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ABSTRACT 

Satellite-retrieved methane (CH4) concentration data offers a valuable opportunity for 

large-scale emissions monitoring. However, its widespread adoption remains challenging 

due to the data volume and varying data quality. A workflow to estimate the methane 

emission rate of major hydrocarbon plays based on the mass balance principle using 

publicly available Sentinel-5P satellite data is presented. This workflow estimates the 

methane emission rate originating from specific regions. The proposed workflow is applied 

to estimate emissions from the Permian and Appalachian Basins in the United States. 

Applying the proposed workflow to these regions, the three-year-mean methane emission 

rates from 2019 to 2021 are estimated to be 3.56 Mt/year for the Permian Basin and 4.46 

Mt/year for the Appalachian Basin. The results are compared against volumes estimated 

by other means and reported in the literature. The proposed method is easy to implement 

and offers promising potential for practical and reliable estimates for long-term regional 

methane emission monitoring purposes for operators, governments, investors, and the 

general public. In addition, this study presents a comprehensive, data-driven approach to 

analyze and predict methane enhancements in the Permian Basin. Methane enhancement 

refers to ''the increase in methane concentration above the baseline background level'' 

(Dlugokencky et al., 2003). Leveraging satellite-retrieved methane (CH4) concentration 

data and oil and gas related operational data, this research helps to better understand the 

complex interactions influencing methane emissions. It begins with a descriptive analysis 

of methane enhancement data attributing to different operators based on their geographical 

distribution across the basin. Next, multiple supervised and unsupervised learning 

algorithms are utilized to help predict methane enhancement levels quantitatively, offering 

insights into influential features contributing to methane emissions. Lastly, impurity-based 

feature importance and SHAP values are used to evaluate the predictive power and 

interpretability of these models, decoding the 'black-box' nature and enabling an in-depth 

understanding of the factors driving methane enhancements. This study explores the 

complex dynamics of methane emissions in the Permian Basin but also sets a foundation 

for future investigations aimed at refining our comprehension and prediction capabilities 

of methane emissions in oil and gas regions. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Methane, also known as CH4, is a potent greenhouse gas (GHG) with a significant environmental 

impact. It has a global warming potential of more than 80 times greater than carbon dioxide (CO2) 

over a 20-year period. This high potency makes methane more effective in trapping heat in the 

atmosphere than other GHGs, making it a critical issue to address. In addition to being a potent 

GHG, methane constitutes an essential component of natural gas. To achieve the goal of net Zero 

Emissions by 2050 set by the United Nations (2022), reducing methane emissions from oil and gas 

operations is one of the most cost-effective and impactful actions governments can take. Oil and 

gas operations are among the largest anthropogenic sources of methane emissions, with 

agricultural emissions being the other dominant source. Recognizing the need to address methane 

emissions has led many countries and regions to take steps toward reducing emissions through 

regulatory and voluntary industry actions. This global mission underscores the importance of 

considering methane emissions as a critical factor in meeting short-term global climate goals. 

 

The first step is to utilize a cost-effective resource to monitor and estimate methane 

emissions. BloombergNEF (2022) estimated that there would be a projected market size of around 

900 million USD by 2025 in methane monitoring within the oil and gas industry. Approximately 

85% of the budget will be allocated toward upstream activities, where most emissions originate. 

For example, methane emissions can originate from various upstream and downstream sources, 

such as fluid flowbacks during completion, unloading liquids, pneumatic devices, pumps, 

workovers involving hydraulic fracturing, separator systems, pumps, storage tanks, and various 

onsite equipment, pipeline connections and processing plants. Most of these emissions occur 

through atmospheric venting and controlled flaring due to inadequate proper gathering and 

boosting systems. Some fugitive leaking events could also be unexpected ultra-emission sources.  

 

Existing methane monitoring approaches vary from stationary sensors for point source 

monitoring (Kumar et al., 2022), drones for areal monitoring (Tuzson et al., 2020), and aircraft 

surveys for regional monitoring (Yakovlev et al., 2022), to satellites for large-scale or global 

monitoring. While field measurement of methane (bottom-up method) can provide an in-depth 

understanding and identify local point sources within a small area, it would require tremendous 
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effort and resources to apply continuously and consistently over a larger area. On the other hand, 

atmospheric measurements of methane concentration using satellites (top-down method) are more 

applicable and more efficient in terms of cost in monitoring regional methane emission 

status/trends and enable timely identification of fugitive methane emission compared to bottom-

up methods and top-down methods using drones or aircrafts. Another advantage of leveraging 

satellite data is its accessibility. Many methane-tracking satellites are either free to the public or 

accessible at a very low cost compared to the other three means of tracking methane emissions. 

 

In recent years, the advent of satellite remote sensing technology, such as the Sentinel-5 

Precursor (S5p) satellite and its Tropospheric Monitoring Instrument (TROPOMI), can measure 

methane concentrations on a global scale with high revisit time of less than one day (Sentinel hub, 

2023). Here we demonstrate the capability of quantifying methane emission using the 

measurements from S5p. The S5p mission is designed to measure the Near Infrared (NIR) and 

Short-Wave Infrared (SWIR) spectral range daily (Hu et al., 2016), providing a unique opportunity 

to gather consistent and accurate methane measurement data. The CH4 absorption lines in the 

SWIR band are used to retrieve methane columns using the RemoTec algorithm (Butz et al., 2009), 

which is based on a full-physics approach and was developed using data from the Greenhouse 

Gases Observing SATellite (GOSAT).  

 

1.2 Problem Statement 

The ability to monitor methane emissions on a large scale is a critical requirement for operators, 

governments, investors, and the general public to manage environmental impact and adhere to 

sustainable practices. The data for such monitoring can be sourced from puiblicly available 

satellites such as the Sentinel-5P. However, several challenges obstruct its widespread adoption, 

including the immense colume of satellite data, inconsistent data quality, and discrepancies 

existing between different measurement methodologies (e.g. top-down measurements sourced 

froms arellites vs bottom-up measurements). A systematic workflow is needed to estimate methane 

emission rates from large hydrocarbon fields, such as the Pemrian and the Appalachian Basins in 

the United States. 

 



3 

 

Additionally, the understanding of methane enhancements- the increase in methane 

concentration above the baseline background level- and the complex interactions leading to these 

enhancements in regions like the Permian basin – the largest oil-producing basin in the US, is 

currently limited. The existing literatures lacks a comprehensive, data driven approach to analyze 

and correlate these methane enhancements, which could be crucial for understanding the 

complexity of methane emission sources in the oil and gas industry. 

 

This research aims to address these gaps and limitations in the current understanding and 

methodologies of methane emission monitoring and correlation. It also aims to lay the groundwork 

for future studies focused on improving the estimation, comprehension, and predictive capabilities 

for methane emissions in oil and gas producing regions using satellite measurements. 

 

1.3 Research Objective 

This theme of this research can be divided into the following objectives: 

 

1. Develop a workflow to quantify regional methane emission rates that is straightforward, 

easy to implement, and holding promise for providing practical long-term methane 

emission monitoring using the Sentinel-5P data. It can be achieved by: 

1) Propose a series of operations to preprocess the retrieved Sentinel-5P data. 

2) Develop a physics-based method to quantify the rate of methane emission using the 

processed Sentinel-5P data. 

2. Demonstrate the feasibility of proposed workflow in real-world application, including 

estimating methane emission rates in the Permian Basin and the Appalachian Basin. 

3. Develop a comprehensive understanding of the factors that contribute to methane 

emissions in the oil and gas industry. It can be achieved by: 

1) Utilizing machine learning techniques to analyze a large dataset comprising 

Sentinel-5P TROPOMI methane concentration data and oil and gas operating 

parameters such as the number of wells, production volumes, well types, and 

operator groups, among others. 

2) Identifying key drivers of methane emissions by establishing correlations or 

between variables and evaluating their influences and contributions in the model. 
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1.4 Structure of Thesis 

This thesis consists of 8 chapters, and it is organized as follows: 

In Chapter 1, we introduce the topic and outline the background of the research problem.  

 

Chapter 2 reviews previous literatures including a history of satellite measurements on 

methane emissions, studies on methane emission with Sentinel-5P satellite, proposed 

methodologies which can be used to estimate rate of emission of methane. 

 

In Chapter 3, we focus on the estimation of methane emission rates, describing the methods 

employed for the retrieval and preprocessing of Sentinel-5P TROPOMI products in this study and 

literature review on existing studies related to methane emission estimation methodologies, as well 

as the algorithms for monthly and daily methane emission calculations and rate of emission 

estimation. The results of our analysis are presented in Section 3.3, focusing on two major regions: 

the Permian Basin and the Appalachian Basin, followed by a discussion of the uncertainties 

involved in our estimations. 

 

Chapter 4 delves into the correlation of methane enhancement with oil and gas parameters, 

including operator emission allocation, predictive models, and emission flagging techniques.  

 

Finally, in Chapter 5, conclusions from this research are summarized, highlighting the key 

findings and their implications for the oil and gas industry. Overall, this thesis aims to provide a 

comprehensive understanding of the factors influencing methane emissions in the oil and gas 

industry and offer insights that could inform targeted mitigation strategies. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Satellite Measurements on Methane Emissions 

The first attempt at observing atmospheric methane from space began in the late 20th century. In 

the late 1990s, the European Space Agency's (ESA) Global Ozone Monitoring Experiment 

(GOME) satellite was launched to monitor atmospheric ozone, but it also provided data on 

methane. These measurements, while groundbreaking, were limited in spatial resolution ( about 

40 × 2 km2 on the earth’s surface )(Breiman at al., 1999). Entering the 21st  century, the SCanning 

Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) was a 

mission, launched by ESA in 2002, that carried an instrument on the Envisat satellite. 

SCIAMACHY provided measurements of methane with a resolution far superior to the previous 

generation of satellites. However, it had limitations in coverage and sensitivity (Frankenberg et al., 

2005). 7 years later, the Japanese Greenhouse gases Observing SATellite (GOSAT), launched in 

2009, was the first satellite specifically designed to measure greenhouse gases, including methane. 

It used a different detection method, namely, Fourier Transform Spectrometry, which enabled 

more precise measurements than previous satellites (Kuzu et al., 2016). In 2017, ESA launched 

the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5P satellite. TROPOMI 

provided daily global methane measurements with unprecedented spatial resolution of 7.0 x 5.5 

km2 (Hasekamp et al., 2019). 

In recent years, there have been significant advancement in the private sector. Companies 

like GHGSat have developed and launched their satellites specifically to detect and quantify 

greenhouse gas emissions including methane with a spatial resolution of up to 25m, from 

individual industrial sites (GHGSat., 2021). In addition, plans are underway for the launch of 

further advanced methane monitoring missions, such as ESA's Copernicus Anthropogenic Carbon 

Dioxide Monitoring (CO2M) mission (Sierk et al., 2021) and others. 

 

2.2 Applications using Sentinel-5P Measurements 

Multiple studies have been conducted to evaluate the ability of S5p products to estimate methane 

emissions on a regional scale (Varon et al., 2018, 2019; Lyon et al., 2021; de Gouw et al., 2020; 

Pankaj et al., 2020; Zhang et al., 2020; Sadavarte et al., 2021; Schneising et al., 2020, Shen et al., 
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2022; Pandey et al., 2019), and these studies have consistently shown the high potential of the S5p 

and TROPOMI for this application.  

 

For example, Zhang et al. (2020) applied atmospheric inverse modeling on TROPOMI 

observations to estimate monthly methane emissions for the Permian Basin. This model uses the 

relationship between the observed methane enhancements and the underlying emissions, taking 

into account atmospheric transport and chemistry. The model was run using the GEOS-Chem 

chemical transport model, which simulates the transport and chemistry of atmospheric gases 

around the globe. The authors used a high-resolution version of the model (0.25° × 0.3125°) to 

accurately simulate the transport of methane in the Permian Basin. The authors found that methane 

emissions from oil and natural gas production in the Permian Basin are estimated to be 2.7 ± 0.5 

Tg per year from May 2018 to March 2019, They also compared the emissions estimated from the 

inverse model with those reported in the EPA's Greenhouse Gas Inventory. They found that the 

inverse model estimates were more than twice as high as the inventory estimates or ~60% higher 

thane the national average methane leakage rate, suggesting that the inventory may be 

underestimating emissions from the Permian Basin. The authors also suggested that the high 

leakage rate in the Permian Basin seems to be linked with a lack of adequate infrastructure for the 

collection, processing, and transportation of natural gas, resulting in widespread venting and 

flaring. 

 

In the application of point quantification, Pandey et al. (2019) used the mass balance 

approach utilizing WRF simulation to estimate methane emissions from a natural gas well blowout 

in the Appalachian Basin. This is a mathematical technique that simulates methane measurements 

at various locations and times to estimate the emissions that would have led to those TROPOMI  

measurements. The inversion model used in this study was based on the Weather Research and 

Forecasting model coupled with Chemistry (WRF-Chem), a widely used model for simulating the 

transport and transformation of gases in the atmosphere. These modelling approaches were 

impossible with previous generations of methane-measuring satellites, like GOSAT or 

SCIAMACHY, due to their limited temporal and spatial resolution. The authers also used cross-

sectional flux method to quantify the emission (Varon, 2018). Both methods yielded similar 

results, indicating a methane emission rate of approximately 120 ± 32 metric tons per hour. This 
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emission rate was then used to estimate the total methane emission during the 20-day blowout 

period, resulting in a total of 60 ± 15 kilotons. 

 

Schneising et al. (2020) utilized daily measurements of TROPOMI to estimate regional 

methane emission rate using a method based on mass balance under a rotated coordinate system 

so that the wind directions were homogenized in the region. After rotating the coordinate system, 

the transformed daily data was gridded on a 0.05° × 0.05° grid. Grid boxes with methane 

concentrations below the 10th percentile within a radius of 700 km around the pivotal point were 

excluded due to potential residual cloud cover. After subtracting a suitable background, the data 

was used to estimate the daily emission rate. This was done by calculating fluxes of the vector 

field through cross-sections perpendicular to wind direction according to the divergence theorem. 

The authors found that the mean emission estimate for the period 2018/2019 was 3.16±1.13 Mt 

per year. This corresponds to a fugitive emission rate of 1.3±0.5% relative to combined oil and gas 

energy production. 

 

Chapter 3 utilized the approach proposed by Schneising et al. (2020), but without 

coordinate rotation, in order to preserve the native geographical coordinate system while 

accommodating the varying wind directions. A method of interpolation has been integrated into 

the workflow to maximize the utilization of high-quality S5p observations and avoid discarding a 

significant number of them. By incorporating this approach, the methane emission rate can be 

determined with greater frequency, allowing for more timely monitoring of methane emissions 

daily, weekly, or monthly, as opposed to only annually. By leveraging this high revisit frequency 

and the precise methane measurement data gathered by S5p, it is possible to build a comprehensive 

and accurate picture of estimated methane emission rates worldwide. These estimates can inform 

and guide mitigation efforts aimed at reducing greenhouse gas emissions and achieving net zero 

emissions by 2050.  
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CHAPTER 3: METHANE EMISSION RATE ESTIMATION 

3.1 Methods 

3.1.1 Retrieval of Preprocessing of S5p Products 

S5p products are delivered without a fixed grid (level-2 data) – the data pixels are described by 

geo-gridded latitude and longitude that form an irregular grid because of the polar orbit. 

Furthermore, every satellite orbit shifts slightly towards the east daily, so the level-2 ground pixel 

coverage is marginally different. The satellite passes over an identical geographic region every 16 

days (Hasekamp et al., 2019). In other words, the orbit resets itself every 16 days. An irregular 

grid system makes combining and comparing grid measurements on different days challenging 

and problematic. Therefore, in this study, the S5p products are transformed from level-2 data to 

level-3 data by resampling the data to a regular spatial grid system using an algorithm based on 

the nearest-neighbor interpolation principle. One can also use the  HARP toolbox (HARP 1.17) 

for this purpose. 

 

The spatial resolution of the S5p methane product has been 7.0 km × 7.0 km since the 

mission's launch in October 2017. It was then improved to a higher resolution of 7.0 km × 5.5 km 

on August 6, 2019 (Hasekamp et al., 2019). To maximize data intensity from the S5p products, 

the transformed grid resolution is interpolated to 0.05° latitude × 0.05° longitude. As an example, 

in one of the main studied domains: the Permian Basin and surrounding regions in western Texas 

and southeastern New Mexico of the United States (30° to 34.5° N and 100° to 105° W), the 

uniform 0.05° × 0.05° grid size is approximately 5.5 km × 4.8 km, a slightly finer resolution than 

the S5p methane product. 

 

Bias-corrected column-averaged dry-air mole fraction of methane data (𝑋𝐶𝐻4) in the unit 

of parts per billion (ppb) from one of the products of S5p is used. The bias correction is performed 

based on the retrieved surface albedo (spectrum intensity above a threshold level) that improves 

the accuracy of this product (measurement). Several screening criteria are also performed to ensure 

the reliability of the retrieved products; only measurements collected under certain conditions are 

considered: (1) at the dayside of the orbit, (2) over land, (3) cloud-free, (4) solar zenith angle < 

70°, (5) instrument zenith angle < 60°. Next, additional screening is performed based on the qa 
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(data quality) value, one of the output products of S5p; it summarizes several quality assurance 

parameters (cloud fraction, terrain roughness, spectral offset, aerosol threshold etc.) into a value 

ranging from 0 to 1 (Apituley et al., 2017). The data products are filtered again to exclude data 

with a qa_value < 0.5. Only a portion of the retrieved data is selected for further application for 

the reasons above. Two approaches in estimating monthly or annual methane emission rates for 

large geographic regions are explored: (1)  using daily retrieved methane columns (i.e., daily 

estimation) and (2) using monthly aggregated methane columns (i.e., monthly estimation). 

 

3.1.2 Monthly Methane Interpolation 

 

The monthly methane emission estimation is obtained by temporally aggregating daily retrieved 

XCH4 data over the period of a month for every grid cell and computing its average. There are 

always grid cells with no measurements available, even after the monthly aggregation step, due to 

the filtering of low-quality data. Accordingly, to ensure sufficient data is available for estimating 

the monthly emission rate over a source region, an interpolation technique is used to fill in missing 

grid cells following temporal aggregation. One of the deterministic spatial interpolation methods,  

inverse distance weighted interpolation (IDW) (Shepard, 1968), is applied. Other (geo)statistical 

interpolation techniques, like kriging, can also be used, as in many remote sensing applications 

(Papritz et al., 2002). This paper uses the IDW technique, which is relatively easy to interpret and 

computationally efficient. The estimated value at an unsampled location is the weighted sum of all 

the neighboring data points. The weight assigned to each data point is d-p, where d is the distance 

between the unsampled location and the individual data point, and p is the power parameter. 

Greater values of p would assign more weight to data values closest to the unsampled points. This 

application sets a value of 2 for p. Figure 1 illustrates the workflow of aggregating the transformed 

level-3 daily S5p filtered methane measurements into a monthly averaged methane enhancement 

heatmap. Methane enhancement refers to "the increase in methane concentration above the 

baseline background level" (Dlugokencky et al., 2003). Then, the heatmap is interpolated to fill in 

missing values caused by cloud cover or other factors that may have prevented measurements over 

the entire month. The resulting interpolated map provides a more complete and accurate 

representation of methane concentration in the Permian basin. Further details on methane 

enhancement are discussed in the next section of the thesis. 
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Figure 1. Illustration of methane enhancement Δ𝑋𝐶𝐻4 map monthly aggregation and interpolation for the 

Permian basin over the month of January 2020: Left: Daily Measurements – transformed Level-3 daily S5p 

filtered methane measurements 𝑋𝐶𝐻4. Middle: Monthly Aggregation – methane enhancement heatmap after 

monthly aggregation. Right: Interpolation – methane enhancement heatmap after interpolation. 

 

3.1.3 Daily Methane Interpolation 

 

The practice of estimating monthly emissions provides a more consistent and detailed temporal 

analysis of methane levels compared to the annual emission reports of major oil and gas production 

regions released by the U.S. Environmental Protection Agency (EPA) and other energy regulators 

in North America (EPA, 2023). However, the monthly aggregated XCH4 levels may be too 

smooth. For example, in instances where only one usable measurement is available at a grid cell, 

it is assumed that the XCH4 persists at the level of that single measurement for the entire month, 

which may result in over- or under-estimation. In principle, TROPOMI can record measurements 

as frequently as daily. The lack of daily data is primarily due to poor data quality and certain 

environmental conditions such as cloudiness (Hasekamp et al., 2019). For example, out of the 341 

non-empty XCH4 retrievals over the Permian basin in 2019, only 20% of the retrievals (locations) 

have over 50% data coverage after data quality filtering, and approximately 67% of retrievals have 
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less than 40% coverage. The data coverage is even worse in those regions with more cloudy days, 

e.g., the Appalachian basin. 

 

An alternative approach is implementing a temporal interpolation scheme to estimate daily 

emissions. Here is the proposed workflow: First, daily retrievals are spatially interpolated based 

on IDW at grid cells with missing data within four grid cells from the closest true observation. 

Next, temporal interpolation is applied for those grid cells still missing a value after the spatial 

interpolation. Each unfilled grid cell is linearly interpolated using its values in the most recent past 

and the nearest future. It should be noted that the minimum detection limits of daily measurements 

from a single overpass (500-8800kg/h/pixel) are generally higher than measurements over a longer 

campaign (50-1200kg/h/pixel for a yearlong campaign) (Dubey et al., 2023). The quantity of 

emissions that can be detected also increases significantly with a longer length of measurement 

campaign  (Dubey et al., 2023). In the case when two S5p's orbit's coverages have overlapped 

slightly, those grid cells within the overlapping zones would record two measurements from 

consecutive overpasses on the same day. In those instances, the average of those two 

measurements is assigned as the XCH4 for that day. 

 

3.1.4 Rate of Emission Estimation Algorithm 

The algorithm is based on a mass balance of 𝑋𝐶𝐻4 over a controlled volume V – the emission rate 

is equal to the cross-sectional fluxes in/out of the controlled volume based on the divergence 

theorem and cross-sectional flux method in Varon et al. (2018). It is particularly useful in basin-

wise methane emission calculation and is commonly used for in-situ aircraft measurement of gas 

plumes (Cambaliza et al., 2013). Similar methods were adopted for methane emission calculation 

by Zhang et al. (2020),  Sadavarte et al. (2021) and Schneising et al. (2020). 

 

The column-averaged dry air mixing ratio (concentration) enhancement of methane (Δ𝑋𝐶𝐻4, in 

ppb) is first calculated by subtracting a background methane mixing ratio 𝑋𝐶𝐻4_𝑏ase from the 

retrieved atmospheric 𝑋𝐶𝐻4. For monthly emission estimation, 𝑋𝐶𝐻4_𝑏ase is taken as the 10th 

percentile of the monthly aggregated 𝑋𝐶𝐻4 in the domain (de Gouw et al., 2020). Our analysis 

shows that the 10th percentile is consistent with the average 𝑋𝐶𝐻4 for a nearby region free of 

suspected methane sources. For daily emission estimation calculations, the 10th percentile 
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approach is not feasible due to limited data coverage and results in random unexplainable 

fluctuations in daily 𝑋𝐶𝐻4_𝑏ase'. In this case, the moving average method is adopted. An average 

of 𝑋𝐶𝐻4 for a selected nearby region free of suspected methane sources over a 15-day period 

leading up to the date of evaluation is used as 𝑋𝐶𝐻4_𝑏ase in daily emission estimation. This method 

provides a more timely estimation than the one for monthly background and ensures the 

progressive transition of the daily background estimation. The monthly methane background is 

compared with the daily methane background in Figure 2 for the Permian Basin during 2019/2020. 

The background level of the daily calculations aligns with the trend corresponding to the monthly 

calculations, demonstrating micro fluctuations and ongoing variations within the course of a 

month. 

 

 
Figure 2. Blue: 2019-2020 Permian Basin background methane mole fraction in ppb for monthly methane 

estimation using the 10th percentile approach. Red: 2019-2020 Permian Basin background methane mole 

fraction in ppb for daily methane estimation using a moving average with a 15-day window.  

 

 

For validation and application purposes, the retrieved column-averaged methane mixing 

ratio 𝑋𝐶𝐻4 from S5p is, in fact, a representation of the product of dimensionless averaging kernel 

𝐴𝐶𝐻4 and the true column-averaged methane enhancement 𝑋𝐶𝐻4 divided by the dry air column 
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𝑉air,dry (in the unit of m-2) calculated from the surface pressure and water vapor profile (Hasekamp 

et al., 2019) which are outputs of S5p products. Averaging kernel 𝐴𝐶𝐻4 acts as a scaling factor to 

the column-averaged methane mixing ratio 𝑋𝐶𝐻4 for a more accurate representation of the 

methane concentration at different surface altitudes. Therefore, the column-averaged mass 

enhancement of methane over the background level 𝛥 𝛺 in g/m2 can be calculated as:  

 

 
𝛥 𝛺 =  

𝑀𝐶𝐻4  .𝜌𝑎𝑖𝑟,𝑑𝑟𝑦 

ACH4
𝛥𝑋𝐶𝐻4. 

 

Eq. 1 

𝑀𝐶𝐻4  is the molar mass of methane in units of g/mol, 𝜌𝑎𝑖𝑟,𝑑𝑟𝑦  is the mean dry air column in 

mol/m2. ACH4
 is taken as the near-surface averaging kernel in this application. 𝛥 𝛺 is the mass load 

of methane added to a volume of the atmosphere by anthropogenic activities that are believed to 

be above and beyond what would be added by natural/background emissions. 

 

The methane flux 𝛷 in the direction of the wind speed must be equal to the product of 𝛥Ω, 

the wind speed 𝑣, and the length of the surface 𝛥𝑙 perpendicular to the wind. However, the direction 

of the windspeed often varies spatially and temporally. It is not computationally friendly to 

estimate methane flux along the direction of the wind with respect to each emission source within 

the region of investigation. Schneising et al. (2020) solved this problem by coordinate rotation, for 

which the geographical longitude and latitude of the investigated area are transformed into rotated 

coordinates so that the zonal direction matches the average wind direction in the area. A workflow 

is proposed to account for every grid cell's wind direction by decomposing the wind flux into 

longitudinal and lateral components while keeping the native geographical coordinate system 

unchanged. The total emission rate can be obtained by summing up all lateral and longitudinal 

methane flux leaving the boundary of the investigated region. Figure 3A illustrates an example of 

a wind vector field over a controlled domain, and Figure 3B demonstrates the decomposition of 

fluxes along the direction leaving the controlled domain. To honour mass balance within the 

region, the assumptions are: 1) Methane flux entering the controlled volume is negligible – It is 

assumed that no methane sources are present outside the controlled volume; hence, the methane 

enhancement from outside is zero. 2) No methane accumulation within the controlled volume – 

All methane emitted within the region leaves the controlled volume through the boundaries. The 
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wind data used in this study were collected from a recognized database: ERA5-Land reanalysis 

dataset (Muñoz Sabater, 2019). The spatial discretization of the wind data are down scaled to 

match the spatial resolution of the methane data. The 10-meter height wind speed was used in the 

calculation to match up with the near surface methane concentration. While through an S5p 

processor version update in April 2019, the horizontal and vertical components of the wind at 10-

meter height data were added to the S5p level 2 support data package (Landgraf et al., 2021) to 

support the transport analysis at the surface. The effective wind speed used in the calculation can 

be approximated using the wind data products provided in the package.   

 

Then, the methane flux 𝛷 leaving the domain 𝑉 can be related to column-averaged mass 

enhancement 𝛥 𝛺 by: 

 

 𝛷(𝑉) =  ∫ 𝛥𝛺𝑏 ∙ 𝑣𝑏 𝑑𝑙.  Eq. 2 

 

𝛥𝛺𝑏  is the column mass enhancement at the boundary, 𝑣𝑏  is the wind component 

perpendicular to the boundary, and 𝑙 is the length of the boundary. More clearly, the boundary 

refers to the outer boundary of the larger investigated domain 𝑉 for the calculation rather than 

individual grid cell. Since multiple sources are present in V, and the methane column enhancement 

in 𝑉 does not reflect immediately at the boundary, 𝛥𝛺𝑏 at the boundary is estimated using all 𝛥𝛺𝑛 

from individual 𝑉𝑛  in 𝑉  along the direction of the flux leaving the boundary. 𝑉𝑛  denotes the 

discrete volumes composing the aggregate volume V.𝑣𝑏  at the boundary is equal to the mean 

magnitude of the wind components along the direction of the flux leaving the boundary. Therefore, 

the total methane flux 𝛷(𝑉) leaving the boundary of domain 𝑉 can be obtained with the discrete 

summation of all the boundary flux 𝛷𝑏 leaving the domain 𝑉 (outflow flux): 

 

 
𝛥𝛺𝑏 = 

∑ 𝛥𝛺𝑛
𝑛
1

𝑛
; Eq. 3 

   

 
 𝑣𝑏 = 

∑ 𝑣𝑛
𝑛
1

𝑛
; Eq. 4 
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𝛷(𝑉) =∑𝛷𝑏

𝑚

1

=∑ 𝛥𝛺𝑏 ∙ 𝑣𝑏 ∙ Δ𝑙𝑏

𝑚

1

 . Eq. 5 

 

𝑛 is the number of 𝑣𝑛 orthogonal to 𝛥lb and enclosed by the dashed-border rectangle in Figure 3B, 

and 𝑚 is the total number of boundary flux 𝛷𝑏 leaving V. In Figure 3C,  𝛥𝛺𝑏1 and  𝑣𝑏1 are the 

average of  𝛥𝛺1,  𝛥𝛺2 and 𝑣1 and 𝑣2 respectively. 

 

 

 
Figure 3. A): Example of a wind vector field over a defined domain V. B): Demonstration of methane flux 

decomposed into longitudinal and lateral flux. Blue arrows at the boundary represent outflow flux, while red 
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arrows represent inflow flux assumed to be zero. The outflow flux at the boundary is estimated using the 

components of all the flux perpendicular to the outflow face (an example is shown with the dashed-border 

rectangle). C): Demonstration of a sample domain V consists of 4 grid cells. 

 

3.2 Results 

This chapter investigates two major U.S. hydrocarbon production regions – the Permian Basin and 

the Appalachian Basin. Both of these regions have unique characteristics regarding sources of 

methane emissions, with the Permian Basin being the largest oil-producing basin in the country 

and the Appalachian Basin being a complex blend of shale gas production, coal mining industry 

emissions, and proximity to urban emission sources. The presence of multiple sources of emissions 

in these regions can introduce substantial uncertainties in the analysis of methane emission rates. 

Examining these basins offers valuable insights into the challenges of accurately estimating 

methane emissions in large hydrocarbon production regions, characterizing emission sources, and 

informing the development of more effective mitigation strategies. In this study, we focus our 

analysis using the monthly methane emission estimation rather than the daily data. The results 

presented here are based on the analysis of monthly averages only. 

 

3.2.1 The Permian Basin 

There have been nearly 500,000 registered wells drilled or to be drilled in the highly prolific 

Permian Basin since its initial development in the early 90s. As of November 2022, there are nearly 

163,000 active wells, with oil wells comprising 70% of the total. Furthermore, there are thousands 

of completed wells with unproduced oil and gas ready to be produced based on data extracted from 

Enverus PRISM. As a result, as reported by EDF, the Permian Basin may be the largest emitter of 

methane of all the oil and gas plays in the United States. In many instances, natural gas, considered 

less valuable than liquids, is often flared or vented out directly into the atmosphere, as the level of 

production activities far outpaces the construction of gas transportation pipelines. Flaring and 

venting, along with fugitive methane leakage from facilities, pipelines, and wellheads, are the main 

methane emission sources. Yu et al. (2022) also demonstrated with a few aerial campaigns that the 

methane emission from gathering pipelines in the Permian Basin is 14 – 52 times higher than the 

EPA's estimate and 4 – 13 times higher than the highest estimate derived from bottom-up 

measurements of gathering pipelines.  
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The investigated area for this study includes the Permian Basin and surrounding regions in 

western Texas and southeastern New Mexico of the United States (30° to 34.5° N and 100° to 105° 

W). The illustration of the interpolated monthly methane enhancement for the area of investigation 

is presented in Figure 4. The estimated monthly methane emission rates for the period January 

2019 to February 2022 are shown in Figure 6. The aggregated mean methane enhancement over 

the investigated period is shown in Figure 5. It is noticed that methane emissions are persistently 

high in the northern and eastern parts of the Delaware basin, where unconventional shale gas has 

been actively explored and developed in recent years. Central Midland Basin, where a lot of the 

new horizontal wells were drilled and produced oil and gas. Over 22,000 flaring events were 

captured in the Permian Basin in 2019; over half are found in the Delaware Basin (Data from 

Enverus PRISM). The analysis of the background methane mole fraction during the investigation 

period reveals a consistent annual trend with strong seasonality characteristics. The study found 

that the background methane mole fraction exhibits two peaks each year, occurring around April 

and October. These seasonal fluctuations are likely linked to the seasonal availability of methane-

producing sources such as wetlands and agriculture, which have been identified as the top two 

sources of methane emissions by the International Energy Agency (2022). In the study of methane 

concentration in North America, Javadinejad et al. (2019) found that an increase in methane levels 

has a strong correlation with low vegetation coverage and high temperatures, providing insight 

into the underlying mechanisms driving the seasonal variations in the methane cycle that are 

observed in this study. 

 

The mean methane emission estimated from the study domain in this period is 3.56 

Mt/year, with annual emissions of 4.46 Mt/year for 2019, 3.42 Mt/year for 2020 and 2.84 Mt/year 

for 2021. The 2019 estimation is higher than the 2.9 Mt/year proposed by Zhang et al. (2020), but 

the investigation time frame is different than ours (May 2018 to March 2019 by Zhang et al. vs the 

full year of 2019 in this study). Schneising et al. (2020) also estimated an average methane 

emission rate of 3.16 Mt/year for 2018/2019, which is also smaller than our estimation for 2019. 

These minor discrepancies can be attributed to differences in the study period, study domain 

coverage, and the utilization of TROPOMI measurements. We have utilized all the high-quality 
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measurements within the time frame, while Schneising et al. (2020) utilized a selective subset of 

daily measurements with high data spatial coverage but at the expense of low temporal coverage. 

 

 

Figure 4. Examples of monthly interpolated methane enhancement map of the investigated area for the 

Permian Basin. The monthly methane enhancement is obtained by averaging daily retrievals within the 

month and then filling in the missing measurements using IDW. 

 

 
A 

 
B 

Figure 5 A):2019-2021 mean methane enhancement map for the Permian Basin. Only measurements of grid 

cells with producing wells are plotted in this figure. B); Operating wells in the Permian Basin colored by their 

operating sub-basin (Mapped using Enverus PRISM). 
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Figure 6. Monthly methane emission rate for the target domain encompassing the Permian Basin. Blue bars 

indicate the rate of emission, and the red line denotes the corresponding background methaneconcentration 

𝑋𝐶𝐻4_𝑏ase . 

 

3.2.2 The Appalachian Basin 

Due to the discovery of a large quantity of gas resources in the Devonian Marcellus Shale and 

Upper Ordovician Utica Shale, along with being the country's leading producing region of coal, 

the Appalachian basin emits more methane than the Permian Basin, according to our study. As 

discussed in the Permian Basin case, other sources, in addition to shale gas production, have 

contributed to the overall emissions. Our study shows that strong methane enhancement is 

frequently observed around regions with mining operations (especially in southwest Pennsylvania 

and northern West Virginia) (Figure 7). According to the 2020 U.S. Coalbed Methane Outreach 

Program from EPA, about 61% of methane emissions from mining activities are air ventilated 

from underground mines containing low methane concentrations. The other 39% are from 

abandoned coal mines, surface mining, post-mining operations and degasification systems at 

underground coal mines. Major cities and farmlands can also be found within the investigated 
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region in Ohio, where strong methane enhancement is observed. Therefore, coal mining is inferred 

to be the major source of methane emission in the Appalachian Basin. Urban and agricultural 

methane emissions are also contributors in the Appalachian Basin.  

 

Due to the elongated shape of the Appalachian Basin, it is divided into two regions: the 

southwest region (37.75° to 41.25° N and 79° to 82.75° W) and the northeast region (41.25° to 

42.4° N and 75.4° to 78.9° W). We have estimated that nearly 65% of the Appalachian Basin's 

methane emissions originate from the southwest region. The combined mean methane emission of 

both areas from 2019 to 2021 using the monthly estimation amounts to 4.46 Mt/year with annual 

emissions of 4.92 Mt/year for 2019, 4.32 Mt/year (2020) and 4.14 Mt/year (2021). Results for the 

monthly emission rate for the southwest region are shown in Figure 8. Schneising et al. (2020) 

also estimated an average methane emission rate of 2.36 Mt/year for the period of 2018/2019 – 

approximately 50% of our estimation for 2019. Schneising focused on two specific hotspot regions 

in the southwestern and northeastern parts of Pennsylvania, while we consider the entire stretch of 

the Appalachian Basin. Furthermore, it should be noted that only 24 days contribute to this 2-year 

emission estimation calculations by Schneising et al. (2020) due to the rigorous data filtering 

approach and high cloud coverage in the area. We implemented a different strategy by keeping all 

high-quality data so that all the confident measurements are used to the greatest extent.  
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Figure 7. 2019-2021 Mean methane enhancement map for the Appalachian Basin. Only measurements of grid 

cells with producing wells are plotted in this figure. 

 

 

Figure 8. Monthly methane emission rate for the Southwest region in the Appalachian Basin. Blue bars 

indicate the rate of emission, and the red line denotes the corresponding background methane mixing ratio 

𝑋𝐶𝐻4_𝑏ase . 
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3.3 Uncertainties 

The estimation of methane emission rates is subject to several potential sources of errors and 

uncertainties, including the assessment of the background methane mole fraction, effective wind 

speed estimation, raw data quality, aggregation of TROPOMI observations, interpolation to fill in 

the missing data, and assumptions made in the mass balance method.  

 

The background methane mole fraction is a critical variable for accurately determining the 

level of methane enhancement above the normal levels of methane originating from within the 

region. The strong seasonality observed in the background methane concentration adds another 

layer of complexity to its estimation. Several approaches for estimating the background methane 

mole fraction are investigated. The analysis from the Permian Basin shows that using the 10th 

percentile of the 𝑋𝐶𝐻4 values within the area of investigation is consistent with the average 𝑋𝐶𝐻4 

of an upwind region without noticeable methane emissions. This simple criterion provides a valid 

estimation of the meteorological conditions.  

 

The uncertainties associated with estimated methane emission rates are closely dependent 

on the variation in data quality and the scarcity of daily 𝑋𝐶𝐻4 observations. The study on the 

Permian Basin found that approximately 80% of the observation days contained more than 50% 

missing data after quality filtering. Averaging across the 38 aggregated monthly 𝑋𝐶𝐻4 

observations, the proportion of missing data is approximately 18%, with a peak of 52% occurring 

in a single month. Higher data sparsity implies a greater need for interpolation, leading to increased 

uncertainties in the estimated methane emission rates. In addition, it is important to consider the 

potential impact of different spatial and temporal interpolation methods, as they may lead to slight 

variations in the estimated values.  

 

Effective wind speed plays a significant role in the estimated emission rate, as it affects the 

transport of emitted methane out of the region. A key assumption is that all emitted methane leaves 

the region through its boundary. Still, it is challenging to determine the effective daily wind speed 

in carrying the methane out of the region precisely, and the result would strongly affect the flux 

calculations. To minimize uncertainties stemming from varying wind speeds in the estimation, the 
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effective wind speed in this study is determined as the nearest measurement to the time of retrieval 

for the 𝑋𝐶𝐻4 data. 

 

A key assumption of this study is that there are no significant methane emission sources 

outside the region (i.e., there is no additional methane inflow above the background level into the 

controlled region). This assumption generally holds for isolated (small) controlled regions, for 

which the mass balance approach was originally proposed. In previous studies, small domains with 

a few isolated sources were selected, and the coordinates were rotated to be orthogonal to the 

outflow direction. This assumption may not always be applicable in larger domains, such as an 

entire producing basin, with many emission sources and neighbouring human activities, including 

farmlands, small towns, and major cities, that are known to be major emissions sources. Ignoring 

any methane emission sources outside the controlled region has likely resulted in overestimating 

the emission rates. In the context of emission monitoring and risk mitigation, one may argue that 

it is preferable to provide conservative (higher) estimates instead of overly optimistic (lower) ones 

in situations with high levels of uncertainty or ambiguity. These estimations using satellite 

measurements and other top-down methods (Alvarez et al., 2018) are always higher than the U.S. 

EPA inventory estimate, which can be attributed to the existing inventory methods failing to 

account for emissions released during unexpected conditions (fugitive emissions). 

 

It is also important to acknowledge that besides the uncertainties above, satellite 

measurements often involve significant uncertainties. Dubey et al. (2023) described these 

uncertainties as the satellite's minimum detectable limit (MDL), which can vary depending on the 

source emissions and the atmospheric conditions. 

 

  



24 

 

CHAPTER 4: A DATA ANALYTICS APPROACH FOR UNRAVELLING 

THE COMPLEXITY OF METHANE EMISSIONS 

4.1 Introduction 

According to the Environmental Protection Agency (EPA) in the United States, the oil and gas 

industry is the largest industrial source of methane emissions, accounting for nearly 30% of total 

methane emissions in the country (EPA, 2019). With leaks and venting occurring at every 

production stage, from drilling and extraction to processing, transportation, and distribution, 

methane can escape from wells, pipelines, and other equipment, as well as from flaring and venting 

operations. Despite these challenges, this sector has substantial mitigation and emission reduction 

potential. The International Energy Agency estimates that global methane emissions from the oil 

and gas sector could be reduced by up to 75% using existing technologies and best practices (IEA, 

2017). Furthermore, there is a growing commitment from numerous companies and governments 

to curb their methane emissions (World Bank, n.d.; Methane Guiding Principles, n.d.; IEA, 2019). 

These efforts include, but are not limited to, enhancing monitoring and detection measures, 

addressing and repairing leaks, phasing out aging equipment, and minimizing flaring and venting 

operations. 

 

Multiple studies have been conducted to evaluate the ability of the Sentinel-5 Precursor 

(S5p) satellite and its Tropospheric Monitoring Instrument (TROPOMI) measured products to 

estimate methane emissions on a regional scale (Bian et al., 2023; Varon et al., 2018, 2019; Lyon 

et al., 2021; de Gouw et al., 2020; Zhang et al., 2020; Sadavarte et al., 2021; Schneising et al., 

2020, Shen et al., 2022 ), and these studies have consistently shown the significant potential of the 

S5p for this application. Given these findings, it is apparent that the methane concentration 

measurements obtained from S5p have the potential to extend their utility beyond estimating 

regional emissions. It contains valuable insights that can potentially improve our understanding of 

methane emissions within the oil and gas industry. While some studies have examined the 

correlation between satellite-measured methane enhancement and a few oil and gas operating 

parameters to some extent, these investigations are not very comprehensive. Regional or 

geological factors, temporal dynamics including seasonal variations and influences from various 

midstream facilities have not been adequately explored. Long-term trends and changes in methane 

enhancement and its correlation with additional oil and gas operating parameters also require 
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further investigation with alternative statistical or machine learning methods. Many studies 

investigate based on the reported methane emission sources and intensities, but the reported 

numbers often lack adequate characterization of sources due to discontinuous emission events 

from P&A or orphaned wells and other fugitive leakage from Superemitters. Moreover, 

underestimation is always found in the reported emission numbers when compared with results 

from the studies mentioned above using top-down estimation methods. 

 

This chapter aims to investigate the relationship between 2019-2021 Permian Basin 

methane concentration measurements obtained from S5P and various oil and gas operating 

parameters extracted from Enverus PRISM more comprehensively using advanced data analytics 

techniques. This analysis contributes to a growing body of knowledge on the factors influencing 

methane emissions in the industry. The research was designed to provide insights into the 

conditions under which methane emissions occur. By combining different data analytic techniques, 

we aimed to understand the heterogeneous nature of methane emissions across different 

operational and geographical contexts.  

 

4.2 Methods 

4.2.1 Dataset  

The same Level 3 processed monthly methane enhancement data with spatial resolution 0.05° 

latitude × 0.05° longitude methane as how it was . However, correlating methane enhancement at 

a resolution of 0.05° by 0.05° presents significant challenges due to inconsistencies in the spatial 

and temporal scales between methane enhancement data and the other correlating features. These 

discrepancies can lead to uncertainties in analyzing the relationships between methane emissions 

and oil and gas operational parameters. To address this scale discrepancy, we implement an 

upscaling approach for the correlating features, enabling them to match the resolution of the 

methane enhancement data. Upscaling is the process of reducing the resolution of a dataset by 

aggregating finer-scale data into coarser-scale representations (Blöschl et al., 1995), which 

facilitates comparisons with the methane enhancement data at larger spatial scales. For instance, 

we identify all wells situated within the geographical extent of each grid cell and aggregate their 

relevant attributes, such as the total number of wells, total gas produced, oil produced, operator 

information, well status, and other correlating features, at the grid cell level. This spatial 



26 

 

aggregation process ensures that the oil and gas correlating features are consistently represented 

at the same spatial resolution as the methane enhancement data, enabling a more accurate and 

reliable examination of the interrelationships between these variables. Temporal discrepancies 

between daily methane measurements from S5p and oil and gas correlating features are also 

addressed. We adopt a temporal aggregation approach, transforming daily methane measurements 

into monthly averages to align with the temporal resolution of the oil and gas correlating features.  

 

 

4.2.2 Workflow 

Initially, Random Forest regression and classification models, implemented in Python's scikit-

learn package (Pedregosa et al., 2011), were deployed to identify the key features correlating with 

methane enhancements. We acknowledged the limitations of these models due to the inherently 

variable nature of methane emissions, prompting us to incorporate an additional unsupervised 

learning technique – clustering analysis. The Hierarchical Density-Based Spatial Clustering of 

Applications with Noise (HDBSCAN) algorithm was chosen for the clustering analysis (Mclnnes 

et al., 2017). The K-means++ algorithm (Arthur et al., 2007)  was also applied to partition the 

dataset into three distinct clusters for comparative purposes. Following the clustering analysis, we 

applied the Random Forest regression model to each of the two redefined clusters. 

 

4.3 Emission Characteristics and Sources Analysis 

4.3.1 Descriptive Analysis 

The dataset is characterized by substantial heterogeneity in operational practices – variability in 

drilling, completion, and production standards adopted by different operators may lead to disparate 

methane emission levels. There are over a thousand operators in the Permian Basin (Enverus, 

PRISM), each contributing to the observed methane concentrations in different ways and 

quantities. Incorporating many operator classes into a regression model may pose considerable 

challenges due to the high dimensionality and potential multicollinearity among the features. The 

approach of allocating methane concentration data to different operators based on their geographic 

locations is adopted. By spatially associating methane emissions with specific operators, we can 

reduce the complexity of the regression model and potentially identify key contributors to the 
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observed methane concentrations. This approach allows for a more focused analysis of how 

different operators contribute to methane emissions.  

  

To determine the appropriate number of operator categories or labels, we plot the 

cumulative market share of operators in terms of the number of wells they owned (Figure 9). The 

plot reveals that the first 100 operators account for over 90% of the market share, and the top 40 

own over 70% of the wells. Therefore, the number of operator classes is assigned as 41, with the 

remaining 900+ operators described as ''Others''.  

 

Figure 9. Cumulative market share vs. operator number in descending order. 

 

In this analysis, we utilize level-3 (L3) processed monthly methane enhancement data, 

expressed in parts per billion (ppb), for each 0.05° by 0.05° grid cell. Assuming that the methane 

enhancement is exclusively sourced from oil and gas production activities, we allocate the 

enhancement values to operators operating within each grid cell normalized over 2 factors: well 

count and production volume, and we also calculate the grid cell average enhancement over the 

period. 

 

Figure 10 presents the methane enhancement for the top 40 operators in the Permian Basin, 

ranked based on methane enhancement per grid cell, per 100 wells, and per 1,000 barrels of oil 

equivalent (BOE) in descending order. It is observed that the variations in methane enhancement 

among different operators are the smallest in the methane enhancement per grid cell plot, while 
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they are the most diverse in the methane enhancement per BOE plot. This observation supports 

the hypothesis that there are discernible differences between operators concerning methane 

emissions. Moreover, certain operators, such as Operators 1, 3, 4, and 9, are consistently ranked 

within the top 10 across two of the ranking plots. Notably, the majority of their operations are 

concentrated in the Delaware Basin. This observation highlights the potential regional influence 

on methane emissions. The substantial disparities observed among operators in the methane 

emission per BOE plot suggest that production volume may not be the predominant factor 

influencing methane emissions.  
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Figure 10. Methane enhancements of the top 40 operators in the Permian Basin: (1) Methane enhancements 

per grid cell (Top panel), (2) Methane enhancements normalized to every 100 wells (Middle panel), and (3) 

Methane enhancements per 1000 barrels of oil equivalent (BOE) (Bottom panel). 

 

Next, we examine methane enhancement by primary peer group operating within each grid 

cell and rank them based on the same three criteria. From the results, private operators typically 

have lower productivity than their larger capital investment counterparts (Figure 11A), but they 

generally contribute to higher methane enhancement per barrel of oil equivalent (BOE) production 

(Figure 11D). In particular, micro-cap operators, having the lowest methane enhancement per grid 

cell (Figure 11B), are also associated with the highest emissions per 100 wells (Figure 11C): these 

operators employ lower well density and, hence, can achieve lower overall emissions per grid cell; 

however, the higher methane emissions per 100 wells indicate that, on a well-by-well basis, their 

wells are likely emitting more methane. This difference could be attributed to differences in 

operational practices, technologies employed, emission reduction strategies and other factors.  
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(A) (B) 

(C) (D) 

Figure 11. A): Production volume per 100 wells by operator Peer Groups. B) Methane enhancement per grid 

cell by Peer Groups. C) Methane enhancement per 100 wells by Peer Groups. D) Methane enhancement per 

1000 BOE by Peer Groups. 

 

 

4.3.2 Feature Importance Analysis and Regression Modeling 

A total of 22 features (Table 1) are carefully chosen from an initial set of 47 potential features as 

inputs to a regression model for predicting methane enhancements of a particular grid cell. Several 

key considerations, including relevance to the target variable, avoidance of multicollinearity, 

feature independence, and model interpretability, guide the feature selection process.  

 

A range of statistical and machine learning models, including regression models, Support 

Vector Machines (SVM), XGBoost, tree-based models, and neural network models, have been 

evaluated for their efficacy in this paper. For this dataset, the Random Forest model outperforms 
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other models in terms of the proportion of variance explained by the correlating features and the 

error between the predicted outputs and true values, illustrating its ability to address various 

challenges, such as nonlinearity, overfitting, and high-dimensional feature spaces. The model's 

ensemble approach of combining multiple decision trees enables it to capture diverse aspects of 

the data and enhance its generalization capabilities (Breiman, 2001). Figure 12A shows the 

relationship between the predicted output and measured values obtained through applying the 

Random Forest model and the distribution of methane enhancement measurements shown in 

Figure 12B. When utilizing all observations as input for the model, the resulting coefficient of 

determination (R²) is found to be 0.63 and an RMSE of 6.63 ppb. 

  

(A) (B) 

Figure 12. A) Predicted methane enhancement VS True methane enhancement plot. B) Distribution of 

measured methane enhancements in the Permian Basin within 2019-2021. 

 

 

The model tends to overestimate lower methane enhancement levels (below the 50th 

percentile) and underestimate higher methane enhancement levels (above the 75th percentile). 

Negative observations, which constitute approximately 10% of the dataset, arise from how the 

background methane concentration is fixed at the 10th percentile level within the study area. 

These negative measured observations often share similar attributes with instances that have 

negligible emissions or slightly positive methane enhancements, contributing to the model's 
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overestimation at lower levels. On the other hand, observations with high measured 

enhancements (above 50 ppb) and those obvious outliers often correspond to unforeseen events, 

such as methane leaks, which the model cannot accurately capture. As a result, these occurrences 

result in the underestimation of methane enhancements at higher levels. The limitations of the 

model in accounting for such anomalous events underline the challenges in accurately 

characterizing and predicting the full range of methane emissions from oil and gas operations. 

 

Figure 13 lists all the features used in the model and their relative impact on the predicted 

methane enhancement using mean absolute SHAP (SHapley Additive exPlanations) values and 

MDI (Mean Decrease Impurity). MDI is a feature importance measure calculated by computing 

the total reduction of impurity or entropy caused by a given feature across all decision trees in a 

random forest model. Features that cause the most reduction in impurity or entropy are 

considered the most important (Breiman, 2001). A higher MDI value indicates a stronger 

association between the feature and the target variable. SHAP values are calculated by 

computing each feature's contribution to the model's predicted output and averaging over all 

possible feature subsets (Lundberg and Lee, 2017). The SHAP values provide a more accurate 

and interpretable measure of feature importance than traditional measures like MDI because they 

consider the interaction effects between features in addition to their main effects (Breiman, 

2001). A few features that exhibit significant importance in the model are discussed here. 

Windspeed and Month, as shown by their Mean Decrease in Impurity (MDI) rankings (1st and 

2nd, respectively) and their SHAP importance rankings (5th and 1st, respectively), are identified as 

critical correlating features. The seasonality in the monthly methane enhancement and the 

impacts of wind speed can be observed by plotting the monthly distribution of wind speed 

(Figure 14A) and the critical quantiles of monthly methane enhancement (Figure 14B). The 

results highlight the importance of considering both temporal and meteorological factors when 

examining the relationships between methane emissions and relevant features. The seasonality 

may be attributed to numerous factors, such as changes in temperature, which in turn may affect 

equipment efficiency and operational cycles of the facilities, leading to more or less emissions 

during certain months.  
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Figure 15A illustrates the spatial distribution of average wind speed over the Permian 

Basin, showing a clear increase from east to west. Comparing this to the average methane 

enhancement distribution in Figure 15B, the pattern suggests that higher average methane 

enhancement tends to be found in areas with lower wind speeds. However, this area also 

coincides with the active development of the Delaware Basin in the east. This active 

development could be a contributing factor to the observed relationship between wind speed and 

methane enhancement. 

 

Although there is no evident relationship between Surface Altitude and methane 

enhancement or other features, the Random Forest model assigns a notable level of importance 

to Surface Altitude, suggesting an underlying causal relationship with methane enhancement. For 

instance, differences in atmospheric pressure, temperature, or wind patterns at different 

elevations could influence the migration of methane gas emitted. Additionally, the importance of 

surface altitude might suggest that specific geographic regions, characterized by distinct 

elevations, have unique operational or geological factors that impact methane emissions from oil 

and gas activities. In other words, surface altitude potentially functions as a proxy for geographic 

location.  
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Figure 13. Feature importance ranking for the Random Forest Regression model using SHAP (SHapley 

Additive exPlanations) values and MDI (Mean Decrease Impurity). 

  

 

 

(A) (B) 

Figure 14. A) Monthly variation of windspeed in the Permian Basin. B) Monthly methane enhancement 

variation in the Permian Basin represented through the 25th, 50th, and 75th percentiles. 
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(A) 

 

(B) 

Figure 15. ) Spatial distribution of average wind speed over the Permian Basin. B) A) Spatial distribution of 

average methane enhancement over the Permian Basin. 

 
(A) 

 
(B) 

 
Figure 16. A) Contribution of Gas production to the Random Forest Regression model presented in SHAP 

independence plot. B) Partial Dependency Plot displays the effects of Gas production on the predicted 

methane enhancement on average. 

 

Gas production emerges as an important variable influencing methane enhancements. 

Despite the Permian Basin's reputation as the most productive oil-producing region in the United 

States, the data suggests that gas production exhibits a more pronounced influence on methane 

emissions. An explicit positive correlation between gas production and methane enhancement is 

observed in Figure 16B. The partial dependency slope appears to be steepest in the range of 

approximately 0.8e5 MCF to 1e5 MCF of gas production, gradually tapering off at higher gas 

production levels. As the primary component of natural gas, methane can inadvertently be released 
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into the atmosphere during various stages of production through several pathways, including, but 

not limited to, unintentional leakage, managed venting to balance system pressure, and flaring 

where methane is converted to CO2, but some escapes due to insufficient conditions to sustain 

stable combustion (Johnson et al., 2011). 

 

Wells with high gas production are also substantial oil producers, as evidenced by Figure 

16A. However, wells that produce more oil may also possess a more comprehensive infrastructure 

to handle the produced gas than those lower-production wells. This may explain the observed 

reduction in the partial dependency slope at elevated levels of production seen in Figure 16B. 

Nevertheless, higher gas production increases the opportunity for methane emissions, leading to 

higher methane enhancement, as evidenced by the positive SHAP values. On the other hand, our 

analysis does not indicate a strong impact of oil production on methane enhancement (Figure 13).  

 

Midstream facilities, including gas processing plants, gathering and boosting facilities, and 

transmission infrastructures, are potential sources of methane emissions. To evaluate the influence 

of facilities, particularly gas processing plants, on methane emissions, the proximity of every grid 

cell to the nearest such facility was assessed. Using gas processing plants as an example, we 

evaluated the influence of the distance to gas processing facilities utilizing both SHAP and Mean 

Decrease Impurity (MDI) metrics (Figure 17). Not surprisingly, the distance to the processing 

plant correlates inversely with methane enhancement. Additionally, it is observed that a lower 

surface altitude has a minor influence on methane enhancement, whereas regions of higher surface 

altitude register a more pronounced impact (Figure 17A). This impact can be either positive or 

negative. This observation also partially explains why surface altitude emerges as a more 

influential factor in the model than initially expected. 
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Figure 17. A) Contribution of Distance to Gas Processing facilities to the Random Forest Regression model 

presented in SHAP independence plot. B) Partial Dependency Plot displays the effects of Distance to Gas 

Processing facilities on the predicted methane enhancement on average. 

 

Another influential feature in the model is landfill sites. Figure 18 illustrates the impact of 

distance to a landfill site on methane enhancement, as indicated by the SHAP values. The results 

indicate a notable positive impact within a 20-mile radius of landfill sites. However, beyond 50 

miles, the impact diminishes and exhibits a negligible or negative effect on methane enhancement. 

The anaerobic decomposition of organic waste produces methane gas as a byproduct (IPCC, 2019). 

The methane gas generated in this process can escape from the landfill into the atmosphere, 

contributing to methane enhancements in the surrounding area. In some cases, landfill operators 

capture this gas and use it as a source of renewable energy or burn (flare) it off to reduce its 

greenhouse impact. A suspected reason behind its importance in the model is the continual 

emissions from landfills. Unlike certain oil and gas processes, which may operate cyclically or 

vary in intensity, landfills emit methane more regularly due to the constant decay of organic waste.  
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Figure 18. A) Contribution of Distance to Landfill sites to the Random Forest Regression model presented in 

SHAP independence plot. 

 

4.3.3 Classification 

Predicting precise values of methane enhancement using a regression model presents significant 

challenges, mainly due to the low resolution of methane enhancement data sources and the 

unpredictability of fugitive emissions (outliers). Instead of predicting a precise methane 

enhancement, an alternative is to predict the occurrence of high, low, and normal emission levels.  

 

4.3.3.1 Classification Threshold 

Every methane enhancement data point at a grid cell is classified as high, normal (medium), or 

low according to the two criteria. First, considering all the historical measurements at that 

particular grid location, a data point exceeding the upper threshold – the third quartile plus 1.5 

times the interquartile range (IQR) – is labelled as high, while a data point below the lower 

threshold – the first quartile minus 1.5 times the IQR – is labelled as 'Low,' aligning with the 

statistical definition of outliers. Second, all data points ≥ 50 ppb are labelled as 'High.'  

 

A few remarks should be noted. A classification of 'High' does not necessarily represent an 

abnormal state of methane emissions. Rather, this classification is context-specific and reflects a 

high enhancement relative to this particular grid cell's historical data. On the other hand, a methane 

enhancement level deemed high for one grid cell might not be considered as such for another cell. 



39 

 

This approach ensures that the designation of high enhancement is contextually applicable and 

sensitive to the unique historical trend of each grid cell. For instance, as shown in Figure 19A, the 

respective grid cell demonstrates a historically lower level of methane enhancement. In this 

scenario, the upper threshold—calculated from the historical data of this specific grid cell—serves 

as the benchmark for distinguishing high enhancement. Conversely, the grid cell shown in Figure 

19B exhibits a consistent trend of high methane enhancement, whereby the upper threshold 

surpasses the 50 ppb by a significant margin. The established 50 ppb threshold is employed for 

this grid cell to demarcate high methane enhancement.  

 

(A) (B) 

 

Figure 19. Historical variation in methane enhancement for two distinct grid cells at A: (-101.4, 33,25) and B: 

(-104.4, 32.25), showing their upper and lower thresholds, respectively. 

 

These classification labels or 'flags' serve a dual purpose: Firstly,  any geographical 

locations exhibiting abnormal methane enhancement values are labelled as 'high' (Figure 20), 

facilitating easy visualization of methane emission status across various regions. Secondly, the 

flagged instances of anomalous methane enhancement provide essential guidance to the workings 

of the classification model. These classes allow for a deeper understanding of the various factors 

influencing methane emissions, enabling the model to distinguish between different types of 

enhancement scenarios. 
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Figure 20. Monthly methane enhancement heat maps of the Permian Basin from 2021-2 and 2021-4 (Left) 

and their corresponding classifications (Right). 

 

4.3.3.2 Random Forest Classification 

 

The Random Forest classification model was selected, primarily due to its better performance 

relative to other models in the preceding regression analysis (Section 4.3.2). Given that the 

'Normal' class cases significantly outnumber the 'High''''' and '''Low''' class cases, the model could 

be biased toward predicting the ''Normal'' class. Ensemble methods like Random Forest can more 

effectively handle imbalanced datasets. The prediction accuracy for the '''High'',' '''Normal'',' and 

'''Low''' classes (true positive rates) are 75%, 96%, and 20%, respectively, with a robust mean 

cross-validation score of 0.79.  

 

Even though the model has a relatively modest true positive rate (75%) for the 'High' class 

prediction, many false positives are noted – instances from the 'High' class are predicted as the 



41 

 

'Normal' class. This factor contributes substantially to a reduced F1-score for the 'High' class, 

which currently stands at 0.14. The low F1-score indicates that the model may be unreliable in 

identifying areas with high methane enhancement. The sample size corresponding to the 'Low' 

class is considerably small, indicating the lesser emphasis on the prediction of low methane 

enhancement. Therefore, the low true positive rate associated with the prediction of the 'Low' class 

is acceptable, given that the primary focus of our research is not oriented towards accurately 

predicting instances of low emissions. The outcomes derived from the model performance metrics 

align with the findings observed in the previous regression model. Specifically, predictability tends 

to diminish at both extremes of methane enhancement – notably high or low levels – while it 

remains relatively robust for intermediate enhancement levels. This pattern highlights the 

challenges in modeling extreme methane enhancement levels under the current data resolution. 

 

The Receiver Operating Characteristic (ROC) curve is another tool for assessing 

classification model performance. Each point plotted on the ROC curve corresponds to a unique 

pair of sensitivity and specificity values derived from a specific decision threshold adopted by the 

model (Fawcett, 2006). The curve demonstrates the trade-off between sensitivity (true positive 

rate) and specificity (one minus false positive rate) for every possible decision threshold (Fawcett, 

2006). The Area Under the ROC curve (AUC) is an aggregate measure of the model's capacity to 

accurately distinguish among various classes (Bradley, 1997). An AUC value approaching unity 

indicates superior classification ability, which signifies that the model exhibits a high true positive 

rate and a low false positive rate across all thresholds. Therefore, a ROC curve hugging the upper 

left corner of the plot, yielding a larger AUC, reflects a model of higher overall accuracy. 



42 

 

 

Figure 21. The Receiver Operating Characteristic (ROC) curves from the Random Forest Classification 

model. 

 

Figure 21 illustrates that the model is better at predicting observations classified as 'High' 

compared to those classified as 'Normal' and 'Low.' The discrepancy between the AUC-ROC and 

other performance metrics (precision, recall, F1-score, etc.) may suggest that the model's 

performance is more complex than a single metric can capture. Different measures are sensitive to 

different aspects of the model's behavior. The AUC-ROC measures the overall ability of the model 

to discriminate between positive and negative classes (Saito, 2015). A high AUC indicates that the 

model has a good balance of sensitivity and specificity across different thresholds, which implies 

the model's good performance in differentiating the ''High'' class from the others. On the other 

hand, the F1-score is the harmonic mean of precision and recall (Sasaki, 2007). Precision is the 

proportion of true positive predictions out of all positive predictions, and recall (or sensitivity) is 

the proportion of true positive predictions out of all actual positives. The low F1-score and high 

AUC-ROC on the ''High'' and ''Low'' minority classes indicate that this model performs well at 

differentiating these instances but struggles with making the final classification. The AUC-ROC 

is not sensitive to imbalanced datasets as it considers the rank of predictions rather than their 

absolute values (He, 2009). However, the F1-score is heavily influenced by the model's 

performance on the minority ''High'' and ''Low'' classes, as it considers both precision and recall. 
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In summary, the observed discrepancies are largely due to imbalanced datasets, a well-recognized 

challenge in machine learning (He, 2009; Chawla, 2002; Krawczyk, 2016). 

 

Figure 22. Feature importance ranking for the Random Forest Classification model in predicting 'High' class 

using MDI (Mean Decrease Impurity) and SHAP (SHapley Additive exPlanations) values. 

 

Figure 22 shows that many of the most impactful features are similar to those in Figure 5 

for the regression model. The SHAP values in the classification model are notably smaller than 

the regression model. However, despite the smaller SHAP values, the dependency plots of certain 

features exhibit clearer trends in the classification (Figure 23). The smaller SHAP values in the 

classification model indicate the feature's influence is relatively minor, implying that while the 

feature may not be a major driver in determining the ''High'' prediction on its own, it captures the 

distinct pattern or relationship that aligns with the predicting class. For example, the individual 

impact of the number of Plugged and Abandoned (P&A) wells within a grid cell, as well as the 

number of operating wells within a grid cell, are plotted in Figure 23C and 23D, respectively. A 

noticeable positive trend is observed in both plots, implying a proportional association between 

the possibility of abnormally high methane enhancement and more P&A and operating wells. This 
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positive correlation was not noticeable in the regression model constructed using the entire dataset 

(Section 4.3.2), without special consideration of the variance in environmental and operational 

factors locally. However, the classification model compares the methane enhancement for each 

grid cell against its respective historical methane enhancement levels; this relative comparison 

within each grid cell offers a more standardized frame of reference, thereby increasing the ability 

to identify anomalies in methane enhancements. Considering each grid cell's historical context 

facilitates a form of normalization according to local baseline conditions and operational practices, 

enhancing the comparability and interpretability of observed methane enhancement classes. Thus, 

employing such a methodology increases the probability of identifying abnormal methane 

emission patterns. 

 

The Permian Basin has had a long history of oil and gas development since the 1930s 

''(''Permian Basin (North America''),'' Wikipedia). As a result, it is dotted with over 158 thousand 

P&A wells and over 46 thousand undocumented old wells (Enverus, PRSIM). Improperly 

decommissioned wells are susceptible to fugitive emissions. A higher count of these wells within 

a grid cell translates into an elevated risk of fugitive and operational emissions, increasing the 

possibility of abnormally high methane enhancement. 

 

 
(A) (B) 
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Figure 23. Contribution of Gas Production Volume (A), Distance to Landfill sites (B), number of Plugged and 

Abandoned (P&A) wells (C) and the number of producing wells (D) in the Random Forest Classification 

model in predicting 'High' class presented in SHAP independence plot. 

 

  

 

4.3.4 Clustering Analysis 

 

The previous analyses reveal the inherent complexity and the presence of internal structures in the 

dataset. This limitation comes from the often unpredictable nature of these emissions, limited data 

(e.g., operating conditions, regulatory practices, and maintenance procedures are not publicly 

available and absent from the data), and the difference in scale between individual well data, 

satellite measurements, and other environmental data, making the precise prediction and 

characterization of emission sources particularly challenging. In this section, clustering analysis is 

applied to segment the data into distinct groups, each characterized by a stronger internal 

homogeneity of features. This approach has the potential to provide a better understanding of what 

conditions are associated with certain methane emission behaviour.  

 

 Based on previous analysis and the characteristics of the dataset being used, the 

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm 

was selected for its inherent advantages in addressing this type of problem (Mclnnes et al., 2017). 

HDBSCAN is a density-based clustering algorithm with the unique feature of accommodating 

(C) (D) 
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clusters of varying densities, distinguishing it from conventional distance-based clustering 

algorithms such as K-means (MacQueen, 1967). While K-means offers the benefits of speed and 

interpretability, HDBSCAN excels in identifying outliers by categorizing data points that are too 

sparse to belong to any specific cluster as noise. This feature significantly enhances its application 

in outlier detection. Further, its ability to discover clusters of varying densities makes HDBSCAN 

better at dealing with high-dimensional datasets. 

 

To make the high-dimensional data more manageable, Principal Component Analysis 

(PCA) (Jolliffe, 2002) was employed, reducing the dimensionality from 31 to 20, yet preserving 

95% of the data's variance. Following the application of HDBSCAN and careful parameter tuning, 

53% of data points were classified as noise, with the remaining 47% comprising three distinct 

clusters. The high proportion of data classified as noise indicates that the patterns of methane 

emission are complex and cannot be easily grouped into clear clusters based on the existing 

variables at the current granularity. It could also imply that a more detailed dataset might be needed 

to capture the patterns of methane emissions. Higher granularity data might include, but not limited 

to, more specific measures of equipment types, more precise estimates of methane enhancements 

or more detailed geographical information. All these potential factors and their interactions could 

make isolating clear and discrete clusters within the data challenging. 

 

Regarding the 47% of data points that were effectively clustered, it is noteworthy that 

despite excluding geographical coordinates as input for the clustering process, the resulting 

clusters seemed to reflect the geographical disposition of different areas within the Permian. 

Cluster 1 (Figure 24A) corresponded with the Delaware and Midland Basin, Cluster 2 (Figure 

24B) represented the northern and eastern Permian and Central Basin Platform, and Cluster 3 

(Figure 24C) was mainly aligned with the Val Verde Basin. This intriguing outcome potentially 

unveils spatially consistent patterns in methane enhancements across the Permian Basin.  

 

For comparative purposes, the K-means++ algorithm (Arthur et al., 2007) was also applied 

to this dataset to partition it into three distinct clusters. The clusters formed (as shown in Figure 

24 D-F) exhibit a remarkable similarity to those generated by the HDBSCAN algorithm, with each 

cluster coinciding with a distinct region within the Permian Basin. Unlike HDBSCAN, the K-
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means++ approach does not incorporate the identification of outliers or noise within the dataset. 

As a result, it assigns every data point to a particular cluster. This fundamental difference in K-

means++ algorithm results in clusters that appear more comprehensive in their geographical 

representation than the ones from HDBSCAN. After looking into the hierarchical structure 

produced by HDBSCAN, it is observed that Cluster 1 (as displayed in Figure 24A) and Cluster 3 

(Figure 24C) share many similarities and branch off from a common, larger cluster. Therefore, it 

was decided to merge these two clusters, thereby reducing the total number of distinct clusters to 

two. The revised clustering structure now represents a 'Main cluster', encompassing the Delaware, 

Midland, and Val Verde Basins, and a second cluster, referred to as the 'Other cluster'.  

 

 

(A) 

 

(B) 

 

(C) 

 

(D) (E) (F) 

Figure 24. A-C): Clustering results from the HDBSCAN clustering algorithm. D-F): Clustering results from 

K-means++ clustering algorithm with 3 clusters. 

 

We applied the Random Forest regression model independently to each of the two 

redefined clusters. Compared to the results in Section 4.3.2, a similar R² and lower RMSE 

(decreased by ~14% and declining to 5.70 ppb) are observed for the ‘Main cluster.’ The feature 
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importance analysis within this Main cluster (Figure 25A) yields similar results as in Figure 5. 

Certain features, such as the Distance to Landfill Site (Figure 26A) and Distance to Gas Processing 

Facility (Figure 26B), have increased in significance within this cluster. The results here reinforce 

the conclusion that gas processing plants and landfill sites are significant contributors to methane 

emissions. Some other features, including Gas Well Percentage (Figure 26C) and Well Count 

(Figure 26D), demonstrate a more evident relationship regarding their impact on methane 

enhancement within this cluster. Grid cells with a greater percentage of gas wells and more 

operating wells tend to have a positive effect on methane enhancements. Additionally, we noticed 

that an increase in oil production, especially when accompanied by high gas production, has a 

greater impact on methane enhancement (Figure 26E). Wells producing high volumes of 

associated gas are often associated with higher methane emissions. 

 

 

(A) 

 

(B) 

Figure 25. Feature importance ranking for the Random Forest Regression model within the 'Main' cluster 

(A), and the 'Other' cluster (B) using SHAP (SHapley Additive exPlanations) values. 
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 In the Random Forest regression model for the 'Other' cluster, the R² is calculated to be 

0.56, accompanied by an RMSE of 6.38 ppb. The results from the feature importance analysis for 

this model are shown in Figure 25B. Surface Altitude is found to be the most influential feature 

and functioning as a proxy for geographic location, which exhibits a strong correlation with 

methane enhancement (as illustrated in Figure 27 A-B). 

 

Interestingly, the significance of features relating to distance is more prominent in this 

cluster than in other cases we have analyzed. The feature 'Distance to Production' (Figure 27 C-D) 

is defined as the distance to any operator's nearest active production centroid. Similarly, 'Distance 

to Transmission' (Figure 27 E-F) refers to the distance to the closest compressor station. Both 

features symbolize the proximity to a location with active production, indicating potential exposure 

to emissions from these operations. This cluster principally covers geographic regions 

characterized by a low density of wells and reduced production activities. Therefore, it is 

reasonable to hypothesize that being closer to these active production centers increases its exposure 

to their emissions. In essence, the emissions from these centers have a broader-reaching impact 

due to the sparse nature of the regions within this cluster. Consequently, the measures of distance 

to these production centers become critical parameters in estimating methane enhancement. 

 

 

(A) 

 

(B) 
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(C) 

 

(D) 

 

(E) 

 

(F) 

Figure 26. Contribution of Distance to Landfill sites (A), Distance to Gas Processing facilities (B), Gas well 

Percentage in the grid cell (C), the number of producing wells (D), Oil Production Volume (E), and the 

producing year in the Random Forest Regression model within the Main cluster presented in SHAP 

independence plot (F). 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 
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Figure 27. Contribution of Surface altitude (A-B), Distance to nearest Production centroid (C-D), Distance to 

nearest compressor stations (E-F) in the Random Forest Regression model within the Permian Other cluster 

presented in SHAP independence plot (Right) and their corresponding geospatial heat maps (Left). 
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CHAPTER 5: CONCLUSIONS & FUTURE WORK 

5.1 Summary and Conclusions 

This research targeted two main objectives: Developing a practical workflow for regional methane 

monitoring and quantification, and understanding contributing factors to methane emissions in the 

oil and gas industry.  

 

The workflow presented in Chapter 3 can facilitate practical regional monitoring and 

efficient estimation of methane emissions using daily data retrieved from the TROPOMI Sentinel-

5P instrument. This workflow also integrates an interpolation approach to impute the missing 

values for better utilization of all high-quality data. A detailed analysis of two major hydrocarbon 

plays in the U.S. is presented as case studies to illustrate the workflow's feasibility and highlight 

the intrinsic characteristics, uncertainties, and application potential of the datasets.  

 

The result shows that the estimated annual average rate of methane emission in the time 

period of 2019-2021 for the Appalachian Basin (4.92, 4.32, 4.14 Mt/year) surpasses the emission 

from the Permian Basin (4.46, 3.42, 2.84 Mt/year) in the corresponding years. This result is 

compared with the basin-wise annual rate of emission reported by a few other authors (Zhang et 

al., 2020; Sadavarte et al., 2021; Schneising et al., 2020). Possible factors contributing to the 

observed discrepancies may include variations in the temporal scope of the analysis, differing sizes 

of the monitored regions, and the potential for overestimation inherent in our methodology. The 

main sources of emissions in the Permian Basin are located in the Delaware and Midland Basins. 

In the Appalachian Basin, the retrieved data quality is imperfect due to its complex geographic 

settings resulting from less-than-ideal retrieval conditions. The emission rate from the Appalachian 

Basin is evaluated over two sub-regions (NE and SW). The average annual emissions from 2019 

to 2021 show a decreasing trend for both sub-regions in the Appalachian Basin and the Permian 

Basin. This reduction indicates notable progress in the efforts made in recent years to mitigate 

methane emissions, marking a substantial improvement compared to the escalating trend observed 

between 2010 to 2015 in the United States (Sheng et al., 2018). 

 

In chapter 4, the Permian data gathered from point emission sources are upscaled to the 

S5p resolution to explore complexity of methane emissions. Data analytics techniques are 
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leveraged to correlate upscaled methane-related parameters with S5p methane measurements. 

While these emissions are difficult to model accurately due to their inherent variability and 

unpredictability, applying a series of analytical methods has provided significant insights into this 

complex issue.  

 

The observed differences in emissions among different operator classes in the Permian 

Basin suggest influential factors beyond production volume. The differences in emissions amongst 

peer groups, especially between private and public companies and micro-cap operators, emphasize 

the potential role of operational practices, technologies used, and regulatory compliance in 

methane emissions. The regression and classification models identified key features that correlate 

with methane enhancements, including wind speed, month, surface altitude, gas production, and 

proximity to operational facilities and landfill sites. The findings reveal that a complex interplay 

of geographical, temporal, and operational parameters influences methane emissions. However, 

the study acknowledged the limitations of these models due to the multifaceted nature of methane 

emissions. Clustering analysis is employed to provide a richer understanding of the conditions 

under which methane emissions occur. Both the HDBSCAN and K-means++ algorithms are 

utilized for clustering analysis. Each provided valuable insights: The geographical disposition of 

the clusters identified by both algorithms, even without geographic coordinates as input, 

demonstrates the spatially consistent patterns in methane enhancements across the Permian Basin. 

The application of the Random Forest regression model on each of the redefined clusters revealed 

distinct factors influencing methane emissions within each cluster. These variables include oil 

production, proximity to landfill sites, gas processing plants, and well count in the Main cluster to 

proximity to active production centers in the ‘Other cluster’.  

 

5.2 Contributions 

The research successfully designed and implemented an efficient workflow to monitor and 

estimate regional methane emissions using data from the TROPOMI Sentinel-5P instrument. The 

workflow integrates a novel interpolation approach to address missing data, improving the use of 

high-quality data for emissions estimation. This contribution advances current capabilities in 

methane monitoring and provides a practical solution for regional analysis. 

 



55 

 

This research inovates by applying data analytics techniques, such as regression and 

classification models and clustering analysis, to understand the complexity of methane emissions. 

This application led to the identification of key emission-enhancing features, demonstrated the 

potential role of operational practices, and revealed the spatial consistency of methane 

enhancements, thereby enriching the understanding of methane emissions. 

 

This research underscores the importance of a tailored, context-specific approach to 

mitigating methane emissions. Given the diversity and heterogeneity of factors impacting these 

emissions, the analysis would likely be more effective if they were catered to the specifics of each 

region's emission patterns. While higher granularity data could enhance future analyses, this study 

provides a strong foundation for further research and intervention strategies. Through its analysis, 

this study contributes to a better understanding of methane emissions in the Permian Basin, serving 

as an important step toward developing more effective emission reduction strategies in the oil and 

gas industry. These findings will inspire further studies and more comprehensive data collection 

efforts, leading to a more refined understanding of relationships between operational features and 

methane emissions. 

 

5.3 Future Work 

There are several potential directions in terms of future work. One potential area could be refining 

the interpolation approach for imputing missing values in the data, to further improve the 

effectiveness of the workflow and the accuracy of methane emissions estimation. This could 

involve developing machine learning-based algorithms tailored for the specific characteristics of 

methane emissions data. Another one  could involve further research into the impact of operational, 

geographic, and temporal parameters on methane emissions. As this research showed, these factors 

have a complex and significant impact on methane emissions. However, more work is needed to 

fully understand these relationships and their implications for emissions reduction strategies. 

 

Expanding the geographic scope of the study is another potential avenue for future 

research. Applying the workflow developed in this study to different regions could reveal further 

insights into regional differences in methane emissions, leading to a more nuanced understanding 

of global methane dynamics. 
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The analysis presented in Chapter 4 demonstrates the utility of the S5p for tracking 

methane emissions on a global scale, although its limited resolution challenges the accurate 

identification of specific sources. Newer technologies on the horizon, such as hyperspectral remote 

sensing, hold promising potential to significantly augment the current capabilities of remote 

sensing technologies. This advanced technology is expected to offer a high-resolution view of the 

atmosphere and surface, substantially improving the precision of emission source detection and 

characterization. Furthermore, upcoming satellites such as MethaneSAT (Chan Miller et al., 2022), 

GOSAT-GW (NIES, 2021), Carbon Mapper (Duren et al., 2021), and CO2M (Sierk et al., 2021) 

are anticipated to provide significant advancements in methane emission remote sensing. These 

advancements include higher spatial and temporal resolution, increased accuracy, and wider 

spectral coverage, all of which outpace some of the current technologies. It is projected that the 

workflow developed in this research could be adapted to incorporate these novel technologies, 

providing a more powerful tool for greenhouse gas emissions monitoring and source 

characterization. While this research has made significant contributions in methane emissions 

monitoring and understanding, it also opens the door to many exciting opportunities for further 

exploration and innovation. 
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Appendices 

 

Feature Explanation 

WindSpeed Wind speed at the surface level 

SurfaceAltitude_m Altitude of the surface in meters 

Month Month of the year 

OilProd_bbl Oil production in barrels 

GasProd_MCF Gas production in thousand cubic feet (MCF) 

AvgProdMonths Average production duration in months 

NewCompletion Number of newly completed wells 

Year Year of observation 

WellCount Total number of wells 

GasWellPerc Percentage of gas wells 

OilWellPerc Percentage of oil wells 

Operator1 Indicator variable for a specific operator  

PeerGroup Categorical variable representing the peer group of the operator 

P&A Number of plugged and abandoned wells 

TotalFacil Total number of facilities 

TransmissionPipe_MI Length of transmission pipelines in miles 

DistanceToProd Average distance to production facilities 

DistanceToGasprocess Average distance to gas processing facilities 

DistanceToGathering Average distance to gathering facilities 

DistanceToLandfill Average distance to landfill sites 

DistanceToTransmission Average distance to transmission facilities 

FlaredGas_MCF Volume of flared gas in thousand cubic feet (MCF) 

 


