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Abstract

Large and accurate Knowledge Graphs (KGs) are often used as a source of

structured knowledge in many natural language processing (NLP) tasks, in-

cluding question-answering systems, conversational agents, information inte-

gration, named entity recognition, document ranking, among others.

Various approaches for creating and updating KGs exist, each with its own

advantages and disadvantages. Manually curated KGs can be very accurate,

but require too much effort and tend to be small and domain-specific. Larger

cross-domain KGs can be created automatically from unstructured or semi-

structured data, but even the best methods today are error-prone. Given

this trade-off between completeness and correctness, researchers have been

attempting to refine KGs after they have been constructed, by adding missing

knowledge or finding and correcting erroneous information.

This thesis proposes a fully automatic method for detecting and correcting

type assignments in an open-domain KG, provided that the entities in the KG

are mentioned in a text corpus. Our approach consists of creating semantic

representations (embeddings) of the entities in the KG that take into account

how they are mentioned in the corpus and their properties in the KG itself,

and using these embeddings as features for machine learning classifiers which

are trained to distinguish entities of each type.

To test our solution, we use DBpedia as the KG and Wikipedia as the

text corpus, and we perform an extensive retrospective evaluation in which

almost 15,000 entity-type pairs were verified by humans. Our results reveal
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several problems in the DBpedia ontology and led us to the conclusion that our

method significantly outperforms alternative solutions for finding erroneous

type assignment in knowledge graphs.
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Chapter 1

Introduction

1.1 Knowledge graphs in the semantic web

The semantic web promotes publishing and querying knowledge on the Web in

a semantically structured way. The idea is that the traditional Web, which is

made of human-readable of documents, should be extended to a Web of data

where not only documents and links between documents, but also entities (e.g.,

persons or organizations) and relations between entities can be represented in a

machine readable format [8]. With the advent of Linked Data, it was proposed

to interlink different datasets in the Semantic Web so that the collection of

datasets could be viewed as a single large dataset.

In the backbone of the Linked Open Data (LOD) are the Knowledge Graphs

(KGs). A KG is a graph database used to store knowledge in a machine-

readable format. It allows knowledge to be represented as a semantic network

in which entities are interconnected by relations. The entities are represented

as the nodes of the graph, while edges represent relations among entities (e.g.,

Ottawa is the capital of Canada). Entities can also have types (e.g., Canada

is a country, Ottawa is a city). The set of possible types and relations are

described in an ontology, which defines their interrelations and restrictions of

their usage [32]. The types are organized hierarchically in a taxonomy. Figure

1.1 shows a few types of an ontology organized into a taxonomy. Figure 1.2

shows an example of a few entities (also known as resources in the context of

KGs)1 and relations in a KG (DBpedia).

1Throughout this document we use the terms entity(ies) and resource(s) interchangeably.
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Figure 1.1: Partial representation of the taxonomy of an open KG (DBpedia).

1.2 Motivation

Because KGs can be used to feed intelligent systems with structured knowl-

edge, they became essential for many natural language processing (NLP) appli-

cations, such as question-answering systems and conversational agents. More-

over, they have been used to support a wide range of NLP tasks, including

but not limited to data integration, named entity recognition, topic detection,

document ranking, and distant supervision [32] [19] [26].

Various approaches have been applied to the construction of KGs, which

can be manually curated, like Cyc2, edited collaboratively like Freebase [3] and

Wikidata [47], or built automatically, such as DBpedia [19] and YAGO [41].

Each approach has its own advantages and disadvantages. Manually curated

KGs tend to suffer from limited coverage since it is very difficult to manually

collect information about all entities of interest. Meanwhile, KGs constructed

2https://www.cyc.com/

2



Figure 1.2: Entities and relations from a open knowledge graph (DBpedia).
The green nodes represent types of the Ontology, while the blue ones are
entities of the knowledge graph. The arrows represent relations between pairs
of entities and between an entity and a type in the ontology.

automatically are more likely to contain errors, such as incorrect type informa-

tion, incorrect relations between entities, incorrect interlinks between different

KGs, or incorrect literal values, such as strings, numbers and dates. Thus, in

the construction of KGs, there is a trade-off between completeness and cor-

rectness [32]. Because of this, researchers have been attempting to refine KGs

after they have been constructed, by adding missing knowledge or finding and

correcting erroneous information.

In this work, we address the problem of finding and correcting erroneous

type assignment in a KG. Although erroneous relation assertions are more

frequent than incorrect type assertions, we choose to focus on detecting and

correcting typing errors. This is because the type of a resource contains impor-

tant semantic information which is essential for many NLP tasks and it is one

the atomic building blocks of KG [33]. For instance, knowing that Canada is

a Country may help a question answering system answer the question “which

3



PREFIX dbo: <http :// dbpedia.org/ontology/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT ?resource

WHERE {

?resource rdf:type dbo:Person .

?resource rdf:type dbo:Company

}

Figure 1.3: Disjointness axiom in SPARQL.

countries have English as an official language?”. Another motivation for our

work is that little research effort has been made to develop methods for find-

ing erroneous type assertions [32], therefore we have more to contribute to this

area.

As an example of the type of problem that we are trying to solve, at the time

of writing, DBpedia says that the entity dbr:Egypt3 is a dbo:MusicalArtist.

Similarly, dbr:United Nations and dbr:European Union are, among other

things, also classified as a dbo:Country, together with another 7,106 enti-

ties, which seems unreasonably high4, even accounting for entities that were

historically identified as such. Table 1.1 shows other examples of type inconsis-

tencies that can be identified using disjointness axioms. Disjointness axioms,

state which concepts are disjoint with other concepts (e.g., an entity cannot be

person and a company, but it can be a person and an artist) [22]. For example,

Figure 1.3 shows a SPARQL query that checks the disjointness between types

dbo:Person and dbo:Company.

Besides incorrect type assignments, DBpedia also suffers from the problem

of missing types for some entities. For example, 27% of the 30935 entities

classified as a dbo:University are not classified as an dbo:Organization.

To test our method we use DBpedia, a large-scale, multilingual, cross-

domain KG which is automatically built by extracting structured and semi-

structured data from Wikipedia. Because it is automatically constructed, qual-

3Throughout the document, we use the customary dbr:, dbo:, and dbp: prefixes to
indicate resources (which are entities), ontological predicates (e.g., types), and properties,
respectively.

4Wikipedia states that the United Nations have 193 members, while there are 8 other
entities that are not members but are recognized as countries by at least one UN member.
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Table 1.1: Number of inconsistencies in DBpedia identified using disjointness
axioms.

Disjointness Axiom Number of Entities
Person and Company 3892

Company and Record Label 3745
Person and Place 1761

Company and Work 1529
Person and University 1014
Company and Software 1004

Software and Television Show 908
Person and Book 625

Person and Software 601
Person and Aircraft 595
Animal and Plant 200

Person and Country 194
Software and Engine 147
Software and Place 136

Person and City 119
Software and Aircraft 112

ity issues are inherent in the KG. In fact, about 12% of its triples have some

type of problem, which may be due to problems with Wikipedia (e.g., incon-

sistent usage of infoboxes) or bugs and limitations on the DBpedia extraction

framework [55]. That does not mean that DBpedia is unsuitable for real-

world applications. In fact, it has become one of the major hubs of the LOD

ecosystem. For example, it is currently used to enrich web search with facts

or suggestion about common-sense information, such as entertainment topics.

However, its data quality is probably not enough for developing a medical ap-

plication [55]. Therefore, if we were able to refine DBpedia, we would expand

the range of possible application of the KG while improving the reliability of

existing systems that already use it. Although we test our solution in DBpe-

dia, it can also be used to improve arbitrary KGs, regardless of how they are

built.

Manually identifying and correcting errors in a large-scale KG is not feasible

and does not scale. It has been estimated that more than 3,000 years would be

necessary to validate entities in DBpedia with a crowdsourcing approach [34].

Because of that, we decided to develop a solution to automatically refine DB-
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pedia. In contrast to KG construction approaches, which aim to build the

graph from scratch, refinement solutions are post-processing operations which

assume that a KG has already been built, but it could be improved by adding

missing knowledge or identifying and removing errors [32].

Another possible approach for solving this problem would be exploiting

other KG interlinks, which is possible because DBpedia is connected with

other Linked Datasets by around 50 million RDF links5. For instance, we

could use Wikidata or the Google’s KG to verify the types of the entities

in DBpedia. Nevertheless, this approach has a few drawbacks. First of all,

the target KG can also be incorrect or incomplete, which is likely to happen

with any of the large scale KGs. For example, we found that generally only

high-level types are assigned to entities in the Google KG: for instance, most

entities of type dbo:Aircraft in DBpedia are labeled simply as Thing in the

Google KG (see Figure 1.4). Moreover, interlinks to other KGs may also be

wrong. In fact, it has been shown that about 50% of the interlinks connecting

resources in DBpedia to equivalent resources in other KGs are incorrect [10].

Thus, finding equivalent entities in different KGs is a challenging task itself.

Links between KGs at the schema level (i.e., links between ontologies) are

even more problematic. The heterogeneity of the ontologies represents an ob-

stacle for automatic tools to determine which types represent overlapping sets

of individuals that should be compared [28][8]. This is because concepts that

have a strong semantic similarity may not be equivalent [8]. For example, in

DBpedia dbo:Competition refers to contest. It is a subtype of dbo:event,

with properties such as dbp:numberOfPeopleAttending, dbp:startDate, and

dbp:followingEvent. In Wikidata, competition (Q476300) makes refer-

ence to the rivalry between organisms, animals, individuals, groups, etc.

We found that, out of the 685 types in DBpedia ontology, 311 are linked

to exactly one type in the Wikidata ontology (one-to-one). Three types in

DBpedia have more than one equivalent type in Wikidata (one-to-many), while

eight Wikidata types are linked to only 4 types in DBpedia (many-to-one). To

5See https://wiki.dbpedia.org/about.
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Figure 1.4: The types assigned in the Google’s KG are mostly correct but,
usually, more high-level types are assigned.

date, links between those two KGs do not exist for 363 types6.

Even when links exist, sometimes they are wrong or are not precise. For

example, the DBpedia type dbo:Hormone is linked to the type enzyme in Wiki-

data (Figure 1.5). dbo:Satellite is linked to a more specific type of satellite,

artificial satellite. Similarly, dbo:Producer is linked to a lower level

type, film producer. This means that if we try for example to verify the

DBpedia type for a music producer (correctly) labeled as dbo:Producer in

DBpedia, we will end up flagging the type assigned in DBpedia as incorrect.

Therefore, even when it is possible to find the equivalent resource for a en-

tity in a secondary KG, many times a simple comparison of their types is not

possible.

In face of these challenges, an alternative approach for KG refining is nec-

essary.

6Numbers obtained by querying DBpedia’s SPARQL endpoint.
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Figure 1.5: Example of incorrect mapping between DBpedia and Wikidata.

1.3 Problem definition

This work aims to address erroneous type assignments in KGs using the se-

mantic representations (embeddings) of resources. These embeddings are used

as a feature for a set of binary machine learning classifiers (one classifier for

each type in the ontology) which are trained to predict the type for the enti-

ties. More specifically, we are interested in answering the following research

question: Can semantic representations of entities be used to detect and correct

erroneous type assignment in knowledge graphs?

1.4 Outline

The remaining chapters of this document are organized as follows: Chapter 2

gives a brief overview of a few existing KGs and discuss related works on KG

refinement.

In Chapter 3, we describe how we created a semantic representation of the

DBpedia resources by deriving from the Wikipedia corpus word2vec-like em-

beddings and combining them with ontological properties of the entities using

PCA [44]. As we will show, this procedure allowed us to combine knowledge

from DBpedia and Wikipedia to create vectors that could be used as a fea-

ture for machine learning classifiers, which are trained to identify and correct

8



wrong type assignment, as well as assigning types to entities if this information

is missing.

In Chapter 4, we explain how the classifiers were trained and tested using a

manually curated partial gold standard with 3876 entities of 35 different types

of the DBpedia ontology. The performed experiments show that our approach

is able to automatically find errors and assign types for DBpedia entities with

over 97% accuracy. We also compare the performance of different machine

learning algorithms and present the results of a medium-scale evaluation of

our proposed approach involving over 350,000 entity-type pairs.

In Chapter 5 we propose an alternative approach for automatically collect-

ing training data for the binary classifiers and then extend our experiments

to encompass all types present in the KG. We demonstrate the applicability

of our fully automatic solution by automatically checking almost 3,000,000

entity-type pairs in DBpedia. Using a retrospective evaluation, we estimate

that the proposed approach is capable of correctly identifying the type for

more than 83% of the resources in the KG.

In Chapter 6, Error Analysis, we discuss the situations in which our pro-

posed solution did not perform well and exam the possible causes for the errors.

We argue that inconsistencies in the usage of the ontology of the KG creates

a challenging environment for automatic (and even manual) error detection.

Finally, the limitations of our method, conclusion, and future work are

presented in Chapter 7.
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Chapter 2

Related Work

As discussed in Chapter 1, Knowledge graphs (KGs) have become essential for

many Natural Language Processing (NLP) applications. However, construct-

ing KGs is a challenging task which involves a trade-off between correctness

and completeness [32]. One way to address these shortcomings would be trying

to increase the KG coverage or completeness after the construction of the KG,

by applying one or more refinement steps. Refinement techniques consider that

the KG has already been created and can be improved in a post-processing

stage by adding missing knowledge or identifying and removing the erroneous

information. Thus, the refinement approaches can be used to improve arbi-

trary KG, regardless of the technique used for building them. In this chapter,

we discussed some of the previous works in KG refining and the similarities

and difference between them and our proposed solution.

2.1 Knowledge graphs

In this section, we provide a brief overview of existing open and proprietary

KGs. We give special emphasis to DBpedia since it is the KG that we used

for testing our solution.

2.1.1 Open Knowledge Graphs

DBpedia

DBpedia [19] is the most popular and prominent KG in the Linked Open

Data (LOD) cloud. It contains over 4.5 million of entities, most of them (4.22

10



million) are assigned to at least one of the 685 types of the DBpedia ontology

and are described by 2,795 different properties. This comprises over 3 billion

pieces of information (RDF tuples), out of which 580 million were extracted

from the English edition of Wikipedia, and the remaining were extracted from

other language editions. Table 2.1 shows the number of instances for a few of

the types within the ontology1.

Table 2.1: Number of resources per type in DBpedia

Type Instances

Resource (overall) 4,233,000
Person 1,450,000
Place 735,000
Populated Places 478,000
Creative Work 411,000
Species 251,000
Organizations 241,000
Music Album 123,000
Films 87,000
Companies 58,000
Educational Institutions 49,000
Video Games 19,000
Diseases 6,000

Since it is an open KG (i.e., it is available for everyone on the Web),

DBpedia has been extensively used by the research community, and several

applications, algorithms, and tools have been built around it. It has also been

used in commercial settings. The BBC and the New York Times, for example,

have used DBpedia to organize their content [8].

DBpedia is created automatically using an extraction framework which

retrieves structured data from Wikipedia, such as the data contained in in-

foboxes2, categorization information, geo-coordinates, and links to external

web pages. Figure 2.1 shows an overview of the DBpedia extraction frame-

1Statistics retrieved from https://wiki.dbpedia.org/services-resources/ontology and
https://wiki.dbpedia.org/about on June 2019

2Semi-sctructured part of many Wikipedia articles that appears as a table on the side of
the page.
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work. Wikipedia pages are feed into the system and parsed by into an Abstract

Syntax Tree, which is forwarded to the extractors. In total, 24 extractors are

used for many different purposes, for instance, to extract label, abstracts, and

geographical coordinates. Each extractor consumes an Abstract Syntax Tree

and yields a set of RDF statements.

Despite its importance as a general purpose KG, as well as its crucial role

for the LOD movement, about 12% of the RDF tuples in DBpedia have some

quality issues [55]. There are many possible sources of errors in DBpedia. For

example: Infoboxes are the most valuable content for the DBpedia extrac-

tors. They are based on a template that specifies a list of attributes that can

form the infobox. A wide range of infobox templates are used in Wikipedia

(e.g., templates for people, organizations, automobiles, etc.). However, adher-

ence to templates and other editorial practices are hard to enforce, especially

over time since the templates themselves also have been changing. Conse-

quently, extracted resources may not be associated to a type in the ontology

and heuristics must be used to perform the assignment, making the process

non-deterministic.

To address this problem, with the DBpedia 3.2 release, a new infobox

extraction method was introduced. Hand-generated mappings from Wikipedia

infoboxes to the DBpedia ontology are now used. These mappings, which are

also maintained by the DBpedia user community, define fine-grained rules

on how to parse infoboxes. Although they addressed the problem of having

different infoboxes for the same type, the mappings themselves can also contain

errors, which is possibly the reason why erroneous type assignment still exists

in the KG.

Freebase

Freebase [3] is a large collaborative KG created by Metaweb Tecjnologies, Inc.

in 2007. It consists of data comprised mainly by its community members,

although it also contained data harvested from sources such as Wikipedia,

NNDB, Fashion Model Directory and MusicBrainz [8].
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Figure 2.1: Overview of DBpedia extraction framework. Reprinted from
Lehmann et al. (2012) [19]

In 2010 Freebase was acquired by Google and was frozen in 2016. Google’s

KG is partially powered by Freebase [37]. The last version of Freebase contains

about 50 million entities and 3 billion facts (RDF tuples). Its schema had

around 27,000 entity types and 38,000 kinds of relations among entities [32].

Despite no longer being updated, Freebase is still used for research purposes.

Wikidata

Wikidata [47] is a Wikimedia project launched in October 2012 which aims

at creating a collaboratively-edited KG. Its goal is to provide data which can

be used by any Wikimedia project, including Wikipedia. Like Wikipedia,

Wikidata allows users to extend and edit the data and its schema. One par-

ticular feature of Wikidata is that it not only store the facts but also their

corresponding source so that the validity of facts can be checked.

After Freebase was frozen its data was moved to Wikidata. As of July

2019, Wikidata contained 58 million of entities and over 732 million RDF

statements3.

3See https://tools.wmflabs.org/wikidata-todo/stats.php
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OpenCyc

The Cyc is one of the oldest KGs. The project started in 1984 at Micro-

electronics and Computer Technology Corporation. Since January 1995, it

has been under active development by the Cycorp company. Its goal is to

store common-sense rules about how the world works. It was largely created

by handwritten axioms and it is estimated that is has taken well over 1,000

person-years of effort to construct it. Although Cyc is a proprietary KG, a re-

duced and open source version is available as OpenCyc, which contains about

120,000 entities and 2.5 million facts. Its schema contains roughly 45,000 types

and 19,000 relations [32].

YAGO

YAGO (Yet Another Great Ontology) [41] is another open-source KG ex-

tracted from Wikipedia. As of July of 2019, YAGO had knowledge of more

than 10 million entities and contains more than 120 million facts about these

entities. Those entities are organized into an ontology containing 488,469 types

which are created by combining the taxonomy of WordNet with the Wikipedia

category system. The accuracy of YAGO has been manually evaluated for each

of its 77 relations, proving a confirmed accuracy of 95% [23]

YAGO also extracts and combines entities and facts from Wikipedia in

different languages. However, unlike DBpedia which creates different inter-

links KG for each language edition of Wikipedia, YAGO aims to build a single

coherent KG from various Wikipedia language editions, which includes a tax-

onomy [23].

2.1.2 Proprietary Knowledge Graphs

Google’s Knowledge Graph

The Google’s KG was introduced in 2012 as a way to enhance search results. It

helps understanding the user queries semantically and answering many of the

user information needs directly, instead of just retrieving documents from the

web [46]. Google is very secretive about their KG and how it is constructed.
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They initially reported having more than 500 million entities, as well as more

than 3.5 billion facts and relationships between these entities [37]. Less than

seven months later, in December of 2012, the KG was already covering 570

million entities and 18 billion facts [6][27].

Apparently, the Google’s KG is built using a combination of data auto-

matically extracted from public resources such as Wikipedia and CIA Worlds

Factbook and data provided by human workers. It is also partially powered

by Freebase [7] [36]. The company have reported that they use query logs of

the searches performed by the users to determine the type of entities that they

are more interested in including in the KG [46].

Microsoft’s Satori

Microsoft Satori is the KG behind Bing4 and Cortana5 [9]. Like Google, Mi-

crosoft does not disclosure details on how it is built. Statistics about the size

of the KG are also not publicly available, although it has been said that as

2012, there were were 300 million entities and 800 million relations [32].

2.2 Quality evaluation of knowledge graphs

Although the usage of KGs to represent ontological knowledge have been sig-

nificantly increasing, the quality of the data may largely impact their usability.

In reality, data quality is commonly conceived as “fitness for use” for a certain

application or use case [56]. For example, while a noisy KG can probably be

used for enriching Web search with facts or suggestions about common-sense

information, such as entertainment topics, it may not be suitable for devel-

oping a medical application. While there a large number of carefully curated

and high-quality datasets (in particular in the life-sciences domain), there are

also datasets extracted from unstructured and semi-structured sources or that

are build on crowdsourcing manner, leading to quality issues [55]. Because of

that, some research effort has been made to develop methods and metrics to

determine the quality of datasets.

4https://www.bing.com/
5https://www.microsoft.com/en-ca/windows/cortana
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In this direction, Zaveri et al. (2013) [55] proposed a data quality assess-

ment methodology, which comprises of a semi-automatic process followed by

a manual verification to evaluated the quality of DBpedia. They concluded

that while a substantial number of problems exists, the overall quality of DB-

pedia is relatively high, with roughly 11.93% of the tuples presenting some

quality issues. In particular, the following problems, as defined by Zaveri et

al. (2013) [56], were identified as affecting a significant number of resources:

• Accuracy: the degree to which the data correctly represents real-world

facts.

• Relevancy: the provision of information which is in accordance with the

task at hand and important to the users’ queries. Example of extraction

of irrelevant information includes: extraction of attributes containing

layout information, and image-related information (extraction of an im-

age caption or name of the image is irrelevant in DBpedia as the image

is not displayed for any resource).

• Representational-consistency: the degree to which the format and struc-

ture of information conform to previously returned information and other

datasets.

• Interlinking: the degree to which entities representing the same concept

are linked to each other. Links can be to external websites or other

datasets. DBpedia, for example, is connected with other Linked Datasets

by around 50 million RDF links6.

This thesis target the first item of this list, accuracy. By removing incorrect

type information from the KG, it becomes more suitable for a wider range of

applications, while improving the reliability of existing systems that already

use it.

6https://wiki.dbpedia.org/about
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2.3 Approaches for Knowledge graph comple-

tion

Approaches for KG completion usually target the task of adding missing en-

tities, assigning types for entities, or adding relations between entities in the

KG. The ultimate goal is to improve the overall quality of the graph by adding

missing knowledge and, therefore, increasing its coverage. That can be done

using information contained in the KG itself (internal methods) as well as data

from external sources (external methods).

Internal methods usually use the properties of the entities as features for

classification. For example, an entity that contains a property director it

is likely to be a movie. Paulheim et al. (2013) [33] explores how the type

information can be generated heuristically by exploiting other axioms in a KG

(e.g., the probability of an entity being of type Actor is high if it is linked

to several other entities by a property like cast). They use a weighted voting

approach to avoid the propagation of errors from single wrong axioms. The

authors also proposed to apply this approach for detecting erroneous type

assignment on KGs [34]. This method is one of those used by DBpedia to

assigned additional type statements to untyped entities [32].

In this work, we also use the properties of the entities, which are encoded

as a 300-dimension vector, as features for machine learning classifiers. As we

show on Section 3.1.2 these features significantly increase the semantic relat-

edness of entities of the same type. The idea of using machine learning for

entity type recognition is not new. Sleeman et al. (2013) [38] proposed to use

Support Vector Machines (SVMs) in order to reduce the computational cost of

performing coreference resolution, in which entities and their types are iden-

tified using contextual information and linguistic-based analysis. The authors

exploits interlinks between DBpedia and Freebase and classifies entities in one

KG based on properties in the other KG. The problem with this approach is

that interlinks between KGs are frequently wrong [10]. Moreover, they con-

strain the solution to identify only instances of type of person, location and

organization.
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Using of association rule mining [12] for predicting missing types in DB-

pedia has also been proposed [31]. Because DBpedia has different type sys-

tems (i.e., entities can be linked to types on the DBpedia ontology, YAGO,

schema.org, Wikidata, etc.), there is an overlap of types that allows the leaning

of axioms, which in turn can be used to assign types to the entities.

Topic modelling has also been used for type prediction. Entities in the KG

can be represented as documents. Latent Dirichlet Allocation (LDA) [2] can

be applied to these documents for finding topics. By associating topics to the

type of the entities in the KG, it is possible to infer the type for an entity

without type by detecting the topics for that entity [39].

Nuzzolese et al. (2012) proposes an external approach for predicting the

types of entities in the KG. They exploit wikilinks (i.e., interlinks connecting

Wikipedia articles) to create feature vectors (e.g., based on the categories of

the related pages) which are used as features for a k-nearest neighbours (kNN)

classifier to predict types for entities in the KG (given that the KG contains

links to Wikipedia). Apriosio et al. (2013) [1] also uses a kNN classifier from

type assignment, but the features are the types of the entities in different

languages edtions of DBpedia. Another approach for type assignment consists

of applying hypernym extraction techniques on the abstract of the resource in

the KG ([30][15]), for example, using the Hearst patterns [11].

A lot of research effort has also been deployed on to predict relations be-

tween entities. Most of the approaches rely on external knowledge, focusing on

extracting facts from unstructured and structured noisy Web sources [4]. The

new facts can be then added to the KG if they are missing. For example, Xu et

al. (2019) [52] unifiers KG embeddings [49] and relation extraction models for

KG completion. In the backbone of their solution is a bi-directional long short

term memory (LSTM) network with multiple levels of attention to learn rep-

resentations of text expressing relations. Knowledge representation machinery

nudges the language model to agree with facts in the KG. This allows learning

language and knowledge representations jointly. Several other works have also

proposed neural methods for extracting relations from text [48][20][57][16].

Among the internal methods for predicting relations in KG is the work of
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Socher et al. (2013) [40]. They use a tensor neural network to predict the likely

truth of additional facts based on existing facts in the KG. For example, if a

person is born in a city in Germany, the model can predict that the nationality

of that person is German. Zhao et al. (2015) [58] also relies exclusively on the

information from the KGs. They propose a Pairwise-interaction Differentiated

Embeddings model to embed entities and relations in the KG into a lower

dimensional space and then predict the possible truth of additional facts to

extend the KG.

Association rule mining can also be used as an internal method for predict-

ing relations. Kim et al. (2015) [14], for instance, predicts relations between

entities in DBpedia using association rules mined from Wikipedia categories,

which mainly utilize lexical patterns in category expression and a hierarchy of

categories.

2.4 Approaches for error detection on Knowl-

edge graphs

Approaches for error detection in KG can also target erroneous type infor-

mation, incorrect relationships between entities, incorrect interlinks between

different KGs, or incorrect literal values. Like what happens with comple-

tion methods, this can be done using only the information contained in the

KG itself (internal methods) or can also use data from external data sources

(external methods).

Although several methods have been proposed for assigning types to the

entities in the KG, methods for finding erroneous type assertions are rare. To

the best of our knowledge, Ma et al. (2014) [22] was the first attempt to

detect type inconsistencies in DBpedia. They proposed an improved approach

to learn disjointness axioms using association rule mining. The axioms are

learned from DBpedia and tested in DBpedia and Zhishi.me [29]. Although

this approach is, in fact, able to identify several inconsistencies, it has a few

limitations. First of all, the association rules are learned from DBpedia, which

is itself a noisy dataset, therefore, there will always be some wrong axioms.
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Secondly, some entities in DBpedia are assigned to a single incorrect type. For

example, the only assigned type for dbr:Nail polish is dbo:Person, which

is wrong. However, since there is no other type associated with this entity,

there is no axiom capable of identifying this error, because each rule involves

two types.

The usage of entity embedding for erroneous type detection has also been

attempted before. Zhou et al. (2017) [59] used binary clustering to separate

two groups of entities for each type of interest: the entities belonging to the

type category and the ones that do not belong to the type. For example, they

create one cluster with entities of the type Country and another cluster with

entities that are not a Country. However, since the not a Country cluster

can contain entities of many different types, they are not able to correct wrong

type assignment. Another important difference between our work the one pre-

sented Zhou et al. resides on the creation of the embedding. While they use

only Wikipedia for training the embeddings, our embedding also comprises

information about the entities properties in DBpedia (as we explain in Sec-

tion 3.1). Moreover, Zhou et al. use the types assignments in DBpedia itself

to create the training and testing datasets. They query a public DBpedia

SPARQL endpoint to select, for each DBpedia type, entities as positive exam-

ples of that type. Negative examples are chosen from a random selection of

instances from all the remaining types. We argue that this approach will create

a noisy training and testing dataset, since as we discussed, many entity types

in DBpedia are wrong, and that is exactly the problem that we are attempting

to solve. In this work, we use a manually curated partial gold standard for

training and testing our classifiers. We then proposed an automatic approach

for selecting only a small number of reference entities for each type. Because of

that, the direct comparison between our solution and theirs is not meaningful.

Methods for finding other erroneous relations in KGs usually combine mul-

tiple techniques. If the ontology of the KG is rich enough, so that the possible

types of nodes and edges in the KG can be explored, reasoning can be used for

error detection. Reasoning is a field of study in the artificial intelligence com-

munity which deals with automatically deriving proofs for theorems, and for
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uncovering contradictions in a set of axioms [32]. However, because of incon-

sistencies in the ontology of large KG, such as DBpedia, approaches exploiting

reasoning are typically combined with other methods, such as statistical meth-

ods ([13][45][34]) and association rule mining ([17]).

One of the few external approaches for finding erroneous relations is De-

Facto [18]. They present an algorithm for validating RDF tuples by finding

confirming sources for it on the web, using a search engine. Statements with

no or only very few web pages supporting the corresponding sentences are then

assigned a low confidence score.

Outlier detection methods are frequently employed for detecting incorrect

literal values. The problem with this approach is that outlier detection does

not necessarily identify errors, but sometimes natural outliers (such as the

population of very large cities). However, it has been shown that most of

the outliers are in fact errors [50]. An alternative approach that explores the

interlinks in the KG have also been proposed [21]. By comparing the same

entity in different KG, the facts in one KG are assumed to be wrong if multiple

other sources have a consensus for a conflicting fact.
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Chapter 3

Method

As mentioned in Chapter 1, our goal is to verify if the semantic representation

(embeddings) of the entities in a Knowledge Graph can be used to detect and

correct erroneous type information. We hypothesize that these distributed

representations of the resources can be used as features in machine learning

models trained to detect incorrect type assignment.

In this chapter, we first explain how these embeddings, which we call re-

source2vec, can be created by concatenating two other embeddings: Wikipedia-

2vec [53] and DBpedia2vec embeddings. Then, we present the machine learn-

ing algorithms that we chose to test our hypothesis.

3.1 Representing DBpedia resources

3.1.1 wikipedia2vec Embeddings

The wikipedia2vec embeddings are embeddings that represent Wikipedia en-

tities (Wikipedia articles). They are created using Wikipedia2Vec [53], a tool

that allows learning embeddings of words and entities simultaneously from a

text corpus, and places similar words and entities close to one another in a

continuous vector space. To learn word embeddings, Wikipedia2vec imple-

ments the conventional skip-gram model, which learns vector representation

for words using a neural network to predict neighbouring words given each

word in a text contained on a Wikipedia page [25]. The extension proposed by

Yamada et al. (2016) [54] is used to learn the embeddings of entities. Learning

these embeddings involves optimizing three submodels, which are illustrated
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Figure 3.1: Submodels optimized by Wikipedia2Vec to learn embeddings.
Reprinted from Yamada et al. (2018) [53].

by Figure 3.1:

• Wikipedia link graph model, which learns entity embeddings by pre-

dicting neighbouring entities in link graph of Wikipedia, an undirected

graph which nodes are entities and edges represent links between enti-

ties. A link between entities (interwiki link) exists if one Wikipedia page

is linked to the other.

• Word-based skip-gram model, which learns word embeddings by pre-

dicting neighbouring words given each word in a text contained on a

Wikipedia page.

• Anchor context model, which aims to place similar words and entities

near one another in the vector space, and to create interactions between

embeddings of words and those of entities. Here, we obtain referent

entities and their neighbouring words from links contained in a Wikipedia

page, and the model learns embeddings by predicting neighbouring words

given each entity.

The problem with this approach is that Wikipedia editorial guidelines1 in-

structs its contributors to avoid overlinking, by creating an interwiki link only

when the name first occurs in the page. On top of that, only the most relevant

entities on the page should be linked, frequently excluding the names of sub-

jects which most readers will be at least somewhat familiar with. Therefore,

many references to entity names do not appear as links in Wikipedia, limiting

1https://en.wikipedia.org/wiki/Wikipedia:Manual of Style/Linking
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the ability of Wikipedia2vec to learn meaningful embeddings. To address this

problem, the tool provides a feature that automatically generates links [53].

In an attempt to obtain high-quality embeddings, we trained Wikipedia2vec

embeddings with 500 dimensions (i.e., on Figure 3.2 n1 = 500) using the Wiki-

pedia dump extracted on Feb. 2019, using 10 iterations over the articles, a

windows size of 10, and a minimum number of 10 occurrences for words and

5 occurrences for entities.

3.1.2 DBpedia2vec Embeddings

In order to better represent entities in DBpedia, we introduce a different em-

bedding scheme that takes into account the properties of these entities in the

KG. The intuition behind these embeddings, which we call DBpedia2vec, is

that most resources of the same type share the same properties. For exam-

ple, countries usually have properties such as dbo:areaTotal, dbo:capital,

and dbo:largestCity, while companies are more likely to have properties like

dbo:headquarter, dbo:numberOfEmployees, and dbo:revenue. By including

the properties of the resources on their representation, we expect to increase

the semantic relatedness between resources of the same type.

To create DBpedia2vec embeddings, we first create a list of all distinct

properties existing in DBpedia. The name of each property p is stored in the

t-th dimension of a k-dimension vector, where k = 3480, the number of distinct

properties in DBpedia. For each DBpedia resource, i, an k-dimension one-hot

encoding vector is created in which the t-th dimension will be equal to 1 if

the property p exists for the resource i, otherwise, it will be 0. This allows

us to represent the presence or absence of each property in each resource.

Table 3.1 shows a few examples (in reality the table would have 3481 columns,

most of them were omitted for a better visualization). To increase the type

differentiation power of the DBpedia2vec embeddings, we ignore properties

that are common across all resources in DBpedia, such as dbo:wikiPageID,

dbo:wikiPageWikiLink, dbo:abstract, and dbo:sameAs.

The problem with the one-hot encoding representation is that it leads to

very sparse and high dimension vectors, since most of the resources will have a
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Table 3.1: Examples of one-hot encodings of DBpedia entities based on their
properties.
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· · ·

dbr:Canada 1 1 1 1 0 0 0 0 0 0
dbr:France 1 1 1 1 0 0 0 0 1 0
dbr:Barack_Obama 0 0 0 0 1 1 1 0 0 0
dbr:Paris 1 0 0 1 0 0 0 1 0 0
dbr:University_of_Alberta 0 0 0 0 0 0 0 1 1 1

...

very small subset of the existing DBpedia properties. To solve this problem, we

apply Probabilistic Principal component analysis (PCA)[44] to linearly reduce

the dimensionality of the embeddings using Singular Value Decomposition of

the data. In this way, we are able to project the 3480-dimension embeddings

to a lower dimensional and continuous space with 300 dimensions (i.e., in

Figure 3.2 n2 = 300). The number of dimension for these embeddings was

determined empirically.

Table 3.2 shows examples of cosine similarities between pairs of entities

represented using DBpedia2vec. It is possible to notice that pairs of resources

of the same type are being placed close to each other (higher cosine similarity),

while resources of different types have lower similarity between them.

3.1.3 resource2vec Embeddings

To create a distributed representation for DBpedia entities we concatenate

Wikipedia2vec with DBpedia2vec embeddings, as illustrated by Figure 3.2.

Table 3.3 shows examples of cosine similarities for pairs of entities of the

same type. Note how the final resource2vec embeddings in fact place enti-

ties belonging to the same type closer to each other, in comparison to the

wikipedia2vec embeddings alone. One may argue that because the similarity
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Table 3.2: Similarity between pairs of entities represented using DBpedia2vec
embeddings.

United
States

Stanford
University

George W.
Bush

Vancouver Microsoft

Canada 0.9792 0.0669 0.0321 0.3454 0.0778

University of
Alberta

0.1019 0.8515 0.1535 0.2896 0.2189

Barack
Obama

0.0241 0.0397 0.7511 0.0115 0.0463

Ottawa 0.3489 0.1996 0.0948 0.9721 0.1326

Apple Inc. 0.0805 0.1713 0.0533 0.1133 0.9438

Figure 3.2: Wikipedia2vec embeddings are concatenated with DBpedia2vec
embeddings to create resource2vec embddings.

between pairs of entities of the same type is higher using DBpedia2vec embed-

dings than using the resource2vec embeddings, we should train the classifiers

using the DBpedia2vec embeddings only. However, while DBpedia2vec in-

crease the semantic relatedness between entities of the same type, they would

not be enough to represent the resources alone, since entities of different types

may share some properties (for example if they have a common ancestor in

DBpedia ontology). Moreover, multiple resources of the same type may have

identical DBpedia2vec embeddings, which would make the classifiers overfit.

We empirically verified that despise the higher similarity between entities of

the same type using DBpedia2vec embeddings, classifiers trained using only

the DBpedia2vec embeddings have lower performance than classifiers trained

26



using the concatenated resource2vec embeddings.

Table 3.3: Cosine similarity between pairs of entities of the same type using
different embeddings.

Wikipedia2vec DBpedia2vec resource2vec

Canada and
United States

0.2920 0.9792 0.5900

University of
Alberta and
Stanford University

0.3352 0.8515 0.4811

Barack Obama and
George W. Bush

0.5225 0.7511 0.6011

Ottawa and
Vancouver

0.4102 0.9721 0.6545

Apple Inc. and
Microsoft

0.4422 0.9438 0.6002

3.2 Identifying and correcting erroneous types

To verify if the type assigned to a given resource is correct, we rely on a set

of binary classifiers. Each classifier is trained to distinguish resources from a

particular type from the resources of all other types. Thus, one classifier must

be trained for each type of DBpedia ontology.

The resource2vec embedding of the entity is the only feature required for

the classification. A classifier for a particular type ci is created using re-

source2vec embeddings of entities with type ci as positive examples and re-

source2vec embeddings of randomly selected resources from all other types as

negative examples.

This approach allows us not only to identify erroneous type assignments

but also to assign the correct type to any DBpedia resource for which the

resource2vec embedding is created, even if no type has been assigned yet in

DBpedia. An example is shown in Figure 3.3. The resource2vec embedding for

dbr:Canada is fed to all classifiers. The classifiers which were trained to iden-

tify entities of the types that countries typically belongs to (e.g., dbo:Place,
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dbo:Location, dbo:Country, and dbo:PopulatedPlace) are expected to out-

put True, while all other classifiers should output False.

Figure 3.3: Example of type check for the resource Canada

We decided to start our experiments with popular algorithms for binary

classification, namely Naive Bayes, K-nearest neighbours (K-NN), and Near-

est Centroids. These algorithms were chosen because of their simplicity and

because they required a small training dataset, unlike more sophisticated tech-

niques such as neural networks. As we discuss in Section 4.1, collecting training

data in our case is a challenging and costly task, therefore if these simpler algo-

rithms perform well the overhead of the solution can be significantly reduced.

The next subsections provide a brief overview of these three algorithms. Later

on Section 4.2 we compare the performance among them.

3.2.1 Naive Bayes

Naive Bayes is a probabilistic supervised classifier technique based on Bayes’

Theorem with an assumption of independence among features. Despite this

apparently oversimplified assumption, it is highly scalable and performs well

in many real-world problems. Furthermore, when this assumption holds, the

algorithm performs better than other models and only requires a small number
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of training data to estimate its parameters.

Naive Bayes is a conditional probability model. Given a class variable y

and a dependent feature vector x = (x1, . . . , xn), Bayes’ theorem states that:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)
(3.1)

Because the features are assumed to be independent,

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y).

Thus, the equation 3.1 can be rewrite as:

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(3.2)

In practice, there is interest only in the numerator of that fraction, because

P (x1, . . . , xn) is constant for the input vector x being classified. Therefore the

denominator can be removed and a proportionality can be introduced. The

numerator is equivalent to the joint probability model p(y, x1, . . . , xn) which

can be rewritten as products of sequences, using the chain rule for repeated

applications of the definition of conditional probability:

P (y | x1, . . . , xn) ∝ P (y)
n∏
i=1

P (xi | y) (3.3)

We can create a classifier combining this model with a decision rule. One

common rule is to pick the hypothesis that is most probable (Maximum A

Posteriori). The corresponding classifier, a Bayes classifier, is the function

that assigns a class label ŷ for some possible outcomes as follows:

ŷ = arg max
y
P̂ (y)

n∏
i=1

P̂ (xi | y), (3.4)

We write P̂ for P because the true value of the parameters P (y) and

P (xi | y) is unknown, but they can be estimated from the training data.

Because the resource2vec embeddings used as features take up continuous

values, we assume that these values are sampled from a Gaussian, and the

conditional probability formula changes to:
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P (xi|y) =
1√

2πω2
y

exp

(
−(xi − µi)2

2ω2
y

)
(3.5)

In reality, the conditional independence assumption does not hold for the

majority or the problems and definitely does not hold for the resource2vec

embeddings (e.g.,, a resource with a dbp:Currency property is likely to also

have a dbp:Capital property). However, Naive Bayes models perform well

despite the violation of this assumption. That is because even though the

probabilities estimated by Naive Bayes can be of low quality, the winning

class usually has a probability much higher than the other ones. Since the

classification decision is based sonly on which class gets the highest score,

regardless of how accurate the estimates are, the correct prediction can be

done even with incorrect probabilities [24].

The main strength of Naive Bayes is its efficiency. Training and classifi-

cation can be accomplished with one pass over the data. For a n-dimension

feature vector, a training with s samples will cost O(ns), because all it needs

to do is compute the frequency of every feature value x1, x2, · · · , xn for each

class. During the classification, we need to retrieve n feature values for each

class, thus, if c is the number of classes, the algorithm’s time complexity for

testing is O(nc).

3.2.2 Nearest Centroids

The nearest centroid classifier represents objects as points in a high-dimension

space and represents each class by its centroid. The classification consists in

assigning the class of the nearest centroid to test samples [42]. The training

examples are the resource embeddings vectors, each with a class label. The

training phase of the algorithm consists in storing the feature vectors and class

labels of the training samples. The centroid of a class c is computed as the

vector average or center of mass of its members [24]:

~µ(c) =
1

|Dc|
∑
d∈Dc

~v(d), (3.6)
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where Dc is the set of entities in the dataset whose class is c. Three example

centroids are shown as solid circles in Figure 3.4

The boundaries between types are the set of points with equal distance

from the centroids. This set of points is always a line or a hyperplane in a

higher-dimensional space. The classification of a new point is based on the

region it falls into. This is equivalent to assign to the new point the class of

the nearest centroid ~µ(c). For example, the start on figure 3.4 is located on

the Aircraft space, therefore it will be assigned to the type Aicraft. Distances

are typically computed as Euclidean distances, but other measures are also

possible.

Figure 3.4: Example of nearest neighbor classification. Adapted from Manning
et al.(2010) [24]

3.2.3 k-nearest neighbors

Unlike the nearest centroids classifiers, the k-nearest neighbour (kNN) classifier

determines the decision boundary locally (i.e., using the samples themselves,

not the centroid of the class). For k = 1, each sample is assigned to the class

of its closest neighbour. For other values of k, samples are classified based on

the types of the majority of its k nearest neighbours [24].

The only way to determine the best value for K is through experimentation.

Small values can be noisy and subject to the effects of outliers, while larger
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Figure 3.5: Example of k-NN classification [51].

values will have smoother decision boundaries which mean lower variance but

increased bias. In binary classification problems like ours, it is helpful to

choose k to be an odd number as this avoids ties. In this work, we used 5-fold

cross-validation to find the best value of k, which in our case is k = 9.

During the classification, an unlabeled embedding is classified by assigning

the label which is most frequent among the k training samples nearest to that

query point. A commonly used distance metric for continuous variables is the

Euclidean distance, the same used in this work.

An example of k-NN classification is shown in Figure 3.5. If k = 3 (solid

line circle), the test sample (green dot) will be assigned to the class of red

triangles because there are 2 triangles and only 1 square between the top 3

nearest neighbours. If k = 5 (dashed line circle), the sample will is assigned

to the blue squares [51].

The space complexity for s training samples with n-dimension feature vec-

tors is O(ns). During the classification, we need to compare the test point to

every data point in the training set. Therefore, its time complexity for testing

is O(ns).

Like Nearest Centroids, the training phase of the algorithm consists in

storing the feature vectors and class labels of the training samples. Thus, we

can say that its time complexity for training is O(1) or even inexistent. Because

of this, we use the terms reference entities or representative entities to
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make reference to the data samples used for performing classification using

these algorithms. The term dataset is still used to refer to the collections of

all reference entities.
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Chapter 4

Supervised approach for error
detection

Supervised classification is often considered to be an upper-bound on what

can be achieved in large-scale classification problems. Because of this, our first

attempt to detect and correct erroneous type assignments is using a supervised

solution. In this Chapter, we describe how we do that.

4.1 Dataset

For training and testing the classifiers to detect erroneous type assignments, we

consider different methods for obtaining a dataset (i.e., to select the reference

entities). Each of them has its own advantages and disadvantages. The first

option would be using DBpedia itself as a silver standard. However, since there

is a significant amount of noise in the knowledge graph (KG), otherwise error

detection would not be necessary, this approach is only suitable for evaluating

KG completion, not for error detection since it assumes that the given KG is

already of reasonable quality [32]. Zhou et al. (2017) [59], for instance, use

DBpedia a silver standard for assigning types for entities in the KG.

As an alternative, we could exploit an external KG based on the interlinks.

Since DBpedia has interlinks to other KGs, like Freebase (which is incorporated

by the Google’s KG) and Wikidata, we could retrieve the type for DBpedia

resources from another KG to create a dataset for training and testing the

classifiers. Although this approach allows us to quickly collect a large number
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of data samples, as discussed in Section 1.2, the comparison among KGs has

important disadvantages:

• The target KG may be incorrect or incomplete.

• The interlink between equivalent resources may be incorrect.

• The ontologies are not aligned.

In face of the challenges of using an external KG for creating a dataset,

a suitable approach would be the development of a partial gold standard,

manually created by humans, who select and label a subset of the entities in the

KG. One of the main advantages of the usage of a partial gold standard is that

it can be used to compare different methods (e.g., to compare different machine

learning algorithms for training the classifiers). Moreover, gold standards can

provide high-quality data. The main disadvantage of this approach is the cost

of collecting the data samples, which is relatively high. Because of that, this

type of dataset is usually small.

Considering the characteristics of each solution, we decided to create a

gold standard to better train and evaluate our classifiers. Our gold stan-

dard encompasses the following 35 types from the DBpedia ontology: Aircraft,

Airline, Airport, Album, AmericanFootballPlayer, Animal, Automobile, Bac-

teria, Bank, Book, Building, City, Country, Currency, Food, Galaxy, Horse-

Trainer, Language, MilitaryConflict, Murderer, MusicalArtist, Mythological-

Figure, Planet, Plant, President, Software, Song , Sport, Swimmer, Theatre,

TimePeriod, Train, University, Volcano, and Weapon. We chose these types

with the goal of maximizing the diversity of entities while minimizing inter-

type overlap (which could potentially confuse our analysis and preliminary

conclusions). If the proposed approach works well in this simplified setting, it

may be worth scaling the solution to consider all types in DBpedia.

To build the gold standard, three annotators1 were asked to use any re-

sources at their disposal (e.g., Wikipedia entity lists) to find examples of enti-

ties in each of the 35 types. The annotators were instructed to select entities

1All annotators were computer science students and were trained for this task.
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that would maximize the diversity of the dataset (for example, select cities of

different countries and continents, of different sizes). In total, 3876 entities

were selected. The number of entities per type varied from 94 (for the types

Sport and Software) to 112 (for the type Aircraft). Our gold standard can be

downloaded from https://bit.ly/2FcqQQW.

4.2 Selecting the best classifier

Our first experiment consisted of comparing the three algorithms for binary

classification described in Section 3.2: Naive Bayes, K-nearest neighbours (K-

NN), and Nearest Centroids. As in all other experiments described in this

document we used the 800-dimensions resource2vec embeddings created as

described in Section 3.1.

In this experiment, we used the manually curated gold standard to create

the dataset to train and evaluate the classifiers. One classifier is trained per

type, using as positive samples the entities listed in the gold standard for that

type. Negative examples are randomly selected entities of other types. Hyper-

parameter tuning for k-NN lead to k = 9 and it was performed using 5-fold

cross-validation. Table 4.1 shows the preliminary results. The reported values

are the average among the 35 classifiers, each of which trained and tested using

a 10-fold cross-validation approach. The Nearest Centroid algorithm appears

to leads to better classifiers, achieving more than 97% of performance in all

metrics, while the Naive Bayes classifiers seem to have the lowest performance.

Table 4.1: Comparison between the algorithms used for creating binary clas-
sifiers for error detection on type assignment.

Classifier Accuracy Precision Recall F1-Score

Nearest Centroid 0.9758 0.9785 0.9758 0.9756
k-NN 0.9589 0.9654 0.9589 0.9583
Naive Bayes 0.9238 0.9333 0.9238 0.9225

The boxplots of Figure 4.1 shows the data distribution by treatment (i.e.,

classifier) for each metric (accuracy, precision, recall, F1-score). They suggest
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the existence of differences among the classifiers. To verify if this difference

is statistically significant we performed an analysis of variance test (ANOVA)

(see Appendix A.2 for details). We define the minimum difference of practical

meaning as 0.8 Cohen’s d [5]. Desired error levels are defined as α = 0.5 and

β = 0.2. For this setting, using statistical power calculations F-test for one

factor balanced ANOVA we found that we need a minimum of 18 samples for

each group. However, if the null hypothesis is rejected pairwise comparisons

of the classifiers will need to be performed to determine which classifiers are

different from the other. These comparisons would requirer 36 samples in each

group, because of this, we perform 36 cross-validation experiments with each

classifier to collect the samples for the statistical analysis.

(a) Accuracy (b) Precision

(c) Recall (d) F1-Score

Figure 4.1: Data distribution for accuracy, precision and recall, respectively.

Results for the ANOVA test on all metrics are shown in Tables 4.2 to 4.5.

In all cases, the F-statistics and their corresponding P-value (PR(> F ))

obtained from ANOVA suggests the rejection of the null hypothesis in favour
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Table 4.2: Comparison among classifiers’ accuracies using ANOVA

sum sq df F PR(>F)

C(treatments) 0.050591 2.0 5121.715721 2.145485e-105
Residual 0.000519 105.0 - -

Table 4.3: Comparison among classifiers’ precision using ANOVA

sum sq df F PR(>F)

C(treatments) 0.038934 2.0 6027.525317 4.501223e-109
Residual 0.000339 105.0 - -

Table 4.4: Comparison among classifiers’ recall using ANOVA

sum sq df F PR(>F)

C(treatments) 0.050591 2.0 5121.715721 4.295516e-35
Residual 0.000519 105.0 - -

Table 4.5: Comparison among classifiers’ F1-Score using ANOVA

sum sq df F PR(>F)

C(treatments) 0.052825 2.0 5024.033075 5.835585e-105
Residual 0.000552 105.0 - -

of the alternative (P < 0.05). That is, if the ANOVA assumptions are valid

(independence, normality and homoscedasticity of the residuals), we will be

able to conclude that there are significant differences among the classifiers

when it comes to accuracy, precision, recall, and consequently F1-score.

The independence assumption should be guaranteed on the design of the

experiment. In our case, because the data is collected using the cross-validation

results and under constant experimental conditions, we have a completely ran-

domized design. Thus, the independence assumption holds true. Moreover,

each classifier is trained and tested separately, which also guarantees indepen-

dence.

The normality assumption can be tested using the Shapiro-Wilk test cou-

pled with a normal QQ plot of the residuals. Table 4.6 shows the results of

the Shapiro-Wilk test performed over residual data.
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Table 4.6: Results of Shapiro-Wilk test

W P-Value

Accuracy 0.9683 0.0111
Precision 0.9708 0.0179
Recall 0.9683 0.0111
F1-Score 0.9673 0.0093

Although the P-values are significant and we rejected the null hypothesis,

a closer analysis of the distribution of the residual using the QQ plots of

Figure 4.2 allow us to see that the residual is normally distributed for the most

part of samples. The portion of the data which is not normally distributed is

fairly small and not enough to violate the assumption of normality. Moreover,

ANOVA is robust to normality violations, especially if the sample size is large

enough [43].

The homoscedasticity assumption can be verified by the Fligner-Killeen

test, together with plots of residuals by fitted values, which are shown in

Table 4.7 and Figure 4.3, respectively. As we can see, there is a difference

between variances across groups. However, ANOVA is also relatively robust

to violations of homoscedasticity, especially if the samples are all the same

size, like in our case.

Table 4.7: Results of Fligner-Killeen test

Fligner Killeen statistic P-Value

Accuracy 16.6186 0.0002
Precision 14.7287 0.0006
Recall 16.6186 0.0002
F1-Score 17.0741 0.0001

Because we have reasonable ground to believe that the results of ANOVA

are trustworthy, we can conclude that there is at least one treatment that is

significantly different from the other. However, this test does not allow us

to conclude which ones are significantly different from the others. To figure

this out we can perform multiple comparisons between two algorithms, which

is essentially run a series of t-tests, with some slight modifications (all vs.

39



(a) Accuracy (b) Precision

(c) Recall (d) F1-Score

Figure 4.2: Normal QQ plot of the residuals that can be used to verify the
ANOVA assumption of normality.

all comparison). The number of comparisons K can be calculated as K =

a(a− 1)/2. Since a = 3 (3 algorithms), K = 3 compassion.

If we are going to perform multiple tests on the same data set, the proba-

bility of a type I error on each test is α. If we want to keep our overall error

rate controlled at a given level, we will need to correct the value used for each

test. Assuming K planned comparisons, the Bonferroni method provides a

simples way to adjust α:

αadj =
α

K
= 0.01667 (4.1)

For performing all vs. all multiple comparisons, we used Tukey’s Honest

Significant Difference (HSD) approach, since it provides a slightly higher power

when compared to the other methods. Tables 4.8, 4.9, 4.10, and 4.11 show
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(a) Accuracy (b) Precision

(c) Recall (d) F1-Score

Figure 4.3: Plot of residuals by fitted values allows the comparison of the
variance across groups

the results for all vs. all test regarding the accuracy, precision, recall, and

F1-score of the algorithms, respectively. In all cases, the null hypothesis could

be rejected with 95% confidence, which means that all three classifiers are

different from each other considering these four metrics.

From table 4.8 we can see that when it comes to accuracy, the highest

average difference among algorithms is between Nearest Centroids and Naive

Bayes. Naive Bayes also has a mean accuracy lower than kNN. Nearest cen-

troids also performs slightly better than kNN when it comes to accuracy. These

results corroborate the hypothesis suggested by Figure 4.1a and Table 4.1 that

Nearest Centroids achieved the highest average accuracy in assigning the cor-

rect type to DBpedia resources.

Figure 4.1b suggested that Naive Bayes reached the lowest average results

for precision values. Results from Table 4.9 confirm this hypothesis. On av-
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Table 4.8: Multiple Comparison of Means (Accuracy) - Tukey HSD,
FWER=0.02

Group 1 Group 2 Mean Diff P-value Lower Upper Reject

Naive Bayes kNN 0.0351 < 0.001 0.0336 0.0365 True
Naive Bayes Nearest Centroid 0.052 < 0.001 0.505 0.0534 True
kNN Nearest Centroid 0.01619 < 0.001 0.0155 0.0184 True

erage, this classifier has a precision 3.21% lower than kNN and 4.52% lower

than the Nearest Neighbors. Considering the 95% confidence level of the ex-

periment, we can also conclude that the nearest centroid algorithm has 1.31%

more precision than kNN.

Table 4.9: Multiple Comparison of Means (Precision) - Tukey HSD,
FWER=0.02

Group 1 Group 2 Mean Diff P-value Lower Upper Reject

Naive Bayes kNN 0.0321 < 0.001 0.0309 0.0333 True
Naive Bayes Nearest Centroid 0.0452 < 0.001 0.044 0.0464 True
kNN Nearest Centroid 0.0131 < 0.001 0.0119 0.0143 True

The differences among the recall of the algorithm are shown in Table 4.10

and show that, once again, the Nearest Centroids algorithm performs better

than the other two classifiers.

Table 4.10: Multiple Comparison of Means (Recall) - Tukey HSD,
FWER=0.02

Group 1 Group 2 Mean Diff P-value Lower Upper Reject

Naive Bayes kNN 0.0351 < 0.001 0.0336 0.0365 True
Naive Bayes Nearest Centroid 0.052 < 0.001 0.0505 0.0534 True
kNN Nearest Centroid 0.0169 < 0.001 0.0155 0.0184 True

Although F1-score is simply a combination of precision and recall, we also

performed the Tukey’s HSD test using this metric to simplify the comparison

of the overall performance of the classifiers. Results are shown in Table 4.11.
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Table 4.11: Multiple Comparison of Means (F1-Score) - Tukey HSD,
FWER=0.02

Group 1 Group 2 Mean Diff P-value Lower Upper Reject

Naive Bayes kNN 0.0358 < 0.001 0.0343 0.0373 True
Naive Bayes Nearest Centroid 0.0531 < 0.001 0.0516 0.0546 True
kNN Nearest Centroid 0.0174 < 0.001 0.0158 0.0189 True

These tests allow us to conclude that the Nearest Centroid classifier is

significantly better to our problem, therefore, the remaining experiments on

this document were performed using this classifier.

4.3 Retrospective evaluation of classifiers on

the Gold Standard

Motivated by the good performance of the binary classifiers (as shown in Ta-

ble 4.1), we decided to extend our experiments to test whether the proposed

supervised approach could detect incorrect type assignments among other en-

tities of the 35 types in our gold standard. For this, we used all samples in the

gold standard to train another set of binary classifiers using the best perform-

ing algorithm (Nearest Centroid). We then used these classifiers to evaluate

364,791 entity-type pairs belonging those 35 types for which classifiers were

trained2. Human evaluators performed a retrospective evaluation to verify the

result of the classification for a random sample of 3699 predictions.

One of the main advantages of the retrospective evaluation is that it al-

lows a detailed analysis of the classification results, providing the opportunity

to inspect the errors made by the classifiers. This often reveals a good in-

sight about the advantages and disadvantages of the proposed solution [32].

Our findings on the errors identified during the retrospective evaluation are

presented in Chapter 6.

To perform the retrospective evaluation the human evaluators separated

the output of the classifier for each entity-type pair into one of the following

groups:

2Some entities had multiple types.
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• True positives: Incorrect entity-type pairs correctly flagged as incorrect

by the classifiers.

• True negatives: Correct entity-type pairs correctly labeled as correct

by the classifiers.

• False positives: Correct entity-type pairs incorrectly flagged as incor-

rect by the classifiers.

• False negatives: Incorrect entity-type pairs incorrectly labeled as cor-

rect by the classifiers.

The correct types for an entity are determined by the human evaluator,

using the description of the entity on Wikipedia. That is, the decision about

whether or not the type predicted by our method is correct is at the sole dis-

cretion of the evaluator. Evaluators were instructed to use their own judgment

to resolve inconsistencies and report their assumptions. For example, they re-

ported that no distinction was made between arenas and stadiums, since the

definitions of these terms are vague and in practice, there is not much difference

between them. On the other hand, they decided that, if the classifiers failed

to detect that a town was assigned with the type township (or vice versa) the

output of the classification should be considered incorrect. Details about all

assumptions made by the evaluators during the retrospective evaluation can

be found in Appendix C. Evaluators were instructed to skip the evaluation of

an entity-type pair if they were unsure about the classification results since

some domain-specif entities-type pairs are difficult to be evaluated by people

outside the field of knowledge. Figure 4.4 shows a screenshot of the screen pre-

sented to the evaluators. Each entity-type pair was evaluated by one evaluator

only and, therefore, we did not verify the agreement between the evaluators.

By inspecting the entity-type pairs tagged as false negative by the evalua-

tors, we noticed some discrepancies in the way entities are classified in DBpe-

dia. The most notable example concerns the type dbo:Animal, which is used

as label for species (e.g., dbr:American black bear) and individual racehorses

(e.g., dbr:Fusaichi Pegasus). While most the entities with type dbo:Animal
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Figure 4.4: Screenshot of the interface used for retrospective evaluation.

have properties such as dbo:family, dbo:genus, dbo:kingdom, dbo:order,

dbo:phylum, and dbo:conservationStatus, racehorses have properties like

dbo:honours, dbo:owner, dbo:sex, dbo:trainer, and dbp:earnings, which

do not belong to type dbo:Animal nor to its supertype (dbo:Eukaryote)3.

Therefore, we argue that the individual instances of racehorses should not be-

long to this type in the ontology. Another evidence that supports our claim is

that no other instances of individual animals (e.g., individual dog actors) are

labeled as animals on DBpedia. Because of that, we removed from our analysis

animals that are also an instance of type racehorse. We further discuss this

issue in Chapter 6.

Table 4.12 shows the classifier performance in terms of accuracy, precision,

recall, and F1-score (see Appendix A.1 for details) after removing the instances

of the special case discussed above and considering the assumptions described

in the Appendix C. The performance of the classifier varies across types: for

example, both false positive and false negative rates for entities tagged as

dbo:HorseTrainer is 0%. On the other hand, the false positive rate for the

3http://mappings.dbpedia.org/server/ontology/classes/Animal
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type dbo:President is 13%. That is probably because dbp:President is

a more generic type, which can include presidents of countries, universities,

companies, institutes, associations, councils, societies, sports clubs, etc.

Table 4.12: Estimated performance of Nearest Centroid classifiers on unseen
entity-type pairs.

Accuracy Precision Recall F1-Score
Nearest Centroids 0.8883 0.7553 0.9563 0.8439

The manual inspection showed that the proposed approach has a very

low false negative rate, which is very encouraging. Moreover, the method is

correct about 75% of the times it claims a type assignment is wrong, for a

false negative rate below 25%. This results could perhaps be improved with

the creation of a better and more comprehensive gold standard. However, this

is an expensive task. An alternative approach for collecting data samples to

train the classifiers is presented in Section 5.1.
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Chapter 5

Unsupervised approach for
error detection

Although the gold standard allows us to efficiently compare the classifiers and

evaluate our approach, it does not consist of a scalable solution for selecting

the reference resources, that is, we cannot achieve our goal of cleaning the

entire DBpedia using this method since it would be unfeasible to manually

collect enough samples for all types in the ontology.

Secondly, it is virtually impossible to guarantee that the human annotators

will not introduce their own bias in the dataset when selecting the reference en-

tities. This can happen, for example, when the annotators select entities which

they are familiar with. A biased dataset can largely impact the generalization

power of the models.

Finally, some types are very generic, such as dbo:Person, which has 175

subtypes in the ontology. Furthermore, there is some inconsistency in the usage

of the DBpedia ontology, as illustrated by the example with dbo:Animal and

racehorses on Section 4.3. These inconsistencies make the creation of the gold

standard a very demanding task for humans, who are unlikely to be able to

think about all possible variations on the usage of the types.

In face of these drawbacks, we developed an alternative approach for auto-

matically selecting the reference resources which are used to perform the type

classification.
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5.1 Collecting Representative Entities

Our solution relies on the fact that Wikipedia2vec creates embeddings for en-

tities and words simultaneously, and places similar words and entities close

to one another in a continuous vector space. This allows us to compute

the similarity between an entity and a word. We hypothesize that entities

close related to the name of the type are more likely to belong to that type.

For example, the similarity between dbr:Barack Obama and dbo:Politician,

dbo:Person or dbo:President should be greater than the similarity between

dbr:Barack Obama and dbo:City or dbo:Album. This is because the name

of the type and the mention to the entity are likely to occur together in a

Wikipedia article (i.e., a Wikipedia article mentioning dbo:Barack Obama it

is likely to contain the word president) and share a lot of context (i.e., articles

that mention Barack Obama tend to have semantic similarity with articles that

mentions Politicians). If this assumption is correct, we can collect reference

entities by simply selecting the DBpedia resources whose embeddings closely

resemble the word embedding of the name of the type.

The hypernym of the resources (which are often included among the prop-

erties of the resource in DBpedia) can also be used as a source of information

for collecting the reference resources. The hypernym represents a type-of re-

lationship between two terms. For example, the hypernym for dbr:Canada

is dbr:Country. This can be an evidence that dbr:Canada is a good ex-

ample of a resource with type dbo:Country. However, the hypernym for

many DBpedia resources are also incorrect. For instance, the hypernym for

dbr:Subway (restaurant) is dbr:American; the hypernym for

dbr:Aspen University is dbr:United (a resource derived from a disambigua-

tion page). Moreover, although the hypernym for dbr:Canada is dbr:Country,

that does not mean that dbr:Canada can only be used as reference for

dbo:Country. It could also be used to train the classifiers for dbo:Place,

dbo:Location, and dbo:PopulatedPlace.

The final selection of reference entities is based on a similarity score be-

tween the resource r and the type y, as shown in Equation 5.1. First, for
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each candidate resource r with type y in DBpedia, we compute the average

similarity between the embedding of the resource and the embedding of the n

words in the name of the type, we call this average term Sry. To account for

the hypernym of the resource, we compute the average similarity between the

embeddings of n words on the name of the type and the embeddings of the

m words on the hypernym, we call this term Syh. The final similarity score

between the resource r and the type y is computed as STry = Sry + ε · Syh,

where ε is a given constant.

STry =

∑n
i=1 similarity (wi, r)

n︸ ︷︷ ︸
Sry

+ε ·
∑n

i=1

∑m
j=1 similarity(wi, hj)

n+m︸ ︷︷ ︸
Syh

(5.1)

To collect samples for a certain type y we simply select the resources with

the higher similarity STry with the type. In our experiments we empirically

defined ε = 0.75. Table 5.1 shows a few examples of samples that were auto-

matically selected using this approach.

To quantify the quality of this method, we selected for each type name the

most similar 160 entities. We then randomly selected 90 out of the 160 entities

for each type. The random selection is purely to promote diversity among the

reference resources. We manually verified a random sample of 876 entity-

type pairs and found that 93.72% of them were correct. This indicates that,

although this approach is not perfect, it can be used to select very high-quality

reference entities which can be used for type classification. We evaluate the

results achieved by the classifier that used the automatically select resources

and found that their performance is very similar to the performance of the

classifiers that used the manually curated gold standard (see Section 5.2 for

details).

One may argue that we could improve the selection of reference enti-

ties by using a different kind of embedding in which information about the

properties of types and entities were included. We tried that by creating

type2vec embeddings for DBpedia types, in a similar way that we created the

resource2vec embeddings described in Section 3.1.3. The first 500 components
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Table 5.1: Examples of data samples automatically selected.

Type Examples

Aircraft
VL Kotka; Airco DH.3; Sukhoi T-3; IAR 823;
Stargate YT-33; Avtek 400A; Gotha G.X;

Airport

St. Paul Island Airport; Carcassonne Airport;
Satna Airport; LaGuardia Airport; Brisbane Airport;
Roxas Airport; Kawama Airport; Manchester Airport;
Xishuangbanna Gasa Airport;
Boone County Airport (Arkansas).

Bacteria

Zoogloea; Beggiatoa; Clostridium; Amycolatopsis;
Alphaproteobacteria; Acetobacter; Rhodocyclus;
Leptospira; Hydrogenothermaceae; Nitrosomonas;
Morganella morganii; Meiothermus; Spirillum;

Country
Bhutan; South Sudan; Niger; Afghanistan; Dominica;
Antigua and Barbuda; Botswana; Cyprus; Canada;
Sweden;

PopulatedPlace

Hayti Heights, Missouri; Gerster, Missouri;
Weston, Maine; Parker Strip, Arizona;
Petersville, Alaska; Paradise Heights, Florida;
Tilden, Illinois; Vista, Missouri;
Sims, Illinois; Cobalt, Missouri;

RaceHorse

Circular Quay (horse); Russia (horse);
Glencoe II; Alan-a-Dale (horse); Gimcrack;
Silic; Subzero (horse); Mayano Top Gun;
Belmar (horse); Moifaa;

University

Harvard University; Tianjin Normal University;
Gansu Agricultural University; Wenzhou University;
Hiroshima City University; Chang’an University;
Keiwa College; University of Lusaka;
Xiangtan University;
Kwassui Women’s University;

of the embeddings are obtained by averaging the word embeddings (trained

with Wikipedia2vec) of the words in the name of the type. The next 300 com-

ponents are based on the properties of the type, as described in the DBpedia

ontology1. In this way, we could compare resources to types in DBpedia, and

select as reference the resources whose resource2vec embedding close resem-

1http://mappings.dbpedia.org/server/ontology/classes/
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ble the type2vec embeddings, instead of simply comparing word embeddings

against Wikipedia2vec embeddings. However, we found that this approach

increase in about 10% the number of incorrectly selected samples.

Although it is not clear why the results are worse, we believe that incon-

sistencies in the DBpedia ontology are playing an important role in lowering

the quality of the reference entities. For example, out the 685 types of the

ontology, 115 do not have any properties defined (e.g., dbo:RacingDriver,

dbo:Province, dbo:BiologicalDatabase, dbo:Stadium). Also, several other

types have only shared properties, for example, all properties for dbo:Town are

also present on dbo:City, dbo:Settlement, dbo:CityDistrict, dbo:Village,

and dbo:HistoricalSettlement. The same thing happens with other 326

types. This probably means that introducing the information about the prop-

erties of the types not only does not help to enrich the Wikipedia2vec embed-

dings but also introduces a significant amount of ambiguity to the embeddings,

hence adding noise among the reference entities. For this reason, we decided to

rely only on Wikipedia2vec embeddings for automatically collect data samples.

5.2 Retrospective evaluation of classifiers on

automatically selected reference entities

Because of the apparent good results of the experiments described in Sec-

tion 4.3, we decided to expand our tests to the entire DBpedia using the

classifiers trained using the automatically selected reference resources, as de-

scribed in the previous section. We trained 557 binary classifiers, one for each

type in DBpedia with at least 200 entities. These classifiers were used to judge

2,945,054 entity-type pairs, out of which 1,984,868 were classified as correct

and 960,186 were classified as incorrect.

To asses the performance of these classifiers, once again, human evaluators

performed a retrospective evaluation. In total, the classification output for

6607 randomly entity-type pairs of 83 types in the ontology were manually

checked. The 83 types used in the evaluation are the same 35 types on the Gold

Standard plus 47 types selected manually by the evaluators. These 47 new
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types were chosen to add some inter-type overlap to the evaluation, allowing

us to assess how the classifiers would perform in a more realistic scenario.

Another criterion used for selecting the types for evaluation was the number

of entities in each types. Because we need at least 160 entities for selecting

the reference resources to train the classifiers, only types with more than 200

entities in DBpedia were considered for this evaluation (see Appendix B for

the complete list of types included in this analysis).

We tried to compare our results against an alternative also fully automatic

approach that consists of comparing of the type of the resource in DBpedia

to the type in Wikidata. The motivation for this attempt is that Wikidata is

a collaboratively edited knowledge graph, and in principle, it is much cleaner

than DBpedia. Moreover, because the vast majority of DBpedia resources are

linked to an equivalent in Wikidata (although about half the links may be

incorrect [10]), in theory, we can find Wikidata type for the resource.

Despite the challenges associated with the misalignment of the ontologies

(as discussed in Section 1.2), for the sake of a baseline for our approach, we

tried to verify 3, 427, 297 entity-type pairs from DBpedia by comparing them

to their equivalent in Wikidata. Out of those, 2, 736, 658 comparisons failed

because the type in DBpedia was not linked to a type in Wikidata. In total

only 690, 639 comparisons were successful.

When comparing the type for a resource in DBpedia and the type for its

equivalent in Wikidata we consider that even if the types in the different knowl-

edge graphs are different they both may still be correct. This is particularly

true if the type assigned to a resource in one of the knowledge graphs is a sub-

type of the type assigned to the equivalent resource in the other. Figure 5.1

shows an example. The resource dbr:Journal of Biomedical Informatics

has type dbo:AcademicJournal in DBpedia, and the corresponding type in

Wikidata is academic journal (Q737498). But the Wikidata resource equiv-

alent to that journal has type scientific journal (Q5633421).

In other words, even though the types in DBpedia and Wikidatada do

not match perfectly, because scientific journal (Q5633421) is a subtype

of academic journal (Q737498) in the ontology of Wikidata, the type in
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DBpedia is considered correct. For our comparison, we defined that if the

type assigned to a resource in DBpedia is a subtype or a supertype of the type

assigned to the equivalent resource in Wikidata by a maximum difference of

two levels it should be considered correct.

Figure 5.1: Example of how Wikidata can sometimes be used to verify DBpedia
type assignment.

To asses how efficient would be a method to correct DBpedia using wikidata

if the ontologies were perfectly aligned, we manually inspected 4, 159 randomly

selected entity-type pairs out of the 690, 639 pairs for which the comparison

could be performed. Once again, we separated them in four groups:

• True positives: Incorrect entity-type pairs correctly flagged as incorrect

during the comparison with Wikidata.

• True negatives: Correct entity-type pairs correctly labeled as correct

during the comparison with Wikidata.
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• False positives: Correct entity-type pairs incorrectly flagged as incor-

rect during the comparison with Wikidata.

• False negatives: Incorrect entity-type pairs incorrectly labeled as cor-

rect during the comparison with Wikidata.

In this way, we could compute accuracy, precision, recall, and F1-score for

the comparison with Wikidata. The results are shown in Table 5.2.

Table 5.2: Comparison of different approaches for detecting error in the DB-
pedia ontology.

Accuracy Precision Recall F1-Score

Wikidata comparison 0.7169 0.6470 0.9547 0.7713

Our Method trained
with reference entities
selected automatically

0.8460 0.8020 0.9348 0.8633

We can see that the Wikidata comparison achieve a high recall. This is

expected because if both DBpedia and Wikidata assigned the same type to an

entity, it is very likely that the type is correct. Therefore the false negative

rate is very low. On the other hand, the false positive rate is considerably

higher than the one achieved by our binary classifiers. Because of that, the

Wikidata has the lowest precision.

When investigating the reasons for the high number of false positives re-

sulting from the comparison against Wikidata we notice differences in how

the entities are assigned to a type in the ontology in each knowledge graph.

For instance, rivers in DBpedia are usually assigned to the type dbo:River,

which is equivalent to the river (Q4022) in Wikidata. However, rivers in

Wikidata are usually assigned to the type stream (Q47521). Although both

river (Q4022) and stream (Q47521) have a common ancestor in the Wiki-

data ontology, they are in different branches (see Figure 5.2). Therefore the

comparison of rivers will always generate a false positive. In this particular

case, because rivers and steams are not exactly the same thing, one may also
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argue that the type of Wikidata is incorrect and that is the reason for the

false positive. In any case, this is a clear example of the limitations of using

an external knowledge graph for error detection.

Figure 5.2: Partial Wikidata ontology illustrates a common scenario in which
false negatives are likely to happen when using Wikidata to refine DBpedia

Another interesting finding of this experiment resides in the similar perfor-

mance achieved by the classification using the manually curated gold standard

(Table 4.12) and the classification using the automatically selected reference

entities. This serves as evidence that although roughly 6% of the representa-

tive entities are incorrect (as described in Section 5.1), the overall performance

of the classifiers is comparable with their performance when using human-

annotated data. One possible explanation for this result is that humans tend

to insert their own bias in the dataset when collecting data samples, by se-

lecting resources that they are familiar with (for example, selecting cities in

their country of origin). Meanwhile, our proposed method for automatic data

collection is capable of selecting a more diverse set of samples. Moreover,

even manually curated dataset are susceptible to errors, which means that it
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is unlikely that 100% of the resources in the gold standard are correct.

Overall, the result from Table 5.2 indicates that our proposed solution can

outperform the usage of another knowledge graph for refining DBpedia.
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Chapter 6

Error analysis

During the retrospective evaluations described in Sections 4.3 and 5.2 we also

investigated the most common errors made by the classifiers. In this Chapter,

we present some of them and discuss their possible reasons.

6.1 Errors with rare entities

The first thing that we notice is that rare entities (i.e., entities that are too

specific or are not frequently linked in other Wikipedia pages) and entities that

are derived from Wikipedia articles that are too short, are more likely to lead to

incorrect classifications. This is expected because the Wikipedia2vec embed-

dings are essentially a representation of the semantic context of the entities. If

the semantic context of the entity is poor, the quality of the embedding is low.

We compared the Wikipedia articles of entities that were correctly classified

against the articles of entities that were incorrectly classified. The results are

shown in Table 6.1. On average, the entities correctly classified have longer

articles and are more frequently mentioned in other pages.

The only solution that we could envision for improving the classification of

rare entities is improving the Wikipedia articles about them. However, because

they are rare and attract little public interest, it is unlikely for Wikipedia’s

editor to be willing to enhance these pages. Nevertheless, due to the same

reason, errors on the type assignment of these entities are less visible, since

tend to affect fewer applications and users.

We also hypothesized that entities with more properties in DBpedia are
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Table 6.1: Comparison between articles of entities correctly and incorrectly
classified.

Average article
length

Average number
of references

Average number of
properties on

DBpedia
Correct
classifications

899.25 words 179.29 11.58

Incorrect
classifications

783.16 words 156.85 10.52

more likely to be correctly classified. This intuition is based on the fact that the

DBpedia2vec components of the resource2vec embeddings are created based

on the properties of the resource in DBpedia. However, that does not seem

to be the case. When comparing the average number of properties between

correct and incorrectly classified entities we can see that, on average, correctly

classified resources have only one property more than the incorrectly classified

ones, which is probably not enough to justify the errors of the classifiers.

At this point, we are unable to provide a definitive explanation about why

the number of properties for the resource in DBpedia does not significantly

impact the likelihood of the resource being misclassified. The most proba-

ble cause is that, although the number of properties in incorrectly classified

resources is the same, the quality of the properties is lower (i.e., they are

not strongly related to the type). For example, most of the cities which

were correctly classified have properties such as dbo:populationDensity,

dbo:areaCode, dbo:country, dbo:elevation, dbo:leaderTitle,

dbo:leaderName, and dbo:populationDensity. Meanwhile, cities that were

misclassified by our classifiers, like dbr:South Kannanur and dbo:Albanopolis

have less specific properties, such as dbp:populationAsOf, dbp:pushpinMap,

dbp:pushpinMapCaption, dbp:settlementType, dbp:latd, and dbp:latm,

which are not as useful for categorizing a city and, therefore, make the classi-

fication more difficult.
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Table 6.2: A few examples of the performance of the binary classifiers for each
type during the manual retrospective evaluation, described in section 5.2.

Type Accuracy Precision Recall F1-Score

Aircraft 0.9670 0.9302 1.0000 0.9638
Airport 0.9285 0.8928 1.0000 0.9433
Animal 0.7818 0.7525 1.0000 0.8588
Country 0.9416 1.0000 0.8571 0.9230
Diseases 0.9712 1.0000 0.9200 0.9583
Language 0.8764 0.7954 0.9200 0.9459
PopulatedPlace 0.5049 0.5000 1.0000 0.6666
President 0.6612 0.5833 0.7777 0.6666

6.2 Errors with high-level and ambiguous types

Another observation made during the error analysis is that some of the binary

classifiers tend to perform better than others. Table 6.2 shows a few examples.

We noticed that classifiers for well-defined and self-contained types (usually

those are the lower-level types, without subtypes), such as dbo:Aircraft,

often have a higher performance than classifiers for more generic types, such

as dbo:President (which can include presidents of countries, universities,

companies, institutes, associations, councils, societies, sports clubs, etc.), or

dbo:PopulatedPlace (which includes countries, cities, town, villages, states,

provinces, territories, etc.).

Using agglomerative hierarchical clustering we can see how resources with

the same type can sometimes have very different embeddings. The dendro-

gram of figure 6.1 shows an example for the type dbo:Language. The figure

shows that there are at least two very distinct clusters. By sampling entities

from each cluster it is easy to see that entities in the first cluster (in green)

are languages and dialects used as a method of human communication (e.g.,

dbr:English language, dbr:Portuguese language, dbr:French language).

The second cluster contains programming languages and a lot of noise (i.e.,

entities of other types than are not language of any kind).

In this particular situation, the classifier was able to achieve reasonable

performance on separating languages and programming languages from other
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Figure 6.1: Dendrogram for type Language

entities incorrectly labeled as dbo:Language. However, this is not always

the case. The proposed approach performed poorly on detecting erroneous

type assignment for the type dbo:President, whose dendrogram is shown on

Figure 6.2. In this case, we can see two clusters. The first cluster, in green,

contains all different types of politicians (e.g., prime ministers, governors, vice-

presidents), which are frequently misclassified as dbo:President in DBpedia.

The second cluster (red) is mostly other people, but it also contains presidents

of different organizations.

Figure 6.2: Dendrogram for type President
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Because there is a lot of semantic similarity between presidents of coun-

tries and other politicians, the classifier was unable to distinguish between the

entities in the first cluster. In many occasions, it also failed to distinguish

the entities in the second cluster. That is because dbo:President is a very

generic type, and anyone who was president of anything at any point in their

lives could be associated to this type, even when the presidency was not the

most relevant part of their lives. For example, someone who was class pres-

ident could be classified as dbo:President, but there is very little or none

information on their embeddings that would allow the classifiers to separate a

president from another generic person.

A similar phenomenon can be observed with the type dbo:PopulatedPlace.

Figure 6.3 shows that there are two very distinct groups of entities assigned to

this type. By analyzing entities in each of the clusters we noticed that cluster

1 (green and red) includes countries, former sovereign states (e.g. Kingdom

of Iceland), and former colonies (e.g., Upper Canada), states and provinces,

and other larger populated areas (e.g., Vancouver Island). The second cluster

(magenta and aqua) includes basically smaller regions, such as cities, towns

(e.g., Maarssen, Siderno), districts, and villages. Both clusters contain some

noise. The classifiers are able to distinguish between the two clusters, but fre-

quently miss-classifies entities in the same clusters. For example, many cities

were classified as towns and vice versa.

6.3 Errors due to inconsistencies in DBpedia

Sometimes, classifiers for lower-level and more specific types also do not per-

form as well as expected. That is the case of the classifier for dbo:Animal,

which achieved only 78% of accuracy. Although this type has a few subtypes

(such as dbo:Amphibian and dbo:Insect) its properties are very specific, in-

cluding, for example, dbp:binomial, dbp:conservationStatus, dbp:kingdom,

and dbp:genus. We would expect that these properties, combined with the

semantic information about the entities, would be enough to distinguish this

type from the others. But as we already discussed in Section 4.3, that did
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Figure 6.3: Dendrogram for type PopulatedPlace

not happen. During the retrospective evaluation, we noticed that all false-

positives involving this type were racehorses, which are in fact animals, but

were flagged as not an animal by the classifiers. However, a closer analysis re-

viewed that the properties of racehorses are very different from the properties

for the other animals, and are not defined as belonging to the type dbo:Animal

or its supertype dbo:Eukaryote (examples include dbo:honours, dbo:owner,

dbo:sex, dbo:trainer, and dbp:earnings).

The dendrogram of Figure 6.4 shows how the entities of dbo:Animal were

clustered and how the embeddings of the racehorses (second cluster, in red)

are distant from the embeddings of the other animals. The first cluster

(green) contains mostly species of animals (e.g., dbr:Tanzanian woolly bat,

dbr:Echis carinatus, dbr:Armenian lizard). The majority of the entities

in the third cluster are animal families (e.g., dbr:Ulidiidae, dbr:Cyrtonyx).

When comparing the representative entities of the with the entities in each

cluster, we found that the average cosine similarity between the entities of

cluster 1 and entities labeled dbo:Animal among the representative ones is

0.3865. The average similarity between cluster 3 and the representative entities

is 0.36063. Between cluster 2 and representative entities the similarity drops

to 0.1996. In fact, none of the representative entities samples was a racehorse.

Whether or not racehorses should be classified as animals in DBpedia is
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Figure 6.4: The dendrogram for type Animal allows us to see three distinct
clusters. The red one, racehorse, is responsible for 100% of the false positive
classification for this type.

debatable. While some may believe that this classification represents an incon-

sistency on the usage of the ontology (since its properties do not belong to the

type), others argue that the classification is correct and perhaps the properties

for the type should include things like dbo:owner, dbo:sex, dbo:trainer, etc.

In either case, this example illustrates how challenging it can be to verify the

type for some of the resources, even for simple types like dbo:Animal.

This is not the only type in the DBpedia ontology that seems to have prob-

lems. Throughout our error analysis, we found several other cases of what we

consider to be inconsistencies in the ontology. For example, we noticed that,

at the time of writing, 196 out of the 685 types do not have any resources asso-

ciated to them, including very important ones that could have millions of enti-

ties, such as dbo:MusicComposer, dbo:Humorist, dbo:TelevisionDirector,

and dbo:VicePresident. Although our proposed solution can be used to as-

sign types to an entity even if it has no type, it will not be able to assign

an entity to a type that have not been used yet on the knowledge graph, be-

cause in these cases, no classifier was trained (i.e., no reference entities can

be collected). The only way to overcome this limitation of the proposed solu-

tion would be manually collecting a few reference entities for the type without
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resources, so the classifier for the type could be trained.

There are also several types in DBpedia that do not make sense as types

and should be resources instead, such as dbo:Altitude (height) and

dbo:GrossDomesticProduct. Other types seem to not fit well in the on-

tology, for example dbo:Type, which has subtypes dbo:DocumentType and

dbo:GovernmentType. Although we can easily identify entities belonging to

the subtypes (e.g., dbr:Democracy), it is difficult to imagine an application in

which classifying an entity simply as dbo:Type would be useful.

On the other hand, we missed a few types in the ontology. For example,

DBpedia makes no distinction between ship and boat. It also does not distin-

guish between libraries, institutions that lend books and provide information,

and software libraries. Although those entities are fairly different from each

other, they belong to the same type in the ontology. There is also no specific

type that could be used to assign a financial institution other than banks.

Because of that many companies in the financial market (e.g., stockbrokers)

end up being classified as dbo:Bank.

These examples illustrate how challenging it is to assign resources to types

in the ontology, specially when there are a lot of problems with the ontology

itself.
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Chapter 7

Conclusion

Because knowledge graphs (KGs) allow knowledge to be stored in a machine-

readable format, they have been widely used in many Natural Language Pro-

cessing (NLP) applications, such as question-answering systems and conversa-

tional agents. Moreover, they have been used to support a wide range of NLP

tasks, including but not limited to data integration, named entity recognition,

topic detection, and document ranking.

Various approaches have been applied to construct KGs. Each of them has

its own advantages and disadvantages. In general, manually curated KG tend

to suffer from limited coverage, while graphs constructed automatically are

more likely to contain errors. That means that a trade-off between complete-

ness and correctness is usually necessary for the construction of KGs. Because

of this, a lot of research effort has been deployed on refining KGs. Unlike

KG construction techniques, refining approaches assume that the graph has

already been built and it can be improved by adding missing knowledge or

correcting erroneous information.

In this work, we presented a fully automatic approach for KG refining,

which detects types erroneously assigned to the entities of the graphs. Our

solution creates a semantic representation (embeddings) of the entities by com-

bining information from Wikipedia and DBpedia. These embeddings are used

to train binary machine learning classifiers which are able to distinguish be-

tween the resources of a specific type from the resources of all other types.

To test our solution we first tried to select representative entities of each
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types using a external KG, such as Google’s KG or Wikidata, which are meant

to be less noisy than DBpedia. This would allow us to quickly collect a large

number of data samples. However, this approach has several disadvantages.

First of all, the external KG can also be incorrect or incomplete. Google, for

example, is much more conservative than DBpedia when assigning types to

the entities in their KG. Sometimes, only very high-level types, such as Thing,

are assigned. Secondly, the ontologies of different KGs are usually not aligned.

This means that some types in one KG may not have an equivalent type on

the other. Finally, finding equivalent resources on different KGs may also be

a problem. It has been shown that up to 50% of the interlinks connecting

resources on DBpedia to equivalent resources on other KGs are incorrect [10].

Because of the challenges on using an external KG, we had to create a

manually curated partial gold standard to assess the viability of our solution

and to compare the different algorithms for creating the classifiers. We col-

lected 3876 entities of 35 different types of the DBpedia ontology. The initial

thought was that if the approach works well in this simplified setting, it may

be worth scaling the solution to consider all types in DBpedia. The results of

this experiment indicated that the proposed approach can achieve more than

97% of accuracy, precision, and recall.

Motivated by the good results of the experiments in the gold standard,

we decided to test the classifiers on all DBpedia resources that belong to one

of the 35 types of the gold standard. In total 364,791 entity-type pairs were

checked by the classifiers. Human evaluators then verified the output of the

classifiers for a random sample of 3699 predictions. In this experiment the

proposed approach achieve more than 88% of accuracy and almost 85% of

F1-score.

Even though these two experiments demonstrated the overall quality of the

solution, the necessity of manually selecting the representative entities poses a

significant limitation on the applicability of the method. For training classifiers

for all 489 types in DBpedia with at least one entity, it would be necessary to

collect roughly 97,800 data samples (200 per type), which would be expensive,

and time-consuming. Because of this, we introduced an alternative approach
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to automatically select the representative entities from each type by retrieving

the resources with a higher probability of being of the type. Our experiments

showed that about 94% of the data samples collected this way are correct, and

the overall performance of the classifiers is similar to their performance when

trained using the manually curated gold standard.

During our error analysis, we found that some of the binary classifiers

perform better than others. In general, generic and high-level types, such as

dbo:PopulatedPlace and dbo:President, lead to more classification errors.

However, in some cases, the errors made by the classifiers are actually due

to inconsistencies in the ontology of the KG. This includes types that are

ambiguous and end up being assigned to completely different resources, like

dbo:Library, and types with resources whose properties do not belong to the

type, like racehorses being labeled as dbo:Animal.

7.1 Contributions

The main contributions of this work can be summarized as follows:

• We propose an approach for enriching the semantic representation (em-

beddings) of the entities of a KG using the properties of the entities on

the graph.

• We show how these embeddings can be used to associate the entities to

types in the ontology.

• We proposed a fully automatic approach for selecting entities that repre-

sent a type in the ontology. These entities can be used as training data

for machine learning models.

• We create a gold standard for evaluating our approach, which can also

be used for other researchers working on similar problems.
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7.2 Threats to validity

As with any empirical study, our results need to be interpreted as inherently

approximate. Every effort was made to avoid overt biases when selecting types

for our gold standard or when select more types for the larger experiment with

our unsupervised method. Nevertheless, it is possible that our results do not

carry over to other types. Moreover, the fact that we only analyzed a randomly

selected subsample of the classifications, and each classification is verified by

only one evaluator may be another threat to the validity of our conclusions.

7.3 Future work

The lower performance of the classifiers for high-level types can be explained

by a limitation in our approach for selecting representative entities, which is

not able to capture all different kinds of resources for a high-level type. For

example, most of the training samples for dbo:PopulatedPlace are cities, and

examples of other types of populated place are rare among the representative

entities. A simple possible solution that we plan to test and evaluate in a

future work, would be applying the algorithm for selecting representative en-

tities recursively, to encompass all subtypes for a type. For example, data

for training a classifier for dbo:PopulatedPlace can be obtained by apply-

ing the approach described in section 5.1 for the types dbo:Agglomeration,

dbo:Community, dbo:Continent, dbo:Country, etc.

However, this approach may not be enough to solve the problem for all

types. Some of them, such as dbo:President are generic even though they

have no subtype. This technique would not solve the problem for types that

are being inconsistently used, like dbo:Animal (as discussed in section 4.3).

Even including samples for all subtypes of dbo:Animal, no racehorse would

appear among the representative entities for the type.

It is clear that the approach for collecting reference entities still needs to

be improved in order to increase the overall performance of the classifiers, and

this should be the focus at a future work. Another prospective continuation
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of this work involves testing the proposed solution on a different KG, such as

Wikidata. Although Wikidata does not contain the same amount of errors

of DBpedia, it can still be benefited because our method can also be used to

assign types to the entities if the type is missing.

In the future, we also want to investigate if the resource2vec embeddings

could be used to identify other issues in the KG. For example, we believe that

by comparing resource2vec embeddings created with the DBpedia properties

against the resource2vec embeddings created with the properties on a target

KG, we may be able to identify incorrect interlinks between resources in DB-

pedia and the target KGs. Similarly, by analyzing the embeddings of two

entities connected by a relation in a KG, we can try to predict whether or not

the relationship is correct. The resource2vec embeddings can also probably be

used to identify problems in the ontology itself, for instance, ambiguous types

(e.g., dbo:Library) that should be split into two or more types.
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[45] G. Töpper, M. Knuth, and H. Sack, “Dbpedia ontology enrichment for
inconsistency detection,” in I-SEMANTICS 2012 - 8th International
Conference on Semantic Systems, I-SEMANTICS ’12, Graz, Austria,
September 5-7, 2012, V. Presutti and H. S. Pinto, Eds., ACM, 2012,
pp. 33–40. doi: 10.1145/2362499.2362505. [Online]. Available: https:
//doi.org/10.1145/2362499.2362505. 21

[46] A. Uyar and F. M. Aliyu, “Evaluating search features of google knowl-
edge graph and bing satori: Entity types, list searches and query inter-
faces,” Online Information Review, vol. 39, no. 2, pp. 197–213, 2015.
doi: 10.1108/OIR-10-2014-0257. [Online]. Available: https://doi.
org/10.1108/OIR-10-2014-0257. 14, 15
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Appendix A

Background Material

A.1 Evaluation metrics

The simplest metric that can be used to evaluate a classifier is the accuracy.

It represents the percentage of inputs in the test dataset that were correctly

classified. Notwithstanding, it is important to take into consideration the

frequencies of the individual class labels in the test dataset. Accuracy results

usually are not enough for the evaluation and comparison of classification mod-

els. Since the number samples in each classes can be unbalanced. Therefore,

we also relied in the notions of precision, recall, and a combination of both

named F1-Score.

Given the classification results in term of absolute number of true positives,

true negatives, false positives, and false negatives (as defined on sections 4.3

and 5.2), the precision, recall, and F1-score of the classifiers can be computed

as following:

Precision

The precision of the classification is defined as the percentage of correct error

detections over the total entity-type pairs labeled as incorrect, therefore:

Precision =
TP

TP + FP
(A.1)
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Recall

In our case, recall represents the percentage of incorrect entity-type pairs in

the test sample that the classifier correctly identified as incorrect:

Recall =
TP

TP + FN
(A.2)

In most cases the relationship between Precision and Recall is inverse and,

therefore, the cost of increasing one of these values results in the decrease of

the other. The balance of the two measures of performance depends on the

specific objectives of the study.

F1-Score

We can combine the precision and recall to give a single score, the F1-score.

It is defined to be the harmonic mean of the precision and recall:

2 · Precision ·Recall
Precision+Recall

(A.3)

A.2 Comparison of Algorithms: ANOVA

The ANOVA (Analisis of Variance) is a statistical test that can be used to

analyze the differences in the means of multiple groups (populations). The

inferences about the population means are made by analyzing variance, hence

the name of the test. In this section we provide a brief explanation about the

test which was adapted from Campelo (2018) [35].

Each sampled value for each evaluation measure (accuracy, precision and

recall) can be modeled as:

yij = µi + εij︸ ︷︷ ︸
Means model

= µ+ τi + εij︸ ︷︷ ︸
Effect model

{
i = 1, . . . , a

j = 1, . . . , n

where µ is the overall mean, τi represents the effect of the i-th level (in our case

each level is one classifier) and εij is the residual (random error, or unmodeled

variability). a and n represent the number of algorithms being tested and

number sampled data for each algorithm, respectively.
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In the derivation of the statistical test for the existence of differences in

the group means, we will employ the effects model, and initially consider a few

assumptions about the residuals:

yij = µ+ τi + εij

{
i = 1, . . . , a

j = 1, . . . , n
, with εij

i.i.d.∼ N
(
0, σ2

)
If these assumptions are correct, the populations are expected to be dis-

tributed as shown on figure A.1

Figure A.1

Since we are interested in testing our data for differences in the mean values

of each population, the test hypotheses can be described as:{
H0 : τi = 0, ∀i ∈ {1, 2, . . . , a}
H1 : ∃τi 6= 0

(A.4)

This approach to modeling the mean effects of the algorithm is known as

the fixed effects model. If there is no difference between the algorithms, they

will perform similarly, therefore the algorithm effect is null:

a∑
i=1

τi = 0 (A.5)

In the derivation of the statistical test for the existence of differences in

the group means, we will employ the effects model, and initially consider that

the residual is normally distributed (µ = 0 and variance σ2).

The total variability of the data can be expressed by the total sum of

squares, which represents the sum of the squared deviations between each

observation and the overall sample mean:

SST =
a∑
i=1

n∑
j=1

(yij − ȳ••)2, (A.6)
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where • indicates the summation over an index, and ¯ indicates an averaging

operation.

The SST can be divided into two terms, representing the within-group

SSE, and the between-group SSLevels variability:

SST =
a∑
i=1

n∑
j=1

(yij − ȳ••)2 = n

a∑
i=1

(ȳi• − ȳ••)2︸ ︷︷ ︸
SSLevels

+
a∑
i=1

n∑
j=1

(yij − ȳi•)2︸ ︷︷ ︸
SSE

(A.7)

Dividing the sums of squares by their respective number of degrees of

freedom yields quantities known as mean squares. The relevant means squares

for our test will be the levels mean square and the residual mean square:

MSE =
SSE

a (n− 1)
MSLevels =

SSLevels

a− 1
(A.8)

The expected values of these quantities are:

E [MSE] = σ2 E [MSLevels ] = σ2 +
n
∑a

i=1 τ
2
i

a− 1
(A.9)

Notice that MSE is an unbiased estimator for the common variance of the

residuals, while MSLevels is biased by a term that is proportional to the squared

values of the τi coefficients.

However, under H0 we have that τi = 0 for all i, that is,

E [MSLevels ] = E [MSE] = σ2 (A.10)

It can be shown that, if H0 is true, the statistic F0 = MSLevels

MSE
is distributed

according to an F distribution with a−1 degrees of freedom for the numerator

and a(n− 1) for the denominator. The usual notation is F(a−1),a(n−1).

If H0 is false, the expected value of MSLevels is larger than that of MSE,

which results in larger values of F0 and defines the critical region for our test:

Reject H0 at the α significance level if F0 > Fα;(a−1),a(n−1)

The rejection of the null hypothesis leads to the conclusion that there is at

least one level with an effect significantly different from zero, but it does not
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allow us to conclude which ones are different. To complete the analysis we,

therefore, need verify if the assumptions of the test are valid and determine

which means are different from which, and by how much.

The ANOVA model is based on three assumptions on the behavior of the

residuals: Independence, Homoscedasticity (i.e., equality of variances across

groups), and Normality. The residuals of the model can be obtained as:

eij = yij − ŷij = yij − (µ̂+ τ̂i) = yij − ȳi•

The normality assumption can be tested using the Shapiro-Wilk test cou-

pled with a normal QQ plot of the residuals. The ANOVA is relatively robust

to moderate violations of normality, as long as the other assumptions are ver-

ified (or the sample size is large enough). The homoscedasticity assumption

can be verified by the Fligner-Killeen test, together with plots of residuals by

fitted values. ANOVA is relatively robust to modest violations of homoscedas-

ticity, as far as the sample is balanced. As usual, the independence assumption

should be guaranteed (to the best of the experimenter’s knowledge) on the de-

sign phase, as well as on the analysis. This includes avoiding pseudoreplication

and ordering effects, among others.

If the ANOVA assumptions are verified (i.e., if we have solid grounds for

trusting the result of the test), we usually need to determine which levels of

the factor are significantly different. Pairwise comparisons of the all vs. all

type is used in this work because we are simply interested in detecting which

levels are significantly different from which, without any prior information or

special interest in one specific level or ordering. In these cases, the number of

comparisons is K = a(a− 1)/2, where a is the number of levels.

To perform all vs. all multiple comparisons, a common approach is to use

Tukey’s Honest Significant Difference (HSD) approach. This method provides

a slightly higher power than performing multiple t-tests with adjusted values

of α.
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Appendix B

List of types with samples in
the manual evaluation

Following is the list of the 83 types with more than 200 entities which were

used for the retrospective evaluation described in section 5.2:

• AcademicJournal

• Actor

• Aircraft

• Airline

• Airport

• Album

• AmericanFootballPlayer

• Animal

• Archipelago

• Automobile

• Award

• Bacteria

• Band

• Bank

• Book

• BroadcastNetwork

• Building

• Casino

• Castle

• City

• Company

• Country

• Currency

• Disease

• Drug

• Event
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• FictionalCharacter

• Food

• Galaxy

• GovernmentAgency

• Horse

• HorseTrainer

• Hospital

• Hotel

• Island

• Lake

• Language

• Library

• Locomotive

• MilitaryConflict

• Mountain

• Murderer

• Museum

• Musical

• MusicalArtist

• MusicGenre

• MythologicalFigure

• Newspaper

• Park

• Person

• Planet

• Plant

• Poem

• PoliticalParty

• PopulatedPlace

• President

• Profession

• ProgrammingLanguage

• Publisher

• RailwayLine

• River

• School

• Sea

• Settlement

• Ship

• ShoppingMall

• Software

• Song

• Spacecraft

• SpaceStation

• Species
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• Sport

• Stadium

• Station

• Swimmer

• Theatre

• TimePeriod

• Town

• Train

• University

• VideoGame

• Village

• Weapon
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Appendix C

Assumptions on the
retrospective evaluation of the
classifiers

This section lists the assumptions made by the human evaluators during the

retrospective evaluation described in sections 4.3 and 5.2. For the remaining

types used for the evaluation but not listed in this section, no special assump-

tion was made.

Actor

• Animal actors were not considered to belong to this type.

Award

• Award shows were not considered to belong to this type.

Band

• Rap groups that do not use any musical instruments were not considered

to belong to this type.

BroadcastNetwork

• Individual TV channels were not considered to belong to this type.

Casino

• Casino hotels were considered to belong to this type.
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• Empires, caliphates, and dynasties were not considered to belong to this

type.

Country

• Kingdoms were considered to belong to this type.

Currency

• Cryptocurrencies were considered to belong to this type.

Language

• Human languages and dialects were consider to belong to this type.

• Programming and modeling languages were consider to belong to this

type.

PoliticalParty

• Alliances and coalitions were not consider to belong to this type.

ProgrammingLanguage

• Frameworks, software libraries, extensions, algorithms, and paradigms

were not consider to belong to this type.

Publisher

• Any organization that publishes something (video games, softwares, news-

papers, magazines, books, papers, etc.) were consider to belong to this

type.

River

• Streams and creeks were consider to belong to this type.

• Arroyos and springs were not consider to belong to this type.

Settlement
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• Any place where a group of people live was consider to belong to this

type (towns, city, populated island, village, township, etc.).

Ships

• Boats were also consider to belong to this type, since the distinction

between boats and ships is not always clear. Moreover, the type boat

does not exist on DBpedia, therefore, this is probably the best type to

assign boats to.

• Submarines and U-boats were not considered as ships.

Shopping Mall

• Flea markets, outdoor markets, plazas, outdoor pedestrian malls, outlet

malls, and large stores were not considered to belong to this type.

Software

• Computer games and mobile applications were considered to belong to

this type.

Spacecraft

• Satallites, rovers and probes were considered to belong to this type.

• Space station modules were not consider spacecrafts.

Stadium

• Areas and baseball venues were also considered as stadiums.

Stations

• Public transport station (eg. railway station, metro station, bus station)

were considered to belong to this type.

• Broadcast stations (radio and television) were considered to belong to

this type.

• Power stations(dams) were considered to belong to this type.
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• Military airports were not considered to belong to this type.

Theater

• Operas were also consider as theaters.

• We excluded from our evaluation buildings that contains theaters but

also contains other services (i.e., we did not judge these cases).

• Theater companies were not consider theaters.

Town

• Townships were not accepted in this type.

Train

• Both named trains and trains services were consider to belong to this

type.

• Electric multiple units and diesel multiple unit were considers trains.

Villages

• Only resources whose description explicitly says that they are villages

were considered to belong to this type.

Weapons

• Tanks and artillery vehicles were considered weapons.
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