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ABSTRACT

Little analytical and experimental work on combined
flexure and torsion of I-shaped steel beams in the inelastic
region has been done. In particular, a comprehensive method
for determining the ultimate capacity, as is required in
limit states design standards, is not available.

Four tests were conducted on class 1 cantilever beams
with varying loading eccentricities. It was established that
the torsional behaviour has two distinct phases, with the
second dominated by second order geometric effects. This
second phase is non-utilizable because the added torsional
restraint developed is load path dependent and if lateral
deflections had been prevented, would not have been
significant. Based on first phase behaviour, a normal and
shearing stress distribution on the cross-section has been
proposed for resisting flexural and torsional loads. From
this, a moment-torque ultimate strength interaction diagram
is developed applicable to a number of different end and
loading conditions. This ultimate limit state interaction
diagram and a serviceability limit state based on first
yield provide a comprehensive design approach for these

members.
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1. INTRODUCTION

1.1 General
I-shaped steel beams are widely used as structural
elements because of their efficiency in flexure about the
strong axis. They may also be subjected to torsional loads
when the loads are applied eccentrically. Whenever the line
of action of a load does not pass through the shear centre
of the beam, a torqgue results.
CSA Standard CAN3-S16.1-MB4 (CSA, 1984) requires that
beams subjected to torsion be designed for strength to
satisfy Section 15.11.1, which reads:
"Beams and girders subjected to torsion shall have
sufficient strength and rigidity to resist the
torsional moment and forces in addition to other
moment or forces. The connections and bracing of.
such members shall be adequate to transfer the
reactions to the supports.”

The designer must decide how this requirement is to be met.

Other codes, such as British Standard 5950 (BSI, 1985)
and the American Institute of Steel Construction
specification (AISC, 1978), do not give provisions for
torsional design. Therefore, a need exists for more detailed
requirements in the design of steel members for eccentric

loading.



1.2 Objectives and Scope

The objective of this research was to develop a simple
limit states procedure for the design of I-shaped beams
subjected to both flexural and torsional loading. The
procedure was to encompass all commonly occurring sets of
flexural and torsional end conditions consisting of
pinned-pinned, fixed-fixed, pinned-fixed, and fixed-free,
and deal with both concentrated and uniformly distributed
loads. Procedures for other conditions could be developed
similarly. In addition, as a practical design approach, a
limiting eccentricity below which torsional effects could be
considered insignificant was to be defined quantitatively.

The design method is substantiated by tests conducted
as part of this study and by other researchers. All test
data are limited to class 1 beams. These sections have
width-thickness ratios such that local buckling is precluded
before the fully plastic moment is reached and sufficient
hinge rotation has occurred to develop a plastic mechanism.
The effects of manufacturing tolerances, such as initial
out-of-straightness, have not been considered.

While attention is focused primarily on ultimate
strength considerations, serviceability criteria have also

been examined,



2. LITERATURE REVIEW

2.1 General

Almost all the literature describing the behaviour of
beams subjected to combined flexural and torsional loads
deals with elastic behaviour only. No simple, functional
approach with a solid theoretical basis has been presented
that takes into account inelastic behaviour and attempts to
predict ultimate member strength.

Many researchers make an effort to simplify the problem
by the use of approximate equations or a series of tables or
graphs. These methods, although vastly simpler to use than
closed form solutions, may remain cumbersome and often
neglect aspects of the behaviour that could affect a sound
design. Even with compensating design factors, most methods
do not take into account the interaction of the two loading

mechanisms.

2.2 Elastic Torsion Theory

Present day torsion theory is based on the classical
approach developed by the French engineer Adhémar Jean Barré
de Saint-Venant (1797-1886) and presented to the French
Academy of Sciences in 1853 (Salmon and Johnson, 1980).
Perhaps St. Venant's most significant contribution, from a
structural engineering point of view, was the observation
that prismatic beams of non-circular cross-section have a

tendency to warp when subjected to torsional loads as shown



in Fig. 2.1, Previously, the simplifying assumption was made
that the cross-section of a beam remains plane after a
rotational deformation, as was proposed by Jakob Bernoulli
(1654-1705) in the development of the elementary bending
theory (Hamilton, 1952) and as was extended to torsion
theory by Louis Marie Henri Navier (1785-1836) (Westergaard,
1964). Inherent in St. Venant's realization of the
significance of warping is the observation that any form of
warping restraint induces longitudinal normal stresses in
the cross-section of the beam. The normal stresses are
negligible in beams with rectangular or elliptical
cross-sections but can be appreciable in I-shaped beams
(Ugural and Fenster, 1979).

When a torque is applied to an I-shaped beam causing a
rotation, ¢ (Fig. 2.2), the beam resists the load by two
distinct mechanisms. The first is St. Venant or pure
torsion. This mechanism induces shear stresses that are
distributed over the cross-section as shown in Fig. 2.3. In
1903, Ludwig Prandtl showed that these stresses could be
determined by using the membrane or soap film analogy
(Timoshenko, 1983). This analogy states that an elastic
membrane, placed over an opening with the same shape as the
cross-section of a beam and subjected to uniform pressure,
deforms in such a way that the slope of the membrane is
proportional to the shear stress that would be present at
that point when the beam is subjected to a torsional load.

Also, the total St. Venant torgue that can be carried by the
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Figure 2.1 Warping of member with non-circular cross-section

(after Ugural and Fenster, 1979)

Figure 2.2 Rotation of I-shaped cross-section
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Figure 2.3 St. Venant shear stress distribution

(after Heins and Seaburg, 1963)



cross-section is proportional to the volume under the
elastic membrane. It can be shown (e.g. Galambos, 1968;
Heins, 1975; Trahair, 1977) that for an open cross-section
made up of rectangles, the maximum shear stress due to St.

Venant torsion can be expressed as

[2.1] v, = Gt .0

sv

The total St. Venant torsional resistance is

[2.2] T,, = GJ¢'
Salmon and Johnson (1980) indicate that J can be closely

approximated by

1

3

[2.3] =z
where n is the number of rectangular elements. St. Venant
originally provided a reduction term in the expression for J
to account for end effects (Lyse and Johnston, 1936) but
this correction is small and is partially offset by the
increased resistance due to the fillets at the web-flange
junctions (Seely and Putnam, 1936). Other authors, such as
Goldberg (1953) and Darwish and Johnston (1965), suggest the
use of stress concentration factors to account for the fact

that the stresses are higher at internal corners.



The second mechanism by which torsional loads are
resisted in I-shaped beams is warping torsion. As a torque
is applied, the flanges can be visualized as rectangular
beams being deformed laterally in flexure as seen in the
plan view of Fig. 2.4. The shears that develop as the
flanges are being bent in opposite directions create an
internal couple that resists the applied torque (Fig. 2.5).
The lateral bending produces tensile and compressive normal
stresses in the flanges as shown in Fig. 2.6. Shear stresses
in the web and vertical shear stresses in the flanges do
exist as a product of warping restraint, but are small and
may be neglected (Goldberg, 1953).

The value of the warping shear and normal stresses in

the flanges can be calculated as (Heins, 1975)

[2.4] 7, = -ES,¢™

[2.5] o, = ~EW _¢"

The total warping torsional resistance is

[2.6] T, = ~EC,0™

Equations [2.2] and [2.6] give the contributions to
torsional resistance of the St. Venant and warping
components, respectively. Therefore, the overall

differential equation describing the resisting torque is



Figure 2.4 Warping of flanges

—_—_——_—.—.—.’ Vf

Figure 2.5 Flange shears in I-shaped beams
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Figure 2.6 Lateral bending stresses in flanges

(after Heins and Seaburg, 1963)
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[2.7] T = GJ¢' - EC,o™

Equation [2.7] has the general solution

; Z . cainnZ 4 T2
[2.8] ¢ = A + Bcoshy + Csinhl + &%
for a concentrated torque,
[2.9] = A + Bz + Ccosh® + Dsinh® - tz’
. o = z coshy sinhz 3G3
for a uniformly distributed torque, and
3
[2.10] - A + Bz + CcoshZ + DsinhZ - =i
. ¢ = z coshz sinhz 6GIL

for a linearly varying torque, where z is the distance along
the longitudinal axis. The constants of integration are
evaluated to comply with the torsional end conditions. The
stresses in the beam may then be determined according to
[2.1], [2.4]1, and [2.5]. Fig. 2.7 shows the distribution
between St. Venant torque and warping torque for a
torsionally pin-ended beam. It can be seen that at the
centreline, where warping is fully restrained, the torque is
carried entirely by the warping mechanism. Where the flanges
are free to warp, the torque is resisted primarily by the
St. Venant warping mechanism.

An important assumption made in the development of

[2.7] is that the web remains undeformed during rotation.
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Figure 2.7 Torque diagrams for a pin-ended beam

(after Salmon and Johnson,

1980)
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Although this is not strictly true, as shown in Fig. 2.8, it
has been shown by Kubo, Johnston and Eney (1956) that except
for unstiffened plate girders, it provides a good

approximation (Salmon and Johnson, 1980).

2.3 Elastic Design Methods

Many different methods have been proposed for the
design of beams under flexural and torsional loads, most of
which are based on summing the stresses caused by the two
types of loads. However, the method of superposition is
valid only when bending moments are small and becomes very
unconservative as the bending moment approaches the lateral
torsional buckling value and interaction becomes
significant, as discussed subsequently. In fact, when
bending stresses approach 66% of yield (the maximum flexural
stress allowed by the AISC specification (AISC, 1978)),
rotation and stresses may be 50% higher than those predicted
for simply supported beams and 80% higher for cantilevers
(Chu and Johnson, 1974).

Two types of interaction occur that lead to
unconservative solutions. First, if the torque is applied in
the form of an eccentric vertical load acting on the top
flange, the eccentricity increases as the section rotates as
shown in Fig. 2.9 (Sourochnikoff, 1951). Second, a vertical
load applied to a rotated section causes bending about both
principal axes. Therefore, the stresses caused by flexure

are larger than those predicted when neglecting the
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Figure 2.8 Distortion of web under torsional load

(after McGuire, 1968)

®
L

Figure 2.9 Increasing eccentricity as cross-section rotates
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interaction (Pastor and DeWolf, 1979)., Some authors have
attempted to address this situation by using more complex
differential equations (Chu and Johnson, 1974) or by
introducing design factors to reduce the predicted strength
of the beam (Pastor and DeWolf, 1979).

One approach to designing beams subjected to torsional
loads is to use the exact solution to [2.7], which is
facilitated by the use of graphs such as those published by
the Bethlehem Steel Corporation (Heins and Seaburg, 1963).
Johnston (1982) presented a similar set of graphical design
aids. Superposition of stresses is then used to combine the
effects of bending and torsion.

A very simple approach that often leads to overly
conservative designs, is the flexural analogy. The torque is
replaced by a couple acting on the two flanges, as shown in
Fig. 2.10. The flanges are then treated as rectangular beams
bent laterally in simple flexure. As the entire torque is
assumed to be resisted by the shear forces in the flanges,
these forces as well as the corresponding lateral flange
moments and resulting normal stresses are over-estimated. As
in most cases, normal stresses rather than shear stresses
are critical, and therefore the solution is conservative
(Salmon and Johnson, 1980).

The flexural analogy may be used with the "B-modifier"
to achieve more economical designs. The B-modifier is a
reduction factor applied to the flange moment calculated

from the flexural analogy design method. The value of the
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B-modifier is dependent upon the end and loading conditions,
and the length and section properties of the beam. A
solution of this type requires the use of tables such as
those presented by Lin (1977).

Walker (1975) also suggested an approach similar to the
flexural analogy except that solutions are in terms of

bi-moments, B, so termed by Vlasov (1961), where

[2.11] B = Mh

This is an approximate method which requires a series of
graphs of bi-moment and rotation correction factors to
account for the difference between the approximate and the
exact solutions. Once again, when stresses from torsion and
bending are added, no reduction in strength due to
interaction is incorporated.

Johnston, Lin and Galambos (1980) presented a design
method whereby flange moments are calculated using fairly
simple approximate formulae. From these, warping normal
stresses and the corresponding shear stresses are
determined. For short beams, the equations are identical to
those of the flexural analogy method, that is, the torque is
assumed to be resisted entirely by warping torsion. For
intermediate and long beams, some modifications are
incorporated to reflect the fact that the effect of warping
restraint is dissipated in a distance from the restrained

location approximately equal to a, where
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[2.12] a = ehj
provided the members behave elastically.

2.4 Limit States Research

Although the behaviour of I-shaped beams subjected to
both flexural and torsional loads has been described by many
different authors, few have carried the analysis to a fully
plastic condition. With the advent of limit states design
standards such as Standard CAN3-S16.1-M84 (CSA, 1984), one
of the ultimate limit states conditions of concern is the
attainment of the full strength of the cross-section.

Boulton (1962) proposed a limit states method for the
design of beams subject to torsional loads based oﬁ an
equilibrium equation relatihg flange moments to flange
shears. A portion of the sand heap torsional stresses are
added to the warping stresses so that every point on each
cross—-section reaches the yield stress. This method results
in complex equations that are not suitable for design
standards. The generalized form of the theory can be used
for beams under combined bending and torsion.

Boulton tested beams under torsion only and observed
that the beams carried torques beyond the theoretical fully
plastic torque that continued to increase with large angles
of twist. He attributed this increased resistance to what
has become known as the helix effect. With large rotations,

the top and bottom flanges describe a helical shape. The
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tension that develops along the helices has a component
normal to the axis of the beam that resists the applied
torque.

Dinno and Gill (1964) have summarized several different
torsion theories including those of Boulton (1962) and
Merchant (similar to Dinno and Merchant (1965)). They
provide test results, but only for beams under torsion
alone.

Dinno and Merchant (1965) presented a very simple
design method based on the full plastification of the fixed
end of a cantilever beam subjected to a concentrated torque
at the free end. The method is extended to other end
conditions by the use of effective length factors. It is
assumed that the sand heap torque (the fully plastic St.
Venant torque as described by Nadai (1931)), as shown in
Fig. 2.11, can be carried at any section, regardless of the
presence of warping stresses. In the absence of flexure, the
flanges are assumed to have a fully plastified normal stress
distribution at the fixed end, as shown in Fig. 2,12, A
compatible flange shear distribution forms the warping

torsional restraint. Therefore,

[2.13] T, = Tgy + Vih

The largest torque that can be carried is that based on

a constant flange shear over the length of the cantilever.

If the flanges are fully plastified at the fixed end,



EEREX,

SLY YYVYY

UN
Py

Figure 2.11 Sand heap shear stress distribution

20



21

Oy \

Figure 2.12 Fully plastic warping normal stresses



22

{2014] VfL = Bﬂf =

Combining [2.13] and [2.14] gives

0,tb’h
[2.15] Ty = T + g5 — = Ten + T

wp
Based on a derivation by Hodge (1959), they proposed the

interaction curve for combined bending and torsion given by
2 2
M T
) 2T -
M, Tp

Dinno and Merchant claimed that this is a safe design
method because results of tests that they conducted gave
higher strengths than predicted. However, the beams they
used were significantly smaller than those used in practice
(d = 5/8 in.) and the flange and web width-thickness ratios
were also very small. In addition, an invalid assumption was
made in directly adopting Hodge's work in the derivation of
[2.16] as shown in Appendix A. Augusti (1966) formally
demonstrated that this method is an upper bound solution
based on the yield stress as the limiting criterion.

Farwell and Galambos (1969) presented a simple
analytical method for beams under torsion based on
elasto-plastic behaviour. They also conducted a testing
program for I-shaped beams under torsion alone and achieved

good agreement with their predictions.
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Kollbrunner, Hajdin, and Corié (1978) and Kollbrunner,
Hajdin, and Obradovié (1979) described the behaviour of a
cantilever and a fixed ended beam, respectively, subjected
to combined bending and torsion and proposed the interaction

equation

[2.17] R = 1

to predict full plastification of the section. They claimed
that when eccentricities are large, high strains at the
flange tips prevent the attainment of full plasticity and
the limit load was modified to that corresponding to a
maximum allowable strain leading to a predicted ultimate
load in the elasto-plastic region.

It was assumed that the ratio M/B remains constant
during loading through the elastic and inelastic regions.
Thus, for a given eccentricity, the limiting bending moment,
and therefore the limit load, can be calculated. The method
requires the solution of a cubic and a quadratic equation
but predicted strengths appear to agree well with the
authors' test results.

Razzag and Galambos (1979) presented a series of
involved differential equations for predicting the strength
of beams under biaxial bending with or without torsion. The
special case of uniaxial bending about the major principal
axis with torsion is of interest in this discussion.

Separate equations were derived for beams first loaded by an
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eccentric vertical load and then in uniform flexure, and for
beams first loaded in uniform flexure and then by an
eccentric load, consistent with the procedures used in the
testing program. An elasto-plastic strain-hardening
(tri-linear) stress-strain curve was assumed. The procedure
is suitable for predicting behaviour in both the elastic and
inelastic regions. Good agreement was obtained between test
and predicted strengths, although the method is limited to

the two types of loadings investigated.

2.5 Summary

Although the subject of combined bending and torsion on
I-shaped steel beams has been addressed by many different
authors, there does not appear to be a simple limit states
design method available that is suitable for commonly
encountered torsion conditions. There is a multitude of
approximate elastic design methods available that usually
require a large number of charts or graphs, and fail to
consider the interaction of the bending and torsion
mechanisms. Simpler methods, such as the flexural analogy,
can lead to overly conservative designs.

Boulton presented a limit states design method based on
the entire cross-section reaching the yield stress and
includes the helix effect. This results in a complex design
procedure. Dinno and Merchant presented a simple limit
states design method that is based on an invalid assumption.

Kollbrunner et al. demonstrated a limit states design method
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where a maximum strain is imposed as the limit state. This

method requires the
Razzaqg and Galambos
for certain loading
the solution of the
researchers claimed

strengths and their

solution of fairly complex egquations,
presented a method that is suitable only
conditions and requires graphs to aid in
governing equations. All sets of

good agreement between predicted

own test results.



3. EXPERIMENTAL PROGRAM

3.1 General

Because of the lack of published experimental data, a
limited experimental program was undertaken for comparison
with the theory developed herein. Four tests were conducted
on I-shaped cantilever beams approximately 1 metre long as
shown in Figs. 3.1 and 3.2. The beams were loaded by an
essentially vertical load, with initial eccentricities of 0,
30, 100, and 220 mm. Tension tests were performed on 13
coupons to determine material properties.

A W150X18 beam was selected for two reasons. With a
length of 1 metre, both the sand heap and warping torsional
resistances for this cross-section are significant and the
respective contributions may therefore be determined with
reasonable certainty. In addition, the loads required to
fail the relatively small beam are easily achieved in the

laboratory.

3.2 Test Set-up and Procedure

The experiments were conducted in the I. F. Morrison
Structural Laboratory at the University of Alberta.
Specimens were loaded in the Materials Testing System (MTS)
testing facility which has a tensile capacity of 4450 kN. A
610 mm long I-shaped spacer with braced flanges was bolted
vertically to a supporting column as seen in Figs. 3.1 and

3.2 so that the column could be bolted through holes in the

26
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strong floor and so that the MTS testing head was directly
above the free end of the test specimen. Lateral bracing was
also provided at the support.

One end of each cantilever test beam was welded with
full penetration welds to a thick end plate which, in turn,
was bolted to the steel supporting column to provide a fixed
end condition, At the free end, one of two brackets, shown
in Fig. 3.3., was bolted to the web to allow the beams to be
loaded eccentrically. The brackets were designed to transfer
load to the web with a minimum of local distortion and
without interfering with the warping of the flanges. With
two similar brackets, there were seven possible
eccentricities to choose from. For each test, an
eccentricity was chosen on the basis of the previous test
results to give a broad spectrum of behaviour. All bolted
connections were designed to be slip-resistant at the
ultimate load.

The load was applied using a 7/8 in. fibre core wire
rope approximately 5 metres long, with a steel thimble at
the top and a steel thimble and hook at the bottom. The wire
rope was supported by a 2 in. pin and clevis assembly. The
hook was fitted into an eye bolt in the loading bracket.
With this arrangement, deflections and rotations in any
direction were accommodated with the load remaining
virtually vertical throughout. Any deviation of the load
from vertical can be calculated. The cable was load-tested

to establish its load-deformation characteristics. The
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Figure 3.3 Loading brackets
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fitting with the lowest strength in the cable assembly was
the Crosby 320A alloy eye hook with a specified safe working
load of 40 kN. It had been proof tested to 80 kN before
delivery.

Prior to each test, the specimen was carefully
positioned so that the beam was level and the web vertical.
The distance between the end plate and the point of
application of the load, as well as the distance from the
load to the end of the beam were measured for use in
post-test calculations. The instrumentation was attached and
the specimens were subjected to a small load to check for
instrumentation malfunctions and subsequently unloaded. All
instrumentation was then reset to zero.

The MTS testing machine was used to apply loads
hydraulically in the stroke control mode so that behaviour
in the inelastic range could be studied with greater
precision. The beams were loaded incrementally until the

applied load was 3 to 10% below its maximum value.

3.3 Instrumentation and Measurement

During the tests, longitudinal strains on both flanges
and the web were recorded using Micro-Measurements high
elongation electrical resistance strain gauges with a
resistance of 120.0 %= 0.15% ohms, a gauge length of 7 mm,
and a gauge factor of 2.055 + 0.5% at 24 degrees Celsius.
Showa strain rosettes were used to observe strains at 0, 45,

and 90 degrees from the longitudinal axis. These rosettes
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have gauges with a resistance of 120.0 * 0.5% ohms, a gauge
length of 2 mm, and a gauge factor of 2.06 = 1% at room
temperature. The locations of the gauges and rosettes were
identical for all beams as shown in Fig. 3.4. The strain
gauges were capable of measuring strains in excess of 20%.
The rosettes ceased to function at approximately 2.5%
strain, In addition, Showa strain gauges with a resistance
of 120.0 + 0.5% ohms, a gauge length of 5 mm and a gauge
factor of 2.11 + 1% were applied to the loading bracket and
the end plate to ensure that these strains remained elastic
throughout each test. These gauges were also used in the
ancillary tests.

Deflections were measured at two locations using linear
variable displacement transformers (LVDTs). All LVDTs were
calibrated before the first test. At the fixed end, four
Hewlett Packard 24DCDT-100 LVDTs with a linear operating
range of 5 mm and two 7DCDT-500 LVDTs with a linear
operating range of 25 mm were used to monitor the end plate
translations and rotations to determine whether a truly
fixed condition had been achieved. These instruments have a
linearity error of less than 0.5% over the rated linear
range. At the free end, six Intertechnology PT-101
position/displacement transducers capable of measuring
spacial displacements were used. These LVDTs continuously
measure displacements in any direction by means of a thin
spring-loaded cable attached to the beam. The position

transducers have ranges that vary from 250 mm to 635 mm and
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linearity errors from 0.1% to 0.15% full scale.

Six position transducers are the minimum required to
establish uniquely the location in space of the plane of the
cross-section at the free end. Alternately stated, there are
six degrees of freedom (three displacements and three
rotations) and therefore six measurements are sufficient to
quantify them. Three transducer cables (preferably arranged
orthogonally) attached to one point on the plane are
sufficient to determine the location of that point as the
beam deflects and rotates. The solution of 3 simultaneous
equations, based on the Pythagorean theorem, give the
displacements u, v, and w. Two transducers are sufficient to
determine the location of a second point, as its distance
from the first remains unchanged throughout the test.
Similarly, one transducer is sufficient to determine the
location of a third point on the plane. The three points
uniquely define the orientation of the plane in space, and
deflections and rotations in any direction can be
calculated. The three points used were on the loading
bracket as shown in Fig. 3.5. For accurate deflection
measurements at the free end, the bracket, to which the LVDT
cables were attached, must remain fixed in location with
respect to the beam web. This was checked during each test
and found to be true.

Power was supplied to the strain gauges with two Anatek
7V power supplies set to supply all gauges with

approximately 6.0 volts. An Anatek 25V power supply provided
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the LVDTs with approximately 10 volts.

Loads were monitored using a 110 kN load cell attached
to the MTS testing machine above the clevis. This was the
smallest load cell available for the MTS and therefore
provided the most precise loading information. The load cell
was powered by a 10 volt power supply within the MTS system.

Strains and deflections were measured for each load
increment. All electronic data were recorded using a Data
General Eclipse S/120 computer data acquisition system by
means of a remote terminal., This system allows a large
number of measurements to be made simultaneously. The strain
gauge, LVDT, load cell, and MTS stroke output were each
assigned a channel on the Eclipse system. In addition, power
supplies for the strain gauges, LVDTs, and load cell were
assigned channels to monitor voltage fluctuations that could
affect the data output. No appreciable fluctuations occurred
in any of the tests. A total of 65 data acquisition channels
were used.

Prior to each test, procedures were undertaken to
ensure that data obtained were as accurate as possible,
Strain gauges were calibrated in banks of 10, less than 12
hours before each test. The gauges were then re-balanced
immediately prior to the test. Voltage from each power
supply was set to the desired value and instrumentation was
meticulously inspected. When the test was to begin, all
instrumentation was initialized to readings of zero using

the testing software of the Eclipse.
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As a check, duplicate measurements of important
quantities were made by hand approximately 10 times during
each test. Vertical and lateral deflections were measured
using a standard tape measure. Fig. 3.6 shows the apparatus,
consisting of a large protractor and plumb line, that was

used to measure free end rotations.

3.4 Test Results

The four tests were similar, with the eccentricity of
the load being the only variable. All specimens were cut
from the same beam. The dimensions of the specimens are
given in Table 3.1.

Two problems were encountered in test 1. First, the
loading bracket slipped against the beam web until the bolts
came into bearing. This caused the loading bracket to rotate
a small amount which had to be taken into account in
subsequent calculations. Second, deflections of the
supporting column were larger than anticipated.

To remedy the slippage problem, small metal shims were
placed between the legs of the angles facing the web and the
beam flanges to prevent any rotation. This arrangement was
successful in preventing bracket rotations for tests 2, 3,
and 4 without interfering with the warping of the flanges at
the free end. Column deflections were very substantially
reduced for tests 2, 3, and 4 by bracing the supporting

column as shown in Fig. 3.7.



Figure 3.6 Protractor and plumb line
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Figure 3.7 Braced supporting column
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In Figs. 3.8, 3.9, 3.10, and 3.11 are plotted
moment-torque, torque-rotation, load-lateral displacement,
and moment-vertical displacement curves for the four tests.
The torque is the torsional moment about the z axis, the
moment is the moment about the major (x) axis at the fixed
end, and the load is the vertical component of the applied
load. The displacements are those of the free end relative
to the fixed end.

Fig. 3.8 shows that for beam 1, loaded concentrically,
torque is not developed significantly until the moment
exceeds the fully plastic value shown by point A, Therefore,
the origin of the torque-rotation curve for this beam in
Fig. 3.9 corresponds to an applied moment of about 47 KkN¥m.
Fig. 3.11 shows that the beam first deflects elastically,
then inelastically and finally reaches a maximum moment of
58 kN*m, considerably in excess of the fully plastic moment
based on the measured cross-sectional properties and yield
strength. The flexural strains at the fixed end must
therefore exceed the strain hardening strain substantially.
Fig. 3.10 shows that the lateral deflections increased
rapidly once the fully plastic moment was exceeded (point
A). These lateral deflections created a torque at the fixed
end which decreased to essentially zero at the free end. For
beam 1, the moment-torque curve (Fig. 3.8) and load-lateral
deflection curve (Fig. 3.10) are very similar because apart
from the change in the lever arm resulting from the

deflection of the beam, the moment is proportional to the
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vertical load and the torgue arises only because the beam
has deflected sideways. This lateral deflection takes place
when the stiffness of the beam has been reduced because of
straining beyond the yield point.

Consider the four curves for beam 2. The initial slope
of the moment-torque curve (Fig. 3.8) corresponds to the
initial eccentricity of 30 mm. With increasing moment, the
torque increases less rapidly because the eccentricity of
the load decreases due to the rotation. At an applied moment
of about 51 kN*m (point B), the torgue starts to increase
very rapidly corresponding to the increase in lateral
displacement at point B on Fig. 3.10. As shown by Fig. 3.11,
this corresponds, as it did for beam 1, to moments about the
strong axis in excess of the fully plastic moment and
therefore to the condition that the beam stiffness was
substantially reduced due to straining beyond yield, and
indeed beyond the strain hardening strain. The change in
behaviour of the moment-torque curve (Fig. 3.8) at point B
is reflected by the change in the torque-rotation curve
(Fig. 3.9) also at point B. The increased torque carried
beyond point B results only from the lateral deflection of
the beam.

Beam 3 had an initial eccentricity of 100 mm as the
initial slope of the moment-torque curve (Fig. 3.8)
indicates. The steepening moment-torque curve shows that the
eccentricity decreased due to rotation about the z axis. At

point C on the moment-torque curve, the torgue begins to
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increase more rapidly and the moment subsequently decreases.
The corresponding point on the torque-rotation curve (Fig.
3.9), also indicated as point C, shows a change in the
torque-rotation behaviour at this point. Although not as
fine a demarcation, beyond point C in Fig. 3.10 the lateral
deflections increase rapidly.

The moment-torque curve for beam 4 displays an initial
behaviour similar to that for beams 2 and 3. The initial
slope corresponds to the initial eccentricity of 220 mm, and
the curve steepens as the rotation decreases the
eccentricity. The very steep moment-torque curve at point D
corresponds to an angle of twist of 53 degrees as shown in
Fig. 3.9.

Examination of the post-test deflected shapes of each
beam revealed that the most severe stressing occurred
successively farther from the fixed end as the initial
eccentricity increased. Local buckling began in the
compression flanges 70 mm from the end plate in beam 1 and
520 mm from the plate in beam 4. Because the fixed end is
the most heavily loaded section of the beam, this indicates
that the effect of rotation about the longitudinal axis had
an increasing effect as the initial eccentricity increased.
Beam 4, for example, did not fail where the bending moment
about the x axis was a maximum because the cross-section had
undergone large rotations at other locations and the

vertical load caused bending about the weak axis as well.
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As would be expected, flanges warped in opposite
directions as the load was applied, up to the load where
significant lateral deflections were incurred. As the load
increased further, the top flange reversed curvature at the
point where the local buckle occurred. Once the local buckle
began to form, the majority of the distortion took place at
this cross-section.

Throughout the tests, load, MTS stroke, strains, and
free and fixed end deflections were measured. These data
were then reduced using four computer programs shown in
Appendix B. The program DEFL uses the load, MTS stroke and
the six measured deflections from the free end of the beam
to calculate deflections and rotations about the three
coordinate axes. It also calculates any lateral or axial
loads, and moments at the fixed end about all three axes,
taking into account any deflections that have occurred.
Output from the program FEDEFL is used to take "fixed" end
movements into account. FEDEFL uses fixed end LVDT readings
to calculate deflections and rotations at the end plate and
those that result at the free end due to rigid body
movement. GAUGE uses the high elongation strain gauge
readings to determine the corresponding stresses based on
the mean stress-strain curve observed in the tension tests
described subsequently. ROSETTE uses strain readings from
the 0-45-90 degree rosettes to calculate the corresponding
stresses as well as principal normal stresses, maximum shear

stresses, and the angle to the principal plane from the



48

plane of the cross-section.

3.5 Ancillary Tests

A 300 mm length of beam from the same heat as the test
specimens was sawn into 13 longitudinal coupons that were
tested in uniaxial tension to determine the stress-strain
characteristics of the steel. Four coupons were cut from
each flange and five from the web, utilizing the entire
cross-section with the exception of a small portion at each
web-flange junction as shown in Fig. 3.12. The coupons were
machined to 12.5 * 0.2 mm wide at the reduced section and
were the full thickness of the flange or web.
Cross-sectional dimensions were measured with a digital
micrometer,

Strain gauges were mounted on each side of each coupon
and were wired to form a Wheatstone bridge. By using a half
bridge, the effects of any bending that the coupons may have
been subjected to during the test were eliminated and the
sensitivity of the strain readings was doubled as compared
with the use of a single gauge. Initially, strain gauge
readings were made using a Budd Strain Indicator. A gauge
length of 100 mm was used for manual measurements when
strains became large enough that the gauges ceased to
function or became unbonded. All coupons were tested in a
880 kN capacity Baldwin universal testing machine in

accordance with ASTM Designation E8M-85 (ASTM, 1986).
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Figure 3.12 Location of tensile coupons on cross—section



50

Figs. 3.13 and 3.14 show typical stress-strain curves
for coupons taken from the flange and the web, respectively.
A summary of the data obtained from these tests is given in
Table 3.2 including mean values and coefficients of

variation.

3.6 Strain Distributions Under Combined Flexure and Torsion

From the strain readings obtained using the electrical
resistance strain gauges positioned 30 mm from the fixed
end, the strain distribution across the cross-section can be
obtained. Such strain distributions for beams 3 and 4 are
shown in Figs. 3.15a and 3.16a for the loads corresponding
to points C and D of Figs. 3.8, 3.9, 3.10 and 3.11. Beams 3
and 4 have been selected because at the end of the first
phase of torsional behaviour (points C and D, respectively),
both beams are subjected to substantial bending moments and
torques. Points C and D have been chosen for reasons
discussed in Section 5.1.3.1.

The non-linear strain variations across the flanges and
through the depth of the web indicate that the flanges and
web warp. It is also noted that there are three locations
where the strain is zero, one in each flange and one in the
web. The limited strain readings also show that the strain
gradient at at least two of the flange tips out of four is
steep.

Based on the stress-strain curves obtained from the

ancillary tests, these strain distributions give the normal
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Table 3.2

Tensile coupon test results

53

Test o, Oy Oys o, € €t €¢ E E_,

No. (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
1 345 - - 470 0.00190 - 0.210 198,996 -

2 331 - 314 472 0.00190 0.0138 0.290 200,858 5770
3 333 344 310 472 0.00180 0.0152 0.264 204,584 5880
4 343 352 320 466 0.00190 0.0160 0.246 199,065 8650
5 349 364 330 472 0.00190 0.0110 0.190 203,176 4080
6 330 - 313 467 0.00185 0.0160 0.275 201,746 9600
7 332 338 313 466 0.00170 0.0164 0.278 201,963 6670
8 347 352 329 474 0.00190 0.0154 0.230 204,627 4550
9 346 351 328 484 0.00185 - - 203,990 6090
10 336 354 318 462 0.00185 0.0168 0.257 204,091 5138
11 342 358 325 469 0.00180 - 0.250 205,581 -

12 333 354 317 464 0.00180 0.0184 0.248 207,749 2930
13 348 352 330 485 0.00185 0.0104 0.236 202,922 4880
X 340 352 321 471 0.00185 0.0149 0.248 203,027 5840
V(%) 2.12 2,01 2.32 1.47 3.21 17.0 11,5 1.23  33.1
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stress distributions over the cross-section shown in Figs.
3.15b and 3.16b. At the load steps corresponding to the end
of the first phase of torsional behaviour, point C for beam
3 and point D for beam 4, the stress distributions show that
only a small portion of the web and each flange is behaving
elastically. As well, a significant portion of each flange
carries stresses approaching the ultimate tensile strength.
Idealized stress distributions approximating those
consistent with the strain measurements, and as further
discussed in Section 4.3, are shown by dashed lines in Figs.

3.15b and 3.16b.



4, ANALYSES

4.1 Introduction

A method of developing a sound limit states design
procedure, is to use a lower bound approach which requires
that (Lay, 1982):

1. Internal and external forces must be in equilibrium.

2. Assumed internal forces may not exceed the relevant

force capacity.

3. Materials must exhibit ductile behaviour.
Interaction equations are often used for the design of
members subject to more than one type of load. For combined
bending and torsion, the bending moment, the pure torsion,
and the warping torsion must be considered. In the fully
plastic condition, these are the plastic bending moment, M,
the sand heap torque, T,, and the plastic warping torque,

T The first two are properties of the cross-section but

wp*
the plastic warping torque is a function of the
cross-section, end conditions, type of load, position of
load, and length of beam. It is not uniquely defined for a
given cross-section.

Serviceability limit states must also be met and one
method of ensuring that deflections remain relatively small
is to limit stresses to the yield value at service loads. As
well, deflections may be limited in accordance with the

anticipated use of the structure or by deformations that can

be tolerated by materials supported by the beam.

57



58

4.2 Torsion Quantities

4.2.1 Torsional End Conditions

The torsional resistance of a member depends on the
torsional end conditions which may be fixed, pinned, free,
or some intermediate condition.

A torsionally fixed condition exists when the end of a
beam is built into a completely rigid support. In this case,
the section does not twist and the flanges do not warp, that
is, the angle of twist, ¢, and the rate of change of the
angle of twist, ¢', are both zero.

A torsionally pinned condition exists when the beam is
supported by the web alone. In this case, the section does
not twist but the flanges are free to warp and no flange
moments develop. The angle of twist, ¢, is zero as the
section remains vertical and the second derivative, ¢", is
zero as no flange moments exist.

A torsionally free condition occurs when the beam is
not restrained in any way and the beam may twist and warp
freely. Hence, no flange moments develop and ¢" is zero.

Real end conditions can be approximated by the

idealized conditions.

4.2.2 Sand Heap Torque
The sand heap torque (Nadai, 1931) corresponds to the
condition where the cross-section is fully yielded in shear.

Sand is assumed to be piled on the cross-section and the
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angle of repose of the sand corresponds to the shearing
yield stress. Twice the volume of the sand is the total
torque carried by the cross-section. If an I-shaped beam is
considered to be made up of three rectangles, the sand heap
torque, assuming the von Mises-Hencky yield criterion to be

valid, is

[4.1] Ty = 5—1‘/-:?;-[4t3+6(b~t)t2+3(d-—2t)w2+w3]ay

If the yield stress is replaced by the ultimate stress, o,
in [4.1], the result is the ultimate sand heap torque, T,
based on the von Mises-Hencky criterion extended to the
ultimate condition. The quantity Ty,/o, or T, /o, is a
property of the cross-section called the sand heap modulus,
Z,,, and could be tabulated in steel handbooks.

Equation [4.1] neglects the contribution of the fillets
to the torque carrying capacity of the cross-section which
is generally considered to be negligible. However, the
volume of sand in the heap varies as the thickness squared,

and for a W150X18, the fillets contribute an additional

16.5% to the sand heap torque.

4.2.3 Plastic Warping Torque

The plastic warping torgue, T is the torque that

wp’
causes full plastification of the flanges due to tensile or
compressive normal stresses. These stresses (Fig. 2.12) give

rise to internal plastic flange moments (for rectangular
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flanges) of

[4.2] M, = =7

Full plastification occurs only at the most highly stressed
cross-section, and the corresponding flange shear
distribution, V,, depends on the end and loading conditions.
A torsionally pinned beam with a concentrated torque at
midspan has the torque, flange shear, and flange moment

diagrams shown in Fig. 4.1. The flange shear is

[4.3] Ve = T

The warping plastic torque, obtained by multiplying the
flange shear by the distance between flange centroids, and
combining [4.2] and [4.3], is
= Lrp2e(g-
[4.4] T,, = 3[b’t(d-t)/Llo,
The plastic warping torque for other end and loading

conditions can be developed similarly and in general is

given by
[4.5] T,, = [Kb’t(d-t)/Llo,

Values of the warping factor, K, for different end and

loading conditions are given in Table 4.1. If the yield
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stress is replaced with the ultimate stress, o,, in [4.5]
the result is the ultimate warping torque, T,,. The quantity
T,,/0, or T,/o,, the plastic warping modulus, Z,, is not a

property of the cross-section.

4.3 Bending-Torsion Interaction Model

4.3.1 Ultimate Limit States

4.3.1.1 Class 1 Beams

The proposed idealized fully plastic stress
distribution on the cross-section of a class 1 beam
subjected to both flexure and warping torsion is shown
in Fig. 4.2. This distribution is a reasonable
approximation to the distribution determined from the
strain measurements near the fixed end as shown in Figs.
3.15b and 3.16b. The web and central portion of the
flanges resist the bending moment, and stresses in the
flange tips form a couple, M,, that resists torque. The
warping torsional normal stresses are assumed to reach
the ultimate strength of the material, while the
flexural normal stresses are considered to reach the
yield strength only, as discussed subsequently in
Section 4.,3.1.2.

The flanges are bent in simple flexure in the
lateral direction due to warping. Therefore, the plastic
flange moments (due to warping) and bending moments on

the remainder of the section, are a maximum at the same
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location on the beam, when the flexural and torsional
end conditions are the same. An example of this is a
simply supported beam subjected to an eccentric vertical
load at midspan as shown in Fig. 4.3. The vertical shear
force, and flange shear force diagrams are the same
shape, as are the bending moment and warping or flange
moment diagrams. This analysis is also valid when
flexural and torsional end conditions are not the same,
provided only that the maximum bending moment and the
maximum flange moment due to torque occur at the same
cross-section. This is the case, for example (perhaps
somewhat unusual), when a beam is flexurally pinned and
torsionally fixed with a concentrated eccentric load at
midspan, as shown in Fig. 4.4.

In addition to normal stresses, the cross-section
is assumed to be able to carry the full sand heap torque
based on the ultimate stress, T,,, whether or not the
section of maximum torque and maximum moment are
coincident. It is recognized that this may violate
commonly accepted failure criteria, as discussed
subsequently in Section 4.3.1.3. Flexural shear stresses
are normally relatively small and are neglected.

Failure is considered to occur when the
load-carrying capacity of one section of a beam is
exceeded, regardless of the degree of redundancy, i.e.,
no allowance is made for moment redistribution. Because

of the assumption that warping normal stresses reach the



<ifes ()

L/2 L/2
Pe’]
2
(a) Torque
Pg 1
2(d-t) y
(b) Flange shear
p
5.

Pel

(c) Vertical shear

y
44d-1y m

(d) Flange moment

7r—.‘g’1’1’1’1”(’(’T\[\T\T\T\T\T‘h,.
' N

Figure 4.3 Torque, shear, and moment diagrams

(e) Bending moment

for a simply supported beam

-—
MY

66



67

e

G AT
—

N

(a) Bending moment

' m\ |
Moo D)/ \\L]
Y (b) Flange moment ,

Figure 4.4 Moment diagrams for a flexurally pinned,

torsionally fixed beam



68

ultimate stress, as described in Section 4.3.1.2, the
model is restricted to class 1 sections only. Fig. 4.5
shows the non-dimensionalized moment-torgque interaction
diagram for class 1 beams. The interaction diagram is
constructed as follows.

The maximum bending moment is the fully plastic

moment, M_, based on the yield stress of the material as

pl
given in the Canadian standard CAN3-S16.1-M84 (CSA,
1984) and as corroborated by extensive tests (Yura et

al., 1978), that is,

[4-6} I'dmax = Mp = Zay

This moment can be carried provided no warping torsion
is needed to be developed and thus the interaction
diagram extends horizontally at M/M, = 1.0 from point A
to the point representing the ultimate sand heap torque,
point B. The sand heap torgue is considered to coexist

with the fully plastic moment.

The maximum torque is the ultimate torque, T,, that
is,
[4'7} Tmax = Tu = Tshu + Twu = Zshau + Zwou
where T, and T,, are calculated using [4.1] and [4.5]

respectively, based on the ultimate stress. It is

considered that this torgue can be carried even when the
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web is fully yielded due to flexural moments as
represented by point C. Thus, at T/T, = 1.0 the diagram
extends vertically from point D to point C.

When the flanges are carrying both bending normal
stresses and warping normal stresses, the interaction
curve is a parabola extending from its vertex at C to B.
The length of each flange tip that carries warping

stresses is
[4.8] b, =

where M,; is the portion of the bending moment carried
by the flanges. The flange shear and the warping flange

moment are related by
[4.9] v, = —= = b t(b-b,)0,]
Substituting [4.8] into [4.9] and noting that the

warping torque is a couple consisting of the flange

shears gives

[4.10a]l T, = (d-t)éﬂ[b — Mp¢ ]t[g N My, ]0
) v Ll2 - Z2t(d&t)e, |"l2 7 Ze(d@-to, |%

2

4Rt (d-t)o, p? M,
TSR [ - ]
[4.100] v L 4 at’(a-t)%o,]
Ko Kbt (d-t)o
4.10 T = - 2[ z ] 2
[ cl v bt t(d—t)Loy2 L



71

The last term of [4.10c] is the ultimate warping torque,

T . Thus, [4.10c] can be rewritten as

wu

[4.11] 5~ + = 1,

the equation of a parabola (with vertex at C when the
contribution of the web to bending resistance and sand
heap torqgue to torsion resistance are added). This is
similar to [2.17], derived by Kollbrunner et al. (1978},
but with warping stresses at the ultimate value.

The computer program MTINT, given in Appendix C,
calculates the moment-torque interaction curves for
available W-shapes, or I-shaped sections consisting of
three rectangular plates, for different end and loading

conditions as expressed by the warping factor, K.

4,3.1.2 Normal Stresses at Failure

In Fig. 4.2, normal stresses are assumed to reach
the ultimate tensile strength for the portion of the
cross—-section that resists warping torsion, while the
flexural stresses are assumed to reach the yield stress
only. These assumptions are in reasonable agreement with
the test results, as discussed previously. Furthermore,
the assumption that the flexural stresses reach the
yield stress is consistent with the results of Dawe and
Kulak (1981), who showed that in simple flexure, local

buckling limits the ultimate moment that is achieved to
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a value consistent with reaching the yield stress, even
for many class 1 beams. Yura et al. (1978) found a
test/predicted moment ratio of 1.10 with a coefficient
of variation of 0.11 for compact beams based on the
plastic moment capacity. Under torsion alone, however,
only half of each flange is in compression and the
strain gradient is from a maximum at the flange tip to
zero at the web. This less severe strain condition
allows stresses to exceed the yield value for class 1
beams and is the basis for the assumption that the
stresses approach the ultimate stress before local
buckling occurs. The presence of torsional shear
stresses tends to cause early straining beyond the
strain hardening strain and thus the development of

stresses exceeding the yield value.

4.3.1.3 Violation of Lower Bound Theorem

One of the criteria of the lower bound theorem is
that the assumed internal forces do not exceed the
relevant force capacity. The assumption that ultimate
shear stresses can co-exist with ultimate normal
stresses on an element of the cross-section apparently
violates this criterion. There are, however, mitigating
circumstances. For that portion of the flange in
compression, the maximum stress could exceed the maximum
tensile stress as there is no tendency for the section
to neck; the material simply expands perpendicular to

the compressive force. For that portion in tension, the
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shearing stresses do not tend to reduce the
cross-sectional area and therefore do not exacerbate the
situation in the plane of the cross-section. The
combined bending and torsion tests showed that necking
occurred perpendicular to the longitudinal axis and was
very localized. The cross-sectional area on the
principal plane remained virtually constant. Therefore,
in this plane the tensile stress could exceed the
maximum "engineering” ultimate strength without
exceeding the true ultimate strength.

In resisting torsional loads, both the ultimate
sand heap resistance, T,,, and the ultimate warping

resistance, T have been considered to be fully

wu/’
active. In elastic theory, the two torsional components
vary along the length of the beam depending on the
degree of warping restraint. Specifically, no St. Venant
torque exists at a point of full warping restraint. It
is postulated, however, that in the inelastic region,
plastification of the flanges allows sufficient flange
rotation for sand heap stresses to be developed. Kinks
in the flanges of the test specimens in opposite
directions at the fixed end confirm that upon
plastification, the expected flange rotations did occur.

Also, the large torques observed during the experimental

program seem to corroborate this theory.
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4,3.1.4 Helix Effect

Boulton (1962) observed that torques higher than
the theoretical fully plastic torque could be carried
and ascribed this to the helix effect as described in
Section 2.4. The rotations required to obtain
significant benefit from the helix effect are, however,
so large that this phenomenon is of academic interest
only. In a torsion test on a fixed ended beam, Boulton
showed that an increase in torsional strength of 6.6%
occurred when the beam was twisted at a rate of 0.9
degrees/inch. Assuming uniform twist over the length of
the beam, this corresponds to an angle of twist of 35.4
degrees for the cantilever beams tested during this
research. Considering the difference in end conditions,
for these tests the increase in strength would be
expected to be even less than 6.6% and is therefore

neglected.

4.3.1.5 Lateral Torsional Buckling

In order for the assumed stress distributions to be
achieved, lateral instability of the member as a whole
must not occur. Thus, when the length of the beam is
such that the flexural moment capacity is limited by
lateral torsional buckling, the interaction curve for
bending and torsion should also be limited by that
value.

Tests of Razzaqg and Galambos (1979) on class 1

beams subjected to bending and torsion where the
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flexural capacity was limited by lateral torsional
buckling showed that strain hardening played no role in
the behaviour of the beams. Therefore, under these
circumstances it is proposed that the maximum torque be

limited to the plastic torque, T_,, based on the yield

pl

stress rather than the ultimate torque, T,. As a further

u*

simplification, the parabolic portion of the interaction

curve is replaced by a straight line.

4,3.1.6 Extension to Class 2 and 3 Sections

Class 2 cross—sections are those which reach the
full plastic moment before local buckling occurs, but
are not capable of undergoing large plastic hinge
rotations. Because the interaction diagram limits the
bending moment to the plastic value, the requirement
remains the same for bending. For class 2
cross-sections, local buckling may, however, occur
before the large strains at the flange tips associated
with ultimate torsional stresses are reached. Therefore,
it is proposed that torsional warping and shear stresses
be limited to yield values. This would result in an
interaction curve of the same shape as that shown in

Fig. 4.5, except that the maximum torque corresponds to

[4.12] T, = Tgp + Ty = 20, + 2,0

where T, and T, are calculated from [4.1] and [4.5],

respectively. For sections prone to lateral torsional
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buckling, the maximum allowable bending moment is
limited accordingly, as for class 1 beams. At present,
there are no experimental data available to substantiate
this approach.

Class 3 cross-sections are those which can reach
the yield moment, M, before local buckling occurs. In
the elastic range, stresses will vary linearly across
the flanges and web. Therefore, the plastic stress
distribution discussed in Section 4.3.1,1 is invalid.

It is therefore proposed that the limiting moment
be the yield moment, M, and the limiting torque be the

yield torque, T,, where

yl

[4.13] M

So

and T, is calculated using an elastic analysis such as
that proposed by Heins and Seaburg (1963) with a maximum
warping normal stress on the beam equal to the yield
stress. Because the torque is carried partially by St.
Venant torque and partially by warping torque, this
implies the presence of some torsional shear stresses as
well. The value of the St. Venant torque present, T_,
is calculated using the curves presented by Heins and
Seaburg.

Fig. 4.6 shows the proposed interaction diagram for

class 3 beams. It is assumed that the St. Venant torque

can be carried without any reduction in moment capacity



(Iél
’ .
Ty

0.751

050t

0.251

0 025 050 075 1.0 T/Ty

Figure 4.6 Moment-torque interaction diagram

for class 3 beams

77



78

and the web can carry some moment without any reduction
in torsional strength. Points B and C are simply joined
with a straight line because the parabolic curve of Fig.
4.5, based on fully plastic conditions, is no longer
valid. The maximum bending moment for beams prone to
lateral torsional buckling would be reduced as for class
1 and 2 beams. The detrimental interaction of the
bending and torsion mechanisms, as described in Section
2.3, is neglected.

Although the elastic analysis for class 3 beams is
significantly more time consuming than the inelastic
analysis for class 1 and 2 beams and requires the use of
graphs, it is interesting to note that only 3 out of 190
W-shape sections listed in the CISC Handbook (CISC,

1984) are class 3.

4,3.2 Serviceability Limit States

A simple approach to ensure that deflections are not
excessively large under service loads is to require that the
beam does not yield under these loads. Deflections will be
essentially elastic. In general, shear stresses are low
under service loads and only normal stresses need be
checked. It is therefore proposed that one serviceability
limit state be based on first yield of the cross-section due
to normal stresses with the analysis carried out on the

undeformed shape.
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Torsional normal stresses and flexural normal stresses
will always be additive at at least one point on the
cross-section. Adding the effects of bending about the
strong axis and torsion, without exceeding the yield stress,

results in the linear equation

[4.14] — + = 1

where T, is determined from an elastic analysis such as
that prescribed by Heins and Seaburg (1963). The limiting
values are the yield moment, M, (when T equals zero), and
the yield warping torque, T, (when M equals zero). A
straight line from M, on the vertical axis to T, on the
horizontal axis of the moment-torque interaction diagram is
the serviceability limit for unfactored loads.

It is recognized that this method neglects the effects
of residual stresses and the interaction effects between
bending and torsion. Because yielding would take place only
at one point on one cross—-section along the beam and
therefore would be constrained by the surrounding material,
it is expected that in most cases this omission would not
result in large deflections.

In some cases, however, even elastic deflections may be
excessive and therefore another serviceability criterion to
be met is that the distortion of the member be limited to
certain acceptable values. As for beams in flexure, a

deflection limit may be imposed. Of greater significance,
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however, is the angle of rotation that the beam undergoes.
Excessive rotations may cause cracking of brittle building
elements, cause mismatch of building components, and prevent

the beam from fulfilling its intended function.



5. DISCUSSION OF TEST RESULTS

5.1 This Research

5.1.1 General

The orientation of the loading cable (see Fig. 3.1)
varied slightly from the vertical as the test beams
deflected and twisted with the result that loads and moments
were applied in three orthogonal directions. Although the
tests continued until the load began to decrease, the torque
at the fixed end was still increasing due to increasing

lateral deflections for beams 1, 2, and 3.

5.1.2 Load Path Dependence

The data indicate that the magnitude of the bending
moment at a given torque depends on whether the moment or
the torque was applied first. For the four beams, at a
torque of 3.3 kN#*m, the bending moments were 58.0, 51.3,
40.5, and 32.5 kN*m respectively, as seen in Fig. 5.1.
Therefore, the strength of the beam depends on the load
path. A bending moment, applied first, can be maintained for
a large increase in torqgue. As more torque is applied
concomitantly with the moment, the maximum moment attained

decreases.

81
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5.1.3 Second Order Effects

5.1.3.1 Torsional Behaviour

Beams loaded with smaller eccentricities would be
expected to fail at higher moments and lower torques.
Beam 1, however, carried the highest moment and the
highest torgue. Fig. 5.2 shows that the torque-rotation
behaviour has two distinct components, as best seen for
beams 2 and 3. At certain torques, designated by points
B and C respectively, the curves suddenly steepen. For
beam 1, the curve is always steep; the first component
does not exist and point A designating the change in
behaviour lies at the origin. For beam 4, the curve
never steepens; the second component does not exist and
point D designating the change in behaviour lies at the
apex of the curve. The first component is related to the
torque due to the load being applied eccentrically, that
is, the torque on the undeformed member. The second
component arises when the beam deforms significantly and
is chiefly due to the lateral deflection of the beam.

Beam 1 exhibits only the second type of behaviour
(point A lies at the origin). The beam was loaded
concentrically and the torgque developed only because of
the lateral displacement of the free end relative to the
fixed end. Beam 4 exhibits only the first behavioural
component (point D lies at the apex). As the lateral
deflections increased, compensating rotations took place

resulting in no overall increase in torgue due to
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deformations. Beams 2 and 3 exhibit both types of
behaviour,

The high torques developed because of the second
order effects which are considered non-utilizable for
two reasons. First, they occur as a result of large
lateral deflections and would not exist if these
deflections had been restricted. Second, the deflected
shape must be known beforehand for this torque to be
considered. Therefore, the maximum torque of the first
component of the torque-rotation curves and the
corresponding moment are considered to represent the
ultimate limit state for the beams subjected to combined
flexure and torsion.

Fig. 5.3 shows the torque-rotation curves truncated
at the points A,B,C, and D of Fig. 5.2, with the second
order effects omitted. Beam 4 carries the largest torgue
and beam 1 carries none. Having eliminated the torques
developed as a consequence of the large lateral
deflections, the effect of load path dependence no

longer exists.

5.1.3.2 Absolute Maximum Moments and Torques

Although it is proposed that the additional moments
and torques that resulted from deformation of the beams
not be used for ultimate limit states design, the
question remains how the beams could sustain such high

moments and torques simultaneously.
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For beam 1, after a bending moment corresponding to
complete yielding of the cross-section was obtained, the
torque increased to a value greater than the sum of the
fully plastic St. Venant (sand heap) torque and the full
warping torque based on the undeformed shape. The
maximum moment carried was 91% of the ultimate moment
while the beam sustained the full sand heap and warping
torque, all based on the ultimate tensile strength of
the material. The strains were significantly greater
than the yield strain and approached the ultimate
strain,

An examination of the beam after failure showed
that the beam was kinked laterally at about 285 mm from
the fixed end, as shown in Fig. 5.4, with the specimen
remaining virtually undeformed from this point to the
free end. Because the beam was loaded concentrically,
the warping torque developed only within 285 mm of the
fixed end. Large transverse shears, and therefore a
large warping torgue, at this location correspond to
relatively small warping normal stresses at the fixed
end. This is analogous to a short beam having high
shears and small moments. By examining the deflected
shape of the beam, the moments and torques were
calculated for the final load step at both the fixed end
and at a point 100 mm away along the beam. The torque
was assumed to be zero from the lateral kink to the free

end. Fig. 5.5 shows the torque distribution along the



Figure 5.4 Final deformed shape of

beam 1
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length of the beam calculated on this basis. The
contribution of the warping torque is taken as the
difference between the total torque and the ultimate
sand heap torque of 2.18 kNx*m. The warping torgue
corresponds to a flange moment at the fixed end of
approximately 1.62 kN*m., The inclination of the loading
cable from the vertical causes a moment about the y axis
of 0.41 kN*#m and, for the top flange, these moments are
additive and total 2.03 kNx*m. Assuming that ultimate
stresses can exist (as confirmed by strain
measurements), the flange moment that can be carried
simultaneously with the applied strong axis moment of
50.9 kN*m is 3.61 kN*m, Thus, the bending moments about
the x and y axes and the warping moment can be carried
simultaneously. Furthermore, at three of the four flange
tips one of the torque, moment about the strong axis,
and moment about the weak axis causes normal stresses of
the opposite sign to the other two. At these locations,
there is therefore a counteracting effect. Where the
three cause compression, the ultimate (engineering)
tensile strength does not in fact connote failure. The
cross-section expands in compression and does not neck.
Compression failure of steel beams is related to local
buckling. Because of the high strain gradients both
across the cross-section and along the beam, consistent
with the observed local deformations, local buckling was

delayed. It is also postulated that ultimate shear
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stresses can coexist with ultimate tensile stresses in
apparent violation of the von Mises-Hencky criterion
extended to the ultimate condition. A possible
explanation is that the shearing stresses do not cause
necking and that they are accommodated between the
engineering ultimate strength and the true ultimate
strength.

Beam 3, loaded with an initial eccentricity of 100
mm, ultimately sustained a torque, based on the initial
undeformed geometry, greater than the ultimate sand heap
and warping torque combined as well as a bending moment
equal to 83% of the fully plastic moment. An analysis
similar to that for beam 1, with calculations made at 0,
200, and 275 mm from the fixed end gave the torque
distribution shown in Fig. 5.6. Assuming the ultimate
sand heap torque is present, the flange moment at the
fixed end due to warping torque is approximately 2.82
kN*m which adds to the moment about the y axis of 0.29
kN*m in the top flange for a total of 3.11 kN#*m. Based
on ultimate stresses, the cross-section can resist a
flange moment of 6.10 kN*m when the coexisting moment
about the strong axis is 37.9 kNxm. Therefore, the

applied loads are resisted.

5.1.4 Comparison of Test Results with Predicted Capacity
The interaction diagram for the test beams, as

discussed in Section 4.3.1.1, is shown in Fig. 5.7 in
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Figure 5.6 Final torque distribution on beam 3
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non-dimensionalized form. Also plotted in the fiqure are the
four test results for which the second order effects have
been eliminated, as discussed in Section 5.1.3.1. All of the
test points fall outside the proposed interaction diagram.
The average test/predicted ratio for the four tests, as
given in Table 5.1, is 1.086. The test results are in good
agreement with the proposed interaction diagram for class 1
beams. The use of ultimate normal and shear stresses to
calculate torsional resistance appears to be justified.
Table 5.2 gives the deflections and rotations of the
free end of the four beams at the serviceability limit
corresponding to theoretical first yield, as described in
Section 4.3.2. Of all these values, only the vertical
deflection for the concentrically loaded beam of 1/65 of the
span appears somewhat high. In a practical design situation,

one may choose to impose a lower limit.

5.1.5 Restraint of Weld

At the fixed end of the beam, a full penetration groove
weld connected the specimen to a thick end plate. The
rigidity of the weldment restrains the adjacent flanges due
to the Poisson effect and a uniaxial plane strain condition
develops allowing greater stresses to be achieved than in a
tensile coupon test. The effects of this restraint are
assumed to dissipate rapidly along the length of the beam

and have not been considered in this analysis.
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Table 5.1 Test to predicted ratios

BEAM Test/Predicted
1 1.041
2 1.090
3 1.051
4 1.160
Mean 1.086

Table 5.2 Deflections of test beams at serviceability limit

DEFLECTIONS (mm) DEFLECTIONS/SPAN ROTATIONS
BEAM (radians)
vertical| lateral |vertical| lateral

1 15.4 0.4 1/65 1/2500 0.002
2 6.3 1.3 1/160 1/770 0.051
3 3.3 0.1 1/303 1/10000 0.079

4 1.9 0.3 1/526 1/3300 0.093
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5.1.6 Horizontal Loads

As the tests progressed, deflections of the free end
caused the load applied by the cable to deviate slightly
from vertical. In spite of this, the axial loads, lateral
loads, and lateral moments did not exceed 0.31 kN, 0.64 kN,
and 0.64 kN*m respectively at the end of the first phase of
the torque-rotation curves. These were considered to be

negligible.

5.2 Other Test Results

5.2.1 Introduction

The four sets of test data presented represent the
experimental work on I-shaped steel beams under bending and
torsion where inelastic behaviour is of primary concern. All
tests performed were on class 1 beams. Comparisons with the
proposed interaction diagram are difficult because sometimes
the work is incomplete; the ultimate limit state has not
been defined explicitly or material behaviour beyond strain

hardening has not been reported.

5.2.2 Dinno and Merchant (1965)

Dinno and Merchant tested six 21 inch long small,
stocky I-shaped specimens machined from solid mild steel
bars to the cross-section shown in Fig. 5.8. The b/t and h/w
ratios are 2.5 and 4.0 respectively. Two inches were left

solid at each end to provide full warping restraint. Various
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ratios of moment to torque were applied. The torque was
constant and the bending moment varied along the beam,
although the precise method of loading was not reported. The
results of their tests are presented in Fig. 5.9 along with
the circular curve they propose as a design limitation. The
limiting torque, T,, is based on the yield stress for both
the sand heap and warping contributions.

Comparison of the test results with the proposed
interaction diagram is not directly possible as they did not
report the ultimate tensile strength of the material, nor
have they defined what was considered to be the failure
criterion. In addition, the diminutive size of the test

specimens make any comparison to beams used in practice

highly suspect.

5.2.3 Kollbrunner, Hajdin, and Corié (1978)

Kollbrunner, Hajdin, and Corié¢ tested an I-shaped
eccentrically loaded cantilever beam with a length of 1300
mm. This class 1 section had flanges that were 6.4 x 80 mm
and a web that was 6.4 x 120 mm., The limiting load was
arbitrarily defined as that when the maximum’strain was five
times the yield strain. Using this criterion, the test point
is plotted on the interaction diagram in Fig. 5.10 and falls
well inside the curve. In Fig. 5.11, the torque-rotation
curve for this test shows, however, that the test was

terminated before the full strength had been reached.
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5.2.4 Kollbrunner, Hajdin, and Obradovié (1979)

Kollbrunner, Hajdin, and Obradovié tested five fixed
ended 1600 mm long I-shaped beams, comprised of three steel
plates, under bending and torsion. The flanges were 5.7 x 60
mm and the web 8.4 x 94 mm. This is a class 1 section. The
beams were loaded by means of a vertical load, with an
eccentricity of 200 mm, applied at one quarter point.

The ultimate strength of the material, and the
criterion for selecting the maximum load are not given.
Also, for the ultimate load achieved, the flexural moment
can be carried by the web alone without exceeding the yield
stress. Comparisons with the interaction diagram are

therefore meaningless.

5.2.5 Razzaq and Galambos (1979)

Razzaqg and Galambos tested two class 1 M150X6.5 beams
under uniaxial bending and torsion and two under uniaxial
bending alone. The ends were flexurally pinned and
torsionally fixed, with springs providing restraint about
the vertical axis. The beams subjected to both bending and
torsion were first loaded by an eccentric vertical load at
midspan and subsequently with uniform end moments to
collapse.

The length of the beams was such that they would be
expected to fail by lateral torsional buckling. The
interaction diagram of Fig. 5.12 has been constructed on

this basis, as discussed in Section 4.3.1.5, and assuming
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the ends are flexurally pinned and torsionally fixed. The
test results plotted in Fig. 5.12 give test/predicted ratios
of 0.93 and 1.01 for the beams subjected to combined bending
and torsion and 1.04 and 1.31 for the beams subjected to

bending only.
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6. DESIGN METHODOLOGY

6.1 General

In limit states design, the designer checks the
adequacy of his structure against two classes of limit
states, the ultimate limit states and the serviceability

limit states.

6.2 Ultimate Limit States
Based on the ultimate strength moment-torque
interaction diagram developed in Section 4.3.1, an ultimate
limit states design procedure can be developed. The general
procedure is first presented and then design checks are
given which may reduce the amount of work considerably. The
steps, in general, for class 1 and 2 sections are:
1. Compute the factored moment, M,, and torque, T, on
the beam.
2. Select a beam with M, > M.
3. Construct the moment-torque interaction diagram in
Fig. 6.1 (for class 1 sections) as follows:
a. Establish point E with M/M, = 1.0 and extend the
line from E horizontally toward H.
b. For class 1 sections, determine the ultimate
torque, T, = T, * T, The point F, T/T, = 1.0,
is thus found and the point H has an abscissa

Ta/Ty,» For class 2 sections, pending

experimental confirmation, it is suggested that
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the calculated torgques be based on the yield
strength of the material.

c. The point G, directly above F, has an ordinate
equal to the fully plastic moment of the web
divided by M.

d. A parabola with vertex at G is drawn from G to
H. Conservatively, a straight line could be used
between these two points.

e. The factored resistance curve has coordinates of
¢ times the curve EHGF.

Provided point J, representing the applied factored

moment and torque, lies within the factored

resistance curve, the beam is satisfactory.

For class 3 sections, the interaction diagram would be

constructed in a similar manner except that:

1.

2'

the maximum bending moment is M,.

the maximum torque is determined as the sum of the
St. Venant torque and the warping torgue based on an
elastic analysis with the yield stress as the
limiting warping normal stress.

the moment corresponding to point G is the yield
moment of the web.

as the parabolic curve from G to H depends on full

plastification, it is replaced by a straight line.

For class 1 and 2 beams, where the flexural capacity is

limited by lateral torsional buckling, it is proposed that

the interaction diagram be based on a maximum moment
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corresponding to the lateral torsional buckling moment
resistance and a maximum torque equal to the plastic torque
based on the yield value, as discussed in Section 4.3.1.5.
The diagram is completed with a straight line from G to H.
For class 3 sections, the diagram would be constructed
similarly but with the torque limited to the yield torque.
In certain special circumstances, the analysis can be

greatly simplified.

Case 1. The factored torque is less than the St. Venant
torsional resistance.
Under these circumstances, the full moment resistance

(M M, or M, based on lateral torsional buckling, as

p’
appropriate) can be sustained because the design point is to

the left of point H of Fig. 6.1.

Case 2. The factored moment is less than the moment capacity
of the web.

This represents the condition when the beam is loaded
chiefly in torsion and the bending moment is small. The beam

can carry the full torsion depending on its class.

The analysis is further simplified if cross-sectional
properties such as M,/M, and Z, are tabulated.

Because an interaction diagram is needed for each
selection of beam cross-section, it is desirable to minimize

the number of iterations in the design process by careful
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beam selection. For example, if the factored torque is
large, a beam with a moment capacity significantly greater
than M, would probably be required. Also, certain
cross-sectional characteristics are more significant than
others in resistance of different types of loads. The flange
area and the distance between flange centroids are important
for moment resistance, the flange and web areas (especially
the thicknesses) are important for St. Venant torsional
resistance, and the flange width and the distance between
flange centroids are important for warping torsional

resistance.

6.3 Serviceability Limit States

The serviceability limit state based on first yield at
a point on the cross-section (Equation [4.14]), when plotted
on Fig. 6.1 drawn for class 1 sections, is a straight line
joining the point K (0,M,/M,) to the point L (T,/T,,0). For
class 2 and 3 sections, the serviceability limit state
interaction line would mark off a relatively greater portion
of the ultimate limit state diagram.

The line N-P has coordinates increased over those of
the line K-L by the weighted load factor (1.25 to 1.50). Any
straight line from the origin represents a given initial
eccentricity of the applied load. The point R represents the
case when the ultimate limit state and the serviceability
limit state are satisfied simultaneously. Above the line O-R

the ultimate limit state controls and below the line the
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serviceability limit state controls., Note that point J meets
strength requirements but not serviceability requirements.
The second serviceability limit state related to the
distortion of the member depends on the particular
characteristics of the member and the contiguous building
elements. Having met the first serviceability limit state of
first yield, the rotations and deflections of the beam can
be calculated elastically. The designer then decides whether

or not these are acceptable.

6.4 Summary

Examination of Fig. 6.1 suggests that the
serviceability controls for beams subject to substantial
torsional moments. Therefore, prior to drawing the entire
interaction diagram, the warping yield torque should be
determined to define point L, the yield moment to define
point K, and the St. Venant torque to define point H. If
line N-P intersects the factored resistance curve on the
flat portion (point R), it is not necessary to construct the
remainder of the interaction diagram.

The slope of the line O-R represents a specific
moment-torque ratio. If the moment-torque ratio is larger,
strength governs when using the first serviceability
criterion; if it is smaller, serviceability governs.

Stricter serviceability limits may be imposed.



7. SUMMARY AND CONCLUSIONS

7.1 Summary and Conclusions

Limited experimental and analytical work has been
conducted to determine the behaviour beyond yield and
the ultimate strength of I-shaped beams subject to
flexure and torsion.

Four tests on class 1 cantilever beams with loading
eccentricities of 0, 30, 100, and 220 mm were conducted
to investigate the strength behaviour to the ultimate
condition.

The tests revealed that the torsional behaviour has two
distinct phases. The second phase, dominated by second
order geometric effects, is considered non-utilizable.
From an assumed stress distribution on the
cross-section, with bending normal stresses at the yield
value and warping normal stresses and sand heap shear
stresses at ultimate, an ultimate strength interaction
diagram has been developed for class 1 beams. A computer
program is presented for calculating these diagrams for
any I-shaped beam.

The apparent violation of the von Mises-Hencky failure
condition at the ultimate strength is justified by the
fact that the true ultimate stress can be significantly
greater than the engineering ultimate stress under

certain conditions.
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The design method proposes that if the applied torque
can be carried by the St. Venant torsional resistance
alone, the beam may be designed exclusively for flexure.
When flexural moments can be resisted by the web, the
full torsional resistance is utilized.

The interaction diagram is in good agreement with the
test results. The mean test/predicted ratio for the four
beams based on first phase torsional behaviour is 1.086.
Ultimate strength interaction diagrams are proposed by
extrapolation for classes of sections other than those
tested and for beams whose flexural capacity is limited
by lateral torsional buckling. These proposals should be
confirmed by further tests.

Two serviceability limit states criteria are proposed.
The first criterion is that yielding at any point on the
cross—-section should not occur under the action of the
specified loads. The second criterion is that distortion
of the member must not exceed a value consistent with
the satisfactory performance of the member and the
contiguous building elements.,

Together with the serviceability limit states criteria,
the ultimate strength interaction diagrams provide a

comprehensive design approach.
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7.2 Areas for Future Research
Due to the lack of published experimental data on
combined bending and torsion at the ultimate limit state,
the fact that the ultimate limit state criterion is often
not defined and the limited nature of the tests conducted
during this research, a need exists for a comprehensive
experimental investigation. The design procedure developed
appears to be applicable for a wide variety of conditions
but should be corroborated by further tests. Factors that
should be investigated include
1. end conditions
. beam continuity
. loading conditions, above or below the shear centre

. length of beam

2
3
4
5. class of crbss—section
6. lateral torsional buckling
7. ratio of St. Venant to warping torsional resistance
8. grade of steel

In addition to providing information on the ultimate
strength of beams under bending and torsion, these tests
would provide statistical data for determining a resistance
factor and allow codification of the design procedure.

This research has dealt primarily with ultimate

strength criteria, and further work on serviceability limits

would be useful.
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APPENDIX A - ERROR IN DINNO AND MERCHANT'S (1965) WORK

In the derivation of [2.16], Dinno and Merchant (1965)
have directly adopted the work of Hodge (1959) to obtain
what they claim to be a safe design curve. Although the
derivation by Hodge is perfectly sound, an erroneous
extrapolation has been made in concluding that [2.16] is a
lower bound solution for I-shaped beams. Both Hodge, and
Dinno and Merchant use the yield stress as the limiting
criterion.

At any point on the cross-section, the shear stress, 7,
is given by

[A.1] 2 = (r,041,0) < (0,/a)?

where a = Y3 for the von Mises-Hencky yield criterion.
Equation [A.1] states that the shear stress must be less
than the shear yield stress. When warping stresses are

negligible, the corresponding dimensionless torque is

T

A.2] = T
[ T = T0,/a)

Superimposed on the cross-section are normal flexural
stresses. Because of the presence of shear stresses, the
moment may not reach its full plastic value. Therefore,

[A.3] o0 <o
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The corresponding dimensionless moment is

[A.4] = o

[A.5] o° + a7ttt = o0

to combine [A.2] and [A.4] to obtain

R

This approach is valid for beams with solid or closed

[A.6] {

7=

cross-sections where normal stresses due to torsional
warping are negligible, that is, only St. Venant torsion is
included. Dinno and Merchant, however, adopt [A.6] for
I-shaped beams by including the warping torque in the
equation for T, as given by [2.15]. Since [A.6] was based on
the fact that the moment contributes normal stresses and the
torque contributes shear stresses, the extension to use for

beams with appreciable warping normal stresses is invalid.



APPENDIX B - DATA REDUCTION COMPUTER PROGRAMS

B.1 Program DEFL

cceeeecececeeceecece
CCeeeceeceeeceeceeee
cc
CC Program  "DEFL"
cC
cC NOTE: This program reqguires the use of IMSL subroutine
cC ZSCNT (IMSL, 1980) for the solution of simultaneous
cc equations.
cC
CC  Function: to calculate loads, moments, torque, deflections
cC and rotations from position/displacement transducer
cc readings.
(olof
CCCCCCCCCCCCCCCeeeee
CCCCCeeeceeeeeeeeeee
cc
INTEGER N, ITMAX, IER
REAL WK{68),x(3),PAR(20),FNORM,LOAD,MX,MXNOM,MY,LB,LC
EXTERNAL FCN1,FCN2,FCN3,FCN4
cce
C N=NO. OF EQUNS;NSIG=DIGITS OF ACCURACY;ITMAX=MAX. NO. ITERATIONS
cce
N=3
NSI1G=5
ITMAX=150
M=0
cce
C E=ECCENTRICITY IN MM; LB=LENGTH OF BEAM (PLATE TO LOAD PT) IN
cce
READ(5,5)E,LB
5 FORMAT(F5.1,F7.1)
WRITE(6,7)E
7 FORMAT(16('#')/,'# E =",F6.1," MM #',/16('#')//}
cce
C L=POINT ON X~SEC THAT PROGRAM IS CALCULATING COORDS OF
cce
10 L=1
cece
¢  LSN=LOAD SET NO.;NLC=NO. LOG. CHANNELS;NSR=NO. SETS READINGS
cce
READ(5, 12)LSN,NLC,NSR
12 FORMAT(318)
IF(M.GT.0)GO TO 13
cee
€ THIS IS EXECUTED FIRST CYCLE ONLY SO THAT NSR IS NOT LOST
cce
NR=NSR
M=M+1
cce
C  PAR(N)=LVDT READING IN MM;LOAD IN KN;STROKE IN MM
cce
13 READ(5, 15)LOAD,PAR{11) ,PAR(12),PAR(13),PAR(14),PAR(15)
*,PAR(16),STROKE
15 FORMAT{5E15.6,/3E15.6)
WRITE(6,18)LOAD,LSN
18 FORMAT(' MTS LOAD=',F7.3,' KN',/1X,19('%'},/1X,
*"{LSN=",12,"})"/)
28 IF{L.NE.1}GO TO 30
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cce
C  INITIAL ESTIMATE OF SOLUTION THEN
C SOLVE FOR COORDS OF PT 1 IF L=1 (AND STORE)
cce
X(1)=pPAR{11)
X{(2)=pPAR(12)
X(3)=paRrR(13)
CALL ZSCNT{FCN1,NSIG,N,ITMAX,PAR,X,FNORM,WK,IER)
PAR(1)=x(1)
PAR(2)=X(2)
PAR{3}=X(3)
GO TO 100
30 IF{L.NE.2)GO TO 40
cce
C SOLVE FOR COORDS OF PT 2 IF L=2 (AND STORE)
cce
x{1)=PAR(1)+100.
X(2)=par(14)
X(3)=PAR(15)
CALL ZSCNT(FCN2,NSIG,N, ITMAX,PAR,X,FNORM,WK,IER)
PAR(4)=X(1)
PAR{5)=X(2)
PAR{6)=X(3)
GO TO 100
cce
C SOLVE FOR COORDS OF PT 3 IF L=3
cce
40 %{1)=PAR(16)
X{(2)=ParR(2)+100.
X(3)=PAR(3)~5.
CALL ZSCNT(FCN3,NSIG,N,ITMAX,PAR,X,FNORM,WK, IER)
cce
C O/P COORDINATES OF POINT L (ORIGIN AT POINT 1)
C  FNORM=F{1)#*%2+,..+F(N)#%2 AT CALCULATED COORDINATES
C IER=ERROR PARAMETER (=0 IF NO ERROR)

cce
100 WRITE(6,110)L,X(1),L,%x(2),L,X{(3),FNORM, IER
110 FORMAT('X',I1,'=",F6.1,2X,'¥Y"',I1,'=",F6.1,2X,
*#72',11,'=",F6.1,2X, "FNORM=",F12.4,2X
#,"IER=",13)
cce
C NOTE THAT IF FNORM=100 OR LESS, SHOULD HAVE GOOD RESULTS.
cee
IF(L.NE.3)GO TO 150
cece
C CALCULATE DEFLECTIONS & ROTATIONS
C NOTE: USING A COORD SYSTEM WITH ORIGIN AT PT1
C THEREFORE, TRANSLATE U,V,Ww SO THAT ORIGIN AT CTR OF WEB
cce
U={(pParR(4)+x(1))/2.)~-50.
v=({PAR(5)+x(2))/2.)-50.
w={PAR{6)+x(3})/2.
THETAX={ATAN((X(3)-PAR{(3))/{(X{2)-PAR(2))))*(180./3.14159)
THETAY={ATAN{(PAR(3)-PAR(6))}/(PAR(4)-PAR(1))))*(180./3.14159)
PHI=(ATAN{{PAR(5)-PAR(2))/(PAR(4)-PAR(1))))%(180./3.14159)
cee

C FIND A VECTOR PERP'R TO PLANE OF SECTION
C IE. CROSS PROD OF CTR OF WEB-PT! & CTR OF WEB-PT2

cce
VX={PAR(2)-V~50.)%(PAR(6)-W)~(PAR(5)-V-50.)*{PAR(3)-W)
vY=(PAR{4)~U-50.)*#{PAR{(3)~W)~(PAR{1)-U-50. )*{PAR(6)~W)
vZ=(PAR(1)~-U-50.)*#{PAR(5)-v-50.)-(PAR(4)-U~50.)*{PAR(2)~-V~50.)
VL=SQRT(VX#%2+VY*%2+VI%%2)

cce

C MAKE VECTOR 50MM LONG (OUT TO PLANE OF LOAD PT)



ccce

cCcC

cCcC

cCce

cce

cCC

cce

cCcC

e o Ne!

cce

ccce

cece

cce
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cce

cce

cce

ccce

VX50=VX*50./VL
vVY50=vy*50./VL
vz50=vZ*50./VL

PAR 7,8,9 ARE LOCATION OF TIP OF V50 WRT ORIGIN PT1

PAR(7)=U+50.+VX50
PAR{8)=V+50.+VY¥50
PAR(9)=Ww+V150

PAR 17,18,19 ARE DISTS FROM PT OF APPLICATION OF LOAD
TO PT1, PTZ2, AND TIP OF V50 RESPECTIVELY

PAR(17)=(50.+E)#%2+146. 8%*2+50, %2
PAR{18)=(E-50. ) %%2+146.8%%2+50.%%2
PAR(19)=E#%2+96.8%#2

CALCULATE LOCATION OF LOAD POINT
INITIAL ESTIMATES FOR LOAD PT

X{1)=U+50.+E

X{(2)=v+150.

X(3)=w

CALL ZSCNT(FCN4,NSIG,N,ITMAX,PAR,X,FNORM,WK,IER)

FOR O/P SIGNS:
RH COORD SYSTEM
RH RULE POS

TRANSLATE TO COORD SYS W/ORIGIN CTR OF WEB

x{1)=x(1)-50.
X{2)=x(2)-50.

FOLLOWING O/P - ORIGIN CTR OF WEB

WRITE{(6,120)U,V,Ww, THETAX, THETAY ,PHI ,X(1),X(2),x(3)
FORMAT(/,'U=",F6.1," MM v=",F6.1," MM w="',F6.1,
#' MM'/,"THETAX=',F6.2,' DEG THETAY=",F6.2,' DEG PHI="'
*,F6.2,"' DEG',//'XC=',¥6.1,° ¥C=",F6.1," ZC=",F6.1/)

PL=LAT LOAD;PA=AXIAL LOAD;PC=LOAD IN CABLE
INITIAL LENGTH OF CABLE=4995 MM;LOAD TO END OF WEB=48 MM

PL=~LOAD#{{(X(1)~0.)/{4995.+STROKE-X(2)+96.8))
PA=-LOAD*{{X{3)~48.)/(4995.+STROKE-X(2)+96.8))
PC=SQRT(PL##2+PA##2+LOAD##2)

NOM VALUES NEGLECT 2ND ORDER EFFECTS

MXNOM=-LOAD#*LB/ 1000,

TNOM=LOAD*E/ 1000.

MX=~{LOAD#*(LB-48.+X(3))-PA+x(2))/1000.

My=(PL#{LB-48.+X(3))-PA+xX{1))/1000.

T=(LOAD*X{1)-PL#Xx(2)}/1000.

LC=SQRT((4995.+STROKE~X(2)+96.8)#%2+(X{(1)-0.)#%2
®#+(X(3)-48.)%%2)

WRITE(6, 130)LOAD,PL,PA,PC,LC,MXNOM,MX , MY, TNOM, T
FORMAT('PV=',F6.2," KN PL=",F6.2,
#' KN PA=",F6.2," KN PC=",F6.2," KN LC=",F7.1," MM’
*/'MXNOM="',F6.2," KN#M MX=",F6.2,' KN#¥M M¥=',F6.2," KN#*M'
%*/"TNOM=",F6.2," KN#M T=',F6.2,' KN*xM'//)

IF END OF DATA FILE, STOP
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cce
IF(LSN.EQ.NR)GO TO 1000
GO TO 10
150 L=L+1
GO TO 28
1000  STOP
END
SUBROUTINE FCN1(X,F,N,PAR)
REAL X(3),F(3),PAR(20)
cce
C INTEGER NUMBERS REPRESENT INITIAL LVDT LENGTHS IN MM
cce

F{1)=(X(1)+1508. }%#2+X{2)#*2+X(3)**2~(PAR(11)+1508. ) %2

F(2)=X(1)##2+(X(2)+898. ) ##2+X{3) %2~ (PAR(12)+898. ) %*2

F{3)=X{(1)%%2+X(2)#%2+(1348.~X(3) ) %»2~(PAR{(13)+1348. )**2

RETURN

END

SUBROUTINE FCN2(X,F,N,PAR)

REAL X(3),F(3),PAR(20)

F(1)=(X{1)-100.)##2+(X(2)+895. ) ##2+X(3) %22~ (PAR( 14)+895. ) %2

F(2)=(X{(1)~100. ) #%2+X(2)%#2+(1349.~X(3) ) ##2~(PAR(15)+1349. )*%2

F(3)={(X{1)-PAR( 1) )#+2+(X{(2)-PAR(2) ) »+2+(X(3)~PAR(3) )#*2~10000.

RETURN

END

SUBROUTINE FCN3(X,F,N,PAR)

REAL X(3),F(3),Par{(20)

FO1)=(X(1)+1508. ) ##2+(X(2)-100. ) #%2+X(3)*%2-(PaR(16)+
$1508. ) ##2

F(2)={X{(1)-PAR(4) ) *#2+(X(2)-PAR(5)})#*2+(X(3)-PAR(6) ) #%2-20000.

F(3)=(X{(1)-PAR(1))#%2+(X{(2)-PAR(2) ) ##2+(X{(3)-PAR(3))##2-10000.

RETURN

END

SUBROUTINE FCN4{X,F,N,PAR)

REAL X(3),F(3),PAR(20)

F{1)=(X(1)-PAR(1))»#2+(X{(2)~PAR(2) ) #+2+(X(3)-PAR(3) )#+2~PAR(17)

F(2)={X(1)-PAR{4) ) #+2+{X(2)-PAR(5) ) #+2+(X(3)-PAR(6) ) #*2~-PAR(18)

F(3)=(X(1)-PAR(7) ) #*2+(X(2)-PAR(8) ) *%2+(X(3)-PAR(9) ) #%2-PAR(19)

RETURN

END
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B.2 Program FEDEFL

CCCCCCCCCCCeeeeeeeee
cceececeecececceecceccee

cC
¢C  Program  "FEDEFL"
cc
cC Function: to calculate deflections and rotations at fixed end and
cC those at the free end due to rigid body movement.
cc
CCCCCCCCCCCCeeeeeecee
CCCCCCeCeeeeeeceeece
cC
REAL LOAD,D(6)
C CDEG=CONV FACTOR: RAD -> DEG
CDEG=180./3.14159
WRITE(6,2)
2 FORMAT("THIS PROGRAM CALCULATES DEFL & ROT AT THE FIXED END',/
*"AND THE INDUCED DEFL & ROT AT THE FREE END',//
*"##*NOTE THAT DEFL ARE IN MM, AND ROT ARE IN DEGREES##%+'/)
C  M=COUNTER;LSN=LOAD SET NO.;NLC=NO.LOG.CHAN.;NSR=NO.SETS READ.
M=0
5 READ(5,6)LSN,NLC,NSR
6 FORMAT(318)
IF{M.GT.0)GO TO 8
C EXECUTED IN FIRST CYCLE ONLY
NR=NSR
M=M+1
READ(5, 10)LOAD, (D{(J),J=1,6)}
10 FORMAT(5E15.6/2E15.6)
WRITE(6,15)LOAD,LSN
15 FORMAT{//' MTS LOAD=',F7.3,' KN',/1X,19("#")/,'(LSN=",12,")"/)
U=p{6)
v=(D(1)+D{2))/2.
w=-(D{3}+D{4})}/2.
THX=(ATAN{{D(5)+W)/152.4) ) *CDEG
THY=(ATAN{(D(4)-D(3))/152.4) ) *CDEG
PHI=(ATAN{((D{2)-D(1))/222.))*CDEG
UFREE=U+950. #SIN{THY/CDEG)
VFREE=V-950.*SIN(THX/CDEG)
WFREE=W
WRITE(6,50)U,V,W, THX, THY,PHI ,UFREE, VFREE ,WFREE
50 FORMAT('U=",E9.3,' V=",E9.3," w=',E9.3,/
#"THX="',E9.3," THY=",E9.3," PHI=',E9.3,/
#"UFREE=",E9.3,"' VFREE=',E9.3,"' WFREE=',E9.3)
IF(LSN.EQ.NR)GO TO 1000
GO TO 5
1000  sTOP

END
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B.3 Program GAUGE

cceceeeceeeeceeceeecce
ceeeeeeececececceeccee
cC
CC  Program "GAUGE"
cc
cC Function: to calculate stresses from strains based on mean
cC stress-strain curve.
cC
CCCCeeeeeceecececeeccee
ceeeeceeceeececeeceecee
cC
REAL LOAD,STRAIN(15),5I1GMA(15)
E=203027.
EST=5840.
S1GY=320.6
C M=COUNTER ; LSN=LOAD SET NO.;NLC=NO.LOG.CHAN.;NSR=NO.SETS READ.
M=0
5 READ(5,6)LSN, NLC,NSR
6 FORMAT(318)

IF(M.GT.0)GO TO 8
C EXECUTED IN FIRST CYCLE ONLY

NR=NSR
M=M+1

8 READ(5, 10)LOAD, {STRAIN(J) ,J=1,15)

10 FORMAT{(5E15.6/5E15.6/5E15.6/E15.6)
WRITE(6, 15)LOAD,LSN

15 FORMAT(//' MTS LOAD=",F7.3," KN',/1%,19("¢")/,"(LSN=",12,")"/)

DO 180 1=1,15

EPS=STRAIN{I)

CALL STRESS (EPS,SIG,E,EST,SIGY)
SIGMA(1)=SIG

180 WRITE(6,200)1,SI1GMA(I),STRAIN(I)
200 FORMAT('GAUGE #°,12,": ',
#'STRESS =",F7.1," MPA STRAIN =',E11.4)
IF{LSN.EQ.NR)GO TO 1000
GO TO 5
1000  sTOP
END

SUBROUTINE STRESS (EPS,SIG,E,EST,SIGY)

C WORK WITH POS NUMBERS
AEPS=ABS(EPS)

C TRI-LINEAR STRESS-STRAIN CURVE
IF{AEPS.LE.0.00158)SIG=AEPS*E
IF(AEPS.GT.0.00158. AND.AEPS.LE.0.0116)SIG=S1GY
IF(AEPS.GT.0.0116)SI1G=S1G6Y+(AEPS-0.0116)*EST

C ULT STRESS=471 MPA
IF(SI1G.GT.471.)81G=471.

C COMPRESSIVE STRESSES NEG
IF{EPS.LT.0.)S1G=~S1IG
RETURN
END
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B.4 Program ROSETTE

ceeeeeeeeeeeeeeeecece

ceeeeeeeeeeeceeceece

cc

CC  Program  "ROSETTE"

cC

[oldd Function: to calculate normal and shear stresses from strains based on
cc mean stress-strain curve.
cC

cceeeeeeeecececeecece

ceceeecceeeecceeecece

cC

INTEGER ROSET(10)
REAL NORMAL({10),SHEAR(10),LOAD,STRAIN(45)
E=203027.
G=E/2.6
EST=5840.
81G6Y=320.6

C  M=COUNTER;LSN=LOAD SET NO.;NLC=NO.LOG.CHAN.;NSR=NO.SETS READ.
M=0

5 READ(5,6)LSN,NLC,NSR

FORMAT(318)

IF{M.GT.0)GO TO 8

C EXECUTED IN FIRST CYCLE ONLY
NR=NSR
M=M+1

8 READ(5, 10)LOAD, (STRAIN(L),L=16,42)

10 FORMAT(5E15.6/5E15.6/5E15.6/5E15.6/5E15.6/3E15.6)
WRITE(6, 15)LOAD,LSN

15 FORMAT(//' MTS LOAD=",F7.3,' KN',/1X,19("#*")/,"(LSN=",12,"}"/)
J=16
Ja=1

18 Jp1=J+1
Jp2=J+2
GAMZX=2.#STRAIN(JP1)}-STRAIN(J)-STRAIN{JIP2)
SROOT=SQRT{ { (STRAIN(J)~STRAIN(IP2))/2.)#%2+(GAMZIX/2.)*%2)
EPS1=(STRAIN(J)+STRAIN(JIP2))/2.+SROOT
EPS2=(STRAIN{(J)+STRAIN(JIP2))/2.-SROOT
IF{STRAIN{(J).EQ.0..AND.STRAIN(JP2).EQ.0.)G0O TO 23
THETAP=0.5%ATAN(GAMZX/{STRAIN{J)~STRAIN{(JIP2)))*(180./3.14159)

)

GO TO 25
23 THETAP=0.
25 GAM12=SQRT( (STRAIN(J)-STRAIN(JIP2) ) ##2+GAMZX**2)

Do 150 1=1,5
IF(I.NE.1)GO TO 50
EPS=STRAIN(J)
CALL STRESS (EPS,SIG,E,EST,SIGY)
S1Gz=81G
GO TO 150

50 IF(I.NE.2)})GO TO 60
EPS=STRAIN(JP1)
CALL STRESS (EPS,SIG,E,EST,SIGY)
S1G45=S1G
GO TO 150

60 IF(I.NE.3)GO TO 70
EPS=STRAIN{JP2)
CALL STRESS (EPS,S5IG,E,EST,SIGY)
SIGX=SIG
GO TO 150

70 IF{I1.NE.4)GO TO 80
EPS=EPS1
CALL STRESS (EPS,SIG,E,EST,SIGY)
SIG1=§51G
GO TO 150
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80 EPS=EPS2
CALL STRESS (EPS,SIG,E,EST,SIGY)
S1G2=SIG

150 CONTINUE

TAUZX=GAMZX#G
IF{TAUZX.GT.185.1)TAUZX=185.1
IF{TAUZX.LT.~185.1)TAUZX=-185.1
TAU12=GAM12%G
IF{TAU12.GT.185.1)TAUT2=185.1
IF{TAU12.LT.~185.1)TAU12=~185.1
WRITE(6,200)J,81G2,51G45,51GX,S1G1,S1G2, TAUZX,TAU12, THETAP
200 FORMAT{ ' ##ROSETTE ',12,"##4"./

¥'SI1GZ =",F7.1,' MPA'/,

*'S1G45=",F7.1," MPA'/,

#'SIGX =',F7.1,' MpPA'/,

*'SIGY =',F7.1," MPA'/,

#'S1G2 =",F7.1,' MPA'/,

*"TAUZX=",F7.1,' MPA'/,

**TAUI2=",F7.1," MPA'/, 'THETAP=',F6.1,"' DEGREES'/)
NORMAL(JJ)=S1GZ
SHEAR(JJ)=TAUZX
ROSET(JJ)=J
IF{J.EQ.40)GO TO 500

J=J+3
JI=JJ+1
GO TO 18
500 WRITE(6,550)
550 FORMAT( " SUMMARY',/7("-"))

DO 700 K=1,9
WRITE(6,600)ROSET(K),NORMAL(K),SHEAR(K)

600 FORMAT( "ROSETTE ',12,' =-~- NORMAL STRESS=',F7.1,
#' MPA & SHEAR STRESS=',F7.1,' MPA")
700 CONTINUE
IF(LSN.EQ.NR)GO TO 1000
GO TO 5
1000  SsTOP
END

SUBROUTINE STRESS (EPS,SIG,E,EST,SIGY)

C WORK WITH POS NUMBERS
AEPS=ABS{EPS)

C TRI~LINEAR STRESS-STRAIN CURVE
IF{AEPS.LE.0.00158)S1G=AEPS+*E
1F(AEPS.GT.0.00158. AND.AEPS.LE.0.0116)S16=SIGY
IF(AEPS.GT.0.0116)S1G=81GY+(AEPS-0.0116)*EST

C ULT STRESS=471 MPA
IF{S1G.GT.471.)81G=471.

C COMPRESSIVE STRESSES NEG
IF(EPS.LT.0.)S1G=-S1G
RETURN
END



APPENDIX C - COMPUTER PROGRAM MTINT

ceeeeeceeceeceeeeece
ceeeeccceeeececcecce
cc
cc Program "MTINT"
ccC
cc
CC  GENERATION OF MOMENT-TORQUE INTERACTION
CC DIAGRAMS FOR I-SHAPED STEEL BEAMS
cc
cc Note: 1/P unit 4 (SECDATA) refers to a data file (not listed)
cC with properties of all I-shaped beams tabulated in
cc the CISC handbook (CISC, 1984).
cC O/P unit 7 is for input to a plotting program.
cc
ce M/Mp vs T/{Tsh+Twp)
(ol M/Mp vs T/{Tshu+Twu)
cC
CCCCCCCCeeeeeeeeeece
ceeeeececceeccececcee
cC
DIMENSION STSHP(5)
REAL L,M,MF,MM,MP,MMP,L1,L2,LWIDTH
INTEGER EC,A,IX,ZXEXP
CALL FTNCMD({'ASSIGN 4=SECDATA",16)
WRITE(6,10)
10 FORMAT(/'GENERATION OF MOMENT~TORQUE INTERACTION'/
*"DIAGRAM FOR I-SHAPED STEEL BEAMS'/)
WRITE(7,12)
12 FORMAT(’0.0,0.2,1.0,12.7'/,'0.0,0.2,1.0,12.7")
15 READ{(5,20)a
20 FORMAT(12)
IF(A.EQ.0)GO TO 1000
NN=0
READ(5,25)0
25 FORMAT(12)
1IF{(J.EQ.1)GO TO 27
READ(5,28)B,D,T,¥,L,EC,LT,X
28 FORMAT{(5F7.1,212,F7.1)
GO TO 32
27 READ(5,30)STSHP(1),STSHP{2),STSHP(3),L,EC,LT,X
30 FORMAT(3A4,F7.1,212,F7.1)
32 READ(5,35)N
35 FORMAT(13)
WRITE(7,37)N
37 FORMAT(13,',5,0,1,1,0.1,1")
1IF{(J.EQ.2)G0 TO 38
c
C READ IN SECTION PROPERTIES
C
CALL RREAD{STSHP,ZX,ZXEXP,ADEPTH,BDEPTH,LWIDTH,RWIDTH,T,W)
D=ADEPTH+BDEPTH
B=LWIDTH+RWIDTH
38 L1=0.653%L
L2=0.586%L
B1=B/2.
MP=(w*(D/2.-T)%*2)+(B*T#(D-T))
C
C  CALCULATE ST. VENANT (SAND HEAP) TORSION
C
caLL STV(T,B,W,D,TSH)
c
C CALCULATE WARPING TORSION DEPENDING ON
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C
C

C
C
C

QOO0

a0

LOAD TYPE AND END CONDITIONS

40

45

50

55

60

65

68

70

7%

TWP 1=B*#2%T%{D~T)
IF{LT.NE.1.0R.EC.NE. 1)GO TO 40
TWP=TWP1/L

GO TO 85
IF(LT.NE.1.0R.EC.NE.2)GO TO 45
TWP=TWP1%3./(2.%L)

GO TO 85
iF(LT.NE.1.0R.EC.NE.3)GO TO 50
TWP=TWP1%5./(4.*L)

GO TO 85
1F(LT.NE.1.0R.EC.NE.4)GO TO 55
TWP=TWP1/{2.%L)

GO TO 85
IF{LT.NE.2.0R.EC.NE. 1)GO TO 60
TWP=TWP1/(4.*X)

GO TO 85
IF{LT.NE.2.0OR.EC.NE.2)G0O TO 65
TWP=TWP1*{(2.+L/X)/{4.*L)

GO TO 85
IF(LT.NE.2.0R.EC.NE.3)GO TO 75
IF(X.LT.L1)GO TO 68
TWP=TWP1/(4.%(L-X)})

GO TO 85

IF(X.LE.L2}GO TO 70

TWP=TWP1#( ~X*#2+2 #L*¥X+2. ¢L#%2) /(4 , #X#%2%(3.%L-X))
GO TO 85
TWP=TWP1#(2, #L#%2+2, #L#X-X#42) /(4. *L*¥X*{(2.%L-X))
GO TO 85
TWP=TWP1/{(4.%X)

CALCULATE TOTAL PLASTIC TORQUE WITHOUT MOMENT

85

86

87
88

89
30

92

IF

IF
94
95

TO

TP=TWP+TSH
1¥{(J.EQ.2)G0 TO 87
WRITE(6,86)STSHP(1),5TSHP(2),STSHP(3)

FORMAT(/,75{("~"),//"SECTION =',3A4)
GO TO 89
WRITE(6,88)B,D,T,W
FORMAT(/,75('-"),//'B =',F7.1," MM'/,'D =',F7.1," MM'/,
#'7 =", ,F7.1," MM'/,'w =",F7.1,7 MM')}
WRITE(6,90)L,EC,LT,X
FORMAT("LENGTH = ',F7.1,' MM'/,
*'END CONDITION CODE = ',12/,'LOAD TYPE CODE = ',12/,

#"DISTANCE FROM LOAD TO SUPPORT WITH FEWEST DEGREES OF',
#' FREEDOM = ',F7.1,' MM"/)

WRITE(6,92)MP,TSH,TWP, TP

FORMAT( "PLASTIC MOMENT/SIGMA YIELD =',E9.4,' MM*#3'/,
#'SAND HEAP TORSION/SIGMA YIELD =',E9.4," MM#:23'/,
#'"WARPING PLASTIC TORSION/SIGMA YIELD =",E9.4,' MM#*#3'/,
% '*TOTAL PLASTIC TORSION/SIGMA YIELD =',E9.4,' MM##3'/)

ENTERING MOMENTS EXECUTE SECOND HALF OF PROGRAM
ENTERING TORSION EXECUTE FIRST HALF OF PROGRAM

IF(A.EQ.2)G0O TO 500
READ(5,95)TTP
FORMAT(F6.3)

NN=NN+1

TOR=TP#TTP

VF={TOR-TSH)/{D~T)

ELIMINATE ROUND OFF ERRORS IN LOCATING POINT

WHERE WARPING TORSION BEGINS TO ACT
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CALCULATE FLANGE MOMENTS DEPENDING ON

TOR 1=TOR~TSH
TOR2=TOR/1000.
1IF{TOR1.LT.TOR2)VF=0.

IF(VF.LE.0.)GO TO 360

LOAD TYPE AND END CONDITIORS

100

120

140

160

180

200

220

240
280
350
360
400
410
415
420

500
510

CALCULATE FLANGE SHEARS DEPENDING ON

IF{LT.NE.1.0R.EC.NE.1)GO TO

MF=VF*L/4.

GO TO 350
IF(LT.NE.1.0R.EC.NE.2)GO

MF=VF*L/6.

GO TO 350
IF(LT.NE.1.0R.EC.NE.3)GO

MF=VF*L/5.

GO TO 350
IF{LT.NE.1.0R.EC.NE.4)GO

MF=VF#L/2.

GO TO 350
IF{LT.NE.2.0R.EC.NE. 1)GO

MF=VF#X

GO TO 350
IF(LT.NE.2.0R.EC.NE.2)GO

MF={VF#X*L}/{L+2.#X)

GO TO 350
IF{LT.NE.2.0R.EC.NE.3)GO

IF(X.LT.L1)GO TO 220

MF=VF# (LX)

GO TO 350
IF(X.LE.L2)GO TO 240

MF={VF*X%%2# (3. #L-X) )/ (~X##2+2 #L¥X+2 $L¥42)

GO TO 350

MF=VF*L*X%(2.#L-X)/{2.#L*##2+2. #L*¥X-K*%2)

GO TO 350

TO

TO

TO

TO

TO

TO

100

120

140

160

180

200

280

IF{LT.NE.2.0R.EC.NE.4)GO TO 990

MF=VF#X

CALL MOMENT(T,B,MF,D,W,MP,MMP,B1)

GO TO 400
MMP=1.0
WRITE(6,410)TTP,MMP

FORMAT( 'TORQUE/FULLY PLASTIC TORQUE
* "MOMENT/FULLY PLASTIC MOMENT =',F6.3)

WRITE(7,415)TTP,MMP
FORMAT(F5.3,',",F5.3)}

IF{NN.EQ.N)GO TO 15
GO TO 94
READ(5,510)MMP
FORMAT(F6.3)

NN=NN+1

M=MP*MMP

MM=B/2.-(M~W#{D/2.~T)#%2)/(2.+#T#(D~T))

IF(MM.GE.B1)GO TO 800
IF(MM.LE. Q. )MM=0.
MF=MM#T#(B~MM)

LOAD TYPE AND END CONDITIONS

IF{LT.NE.1.0R.EC.NE. 1)GO TO 600

VF=MF#4./L
GO TO 850

600 IF(LT.NE.1.OR.EC.NE.2)GO TO 620
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620

640

660

680

700

720

740

780

800
850

900
3910

950

930
995

VF=MF%6./L

GO TO 850
IF(LT.NE.1.0R.EC.NE.3)GO TO 640

VF=MF#5. /L

GO TO 850
IF(LT.NE.1.0R.EC.NE.4)GO TO 660

VF=MF#*2./L

GO TO 850
IF(LT.NE.2.0R.EC.NE.1)GO TO 680

VF=MF/X

GO TO 850
IF(LT.NE.2.0R.EC.NE.2}GC TO 700

VF=MF# (L+2.*X)/(L#*X)

GO TO 850
IF(LT.NE.2.0R.EC.NE.3)GO TO 780

IF(X.LT.L1)GO TO 720

VF=MF/(L-X)

GO TO 850
IF(X.LE.L2)GO TO 740

VF=MF# (~X%%2+2 *LeX+2. $L2%2) /((X%#2)#(3.*L-X))

GO TO 850

VF=MF# (2. #L*22+2. . 4L#X-X¢#2)/(L#X%(2,*L-X)})

GO TO 850
IF{LT.NE.2.0R.EC.NE.4)G0O TO 990
VF=MF/X
GO TO 850
TTP=1.0
GO TO 900
CALL TORQUE(VF,D,T,TSH,TTP,TP)

WRITE(6,910)MMP,TTP
FORMAT( "MOMENT/FULLY PLASTIC MOMENT =',F6.3,5X,

*"TORQUE/FULLY PLASTIC TORQUE =',F6.3)
WRITE(7,950)TTP,MMP
FORMAT(F5.3,",",F5.3)
IF{NN.EQ.N)GO TO 15
GO TO 500
WRITE(6,995)

FORMAT{'ERROR IN LOAD TYPE OR END CONDITION CODE')

1000 sTOP

SUBROUTINE FOR CALCULATING MOMENT/FULLY PLASTIC MOMENT

END

FROM FLANGE MOMENT

100

200
250

300
350

SUBROUTINE MOMENT(T,B,MF,D,W,MP,MMP,B1)
REAL MF,MM,MP,MMP

R=(T#B)#%2-4 . %T*MF

IF(R.LT.0.)G0O TO 200

R1=SQRT(R)

MM=(R1+T#B)/(2.%T)

IF(MM.LE.B1)GO TO 100
MM=(T#B-R1)/(2.*T)

IF{MM.LT.0.)GO TO 300
M={{(B-2.#MM)}*T)#(D-T))+{((D/2.~T)#%2)*w
MMP=M/MP
GO TO 1000

WRITE(6,250)

FORMAT('ERROR IN T, B, OR MF')

STOP

WRITE(6,350)

FORMAT('ERROR IN DATA - NEGATIVE TORQUE OBTAINED')

STOP

1000 RETURN

130



END

FROM FLANGE SHEAR

OO0 0

SUBROUTINE TORQUE({VF,D,T,TSH,TTP,TP)

TOR=VF*{D-T)+TSH
TTP=TOR/TP
RETURN

END

GO0 00

SUBROUTINE STV(T,B,W,D,TSH)
HF=0.5#T/SQRT(3.)
VE=HF*(T%%2/3.+{B-T)*T/2.)
Hw=Ww/{2.%#SQRT(3.))

UW=HW W (D-2.#T) /2. +HWW#%2/6.
TSH=2.%(2.%VF+Vw)

RETURN

END

Q0o

SUBROUTINE RREAD(STSHP,ZX,ZXEXP,ADEPTH,BDEPTH,LWIDTH,RWIDTH,T,W)

SUBROUTINE TO CALCULATE SAND HEAP TORSION

SUBROUTINE TO READ IN SECTION PROPERTIES

SUBROUTINE TO CALCULATE TORQUE/FULLY PLASTIC TORQUE

INTEGER BLANK1,BLANKZ,COUNTR,CSAREA,CW,CWEXP, DEPTH, DUMY,
& DEPTH, SEC,SECT,SHAPE,SST1,85T2, STSHP, SX, SXEXP,SY,
& SYEXP,TYPE1,USAGE,USE,YES,2X,ZXEXP,ZY, ZYEXP

REAL LWIDTH

DIMENSION SECT(5),8ST1(10),88T2(10),STSHP(5)

REWIND 4
111 = 0
3500 CONTINUE

IT = 0

ITI = II1 + 1
4000 CONTINUE

II = I1 + 1

READ(4,20)BLANK1,SECT(1),SECT(2),SECT(3)

20 FORMAT(I2,3n4)

c
IF{STSHP(1).NE.SECT(1))G0O TO 3500
IF(STSHP(2).NE.SECT(2))GO TO 3500
IF(STSHP(3).NE.SECT{3))G0O TO 3500

c

C

BACKSPACE 4

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCe

the standard steel shape

is read into storage. Depending on the variables ID and

C
(o Next, all of the geometric data for
c
C BLANK1, one of four possible READ routes is followed.
C
C
IF(BLANK1.EQ.0)}GO TO 5200
IF{BLANK1.EQ.1)GO TO 5600
c

CCCCCLCCCCCCCCCCCCCCCCCCCCCCeeeeeeceeccecececceeeeecceececeececceeceece

C
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5200 READ(4,22)BLANK1,SECT(1),SECT(2),SECT(3),

& COUNTR, ID, SHAPE ,USE,
& CSAREA,MASS, IX,1XEXP,SX,SXEXP,ZX,ZXEXP, 1Y, IYEXP,
& SY,SYEXP,ZIY,ZYEXP,JJ,JEXP,CW,CWEXP,S8ST1(1),85T1(2),
& s8T1(3),85T1(4)
22 FORMAT(12,3A4,A1,212,11,216,13,12,13,12,13,12,13,12,13,12,13,
& 12,13,12,13,12,4A2)
C
READ(4,30)DEPTH, ADEPTH, BDEPTH, LWIDTH, RWIDTH, T, W, RADMIN, RADMAX,
& KK,K1,SUAREA,BLANK2,S85T2{(1),88T2(2),55T2(3),55T2(4)
30 FORMAT(15,8F5.1,215,F5.2,112,4A2)
RMASS = 0.0
RETURN
C

CCCCCCCCCCCCLCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeececeeeceee
C
5600 READ(4,50)BLANK1,SECT(1),SECT(2),S8ECT(3)},

& COUNTR, 1D, SHAPE , USE,
& CSAREA,RMASS,IX,1XEXP,SX,SXEXP,IX,ZXEXP,1Y,IYEXP,
& SY,SYEXP,ZY,ZYEXP,JJ,JEXP,CW,CWEXP,SST1(1),858T1(2),
& SST1(3),85T1(4)
50 FORMAT(I2,3A4,at,212,11,16,F6.4,13,12,13,12,13,12,13,12,13,12,13,
& 12,13,12,13,12,4A2)
c
READ(4,30)DEPTH, ADEPTH, BDEPTH, LWIDTH,RWIDTH, T, W, RADMIN, RADMAX,
& KK,K1,SUAREA,BLANK2,88T2(1),88T2(2),8872(3),85T2(4)
MASS = 0
RETURN
c

CCCCCCCCCCCCCCCCCLLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeeeececee
C
END



