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CONVERGENCE OF MARKOV CHAIN APPROXIMATIONS TO
STOCHASTIC REACTION-DIFFUSION EQUATIONS!

BY MICHAEL A. KOURITZIN AND HONGWEI LONG
University of Alberta

In the context of simulating the transport of a chemical or bacterial
contaminant through a moving sheet of watér, we extend a well-established
method of approximating reaction-diffusion equations with Markov chains
by allowing convection, certain Poisson measure driving sources and a
larger class of reaction functions. Our alterations also feature dramatically
slower Markov chain state change rates often yielding a ten to one-hundred-
fold simulation speed increase over the previous version of the method
as evidenced in our computer implementations. On a weighted L2 Hilbert
space chosen to symmetrize the elliptic operator, we consider existence
of and convergence to pathwise unique mild solutions of our stochastic
reaction—diffusion equation. Our main convergence result, a qiienched law
of large numbers, establishes convergence in probability of our Markov
chain approximations for each fixed path of our driving Poisson measure
source. As a consequence, we also obtain the annealed law of large numbers
establishing convergence in probability of our Markov chains to the solution
of the stochastic reaction—diffusion equation while considering the Poisson
source as a random medium for the Markov chains. '

1. Introduction and notation. Recently, the problem of assessing water
pollution has become a matter of considerable concern. For proper groundwater
management, it is necessary to model the contamination mathematically in order
to assess the effects of contamination and predict the transport of contaminants.
A large numiger of models in the deterministic case have been developed and
solved analytically and numerically [see Jennings, Kirkner and Theis (1982);
Marchuk (1986); Celia, Kindred and Herrera (1989); Kindred and Celia (1989);
Van der Zee (1990); Xin (1994); Barrett and Knabner (1997, 1998); Chen and
Ewing (1997); Dawson (1998); Hossain and Miah (1999) and Hossain and Yonge
(1999)]. vBase{d upon Kallianpur and Xiong (1994), we consider a more realii:ic
model by introducing some randomness in a meaningful way. We assume that
the undesired (chemical or biological) contaminants are released by different
factories along the groundwater system (or river). There are r such factories
located at different sites 1, .. ., k, in the region E = [0, L1] x [0, L;]. Each of the
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factories releases contaminants at the jump times of independent Poisson processes
Ni@®),..., N, (t) with random magmtudes {A j=1,2,..} which are i.i.d. with
common dlstnbutmn Fi(da). Upon release, the contaminants are dlsmbuted in the
area B(x;,e) = {x: Ix — ;| <€} (0,Ly) x (O L) according to a proportional
function 8; (x) satisfying

9:(x) =0, supp6; € B(ei,£) and f 9oy e L.
B(x;,e)
We assume that o; is bounded and contmuous on B(k;, s) i=1, 2,...,r). For
example, we can take '

Oi (x) = E lB(K,',‘S) (JC),

which is the uniformly distributed function in B(k;, ) as used in Kallianpur and
Xiong (1994), or (letting | - | denote Euclidean distance)

s 1 -1 1 ‘
sw=(1,,, oofrmmman)®) ool-ampmpt B
;(x) (B(IC, s)exp ) IZ—KIZ z eXp [x—:clz X €

which is a smooth function with decay along radial lines in B(k;, €). Once released
the contaminants diffuse and drift through the sheet of water largely due to the
movement of the water itself. Also, there is the poss1b111ty of nonlinear reaction of
the contaminants due to births and deaths of. bacteria or adsorption of chemicals,
which refers to adherence of a substance to the surface of the porous medium in
groundwater systems.

We define and abbreviate

2 > . fOr R x) — [, x)
91 f(x1,x2) := ——f(X1,X2)= Lim & f ’
o L dx . R0 - -h
. ‘ (x1+h7x2)€E
~ d , ,
8= —, A=032+83, V= (8;9)7.
: dxp :

The stochastic model described as above can be written formally as follows:

d ,

E;M(t’ x) = DAu(t x) — V . Vu(t, x) +>R(u(t, x))

(1.1) .y

j

+ Z ZA (@)6; (x)ltﬂ, i@ 0 Lx10. Lol

i=1j=1 .
subject to -

dqu(t, L1, xp) = d1u(t,0,x2) =0, dou(t, x1, Lp) = du(t, x1,0) =0,

u(0, x) = uo(x),
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where u(t, x) denotes the concentration of a dissolved or suspended substance,
D > 0 denotes the dispersion coefficient, V = (Vy, V») with V; > 0, b =0
denotes the water velocity, R(-) denotes the nonlinear reaction term, {riJ ,J €24}
are the jump times of independent Poisson processes N;(t) (i =1,2,...,r) with
parameters 7);, and ug(x) denotes the initial concentration of the contaminants in
the region [0, L] x [0, L,]. Here, we adopt the Neumann boundary condition
which means that the contaminant concentration is constant across the boundary
of the region [0, L] x [0, L,]. All the random variables A{ and ‘L’l-] (or N; (1))
are defined on some probability space (Q2, F, IP). Moreover, we assume R : [0, c0)
— R is continuous with ‘

R(0)>0 and sup R@)

u>01+u

< 00;

and for some ¢ > 1, K > 0 as well as allu, v €R+,
(A.2) [R@) = RWI = Klu —v](1+u?™ 1 +097Y),  |R@)| < K +u9),

These assumptions amount to nonnegativity at 0, linear growth for the positive
part of R, a local Lipschitz condition and polynomial growth. We will interpret
solutions to (1.1) as mild solutions defined below (see Definition 1.3).

REMARK 1.1. Kurtz (1971) introduced the stochastic particle Markov chain
method of approximating differential equations. Arnold and Theodosopulu (1980),
Kotelenez (1986, 1988) and Blount (1991, 1994, 1996) studied Markov chain
approximation for a chemical reaction with diffusion provided that the nonlinear
reaction term is a polynomijl with a negative leading coefficient. Our assumptions
on R are much weaker.

Let us define a differential operator 4 = DA — V - V with Neumann boundary
conditions in both variables. We take the initial domain Dg(s4) of A to be
{f € C*E):31£(0,x) = N f(L1,x2) =8 f (x1,0) = B f (x1, L) = 0}, where
GZ(E ) denotes the twice continuously differentiable functions on E. Letting
p(x) =e 21 gnd ¢ = ZV—[‘,, Wwe can rewrite #4 as

i D[ﬁ%(pm%) + %]

For convenience, we define a Hilbert space H as follows.

DEFINITION 1.2. (H, (-, -)) is the Hilbert space L? (E, p(x) dx) with norm
' 1/2

1fl = { [ fz(x),o(X)dx}
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(A, Do(A)) is symxﬁeﬁic on H and admi_ts a uniqil,e self-adjoint extension
with domain D(A) = {f € H:|Vf|, Af € H and 3, f(0,x2) = f(Li;x2)=0,
3 f(x1,0) = 3, f (x1, L2) = 0}. We define a random process ©(z, x) by

r N .
Ot,x) = 6:(x) ) Al@),
i=1 j=1 '
and find (1.1) can be rewritten as .
(1.3)  du(t, x) = [Au(t, x) + R(u(, x))]dt +dO(t, x), u(0) = ug.

We consider a pathwise mild solution of our stochastic partial differential equation
(SPDE) (1.3). Let T'(¢) be the Co-semigroup generated by . S

‘DEFINITION 1.3 A procéss u(),t>0is éinild solution to (1.3) in H if it
satisfies

, t t
(1.4) u(t):T(t)uO-!-/O T(t—s)R(u(s))ds—}-/ Tt —s)dO(s). :
‘ ; ; 0 £ |
For any separable Hilbert space V, Cy [0, T] and Dy[0, T] denote, re;péc—
tively, the V-valued continuous and cadlag functions h such that k(z) € V for all
0 <t < T. For cadlag functions s, we define

{0, t=0,
h(z-)=11limh(s), . O0<t=T.
s/t C

We shall use the notation C, C(w), C(N, 1), C(T) and so on, for finite constants
(depending on w, resp. N, [, etc.), which may be different at various steps in the
proofs of our results in the paper. ,

In this paper, we discuss unique pathwise Dyl[0, T]-valued solutions and
Markov chain approximations (i.e., distribution convergence) to SPDE (1.3). These
results are vital for application of filtering theory to pollution dispersion tracking

problems in the sense that the original gignal can be replaced with a tractable
Markov chain approximation. [The reader - is referred to ‘Kushner (1977), Di
Masi and Runggaldier (1981) or Bhatt, Kallianpur and Karandikar (1999) for
justification about this substitution of signal for calculation purposes.] In. this
manner, Monte Carlo and Kallianpur—Striebel based methods of filtering become
more feasible. Our Markov chain approximations employ improved rate schemes
over previous works of Kotelenez (1986, 1988) and Blount (1991, 1994, 1996),
resulting in far more efficient computer implementation of approximate solutions
to (1.3) and even a more general allowable class of reaction functions R in (1.3).
The contents of this paper are organized as follows. In Section 2, we shall
construct the Markov chain approximations to our pollution model (1.3) via the

stochastic particle method and the random time changes approach. In Section 3,
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we shall state and prove our main results establishing that there exists a pathwise
unique solution to (1.3) as well as a Markov chain approximation that converges
in probability to the solution of (1.3) for each fixed path of our Poisson source.
This later part is our quenched law of large numbers. As a corollary, we also
establish the annealed law of large numbers while considering the Poisson source
as a random medium of the Markov chains.

2. Construction of Markov chain via stochastic particle method. The
Markov chain approximation discussed in this paper is motivated by the stochastic
particle models of chemical reaction with diffusion studied by Arnold and
Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991, 1994, 1996).
In their models, the operator +4 is replaced by the Laplacian and -only the
internal fluctuation caused by reaction and diffusion was considered. They proved
that a sequence of Markov chain approximations converges to the solution of
deterministic models weakly (in the distribution convergence sense). In our
models, we have two kinds of randomness, which are the external fluctuation
coming from the Poisson sources and the internal fluctuation in implementing
the reaction and diffusion. We also feature a new method of forming the Markov
chain approximations that is more efficient for computer implementation. Before
defining the stochastic particle models, we prepare some preliminaries concerning
the differential operator .4 and its discretization. Basic calculations will bear out
the following lemma whose proof is omitted.

LEMMA 2.1. The eigenvalues and eigenfunctions {(Ap, bp)} p=(p1.p2)e(Np)?
of A are given by

Ap=hp +Ay,, Gp()=0L 6L (x2),  pi1, p2eNo,

2
)»é:O, )”}m:_D(%Z) —Dcz, preN,
1 .
pam\?
23=0, A2 =~D(——> ;. P2€N;

P2 Ly
/ 2¢ 1
1 _ 2 —
¢O(‘x1)— 1 _e_chls ¢O(x2)"‘ L2!

2 X
1 . P1 1
¢,,,(x1)=1/—L—1sm{ T +apl}exp{cx1}, . PieN,

; 5
2 —
&5, (x2) = 7 oos

pamxy }

eN;
s D2

=tan~l(—27y ._ W1
where o, = tan™1{( Llc),c_ZD.
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' Now, we divide [0, L1) x [0, Lp) into L1 N x LN cells of size % X %:

ki —1 z\kl kh—1 kp
I = i R e B T o T % ) ash k= k,k 5
k [ N _N>X[ N N) (k1. k2)

ki=1,2,...,LiN, k=12,...,LsN.
Let HY = {¢ € H:¢ is constant on each I;}. To facilitate the removal of th
discrete gradient as we did in the continuous limit ¢ase; we define the uncommon
discrete gradient in the first variable :

i

v} £ =DN(1~ M| (3 +5) - f(x)] o

and the usual discrete Laplacian

)= w1 (s +eﬁl) +1(e-5)-2r@] |

| +N2[f(ag+ %2) +f(x - %) —.2f(x)]

= Anx, f(x) + Anx, f(X),
where e; = (1, 0) and e = (0, T). Now, we look at the discretized approximation:
AN = DAy — VX,‘. We define the following discrete gradients:

Sns=n(er )~ e 3]
Vi f@=N :f (x + %) : f(x)]

and

Vi fO) = N :f(x— %) - f(x)], i=1,2

In order to take the boundary ‘conditions into account for the discretized
approximation scheme, we extend all function f € HY to the region [—+, L+

%] X [—%,—, Ly + %] by letting

1 1
f(xl,x2)=f(x1+7v~,x2), X1 G[_—N,O), x €[00, La];

1 1
Fite, %) = f(xl - N,xz), e [Ll, Li+ N—), %2 €10, Lol;

1 ; 1
fb(xl’x2)=f(xlax2+'ﬁ)7 X1 6[07 Ll], xze[_N_’O);
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N

and denote this class of functions by Hgg . Then, Hlf\cl is the domain of A% . Basic
calculations will give the following lemima whose proof is omitted.

1 1
f(xl,x2)=f(x1,x2——), x1 €10, Lq], xze[Lz,Lz-i—N)

LEMMA 2.2. (i) AN with domain Hgg is self-adjoint and can be represented

as
AN f(x) = D[%ﬁzvxl (p%le) + ANxz]f(x)
@1 B _D{%[V@x (p ( + %)’Vﬁx;f)m

e1 \
+ Vi, (p ( - ﬁi) Vi, f) (x)]

Lo- (ot St o

ALY Nx\ YV Nx 2 Nxy\ YV Nx X1
. 2[V s Ve, @) + Vi (Vi H) )]
. (ii)bThe eigenvalues and eigenfuntions {Ag , ¢)£,V };L:_fg’;;;zL)z:]g& é)) fok‘ AN are
given by
Ay =2t AN gl =LY e (n),

piw

A" =0, apN =2DN?cos Ty~ PN 4y (pi£0),

2N LN 2 pa ’
Ay =0, A '_ZDINV (cosm—l) (P2 #0),

/ 2c /1
LN 2,N
¢O E (-xl) - 1 e_2cL1 * ¢0. (‘x2) L2 B

LiN—-1 4c

LN,y _ _ Pk NN N |
Pri” )= kZ() (1—e—2c/N‘)L1Nsm( LiN +°‘P1)ec 1 (o0,
1= -

LoN—1 /. j, ‘ :

1 —cos(part/(LoN)) . pomks

¢f,’2N(x2) = ‘kz ] (—\/ pL-z./ sin TN
2:

sin(pam/(LaN)) partky
. S g, (x2),
~/L3(1 = cos(pam /(LyN))) LyN

=Y oV (% O ic oi
wherec—ZD,ozp1 € (—%,0) is given by

N =tan_l(— e~/¥ cos(pi/(L1N)) o p17‘[>
i 1 —e=Ncos(pyw/(L1N))  LiN)’

a
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and 1, (x1), 1k, (x2) are the indicator functions on [%, k‘—;l), [%—, ]f%l), respec-

tively.- ‘

¢/N _

REMARK 2.3.  Substituting cos(x) ~ 1~ ’-‘;- for small |x| and ¢/ +e~
2~ ;,—22 for large N into the formula for A%, we find that A ~ A, for large N
and £}, £ small, Applications of Taylor’s theorem yield %—;M ol =< Mg | <|Ap| for
N > 7, which will be used in proving Lemma 3.6-and Theorem 3.1. Moreover,
one finds that limy - co A.g = Ap.

Let TIY )= exp(AN t). Then, ¢g are eigenfunctions of TV (¢) with eigenval-
ues exp{)»g t}. Now we describe the stochastic particle systems. Let {=1I(N) be
a function such that [(N) — oo as N — 00. =1 can loosely be thought of as
the “mass” or 'the “amount of concentration” of one particle. We let ng(#) de-
note the number of particles in cell k at time ¢ fork = (k1,kp) € {1,..., LiN} X

{1, ..., L2N} and also, to account for our Neumann boundary conditions, we set
101, &) =116 0), LN+ = nL N k), ky=1,...,L2N,
ng,,0(t) = niy,1(2), Mgy, LyN+1 () = iy LN (8, ki=1,...,LiN.

Then {ny(2)} is modéled as a Markov chain with transition rates defined below.
First, :

ne > ng £1 atrate [R¥(md ™) fork e {L,..., LiN} x {1,..., LaN},

where ny — ng+1if R(ngl™!) > 0 and ng — n—1if R(ngl™Y) <0,RT=RVO
and R~ = —(R A 0). Next, we recall ¢ = % and define the following drift—
diffusion mechanism: a

(1 ser) = (1 — 1, Nipey + 1) at rate (DN~ Ve, = DN7e Vi)™,
(g Miotey) — (i + 1, Mg, — 1) atate (DN%e=/Nnye; — DN%ec/Nni)*
for all k = (ky, k) with ki € {0, 1,..., LiN}L k2 €0, 1,..., LaN + 1},
(1 Psey) — (1 — 1, By + 1) at 1ate (DN?mg e, — DN?10)™,
(e, Rktey) = (i + 1, e, — 1) at rate (DN2niqe, — DN?ni)™

forallk = (k}, ky) with k1 €{0,1, ..., L1N +1Lke{0,1,..., LzN}.
We shall write 81, v(ni) = DNze_c/NnkJre1 — DN2e/Npy and 8 n(ng) =
DN2nk+e2 — DN?ny.

REMARK 2.4. Suppose R(x) = b(x) —d(x) = 2 "o ¢;x' be a polynomial
for x € R, with ¢, < 0 and b(x),d(x) being polynomials of degree less than or
equal to m with nonnegative coefficients satisfying d(0) = 0. Then, the previous

o4

v
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works apply to the case V =0, r = 0 and the usual diffusion mechanism as used
in Amold and Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991,
1994, 1996) would be

( ng — ng + 1 at rate Ib(nl ™),
ng — ng — 1 atrate Id (ni 1),
(g, Npte;) = (mg — 1, Rite, -+ 1) at rate DNznk, i=1,2

for all k in the ranges indicated:above. In our new scheme we slow these rates
down significantly by comparing the number of particles in adjacent cells and
birth to. death rates. This makes computation far more efficient and simplifies
implementation.

Finally, we incorporate the Poisson sources into the approximations. Let
ki—1 k ko —1 k ;
KiNi{k:[ ! ,—I)X[“2 ,—%)CB(KI',?)}, i=1,2,...,r
N 'N N 'N
Then, we add source contamination according to ' K
iy = i+ 16 R A] (@) + 0.5 o

»attimeti], i=1,2,...,r, jeZi.

Now we use the aforementioned transition rates to construct our model in the
probabilistic setting. However, rather than immersing ourselves immediately in
the mathematics of model building we note that the saine random numbers
would be supplied by the computer for the Markov chain approximation re-
gardless of the values of / and N. Naturally, more numbers would be uti-
lized for large I, N, but the most salient point is that any realistic modelling
scheme should exhibit a dependence between models with different values of
I, N. We provide one such scheme and note that different schemes will yield
different implementation algorithms and different precise rate of convergence re-
sults such as central limit théorems and laws of the iterated logarithm. We let
{NiJ2, be an increasing sequence in N such that Ny — 0o as k = oo. For
any N € {Nr}72, there exists a unique n € N such that 27! < N < 2" "We
recall that the A{ , ij are defined on (2, £, P), note that the Poisson processes
in our Markov chain mechanism. should be independent of {4/, z/} and let
(2, ¥,P) be another probability space on which is defined independent stan-
dard. Poisson processes {Xi”lf\,, X ’ilf\,, X]frlN, X ]ilN, Xf_ZN, X EZN},EI;‘(],:’I%Q(” -
(Xoy X5l k = Ok} and {x52,, X52 & = (ky, 0} (see the
Appendix for a computer-workable construction). From the two probability spaces
(R, F,P) and (Q, F, P), we define the product space :

(0, F0,P)=(QxQ, FRF,PxP).
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In the sequel, |7} denotes the greatest integer not more than a real number r. We

let
: ‘ Ny - - o] ;
(2.2) " O= Ll(/zkp(x)dx) [Iku(o’ Lo de’
L BT - kel{(,1),...,(L1N, LyM)}.

Then, following Ethier and Kurtz [(1986), pages 326-328], for ke {(1,n,. e
(L1N, LyN)}, we let

n () =nd ©) + X5 (z /0 t» RT(@Y )™ ds)
—xk5 (l fo : R (Y ’(s)l'L)Lds) ~
Q3 i ' X;[X i </0t i;’rN o) L?s> X2 Uot () ds)]
- Z[X ([ studq)as)
— X{c__]f,’l (/Ot 8w (n-,iv_ei (s)) ds)]

<IN
% ZZ[ZG,-(IC)A{ +0.5J1tzzi,-1keKiN._
-i=1j=I

-1

_Equdtioh :(2.3)‘ \pfovi‘,des a very explicit and powerful construction of our Markov
chain approximations to (1.3). Equation (2.3) can be implemented directly on a
computer. However, 1o, exploit the mathematical richness of our representation,

we avail ourselves of the following lemma. In preparation for the statement
of this' lemma, we define Q= oo Q,,, where Q= DRryNmxLoPmiqay [0, c0)
and RE1NmxL2Nm'(J {A} is the one-point compactification of REtNmxLaNm [see
page 165 of Ethier and Kurtz (1986)]. Set F = Q% B(&y), which is the
o-algebra, generated by open sets under- Skorohod - J; topology and countable
produets. For each w € £, we let {9?’ "“},50 be the smallest right continuous
filtration  such that .. , «

t : ‘

{Xﬁ’]’f,(l f R (nY (s)‘l‘—l)ds),

A
(L1N,L2N)

5 rt
1'N(f0 3?,N(niv(s))ds), o=+ i=1,2} ,

k=(1,1)

X

Q&

LoN

p=

t
{Xﬁ}v(/o 87 y(nf () ds), o=+,—k=(0, kz)}

i | S T dhea s it 4‘:;, ek



MARKOV CHAINS APPROXIMATION 1049

and
LiN

{Xﬁj?v(/t%v(n;iv(s)) ds), o=+4,—, k= (kl,O)}
Q . ky=1

are adapted to {95"”} CF.

‘LEMMA-Z.Sf, @ nY @) =_{n,16v (t)},(CL:I(Il\{’IL)ZN) is well defined up to (possible)
explosion time to, = inf{z :ni’ (t—=) = A}, and for each w € Q there exists a unique
probability measure P on (2, ¥) such that L

P& € Q:n' (@, 0) € A, ..., 0" (3,0) € 4))
=P @ e Qi@ €Al ..., B0, € A))
forall A; € £(DRL1NmixL2Nmi U{A}[O, 00)),i=1,...,j;j=1,2,.... Moreover,

we have that for each B ¢ f, o — IF’“’(B) is (2, F)-measurable, and w —
[ f (o, B)P?(®) is F -measurable for each bounded measurable function f .
(i) We have 150 = o0 and fort >0,

24

t t
aV(t,x) =n™ (0, x) + f AV (s, x)ds +1 / R(n™ (s, x)" V) ds.
0 0

(LiN,LyN) (L1N,L2N)

2.5) + 2 GOu®+ Y (2 ®+2ZV )1k
k=(1,1) k=(1.1)
(LiN,LyN) 2
+ ) YZm-zY, 0lue),
=1, i=1

where n? (z, x) = n,ICV(t), V x € It, 1; (") denotes the indicator function on I,

r

OO .
O (1)=Y_ > 116:(k)A! +0.5] Lo i Ykek s
i=1j=1 '

and

t t
ZNp (1) = X’j_’f\,(l /0 R*(n} (s)z-l)ds) ~1 /O RY(nf ()i 1) ds,
ZY e )= —X’fffv (1 /O ! R._(n,iv (s)l_l)ds) 4] /0 t R™(n) (s)1™ V) ds,
. t R t
Zy.) = X{th ( /O 8y (g (5)) ds) - X’ij ( /0 5y (g () ds)

T
—/O Sin(nY())ds, i=1,2,

are L2-martingales with respect to { g;f’"”} under probability measure P°.
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REMARK 2.6. Since the proof of Lemma 2.5 is largely standard but technical,
we just sketch the basic ideas here. For the proof of part (i) of Lemma 2.5, we can
use Fubini’s theorem, Theorem D of Halmos (1950) and monotone convergence
theorem to show that P? is o-additive and @ — P®(B) is measurable for each
B e £. Then, the monotone class theorem gives us the final claim. For the proof
of part (ii) of Lemma 2.5, we can employ a stopping argument, Holder’s inequality,
the linear growth of R, Burkholder’s inequality and Gronwall’s inequality to
show that for p > 1,

; ﬁ)“”[sup(nN (), 1)P] <C(N,T,l, »).
o Leer T
This is enough to justify all the statements.
Note that P is the probability measure for the quenched results. However,

to use the quenched results within theNannealed ones we need to know that
w — P?(B) is measurable for each B € ¥ We can write

Po(dwo) = P (d&)P(dw), wo = (@, B).

To get the density in each cell, we divide n,]cv (#) by 1 and consequently the
description of the stochastic particle model can be given by

LiN LoN _N
1 Z.nk(t)

(2.6) Ve, x=> > - 1k (x).

k=1 ko=1

Now we set
’ (LyN,L2N) i 5 (LiN,LyN) .
2= Y Iz on  Zos Y Ui 0Ok
k=11 k=(L,1)

o =2 0+ 23" o,

. (LiN,LyN) 2 :
Z2No= Y SNz O — 2 i O)
! k=(,1) i=1 ' "
and
r Ni(®) ‘ s aegnih
OV, )= > > T UBEA] (@) +0.5]1kC)-
i=1 j=1 kekX

Then from (2.5), it follows that

t t
ILN _ N N._ LN ILN
) WbV @y =u"" (0) + fo AN ut N (s)ds + /0 R(u"" (s))ds

+Z o+ Z 0 + 25 0 + " ®.
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By variation of constants and (2.7), it follows that u""¥ () = u!"¥ (¢, w) satisfies

N = TN(t)ul’N(O) + /Ot TN(t — s)R(ul’N(s)) ds
- L E., ; . .
(2.8) + /O TVt —s)dZ5Y (s) + /0 TV(t —5)dZL (s)

t s t o
+f0 Tf‘{(t~s)dZID’N(s)+/0 TV (t - 5)d@"V (s).

In this section, we have constructed the Markov chain via stochastic particle
model. In the next section, we shall prove the laws of large numbers for 1’

3. Laws of large numbers. . For f:E — R, let || f]lco = Sup,c g 1 (x)]. We
need the following.

HYPOTHESES. For each “ﬁxed w e and q as defined in (1.2), we suppose
that:

@ 1B (00)% )00 < C(w) < 00.
(i) (N,I(N)) is any sequence satisfying I(N) > ocoas N — oo.
(i) 4>V (0) — uoll — 0 in probability .
@) [N (0)]loo < C(N, 1, ) < o0.
() lluolleo < co < 00. ~

We note that ubV (0) defined by (2.2) and (2.6) satisfies (i), (iii) and (iv) in
the Hypotheses. Howeéver, we do not necessarily assume that #*V(0) is given
in this way and any > (0) satisfying the Hypotheses will be fine. Through
Hypothesis(ii) our dependence on (I, N) is reduced to dependence only on N and
we will write u¥ for ul M.N Now we have the following quenched law of large
numbers. - )

THEOREM 3.1.  Under the Hypotheses, there exists a pathwise unique solution
u to (1.3) and '

(3.1) - sup llu® (¢, , d—u(t,w)|]| = 0 in probability P?as N — 0. -
t<T

- When N;(¢) and Ai’ are considered to be random variable (i.e., @ is no longer
fixed), the Markov chain u*¥ evolves in this random medium.  We can show
that there exists a unique Dg[0, T']-valued mild solution to (1.3) by reducing
our local Lipschitz condition to a global one (through temporary modification
of R), using Picard’s successive approximation, and stopping. Consequently,
(@, ) — sup, . luN (1, ®, w) — u(t, )| is jointly measurable. As a corollary of
Theorem 3.1, we have the following annealed 1aw of large numbers.
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COROLLARY 3.2. Under the Hypbthesés, there exist a unique mild solution u
to (1.3) and v

sup ™ (1) — ()] - 0
A tsT: T
in probubility Po as N—> 00.

PROOF. Applying the quenched result in Theorem 3.1 we have

wa(

for any bounded, continuous function f. Now, by dominated convergence theorem,
we obtain

sup 1V 1, ) — u(t, 0)1) > £(0)

t<T :

o7 (sup ) = u@l) = SO

t<T

This implies that sup,r lu? (z) — u@)|| — 0 in distribution or equivalently in
probability Pg. [l

- Before proving Theorem 3.1, we prepare;some pieliminary. Jemmas. For
convenience, we introduce the projective mapping PN.H - HY,

e pome
9 Fe=PV =" px)dx} | e
G2 - Jw=PVf ;(/Ikp(xm) /ka<x)p<x)dx 1)

andset pl () = e~V py (), PN () = e/ pn (), where pn () = L N2 fp p(x)
x dx - 1x(-). The following lemma is used in Lemma 3.4 and Lemma 3.5.

LEMMA 3.3. Suppose 1M (0) oo < C(N, 1, w) <00 and f € H, then
o 1~y [ ~
Bz 0, 1= [ (RF 6 60). F - onlds
o Lo, ; - :
BNz @, NP1 = B [ IR ©), P on)ds
and ;
o N o2 1"’wk’t4( N
By, N4 < B [ Dolfu@)ds,
where for f € H,
o (f’ MN(S)) — (NZ(e—ZC/N __ 1)262c/N}-‘I';,2p—]I\-I’ DMN(S))

2NN — 1)V, T Fupl, DY ()
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e XN )R el (), DuM (s)),
co(f,ul () = (N3N — 122/ 52 pN | Dl (s))
+2AN N —1)(Vy, fi) Fwe, Du® (s))
+ (N (Vi F)? - 0N (), Du? (s)),
a3(f,uN (9)) = ((Vi, Fn)?on (), D (5))

and _
ay(f,u™ () = (Vy,, F)2on (), DuM(s)).

PROOF. In as much as the proofs of the three parts follows the same steps,
we just show the first part. Now by the independence we have that the quadratic

e kLR 5 k2R o Tz 22 = (32 12 Ny s
covariation [X+,N’ X+’N] =0for k" £k = (k »k3). Moreover, s — Ny (s) is
cadlag and hence [cf. Billingsley (1968), page 110] almost surely bounded on
[0, T]1, so fOT R+(n]1€\f ()" ds < 0o almost surely. Therefore, by two applications
of Theorem I1.22 in Protter (1990), we find that

¢ t
[Xf,;’f(z /O R“.“(n,'j{(s)rl)dm-), X{‘:’]f;(l /0 R+(nllc\;(s)l_.1)ds/\.):,

kLR k%R 5 _
= [X+,N ) X+,N](l i R+(nlfc"1 IV ds)NA f§ R+(nl’cv2 ©I-YHdsyav = 0

v

(3.3)

and by the Kunita—Watanabe inequality,
t ¢
, [X'j_11§ (z /0 Rt (N ()Y ds A ) E (z /0 R (nl ()™ ds A )]

kLR 172 2R ..y 2
= ([X+,N]l R R+ (s)z—l)ds) "<[X+,N]l i R+(nllc‘;(s)l—1)ds> ;

v

3.4

which is IF""-integrable by Cauchy—Schwarz inequality and Lemma 2.5. Hence,

letting v — oo, and using (3.3), (3.4) and dominated convergence, we have that
BoZ g 20 ]) =0 VAR 120

Therefore, by the bilinear propeﬁy of quadratic variation and the fact that

(Zf;ﬁr (), f)isa £2-martingale, one has that

Bz 0. 1) = B [;l‘lzﬁmﬂk’f 1)

(3.5) ”
=2 171, £)2EIZY g
k

We let 7 (t) =1 fg R*(nl (s)i"") ds. By Lemma 2.5, we know that T(t) is

nondecreasing in ¢ and {X ilfv (zx(2))} is a pure-jump { 9?’ ’w}-semimartingale with

jump size 1. It follows that
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Bopzl, 1 =B [xE (m )], = B2 (X5 R (% ®))

(3.6) =]§;w{1f0t R+(nzlcv(s)l’1)'ds}'

Now, by (3.5) and (3.6), we have
b ~\ C . Vt
Ee[(zN. @), /=D 172k, f)ZE"%{l /0 RY(nl (s)l“l)ds}
-k

1. ~ t -
= ’ﬁEw/O (R+("N(S)),fN2-pN)ds. : O

For convenience, we put
BT Yre(t)= fo TN - 5) dzZR.(s), YrR®)= /O TN —s5)dzy () |
and |
69 W= [ TV6-dZjo,  YO=T"0O=T0+Tp0).
If J € {D, R}, then by variation of constants we have
Y () =f0t ANY () ds + ZNE)..

We let Y7 p, Z1.p denote (Y7, ), (Z;, ¢} and use (3.7)~(3.8) to conclude that
ANY;(s), ol € HY, soit follows trivially that

(fot ”J"NYJ(S)"S’¢§V>=/Ot(d’oNYJ(s),qs;,V)ds; |

Indeed, we have by Lemma 2.2, the previous equation and Itd’s formula,
respectively,

t o 4
69 Y10 = [ A5y ds+Zsp0,

, t 1 o ;
(3.10) Y} () =21y /0 Y7 ,(s)ds +2 /0 YJ,p(s—)dZJ,p(s)+Z(8ZJ,p’(‘s))_2-

s=<t

Using (3.9), (3.10) and Lemma 3.3 with f = ¢§V , stopping (3.10) to reduce
the local martingale and utilizing monotone convergence, Fatou’s lemma and
Gronwall’s inequality with an interchange of integration, one gets the following
lemma.

i B T I TP
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LEMMA 3.4, Assume that |u" (0) oo < C(N, 1, ) < 00. Then:

@ E(¥p (), ¢))? < W)Y iy 10i(y, u (5)) exp{2Al (¢ — 5)} ds.

b) E2(YR (), ¢N>2—(N21) IE“’fo(lRl(uN(S)) (¢N) N>exp{2AN<t 5)} ds.

© (Yp(@®), ¢N>2 < A(¢;)(2), where A(p)(1) —2f0 Yp,p(s—)dZp p(s) +
2s<t(6Zp p(s)) is a submartingale satisfying

4
E* AN () < v Ee /0 t D¢l u? (5))ds
i=1
@ (Yr@), ¢fvv 2<B (¢:§V (@), where B (¢1]DV )(t) is a submartingale satisfying
~ ' ~ T
E*B@;)0 = WD7E [(1RIWY (), @) on)ds

Next, we need to estimate the moments of u (). Motivated by Lemma 3.2 of
Kotelenez (1988), we have the following lemma.

LEMMA 3.5.  For eachfixed w € Q and 28 > =1,

suplE” (" ()7 oo < C(e.1, llE‘"(uN(o»Zﬂ o) <o,
s<
where C is decreasing in [ s

PROOF.  Setting & = (/on (B)) ' 1x(-) with oy (k) = J1, p(x)dx, from (2.8)
and the fact that f} T (r - $)dZY_(s) — STV @ — )R~ (s))ds < 0, we
obtain that
1

oy k)
( / TN (¢ — )R (u¥ () ds, ék)

ul (2, x) <(TV )" (0), &)

1
N0)
1

3.11) | +</ I =942 (s), 5")%
(

+(| TVt —5)d0Y (s, w), (UN(k))—11k>




1056 . M. A. KOURITZIN AND H. LONG

for x € I;. Therefore, for 28 > 1 and x € I, ong has that

(¥ ¢, )" = 52‘9“1{ (T @0y (0), &) (o )

(" 7N — AR () 1 2
+K-/(; V@ —s)R" (u (S))ds’§k>ml
¥ @, 80P (0w () + 1), 80P (o ()7

(3.12)

* ‘(fot TV (¢ —5)d®V (s, ), (on )~ 1k>rﬂ}.

Using Tonelli’s theorem, Holder’s inequal_ity, the linear growth of R*(:) and
Minkowski’s integral inequality, we find that '

£ e 1
<'/(; T (t S)R (u (s))dsv8k>m
< [ R @), TV = g ) ds

28
fo |

2,3_1‘t ""'a) +(,N Ny
< /(){/E(E IR (@M (5, %) - TV (¢ — &)
2
><(UN(k))_l/leﬁ)lﬂﬂp(x)dx} ds
t y
3.13) 261 Bl 4 u? s, x)|%8) P
( <cr /O{fE(E 11 +u (s, 2)[?P)
2
(T ¢ = )6 (o 00) Dp(rdx ) ds
t
28-1 : Fo (N V2P
<Ct fo (HEHE (" ) "oo)
X (T (¢~ )1, 8 (ow @)~ ds
<C*P 4 P! /Ot sup| E* (1" @) | o ds-
Similarly, we can show that

a1 BT 0" ©), 8 (on @) P < [E W ) |-

1 i T dodutase
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Now, following the arguments in the proof of Lemma 3.2 in Kotelenez (1988), for
fixedr >0and J € {D, R"}, we define £2-martingales by

Li(s, k)= i VG0 dz) o), & )on®) 7, s<i,

Ly, k), ‘ s>t

Then, by Lemma 3.3, the predictable quadratic variations of L R{(s;_k), and
Lp(s, k) are given by

o . .
(B15)  (Lp+( k)= m/ﬂ (R* N @), (T (¢ — v)&)* o) dv

and
1 s & N N
(3.16) <<LD(-,k)>>ssm /0 g‘xi(T (t — )&, u” () dv.

Note that by (2.3), the maximal jump size of L (s, k) is % Then, by Burkholder’s
inequality, we have ‘

BelLy e, )P < CE®tL, ¢, k))f
(3.17) v < CE°[((L; (-, B)): + 172
< CE[(Ls )1+ CI728.
By (3.15) and (3.13), we find that
Ee[((Lg+ (. )]

0| [F17N +(, N 12, [P
(3.18) =CI"E /O(T =R (), &)low (k)™ " ds

't =
SCl‘ﬁ(1+t2ﬂ+z2ﬁ‘1 /0 sup|[E (" (v))* "oods)'
V=S

Setting I'v (f) = DIe™/N (Y, ) + &N (Vi 17 + (Vi ) + (Vo 7]
for f e Hlfg , one finds that

4
2 ai(foul () <Cwh(5), 2+ Cu™ (), Ty (f)).

i=1

Therefore, by (3.16), it follows that
E“[((Lp (- 0)))?]

~ t ﬂ
(3.19) <CIPE® < /O W (), (T (¢ - )&)?) dS)
8

+ cz—ﬂlﬁw( /0 t’(uN(s), Ty (TV (- s)sk))ds) :
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Obviously, the first term on the right-hand side of (3.19) is dominated by the
-‘game bound in (3.18)-(up to 'some constant). For the second term on the right-
hand side of (3.19), by two applications of Minkowski’s inequality, and noting
that (Cw (), 1) = (—2AN £, ), f € HYY, and 2TEDEIID = (2 AN
< TN =), TNt —5)f), f € HY, we find that for 8 > 1,

{Ew <‘/°t(qu(S)’ Ca (e~ s)sk))ds)ﬁ}l/ﬂ

5' fo t[]’E“’((uN ), Tn(TN(t — s)g}c))ﬂ)]l/ﬂ ds

. fot [/E(INE"’WN(S, - Cw (T — s)gk)(x)lﬁ)l/ﬂp(x) dx} as

N 1/15 t '
< {sup||1Ew(uN(s))ﬁ||oo} : [0 (P (T ¢ — )8), T)ds

s<t .

N 128
< [l )] - [N T =g

s<t 0

N e (128
< [supl B )l

that is,
(3.20) Ew( / t(uN (), T (TV (¢ — 9)E ))ds)ﬂ < {su 1 ()% }1/2
. 5 1IN k > 1= ssrt) 100 -

Combining (3.15)—(3.20), we obtain that

Be[re (), &)1 (on®) ™2 + 1(Xp(@), &)1 (on©) "]

- 1/2
(3:21) < C(l_ﬂ [sup“]E“’(uN(v))zﬁ “oo] + 1—2/9)
v<t

: t ~
+ 1P (1 12 42 / sup|[ (" () “wds)'

0 v<s
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Next, the contraction property of TtN yields

([ rve-o 467w, ), (on ®) ' 14)

r Ni(t,w)

=Y <TN(t -/ () > 6k Al () +0.5)1,
(322 =l j=l | kek) , "
(ow ()1}
r Ni(t,w) .
=20 > (IBileAl(@) +17Y) = c(t, 1, ).
i=1 j=1

Combining (3.12)—(3.14), (3.21) and (3.22), we find that
sup| B (" (9) | |

< B 0, +
+CP 0 4179) [ supl o )], ds
) 0 v<s
_ X 1/2
+CI7P (suP"]E“’(uN () ﬂ“oo) +Cr
5 SSt .

+CI P (1 4428) ¢z, l,'w)}'

Therefore, by Gronwall’s inequality and CI=8al/2 < g1 2128 we conclude
that ‘

sup| B2 (™ () | = C (1,1, |E (e )] o, ),

<

where C(-) is obviously decreasﬁlg in / and measurable in w. [J

Next, we employ the technique of Blount (1991, 1994) to derive some crucial
estimates. Let M = (log N)? and consider 0 <n<+2N /M. For an index
p€{0,1,2,...,LiN - 1} ® {0,1,..., LyN — 1}, let |p]| = P? + pH/2 and
let By, = {p:nM < |p| < (n + 1)M}. For n > 1, maxpes, |pl/ minpep, |p} <
(m+1)/n <2.Thus by Remark 2.3, there exists C > 0 such that

; N
mz-ixpegn A 5 <c
ImnpeBn A’P
‘ forn,N > 1. If | B, | denotes the kcardina‘lity of By, then |B,| < B,, Where Brn =
CM?(n +1). Thus B,/N? < C(log N)2/N — 0 as N — 0o and }:fleW] Bn <
CN2.
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LEMMA 3.6. (i) Let ©° “be an {9,?”“’} stopping time such that sup,r N
@A rb—)jlk < b < 00. Then there exist ly, No,a >0 such that forn > 1,1 > Iy,
N > Ng and d'€ (0, 1),

B (sup( Y (Ypnt®), ¢y )2> > dzﬂ,;‘/N2> < o(T)N2BY(ad? )P

t<T \peB,

(i) sup;<7 YD A )|l = O in probability P® gs N — oo for any b > 0,
where ¥ is as in (i).
(iii) Assume that supy H]E“’(uN 0)9)lco < 00. Then sup;<t 1Yr(@® — 0 in
probability P? as N — oo. ' ‘
(i) sup,< 1YV ()|l = O in probability P® gs N — oo.
(v) Assume ‘that supy IE® N (0))||oo < ‘00: Then the distributions of
(s TN — s)R@" (s))ds} on Cu[0, T]are relatively compact.

b

PROOF. The proof of (i) is almost the sz;me:as that of Lemma 3.21(b) in Blount
(1991). The only difference is the covariance structure of Zﬁ (t) as determined in
Lemma 3.3, but all the estiihates in the proof 6f Lemma 3.21 in Blount (1991) are
still valid by changing some notation and constants. We omit the details here. The

‘proofs of (ii)~(v) are similar to those of Lemma 3.5, Lemma 3.6, Lemma 4.1 and
Lemma 3.7 in Blount (1994). We refer to Blount (1994) for details. Here we only
point out that for the proof of (iv), although we do not assume that R(x) < 0 for
large x as Blount (1994) did, we can still use (3.11), the linear growth of RT and
Gronwall’s inequality to prove that

sup lu (t A o)l
t<T

(3.23) SCU(mewH?
i<

;/OtTN(t — s)d@N(s,w)“

+CT +a+1+supl YR+(t)I|) ,
t<T

where g = inf{z: u pr(t)" >a > 0}. The ,ﬁrst ttv‘v‘.o terms in (3.23) are bounded by
Hypothesis (i) and Lemma 3.7_ (to follow), so we can apply (iii) and the argument
of Blount (1994) to establish (iv) here. O = ’

LEMMA 3.7. Foreachfixedw € Q,

sup
t<T

fot TN(t—s)d@N(s,w)—j:T(t—s)d@(s,a))“ >0 asN— oo
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PROOF. Basic calculation yields

N[ot TV(t — 5)dOV (s, w) — /Ot:rg —§)d®(s, w)”

r Ni(t,w)

G24) =D > Tl

i=1 j=1
r Ni(t,0) .

+3 2 ATV~ @)8) =Tt~/ )],

i=1 j=1

where

=" 6®uE, i=12...r

kek¥

By using the projection mapping PV definedin (3.2) and the contraction of 7% (z),
we find that B '

17V~ @)o¥ — 7t -/ )6
=T~ 5 @) = TV (t ~ /(@) PN,

(3.25) + TV (e - @) PY6; — Tt — o/ )6 ||
<16 = PG+ | TV (e — o/ @) PYO; — T(t — o/ (w))s|
=0V L ol ().

For QJ{V , it is easy to see that
(3.26) oY <|loY — o) + | PVo; —0;)],

which tends to zero as N — 0o. On the otherhand, by Taylor’s theorem, it is easily
seen that AV PN f 5 4 S strongly in H for f € Dy(A) (the dense subset of H
defined in Section 1). Thus, by the Trotter-Kato theorem, we find that <I>§v ) —0
uniformly in [0, T']. Therefore, we have proved that

: Nt — D @) — Tt — (@)l = 0.
(3.27) Nh_r)noo ;e,;l?”:r t — v/ (@) —T(t -t/ ()6 =0
Now (3.24) completes the proof. [
In the sequel, we always consider the Skorohod metric d on D [0, T] so that

(Dgl0,Tl,d)is a complete separable metric space [cf. Ethier and Kurtz (1986),
pages 116-118]. For convenience, we let

W)y =TV 0)u? 0) + fo t-TN t — )R () ds + YV (),

and y () = [{ TN (¢ — 5) 4OV (s). Then ¥ () = v¥ (¢) + YN @).
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LEMMA 3.8. (i) For each fixed w, the distributions - of O ,vM)} are
relatively compact in (Dgl0, T1, d)>.

(ii) If{(uNm,TvN'")} c {@", v¥)} and‘(uN"‘,_vN"') — (¢, v) in distribution on
(DglO, T],d)2 as N, — 00, and (¢, v) is defined on some probability space
(Q*, F*,P*), thenfor 1 < < 2q,

(3.28) supE* (9 (1, w), 1) < C(T, w) < o0.
t<T

PROOE. _ (i) follows from Lemma 3.6(iv), (v), Lemma 3.7, (2.8) and the fact
that sup,g 1TV @)u 0) — T ()uoll = 0 in probability P by the Trotter-Kato
theorem and a subsequence argument.

(ii) We first consider v (#) and notice é“POgth flolNm (£) — vNm( )| =
supg<r<7 1Y Nm (1) — YNm(t—)|| - Qin probability as m — 00 by Lemma 3.6(iv).
Therefore, by Theorem 3.10.2 of Ethier and Kurtz (1986), we find that v €
Cyl0, T1. Next, by Theorem 5.1 of Billingsley (1968) and Skorohod represen-
tation, there exist {9Mm ()}, 0(z) on some probability space (£, #.P) such that
5 (1) = vVm(r), D(2) = v(¢) in distribution, and #Vm(r) — () in H as. for
eacht € [0,T]. Let y(2) = fé T(t — s)dO(s). By Lemma 3.7, me is determin-
istic when o is fixed and yN'" (t) — y(¢) in H. Therefore, we have @V (t) =
Vm (1) + yNm (1) = ¢(¢) = 0(r) + y (¢) in H almost surely. However, this implies
that there exists a subsequence {Nj} C {Np,} such that @i, ) — (¢, x))P
a.e. x ¢ E almost surely. Then, we can use Fatou’s lemma, Tonelli’s theorem and
Lemma 3.5 to conclude that -

B [ ¢t x)p()dx —& [ 9P 000 dx
E ~JE .

=& [ liminf(a™ (t, x))ﬁp(x) dx

E j—ox©

< liminf [ B@EVi¢,0) o) dx
E

j—oo

< LiLysipsuplEe )], < CT ). O

m t<T
Finally we are in a position to prove Theorem 3:1.

PROOF OF THEOREM 3.1. We use the notation directly above Lemma 3.8 and
find from the proof of Lemma 3.8 that v € Cg[0, T]. Then we can use Skorohod
representation followed by Lemma 3.10.1 in Ethier and Kurtz (1986) to find
Dy 0, T1-valued random elements {t¥}, § on some probability space (£, F.P
such that 9V = v¥m § = v in distribution and

3.29) sup Mf)N”‘ @ - =0 as. P as m — oo.
t<T
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Then, it follows by Lemma 19 of Dawson and Kouritzinu (1997) that there are
Dy[0, T']-valued processes {vN”‘ m=1,2,...},% and {Y¥ m =1,2, ...} on
some probability space ($2, ¥, P) such that

(330) £, 5™, 5", .. )=£,5™,5",..)  on [] BWDal0, ],

meNy .

¥\ v
3.3 SL 5 N =L ?N;n , forallm=1,2,....

Here, £(X) denotes the law of random variable X on a complete separable
metric space S. We define a measurable mapping Gy : Dg[0, T] x Dgl[0, T] —
Dyl0, T1 by

G, ¥)(@) = PYp(r) — TV (1)(PY ¢(0) + " (0))

= [~ RS + " 0) ds - PYy).
Thus, from P?(Gy,, (v¥m, ¥¥m) = 0) = 1 and (3.31), it follows that
G, 3", YVm) = gNm — T Nm (58 () 4 5 Mm (0))
- /0 " (& — )R(@¥ (s) + y N () ds — PVn (1)
=0 as.P. .

Then #Vm = §¥n 4 ¥m satisfies

i (0) = T4 0% 0) + [ T — R 5)) ds
(3.32) 0 - i

+ YV (6) 4y Ny as B

Using Lemma 3.6(iv), (3.29), (3.30) and (3.31), we find a subsequence {N;j} C
{Np,} such that

(3.33) Sup 1% @) — 9@ -0 as.Pasj— oo

and

(3.34) sup [¥Vi#)| -0 as.Pasj— oo.
. t<T # %

Recalling Sup, <7 YY) —y @ | — O surely from Lemma 3.7, one finds

(3.35) sup [l () — g@)| —~ 0 as.Pas j - oo,
t<T
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where @(t) = ¥(t) + y (t). Now, we identify @. By (3.32), we have with ¢(0) = uo,

t % 1.
G =TEOFO) + / T(t — )R(@(s))ds + f T(t — 5)dO(s, w)
(3.36) 0 | 0

BN (O + B () + By, @,

“where ‘
£, 0 =00 [ 76~ 9)d0w.9) - (0 - [ 7"~ 6", @),
&, =M @i O - TOFO) + IV 0,
and - ‘ »
«3 d Ni, oN; Z . o .
Ey, (1) = /0 TVi(t —s)R(" (s)) ds — fo T(t — s)R(@(s)) ds.
By (3.35) and Lemma 3.7, it follows that

(3.37) sup |IEL. ()l = 0 as. Pasj — co.
th J 4

By the Trotter-Kato theorem and (3.34), we have

(3.38) sup ||512v.(t)l| -0 as.Pas j— 0.
t<T 7

We let v
Vi) = / NI — s)R("i (s)) ds gw‘(})"l= / ‘16— S)R(¢(s)) ds
0 ’ 0 ‘

and consider
8,0 =3 [ 0.65 )00~ E©), 0p)6]
ipl=n

+ 3 @0, 65165

|pl>n

— " (3(0), p)0p-

lpl>n

By applying the Cauchy——Schwarz inequality and Remark 2.3, we have, for |p| #0,

Y@, nyen P

t ) ) ) 2
= l /0 exp(ry’ (t — )[R (), dpl)ds

t . t ’
< [ ewrp - o) ds- [ (RE6).65] ds

(G L) ;
= Wfo (R@Yi(s)), 95"} ds.

-
L
o

§‘/§ < ey ;
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Thus,
> 1EN©, o)

|pl>n

C\ t - N; Nj\2
Sn_z/o ;(R(u (), ¢p’) ds

‘ C rt N
= ,Té/o (1, R*(@Yi (5)))ds.

Therefore, by Hypothesis (i), (1.2) and Lemma 3.5, it follows that for some

constant C(7T, w) < oo,

3 @V, gl

(3.39) E [Sup
pi>n

t_<_T

Similarly, by Lemma 3.8(ii), we find that
2=

> (@), ¢p)0, |

lpl>n :

(3.40) ]E,Vsup

t<T

It is easy to see that

GV, 65 ) bp — (3(), dp)by

]

=

C(T; @)

n2

=

C(T, w)
n2

t . , .
= [ exp(03 ¢ — )R (Y (5)), 81" sV

t
~ [ ex01p¢ ~ ){RG). 8,18,

t . , |
=[] w03 ¢~ R 5). 6)ds(6} ~ )

i

t ) i ,
+ [ exn( )R ), 8 - py)dss,

i

t ) :
+ fo exp(ky’ (¢ )[R (5)) —~ R(G(). 8p)dseyy

t o
+ /O (exp(n ¢ ) = exp(hp(t ~ ))REG), Bp)ds 6

4
=Y 1)
i=1
Note that for fixed p,

Iy’ = Apl + l6p" — dpllso — 0

as j > o0

1065
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and

sup(ip” lloo + 19plleo) < 00
]’p

Therefore, by Lemma 3.5 and Lemma 3.8(ii), it follows that

E[sup jiN (t)[|oo} 50 asj—o00,i=1,24

=T

For Iv“év i(t), we have by (1.2) and the Cauchy-Schwarz ihequality,

o N;
sup T3 (Dllco

t<T

= sup
t<T

T
< [ HR@5) = REO). dollds 1951

[ expli3 ¢~ RGN 5) ~ RGO, 51| 1l

T o
< 16pl [, (L R @) ~ R(p6) s

<3R5 [ 1 () — ps)l

x(1,1 4 (@M (s))z(q_l) + e 1)(s))l/2

1/2
<VAEN I ([ 186 =G0 as)

, 172
o ([ (1 1+(VN1(S))2(q 1) 2(q—1)(s))ds) ,

which tends to zero in probability by (3.35), Lemma 3.5 and Lemma 3.8(ii). Thus,

we have

(3.41) sup ||sN |—0

t<T
in probability IP. Combining (3.37), (3.38) and (3.41), we obtain

sup| &} N; @)+ sN @) + E?Vj )| —0 in probability P as j — oo.
t<T

It follows by (3.36) that

o

gb(t):T(t)(Z)(O)-l—fotT(t—s)R((Z)(s))ds—F/(;tT(t—s)d@(s,w) as. P.

oL e Lomsind. .

B B TR S s
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Therefore, almost sure convergence of i/ to a pathwise solution of (1.3) follows
from (3.35). We now show that the solution is unique. Let u(r) be a pathwise mild
solution of (1.3). Then we have

u(t,x) =T@®Ou©,x)+ /Ot T(t —S)R(u(s,x)) ds +/Ot T —ys) d@(s,»x)

< Tu, %) + /Ot T(t — 5)R* (us, x))ds -l—/tT(t —~5)dO(s, x)

r Ni(t,w)

g
< 4O} +Ct +C /O lu@loods+> - > 116; uooA’ao)

i=l" j=1

By Gronwall’s inequality, it follows that supt<T lu()lloo < (T, w) < co. Now let
uy, uz be two solutions of (1.3) such- that #1(0) = u2(0) = ug. Then

t
(3.42) ui(t) — up(e) = /O T(t — 9)[R(u1(5) — R(ua(s))]ds

By (1.2) and the above estimate, we find that there exists C (T, w) < 0o such
that

' t
a1 (@) — w201l < C(T, w)/ llu1(s) — ua(s)ll ds.

By Gronwall’s inequality, it follows that u; (f) = us(t) for any ¢t € [0, T] But T is
arbitrary, so u1(t) = uy(z) for any ¢ > 0. Convergence in probability for u” then
follows from (3.31), the fact that ¢ = ¢ = u is deterministic, and the arbltranness
of the original {Nmlo . O '

APPENDIX -

Here, we give a computer-workable construction for the collection of indepen-

dent Poisson processes used in Section 2.

Ly,L; . .. 2
Assume that {(X{ ;, XX )} 1(11232)—(1 b, (X350 X2 J = G, 2 i =

L. Ly, p=1,. Lz} and {(X3 ;, X2 )),j = (Jl,Jz) j1=1,...,Lg
j2=01,. Lz} are mdependent standard P01sson processes on (2, F, IP’) Let
{(sf;,’,;’,s_ i B =12, m =12, B ek
il il,,{,;_”),Je{(h ot = O,1,...,L1,j2=1,...,L2},l_1,...,n
™ = 1.2, (82080 200 7 e (G = 1, Ly,
2=01,....L},I=1,....n, m=1,2,. ..} be independent Bernoulli trials
with p = 2 on (2, F,P). Now we construct the Poisson processes that are used
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to build our model in (2.3). For convenience, we let & f:,l,;j =1— f”,l,’,j , etc. Then

we will think of §f:f,;j as a one in the Jth position and,éf”,l,’,j as a zero. Thus,
we have one-to-one correspondence using the binary expansion of cell k — (1, 1)
(1<kj<N,1=zk<N), for example [for each j € {(1, 1), ..., (L1, L)},

-1 < 01..,1,1) < gRmigRnli  gRZIERLT
kel e (1,000 o geRIEtn T e
and we define the standard Poisson processes

xR @ - L
OO T B vl ol il s S el vl
m=1
xR ;@)
xRy = 5 BRI Rl e O b e
m=1

and so on. If j € {(1, 1), ..., (L1, L)}, we construct {XiJkN,Xl_]kN,Xi]kN,

' X"jf}f"j} for ke{(d,D,....(N,N)}by using the same prdc'edﬁre as above. If j €

1@ 1. (0.L2)), we only construct (X 1Y, XN Hork & (1, 1), (1,2,

(1, N} If j e{1,0),...,(L1,0)}, we only construct {Xi]kN,ijkN} for

ke(1),..., N, D). Then, (X7, xB0N  x25N ki ko =1,2,.... N,

=1L a= 12 Lo XX =Lk =1 N1 =
0.jp=1,....,Lo} and (xZ25V X2V ki =1,...Ne=1j=1....Li
jo = 0} are independent Poisson processes for fixed N. Next, to simplify notation,
we write X’_cl_’}iN(t) for ngfi’N, Xli’jiN(t) for X‘tf’]i’N, where f = R, 1,2 and k =
(ky, kp)= (1 — DL1+j1, G2 — DL+ j2) € (L, 1), o (LiN LaN)}ia, 02 =
NG = G ) € (LD, ..., (L1, L)), and write X%y (1) for xVix,
XL () for X124V, where k = (k1. k) = (1 = DL1 + jr, (2 — 1)Ly + j2) €
{0, 1),...,00,LaN)}, in=Lia=1,.... N, J = (1, J2) € (0,1), ..., (0, L2)}
and X62, (1) for X0, X52,(1) for X277, where k = (i, ko) = (1 — 1)
Li+ ji, (2 — DL2 + j2) € {(1,0),...,T(L'11N,0)}, ij=1,...,N,ip=1,j=
(j1. j2) € {(1, 0),...,(L1,0}. In this manser; we have constructed the collection
of independent Poisson processes as used in €2.3).
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