering and fuzzy integral are studied. A Hidden Markov Model 

(HMM), one of the commonly encountered statistical methods, is engaged to detect 

anomalies in multivariate time series. 

Before implementing most tasks of time series data mining, one of the essential 

problems is to approximate or represent the time series data because of its massive data size 

and high dimensionality. We establish FCM clustering based approximation methods. We 

carry out a comprehensive analysis of relationships between reconstruction error and 

classification performance when dealing with various representation (approximation) 

mechanisms of time series.  

Furthermore, we also elaborate on a novel Hidden Markov Model (HMM)-based 

fuzzy model for time series prediction. Here fuzzy rules (rule-based models) are employed 

to describe and quantify the relationship between the input and output time series while the 

HMM is regarded as a vehicle for capturing the temporal behavior or changes of the 

multivariate time series. A suite of experimental studies along with some comparative 

analysis is reported on both synthetic and real-world time series data sets.  



iv 

 

Preface 

The research conducted in this thesis was performed by Jinbo Li under the supervision 

of Prof. Witold Pedrycz. 

Chapter 3 of this thesis includes the materials published as J. B. Li, W. Pedrycz and 

others “The Alberta Veterinary Surveillance Network Veterinary Practice Surveillance 

System for Cattle: Development of a Tool to Track Cattle Diseases and Movement in 

Alberta, Canada” proceedings of the Conference of Research Workers in Animal Diseases, 

December 7-9, 2014, Chicago, Illinois, USA and submitted to IEEE Transactions on 

Systems, Man and Cybernetics: Systems as J. B. Li, H. Izakian, W. Pedrycz, and I. Jamal 

“Cluster-Centric Anomaly Detection in Multivariate Time Series Data.” I was responsible 

for the idea and coding development, data collection and collection, as well as the 

manuscript composition. W. Pedrycz was the supervisory author and was involved with the 

concept formation and manuscript composition. 

Chapter 4 of this thesis has been published in Applied Soft Computing as J. B. Li, W. 

Pedrycz, and I. Jamal “Multivariate Time series Anomaly Detection: A Framework of 

Hidden Markov Models.” I was responsible for the idea and coding development, data 

collection and collection, as well as the manuscript composition. W. Pedrycz was the 

supervisory author and was involved with the concept formation and manuscript 

composition. 

Chapter 5 of this thesis has been submitted to Neurocomputing as J. B. Li, W. Pedrycz, 

and A. Gacek “Time Series Reconstruction and Classification: A Comprehensive 

Comparative Study.” I was responsible for the idea and coding development, data 

collection and collection, as well as the manuscript composition. W. Pedrycz was the 

supervisory author and was involved with the concept formation and manuscript 

composition. 

Chapter 6 of this thesis has been published in International Journal of Approximate 

Reasoning as J. B. Li, W. Pedrycz, and X. M. Wang “A rule-based development of 

incremental models” and submitted to Expert Systems with Applications as J. B. Li, W. 

Pedrycz, and X. M. Wang “A Hidden Markov Model-Based Fuzzy Modeling of 

Multivariate Time Series.” I was responsible for idea and coding development, data 



v 

 

collection and collection, as well as the manuscript composition. W. Pedrycz was the 

supervisory author and was involved with the concept formation and manuscript 

composition. 

.   



vi 

 

Acknowledgements 

First and foremost, I would like to owe a great debt of gratitude and most profound 

appreciation to my supervisor, Professor Witold Pedrycz. I had the profound honor of 

being his Ph.D. student. His enthusiasm, creativity, diligence, patience, motivation, and 

encouragement have been invaluable to me. I truly appreciate all his contribution and 

could not have wished for a better supervisor. 

I would also like to express my gratitude to the members of my supervisory 

committee, Professor Marek Reformat, Professor Mojgan Daneshmand, Professor Ergun 

Kuru, Professor Petr Musilek, and Professor Francesco Marcelloni. Their brilliant 

suggestions and inspiration helped me a lot throughout the whole Ph.D. journey. I 

appreciate all of their contributions and ideas and the time. 

Last but not least, I would like to thank my parents and family for their support, 

encouragement and incredible tolerance. 

 

 

Jinbo Li 

University of Alberta 

August 2018 

 

  



vii 

 

Table of Contents 

Chapter 1 Introduction ................................................................................................... 1 

1.1 Motivation ............................................................................................................. 1 

1.1.1 Time series anomaly detection .................................................................. 1 

1.1.2 Time series approximation/representation ................................................ 2 

1.1.3 Time series modeling ................................................................................ 2 

1.2 Objectives and originality ..................................................................................... 3 

1.3 Organization ......................................................................................................... 5 

Chapter 2 Background and literature review ................................................................. 7 

2.1 Anomaly detection of time series ......................................................................... 7 

2.1.1 Similarity-based methods.......................................................................... 7 

2.1.2 Clustering-based methods ......................................................................... 8 

2.1.3 Classification-based methods.................................................................... 9 

2.1.4 Transformation-based methods ................................................................. 9 

2.1.5 Modeling-based methods .......................................................................... 9 

2.2 Time series approximation/representation .......................................................... 10 

2.2.1 Piecewise aggregate approximation (PAA) ............................................ 12 

2.2.2 Singular Value Decomposition (SVD) ................................................... 13 

2.2.3 Discrete Fourier Transformation (DFT) ................................................. 13 

2.2.4 Discrete Wavelet Transformation (DWT) .............................................. 15 

2.2.5 Discrete Cosine Transformation (DCT) .................................................. 16 

2.3 Time series modeling .......................................................................................... 16 

Chapter 3 Multivariate Time series Anomaly Detection: A Framework of Hidden 

Markov Models ................................................................................................................. 21 

3.1 Problem Formulation .......................................................................................... 21 

3.2 Hidden Markov Model ....................................................................................... 23 

3.3 Multivariate time series transformation methods ............................................... 25 

3.3.1 FCM Algorithm ...................................................................................... 26 

3.3.2 Fuzzy measures and fuzzy integrals ....................................................... 26 

3.4 Experimental Studies .......................................................................................... 28 



viii 

 

3.4.1 Synthetic data .......................................................................................... 28 

3.4.2 Publicly available datasets ...................................................................... 33 

3.5 Summary ............................................................................................................. 40 

Chapter 4 Cluster-Centric Anomaly Detection in Multivariate Time Series Data ...... 41 

4.1 Cluster-Centric Anomaly Detection ................................................................... 41 

4.1.1 Sliding window ....................................................................................... 42 

4.1.2 An augmented Fuzzy C-Means for clustering multivariate time series .. 43 

4.1.3 Reconstruction criterion .......................................................................... 45 

4.1.4 Reconstruction error as anomaly score ................................................... 46 

4.1.5 Correlation coefficients representation of time series ............................ 46 

4.1.6 Parameter selection ................................................................................. 48 

4.2 Experimental Studies .......................................................................................... 49 

4.2.1 Synthetic datasets .................................................................................... 49 

4.2.2 Publicly available datasets ...................................................................... 57 

4.3 Summary ............................................................................................................. 63 

Chapter 5 Time Series Reconstruction and Classification: A Comprehensive 

Comparative Study............................................................................................................ 64 

5.1 Reconstruction aspects associated with the FCM method .................................. 64 

5.2 Time series Classification ................................................................................... 65 

5.3 Experimental Results .......................................................................................... 65 

5.4 Summary ............................................................................................................. 75 

Chapter 6 A Hidden Markov Model-Based Fuzzy Modeling of Multivariate Time 

Series 77 

6.1 An Overview of Multiple Fuzzy Rule-based Model .......................................... 77 

6.2 Fundamental Development Phases ..................................................................... 79 

6.3 Experiment and Case Studies ............................................................................. 80 

6.3.1 Synthetic multivariate time series ........................................................... 81 

6.3.2 Real-world multivariate time series ........................................................ 85 

6.4 Summary ............................................................................................................. 90 

Chapter 7 Conclusions and Future Studies .................................................................. 92 

7.1 Major conclusions ............................................................................................... 92 



ix 

 

7.2 Future Studies ..................................................................................................... 94 

Bibliography ..................................................................................................................... 96 

 

 

  



x 

 

List of Tables 

Table 2-1 A brief collection of design strategies and optimization techniques – selected 

examples ................................................................................................................... 17 

Table 2-2 A collection of design strategies and optimization tools of selected examples 19 

Table 3-1 Confusion matrix produced by different methods ............................................ 30 

Table 3-2 Experimental results obtained for synthetic multivariate time series ............... 32 

Table 3-3 Experimental results of U.S. Dollar Exchange Rate Dataset ........................... 35 

Table 3-4 Experimental results of EEG Eye State Dataset ............................................... 37 

Table 3-5 Experimental results obtained for Air Quality Dataset .................................... 39 

Table 3-6 Improvement of the proposed detectors vis-à-vis the basic detector with PCA 

(%)............................................................................................................................. 39 

Table 4-1 Optimal values of weights ................................................................................ 61 

Table 5-1 Characteristics of publicly available datasets ................................................... 65 

Table 6-1 Basic characteristics of real-world datasets ...................................................... 85 

Table 6-2 The improvement (best) of RMSE from training sets and testing sets............. 89 

 

 

  



xi 

 

List of Figures 

Figure 2.1 PAA time series representations: (a) the original time series of length 16; (b) 

m=1; (c) m=2; (d) m=4; (e) m=8; (f) m=16; .............................................................. 12 

Figure 2.2 Time series reconstruction with the different number of Fourier coefficients. 

Solid line: input time series/Dotted line: its reconstruction version. (a) m=10; (b) 

m=20; (c) m=30; ........................................................................................................ 14 

Figure 2.3 Time series reconstruction with the use of the different number of wavelet 

coefficients. Solid line: input time series; Dotted line: the result of reconstruction. (a) 

m=8; (b) m=16; (c) m=32; ......................................................................................... 15 

Figure 3.1 Overall processing realized by the anomaly detector ...................................... 23 

Figure 3.2 Illustrative example of HMM (red: emission probabilities; black: transition 

probabilities) ............................................................................................................. 25 

Figure 3.3 Synthetic multivariate time series ................................................................... 29 

Figure 3.4 Synthetic multivariate time series: (a) training set, (b) testing set, (c) Ground 

truth of training set, (d) Ground truth of testing set, (e) Experimental results of PCA 

+ HMM (training set), (f) Experimental results of PCA+HMM (testing set), (g) 

Experimental results of  FCM + HMM (training set), (h) Experimental results of  

FCM + HMM (testing set), (i) Experimental results of Sugeno integral + HMM 

(training set), (j) Experimental results of Sugeno integral + HMM (testing set), (k) 

Experimental results of Choquet integral + HMM (training set), (l) Experimental 

results of Choquet integral + HMM (testing set). ..................................................... 31 

Figure 3.5 Performance comparison reported for various values of the fuzzification 

coefficient and the number of clusters ...................................................................... 33 

Figure 3.6 U.S. Dollar Exchange Rate Dataset: (a) training set, (b) test set, (c) Ground 

truth of training set, (d) Ground truth of testing set, (e) Experimental results of PCA 

+ HMM (training set), (f) Experimental results of PCA+HMM (testing set), (g) 

Experimental results of  FCM + HMM (training set), (h) Experimental results of  

FCM + HMM (testing set), (i) Experimental results of Sugeno integral + HMM 

(training set), (j) Experimental results of Sugeno integral + HMM (testing set), (k) 



xii 

 

Experimental results for Choquet integral + HMM (training set), (l) Experimental 

results of Choquet integral + HMM (testing set). ..................................................... 34 

Figure 3.7 EEG Eye State Dataset: (a) training set, (b) test set, (c) Ground truth of 

training set, (d) Ground truth of testing set, (e) Experimental results of PCA + HMM 

(training set), (f) Experimental results of PCA+HMM (testing set), (g) Experimental 

results of  FCM + HMM (training set), (h) Experimental results of  FCM + HMM 

(testing set), (i) Experimental results of Sugeno integral + HMM (training set), (j) 

Experimental results of Sugeno integral + HMM (testing set), (k) Experimental 

results of Choquet integral + HMM (training set), (l) Experimental results of 

Choquet integral + HMM (testing set). ..................................................................... 36 

Figure 3.8 Air Quality Dataset: (a) training set, (b) test set, (c) Ground truth of training 

set, (d) Ground truth of testing set, (e) Experimental results of PCA + HMM 

(training set), (f) Experimental results of PCA+HMM (testing set), (g) Experimental 

results of  FCM + HMM (training set), (h) Experimental results of  FCM + HMM 

(testing set), (i) Experimental results of Sugeno integral + HMM (training set), (j) 

Experimental results of Sugeno integral + HMM (testing set), (k) Experimental 

results of Choquet integral + HMM (training set), (l) Experimental results of 

Choquet integral + HMM (testing set). ..................................................................... 38 

Figure 4.1 Overall scheme of anomaly detection in amplitude ........................................ 42 

Figure 4.2 Overall scheme of anomaly detection in shape ............................................... 42 

Figure 4.3 The use of the sliding window to generate multivariate subsequence. ........... 43 

Figure 4.4 Comparison of subsequences A, B, and C along with their autocorrelation 

coefficients. ............................................................................................................... 48 

Figure 4.5 Confidence index (anomaly in the interval [26,29]). ...................................... 49 

Figure 4.6 Multivariate time series with existing amplitude anomalies. .......................... 50 

Figure 4.7 (a) Different length of windows vs. confidence index (when number of clusters 

is 2); (b) Different number of clusters vs. confidence index (when length of windows 

is 80); (c) confidence index when length of sliding window and number of clusters 

take different values (amplitude anomaly). .............................................................. 52 

Figure 4.8 Multivariate time series with existing shape anomalies. ................................. 52 



xiii 

 

Figure 4.9 (a) Different length of windows vs. confidence index (when the number of 

clusters is 2); (b) Different number of clusters vs. confidence index (when the length 

of windows is 80); (c) Confidence index when the length of sliding window and 

number of clusters take different values ................................................................... 53 

Figure 4.10 Experimental results of multivariate time series. .......................................... 54 

Figure 4.11 Top: a two-dimensional multivariate time which consists of four amplitude 

anomalies; Middle: experimental results of the augmented FCM; Bottom: 

experimental results of the standard FCM. ............................................................... 56 

Figure 4.12 (a) Clustering centers (marked by black triangles) obtained by the augmented 

FCM and four amplitude anomalies (marked by red pluses); (b) Clustering centers 

(marked by black triangles) obtained by the standard FCM and four amplitude 

anomalies (marked by red pluses); ........................................................................... 56 

Figure 4.13 (a) anomalies (marked by red pluses) and error detection (marked by blue 

diamond); (b) error detection (marked by blue diamond) and its reconstruction 

versions based on the augmented FCM and the standard FCM respectively ........... 57 

Figure 4.14 MIT-BIH arrhythmia data sets. ..................................................................... 59 

Figure 4.15 Climate change data sets ............................................................................... 61 

Figure 4.16 The proposed method vs. a 1-NN technique: (a) experimental result of the 

1-NN method; (b) experimental result of the proposed method. .............................. 62 

Figure 5.1 Classification error (first column) and Reconstruction error (second column) 

of PAA(solid), DCT(dashdot), DFT(dotted), DWT(plus) and SVD(hexagram). 

Comparison (third column) between classification error and reconstruction of 

PAA(black), DCT(blue), DFT(red), DWT(green) and SVD(magenta). (a) CBF; (b) 

ProximalPhalanxOutlineAgeGroup; (c) BeetleFly; (d) BirdChicken; (e) Wine; (f) 

ECG200; (g) ToeSegmentation1; (h) ArrowHead; (i) Beef; (j) Trace; (k) FaceFour; 

(l) ProximalPhalanxOutlineCorrect; (m) Gun-Point; (n) Synthetic Control; (o) 

Lighting-7; (p) ToeSegmentation2; .......................................................................... 70 

Figure 5.2 Classification error and reconstruction error of FCM based time series 

representation, and Comparison between classification error rate and reconstruction 

when the number of clusters and fuzzification coefficient take different values. (a) 

CBF dataset, (b) ProximalPhalanxOutlineAgeGroup dataset, (c) BeetleFly dataset, 



xiv 

 

(d) BirdChicken dataset, (e) Wine dataset, (f) ECG200 dataset, (g) 

ToeSegmentation1 dataset, (h) ArrowHead dataset, (i) Beef dataset, (j) Trace dataset, 

(k) FaceFour dataset, (l) ProximalPhalanxOutlineCorrect dataset, (m) Gun-Point 

dataset, (n) Synthetic Control dataset, (o) Lighting-7 dataset, and (p) 

ToeSegmentation2 dataset. ....................................................................................... 74 

Figure 5.3 Classification error of original time series (no representation), PAA, DCT, 

DFT, DWT, SVD, FCM after the tuning their parameters (number of coefficients, 

fuzzification coefficient) ........................................................................................... 75 

Figure 6.1 Overall scheme of the proposed time series model. ........................................ 78 

Figure 6.2 The workflow of the approach ........................................................................ 78 

Figure 6.3 Two-dimensional time series (a) input time series (b) corresponding time 

series ......................................................................................................................... 81 

Figure 6.4 Clustering results generated by FCM when the number of prototypes is 3 and 

10............................................................................................................................... 83 

Figure 6.5 Experimental results generated by the fuzzy rule-based model without HMM 

(a) training set (b) testing set, when the number of rules varies from 2 to 47 .......... 83 

Figure 6.6 Experimental results of testing time series (from 951 to 1000) when the 

number of rules and hidden states are 32 and 4. (a) actual values (red); estimated 

values by the fuzzy rule-based model (blue); estimated values by HMM based fuzzy 

model (black); (b) enlargement of first part of (a); (c) enlargement of second part of 

(a); (d) enlargement of third part of (a);.................................................................... 84 

Figure 6.7 Experimental results generated by the fuzzy rule-based model with HMM (a) 

training set (b) testing set, when the number of rules varies from 2 to 47 and the 

number of hidden states varies from 2 to 100. (c) RMSE improvement of the 

training set. (d) RMSE improvement of the testing set. ........................................... 85 

Figure 6.8 Experimental results (RMSE improvement) of real-world time series (a) 

training set (b) testing set. ......................................................................................... 89 

Figure 6.9 Improvement of prediction performance of real-world data sets: (a) training set; 

(b) testing set (maximum, average and minimum values marked by star, triangle and 

circle). ....................................................................................................................... 90 

 



xv 

 

List of Symbols 

Multivariate time series: 

X  A multivariate time series; 

kx  The 
thk  instance (data) in a multivariate time series; 

U   Partition matrix [ ]iku=U ; 

iku  Membership degree of 
thk  instance to 

thi  cluster; 

iv  The 
thi  prototype; 

jw  
The thj  multivariate subsequence present in the sliding 

window; 

n   The number of variables of multivariate time series; 

c   The number of clusters; 

m Fuzzification coefficient; 

p   The length of the multivariate time series; 

q  The length of subsequence; 

r   The length of movement of the sliding window; 

N   The number of subsequences; 

i   The weight of 
thi  feature; 

js   Anomaly score of 
thj  subsequence; 

g   Fuzzy measure; 

 1 2, , , MQ q q q=   The hidden state set; 

M   The number of hidden states; 

1 2={ , ,..., }LR r r r  The observed state set;  

L  The number of observed states; 

1 2, , , To o o= O  An observed state sequence;  

1 2, , , Ti i i= I  A hidden state sequence; 

( ), , = A B π  A Hidden Markov Model;  

T   The length of training multivariate time series; 

'T   The length of testing multivariate time series; 

 

 

 

 



xvi 

 

Univariate time series: 

 

   X  A dataset of univariate time series; 

kx  The 
thk  univariate time series in the dataset X ; 

N   The number of univariate time series; 

n   The length of variables of each univariate time series; 

m   The number of essential features; 

  



1 

 

Chapter 1  

Introduction 

In many real-world applications including fault diagnosis [1], energy consumption of 

electric vehicle (EV) charging station [2], healthcare [3], wind speed prediction [4-7] and 

so on [8-16], collected data arise in the form of time series. With the increasing 

availability of time series, the discovery and extraction of information (e.g., similar 

patterns, meaningful rules) from them are essential to human. In this study, we are 

concerned with three core time series data mining tasks, which are anomaly detection, 

approximation/representation, and modeling. For these tasks mentioned above, a series of 

Computational Intelligence (CI) related techniques have been developed and applied in 

real-world data. Specifically, anomaly detection in this type of data refers to the 

discovering of any abnormal behavior within the data encountered in a specific time 

interval. Time series representation (or approximation), which maps the original time 

series to the feature space of (usually) lower dimensionality comes with a variety of 

approximation methods completed in time or frequency domains. Time series prediction, 

referring to the development of models of dynamic systems realized by using a collection 

of the past observations, has been one of the essential research pursuits in time series 

analysis [17-20]. 

1.1 Motivation 

1.1.1 Time series anomaly detection 

Anomaly detection of multivariate time series has been widely used in numerous 

applications [21-26]. For instance, cardiologists are interested in identifying anomalous 

parts of ECG signals to diagnose heart disorders. Economists are interested in anomalous 

parts of share prices to analyze and build economic models. Meteorologists are interested 

in anomalous parts of weather data to predict future consequences. Therefore, it is a 

beneficial challenge to design and develop frameworks for anomaly detection in 

multivariate time series. Although numerous time series anomaly detection techniques 

have been reported in the literature, see e.g., [27-30], most of these techniques are 
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concerned with univariate time series. Compared with the techniques which deal with 

univariate time series anomaly detection, the algorithms purpose has to consider all 

variables at the same time to determine an anomaly score [29-31]. Therefore, we turn to 

cluster-centric based model and the transformation methods from multivariate time series 

to univariate time series. 

1.1.2 Time series approximation/representation 

To overcome the challenge of massive data size and high dimensionality, the 

approximation or representation of time series is often performed before most other tasks 

of time series data mining. Time series representation methods can offer tangible benefits 

when we assume that the subsequent step is time series classification. First, in most cases, 

they can improve the classification accuracy of the classifiers being realized in the 

developed representation space, which commonly comes with implicit noise removal. 

Second, having the representation coefficients of the raw time series positioned in the low 

dimensional feature space, these representation methods have the ability to speed up the 

classification process, also improving efficient storage of data. Third, the concise and 

essential characteristics of the original time series can be captured through the 

representation methods. Thus, most representation methods should exhibit some highly 

desirable properties, e.g., supporting dimensionality reduction, offering high 

reconstruction quality, exhibiting noise robustness, etc. so that they can support a sound 

way of achieving high classification performance. Despite the diversity of the existing 

methods used in time series representation and classification, it is quite uncommon to 

encounter studies that report on the relationships between the classification error and the 

representation properties (e.g., reconstruction quality) of different time series 

representations. Here we reveal, quantify, and visualize the relationships between the 

reconstruction error and classification error (classification rate) for a number of 

commonly encountered representation methods. 

1.1.3 Time series modeling 

To produce prediction results of high accuracy, there has been a tremendous wealth of 

techniques or algorithms along with diversified architectures, learning strategies, and 

numerous hybrid mechanisms focused on the efficient modeling and forecasting time 
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series, e.g., fuzzy systems [17, 18, 32], recurrent neural networks [33-35], evolutionary 

algorithms [36, 37] among others. One can refer here to an impressive plethora of the 

time series prediction approaches existing in the literature [38-40]. Despite the visible 

diversity of available approaches, almost all of them try to realize modeling the temporal 

relationship and capturing the characteristic of time series to estimate the future/unknown 

values in the series. The research challenges in time series prediction associate with the 

non-linearity and inherent volatility of time series, especially those generated by complex 

systems [40-42]. In general, most studies assume that a single model can fit a given time 

series adequately. However, in practice, the time series generated by complex systems may 

not satisfy the assumption because of the complexity and variability of its structure. 

Therefore, in this work, Hidden Markov Model (HMM) is applied to model the temporal 

dependence of multivariate time series where a set of fuzzy rules are introduced to describe 

the relationship between input and output time series. 

1.2 Objectives and originality 

The primary objectives of this study are listed below: 

1. Developing a general framework for anomaly detection (both in shape and 

amplitude) in multivariate time series. 

2. Developing an augmented version of the Fuzzy C-Means clustering to reveal the 

available structure within multivariate time series data. 

3. Investigate the multivariate time series anomaly detection problem by involving 

different transformation methods and HMM. 

4. Design and propose an HMM-based anomaly detector for multivariate time series 

and compare different transformation approaches in HMM-based anomaly detection 

methods. 

5. Perform and quantify comparative study of different time series approximation 

algorithms on an extensive set of time series and report the relationship between the 

classification error and the reconstruction error of various time series representation 

methods. 
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6. Investigate an impact of the parameters of the representation methods (such as 

those present in clustering methods and others) on the resulting reconstruction error and 

the classification rate. 

7. Design and develop a Hidden Markov Model (HMM)-based fuzzy model, which 

dwells upon the Hidden Markov Model and fuzzy rules by bringing them together. In this 

framework, HMM is applied to model the temporal dependence of the multivariate time 

series where a set of fuzzy rules are introduced to describe the relationship between the 

input and output time series.  

In this dissertation, three core time series data mining tasks have been archived 

through using the proposed techniques or methods. As for time series anomaly detection, 

unsupervised and supervised frameworks are proposed. Then, as for different time series 

approximation method, the time series classification error, the reconstruction error, and 

their relationships are revealed, quantified and visualized. Additionally, compared with 

the fuzzy model without the aid of HMM, the HMM-based fuzzy model can produce 

better prediction results producing lower values of the corresponding criterion (RMSE), 

which results in that HMM can model the temporal changes of multivariate time series. 

This research exhibits a significant level of originality: 

• The cluster-centric anomaly detection method exhibits a certain deal of originality by 

offering a unified framework for detecting anomalous segments of data with respect 

to the amplitude and/or shape information in multivariate time series data. 

• Detecting anomalous parts of multivariate time series data with the use of available 

clusters within the data is comes as a novel idea proposed here.  

• An augmented Fuzzy C-Means clustering technique established in this dissertation 

exhibits a certain level of originality. 

• Investigate some transformation methods and study their performance with respect to 

abilities to retain useful information (e.g., amplitude or amplitude change) in 

HMM-based anomaly detection methods. 

• As for time series approximation/representation, The FCM based time series 

approximation method and its corresponding reconstruction used also exhibit some 

level of originality in the sense. 
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• The novelty/originality of time series prediction realized here stems from the fact that 

the optimized HMM can model the temporal relationship through governing a series 

of generated fuzzy rules. 

• In contrast to the traditional HMM which manages a finite number of states/values, 

the proposed system where the value varies within a continuous range also comes 

with some originality. 

1.3 Organization 

The thesis is structured into the following chapters: 

Chapter 2 covers a series of time series mining techniques involving time series 

modeling, approximation/representation and anomaly detection, which are most related to 

the fuzzy rule-based model. 

Chapter 3 proposes a framework of Hidden Markov Models for multivariate time series 

anomaly detection. Several transformation techniques involving Fuzzy C-Means (FCM) 

clustering and fuzzy integral are studied. In the sequel, a Hidden Markov Model (HMM), 

one of the commonly encountered statistical methods, is engaged here to detect anomalies 

in multivariate time series.  

Chapter 4 poses a new cluster-centric approach to detect anomalies in the amplitude as 

well as the shape of multivariate time series. An augmented fuzzy clustering is developed 

to reveal a structure present within the generated multivariate subsequences. A 

reconstruction error serves as the fitness function of the PSO algorithm and also has been 

considered as the level of anomaly detected in each subsequence. 

Chapter 5 introduce the FCM based time series approximation method and its 

corresponding reconstruction. The study also realized several commonly countered time 

series approximation methods and their corresponding reconstruction process. The 

relationships between the reconstruction error and classification error (classification rate) 

for some commonly encountered representation methods have been revealed, quantified, 

and visualized. 

Chapter 6 discusses the cooperation of rule-based representations (e.g., fuzzy rules) 

and temporal model (e.g., HMM) is insightful to elaborate on the joint dynamic behavior of 

multivariate time series. A novel Hidden Markov Model (HMM)-based fuzzy model for 
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time series prediction has been proposed. The proposed strategies control the contribution 

of different fuzzy rules so that the proposed model can well model the dynamic behavior of 

time series. 

Chapter 7 draws a series of conclusions of this dissertation and suggests a series of 

potential directions. 
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Chapter 2  

Background and literature review 

This chapter firstly covers a series of time series modeling techniques which are most 

related to the fuzzy rule-based model. Then a variety of time series anomaly detection 

methods which consist of similarity-based, clustering-based, classification-based, 

transformation-based and modeling-based algorithms have been reported. The final 

subsection will review the relevant literature in the area of time series 

approximation/representation.  

2.1 Anomaly detection of time series  

Various anomaly detection techniques for univariate time series data have been 

proposed in the literature (refer e.g., to [29-31]). Compared to univariate time series, 

anomaly detection in multivariate time series has been more challenging since more than a 

single variable must be considered simultaneously when detecting anomalous segments of 

data. Methods of anomaly detection in time series data can be divided into a set of 

categories, namely similarity-based methods [43, 44], clustering-based methods [45, 46], 

classification-based methods, modeling-based methods [47, 48], frequency-based methods 

[49], and probability-based methods [50]. A thorough survey of time series anomaly 

detection techniques is reported in [29-31]. In what follows, we briefly recall the main 

features of these approaches. 

2.1.1 Similarity-based methods 

A simple technique to determine anomalies in time series is to use a similarity measure 

along with a brute force algorithm [51]. Subsequences of time series having the highest 

differences from the other subsequences are considered as anomalies. In similarity-based 

techniques, selecting a suitable similarity measure might have a substantial impact on the 

performance of the method and directly depends on the specific application-purpose [52]. 

For instance, when the time series are collected at different sampling rates, Dissim distance 

[53] can be considered since it uses a finite set to define a time series. Dynamic time 

warping distance (DTW) [54] is another effective technique that can be considered when 
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the lengths of time series are unequal and there are temporal shifts in data. Some other 

similarity measures such as Longest common subsequence (LCSS), Edit Distance on Real 

sequence (EDR) and alike are widely reported in the literature [55]. Another approach [56] 

to detect anomalies contains two main steps: firstly, employ sparse coding to extract 

features, and then use latent semantic analysis (LSA) to learn relationship. Finally, the 

squared reconstruction errors are considered as anomaly scores. Note that the reference 

time series used in this method should be without any abnormal subsequences. In [57], a 

linear method for anomaly detection is proposed; it demonstrates the advantages of low 

time complexity and lower number of parameters. However, only the top discords k can be 

detected and there is no detailed guidance to determine the preferred value of k. 

2.1.2 Clustering-based methods 

Applying clustering methods in multivariate time series is another option. In general, 

clustering-based techniques are composed of two main steps [58]. In order to generate 

subsequences of multivariate time series, the first stage is to implement a clustering 

method such as K-Means or Fuzzy C-Means (FCM) over the time series. Other clustering 

techniques can also be considered as well [59, 60]. At the second stage, they determine an 

anomaly score on the basis of some measurement of the fitness of subsequences [58] to the 

different clusters. Then the following way to determine the anomaly score is to use the 

distance between instances and cluster centers.  

In [61], the weighted Euclidean distance between the observations is computed and an 

improved ant colony method is exploited to complete clustering. In [62], a novel 

clustering-based compression method is proposed to reduce the time complexity of the 

approach. K-Means algorithm is utilized to convert a correlation matrix of multivariate 

time series to a matrix of multiple clusters. According to the multivariate normal 

distributions, the anomaly scores were estimated. In [63], a Bounded Coordinate System 

(BCS) approach is considered to evaluate the similarity between two multivariate time 

series. A modified version of K-Means is employed to cluster the multivariate time series 

dataset. The top k outlier observations were detected using a two-pruning rule-based nested 

loop algorithm. 



9 

 

2.1.3 Classification-based methods 

In classification-based methods, instances or subsequences of multivariate time series 

are classified into two classes: normal and abnormal. The classifier is trained through a 

training set composed of normal instances and then it can be used to assign an anomaly 

score to each instance of the testing set [29]. In [50], the authors proposed to determine 

whether a data point is abnormal by exploiting the linear regression model firstly and then 

learn a Bayesian maximum likelihood classifier on the basis of anomalies identified. For 

the testing dataset, the classifier labels each test data point. However, for 

classification-based methods, collecting training data that are used to train a classifier is 

known to be a time expensive process. 

2.1.4 Transformation-based methods 

An option in dealing with multivariate time series anomaly detection is to reduce the 

multivariate time series to univariate time series. Then a univariate anomaly detection 

technique can be employed to detect anomalies. Two common transformation methods are 

time series projection and independent component analysis [26, 64]. The objective is to 

reduce the dimensionality of multivariate time series. However, it should be noted that the 

loss of information in the process of transformation might reduce the accuracy of the 

multivariate time series anomaly detection [65]. Parthasarathy et al. [66] proposed a 

novelty dissimilarity measurement for comparing multivariate time series data based on 

principal component analysis and provided a point anomaly detection algorithm in 

multivariate time series. The dissimilarity measurement contains distance (Euclidean or 

Mahalanobis distances), rotation and variance components. The value of dissimilarity was 

calculated by combining these three components. In order to add potential domain 

knowledge and improve the flexibility of the method, some coefficients were added into 

the method to allow potential users to assign different weights to the different components 

of the time series. 

2.1.5 Modeling-based methods 

Multivariate time series modeling is another anomaly detection method reported in the 

literature. In [67], the authors introduced a framework for discovering anomalous regimes 

in time series (called DARTS). The method is based on the presupposition that the vector 
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autoregressive process can represent the time series. Given a training time series, local 

autoregressive models for each subsequence of time series were derived. Then the 

probability density of the coefficients of each model was computed. Similar to the training 

time series, the local models of each subsequence of testing time series were calculated. 

Finally, the probability of the coefficients of each model of testing time series was obtained. 

The lower probability of the coefficients stands for the higher anomaly degree. Qiu al. etc. 

[68] proposed to learn graphical models of Granger causality and then exploit the 

Kullback-Leibler (KL) divergence to compute the anomaly score for each variable. A 

threshold that is from reference data determines whether the observation is abnormal. 

Cheng al. et [65] proposed the use of a weighted graph representation to model multivariate 

time series. RBF function was employed to obtain the similarity between a pair of 

multivariate time series. In the graph, nodes were subsequences or observations and edges 

were considered as the similarity between nodes. Random walk algorithm [69] was used to 

produce the connectivity values. Then the connectivity measure of nodes was considered to 

detect anomalies. However, for most existing modeling-based methods, their performance 

strongly depends on the observed data [70]. Moreover, the reference data are required to 

build models. 

On the whole, based on various applications, definitions and background from the 

literature, there are different ways to formulate the problem of time series anomaly 

detection. The related techniques can be grouped into supervised and unsupervised 

categories according to whether the reference or training time series is available. 

Collecting and annotating training data is a highly time-consuming and not very practical 

for most real-world applications because domain-specific knowledge is required. For 

unsupervised approaches, a suitable similarity measure is essential for both the 

similarity-based methods and the clustering-based methods. Performance of 

clustering-based methods heavily depends on the available structure of time series 

captured by the clustering methods. 

2.2 Time series approximation/representation 

Time series and temporal data are a frequently encountered types of data present in 

numerous real-world phenomena (e.g., finance [71], agriculture [72], telecommunication 
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[73], etc. [74, 75]). In time series classification, we encounter a plethora of various 

techniques, just to recall naïve Bayes [76], support vector machines (SVMs) [77], 

decision trees [78], neural networks [79], nearest neighbor classifiers [80] and other 

methods [81-83]. Processes of building classifiers are intrinsically related to time series 

(sequences) under consideration and realized by learning the essential characteristics of 

each class. What is important is the fact that the representation of time series leading to 

their distribution in a certain space of parameters of the ensuing representation impacts 

the quality of ensuing classifiers directly. Also, it is essential to note that the running time 

of each classification module is essentially associated with the dimensionality of the 

space in which the time series are represented. From this perspective, time series 

representation (or approximation), which maps the original time series to the feature 

space of (usually) lower dimensionality comes with a variety of approximation methods 

completed in time or frequency domains. In this sense, there are several tangible benefits, 

which time series representation methods offer. First, in most cases, they can improve the 

classification accuracy of the classifiers being realized in the developed representation 

space, which commonly comes with implicit noise removal. Second, having the 

representation coefficients of the raw time series positioned in the low dimensional 

feature space, these representation methods have the ability to speed up the classification 

process, also improving efficient storage of data. Third, the concise and essential 

characteristics of the original time series can be captured through the representation 

methods. Thus, most representation methods should exhibit some highly desirable 

properties, e.g., supporting dimensionality reduction, offering high reconstruction quality, 

exhibiting noise robustness etc. so that they can support a sound way of achieving high 

classification performance. 

Formally, the 𝑖th  time series in the available dataset of time series 𝑿 = [𝒙𝑖], 𝑖 =

1,2, … , 𝑁 is regarded as a collection of numeric values represented sequentially over time, 

say 𝒙𝑖 = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛 , where 𝑛  and 𝑁  are the length of each time series and the 

number of time series under consideration. In other words, the experimental data are 

represented as a set of 𝑁 𝑛 −dimensional vectors located in the input space 𝑅𝑛. The 

objective of the time series representation methods is to reduce the dimensionality of the 

original time series 𝒙𝑖 , namely 𝒙𝑖 ∈ 𝑅𝑛 → �̂�𝑖 ∈ 𝑅𝑚  where �̂�𝑖  is the corresponding 
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representation and typically 𝑛 ≪ 𝑚 . The compressed representation �̂�𝑖 =

�̂�𝑖1, �̂�𝑖2, … , �̂�𝑖𝑘, … , �̂�𝑖𝑚  of length 𝑚  approximates the original time series 𝒙𝑖 =

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗 , … , 𝑥𝑖𝑛 of length 𝑛 and extracts its 𝑚 essential features. In what follows, 

let us recall the essence of each time series representation method and its reconstruction. 

2.2.1 Piecewise aggregate approximation (PAA) 

The piecewise aggregate approximation (PAA) [84, 85], a dimensionality reduction 

technique, determines mean values for successive equal-sized windows. More 

specifically, such segments are made using a non-overlap sliding window technique. 

Taking into consideration m temporal segments, the average of the 
thk  segment is 

calculated in the following form. 

 
k

k

e

ik il

l s

m
x x

n =

=    (2.1) 

Where 𝑠𝑘 and 𝑒𝑘are the start and end of the 𝑘th segment. An example of piecewise 

aggregate approximation representation is shown in Figure 2.1; for illustrative purposes, 

we show the results when changing the number of segments. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2.1 PAA time series representations: (a) the original time series of length 16; (b) 

m=1; (c) m=2; (d) m=4; (e) m=8; (f) m=16; 
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Note that its PAA representation returns the mean value of the original time series 

when m=1 while its PAA representation is the same to the original time series when m=n. 

One can note that the length n of the original time series is not divisible by the number m 

of segments, which is commonly encountered in practice. The adjacent segments will 

share some points on the basis of the length of each segment. 

2.2.2 Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) [86] decomposes a collection of original time 

series into component matrices and extract interesting and useful properties of the dataset 

[87]. We construct discrimination “principal components”, which are orthogonal to each 

other. Formally speaking, given a 𝑁 × 𝑛 matrix 𝑋, the SVD can be expressed in the 

following form. 

 T

N n N n N n n nX U V   =      (2.2) 

Here 𝑈 , Λ  and 𝑉  are the column-orthonormal matrix, the diagonal matrix of 

eigenvalues and the column-orthonormal matrix, respectively. More detailed discussion of 

pertinent computations is provided in [88]. The first 𝑚 columns of 𝑈 can be used as the 

SVD coefficients of the original collection of time series. 

It is worth noting that SVD is different from other representation methods because 

SVD is a global mapping/projection while the other methods focus on each time series 

transformation. In other words, the entire dataset is processed during SVD decomposition 

while the other representation methods process each time series one by one. 

2.2.3 Discrete Fourier Transformation (DFT) 

Discrete Fourier Transformation (DFT), which decomposes a time series into a finite 

number of sine/cosine waves, has been commonly used in various applications, such as 

discrimination of digital scintillation pulses [89], induction motor bar fault detection [90], 

image processing [91] and etc. [92]. Each wave comes with a complex number called 

Fourier coefficient. In essence, both the amplitude and phase of these time series are 

represented through a collection of sine and/or cosine waves after the application of DFT to 

the original time series. Consider each time series 𝒙𝑖 being described in the frequency 

domain in the form 𝒇𝑖 = [𝑓𝑖1, 𝑓𝑖2, … , 𝑓𝑖𝑛], while their Fourier coefficients are calculated in 

a standard manner 
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The time series can be recovered through the inverse discrete Fourier transformation 
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As to the dimensionality of the time series, which remains unchanged after the 

completion of the DFT transformation; however, the main aspect worth emphasizing is 

that the reconstruction of original time series can be realized in terms of a few of Fourier 

coefficients, as shown in Figure 2.2. Omitting most of the coefficients with low amplitude, 

the final reconstruction of the original time series (without too much information loss) 

can be archived. 

 

(a) 

 

(b) 

 

(c) 

Figure 2.2 Time series reconstruction with the different number of Fourier coefficients. 

Solid line: input time series/Dotted line: its reconstruction version. (a) m=10; (b) m=20; 

(c) m=30; 
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2.2.4 Discrete Wavelet Transformation (DWT) 

Discrete Wavelet Transformation (DWT) [93]offers another useful option to handle 

the dimensionality reduction problem of time series by representing the data by using the 

sum and difference of the basis functions (wavelets), which is also known as a 

multi-resolution representation of time series. The Haar Wavelet transform is used as a 

common vehicle in the wavelet family to represent time series because of its short 

processing time and easy implementation. As shown in Figure 2.3, for the different 

number of wavelet coefficients, we encounter different reconstruction versions of the 

time series. 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3 Time series reconstruction with the use of the different number of wavelet 

coefficients. Solid line: input time series; Dotted line: the result of reconstruction. (a) 

m=8; (b) m=16; (c) m=32; 

With regard to dimensionality reduction, the basic idea of DWT is similar to that of 

DFT. The first few wavelet coefficients can archive coarse approximation of the original 



16 

 

time series. However, being different from the DFT time series representation method 

that only considers frequencies, DWT focuses on the analysis completed both on time 

and frequency domain of the time series. In this sense, during the reconstruction process, 

wavelet coefficients can incorporate location contributions. Note that a major drawback 

of this method is associated with the length of time series that must be a power of 2. In 

general, padding with zeros is a practice to ensure its feasibility. 

2.2.5 Discrete Cosine Transformation (DCT) 

Discrete Cosine Transformation [94, 95] comes as one of the spectral methods and is 

concerned with a linear transformation, which can serve here as a vehicle to provide 

dimensionality reduction of time series [96]. The underlying idea is closely related with 

that of DFT. Only a few coefficients of the DCT representation can represent the original 

time series adequately and are able to reconstruct it accurately; note that only the cosine 

function is regarded as the basis function. In [96], the authors compared different ways of 

time series approximation and pointed out that its better performance is achieved when 

the input data are highly correlated.  

2.3 Time series modeling 

Fuzzy systems as an efficient tool of time series models describing vague and 

imprecise information by means of linguistic variables, fuzzy relations and fuzzy logic. A 

set of IF-THEN rules can be extracted to capture the qualitative behavior of time series, 

which is similar to the experience and intuition of human beings. Therefore, the time series 

prediction by using fuzzy systems has being well-developed and well-documented in the 

literature [97-100]. For instance, In the fuzzy systems [101], its identification of the 

premise part has been performed via a combination of island model parallel genetic 

algorithm and a space search memetic technique while the corresponding consequence part 

is accomplished by using an improved QR Householder least-squares method. In [102], the 

authors have introduced a novel evolving the fuzzy system to model time-varying and 

real-time industrial automation systems. Different fuzzy rules are derived from the various 

sets of the effective input variables because selecting inputs locally at the rule level is 

essential. In the proposed evolving heterogeneous fuzzy inference systems (eHFIS), the 

premise and consequence parameters learning have been archived by using an incremental 
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evolving clustering and a weighted recursive fuzzily weighted least-squares estimator, 

respectively. In [103], a correntropy-based evolving fuzzy neural system (CEFNS) has 

been proposed for time series prediction under both noise-free and noisy conditions. The 

maximum correntropy criterion is used to tune the parameters of this system because of its 

better outlier rejection ability than that of mean-square error criterion. One can refer to 

[103, 104] for more information about the evolving fuzzy systems (EFS) which can 

self-adapt to the structures and parameters of the proposed fuzzy systems. In [105], the 

authors proposed the process Takagi-Sugeno (PTS) model to perform time series 

prediction. In contrast to the standard version, the continuous functions characterize the 

input and output of the PTS model. The antecedent and consequent parameters are 

identified by the relational clustering algorithm and the least square method in the function 

vector space, respectively. All in all, the process of building the fuzzy rules-based systems 

consists of two parts: (i) structural leaning (e.g. the determination of the number of rules, 

the partition of the universe of discourse); (2) parametric tuning (e.g. the tuning of 

parameters in the antecedent and consequent parts). The selection of techniques or 

algorithms for the construction of antecedent and consequent parts is important in the 

design process of fuzzy systems. Several common encountered techniques or methods 

used in time series prediction are summarized briefly in 错误!未找到引用源。.  

Table 2-1 A brief collection of design strategies and optimization techniques – 

selected examples 

Construction of antecedent (or 

premier/condition) parts of the rules 

Construction of consequent (or 

conclusion) parts of the rules 
References 

A modified adaptive spline 

modeling (MASMOD) 

Expectation-maximization 

(EM) algorithm 

[106] 

Gaussian membership functions for 

fuzzy partition of the input space 

Wavelet neural network [107] 

Fuzzy C-means (FCM) clustering 

method 

Wavelet functions and the least 

square method 

[108] 

Complex fuzzy sets (CFSs) Autoregressive integrated 

moving average (ARIMA) 

[109] 
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  estimation theory Least squares estimation [110] 

Premise parts are static/fixed or 

from experts 

Recurrent neural networks [111] 

The backpropagation algorithm The backpropagation algorithm [112] 

Random hidden-layer structure Fast sparse coding 

identification method 

[113] 

A novel clustering algorithm with a 

new validation criterion 

Orthogonal least square (OLS) 

method 

[114] 

Levenberg–Marquardt (LM) 

optimization method 

Levenberg–Marquardt (LM) 

optimization method 

[115] 

Relational clustering algorithm Least square method [105] 

A modified differential harmony 

search (MDHS) technique 

A modified differential 

harmony search (MDHS) 

technique 

[116] 

Fuzzy C-Means (FCM) clustering 

method 

Recurrent neural networks [117] 

Fuzzy clustering method Recursive least square 

algorithm 

[118] 

Heuristic optimization approaches 

(e.g. genetic algorithm and artificial 

bee colony) 

Extreme learning machine [119] 

 

By and large, there are two different categories for the design of fuzzy systems [39, 

120, 121]: (i) global learning and (ii) local learning. Irrespectively from the diversity of 

approaches, fuzzy rule-based models share a visible commonality: complex phenomena 

are modeled locally through a series of local models (which are less complicated than a 

single global model). Their differences are mainly due to how to construct the local 

models, how to aggregate the formed rules and where the rules are extracted. Each of 

these two phases comes with various augmentations. In 错误!未找到引用源。, we offer 

a highlight of the visible representatives of fuzzy models, their design strategies and 

H

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optimization tools being used. One can refer to [99, 121] for more details about design 

categories and optimization tools of the fuzzy systems.  

Table 2-2 A collection of design strategies and optimization tools of selected 

examples 

Construction of condition part of the 

rules 

Construction of conclusion part 

of the rules 

References 

Hybrid algorithm (genetic algorithms 

and complex method) 

Least square error method [122-124] 

Resilient propagation (RPROP) 

Original heuristic search 

Standard gradient descent (back 

propagation) Resilient 

propagation (RPROP) 

 

[125-127] 

Genetic algorithm Recursive least squares approach [128-130] 

Fuzzy clustering (K-Means, the 

Gath–Geva algorithm and the 

Gustafson–Kessel algorithm) 

Weighted recursive least squares 

algorithm with forgetting factor 

[131, 132] 

Fuzzy C-Means (FCM) clustering Weighted Least Square 

Estimation (WLSE) method 

[133, 134] 

Fuzzy C-Means (FCM) clustering 

algorithm modified fuzzy 

c-regressive model clustering 

algorithm (NFCRMA) 

Orthogonal least square (OLS) [135, 136] 

Gravitational search (GSA)-based 

hyper-plane clustering algorithm 

(GSHPC) 

Orthogonal least square (OLS) [137-139] 

Hard C-means clustering method 

Genetic algorithms (GAs) 

Least square error method [123, 140] 

Modified fuzzy c-regression model 

(FCRM) 

Orthogonal least squares [141-143] 

Cluster estimation method Least mean squares estimation [144, 145] 

Back propagation learning rule Least square method [146, 147] 
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Extended vector quantization Recursive weighted least-squares 

approach 

[148-150] 

A new projection concept Enhanced recursive least square 

method 

[151-154] 

Iterative vector quantization 

algorithm 

Regularized 

sparsity-constrained-optimization 

[155-157] 

Subtractive clustering method Linear least squares estimation [145, 158] 

Hidden Markov Model (HMM) is sought as one of the temporal models to portray 

dynamic behavior of time series. Recently, a series of studies try to apply HMM in the 

fuzzy domain. For instance, in [159], based on the HMM, the authors proposed a new 

time series forecasting model, which also dwells upon fuzzy relations and fuzzy time 

series. The role of the Monte Carlo method is to estimate the final prediction result. In 

[160], on the basis of the above paper, in order to deal with the zero-probability problem 

which may deteriorate the quality of the forecasting accuracy, fuzzy smoothing was 

introduced to cope with the fuzziness of HMM-based fuzzy time series. In [161-163], 

HMM were also applied to these novel hybrid time series prediction models. However, 

the evident role of HMM is to identify similar data patterns through their 

HMM-log-likelihood values. In order to construct the connection between the 

information of fuzzy sets and the state concept, authors improve the traditional HMM to 

fuzzy HMMs (FHMMs) through using fuzzy measures and fuzzy integrals in [164, 165]. 

One can refer [161, 163, 166] to for more details about the HMM in the fuzzy realm. 
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Chapter 3  

Multivariate Time series Anomaly Detection: A Framework 

of Hidden Markov Modelsa 

In this chapter, we start to elaborate a supervised approach to multivariate time series 

anomaly detection focused on the transformation of multivariate time series to univariate 

time series. Several transformation techniques involving Fuzzy C-Means (FCM) 

clustering and fuzzy integral are studied. In the sequel, a Hidden Markov Model (HMM), 

one of the commonly encountered statistical methods, is engaged here to detect 

anomalies in multivariate time series. We construct HMM-based anomaly detectors and 

in this context compare several transformation methods. 

3.1 Problem Formulation 

Let us assume a multivariate time series 1 2 ', , , T T+= X x x x  of length 'T T+ .  T  

and 'T  are the lengths of training and testing time series, respectively. After applying 

Z-score normalization [167], we run FCM, and then determine both Sugeno integral and 

Choquest integral to produce training (and testing) (observed) state sequences 

1 2, , , To o o= O  (and 1 2 '' , ' , , 'To o o= O' ). In this study, we consider the cluster 

prototypes obtained by FCM as the states in the sequences. Compared with the FCM, an 

additional step, namely mapping/vector discretion (from continuous to discrete), is 

necessary to produce state sequences and construct fuzzy integral based detectors. 

In the construction of the HMM, we use a labeled training state sequence coming in the 

form of data-label pairs ( ),k ko i , 1,2, ,k T=   where ko  is one-dimensional observed 

state and kk  stands for its label (normal or abnormal). The temporally ordered labels are 

regarded as a hidden state sequence of the HMM. 

Considering the time series anomaly detection problem, for HMM, the number of 

hidden states is equal to 2, which correspond to the normal or abnormal state. Thus, the 

                                                 
a A version of this chapter has been published as. 



22 

 

initial vector π , state transition matrix A , and emission matrix B  are expressed as 

follows. 

 ( ) ( )1 2normal abnormal =   π   (3.1) 
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When we consider 𝑞 and 𝑜 as the hidden state and visible state respectively, we 

calculate the state transition matrix and the emission as follows. 

 
i

i

q

q
 =


  (3.4) 

 

1

ij

ij N

ijj

q
a

q
=

=


  (3.5) 

 

1

il

ik M

ill

o
b

o
=

=


  (3.6) 

Once the parameters of HMM have been determined, the Viterbi algorithm is then used 

to determine the label of testing observed state sequence 1 2 '' , ' , , 'To o o= O' . The most 

likely state sequence is 1 2 ', , , 'Ti i i  =I . Let us highlight the essence of the proposed 

methods as shown in Figure 3.1; we point at the two key methodological steps encountered 

there, namely a transformation from multivariate time series to univariate time series 

followed by HMM-based detection. After application of the z-score normalization, we 

invoke different transformation methods, namely FCM, Sugeno integral and Choquet 

integral, which implement the transformation. Subsequently, we estimate the essential 

parameters of the HMM by using the labels of the training set. More specifically, the 

collected normal and abnormal time points are considered to estimate the emission and 

transition probabilities of the HMM. After training the HMM, we apply the Viterbi 

algorithm to test the observed state sequence and compute the most likely hidden state 

sequence consisting of the two states (normal and abnormal). 
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Figure 3.1 Overall processing realized by the anomaly detector 

3.2 Hidden Markov Model 

HMM can cope with time series that are generated by a certain Markov process. Two 

essential assumptions are made: (i) only the current states affect the next state, (ii), 

transition probabilities between the states do not vary over time (stationarity requirement). 

In particular, for each HMM, there are hidden/observed state sets and three probability 

matrices. Each hidden state emits one of the states that can be directly observed. The 

hidden state set 1 2{ , ,..., }NQ q q q=  comprises of 𝑁  possible hidden states and the 

observed state set 1 2{ , ,..., }LR r r r=  consists of 𝐿 possible observed states.  

Let us assume an observed state sequence coming in the form 1 2{ , ,..., }TO o o o= . To 

gain a clear understanding of the HMM, assume 1 2{ , ,..., }TI i i i=  is the corresponding 

hidden state sequence of the above observed state sequence. For each HMM, it can be 

defined as follows. 

 ( ) = A,B,π   (3.7) 

Where 𝑨  and 𝑩  denote the state-transition matrix and the emission matrix 

respectively which can be represented as follows.  

𝜜 = [

𝑎11 𝑎12

𝑎21 𝑎22

… 𝑎1𝑁

… 𝑎2𝑁

⋮ ⋮
𝑎𝑁1 𝑎𝑁2

⋮ ⋮
… 𝑎𝑁𝑁

] 
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𝑩 = [

𝑏11 𝑏12

𝑏21 𝑏22

… 𝑏1𝐿

… 𝑏2𝐿

⋮ ⋮
𝑏𝑁1 𝑏𝑁2

⋮ ⋮
… 𝑏𝑁𝐿

] 

𝝅 = (

𝜋1

𝜋2

⋮
𝜋𝑁

) 

Here 𝑎𝑖𝑗 = 𝑃(𝑖𝑡+1 = 𝑞𝑗|𝑖𝑡 = 𝑞𝑖) stands for the probability from the state 𝑞𝑖 (at the 

𝑡th time point) to the state 𝑞𝑗 (at the 𝑡 + 1th time point). And 𝑏𝑖𝑘 = 𝑃(𝑜𝑡 = 𝑠𝑘|𝑖𝑡 = 𝑞𝑖) 

means the probability from the state 𝑞𝑖 to the observation 𝑠𝑘 at the same time point. 𝜋 =

𝑃(𝑖1 = 𝑞𝑖) characterizes the probability of the initial state with 𝑞𝑖. 

In general, HMM deals with the three standard problems that arise in various 

applications: 

• Given an HMM model,  𝛹 = (𝑨, 𝑩, 𝝅)  and an observed sequence 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑇, 

calculate the probability 𝑃(𝑶|𝜆) that the observed sequence has been produced by this 

HMM 𝛹 = (𝑨, 𝑩, 𝝅). 

• Given an observed sequence 𝑶 = 𝑜1, 𝑜2, … , 𝑜𝑇 , estimate the parameters of the HMM 

model𝛹 = (𝑨, 𝑩, 𝝅) that maximize the probability 𝑃(𝑶|𝛹) of observations given the 

model. 

• Given an HMM model 𝛹 = (𝑨, 𝑩, 𝝅) and an observed sequence 𝑶 = 𝑜1, 𝑜2, … , 𝑜𝑇, 

decide the most likely state sequence 𝑰. 

The Viterbi algorithm, realizing an algorithm of dynamic programming algorithm, 

estimates the most probable state sequence [168]. It can determine the optimal hidden state 

sequence 𝐼 = 𝑖1, 𝑖2, … , 𝑖𝑇  based on the HMM model 𝛹 = (𝑨, 𝑩, 𝝅)  and the given 

observed state sequence 𝑶 = 𝑜1, 𝑜2, … , 𝑜𝑇 . 

Consider that 𝛿𝑡(𝑖) stands for the probability of state 𝑖 at 𝑖th time moment defined as 

follows 

𝛿𝑡(𝑖) = max
𝑖1,𝑖2,…,𝑖𝑡−1

𝑃(𝑖𝑡 = 𝑖, 𝑖𝑡−1, … , 𝑖1, 𝑜𝑡, 𝑜𝑡−1, … , 𝑜1|𝜆) = max
1≤𝑗≤𝑁

(𝛿𝑡(𝑗)𝑎𝑗𝑖)𝑏𝑖𝑜𝑡+1
  

The detailed algorithm comes as the following sequence of steps. 

Initialization: 

 ( )
11 i ioi b =   (3.8) 

Recursion: 
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( ) ( )

( )( )
1 2

1

1 1 1 1 1
, ,...,

1

max , ,..., , , ,..., |

max

t

t

t t t t t
i i i

t ji io
j N

i P i i i i o o o

j b

 

 
+

+ + +

 

= =

=
  (3.9) 

Termination: 

 ( )*

1
max T

j N
P i

 
=   (3.10) 

As an illustrative example, Figure 3.2 shows a simple example of the HMM when the 

numbers of hidden states and observed states are 2 and 3, respectively. 

 

(a) 

 

(b) 

Figure 3.2 Illustrative example of HMM (red: emission probabilities; black: transition 

probabilities) 

3.3 Multivariate time series transformation methods 

In practice, the values of the multivariate time series are collected using different 

sensors. There are a number of information-retaining methods for transforming 

multivariate time series into an observed sequence. Here, we focus on FCM clustering 

methods and fuzzy integral methods, which were found useful in many applications 
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3.3.1 FCM Algorithm 

A sound alternative to transform a multivariate time series to an observed sequence is 

to use the FCM clustering algorithm [169, 170]. Given a multivariate time series 

1 2, , , T= X x x x of length T , the objective function Q  used in the FCM is defined in the 

following way 

 ( )2

,

1 1

c T
m

ij j i

i j

Q u d
= =

=  x v   (3.11) 

Here c  stands for the number of clusters and ( 1)m m   denotes the fuzzification 

coefficient.   [ ]ijU u=  and iv  are the partition matrix and the 
thi  prototype, respectively. 

( )2

,j id x v  (as well as ||.||2)  stands for the Euclidean distance (or its generalization) 

between 
,jx  and the prototype iv . The partition matrix and cluster centers (prototypes) 

are calculated iteratively as follows 

 
1

1

T m

ij jj

i T m

ijj

u

u

=

=

=




x
v   (3.12) 

 
( )2/ 1

1

|| ||

|| |

1

|

ij m

c i j

l
l j

u
−

=

=
 −
  − 


v x

v x

  (3.13) 

The sequence of iterations is carried out to realize the minimization of the objective 

function. Then, on a basis of the partition matrix generated by the FCM, each 
jx  belongs 

to the cluster to which it exhibits the highest membership degree. 

3.3.2 Fuzzy measures and fuzzy integrals 

Fuzzy integrals can combine different sources of uncertain information [171] and have 

been widely applied to a variety of fields, such as decision making [172], pattern 

recognition [173],supplier evaluation [174], gaze control of robotics [175], etc. [176].  

Fuzzy integral is calculated with respect to a fuzzy measure that can capture the 

relationship among different variables. Let us recall that by a fuzzy measure we mean a set 

function g  that satisfies the following set of conditions 

Boundary conditions: 

 ( ) ( )0 1g g = =X   (3.14) 
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Monotonicity: 

 ( )( ) ( ) ( ), ,if A B A B g X then g A g B     (3.15) 

Continuity: 

If  {𝐴𝑛}, (1 ≤ 𝑛 ≤ ∞)  is a monotone sequence of measurable sets, then 

 ( ) ( )lim limn n
n n

g A g A
→ →

=   (3.16) 

Based on the above definition, Sugeno developed a certain type of fuzzy measures, 

namely  -fuzzy measure [177]. Here the union of two disjoint sets 𝐴 and 𝐵 is determined 

as follows. 

 ( ) ( ) ( ) ( ) ( )g A B g A g B g A g B = + +   (3.17) 

Based on the normalization condition, the parameter of 𝜆  describes a level of 

interaction between the two disjoint sets and is greater than -1. The determination of its 

value comes as a result of the solution to the following polynomial equation  

 ( )
1

1 1 1
n

i

i

g  
=

+ = +  −   (3.18) 

where 𝜆  models several types of interaction: excitatory for its positive values, 

inhibitory for the negative values. The fuzzy measure is additive (no interaction) when 𝜆 =

0. In what follows, we recall a concept of the fuzzy integrals. 

Sugeno fuzzy integral 

Let 𝑔 be a fuzzy measure. Let ℎ be a function: 𝑋 → [0,1]. The Sugeno fuzzy integral 

of ℎ with respect to the fuzzy measure 𝑔 is calculated in the following form. 

 ( )
 

( )( )
0,1

sup min ,
A
h x g g A H






 =     (3.19) 

Where 𝐻𝛼 = {𝑥|ℎ(𝑥) ≥ 𝛼} is an 𝛼-cut of this function.  

Choquet fuzzy integral 

Let 𝑔 be a fuzzy measure. As before ℎ: 𝑋 → [0,1]. The Choquet fuzzy integral of ℎ 

with respect to 𝑔 is expressed in the following form 

 ( ) ( ) ( ) ( )1

1

n

i i i
A

i

h x g h x h x g A−

=

=  −     (3.20) 

Here 𝑔(𝐴𝑖) = 𝑔𝑖 + 𝑔(𝐴𝑖) + 𝜆𝑔𝑖𝑔(𝐴𝑖). 

For Sugeno Integral and Choquet Integral determined with respect to the 𝜆-fuzzy 

measure, the calculation of integral only requires information about fuzzy density [178] 𝑔𝑖. 

Higher values of 𝑔𝑖  indicate that the 𝑖th  feature is increasingly essential. As an 
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illustrative example, we consider a single multivariate time series involving three variables 

reported at a certain time moment and recording measurement values of three sensors. 

Here the quality of information from each sensor can be regarded as the value of the fuzzy 

density. Higher values of the fuzzy density 𝑔𝑖 indicate more essential entries at this time 

moment. The values of the multivariate time series are arranged in a vector form 

  0.7 0.4 0.3h =   

The corresponding vector of the fuzzy densities assumes the following entries (those 

values can be estimated by experts or derived on a basis of some training data). 

 0.21 0.35 0.05g =   

Following the above definitions, the results of Sugeno fuzzy integral and Choquet 

fuzzy integral are equal to 0.4400 and 0.7889, respectively. 

3.4 Experimental Studies 

In this section, we report on a series of numeric examples illustrating how the 

amplitude anomalies in multivariate time series are detected. Both synthetic data and the 

publicly available datasets with artificial anomalies are considered. 

3.4.1 Synthetic data 

The multivariate time series is generated in the form of sine and cosine functions of 

different frequencies, see Figure 3.3. The length of the series is equal to 2,000 samples and 

there are some visible changes at different time points of each variable of multivariate time 

series. Gaussian noise (with the zero mean and unit standard deviation) is added to each 

variable of the original multivariate time series to increase the difficulty of detecting the 

anomalies and make the data more realistic. These artificial anomalies are generated by 

randomly picking some time points and increasing their amplitude by multiplying them by 

a random value located in the interval [0, 3]. 
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Figure 3.3 Synthetic multivariate time series 

Two data sets, one covering time points from 1 to 140 (treated as a training set) and 

another one covering time points from 140.1 to 200 (testing set), have been considered in 

this experiment. For comparison, PCA is also exploited to transform a multivariate time 

series to an observed sequence. As the first component of the PCA transformed data 

captures the most information about the data [179], it would be possible to use only this 

component (the one with the highest eigenvalue) as a new ‘combined’ sequence, obtaining 

a transformation from multivariate time series to univariate time series. 

To cluster the multivariate time series, there are two essential parameters of the FCM, 

namely a fuzzification coefficient and the number of clusters. Here we vary the values of 

the fuzzification coefficients ranging from 1.1 to 2.9 with a step of 0.1 while the number of 

clusters is taken from 2 to 198. For discretization, different values of the number of 

observed states located in the range [2, 80] have been considered leading to the optimal 

value of this parameter. 

Figure 3.4 displays the experimental results produced by different methods. To make 

results more readable, for each detector, its objective (or quantitative) evaluation on this 

dataset have been reported to evaluate its performance. When TP, FP, TN and FN are the 

number of normal time points correctly detected as normal (True Positives), the number of 

abnormal time points that are detected as normal (False Positives), the number of abnormal 

time points that are detected as abnormal (True Negatives) and the number of normal time 

points that are detected as abnormal (False Negatives), Accuracy, sensitivity, specificity 
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and F-measure are defined as the following expressions, where are the objective (or 

quantitative) evaluation included in our experiments. Table 3-1 displays the confusion 

matrices produced by different methods 

 
TN TP

Accuracy
TN FP FN TP

+
=

+ + +
  (3.21) 

 
TP

Sensitivity
TP FN

=
+

  (3.22) 

 
TN

Specificity
TN FP

=
+

  (3.23) 

 
2 Precision Recall

F measure
Precision Recall

 
− =

+
  (3.24) 

Where 

 
TP TP

Precision and Recall
TP FP TP FN

= =
+ +

  (3.25) 

 

Table 3-1 Confusion matrix produced by different methods 

PCA+HMM 
 

FCM+HMM 
 

 
p n 

 
p n 

Y 459 90 Y 464 94 

N 16 35 N 11 31 

Sugeno Integral+HMM Choquet Integral+HMM 
 

p n 
 

p n 

Y 473 65 Y 426 53 

N 2 60 N 49 72 

As shown in Table 3-2, the proposed FCM+HMM-based detector has achieved higher 

accuracy in comparison with the accuracy obtained when using other detectors. The 

accuracy improvement of FCM, Sugeno fuzzy integral, Choquet fuzzy integral based 

detectors vis-a-vis the generic PCA-based detector is in the range 7-9 %. 
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(g) (h) 

 
 

(i) (j) 
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Figure 3.4 Synthetic multivariate time series: (a) training set, (b) testing set, (c) Ground 

truth of training set, (d) Ground truth of testing set, (e) Experimental results of PCA + 

HMM (training set), (f) Experimental results of PCA+HMM (testing set), (g) 

Experimental results of  FCM + HMM (training set), (h) Experimental results of  FCM 

+ HMM (testing set), (i) Experimental results of Sugeno integral + HMM (training set), (j) 

Experimental results of Sugeno integral + HMM (testing set), (k) Experimental results of 
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Choquet integral + HMM (training set), (l) Experimental results of Choquet integral + 

HMM (testing set). 

 

Table 3-2 Experimental results obtained for synthetic multivariate time series 

Training Set Accuracy F-measure Sensitivity Specificity 

PCA+HMM 0.8764 0.9294 0.9245 0.5266 

FCM+HMM 0.9550 0.9742 0.9651 0.8817 

Sugeno_Integral+HMM 0.9350 0.9634 0.9740 0.6509 

Choquet_Integral+HMM 0.9393 0.966 0.9838 0.6154 

Testing Set Accuracy F-measure Sensitivity Specificity 

PCA+HMM 0.8233 0.8964 0.9663 0.2800 

FCM+HMM 0.8250 0.8984 0.9768 0.2480 

Sugeno_Integral+HMM 0.8883 0.9338 0.9958 0.4800 

Choquet_Integral+HMM 0.8300 0.893 0.8968 0.5760 

 

To quantify the obtained optimal number of clusters and the value of the fuzzification 

coefficient, Figure 3.5 shows the corresponding accuracy when considering different 

values of these parameters. It is evident that the increase of the number of clusters will 

affect the performance of the detector significantly. The fuzzification coefficient exhibits 

some impact on the performance of the detector. Note that here HMM would fail due to the 

unknown external observed states that do not appear in training set. In other words, for 

adding new observations, re-training different HMM for new observations is anticipated. 
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Figure 3.5 Performance comparison reported for various values of the fuzzification 

coefficient and the number of clusters 

 

3.4.2 Publicly available datasets 

In this subsection, we report on a variety of experiments on real-world multivariate time 

series from different repositories such as UCI machine learning repository and DataMarket. 

The parameter setting is in the same way as presented for the synthetic data.  

Data Set #1 [U.S. Dollar Exchange Rate]: The historical intraday data (per day except for 

holidays and regular weekends) for three currencies (the US dollar exchange rate versus 

the Dutch guilder, the French franc and the German mark) in the period January 03, 1989 to 

December 31, 1998: 1) Dutch guilder (NLG); 2) French franc (FF); 3) German mark 

(DEM). 
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Figure 3.6 U.S. Dollar Exchange Rate Dataset: (a) training set, (b) test set, (c) Ground 

truth of training set, (d) Ground truth of testing set, (e) Experimental results of PCA + 

HMM (training set), (f) Experimental results of PCA+HMM (testing set), (g) 

Experimental results of  FCM + HMM (training set), (h) Experimental results of  FCM 
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+ HMM (testing set), (i) Experimental results of Sugeno integral + HMM (training set), (j) 

Experimental results of Sugeno integral + HMM (testing set), (k) Experimental results for 

Choquet integral + HMM (training set), (l) Experimental results of Choquet integral + 

HMM (testing set). 

 

Table 3-3 Experimental results of U.S. Dollar Exchange Rate Dataset 

Training Set Accuracy Sensitivity Specificity F-measure 

PCA+HMM 0.7864 0.8516 0.1765 0.878 

FCM+HMM 0.8386 0.8478 0.7529 0.9046 

Sugeno_Integral+HMM 0.9523 0.9899 0.6000 0.974 

Choquet_Integral+HMM 0.9483 0.9818 0.6353 0.9716 

Testing Set Accuracy Sensitivity Specificity F-measure 

PCA+HMM 0.5828 0.6131 0.2857 0.7272 

FCM+HMM 0.5748 0.5898 0.4286 0.7156 

Sugeno_Integral+HMM 0.9470 1.0000 0.4286 0.9716 

Choquet_Integral+HMM 0.9669 0.9927 0.7143 0.982 

 

Data Set #2 [EEG Eye State Dataset]: Three major EEG (eletroencephalogram) 

measurements (at a sampling frequency of 128 samples per second) acquired using the 

Emotiv EEG Neuroheadset: 1) AF3 (Intermediate between Fp and F); 2) F7 (Frontal left 

Hemisphere); 3) FC5 (Between F and C left Hemisphere). 
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Figure 3.7 EEG Eye State Dataset: (a) training set, (b) test set, (c) Ground truth of 

training set, (d) Ground truth of testing set, (e) Experimental results of PCA + HMM 

(training set), (f) Experimental results of PCA+HMM (testing set), (g) Experimental 

results of  FCM + HMM (training set), (h) Experimental results of  FCM + HMM 

(testing set), (i) Experimental results of Sugeno integral + HMM (training set), (j) 
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Experimental results of Sugeno integral + HMM (testing set), (k) Experimental results of 

Choquet integral + HMM (training set), (l) Experimental results of Choquet integral + 

HMM (testing set). 

 

Table 3-4 Experimental results of EEG Eye State Dataset 

Training Set Accuracy Sensitivity Specificity F-measure 

PCA+HMM 0.8997 0.9488 0.2203 0.9464 

FCM+HMM 0.9003 0.9305 0.4831 0.9456 

Sugeno_Integral+HMM 0.9454 0.9795 0.4746 0.971 

Choquet_Integral+HMM 0.9477 0.9822 0.4703 0.9722 

Testing Set Accuracy Sensitivity Specificity F-measure 

PCA+HMM 0.8320 0.9879 0.0742 0.907 

FCM+HMM 0.8340 0.9735 0.1563 0.9068 

Sugeno_Integral+HMM 0.9067 1.0000 0.4531 0.9468 

Choquet_Integral+HMM 0.9013 0.9904 0.4688 0.9434 

Data Set #3 [Air Quality Dataset]: Three major chemical sensors (related to hourly 

average concentrations for Total Nitrogen Oxide, Nitrogen Dioxide and Ozone) produced 

by an Air Quality Chemical Multi-sensor Device that placed in a polluted field of an Italian 

city in the period March 10, 2004 to June 2, 2004: 1) PT08S3 (NOx); 2) PT08S4 (NO2); 3) 

PT08S5 (O3). 
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Figure 3.8 Air Quality Dataset: (a) training set, (b) test set, (c) Ground truth of training 

set, (d) Ground truth of testing set, (e) Experimental results of PCA + HMM (training set), 

(f) Experimental results of PCA+HMM (testing set), (g) Experimental results of  FCM + 

HMM (training set), (h) Experimental results of  FCM + HMM (testing set), (i) 
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Experimental results of Sugeno integral + HMM (training set), (j) Experimental results of 

Sugeno integral + HMM (testing set), (k) Experimental results of Choquet integral + 

HMM (training set), (l) Experimental results of Choquet integral + HMM (testing set). 

Table 3-5 Experimental results obtained for Air Quality Dataset 

Training Set Accuracy Sensitivity Specificity F-measure 

PCA+HMM 0.8586 0.9220 0.3007 0.9214 

FCM+HMM 0.9807 0.9865 0.9301 0.9892 

Sugeno_Integral+HMM 0.9429 1.0000 0.4406 0.9692 

Choquet_Integral+HMM 0.9971 0.9968 1.0000 0.9984 

Testing Set Accuracy Sensitivity Specificity F-measure 

PCA+HMM 0.8567 0.9048 0.3704 0.92 

FCM+HMM 0.9367 0.9469 0.8333 0.9646 

Sugeno_Integral+HMM 0.9633 0.9908 0.6852 0.98 

Choquet_Integral+HMM 0.9917 0.9908 1.0000 0.9954 

 

As illustrated in the figures and tables, since fuzzy integral and FCM has been used to 

combine multivariate time series, the performance improvement of the corresponding 

detectors is quite apparent. This is related to the fact that more useful information is 

contained in the transformation to an observed sequence.  Similar to the experimental 

results of the synthetic dataset, fuzzification coefficient and the number of clusters (or 

observed states) are also associated with the performance of these detectors. 

Table 3-6 Improvement of the proposed detectors vis-à-vis the basic detector with PCA 

(%) 

 
FCM+H

MM 

Sugeno_Integral+H

MM 

Choquet_Integral+H

MM 

U.S. Dollar Exchange 

Rate Dataset 

6.6474 21.0983 20.5925 

Air Quality Dataset 14.2263 9.8170 16.1398 
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EEG Eye State 

Dataset 

0.0635 5.0810 5.3350 

Table 3-6 summarizes the improvement of the proposed detectors vis-à-vis the basic 

detector with PCA when the optimal parameters have been utilized. Compared to the 

results obtained by applying the PCA to the multivariate time series to form a univariate 

time series through a linear transform, the fuzzy integral is more flexible as the relative 

importance of different variables is also considered. In summary, the improvement of the 

ability of detecting anomalies can be attributed to them containing more useful information 

in the transformation, which might provide more help for HMM-based detectors. 

3.5 Summary 

In this chapter, we have investigated the multivariate time series anomaly detection 

problem by involving different transformation methods and HMM. The objective of this 

study was to compare different transformation approaches in HMM-based anomaly 

detection methods. Fuzzy integral and FCM clustering methods can retain more useful 

information in the transformation process and offer more help for HMM-based detectors to 

deliver better performance. A series of experiments involving synthetic and real dataset is 

completed to demonstrate the performance of the proposed detectors. Although the 

proposed anomaly detectors show good performance, there is a major limitation of 

intensive computing, especially in case of fuzzy integral based detectors. To overcome this 

problem, a certain alternative would be to engage experts in specifying some initial values 

of degrees of importance. The method comes with some limitations as we have only 

concentrated on amplitude anomalies in multivariate time series. Therefore, detecting other 

types of anomalies (e.g., shape anomalies) for larger datasets is a useful further direction. 

Another pursuit worth investigating is to quantify information loss when transforming 

from multivariate time series to univariate time series.  
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Chapter 4  

Cluster-Centric Anomaly Detection in Multivariate Time 

Series Datab 

The last chapter covers a supervised multivariate time series anomaly detection. 

Unfortunately, in the real world, there are not enough available training samples in most 

cases. Also, the task of labeling samples is very time-consuming. Therefore, in this 

chapter, we propose a new unsupervised cluster-centric approach to detect anomalies in 

the amplitude as well as the shape of multivariate time series. First, the sliding window 

technique is considered to generate a set of multivariate subsequences. Next, an 

augmented fuzzy clustering is developed to reveal a structure present within the 

generated multivariate subsequences. Finally, a reconstruction criterion is employed to 

reconstruct the multivariate subsequences with the help of the optimal cluster centers and 

the partition matrix. A certain index is constructed to quantify a level of anomaly 

detected in the series. Particle Swarm Optimization (PSO) is employed as an optimization 

vehicle to carry out anomaly detection. 

4.1 Cluster-Centric Anomaly Detection 

In this section, we introduce a cluster-centric approach for anomaly detection in 

multivariate time series data and highlight its main features. Figure 4.1 and Figure 4.2 

show overall processing phases carried out by running the method for detecting anomalies 

in the spaces of amplitude and shape, respectively. Firstly, a fixed-length sliding window 

(in both Figure 4.1 and Figure 4.2) is employed to divide the long multivariate time series 

into a set of multivariate shorter subsequences. In the next step of this proposed framework, 

an augmented version of the FCM clustering is used to reveal the normal structure within 

the data. For this purpose, a reconstruction criterion along with a particle swarm 

optimization is considered. Finally, using the revealed clusters and the reconstruction 

criterion, an anomaly score associated with each subsequence is assigned. Comparing with 

the proposed method for detecting amplitude anomalies, there is an extra component for 

                                                 
b A version of this chapter has been published as  
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shape anomaly detection (see Figure 4.2). In fact, before carrying out anomaly detection 

with respect to shape information, an autocorrelation representation of time series has been 

considered to remove time shifts within data. In what follows we describe each component 

of the proposed method more formally. 

 

Figure 4.1 Overall scheme of anomaly detection in amplitude 

 

 

Figure 4.2 Overall scheme of anomaly detection in shape 

 

4.1.1 Sliding window 

Let us assume that 𝒙1, 𝒙2, … , 𝒙𝑝 is multivariate time series of length 𝑝. The 𝑘th point 

in this time series is expressed using 𝑛 variables, viz. 𝒙𝑘 = [𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑛], where 𝑛 is 

the number of variables present in the multivariate time series. Using a fixed-length sliding 

window, one may generate a set of 𝑁 subsequences of length 𝑞. Figure 4.3 shows an 

example of generating multivariate subsequences using the sliding window technique. The 



43 

 

sliding window moves across the time series at each movement, and the data inside the 

sliding window is considered as a subsequence. The first and the second subsequences are 

visualized. Assuming 𝑟 to be the length of each movement of the sliding window, the 

number of generated subsequences can be determined as follows 

 𝑁 =
𝑝 − 𝑞

𝑟
+ 1 (4.1) 

 

 

Figure 4.3 The use of the sliding window to generate multivariate subsequence. 

4.1.2 An augmented Fuzzy C-Means for clustering multivariate time series 

The sliding window component generates a set of multivariate subsequences. The FCM 

is responsible for clustering the generated multivariate subsequence to reveal the available 

structure within the data. Since each multivariate subsequence consists of two or more 

univariate subsequences, and these univariate subsequences may have different 

characteristics and structures, clustering this type of data using a standard FCM technique 

may lead to a bias towards one or more variables in the data.  

To deal with this issue, we introduce a novel augmented version of fuzzy clustering for 

multivariate time series (subsequences). Here the augmented version of the Euclidean 

distance function has been considered to control the impact of each variable in evaluating 
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the similarity between multivariate time series. In the proposed augmented distance 

function, the squared Euclidean distance between a multivariate subsequence 𝒘𝑗 and a 

cluster center 𝒗𝑗 can be calculated as follows: 

 

𝑑2( 𝒘𝑗 , 𝒗𝑖) = 𝜆1‖𝑤𝑗1 − 𝑣𝑖1‖
2

+ ⋯ + +𝜆𝑛‖𝑤𝑗𝑛 − 𝑣𝑖𝑛‖
2

,  𝜆𝑖

≥ 0, ∑  𝜆𝑖

𝑛

𝑖=1

= 1 

(4.2) 

Using distance function in (2), one may control the impact of each variable in the 

clustering process of multivariate time series. A higher value of  𝜆𝑖, leads to the increase of 

the impact of the 𝑖th variable and the decrease of the impact of the other variables in the 

clustering process. By inserting the augmented distance function in FCM objective 

function, we obtain at the following expression. 

 𝑄 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2( 𝒘𝑗 , 𝒗𝑖)

𝑁

𝑗=1

𝑐

𝑖=1

 (4.3) 

where 𝑐 is the number of clusters, 𝑚(𝑚 > 1) is the fuzzification coefficient, and 𝑁 

is the number of multivariate subsequences. 𝑈  and 𝒗𝑖  are membership matrix and 

prototype 𝑖. The optimization process of the proposed augmented objective function is 

realized in an iterative fashion. Here we compute the partition matrix and cluster centers 

using the following expressions (4.4) and (4.5). 

 𝒗𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝒘𝑗
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 (4.4) 

 

𝑢𝑖𝑗 =
1

∑ (
‖𝒗𝑖 − 𝒘𝑗‖

‖𝒗𝑙 − 𝒘𝑗‖
)

2
(𝑚−1)

𝑐
𝑙=1

 
(4.5) 

Using the proposed augmented Fuzzy C-Means, one may control the impact of each 

variable in clustering multivariate time series data. However, an optimal impact of each 

variable in the clustering process is required. In other words, an optimal value of each 

coefficient  𝜆𝑖, 𝑖 = 1,2, … , 𝑛 has to be estimated.  

Since the augmented distance function expressed in (2), there are 𝑛 weights 𝜆𝑖, 𝑖 =

1,2, … , 𝑛, considering all possible combinations of these values (to find an optimal impact 

of each variable in the clustering process) is time consuming and for higher values of 𝑛 is 
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not even feasible. As a result, a particle swarm optimization (PSO) has been considered to 

find (near) optimal values of the weights because of its superiority in solving the complex 

global optimization problem. 

In brief, PSO produces some potential global solutions for the search problem and 

improves the quality of particles (solutions) using some search strategies [180, 181]. In this 

chapter, each particle comprises a n-dimensional vector that corresponds to the coefficients 

of the augmented FCM and satisfies the constraint imposed by (2). It starts with producing 

randomly a number of particles and their velocity vectors. For each particle, we evaluate its 

quality using a reconstruction criterion. In fact, the reconstruction criterion as discussed in 

the next section serves as a fitness function of the PSO technique. The particles and their 

velocity vectors are updated using the following expressions. 

 𝑣𝑘𝑖
𝑡+1 = 𝑤 × 𝑣𝑘𝑖

𝑡 + 𝑐1𝑟1𝑖(𝑝𝑏𝑒𝑠𝑡𝑘𝑖
𝑡 − 𝑧𝑘𝑖

𝑡 ) + 𝑐2𝑟2𝑖(𝑔𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑧𝑘𝑖

𝑡 ) (4.6) 

 𝑧𝑘𝑖
𝑡+1 = 𝑧𝑘𝑖

𝑡 + 𝑣𝑘𝑖
𝑡+1,           𝑘 = 1,2, … , 𝑀; 𝑖 = 1,2, … , 𝑛 (4.7) 

where, 𝑣𝑘𝑖 ∈ [𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥], 𝑀  is the number of particles and 𝑛  is the number of 

dimensions of each particle. 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 are best location achieved by particle and 

the best location found by the whole swarm, respectively. The inertia weight, 𝑤, controls 

the impact of the previous velocity on the current one. 𝑐1  and 𝑐2  are acceleration 

coefficients and 𝑟1𝑖 and 𝑟2𝑖 are random values drawn from a uniform distribution over the 

[0,1]  interval. 

4.1.3 Reconstruction criterion 

As discussed in the previous subsection, a reconstruction criterion serves as a fitness 

function considered in the PSO method. In fact, using this technique one may evaluate the 

quality of clusters in terms of data granulation and degranulation. The essence of the 

reconstruction criterion is to reconstruct the original data (subsequences) through the 

revealed cluster centers and their membership values [60]. Considering the cluster centers 

and the partition matrix generated using the augmented FCM, one may reconstruct the 

original subsequences by minimizing the following sum of distances: 

 𝐹 = ∑ ∑ 𝑢𝑖𝑘
𝑚

𝑁

𝑗=1

𝑐

𝑖=1

𝑑2( �̂�𝑗 , 𝒗𝑖) (4.8) 
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where, �̂�𝑗  is the reconstructed version of 𝒘𝑗 . By zeroing the gradient of 𝐹  with 

respect to �̂�𝑗, one has 

 �̂�𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝒗𝑗
𝑐
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑐

𝑗=1

 (4.9) 

After reconstructing all data points using (9), we calculate the reconstruction error as 

the following sum of distances: 

 𝐸 = ∑‖𝒘𝑗 − �̂�𝑗‖
2

𝑁

𝑗=1

 (4.10) 

Lower values of 𝐸 indicate the higher quality of clusters in terms of data granulation 

and degranulation. The PSO technique described in the previous subsection, optimizes the 

coefficients  𝜆𝑖, 𝑖 = 1,2, … , 𝑛 by minimizing the reconstruction error (10). 

4.1.4 Reconstruction error as anomaly score 

Optimizing the weights in the augmented FCM technique will lead to the determination 

of an optimal impact of different variables in the clustering process. Therefore, the 

revealed cluster centers and partition matrix corresponding to the optimal weights are 

considered as optimal ones. In the next step, using the optimal cluster centers and partition 

matrix, one assigns an anomaly score to each multivariate subsequence. For this purpose, 

again the reconstruction criterion is considered. In fact, the anomaly score for each 

multivariate subsequence is calculated as the squared Euclidean distance between the 

subsequence and its reconstructed version. Formally, an anomaly score for subsequence 

𝒘𝑗 is calculated in the following form. 

 𝑠𝑗 = ‖ 𝒘𝑗 − �̂�𝑗‖
2
 (4.11) 

4.1.5 Correlation coefficients representation of time series 

When detecting amplitude anomalies is in concern, the original representation of time 

series can be considered, and the Euclidean distance function is a suitable measure for 

evaluating the similarity/dissimilarity of time series. On the other hand, for shape 

anomalies, since the subsequences might be impacted by time shifts, using the Euclidean 

distance function as a similarity measure in the original feature space is not a suitable 

choice. 
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Autocorrelation coefficients of time series have been considered to handle this issue. By 

representing subsequences in their autocorrelation coefficients feature space, one may 

remove time shifts and then the Euclidean distance can be used in this new feature space. 

As an example, let us consider the generated time series A, B, and C as shown in Figure 4.4. 

If we use Euclidean distance for the time series A, B, and C, it is obvious that A and C are 

more similar (exhibit lower values of the distance) because of the existing time shift 

between A and B. By considering the autocorrelation space of time series, the time shifts in 

time series are removed and then time series A and B are considered to be similar. 

For a subsequence 𝒘𝑗 of length 𝑞, its autocorrelation coefficients can be calculated in 

the following form 

 𝑎𝑗,𝑒 =
∑ (𝑤𝑗,𝑡 − �̅�𝑗)(𝑤𝑗,𝑡−𝑒 − �̅�𝑗)𝑞

𝑡=𝑒+1

∑ (𝑤𝑗,𝑡 − �̅�𝑗)
2𝑞

𝑡=1

 (4.12) 

 

Where, 𝑒 = 1,2, … , 𝑞 − 1 and  𝑗 = 1,2, … , 𝑁.  �̅�𝑗 is the mean of the time series. 
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Figure 4.4 Comparison of subsequences A, B, and C along with their autocorrelation 

coefficients. 

4.1.6 Parameter selection 

Before running the proposed techniques, a Z-score normalization has been applied to 

each variable (time series) of the multivariate time series to remove the scaling effects 

among different variables. There are also some parameters such as fuzzy coefficient 𝑚, 

number of clusters 𝑐, the length of subsequences 𝑞, and the length of each step 𝑟 whose 

values can impact the detection process. Comparing the score of anomalous subsequence 

with the average score of subsequences, a confidence index is considered to optimize those 

parameters. Figure 4.5 shows the idea behind this index when there is only one anomaly in 

time series. 

The confidence index [182] is expressed using the following ratio 
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 𝑓 =
ℎ𝑎𝑛𝑜𝑚𝑎𝑙𝑦

ℎ̅
 (4.13) 

where ℎ stands for the anomaly score for each subsequence, ℎ̅ is the average of 

anomaly scores and ℎ𝑎𝑛𝑜𝑚𝑎𝑙𝑦 anomaly score of anomalous subsequences. Encountering a 

higher value of 𝑓 indicates assigning a higher anomaly score to anomalous part and lower 

scores to other parts. As the result, (13) can be used to find the optimal values of the 

parameters. The reason is that the higher value of  𝑓 indicates that the difference between 

scores of normal subsequences and abnormal subsequences is bigger. When there is more 

than one anomaly in time series, ℎ𝑎𝑛𝑜𝑚𝑎𝑙𝑦 is the average of anomaly scores of anomalous 

subsequences. 

 

Figure 4.5 Confidence index (anomaly in the interval [26,29]). 

4.2 Experimental Studies 

In this section, the cluster-centric approach is evaluated over a set of synthetic and 

real-world multivariate time series.   

4.2.1 Synthetic datasets 

A synthetic multivariate time series is generated using some non-linear functions 

including log, sine, absolute values, cosine and exponential functions with an intent to test 
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the effectiveness of the proposed method. The length of the generated 5-dimensional 

synthetic time series is 4,000. The individual time series are as follows: 

𝑓1(𝑡) = 𝑠𝑖𝑛(𝑡) 

𝑓2(𝑡) = 𝑠𝑖𝑛(𝑡)2 

𝑓3(𝑡) =  𝑠𝑖𝑛(𝑡) + 𝑠𝑖𝑛(𝑡)2 

𝑓4(𝑡) = 𝑒(|𝑠𝑖𝑛(𝑡)|+0.1) + 𝑙𝑜𝑔(𝑠𝑖𝑛(𝑡)2 × 0.0001) 

𝑓5(𝑡) = 𝑙𝑜𝑔(|𝑠𝑖𝑛(𝑡)| + 0.1) + 𝑙𝑜𝑔(𝑠𝑖𝑛(𝑡)2 + 0.1) 

In the series of experiments, the number of clusters was set from 2 to 6. The length of 

the subsequence is set to be in the interval [40, 400]. The translation of the sliding window 

is equal to 10% of the length of subsequences. The optimal of the number of clusters and 

the length of subsequence are determined by the confidence index described by (13). The 

fuzzification coefficient was set to 2.0. 

 

Figure 4.6 Multivariate time series with existing amplitude anomalies. 

We inserted amplitude anomalies by randomly picking up some windows in different 

coordinates of the generated multivariate time series and then multiplying the values of 

picked windows with the random values of the interval [0, 5]. Figure 4.6 shows the 

multivariate time series with amplitude anomalies and the anomaly score of each 
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subsequence. It should be noted that this figure only shows the maximal anomaly score for 

each subsequence because of the overlap between subsequences. When the performance 

index (13) has been optimized, the length of windows and number of clusters are set to 40 

and 6, respectively. 

For the PSO, the number of particles is 100. The estimated optimal weights are 𝜆1 =

0.05, 𝜆2 = 0.48, 𝜆3 = 0.03, 𝜆4 = 0.42, and 𝜆5 = 0.02. As evidenced in Figure 4.7, the 

proposed method was able to detect all anomalies present in the multivariate time series. 

  

(a) (b) 

 

(c) 
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Figure 4.7 (a) Different length of windows vs. confidence index (when number of 

clusters is 2); (b) Different number of clusters vs. confidence index (when length of 

windows is 80); (c) confidence index when length of sliding window and number of 

clusters take different values (amplitude anomaly). 

Let us now evaluate the proposed method with regard to its abilities to detect and 

quantify shape anomalies. For this purpose, some shape anomalies have been injected into 

the generated multivariate time series used in the previous experiment. These shape 

anomalies are produced by picking up some windows randomly and changing the 

frequency (by multiplying the random value in the interval [1, 3]) of the signal within the 

windows because frequency change will lead shape change of the picked windows. Figure 

4.8 illustrates this multivariate time series with shape anomalies and the obtained 

corresponding anomaly score for each subsequence determined by the proposed method. 

Again, the method was able to detect shape anomalies, see Figure 4.8. 

 

Figure 4.8 Multivariate time series with existing shape anomalies. 

Figure 4.9 illustrates the values of confidence index produced for the different number of 

clusters and the length of subsequences.  The best values of these two parameters are 40 
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and 6 respectively. the estimated optimal values of the weights are 𝜆1 = 0.25, 𝜆2 =

0.31, 𝜆3 = 0.18, 𝜆4 = 0.21,  and 𝜆5 = 0.05. 

  

(a) (a) 

 

(c) 

Figure 4.9 (a) Different length of windows vs. confidence index (when the number of 

clusters is 2); (b) Different number of clusters vs. confidence index (when the length of 

windows is 80); (c) Confidence index when the length of sliding window and number of 

clusters take different values 

In the next experiment, a multivariate time series of the length 80 is simulated and is 

shown in Figure 4.10. Let us consider we have two time series (two variables) that contain 
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6 types of different signals (shown in different colors). Each signal is repeated for some 

times but the number of repeated is unknown while the relationship (1-4, 2-5, 3-6) between 

different signals are known. Each number represents a specific type of signal. So 

multivariate time series without anomaly is expressed as follows: 

Time series 1: 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 

Time series 2: 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 

For the case shown in Figure 4.10, multivariate time series with anomaly is shown as: 

Time series 1: 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 

Time series 2: 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 

Each signal type has been repeated at different positions in each time series. As a result, 

there is no anomaly in each single time series. However, when considering both time series, 

there are two anomalies (highlighted) because signal 2 and signal 6 are coming together. 

Figure 4.10 shows the generated time series as well as the calculated anomaly scores. 

 

Figure 4.10 Experimental results of multivariate time series. 

As shown in Figure 4.10, the proposed method is able to detect the anomalies caused by 

relations between time series in multivariate time series. The reason is that all univariate 

subsequences of multivariate subsequence are considered at the same time to determine an 

anomaly score of this multivariate subsequence. 

In the next experiment, we provide a comparative illustration of the performance of the 

augmented FCM and the standard FCM in the proposed general framework of anomaly 

detection. In order to make all details easily visible, we consider a two-dimensional 
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multivariate time series which consists of four amplitude anomalies (marked by red) as 

shown in Figure 4.11 (top). The standard FCM and its augmented version were run on this 

multivariate time series with the same initialization and the following same parameters: the 

number of clusters = 2 and fuzzification coefficient =2.0. Their convergences are archived 

after a number of iterations. Figure 4.11 (middle) and (bottom) illustrates the obtained 

corresponding anomaly scores produced by the anomaly detectors with the augmented 

FCM (with the optimized weights 𝜆1 = 0.2169 and 𝜆1 = 0.7831) and the standard FCM. 

The detector with the augmented FCM can detect all anomalies while that with the 

standard FCM cannot. For an in-depth analysis, we map this multivariate time series onto 

2-dimensional space and provide their clustering centers; see Figure 4.12 (a) and (b). They 

reveal two different data structures within data because an augmented version of the 

Euclidean distance function has been considered to control the impact of each variable in 

evaluating the similarity between multivariate time series. In addition, there is one error 

detection (shown in Figure 4.13 (a) and marked by blue diamond) produced by the detector 

with the standard FCM. On a basis of different clustering centers, we also provide the 

corresponding reconstruction version in Figure 4.13 (b). The distance (or the anomaly 

score) between actual pattern and its reconstruction version obtained by the augmented 

FCM is less than that obtained by the standard FCM.  

As shown in Figure. 4.11-4.13, the augmented FCM is expected to reveal the available 

data structure for the subsequent anomaly detection because of the different impact of each 

variable in evaluating the similarity between multivariate time series. The detector with the 

augmented FCM can offer more accurate detection results. 
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Figure 4.11 Top: a two-dimensional multivariate time which consists of four amplitude 

anomalies; Middle: experimental results of the augmented FCM; Bottom: experimental 

results of the standard FCM. 

  

(a) (b) 

Figure 4.12 (a) Clustering centers (marked by black triangles) obtained by the 

augmented FCM and four amplitude anomalies (marked by red pluses); (b) Clustering 

centers (marked by black triangles) obtained by the standard FCM and four amplitude 

anomalies (marked by red pluses); 
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(a) (b) 

Figure 4.13 (a) anomalies (marked by red pluses) and error detection (marked by blue 

diamond); (b) error detection (marked by blue diamond) and its reconstruction versions 

based on the augmented FCM and the standard FCM respectively 

4.2.2 Publicly available datasets 

In this subsection, two real-world datasets, namely electrocardiogram data and climate 

change data have been studied for anomaly detection in shape and amplitude using the 

proposed method. 

Electrocardiograms (ECG) data set 

This dataset is obtained from the MIT-BIH Arrhythmia database [183, 184]. In the ECG 

dataset, each heartbeat is annotated by two cardiologists independently, so it can be used as 

a benchmark to evaluate the proposed method. 

In this experiment, three ECG heartbeats with some annotated anomalies are considered. 

To consider all type of beats in a time window, the length of time window has been 

considered to be 1.2 times the average length of the RR interval [182]. The other 

parameters are selected in a similar fashion as used in the previous experiments. The 

optimal values of the number of clusters and the length of subsequence are determined by 

the confidence index (13). The fuzzification coefficient was set to 2.0 and the length of 

each slide (move) of the sliding window is set to 10% of the length of subsequences. Figure 

4.14 illustrates the ECG signals and the corresponding anomaly scores generated by the 

proposed method. The anomalous part of each dataset is highlighted. The detected 

anomalous parts of data correspond to premature ventricular contraction (marked in red 

color) or Atrial premature contraction (marked in green). In all cases, the method can find 
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the abnormal parts of the time series. In Figure 4.14 (b), one of the detected anomalies is 

annotated as normal by cardiologists (highlighted in magenta), however this part of data 

has a visible difference in shape when compared with other normal portions of the series. 

As can be seen in Figure 4.14, shape information of anomalous parts (highlighted in 

different color) is different from that of normal parts of multivariate time series. The 

difference leads to different clustering results and yields a higher anomaly score of 

multivariate subsequence. 

 

(a) 
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(b) 

 

(c) 

Figure 4.14 MIT-BIH arrhythmia data sets. 

Climate change data set 

In this section, we consider the monthly measurements of climatological factors from 

January 1990 to December 2002, in three different places in USA. They contain vapor 

(VAP), temperature (TMP), temperature min (TMN), temperature max (TMX), global 

solar radiation (GLO), extraterrestrial radiation (ETR) and extraterrestrial normal radiation 

(ETRN) from CRU (http://www.cru.uea.ac.uk/cru/data), NOAA 

(http://www.esrl.noaa.gov/gmd/dv/ftpdata.html), and NCDC 

(http://rredc.nrel.gov/solar/old_data/nsrdb/). 

Some simulated amplitude and shape anomalies are inserted into this multivariate time 

series to test our anomaly detection technique. For instance, the values of global solar 

radiation in the first place from April 1995 to November 1996 are doubled. The values of 

temperature recorded at the second place from January 1997 to December 1997 are 

replaced by that from July 1990 to June 1991. A sliding window of length 12 is considered 

to reflect successive months. The other parameter settings are similar to those used in the 

previous experiments. The fuzzification coefficient was set to 2.0 and the number of 

clusters was varied from 2 to 6. The length of each movement of the sliding window is 

equal to 10% of the length of the subsequences.  The optimal values of weights are shown 
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in Table 4-1. Figure 4.15 illustrates the experimental results showing the detected 

anomalous parts. 

 

(a) 

 

(b) 
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(c) 

Figure 4.15 Climate change data sets 

From the above table, we can infer that the impact of different variables could be 

different in the clustering process even if similar datasets are used. The higher the weights 

are, the more important the variables are in the clustering process. 

Table 4-1 Optimal values of weights 

climate change 

data 
1   2   3   4   5   6   7   

(a) 0.02 0.20 0.26 0.04 0.23 0.03 0.22 

(b) 0.12 0.16 0.08 0.15 0.16 0.16 0.17 

(c) 0.14 0.08 0.01 0.16 0.00 0.32 0.29 

A comparison with distance-based methods 

In a general framework of distance-based anomaly detection techniques one calculates 

the similarity of each subsequence with all other subsequences in the data set and selects 

the subsequences with lowest similarity (highest distance) to other subsequences as 

anomalous parts of data. A 1-NN technique has been used for this purpose. The main 

drawback of 1-NN based anomaly detection methods is that if the two similar anomalies 

happen in a time series, the technique is not able to detect them. To resolve this problem, 

one may consider the use of the K-NN classifier. However, finding the parameter K is a 

challenging problem. On the other hand, in clustering-based methods, by considering the 

number of clusters equal to 2 or 3 (or using a cluster validity index approach) one may 

detect anomalies even if some anomalies are similar. 
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In the next experiment, we compare the proposed clustering-based technique with the 

one discussed in [185]. A two-dimensional multivariate time series is constructed and 

shown in Figure 4.16. Two anomalies are inserted into this multivariate time series. It is 

noticeable that the distance-based method is not able to detect all anomalous parts of data. 

 
(a) 

 
(b) 

Figure 4.16 The proposed method vs. a 1-NN technique: (a) experimental result of the 

1-NN method; (b) experimental result of the proposed method. 
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4.3 Summary 

In this study, we introduced the method for detecting amplitude and shape anomalies 

in multivariate time series. The modified Fuzzy C-Means clustering was used to capture 

the structure of multivariate time series.  A reconstruction error serves as the fitness 

function of the PSO algorithm and also has been considered as the level of anomaly 

detected in each subsequence. We conducted experiments using both synthetic and 

real-world datasets. Experimental results demonstrate the effectiveness of the proposed 

methods to detect amplitude and shape anomalies in multivariate time series. Although the 

proposed method shows good performance, it comes with some limitations. One of them is 

an intensive computing overhead resulting from the fact that the Euclidean distance 

function calls for a substantial level of computing. Considering the computing overhead 

associated with the analysis of different combinations of the entries of λ, one may consider 

a simplified version of the method with some predetermined values of the entries of the 

vector of these parameters.  
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Chapter 5  

Time Series Reconstruction and Classification: A 

Comprehensive Comparative Studyc 

After introducing supervised and unsupervised time series anomaly detection, let us 

switch to the second time series mining task, namely time series 

representation/approximation. In this chapter, we carry out a comprehensive analysis of 

relationships between reconstruction error and classification performance when dealing 

with various representation (approximation) mechanisms of time series. Typically, time 

series approximation leads to the representation of original time series in the space of lower 

dimensionality in comparison with the dimensionality of the original signals. We reveal, 

quantify, and visualize the relationships between the reconstruction error and classification 

error (classification rate) for a number of commonly encountered representation methods. 

Through carefully structured experiments completed for sixteen publicly available datasets, 

we demonstrate experimentally that the classification error obtained for time series in the 

developed representation space becomes smaller than when dealing with original time 

series. It has been also observed that the reconstruction error decreases when increasing the 

dimensionality of the representation space. Experimental results report the performance of 

classification and reconstruction results when dealing with clustering methods. 

5.1 Reconstruction aspects associated with the FCM method 

As mentioned earlier, we focus on the relationship between the classification error and 

the reconstruction error of various time series representation methods. Once the FCM 

clustering algorithm (mentioned in Chapter 4) has been completed, by invoking cluster 

centers and partition matrix, one reconstructs the original time series by minimizing the 

following function [186]. 
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Here �̂�𝑗
′ is the reconstructed version of 𝒙𝑗. By zeroing the gradient of F with respect to 

�̂�𝑗
′, we have 

                                                 
c A version of this chapter has been published as 
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In most cases, time series representation is performed as preprocessing of time series 

mining while time series clustering is presented its the following step. The main reason 

behind this behavior is that clustering itself can be time consuming [187]. Compared with 

the other time series approximation methods, there is one more parameter that is the 

fuzzification coefficient and impacts its reconstruction errors and classification errors. 

5.2 Time series Classification 

Once the approximations of time series normalized has been completed, there are a 

number of classification methods, like Naive Bayes Classifier, C4.5, and nearest neighbor 

classifier, to conduct the classification task. In this study, we use a nearest neighbor (NN) 

classifier because of its effectiveness, simplicity and parameter- free nature of the 

classification scheme. A testing sample without the label is assigned the class label of the 

most similar training sample. Normally, let’s consider that 𝑋, 𝑌 and 𝒙 are training set, 

class labels of the training set and the testing sample. Here the weighted Euclidean distance 

between one training sample 𝒑 and one testing sample 𝒒 is used. 

 ( )
( )

2

2
1

m
i i

i i

p q
Dist ,

=

−
= p q   (5.3) 

𝜎𝑖 is the standard deviation of the 𝑖th essential feature. Then assign the label of the 

sample (in the training set) which is the nearest neighbor to this testing sample 𝒙. 

5.3 Experimental Results 

We completed a comparative study on these time series representation methods over a 

variety of datasets from the UCR time series databases [188], with the goal of evaluating 

the impact on classification accuracy of the one Nearest Neighbor (1-NN) classifier 

equipped with the weighted Euclidean distance. Table 5-1 summarizes the characteristics 

of the datasets used in the experiments. The z-normalization was applied to all datasets. In 

order to complete a fair comparison, before performing time series representation methods, 

padding with zeros to the datasets, whose length are not a power of 2, is necessary. 

Table 5-1 Characteristics of publicly available datasets 
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Dataset # of 

Class 

Train Test Length 

CBF 3 30 900 128 

ProximalPhalanxOutlineAgeGroup 3 400 205 80 

BeetleFly 2 20 20 512 

BirdChicken 2 20 20 512 

Wine 2 57 54 234 

ECG200 2 100 100 96 

ToeSegmentation1 2 40 228 277 

ArrowHead 3 36 175 251 

Beef 5 30 30 470 

Trace 4 100 100 275 

FaceFour 4 24 88 350 

ProximalPhalanxOutlineCorrect 2 600 291 80 

Gun-Point 2 50 150 150 

Synthetic Control 6 300 300 60 

Lighting-7 7 70 73 319 

ToeSegmentation2 2 36 130 343 

 

Except for the number of essential features that are necessary for all approximation 

methods, there are one important parameter for FCM, namely the fuzzification coefficient. 

Here we vary the values of m ranging from 2 to the length of time series with each step of 1. 

The fuzzification coefficient r of FCM ranges from 1.1 to 2.9 with the step of 0.1. For a 

clear comparison between the original time series and other time series approximations, the 

classification results (of original time series) obtained 1-NN classifier are also provided in 

Figure 5.3. Based on the results shown in Figures, the experimental results can be concisely 

summarized in the following way. 

All dataset cannot be treated in the same way by performing the same approximation 

methods and classifications methods because the discriminative information between 

samples with different labels differs with the objective of the applications. For instance, the 

video surveillance application generates the Gun-Point dataset which identifies whether a 

person draws a gun or not. The time series record the position of the right hand. Only a 

small peak in the middle of the time series reflects whether there is the gun. If the more 

detailed information is preserved during the approximation process, the classification 

performance will be improved. 

We have demonstrated experimentally that the classification error will be smaller than 

that of the original time series when taking suitable approximation methods and parameters 
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setting (shown in Figure 5.3). The approximation methods can eliminate some useless 

information (e.g. noise) of time series to archive better classification results. In some sense, 

it can illustrate why the classification error goes down and then up with the increase of the 

number of coefficients (shown in Figure 5.1). And we also provide the comparison (of the 

classification error) between original time series and their different representations after 

the tuning of their parameters in Figure 5.2. 

One can observe that the reconstruction error will decrease towards zero with 

increasing the number of coefficients in a number of cases.  

Experimental results reported that the fuzzification coefficient of the FCM method also 

exhibits a significant impact on the performance of classification and reconstruction. 

   
 (a)  

   
 (b)  

   
 (c)  
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 (o)  

   
 (p)  

Figure 5.1 Classification error (first column) and Reconstruction error (second column) 

of PAA(solid), DCT(dashdot), DFT(dotted), DWT(plus) and SVD(hexagram). 

Comparison (third column) between classification error and reconstruction of 

PAA(black), DCT(blue), DFT(red), DWT(green) and SVD(magenta). (a) CBF; (b) 

ProximalPhalanxOutlineAgeGroup; (c) BeetleFly; (d) BirdChicken; (e) Wine; (f) 

ECG200; (g) ToeSegmentation1; (h) ArrowHead; (i) Beef; (j) Trace; (k) FaceFour; (l) 

ProximalPhalanxOutlineCorrect; (m) Gun-Point; (n) Synthetic Control; (o) Lighting-7; (p) 

ToeSegmentation2; 
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Figure 5.2 Classification error and reconstruction error of FCM based time series 

representation, and Comparison between classification error rate and reconstruction 

when the number of clusters and fuzzification coefficient take different values. (a) CBF 

dataset, (b) ProximalPhalanxOutlineAgeGroup dataset, (c) BeetleFly dataset, (d) 

BirdChicken dataset, (e) Wine dataset, (f) ECG200 dataset, (g) ToeSegmentation1 

dataset, (h) ArrowHead dataset, (i) Beef dataset, (j) Trace dataset, (k) FaceFour dataset, 

(l) ProximalPhalanxOutlineCorrect dataset, (m) Gun-Point dataset, (n) Synthetic Control 

dataset, (o) Lighting-7 dataset, and (p) ToeSegmentation2 dataset. 
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Figure 5.3 Classification error of original time series (no representation), PAA, DCT, 

DFT, DWT, SVD, FCM after the tuning their parameters (number of coefficients, 

fuzzification coefficient) 

5.4 Summary 

The time series approximation methods can represent the original time series in lower 

dimensional space, remove noise, speedup of classification process and capture its 

essential characteristic to improve classification performance; however, they also may 

eliminate some discriminative information that is essential for classification and 

reconstruction purposes. The thoughtful analysis of the datasets is expected before 

applying pertinent approximation and classification methods. Experimental results 

reported in this study demonstrate that the use of carefully selected approximation methods 

and parameters setting yields a smaller classification error rate than the one which results 

from the classification scheme applied to raw data.  

Although there are a variety of time series approximation approaches, there is no one 

method that can claim to be better than other approaches because there are different 

characteristics and structures in time series from different domains. On the basis of 
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structure information and domain information, users can select the suitable time series 

approximation method. More information about the performance of the different 

experimented approaches refers to [51, 57, 80, 84]. 

The classifier being used in the study is a generic one and its consideration here was 

intentional to avoid possible bias associated with more advanced classification schemes. 

Some future enhancements of 1-NN classifier worth studying could be to involve applying 

different similarity measure such as dynamic warping time distance.  
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Chapter 6  

A Hidden Markov Model-Based Fuzzy Modeling of 

Multivariate Time Seriesd 

Time series modeling is a challenge and interesting research field of time series 

mining, which is also the third task archived in this dissertation. In this chapter, we start 

to elaborate on a novel Hidden Markov Model (HMM)-based fuzzy model for time series 

prediction. Fuzzy rules (rule-based models) are employed to describe and quantify the 

relationship between the input and output time series while the HMM is regarded as a 

vehicle for capturing efficiently the temporal behavior or changes of the multivariate time 

series. Essentially, the proposed strategies control the contribution of different fuzzy rules 

so that the proposed model can well model the dynamic behavior of time series. The use 

of Fuzzy C-Means clustering technique is an alternative way to construct fuzzy rules. 

Particle Swarm Optimization (PSO) serves as a tool to optimize the parameters of the 

model (e.g., the transition matrix and the emission matrix).  

6.1 An Overview of Multiple Fuzzy Rule-based Model  

The primary objective is to design a Hidden Markov Model based fuzzy model for 

multivariate time series modeling. A multivariate time series consists of more than a 

single univariate/individual time series which are correlated with each other. Fuzzy 

rule-based models can describe and reflect the relationship between the input and output 

time series. The underlying idea is to model the non-linear characteristics by using a set 

of fuzzy rules. Each rule can capture some local information about the relationships 

(characteristics) of multivariate time series so that the aggregation of multiple fuzzy rules 

results in the complex and non-linear model. In addition, the building and aggregating the 

rules (“if – then” statement) make the model transparent yet accurate and enhance the 

readability of the obtained model. The temporal correlation is another essential issue, 

which has to be considered in modeling multivariate time series. The HMM can be 

efficiently employed for portraying the temporal behavior or changes of the multivariate 

                                                 
d A version of this chapter has been published as  
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time series. The design strategies differ in the type of visible state and in this study are 

used to control the contribution of different fuzzy rules so that the proposed model can 

well model the dynamic behavior of time series.  

 

Figure 6.1 Overall scheme of the proposed time series model. 

As shown in Figure 6.1, the architecture of the proposed model dwells upon the 

temporal dependency and relationship characteristics of multivariate time series. The 

process of building the overall model consists of two main steps (shown in Figure 6.2): 

construction of fuzzy rule-based models and the estimation of the Hidden Markov Model. 

The identification of the antecedent and consequent parts of the fuzzy rule-based models 

is realized through the usage of Fuzzy C-Means clustering approach. We perform the 

fuzzy clustering in the input-output space to reveal the available structure within a 

multivariate time series. The obtained prototypes could be sought as a structural setup for 

the ensuing modeling the temporal characteristic. Then we can construct an HMM on a 

basis of multiple fuzzy rules to describe the dynamic behavior of time series over time. In 

a nutshell, in order to mimic the properties of the multivariate time series, the 

contribution of different fuzzy rules can change with time by the HMM. 

 

Figure 6.2 The workflow of the approach 
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6.2 Fundamental Development Phases 

Fuzzy rule-based model: 

Fuzzy rule-based models have been suggested to have better prediction performance, 

since its ability in describing complex, highly nonlinear models from input-output data 

[189]. Here, we consider the commonly encountered Takagi–Sugeno (TS) type fuzzy 

model [190] which has the rules in the following forms: 

 ( )if is , then is , 1,2,...,iA y f i c=x x   (6.1) 

Where iA   denotes a fuzzy set of the 
thi  rule formed in the input space and ( )if x  is 

a function as a consequence of the fuzzy model. x  and y  are the input and output 

variable. c  and ( ).if  stand for the number of rules and the function of input variables. 

Through aggregating each fuzzy rule, one has the output y  expressed as follows: 
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There are a significant number of variants or extensions to the basic TS fuzzy model 

[191]. The design of these variants can be categorized into two main directions: (i) 

formation of premise parts (conditions) of these rules and (ii) determination of their 

conclusion parts. Commonly encountered fuzzy clustering can serve as a vehicle to 

construct conditions of the rules while linear regression stands in their corresponding 

conclusion parts. For more detailed information of its variants consider [191]. 

Prediction: 

The output time series prediction is implemented based on the constructed fuzzy rules 

and the optimized HMM. Given the estimated transition and emission matrix, the 

probability of each fuzzy rule can be calculated by the following formulas: 

1:t =   

 ( )1
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Here ( )t jq  and ( )t kM  denote the probability of jq  and the probability of 
thk  

fuzzy rule at the 
thi  time point. 

Then, after having the prototypes ( ),
t tk kx ky=v v v  generated by FCM, we can obtain 

the fuzzy set iA  of each fuzzy rule in the form. 
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Where 
tkxv  and 

tkyv  are the 
thk  prototype of the input and output pair ( ),t tyx  

respectively. 

Once the probabilities and fuzzy sets of each fuzzy rule have been obtained, the final 

value of ty   is calculated as. 
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The above aggregation result ty  is regarded as the estimated value of the output 

time series. 

6.3 Experiment and Case Studies  

. In what follows, to demonstrate the effectiveness of the proposed model, we report 

experimental results for different data sets involving synthetic multivariate time series as 

well as real-world multivariate time series from the Data Market repository 

(https://datamarket.com/), the Yahoo Finance website (https://finance.yahoo.com/) and 

the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets.html). In 

particular, we are concerned whether the fuzzy rule-based model can generate the more 

accurate prediction with the help of the Hidden Markov Model. 
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6.3.1 Synthetic multivariate time series 

For the clarity of explanation, a two-dimensional time series is generated with the 

following clustering centers and uniform distribution. Totally, there are three large 

clusters (denoted here as Bclsuter-1, Bcluster-2, …, Bcluster-3) and these clusters consist 

of 4, 3 and 3 small clusters (denoted here Sclsuter-1, Scluster-2, …, Scluster-10) 

respectively. Since there are 100 patterns (data) in each small cluster, the length of this 

multivariate time series is composed of 1,000 samples. In this study, the time series x  

and y  denote the input and corresponding output time series respectively, as shown in 

Figure 6.3. And they are divided into the training set (700 time points from 1 to 700, 70%) 

and testing test (300 time points from 701 to 1000, 30%), which are applied to construct 

the models and evaluate their performance. For comparison, the fuzzy rule-based model 

without HMM is also exploited to estimate the value of the corresponding time series. In 

addition, in this study, particle swarm optimization is exploited to estimate the parameters 

of HMM. The number of particles and iterations are set to 200 and 300, respectively. 

 

(a) 

 

(b) 

Figure 6.3 Two-dimensional time series (a) input time series (b) corresponding time 

series 

Bcluster-1: 
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 Sclsuter-1:  1 1[ , ] 5,5v w =   

 Sclsuter-2:  2 2[ , ] 10,10v w =   

 Sclsuter-3:  3 3[ , ] 15,15v w =   

 Sclsuter-4:  4 4[ , ] 16,22v w =   

Bcluster-2: 

 Sclsuter-5:  5 5[ , ] 25,55v w =   

 Sclsuter-6:  6 6[ , ] 30,50v w =   

 Sclsuter-7:  7 7[ , ] 35,45v w =   

Bcluster-3: 

 Sclsuter-8:  8 8[ , ] 45,30v w =   

 Sclsuter-9:  9 9[ , ] 50,25v w =   

 Sclsuter-10:  10 10[ , ] 55,30v w =   

There are three parameters which may influence the accuracy of estimation results in 

our model. Here we are mainly concerned with the impacts of the number of rules (of 

FCM) and number of hidden states (of HMM) because the number of visible states is 

equal to the number of rules. Figure 6.4. (a) and (b) show the clustering results generated 

by FCM when the number of prototypes is 3 and 10, respectively. As visible, FCM has 

been used as a vehicle to capture the structure in the data through a series of numeric 

prototypes. 

  

(a) (b) 
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Figure 6.4 Clustering results generated by FCM when the number of prototypes is 3 and 

10 

  

(a) (b) 

Figure 6.5 Experimental results generated by the fuzzy rule-based model without HMM 

(a) training set (b) testing set, when the number of rules varies from 2 to 47 

For all following experiments, the fuzzification coefficient was fixed at 2.0 to make 

the comparison with the fuzzy rules-based model (without the aid of HMM) easier and 

clearer. The number of rules comes from the set. the number of hidden states was ranging 

from 2 to 10 with a step of 1. Figure 6.5 provides the experimental results generated by 

the fuzzy rule-based model obtained without involving HMM. 

 

(a) 
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(b) (c) (d) 

Figure 6.6 Experimental results of testing time series (from 951 to 1000) when the 

number of rules and hidden states are 32 and 4. (a) actual values (red); estimated values 

by the fuzzy rule-based model (blue); estimated values by HMM based fuzzy model 

(black); (b) enlargement of first part of (a); (c) enlargement of second part of (a); (d) 

enlargement of third part of (a); 

There is a visible trend that the performance of the model will improve with the 

increase of the number of rules. The reason behind that is that more details from the time 

series can be captured through exacting more fuzzy rules. Figure 6.6. (a-d) provides the 

experimental results of testing sets from the fuzzy rule-based model and the proposed 

model. It is evident that the estimated values by the proposed model are closer to the real 

values. In contrast to the fuzzy rule-based model only, the proposed model can archive 

more than 90% (best) prediction performance improvement. Figure 6.7. summarized the 

performance improvement results when the number of hidden states and rules varies over 

some range. 

  

(a) (b) 
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Figure 6.7 Experimental results generated by the fuzzy rule-based model with HMM (a) 

training set (b) testing set, when the number of rules varies from 2 to 47 and the number 

of hidden states varies from 2 to 100. (c) RMSE improvement of the training set. (d) 

RMSE improvement of the testing set. 

6.3.2 Real-world multivariate time series 

Here we also perform both the proposed model and the fuzzy rule-based model on the 

several real-world multivariate time series (from different publicly available repositories) 

to investigate their performance. The main characteristics of these data sets are 

summarized in Table 6-1. 

Table 6-1 Basic characteristics of real-world datasets 

Dataset From To Features Training Testing 

      

Precipitation of Fisher 

River near Dallas 

Jan 1, 

1988 

Dec 31, 

1991 

2 1023 438 

Rainfall in Melbourne, 

Australia 

Jan 1, 

1981 

Dec 30, 

1984 

2 1022 438 

PM 2.5 Jun 23, 

2010 

10:00 

Aug 13, 

2010 

19:00 

3 864 370 

Istanbul Stock Exchange Jan 5, 

2009 

Feb 22, 

2011 

7 375 161 

S&P 500 Feb 12, 

2013 

Feb 9, 

2018 

2 881 378 

US Dollar Exchange 

Rate 

Mar 6, 

1973 

Mar 1, 

1977 

2 700 300 

Temperature change of 

Oldman River near 

Brocket 

Jan 1, 

1988 

Dec 31, 

1991 

2 1023 438 

Precipitation change of Jan 1, Nov 1, 2 980 420 
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Saugeen River near Port 

Elgin 

1988 1991 

 

We present comparative results of these two models in Figure 6.8, Figure 6.9 and 

Table 6-2. Through the experimental results, we arrive at some interesting and important 

findings: 

1. Compared with the fuzzy model without the aid of HMM, the HMM based fuzzy 

model can produce better prediction results producing lower values of the corresponding 

criterion (RMSE), which results in that HMM can model the temporal changes of 

multivariate time series. 

2. Increasing the number of fuzzy rules will achieve more accurate prediction with 

lower RMSE value in most cases. The reason behind the performance improvement may 

be linked with the fuzzy clustering in the input-output space. Obviously, the growth of 

clustering centers (or prototypes) means that more structured or relevant information is 

captured by FCM clustering. It will provide more effective assistance for the ensuing 

construction of fuzzy rules and fuzzy sets, which is very important for modeling 

multivariate time series. 

3. Increasing the number of hidden or unknown states might produce a limited 

improvement of the prediction in some cases. This is because there are too many 

potential solutions that it is difficult for PSO to obtain the global optimal solution with 

the relatively low computation cost. 

4. The experimental results also indicated that the proposed model showed more 

performance improvement on some datasets while in others it seems to have relatively 

limited improvement. In practice, little real-world multivariate time series can meet the 

assumptions (mentioned in Section 3) of HMM. The weakness of HMM limits the 

predictive ability of the proposed model. 

To sum up, the above findings suggest that the proposed HMM based fuzzy model is 

much more promising and effective alternative than the fuzzy rule-based model. The 

performance improvement results in that the temporal changes are captured by HMM. 

We also demonstrate that the proposed approach works in practice by performing it on 

different real-world time series. 
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(c) (d) 

  

(e) (f) 
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(g) (h) 

  

 

(i) (j) 

  

(k) (l) 
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(m) (n) 

  

(o) (p) 

Figure 6.8 Experimental results (RMSE improvement) of real-world time series (a) 

training set (b) testing set. 

Table 6-2 The improvement (best) of RMSE from training sets and testing sets 

Datasets Training set (%) Testing set (%) 

Precipitation of Fisher River near 

Dallas 

41.3069 31.0057 

Rainfall in Melbourne, Australia 153.5939 131.6728 

PM 2.5 7.1465 10.8829 

Istanbul Stock Exchange 9.7674 3.9625 

S&P 500 33.0264 5.2978 

US Dollar Exchange Rate 36.5345 32.2558 

Temperature change of Oldman 33.4962 39.3174 
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River near Brocket 

Precipitation change of Saugeen 

River near Port Elgin 

5.6700 7.5545 

 

 

(a) 

 

(b) 

Figure 6.9 Improvement of prediction performance of real-world data sets: (a) training set; 

(b) testing set (maximum, average and minimum values marked by star, triangle and 

circle). 

 

6.4 Summary 

In this study, we have introduced the HMM-based fuzzy model that models the 

multivariate time series with the aid of fuzzy rules and HMM for prediction. Fuzzy 

C-means algorithm, which reveals the available structure in the input-output space, is used 

to construct the fuzzy rules. A set of fuzzy rules describes the correlation between the input 

and output time series. The temporal dependency of time points is captured with the use of 
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HMM. Afterwards, parametric learning of the HMM is realized through PSO algorithm. 

Several experiments involving synthetic and real-world multivariate time series are 

completed to demonstrate that the proposed model outperforms the fuzzy rule-based model. 

We also have noticed that the limitation results in the assumptions of HMM. As a future 

work, high order HMM or other techniques which can model the temporal characteristics 

might be worth investigating. 
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Chapter 7  

Conclusions and Future Studies 

This dissertation is concerned with three core time series mining tasks, which are time 

series anomaly detection, approximation/representation, and modeling respectively. We 

construct and investigate the performance of the proposed models by using a series of 

synthetic and publicly available multivariate time series. Overall, the approaches 

introduced in this thesis exhibit some impressive highlights. 

7.1 Major conclusions 

Time series anomaly detection 

Compared with the traditional FCM, the augmented FCM can reveal the available 

data structure more efficiently for the subsequent anomaly detection because of the 

different impact of each variable in evaluating the similarity between multivariate time 

series. The proposed detector with the augmented FCM can offer more accurate detection 

results. 

The proposed cluster-centric time series anomaly detection frameworks are able to 

detect the anomalies caused by relations between time series in multivariate time series. 

The reason is that all univariate subsequences of multivariate subsequence are considered 

at the same time to determine an anomaly score of this multivariate subsequence.  

As for the proposed HMM-based anomaly detectors with different transformation 

methods, the accuracy improvement of FCM, Sugeno fuzzy integral, Choquet fuzzy 

integral based detectors vis-a-vis the generic PCA-based detector is quite apparent 

(around 7-9 % improvement). This is related to the fact that more useful information is 

contained in the transformation to an observed sequence.   

Additionally, experimental results suggest that the fuzzification coefficient and the 

number of clusters (or observed states) are also associated with the performance of these 

detectors. Specifically, the increase in the number of clusters will affect the performance 

of the detector significantly. The fuzzification coefficient exhibits some impact on the 

performance of the detector. 

Time series approximation/representation 



93 

 

The time series approximation methods can represent the original time series in lower 

dimensional space, remove noise, speedup of classification process and capture its 

essential characteristic to improve classification performance; however, they also may 

eliminate some discriminative information that is essential for classification and 

reconstruction purposes. In spite of the diversity of the existing methods used in time 

series representation and classification, it is quite uncommon to encounter studies that 

report on the relationships between the classification error and the representation 

properties (e.g., reconstruction quality) of different time series representations. We have 

demonstrated experimentally that the classification error will be smaller than that of 

original time series when taking suitable approximation methods and parameters setting. 

The approximation methods can eliminate some useless information (e.g. noise) of time 

series to archive better classification results. In some sense, it can illustrate why the 

classification error goes down and then up with the increase of the number of coefficients. 

The reconstruction error will decrease towards zero with increasing the number of 

coefficients in a number of cases. As for FCM based approximation method, the 

fuzzification coefficient exhibits a significant impact on the performance of classification 

and reconstruction. 

Time series modeling 

Compared with the fuzzy model without the aid of HMM, the HMM-based fuzzy 

model can produce better prediction results producing lower values of the corresponding 

criterion (RMSE), which results in that HMM can model the temporal changes of 

multivariate time series. The growth of clustering centers (or prototypes) means that more 

structured or relevant information is captured by FCM clustering. It will provide more 

effective assistance for the ensuing construction of fuzzy rules and fuzzy sets, which is 

very important for modeling multivariate time series. The proposed HMM based fuzzy 

model is much more promising and effective alternative than the fuzzy rule-based model. 

Increasing the number of fuzzy rules will achieve more accurate prediction with 

lower RMSE value in most cases. The reason behind the performance improvement may 

be linked with the fuzzy clustering in the input-output space. Obviously, the growth of 

clustering centers (or prototypes) means that more structured or relevant information is 

captured by FCM clustering. It will provide more effective assistance for the ensuing 
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construction of fuzzy rules and fuzzy sets, which is very important for modeling 

multivariate time series. 

7.2 Future Studies 

The proposed frameworks and techniques could be developed for the future extension 

as follows: 

Time series anomaly detection 

Although the proposed cluster-centric time series anomaly detection frameworks show 

good performance, it comes with some limitations. One of them is an intensive computing 

overhead resulting from the fact that the Euclidean distance function calls for a substantial 

level of computing. Considering the computing overhead associated with the analysis of 

different combinations of the entries of λ, one may consider a simplified version of the 

method with some predetermined values of the entries of the vector of these parameters. 

The other alternative is to try more up to date objective optimization techniques to obtain 

the different weight of each component in multivariate time series.  

As for the HMM detectors, intensive computing, especially in case of fuzzy integral 

based detectors, is also a significant limitation. To overcome this problem, a certain 

alternative would be to engage experts in specifying some initial values of degrees of 

importance. Additionally, in this study, the proposed approach has only concentrated on 

amplitude anomalies in multivariate time series. Therefore, detecting other types of 

anomalies (e.g., shape anomalies) for larger datasets is a useful further direction. Another 

pursuit worth investigating is to quantify information loss when transforming from 

multivariate time series to univariate time series. A criterion or index which is used to 

measure the information loss is expected. 

Time series approximation/representation 

The classifier being used in the study is a generic 1-NN classifier and its consideration 

here was intentional to avoid possible bias associated with more advanced classification 

schemes. Some future enhancements of 1-NN classifier worth studying could be to involve 

applying different similarity measure such as dynamic warping time distance. Additionally, 

one of the primary objectives of the approximation methods is to eliminate some useless 

information (e.g. noise) of time series and retain the useful information for subsequent 
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classifiers. Motivated by this, it would be an interest is to further identify useful 

information of time series by investigating their shape and aptitude.   

Time series modeling 

The experimental results indicated that the proposed model showed more performance 

improvement on some datasets while in others it seems to have relatively limited 

improvement. In practice, little real-world multivariate time series can meet the 

assumptions (mentioned in Section 6) of HMM. The weakness of HMM limits the 

predictive ability of the proposed model. High order HMM or other techniques (e.g. 

Conditional random field) which can also model the temporal characteristics might be 

worth investigating.  
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