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Abstract:Massive amounts of data generated in large-scale grids poses a formidable challenge for real-time monitoring of

power systems. Dynamic state estimation which is a prerequisite for normal operation of power systems involves the

time-constrained solution of a large set of equations which requires significant computational resources. In this study,

an efficient and accurate relaxation-based parallel processing technique is proposed in the presence of phasor

measurement units. A combination of different types of parallelism is used on both single and multiple graphic

processing units to accelerate large-scale joint dynamic state estimation simulation. The estimation results for both

generator and network states verify that proper massive-thread parallel programming makes the entire implementation

scalable and efficient with high accuracy.

1 Introduction

Dynamic state estimation (DSE) [1] which is paramount for secure
monitoring and control of a power system to ensure its stability
and reliability, possesses the ability to predict the system states in
advance and within a short time interval. By modelling the time
varying nature of the system to provide a full dynamic view of its
behaviour, DSE alleviates losses under drastic changes during load
fluctuations or network switching. Continued growth in demand
followed by system development and complex interconnections
within the new smart grid paradigm has led to significant operational
and control problems. These problems necessitate the need for major
changes in computational resources for real-time action by system
operators in energy control centres which are hard to achieve using
traditional measurements provided by supervisory control and data
acquisition system (SCADA) [2]. Advancements in high-performance
computing (HPC) [3] such as graphic processing unit (GPU)
technology along with the increasing deployment of high-speed
time-synchronised phasor measurement units (PMUs) [4] in wide
areas provide the opportunity for real-time monitoring of the dynamic
states, e.g., generator rotor angles and generator speed, in addition to
the static network states of voltage magnitudes and phase angles.

Conventional methods to improve the cycle time for state
estimation include the following main strategies:

† Complexity reduction to alleviate the computational burden using
reduced order model, lower dimensional measurement data or partial
update of the Jacobian matrix [5–7].
† Hierarchical two-level state estimation which decomposes the
whole system into several independent subsystems wherein each
subsystem uses its own measurement set to estimate the states
locally and then sends the estimated states to a centralised
coordinator [8–10].
† Distributed state estimation where each subsystem can run its
local state estimation and exchange data between the substations
without the central coordinator [11–14].
† Parallel state estimation utilises distributed computation on
multiple computational servers by decomposing the problem into
several subproblems running the estimation process simultaneously
in all the subsystems [15, 16].

Most of the approaches dealing with DSE try to improve the
computational performance of the steady-state estimation process

[17–20] which only provides a series of snapshots of system
conditions, where the dynamic transition between the snapshots is
overlooked. However, few researchers focused on the dynamic
parameters of the synchronous generator, which plays a vital role
in a power system [21–24].

Although the above approaches tried to improve the process of
state estimation, they all have their own drawbacks. Performance
degradation may occur in complexity reduction approaches due to
the constraints of the number of measurements or due to
neglecting the model details. The main issue with hierarchical
methods is the communication overhead between subsystems and
the delay caused by coordination stage. In addition, in both
distributed and hierarchical methods the observability of the
subsystems is the underlying assumption which may not be
feasible in practice. Both distributed and parallel approaches
accelerate the computational process; however, they mostly
decompose the original system randomly neglecting the effect of
subsystems on each other which may result in inaccurate estimation.

Moreover, in almost all of the aforementioned work, DSE has
been performed for either a single machine or a small power
system. In large-scale power systems with detailed modelling of
grid components, a key issue in the design of dynamic state
estimator based on dynamic models is the requirement for
high-performance computation resources.

From computing source point-of-view supercomputers,
multiprocessor networks and various types of parallel processing
architectures such as multiple-instruction multiple-data,
single-instruction multiple-data (SIMD), and distributed memory,
have already been employed for power system analysis [25, 26].
All of these approaches accelerate the simulation process to some
extent; however, they are limited by some important factors such
as cost, system size, programmability, and communication issues.

The objective of this paper is to explore DSE using extended
Kalman filter (EKF) in large-scale power systems utilising detailed
synchronous generator modelling which complicates the estimation
problem resulting in a high computational burden. Recently, GPUs
have tremendously accelerated many HPC applications as well as
power system transient stability, electromagnetic transients, and
power flow analysis [27–30]. This paper proposes a heterogeneous
parallel multi-GPU and multi-core CPU implementation of
large-scale DSE based on an accurate and robust relaxation method
to estimate both generator (dynamic) and network (static) states of
the power system. Coarse-grained parallelism using relaxation
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method along with its implementation on a multi-GPU computational
server where each of the individual GPUs has a fine-grained parallel
architecture enables significant acceleration of the DSE process.
Relaxation method had been previously used in other area such as
simulation of very large-scale integration (VLSI) circuits [31], and
power system transient stability simulation [32].

The first nontrivial task in relaxation-based joint DSE (RJDSE) is
domain decomposition. There are two main approaches used for
system decomposition in DSE. Approaches which randomly or
geographically [11–13] partition the system are stymied by the
computational load-balancing problem and may result in
inaccuracy due to neglecting the effect of subsystems. Other
methods which rely on the graph theory are highly complex for
implementation on large-scale systems [33, 34]. In this work,
based on the slow coherency method the original system is
decomposed into subsystems in which tightly coupled variables
are grouped together, along with equal distribution of computation
load on multiple GPUs guaranteed by relaxation method. Also,
bad data analysis can be run locally in parallel with the state
estimation.

Since traditional measurement sets using SCADA cannot provide
adequate data to capture the dynamic nature of the power systems,
PMUs with higher refresh rate than SCADA are used in this
paper. Considering rapid deployment of PMUs in power systems,
it is expected that the entire network will be fully observable only
using PMUs in the near future. Through careful PMU placement
[35–37], it is possible to make the whole network observable
using minimum number of PMUs to obtain a redundant enough
measurement set. To reduce data transfer and for practicability
optimal placement of PMUs is considered which also improves the
security of the system.

In summary, the main contributions of the proposed approach are
as follows:

† Parallel multi-GPU implementation of joint generator and
network DSE.
† Application of relaxation method which distributes equal
workload among all the processors and eliminates the need for all
subsystem to be observable.
† Domain decomposition based on coherency method which
reduces the effect of non-overlapping decomposition on the
accuracy.
† Eliminating central coordinator which reduces the communication
time between the subsystems.
† Distributed localised bad data analysis in parallel with state
estimation.

The organisation of this paper is as follows. Section 2 provides
formulation and state estimation model used in this work. Section
3 explains the proposed RJDSE method. The simulation results are
provided in Section 4 followed by conclusion in Section 5.

2 Formulation and state-space model

Joint dynamic and static state estimation for a multi-machine power
system can be mathematically described as follows

f (ẋ, x, t, u) = 0, xg(t0) = xg0
g(x, t, u) = 0,

h(x, Z, 1) = 0, xn(t0) = xn0

⎧

⎨

⎩

(1)

where x is the vector of state variable including xg, the dynamic state
of generator and, xn, the static state of the network. x0 is the initial
values of state variables. f(.) describe the non-linear dynamic
behaviour of the generators, g(.) model the output function, and h
(.) is the non-linear function of network measurement. u and Z
represent the output vector and network measurements vector,
respectively. t represents the simulation time. For a system with m
generators and n buses, there are 9 ×m + 2n elements in vector x:

9 states per generator, and n voltage magnitudes, n phase angles.
Bold notation refers to vectors and matrices.

The detailed ninth-order state-space model of a single generator
including automatic voltage regulator (AVR) and power system
stabiliser (PSS) used in this work which includes two windings on
the d-axis (one excitation field and one damper) and two damper
windings on the q-axis can be written as follows [38]

ẋg1(t) = vR · xg2(t),

ẋg2(t) =
1

2S
[Te(t)+ Tm − D · xg2(t)],

ẋg3(t) = vR · [efd(t)− Rfd · Ifd(t)],

ẋg4(t) = −vR · R1d · I1d(t),

ẋg5(t) = −vR · R1q · I1q(t),

ẋg6(t) = −vR · R2q · I2q(t),

ẋg7(t) =
1

TR
[vt − xg7(t)],

ẋg8(t) =
1

T2
T1Kstab · ẋg2 − xg8 + 1−

T1
TW

( )

a

[ ]

,

ẋg9(t) =
1

TA
[b− xg9].

(2)

Tm and Te represent the mechanical input torque and the electrical
output torque, respectively. efd and Ifd are field voltage and
current. I1d, I1q, and I2q describe d- and q-axis currents. For the
whole system, according to the aforementioned formulations the
9 ×m vector of state variables xg of the synchronous generator is
given as

ẋg = [d, Dv, cfd , c1d , c1q, c2q, v1, v2, v3]
T, (3)

where δ and Δω represent vectors of rotor speed and angle,
respectively. cfd, c1d, c1q, c2q represent vectors of rotor flux
linkages and v1, v2, v3 are vectors of exciter voltages; vt represents
the vector of terminal voltage which can be calculated as the
network state. For a system with m generators, all of aforementioned
vectors are m × 1. Fig. 1 shows AC5A type excitation system [39].

The output electrical torque Te of the machine can be written as

Te = [L′′ad − L′′aq]IdIq −
cfd

Lfd
+

cd1

Ld1

[ ]

L′′adIq +
cq1

Lq1
+

cq2

Lq2

[ ]

L′′aqId .

(4)

where ωR, S, D, Rfd, R1d, R1q, R2q, Lfd, Ld1, Lq1, Lq2, L
′′
ad , L

′′
aq, TR, Tw,

T1, T2, and Kstab are constant system parameters whose definition can
be found in [38].

The continuous-time differential equations were discretised using
the Trapezoidal integration method and then linearised resulting in

x
t+t
g − x

t
g =

t

2
[f (xg, t + t, u)+ f (xg, t, u)], (5)

x
t+t
g = Fxtg

xtg + ht , ht ≏ N (0, Qt), (6)

where Fxtg
= ∂f /∂x

t
g|xtg represents the 9 × 9 state transition between

two time steps. t is the integration time-step. η and Q are 9 × 1
linearisation error and 9 × 9 error covariance matrix, respectively.
The resulting linear algebraic equations are solved to obtain the
generator states.

The non-linear measurement function g(.) can be written as

Z = g(xn)+ 1, 1 ≏ N (0, R), (7)

where g(.) and ɛ, are the nonlinear network measurement functions,
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and uncorrelated Gaussian network measurement errors,
respectively. xn represents the vector of network state including
voltage magnitude (v) and phase angle (f). To minimise the
weighted least-squares error of network state estimation the
following objective function should be minimised [40]

J (xn) = [Z − g(xn)]
T
R
−1[Z − g(xn)]. (8)

In a system with n buses and l branch, R is the error covariance
matrix of network measurement with the maximum size of (2n +
2l + 1) × (2n + 2l + 1). Also, Z, g(.), and ɛ have the maximum size
of (2n + 2l + 1) × 1. Satisfying first order optimality condition and
substituting the first-order Taylor’s expansion of g(.) around xn0 in
(8), the following equation can be solved iteratively to find the
static state of the system.

GT(xn)R
−1G(xn)D(xn) = GT(xn)R

−1[Z − g(xn)], (9)

D(xn) = l(xn, 1), (10)

where Γ = ∂g/∂xn is the Jacobian matrix with the maximum size of
(2n + 2l + 1) × 2n and Δ(x) = xn− xn0 is the 2n × 1 static state
mismatch vector.

For a single generator, using the measurement and estimated states
at the time instant t, the predicted value x̃t+t

g can be formulated as

x̃
t+t
g = Ftx̂

t
g, (xtg − x̂

t
g) ≏ N (0, rt),

r̃(t+t) = FtrtF
T
t + LtQtL

T
t , (xtg − x̃

t
g) ≏ N (0, r̃t),

(11)

where Lt = ∂f /∂h|xtg , ρ and r̃ are 9 × 9 error covariance matrices
for estimated and predicted values, respectively. x̃g represent the
predicted state and x̂g is the estimated state.

The updated state through EKF can be written as

x̂
t+t
g = x̃

t+t
g + K

a
(t+t)e(t+t) (12)

where Ka and e are 9 × 9 Kalman gain vector and 9 × 1 estimation
error vector, respectively. The same formulation will stand for
network state estimation as well.

3 Relaxation-based joint dynamic state
estimation

3.1 Optimal PMU placement

Proper measurement set is an important factor, which affects both
accuracy and speed of any estimation method. For higher accuracy
and sample rates, PMUs are selected for this work. PMU measures
voltage phasor of the bus and currents of all branches connected to
it. It is not necessary to install PMU in all of the buses for full
observability. Optimal PMU placement for full observability of the
system can be written as a linear programming problem to
minimise following objective function in a system with n buses:

J (x) =
∑

n

i=1

I i × pi,

subject to:
∑

n

j=1

ci,j × pi ≥ 1 at bus i

(13)

where ci,j is the element of connectivity matrix which is 1 if bus i
and bus j are connected, and 0 otherwise. Ii is the cost of PMU
installation at bus i and pi is the binary variable equal to 1 or 0
depending on whether PMU is installed on bust i or not. In order
to handle multiple contingency and to increase the reliability of
the system in presence of bad data, backup conventional data are
considered in proper location along with critical measurements
identification [41, 42].

3.2 Domain decomposition

Domain decomposition refers to any technique that divides a system
of equations into several subsets that can be solved individually
using conventional numerical methods. The preliminary step for
applying RJDSE on GPU is to partition the system into
interdependent subsystems while making the dependency between
any two subsystems weak enough to ignore their interconnection.
It is already shown that the rate of convergence in relaxation
method is highly dependent on the method of partitioning [43]. In
power system analysis after a large disturbance in the system some
generators lose their synchronism with the network. Considering
the coherency characteristic which reflects the level of dependency

Fig. 1 Synchronous generator excitation system with AVR and PSS
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between generators, the proposed method partitions the system into
several areas in which generators are in step together or coherent.
This type of decomposition is independent of size of the system,
disturbance, level of complexity and location of disturbance [44].
For efficient parallelisation, load balancing is also considered in
domain decomposition. Fig. 2 shows a power system decomposed
into J subsystems. Decomposition based on the coherency
approach and equal load work criteria, divides the full set of
equation into several independent function running in separate
GPUs (functional parallelism).

3.3 Relaxation

Relaxation facilitates the parallel solution of the small subsystems,
and the exchange of computational data between them. Each
subsystem is solved for its local variables, while other subsystems
are considered constant or relaxed during the time-step. At the end
of each time-step the global variables of all subsystems are
exchanged for the next time-step. Using parallelism inherent in the
relaxation method, the proposed RJDSE offers a coarse grained
parallelisation as a top level algorithm which should be
implemented before using a numerical method for solving the
system of equations. Utilising equal load distribution among
subsystems RJDSE reduces the complexity resulting in faster
computations which also makes it efficient for implementation in a
multi-GPU architecture.

3.4 Hierarchy of parallelism for RJDSE

At the data-parallel level equations are expressed based on the
unique SIMD-based architecture of GPU (fine-grained
parallelism). Instead of using single element values vectors or
matrices of them are used. In addition, all matrix–matrix and
matrix–vector which include many independent for loops are
implemented in a fully parallel manner. CUDA which is the
general-purpose programming model for the GPU hardware was
used in this work. The entire simulation code was written in C++
integrated with CUDA using CUBLAS and CUSPARSE libraries
[45, 46] using double precision floating point.

After partitioning the system, the following set of equations can
describe the dynamics of each subsystem

f (xt1, . . . , x
t+t
i , . . . , xtJ , ẋ

t
1, . . . , ẋ

t+t
i , . . . , ẋtJ , t,

u
t
1, . . . , u

t+t
i , . . . , utJ ) = 0

g(xt1, . . . , x
t+t
i , . . . , xtJ , t, u

t
1, . . . , u

t+t
i , . . . , utJ ) = 0

h(xt1, . . . , x
t+t
i , . . . , xtJ , Z

t
1, . . . , Z

t+t
i , . . . , Z t

J , 1) = 0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(14)

where indices L and G stand for local and global variables,
respectively. Equation (14) is solved in parallel and iteratively for
all subsystems. After each iteration, the global state variables are
exchanged and updated between all interconnected subsystems. To
calibrate the results, an overall loop based on the Gauss–Jacobi
algorithm is applied outside the solutions of subsystems. Since the
Gauss–Jacobi algorithm only uses the previously computed values
for the solution of each subsystem, all computations of subsystems
can be processed in parallel.

In summary, fine-grained parallelism is performed inside the
functional parallelism, and functional parallelism is a subset of
coarse-grained parallelism (Fig. 3). In the best-case scenario,
coarse-grained parallelism by dividing the system into J
subsystems reduce the execution time to t/J; using functional
parallelism and J1 independent tasks results in execution time of
t/J.J1; and finally utilising J0 independent matrix–matrix, matrix–
vector, and other type of fine-grained parallelism execution time
can be further reduced to t/J.J1.J0. However, in reality the
speedup is less than this considering the different costs of
parallelisation and data transfer to GPU. The algorithm starts at the
top level with Gauss–Jacobi iteration. By functional parallelism,
almost equal tasks are assigned to each GPU. The iteration starts
at the same time and in parallel inside all GPUs. Inside each

iteration, fine-grained parallelism is used to accelerate the process.
After each iteration, only estimated states of boundary buses are
exchanged. If the Gauss–Jacobi algorithm convergence is not
satisfied, then new iterations will be performed. Since the
subsystems are fully independent of each other, after each
time-step the results of network estimation will be transferred to
the generator state estimation model. The same procedure is
performed for generator dynamic state estimation. While network
estimation is working on estimation for the time-step t + t,
generator state estimation is working for the time-step t,
simultaneously. Thus, the network estimation is always one step
ahead of the generator estimation. The results will be checked for
bad data identification (BDI) after each time-step of network
estimation. In case of bad data, only the subsystem affected by bad
data will repeat state estimation instead of the whole system.
Fig. 4 shows the complete flowchart of the RJDSE algorithm
implementation on a multi-GPU architecture controlled by η CPU
threads.

Fig. 3 Hierarchy of parallelism in RJDSE, t: integration time-step, t:

simulation time

Fig. 2 Original power system decomposed into J subsystems for RJDSE

implementation
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Fig. 4 Flowchart of RJDSE implementation on multi-GPU architecture with η CPU threads

IET Gener. Transm. Distrib., 2016, Vol. 10, Iss. 2, pp. 452–459

456 This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

READ O
NLY



4 Large-scale DSE case study

The results of relaxation-based joint state estimation implementation
on multiple GPUs are demonstrated in this section. The accuracy of
the simulation has been verified using the PSS/E® software.

4.1 Test system preparation

Several case studies were built and modelled on PSS/E® using the
IEEE 39 bus benchmark system. Larger test systems were
constructed by duplicating the 39-bus system and adding
interconnections to explore the efficiency of the proposed method.
The initial condition for generator states was chosen based on the
steady-state conditions.

To generate PMU data, the rectangular components of voltages
and currents were obtained by sampling at regular time intervals,
and then a Gaussian noise was added to each component. It is
assumed that the PMU refresh rate is 30/s. Since the total vector
error of PMU measurements should be less than 1% under
steady-state conditions [47], both amplitude and phase angles are
randomly distorted and the error of resultant vector is checked
with the threshold of 1% until satisfied.

Given a PMU at a bus, it is assumed that the bus voltage phasor
and all current phasors along lines connected to that bus will be
available. For all case studies, PMUs are located with the
considerations given Section 3.1. For example, for Case 1 test
system PMUs are located at buses {2, 6, 9, 10, 13, 14, 17, 19, 22,
23, 25, 29, 34}. The error covariance matrices considered for the
simulations are R = (0.1)2* I(n*n) and Q = (0.05)2* I(n*n), where
I represents the identity matrix, and n is the number of states. The
convergence threshold is considered 1 × 10−4 for all of the states.
Fig. 5a shows the overall block diagram of the proposed method.

4.2 Implementation of RJDSE on multiple GPUs

Case 1 which is the IEEE 39-bus system has been partitioned into
four subdomains satisfying both computational load balancing and
coherency characteristic of the generators. Similarly, all the large
test cases are partitioned. The simulation starts by initialisation on
the CPU. After that, the measurement set corresponding to each
subsystem was transferred to GPU assigned for that specific
subsystem. All the subsystems start the simulation at the same
time. After each iteration, boundary data was exchanged among
subsystems. Once network state was converged, the results were
used for generator state estimation. Network and generator state
estimation was running simultaneously (Fig. 5b).

4.3 Accuracy analysis and BDI

Accuracy of the proposed method was evaluated under both normal
and emergency conditions. A temporary three-phase fault is
considered at t = 3 s which is cleared after 100 ms. The normalised
Euclidian norm (NEN) of the state estimation is defined as a factor
to evaluate the accuracy using:

xNEN =
‖x− x̂‖










dim(x)
√ , (15)

where xNEN is the normalised Euclidian norm of the estimation error,
and dim(x) is the dimension of vector x. x and x̂ are vector of true
states and estimated states, respectively. Results of simulation on
all case studies are shown in Fig. 6. Also, the estimated states for
Case 1 are shown in Fig. 7. As shown the maximum of the
average errors for all case studies are less than 0.001 p.u. In
summary, all the simulation results proves that proposed method is
able to accurately capture the dynamic behaviour of the system.
There are small differences compared to PSS/E (actual) results
which are due to the fact that the order of block execution in each
GPU grid is undefined in the kernel definition. Therefore, it leads
to slightly different results if different CUDA blocks perform
calculations on overlapping portions of data.

Fig. 5 Schemes represent

a Overall block diagram of the proposed RJDSE method

b Time progression of RJDSE on GPU

Fig. 6 Normalised Euclidian norm of the estimation error using RJDSE
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The simulation results were followed by BDI process employing
normalised residuals test as follows [48]

rNi =
ri
∣

∣

∣

∣

sii
≤ k, (16)

where rNi is the largest normalised residual and σii is the standard
deviation of the ith component of the residual vector. The largest
normalised residuals with threshold of k = 3 were considered as
bad data. Here the bad data refers to measurements with gross
errors. Once bad data is identified corresponding measurement was
updated by deducting gross error (Rii/σiiri) from bad data. Using
the updated measurements state estimation was repeated only for
the subsystems which were affected by bad data. For large-scale
systems, this localisation of bad data can save lots of time which
can in turn accelerate the state estimation process.

4.4 Complexity analysis and speedup

To demonstrate the performance of the proposed RJDSE in terms of
speed-up, the test systems described in Table 1 were used to perform
simulation on Tesla™S2050 server from NVIDIA® with 4 GPUs,
and 448 cores in each unit of GPU. This device contains 14

streaming multiprocessors, each with 32 streaming processors, an
instruction unit, and on-chip memory [33]. CUDA version 5.0
with compute capability 2.0 is used for programming. The CPU is
the quad-core Intel® Xeon™ E5-2620 with 2.0 GHz core clock
and 32 GB memory, running 64-bit Windows 7® operating system.

Generally, when a system with N buses is partitioned into M
subsystems, each subdomain has approximately N/M buses.
Assume that solving a linear system with iterative method has
complexity of O(Nα) where α≥ 1. Using the domain
decomposition technique, the complexity of solving each
subsystem is O((N/M )α) which results in the complexity of O
((N )α/(M )α−1) for the entire system. It may not be realistic to
expect the same speedup in practice; however, the results clearly
indicate the advantages of domain decomposition in accelerating
DSE. As can be seen from Table 1 and Fig. 8 the percentage
of required execution times increases faster in single-GPU (TEx.

S.GPU)
simulation compared with multi-GPU (TEx.

M.GPU) implementation

Fig. 7 Generator state estimation and error of estimation in RJDSE

Table 1 Execution time in CPU-only, single-GPU, and multi-GPU
implementation

Case No. of buses No. of gen. T
Ex.
CPU, s T

Ex.
S.GPU, s T

Ex.
M.GPU, s

1 39 10 0.6 0.4 0.4
2 78 20 1.9 1.1 0.9
3 156 40 4.8 2.16 1.45
4 312 80 21.1 6.9 4.3
5 624 160 45.2 12.6 7.3
6 1248 320 95.3 28.9 15.3
7 2496 640 290 43.1 22.2
8 4992 1280 475 62.8 30.6

Fig. 8 Percentage of execution time for varying test cases on single- and

multi-GPU simulators
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which shows the higher complexity of this method. The comparison
between CPU-only execution time (TEx.

CPU) and GPU execution time
also verify that exploiting parallelism using GPUs can results in
significant acceleration in the DSE process. It should also be noted
that a better PMU placement by reducing the size of the problem
and data transfer may also result in faster state estimation.

5 Conclusions

This paper presented a parallel relaxation-based joint state estimation
approach for DSE of power systems. Using the traditional SE
method, the size and computational cost of the simulator is usually
prohibitive, especially for simulating large-scale systems. As the
size of the system increases the amount of data collected in the
network grows exponentially which leads to a slow and
computationally expensive state estimation process. The
motivation behind this work is to test the feasibility of a fully
parallel method that could alleviate these limitations.

The proposed methodology: (i) uses only local measurements for
DSE in each subsystem which reduce the size of the problem and
leads to major reduction in data communication; (ii) takes
advantage of massive multi-GPU parallelisation which reduces the
execution time significantly; (iii) can be applied to any dynamic
system regardless of complication and the type of states or
parameters that are needed to be estimated; (iv) localises the
effects of bad data to subsystems; (v) does not require either local
observability or a central coordinator.

Result comparisons verified the accuracy and efficiency of the
proposed method. In addition, the performance of the slow
coherency method as the partitioning tool was analysed, and it was
concluded that for different fault locations in the system, results
derived from this method had lower amounts of error.

The proposed method is general and extensible to any number of
GPUs connected in a cluster. Results show that more GPUs can
reduce expected computation time.
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