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ABSTRACT

The study deals with the initial motion of a single bubble rising from rest in
water. Both experimental and theoretical work were carried out. The volume-equivalent
diameters of the bubbles studied were in the range from 0.59 mm to 1.23 mm. Bubbles
of this size travelled rectilinearly. The corresponding instantaneous Reynolds number
varied from approximately O to about 400, and the Eotvds number varied from 0.05 to
0.21.

The experiments were conducted in a vertical Plexiglas column filled with distilled
water. The column had a square cross section of 100 mm by 100 mm and 2 height of 600
mm. The bubbles were generated by injectipg air through a nozzle which was located
at the bottom of the column. The bubble rising welocities were measured using a dual-
beam, forward-scatter-mode, laser-Deppler anemometer at varying distances directly
above the nozzle. The volume-equivalént diameter of the bubble was measured by
photography. The bubble generating frequency was controlled to be around one Hz by
adjusting the air pressure through a regulator.

It was found that the bubble rising velocity increased with the height very rapidly
in the earlier stage and then more gradually until a maximum velocity was reached. The
bubble rising velocity decreased slightly with the distance afterwards.

Theoretical work was also carried out to predict the bubble acceleration based on
the assumptions that the bubble had a spherical shape and a constant volume. The drag
force, which included the quasi-steady term and the added-mass term, was carefully
evaluated in order to solve the governing equatioh. A semi-empirical (quasi-steady) drag
coefficient was obtained using the experimentally obtained maximum bubble rising
velocity in the present study. The semi-empirical drag coefficient was subsequently used
to predict the bubble acceleration. A theoretical model that describes the motion worked
quite well. Dimensionless groups were developed which correlate quite well the bubble
rising velocity with distance for all the bubble sizes used in the present work.
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bubble radius

striking angle

angle between sending beam i and scattering beam j

drag coefficient
fringe spacing

spherical bubble diameter

volume-equivalent spherical bubble diameter (6V/x)?

bubble diameter in long axis
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bubble generating frequency
drag force per volume
Doppler frequency

frequency of sending beam 1
frequency of sending beam 2
frequency of scattering beam 1
frequency of scattering beam 2
drag force
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Froude number

gravitational acceleration

distance between the centre of the sphere and a photodetector
refractive index of spheres relative to surrounding medium
Morton number

acceleration modulus

refractive index of continuous phase

refractive index of dispersed phase (bubble)

liquid pressure

Reynolds number

dimensionless radius of bubbles

effective distance between two photodetectors

distance between two photodetectors

time

signal period

time required for a fringe moving from one detector to another

bubble volume or dimensional velocity

velocity of model air bubble on the edge of a rotating disk

fringe moving velocity

velocity determined from the program LDAVEL
velocity calculated from the display of the oscilloscope
dimensionless veldcity of bubbles

bubble rising velocity



X,y,Z

Py

terminal velocity of a rising bubble

average liquid velocity

velocity of solid spheres

Weber number

distance between a bubble and the tip of a nozzle

coordinate system

half angle of sending beam intersection in water
half angle of sending beam intersection in vacuum
half angle of receiving beam intersection in water
added-mass coefficient

phase shift between two Doppler signals (1 and 2)
history coefficient

length difference between refracted path length and reference path length
(i sending beam, j scattering beam)

density difference between liquid and gas (p-p,)
beam wavelength in vacuum

viscosity of liquid

kinematic viscosity of liquid

density of liquid

density of gas

surface tension of liquid-gas interface



scattering angle

angle of the whole photodetector turning from horizontal plane



CHAPTER 1 INTRODUCTION

1.1 Need to Study Single-Bubble Motion

Bubbles are an indispensable part of a host of industrial and man-related activities.
They can be found in many of the applications and play an important role in many
natural physical processes encountered in mechanical, chemical, civil, metallurgical and
food engineering, such as, boiling, electromachining, distillation, absorption, flotation,
antibiotic fermentation, food processing and beer-making to name a few. Bubble motion
in a liquid is also an area of fundamental interest in the study of two-phase gas/liquid
flow. Although in general any of the above mentioned physical processes involve many
bubbles, it is essential to first understand the motion of a single bubble in order to
improve our understanding of the whole phenomenon. Therefore, in this study, we will

focus our attention on a single air bubble rising from a nozzle in water.

1.2 Single-Bubble Motion

Single-bubble motion has been studied extensively. Basically, the rising of a
bubble from a nozzle can be classified into three stages (see figure 1.1).

The first stage is the bubble formation where a bubble grows in size as gas blows
from the nozzle. At a critical size, the bubble detaches from the tip of the nozzle and
rises up. This critical bubble volume is determined by a force balance between the
buoyant force and the surface tension force. In this stage, the bubble rising velocity U,
is approximately zero.

The second stage of a bubble rising is the bubble acceleration. In this stage, the
bubble rising velocity increases with time or distance until it reaches its terminal velocity.
The force balance between buoyant force, drag force and inertial force determines the

acceleration.

After achieving the terminal velocity, the bubble rises with a constant velocity*

'The variation of the rising veloity after achieving the maximum value will be further discussed later
(section 4.1).
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which is the third stage of a bubble rising from a nozzle. In the third stage,the buoyant
force is equal to the drag force.

The bubble formation and the terminal velocity have been well studied (Clift et
al. 1978, Wallis 1969, 1974). However the acceleration stage has not been well
investigated. Therefore, in the present study, we will deal with the acceleration of a
bubble.

1.3 Objectives

The theory for the acceleration of a bubble has limitations and experimental study
has been scarce. Therefore, the objectives of this study are first of all to measure
experimentally the accelerating bubble velocity; secondly to find a suitable mathematical
model to predict the velocity. Drag force plays an important role in bubble motion;
therefore, it is very important to evaluate the drag force. There are some experimentél
correlations and theories for the drag force, but they are only applicable in special
situations.

1.4 Organization of the Thesis

The first chapter is the general introduction to the thesis. Chapter 2 discusses the
theory of the single-bubble motion. Relevant non-dimensional groups, such as Reynolds
number, Eotvos number, Weber number and Froude number are introduced and
discussed. Both the steady motion and the accelerated motion at low and higher
Reynolds numbers are reviewed. Chapter 3 describes the experimental apparatus and the
procedure. The mechanism of the laser-Doppler anemometer for measuring bubble rising
velocities is discussed. The procedure for bubble size measurements by taking
photographs is also described. Chapter 4 presents the results and the discussion, and
‘ ‘Chapter S summarizes the conclusions.
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CHAPTER 2 THEORY OF SINGLE-BUBBLE MOTION ABOVE A NOZZLE

2.1 Reynolds Number, Eétvos Number, Weber Number and Froude Number

In the area of bubbly flow, several dimensionless groups are often used.
Therefore, it is desirable to discuss the physical significance of these groups before we
pi'ocwd to detailed equations.

Reynolds number is defined as:

" Re = PUP

B

where p is the density of liquid; U, is the bubble rising velocity; D, is the bubble
diameter?; u is the viscosity of the liquid.

The physical meaning of Reynolds number (Re) is the ratio of inertial force
(% pU,2D,?) to viscous force (o< xU,Dy). High Reynolds number flow means that inertial
force is dominant and the viscous force can be neglected. Conversely, at low Reynolds
numbers, the viscous force becomes significant and the inertia term can be neglected.
Thus, Reynolds number is often used to characterize the relative importance & {%:2 inertia
and the visopus forces.

The bubble shape is closely related to the surface tension, and the Eotvds and
Weber numbers need to be introduced. They are defined as follows, respectively:

Eo = 90yAp
g

We = pU,Dp
g

where g is gravitational constant; D, is the bubble diameter; Ap is the density difference
between the liquid and the gas; o is the surface tension of liquid-gas interface.

’In the present study, a volume-equivalent bubble diameter (D,) is used which is calculated based on
the bubble volume {D,= (6V/x)'?}.
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In the literature, both We and Eo are commonly used as independent variables for
correlating shape parameters for fluid particles. The Edtvds number (Eo), which is also
known as the Bond number and Laplace number, represents the ratio of buoyancy force
(<D,*Apg) to surface tension force (o oDy,). The Weber number (We) represents the
ratio of inertia force (ocpU,’D,’) to surface tension force (o oD,). In a particular flow
situation, only one of either the E6tvos number or the Weber number is needed to
characterize the bubble shape.

Froude number is defined for bubbles and drops by Clift et al.(1978). We will
define the Fr as: |

UZ
Fr = P ,
ApgD,

which is the square of that defined by Clift et al.(1978). It represents the ratio of inertial

force( < pU,’D,?) to buoyancy force(ocApgD,’). It also takes another form for a free
surface flow:

where L is the characteristic length.

2.2 Bubble Motion Equation

Single bubbles rising in liquids have been studied theoretically for many years.
They were investigated by classifying the flow ag siéady or unsteady, low Reynolds
number (Re < 1) or higher Reynolds number (R# > 1). The motion of a bubble rising
from a nozzle is unsteady before it reaches 3¢ ierminal velocity (The terminal velocity
is not a constant value which will be discssed tater). The Reynolds number varies from
zero to some constant value which depens ¢ the bubble size, shape and the properties
of the fluid. Therefore in this process both low Reynolds number and higher Reynolds
number were involved. In this study, a spherical bubble rising rectilinearly is assumed.
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Saffman (1956) found that rectilinear motion occurred when the diameter of a bubble was
less than about 1.4 mm. Clift et al. (1978) showed that bubbles were nearly spherical at
moderate Reynolds number (Re = 500) if surface tension forces are sufficiently strong.
In figure 2.1, we can see that for a given Reymolds number, the bubble shape will be
spherical when the EGtvos number is less than a critical value(M = Morton number =
(g1*Ap)/(p%0®) and will not be considered in this study). In this chapter, we deal with the
cases for the bubble size in the range from 0.59 to 1.23 mm in diameter and the
Reynolds number range from zero to about 400 and the Edtvds number from 0.05 to
0.21.

An unsteady bubble motion equation was obtained by Kuo and Wallis (1988).
They applied ine momentum equation for both phases, the bubble and the flowing liquid.
The basic features of the equation development follows. The bubble was assumed to Be
infinitesimally small and therefore the average liquid motion was unaffected by the
bubble. The eguation of motion for a bubble moving in a flowing liquid in the vertical
direction is: |

au,
oy = - - % -p,8f; (2.2.1)
where: p, is the bubble density,
U, is the bubble velocity,
p is the liquid pressure,
f, is the drag force per volume,

z is the distance in the vertical direction.
The equation of motion for the surrounding liquid is:

PU;% - B @2

&

where: p is the liquid density,
U, is the average liquid velocity.



Combining equations (2.2.1) and (2.2.2) yields:

dU, du,
prbf = pULE': +(p-pb)g-j; . (2.2.3)

For a special case, where the surrounding fluid is stagnant, which is also true for our
study, U, =0. Also,

Uy _ dzdU, _ dU, 2.2.9)
bde  dtdz ot

Substituting equation (2.2.4) into equation (2.2.3) and multiplying by V (bubble volume)
on both sides, we obtain:

du,
pby_dT’ = ApgV-F,, (2.2.5)

where the term on the left hand side of the equation is the rate change of inertia, and the
first term on the right hand side of the equation is the buoyancy force. The last term (F,)
is the drag force on the bubble.

Equation (2.2.5) can also be obtained from equations given by Clift et al. (1978).
It is simply Newton’s second law. The drag force (Fp) is a difficult term to evaluate. In
the literature, the drag force is described by:

FD = FDS+FDA+FDH . (2.2.6)

Fpg is the so-called quasi-steady drag force term which is defined as:

=D}p
8
where C,, is the drag coefficient. The quasi-steady term can be interpreted as the drag
force which would exist for steady flow with a constant velocity U,
The second term Fp,, is the added-mass term which accounts for the inertia of the
liquid due to the acceleration of the bubble requiring the acceleration of the fluid. The

Fp=C,, U: , 2.2.7
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added mass is the mass of fluid which would be considered to move with the same
velocity as the bubble, and models the fluid dynamic forces on the bubble due to its
acceleration as an added inertia. It is a function of the rate of change of velocity and is
defined as:

F, -8 274 2.2.8)

42 4’
where p is the density of liquid, A, is the added-mass coefficient and V is the bubble
volume.

The last term is the history term which accounts for the history of the viscous
flow (this term will be discussed in detail in sections 2.5 and 2.6.).

In the next few sections, the evaluation of the drag coefficient will be considered
for different flow situations, steady and unsteady motion at both low and higher Reynolds
numbers. The determination of the drag coefficient is not straightforward, because the
drag coefficient is calculated from the flow field and the flow field surrounding a bubble
has first to be calculated by solving the Navier-Stokes equations.

The preceding analysis is for a bubble rising in pure liquids. After a bubble
reaches its maximum velocity, it will rise with a constant velocity. The effects of the
liquid impurities on bubble rising velocity will be discussed in Chapter 4.

2.3 Steady Motion at a Low Reynolds Number

The Navier-Stokes equations can be used to describe the bubble flow, but the
nonlinear terms in the equations make them very difficult to solve analytically.
Therefore, some assumptions are often made to simplify the equation. One of them is the
creeping flow approximation in which the convection term is neglected.

Consider a spherical bubble moving relative to a fluid of infinite extent with a
steady velocity U,. The Reynolds number is sufficiently low (Re less than 1) such that
there is no wake at the rear of the bubble. The bubble is also assumed to be free from
surface-active contaminants, and the interfacial surface tension is constant. The analytic
solutions for this bubble flow were derived independently by Hadamard (1911) and
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Rybczynski (1911) from the Navier-Stokes equations with the creeping flow
approximation. The solutions were obtained in terms of the Stokes stream function for
the fluids both inside and outside the bubble. The boundary conditions included: uniform
stream flow at large distances from the sphere, no flow across the interface, continuity
of tangential velocity across the interface and continuity of tangential stress across the
interface. From the solution, they derived the overall drag coefficient (Cy) for a bubble.
1t is the sum of two contributions: the pressure drag over the surface of the bubble and
the deviatoric normal stress. It has the form:

16
Cp, = —. 2.3.1)
P Re
The terminal velocity (U,r) of a bubble in creeping flow can be obtained by

equating the total drag to the buoyancy force, giving:

_ gApD;
12p

(2.3.2)

UbT

where g is gravitational constant;  is the viscosity of liquid; Ap is the density difference
between liquid and gas; D, is the bubble diameter.

2.4 Steady Motion at a Higher Reynolds Number

The inertia term in the Navier-Stokes Equation can not be neglected at Reynolds
numbers above one. Therefore, in this case the equation can be solved using one of the
following methods: numerical simulation, error distribution riéthod or boundary-layer
approximations.

Numerical solutions give the most complete and probably the most reliable results
(Clift et al. 1978). These solutions provide useful quantitative and qualitative information
at intermediate Reynolds numbers (typically Re<300). Numerical solutions from the
Navier-Stokes equations in the form of the Stokes stream function for the flow around
and inside fluid sphieres are obtained using the finite difference method. The boundary
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conditions are those described in section 2.3 for the Hadamard-Rybczynki solution. The
numerical values of the drag coefficient were obtained by Brabston et al. (1975),
Hamielec et al. (1967), and LeClair et al. (1971). An equation which fits the numerical
values of the drag coefficient for spherical bubbles well was proposed by Haas et
al.(1972):

C, = 149Re0  (2<Re<1000) . 2.4.1)

Hamielec et al. (1962, 1963) used the error distribution (or Galerkin) method for
solving the Navier-Stokes equations. This method involves choosing a polynomial form
for the stream function. This stream function was made such that all the boundary
conditions are satisfied. Hamielec suggested a correlation for the drag coefficient for
Reynolds numbers in the range of 4 to 100. For a gas bubble, the correlation takes the

following form:

Cp = 13.73Re™®™  (4<Re<100) . (2.4.2)

The boundary layer method is often used for flows with high Reynolds numbers.
Viscous forces play a dominant role inside the boundary layer, while outside this layer
the flow can be approximated as irrotational.

As a first approximation to irrotational flow, Levich (1962) calculated the viscous
energy dissipatiom for potential flow past a fluid sphere. The drag coefficient is given by

the following form:
c, == (Re>50) . (243)

The complete boundary layer equations were solved analytically by Moore (1963),
but in the vicinity of the rear of the bubble, the velocity and pressure fields were found
to have singularities. In calculating the energy dissipation, Moore also included the
contributions from the boundary layer and wake. The improved drag coefficient is given
by:
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221
1
Re 2

3
+O(Re ©)]  (Re>50) . (2.4.4)

CD = %E[l_

2.5 Accelerated Motion at low Reynolds Numbers

Analytical solutions for unsteady motion of rigid and fluid spheres are available
only in creeping flow. Basset (1888) considered the case for a solid sphere with zero slip
velocity at the interface. A solution for a gas bubble with the no-tangential stress
boundary condition was developed by Morrison and Stewart (1976). They also made a
comparison between their solution and that of Basset for a solid sphere.

Morrison and Stewart’s solution for a gas bubble was obtained by solving the

Navier-Stokes equations with the creeping flow approximation. The resulting drag force
is :

du
dU
Fy = _Ev._”+21;upbub+6LV ’ lf‘—-‘-’-s—ds

2.5.1
20, @5.1)

VD 2
+P bf'dsdf

12/nv"% Jt-s

where: t and s are time, (t-s) is the time elapsed since the past acceleration, t, is the time
at which the bubble begins to accelerate, and t is the present time.

The drag force on an accelerating solid sphere in a creeping flow by Basset(1888)
is:

du
du, 2.5.2
F,=L2V—243nuD U+ .14 l Yy f a5 4 25.2)
2 a Ds % ‘h—s

where D, is the diameter of a solid sphere and U, is the velocity of a solid sphere.
Morrison and Stewart found that the first term on the right-hand side of the above
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two equations (the added mass term) does not depend on the solid or fluid spheres, i.e.,
it only depends on the fluid density and bubble volume. They also found that the steady
drag on the bubble is only 2/3 of the Stokes drag on a rigid sphere represented by the
second term on the right hand side of the above equations. We know that the Stokes drag
coefficient for solid spheres is 24/Re. Therefore, according to the above relation, the
drag coefficient for a bubble is 16/Re, which is exactly the drag coefficient for fluid
spheres in creeping flow as discussed in section 2.3. The third term, which is called
Basset term, or history term, has a value for gas bubbles which is 2/3 of the that for
solid spheres. It accounts for the history of the unsteady motion, integrating from the
initial time t,, when the bubble starts from rest, to the present time t. The last term in
equation (2.5.1) is the additional momentum diffusion term which is considered to be
insignificant (Kuo & Wallis, 1988). Similar to the history term, it is an integral overtime.
This term does not exist for a solid sphere. The above comparison reveals that the
various terms in the drag force are very similar for the flow of a bubble and a solid
sphere, differing only in their coefficients.

2.6 Accelerated Motion at Higher Reynolds Numbers

No known analytical solution exists for the full Navier-Stokes equations for
unsteady single bubble motion at Reynolds numbers beyend one. Therefore numerical
methods must be used. However, some simpler methods could be employed for this
unsteady motion at higher Reynolds number. In the following, the methods for the case
of a solid sphere will be discussed, and then applied to the case of a bubble.

Odar and Hamilton (1964) modiﬁed the drag force derived by Basset(1888) for
creeping flow around rigid spheres. For higher Reynolds number flow, they added
coefficients for both the added mass term and the history term to obtain the drag force.

“The drag force for creeping flow about a solid sphere is given by:
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_ Vp dU, .C nDszp 2
D 2 d D 8 s

av, (2.6.1)
,—— 8
f dt )"’,/,—:
(which is equation 2.5.2). The drag force for higher Re is therefore;
2
Fp = AAVP il CnuD'p s
2 dt 8
au, (2.6.2)
+ A -—,/_ f t
\/—_

where A, and A are empirical coefficients by Odar and Hamilton which account for the
differences from creeping flow. They are all a function of the acceleration modulus
M, {=(D,/U ) (dUy/dt)}(Clift et al., 1978).

As pointed out in Section 2.5, the terms in the drag force for the cases of a solid
sphere and a bubble are very similar. Therefore, we could try to use the same form as
equation (2.6.2) for the case of a bubble, with coefficients, Cp, A,, Ay, that are to be
different from those of a solid sphere.

Kuo and Wallis (1988) studied the accelerated motion of single bubbles injected
into a liquid flow through a convergent- and-divergent nozzle. They also used the same
form as ec‘matidn (2.6.2) for the drag force, but only considered the quasi-steady drag
term and the added mass term. They expected these two terms to be more significant
than the history term. In their case, C;, was evaluated from their experimental results and
correlations for C;, were developed. Three numerical values were tested for the added
mass coefficient A,, namely, A, = 0, 1 and 2.

For a bubble rising from rest in stagnant water, an analytical solution for the
bubble rising velocity was sbiainéd by Varty (1991a). The quasi-static drag force and the
added mass term were considered. The drag coefficient used was C,=48/Re. The added
mass coefficient was chosen to be one. It was found that for a bubble size of 1 mm in
diameter the analytic solution gives a good prediction for the bubble rising velocities.
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The present data has shown that for bubble sizes different than 1 mm ( > 1 mm or <
1 mm), the prediction deteriorates. This will be discussed in Chapter 4.

2.7 Summary
The goveming equation derived in Section 2.2 (equation 2.2.5) can only be solved

when the total drag force is determined. For unsteady flow or accelerated motion, which
we are concerned with in this study, the drag force can be split into several terms as we
have discussed. The quasi-steady drag can be evaluated from solutions for steady flow.
However, the determination of the added mass coefficient A, is difficult from theoretical
considerations, and a trial-and-error method has to be used. The history term is normally
assumed to be unimportant and can be neglected for unsteady higher Reynolds number
flow.

In Chapter 4, we shall solve the governing equation (2.2.5) to predict the bubble
rising velocity. All the correlations discussed in Section 2.4 for Cp, will be tested. A new
correlation for C,, based on the terminal velocities of the rising bubble will be proposed
and used in the governing equation. Different values for the added mass coefficient will
also be used. '



15

105 T=T"7TTTTY L N LR RS

LA RLAR A

(=
REYNOLDS NUMBER, Re

\HI% T TTI1t11]

10

Figure 2.1 Shape regimes for bubbles and drops in unhindered gravitational motion
through liquids (Clift et al., 1978).
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CHAPTER 3 APPARATUS AND PROCEDURE

3.1 Introduction

Laser Doppler anemometry (LDA) has been used extensively for the flow
measurements. The advantage of this method over others is that it does not introduce any
probe disturbance to the flow. LDA was originally applied to velocity measurements in
single-phase flows. Later, the use of this method was extended to the measurement of
two-phase flows and also to the measurement of bubble size. In our experiments, the
dual-beam forward-scatter LDA was used. In the next section, we will describe the test
section, a flow column. The principles of velocity measurement using LDA will be
discussed. Finally, bubble size measurement by taking photographs will be explained.
This was used in the present study. Bubble size measurement using LDA will be
described in Appendix B.3. It was found that during the calibration, this method did not
give accurate bubble size measurement. Consequently, it was not used here.

3.2 Flow Column .

The test section was a vertical Plexiglas column having a square cross section,
which was mounted on a three-dimensional traversing mechanism. The schematic
diagram of the flow column is shown in figure 3.1. The inside dimensions of the test
section were 100 mm by 100 mm in the horizontal plane and 600 mm in the vertical
direction. It was filled with distilled water. Air bubbles were injected through a nozzle
located near the bottom of the column. The tip of the nozzle extended approximately 100
mm above the bottom of the test section. The procedure for making a nozzle is described
in Appendix A. The bubble rising velocity from the moment it detaches from the nozzle
until it reaches its terminal velocity was measured using the laser-Doppler anemometer.
In order to measure the bubble rising velocity at different positions, the column can be
moved up and down relative to the fixed laser-Doppler system using a motor.

3.3 Laser-Doppler Anemometer
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3.3.1 Introduction

The LDA was operated in the dual-beam forward-scatter mode (see figure 3.1).
The light source was a 10 mW helium-neon laser. The nominal wavelength A in vacuum
was 632.8 nm and the nominal e? beam diameter was 0.68 mm. The light passed through
the transmitting optics into the flow column, and it was received by a photodetector. The
signal from the photodetector went to a low pass-filter, and then to a digital storage
oscilloscope. All the information from the oscilloscope was then stored in an HP
computer. The bubble generation frequency was measured using a digital counter and a
stop watch. The bubble generating frequency was controlled by adjusting the air pressure
through a regulator.

The light from the laser passed through the two quarter wave plates which
produce the vertical polarised light (figure 3.2). The polarised light was then split into
two parallel beams by a prism. The focusing lens had a back focal length of 249.59 mm
and a beam-crossing half angle a of 5.532° that was given by the manufacturer. The
receiving optics consisted of a mask with an aperture diameter of 40 mm, a collecting
lens with a front focal length of 254.6 mm, a scattered-light focusing lens with a back
focal length of 120.7 mm, an iris with an aperture diameter of 2 mm, and a
photodetector pair. More information about the LDA system can be found in Varty
(1991b), e.g., signal processing and programming.

3.3.2 Velocity Measurements

Consider a bubble travelling with velocity U, crosses the intersection of two laser
beams perpendicularly, as shown in figure 3.3. Beam 1 and beam 2 which originally
have the same frequency will be scattered to have different frequencies. The relationship
between the frequency difference of the two scattercd beams (f, = f;, - f;;) and the
bubble crossing velocity obeys the following equation (Durst, 1982):

2Usi
f = fafy = b:‘““ (332.1)

where A(=632.8 x 10? m) is the beam wavelength in vacuum, and a(= 5.532°) is the
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half angle of the sending beam interseciion in vaguum. This fivmency difference is
normally called the Doppler frequency, which is also the frexjuescy of ke signal caused
by the intesference fringe pattern moving on the photodetzctor. ¥ vefote, v ineasuring
the frequency of the interference fringe pattern, we can caiev ate ths irshle crossing
velocity U,

3.4 Bubble Size Measurement by Taking Phiotographs

Bubble size was measured from photographis. This technique aiso indicates how
much the bubble shape deviates from a sphericizl shape.

Figure 3.4 shows how the pictures we: s takien. A camera was on one side of the
flow column and a strobe-light was on the other side. It was difficult to take a still
picture, because the bubble rises very fast. The strcbe-light was necessary to freeze the
image. The frequency of the strobe-light was adjusted to be the same or slightly faster
than the bubble generating frequency. The 3Smm negatives were normally enlarged 35
times and printed for measurement. The accuracy of the bubble size measurement is up
to 1%.
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CHAPTER 4 RESULTS AND DISCUSSION

4.1 Variation of Bubble Rising Velocity with Distance above the Nozzle

Figure 4.1 shows the variation of bubble rising velocity with distance above the
nozzle (Z,) for several typical bubble sizes. The equivalent bubble diameter (D,), which
was defined in Section 2.1 (footnote) and will be explained more in Section 4.10., was
varied from 0.62 to 1.10 mm. The range of bubble generating frequency (f) was from
0.43 Hz to 1.80 Hz. The air temperature vairied from 23°C to 23.7°C. It can be seen
from figure 4.1 that the bubble rising; velority increases very rapidly as soon as it leaves
the nozzle, and then the acceleration siows down till a maximum velocity is reached.
Afterwards, the bubble rising velocity decreases very slowly with distance. It can also
be seen that larger bubbles rise faster than smaller bubbles and, smaller bubbles reach
their maximum velocities earlier than larger bubbles. The vertical error bars in figure 4.1
indicate the uncertainty of the bubble rising v...ocity calculated from the cor;«:ations for
the LDA system in Appendix B.1. The uncertainty of the distance (Z,) measurement is
3 0.25 mm. It is too small to be shown in figure 4.1. For each bubble size, the first one
or two data points which were measured at values of Z, within a bubble diameter from
the nozzle must be interpreted carefully, since in this range of Z,, bubble rising velocity
is multivalued. It is multivalued because the bubble is in the process of detachment at this
location.

In figure 4.1, we observed that th.; bubbles accelerate to a peak velocity and then
decelerate slightly. The acceleration of the bubble can be readily understood from the
force analysis as discussed in chapter 2: the drag force increases initially with distance
until it balances the buoyancy force (at the maximum velocity). The deceleration of the
bubble with distance has been discussed by Clift et al. (1978) and Martin and Chandler
(1982). These authors attributed the decgleration to the surface active contaminants in the
liquid. When the bubbles are first injected into the column, the bubbles are relatively free
of surface active contaminants. Gradually the bubble surface will accumulate surface
active contaminant which can reduce the internal circulation of bubble and increase the
drag. Since the drag force due to the contaminant increases with time, the bubble rising
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velocity decreases after a maximum velocity is reached when a force balance is achieved
momentarily.

In the present study, only the acceleration phase is considered, and no
consideration is given for the effect of surface active contaminants. The maximum

velocity will be considered as the terminal velocity, and will be treated as a constant.

4.2 Effects of Bubble Generating Frequency

Figure 4.2 shows the effect of bubble generating frequency on the bubble rising
velocity for two representative bubble sizes, 0.67 mm and 1.10 mm in diameter. The
bubble rising velocity was measured at a distance of 5.02 mm above the nozzle for DD,
= (.67 mm and about 20 mm for D, = 1.10 mm. As can be seen, the bubble rising
velocity was not affected significantly by the frequency in the frequency range tested for
the two bubbles. The bubble generation frequencies used in the main experiments were
all within the range tested for the two bubbles. Thus, it can be assumed that the bubble

generation frequency has no effect on bubble rising velocity in the present study.

4.3 Accuracy of Temperature Measurement

In order to facilitate the experiments and also to keep the distilled water in the test
section clean, room temperature was measured and was assumed to be the temperature
of the water in the test section. In order to justify this assumption, the room temperature
and the water temperature just above the tip of the nozzle were measured at the same
time for two different days. Figure 4.3 shows the variation of both the room temperature
and the water temperature with time for two days from 9 am to 4 pm. The room
temperature increased slightly with time whereas the water temperature decreased
slightly. However, the maximum temperature difference between the room and the water
temperature was 0.7°C. The room temperature and the water temperature were the same
at 10 am for the day 1 test, and at 11:30 am for thg day 2 test. Most of the experiments
in the present study were conducted from 10 gin to 12 pm. Therefore, the difference
between the room and the water temperature was less than 0.7°C. Figure 4.4 shows the
bubble rising velocities at two different roora temperatures: 22.8 °C and 24.7 °C. The
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room temperatiire difference was 1.9 °C. We can see from figure 4.4 that the bubble
rising velocity is hardly influenced by the temperature difference. Thus, for a smaller
temperature difference 0.7° which is the maximum temperature difference between the
room temperature and the water temperature, the effect on bubble rising velocity is

negligible. Therefore, we can use the room temperature as the water temperature.

4.4 Experiment Repeatability

Two bubbles of different sizes were used to test the repeatability of the
experiments. In figure 4.5(a), the experiments were conducted for four runs for a bubble
size of 0.67 mm in diameter. In figure 4.5(b), the experiments were conducted twice for
a bubble size of 1.10 mm in diameter. In all cases, the experiments had good
repeatability.

4.5 Terminal Velocity (Maximum Velocity)

Wallis (1974) reviewed the terminal velocity for both fluid spheres and solid
spheres and arrived at two equations. These two equations are shown in figure 4.6 as two
straight lines. Figure 4.6 shows the dimensionless terminal velocity versus the
dimensionless radius. The upper bound straight solid line corresponds to fluid spheres
and the lower bound straight dash line corresponds to solid spheres. The dimensionless
variables are defined as:

2 1
y* = V( 4 )3
pglp
R* = (pgAzp)B ,
B

where: V (U, in present study) is the dimensional velocity, p is the liquid density, Ap
is the density difference between the two phases, u is the viscosity of the liquid and R
(D./2 in present study) is the dimensional radius.

Two sets of experimental results are shown in figure 4.6. One set is from the
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present experiments where the dimensionless velocity was calculated based on the
maximum velocity. The other data set reports the results from Martin and Chandler
(1982). We can see that all the experimental results are close to the upper bound straight
solid line for fluid spheres. This supports the conclusion that the air bubble behaves more
like a fluid sphere than a solid sphere. The present dimensionless maximum velocities
are also close to Martin’s data.

4.6 Theoretical Prediction

As mentioned in Chapter 2, in order to solve the governing equation (equation
2.2.5) to predict the bubble rising velocity, the drag force must be determined first. The
drag force includes the quasi-steady term, the added-mass term and the history term. The
history term was neglected because it is usually assumed to be unimportant compared
with the other two terms according to the literature (Kuo and Wallis, 1988). Thus, only
the quasi-steady term and the added-mass term were considered. For the quasi-steady
term, four drag coefficients, which were C, = 14.9 Re’®” (numerical solution), C, =
13.73 Re®™ (the error distribution solution), C, = 48/Re (Levich boundary layer
solution) and C,, = 48/Re [1-2.21/Re'? +o(Re*)] (Moore boundary layer solution)
discussed in Chapter 2, were used. As for the added-mass coefficient, a value of 1.0 was
used in solving the governing equation to predict the experimental results. This value is
for unsteady creeping flow (Clift et al., 1978) and has been used for high Reynolds
number bubble acceleration (Varty, 1991a). Other values for the added-mass coefficient
were also used and the predicted results will be discussed in Section 4.8.

The governing equation (ODE) was solved numerically by using the fourth-order
Runge-Kutta method. The distance Z, was integrated from the numerical values of U, and
t by using the Simpson’s 1/3 Rule. The maximum error of the numerical values of Z,
obtained by using these two methods is 0.000012%.

Figure 4.7 shows the comparison of the bubble rising velocities (versus the
distance) between the experimental results and the theoretical predictions for four bubble
sizes. It can be seen that for any bubble size, the difference between the predictions
(lines) using different Cp, formulae is very small in the initial stage of bubble rising. All
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the theoretical lines fit the experimental data well, especially for large bubbles. As the
maximum velocity is approached, some of the theoretical lines start to deviate from the
experimental data. A close examination of all the plots for different bubble sizes reveals
that the theoretical line using C,,=1‘4.9Re*""’8 gives the best prediction of the bubble
rising velocity.

It is to be noted that the drag force coefficient Cp=14.9Re®™ is from the
numerical solution of the Navier-Stokes equation (for steady flow). Therefore, what we
observe in figure 4.7 is consistent with the conclusion that numerical solution for the
evaluation of C;, gives the most complete and reliable results (Clift et al. 1978).

It can be recalled from Chapter 2 that the analytic solution using the drag
coefficient C,=48/Re gives a good prediction for a bubble size 1 mm in diameter
(Varty, 1991a). The theoretical lines using this drag coefficient in figure 4.7 give lower
predictions for bubble sizes less than 1 mm in diameter and gives a higher prediction for
a bubble size larger than 1 mm. Therefore, the present data support Varty’s conclusion,

4.7 Evaluation of a New C, Form from the Present Experiments

In the above section, all the C, forms used are from theoretical solutions.
Alternatively, one can evaluate the drag coefficient based on the maximum or terminal
velocity, and then use the experimentally determined C,, to predict thé';mbble rising
velocity during acceleration.

At steady state where the maximum or terminal velocity is reached, a force
balance between the buoyancy force and the drag force gives:

Cp== , @.7.1)

where: Uy, is the maximum bubble rising velocity and D, is a spherical bubble diameter.
In the present study, the larger bubbles have ellipsoidal shapes. The maximum aspect
ratio is 1:1.16 which is close to a spherical shape. Therefore, the bubbles were treated
as spherical bubbles with the volume-equivalent bubble diameter (D,)(see Section 4. 10).
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The C,, was calculated from the abdve equation using the volume-equivalent bubble
diameter.

~ Figure 4.8 shows the plot of C, versus the Reynolds number based on the
maximum bubble rising velocity. A regression of the data using least square analysis
gives:

» = 1191Re 0% @.7.2)

Figure 4.9 shows the comparison between the experimental data and the
predictions for the bubble rising velocity using the new C,, form (equation 4.7.2). It is
evident that the new C,, form gives good predictions for the bubble rising velocity for all
bubble sizes. Also shown in figure 4.9 is the theoretical predictions using Cp,=14.9Re’
07, As expected, the theoretical prediction using the new C;, form works slightly better
than C, = 14.9 Re*", particularly for the two smaller bubbles.

4.8 Discussion of the Added-Mass Coefficient

In order to find how the value of the added-mass coefficient influences the
prediction, several different values for A, are used. The solutions are shown in figure
4.10 again for the four bubble sizes. The new drag coefficient form (equation 4.7.2) is
used and three different values for the added-mass coefficient, namely, 0.5, 1.0 and 2.0
are used. It can be seen that the most obvious difference in the predictions are in the
corner of the curves where the maximum velocity is approached. The lower value (0.5)
for the added-mass coefficient gives higher predicted values for the bubble rising
velocity. This is expected due to the fact that a lower value for A, means a smaller drag
force. Figure 4.10 shows that a value of 1.0 gives the best prediction for the bubble
acceleration. Although this value is originally for unsteady creeping flow, apparently it
can also be used for unsteady higher Reynolds number flow. It should be noted that
potential flow around a sphere, A, = 1.0 is the exact value. |

4.9 Variation of the Quasi-Steady Drag Force and the Added-Mass Force with
Distance |
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Figure 4.11 shows the variation of the quasi-steady drag force and the added-mass
force with the distance. The quasi-steady force was calculated from equation 2.2.7 and
the added-mass force was calculated from equation 2.2.8. In the calculations of Fyg, the
new form of C,, (equation 4.7.2) was used. The quasi-steady drag force increases very
rapidly with the distance initially and then levels off when the maximum velocity is
reachied. This is because the quasi-steady drag force is proportional to U,'%,

Contrary to the quasi-steady drag force, the added-mass force decreases sharply
with the distance initially and then gradually reaches zero when the maximum velocity
is reached where the bubble acceleration is zero. The difference between the added-mass
forces using different values of A, and the difference between the quasi-steady drag force
using different values of A, are more pronounced in the distance range of approximately
3 to 10 mm. The lower the added-mass coefficient, the lower the added-mass force.
Whereas the lower the added-mass coefficient, the higher the quasi-steady drag force.
This is because low added-mass force (or low added-mass coefficient) causes high bubble
rising velocity and the quasi-steadv drag force is proportional to U,'%.

‘ The total drag force {(Fy; -+ Fp,) varying with distance is shown in figure 4.12.
The main difference between total drag forces obtained by using different values of the
added-mass coefficients occurs in the initial distance range of 0 to 10 mm. The curve for
the total drag force obtained by using the added-mass coefficient 0.5 is named curve
0.5. Similarly, the other two curves are named curve 1 and curve 2. From this plot,
curve 0.5 is below curve 1 before the distance of 3 mm. After this distance, curve 0.5
is above curve 2. Since a lower drag causes a higher bubble acceleration, whereas a
higher drag causes a lower bubble acceleration, the bubble acceleration is higher by using
A,=0.5 than using A,=1, and the difference between the bubble rising velocities
obtained by using these two added-mass coefficients increases with the distance until it
reaches the distance of 3 mm (figure 4.10(d)). After this distance the bubble acceleration
becomes lower by using A,=0.5 than using A,=1, and the difference between the
bubble rising velocities obtained by using these two added-mass coefficients decreases
with the distance. Eventually the bubble accelerations for both cases are zero and the
difference between the bubble rising velocities obtained by using the two values is zero.
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The crossing point at the distance 3 mm is a critical point where the maximum difference
of bubble rising velocities for two different added-mass coefficients 0.5 and 1 occurs.
This distance will be different for other bubble sizes. Similarly, at the distance of 3.7
mm, the maximum difference between the bubble rising velocities obtained by using
A,=0.5 and 2 occurs. At 5.5 mm, the maximum difference between the bubble rising
velocities obtained by using A,=1 and 2 occurs. These three critical points are shown
in the distance range of 3 to 6 mm in figure 4.12. The corresponding maximum velocity
differences for the same size bubble can be found in figure 4.10 (d) at the same 3 critical
points.

4.10 Discussion on Bubble Shape

In all the calculations discussed above, we have assumed that the bubbles are
spherical and an equivalent bubble diameter has been used. The deviation of the bubble
shape from spherical is due to the bubble motion which increases the pressure gradients
surrounding the bubble. The pressure distribution becomes less uniform on the bubble
surface and consequently, the bubble deforms from spherical to ellipsoidal.

The equivalent bubble diameter is calculated as follows. Both the long and the
short axes (D, and D,, where D, is the horizontal dimension and D, is the vertical
dimension) are measured from the photographs and the volume of the ellipsoid is
calculated from equation V = «/6 D, D,%. Thus, the equivalent bubble diameter can be
determined based on the same volume from the equation D, = (6V/2)'°,

Figure 4.13 shows the variation of the bubble aspect ratio (D./D,) with distance
for a bubble of 1.10 mm in diameter. The aspect ratio decreases with increasing distance.
The variation of the equivalent bubble diameter with distance for this bubble is shown
in figure 4.14. Although the aspect ratio decreases by about 15% within the distance
measured, the equivalent bubble diameter changes very little with the distance. In all the
calculations discussed in previous sections, an average value for the equivalent bubble
diameter is used.

4.11 Non-Dimensional Representation of the Data and Correlations
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It would be desirable to correlate all the data for different bubble sizes and arrive
at a unique correlation. An effort was thus made to search for suitable non-dimensional

groups. The details are given in Appendix C. The two non-dimensional groups found are:

U* U, z° - @208 _ %% 1

U, ’ Uz, D, Fr

Figure 4.15 shows the correlziion between the two non-dimensional groups. It can
be seen that there is a very good correlation between the dimensionless bubble rising
velocity and the dimensionless distance for nine different bubble sizes® tested.

The variation of the dimensionless bubble rising velocity with the dimensionless
distance can be predicted from the new C,, form evaluated from the present study based
on the maximum velocity. This can be done for any bubble size. Figure 4.15 shows such
a prediction for a bubble size of D, = 1.10 mm as the solid line.

3The experiments were conducted for five different bubble sizes without measuring the air
temperature. Therefore they were not used for the theoretical predictions in previous sections. They are
used here because temperature does not need to be known to form the two dimensionless groups plotted
here. The five volume-equivalent bubble diameters are 0.59, 0.65, 1.03, 1.12 and 1.23 mm.
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Figure 4.11 Variation of the quasi-steady drag force and the added-mass force with
distance.
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Figure 4.12 Variation of total drag force with distance.
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CHAPTER § CONCLUSIONS

The objectives of this study were to measure bubble rising velocity and to find
a suitable mathematical model to predict the bubble acceleration at Reynolds numbers for
0 to 400.

The bubble shape within the size range studied was essentially spherical, and
rectilinear motion was observed. The bubble rising velocity can be measured very
accurately using LDA. It was observed that the bubble accelerated to a maximum
velocity and then decelerated very slowly with the distance travelled. Smaller bubbles
reached their maximum velocities earlier than larger bubbles. The bubble generating
frequency around one Hz had a negligible effect on bubbie rising velocity.

Several correlations or equations from the literature for the quasi-steady drag
coefficient were used in solving the governing equations to predict the bubble
acceleration. It was found that all the drag coefficients from the literature gave good
predictions for the bubble rising velocity in the initial acceleration. It was possible to use
the previously calculated drag coefficient C, = 14.9Re®” to predict the bubble rising
velocity throughout the whole acceleration period for all the bubble sizes tested.

A new correlation for the (quasi-steady) drag coefficient, C, = 11.91 Re®%, was
obtained from the present study. The drag coefficient was evaluated based on a force
balance on the bubble at the maximum velocity. The use of this new drag coefficient
gave a slightly better prediction than C, = 14.9Re®™ for the bubble rising velocity.

Different values for the added mass coefficient were used in solving the governing
equation. A value of 1.0 gav the best prediction for the bubble rising velocity for all
sizes of bubbles. This zan be expected, because it is the value for unsteady creeping
flow.

Using the dimensionless variables develgped in the present study, a unique
correlation was obtained between the bubble rising velocity and the distance for all the
bubble sizes studied. It coliapsed the data for several different bubble sizes quite well.
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APPENDIX A NOZZLE MAKING

Blanchard and Syzdek (1977) described a technique for manufacturing glass
nozzles and they demonstrated that their nozzles produced bubbles of a specified size.
Their technique was modified for the research reported here.

The nozzles required in this experiment can produce air bubbles of uniform size
in water at a rate of about one per second.The nozzles are made from glass tubes of
about 5.6 mm o.d., and 0.7 mm i.d. by heating and pulling them using an
electromagnetic pulling machine manufactured by Narishige Scientific Instrument
Laboratory, 4-27-9, Minami Karasoyama-cho Setagaya-ku, Tokyo, Japan. There are two
procedures. The first is to pull a glass tube to a fine tip. The second is to polish the tip
section until it is flat and about 90 degrees to the axis of the tip.

The pulling of the tips is done as two steps (see figure A.1). The first step
consists of heating and pulling the tube to a fine taper by the magnetic pulling machine
(a) and (b) and then reheating the tube at a point 45-55mm away from the beginning of
the taper (c) and pulling simultaneously (c). When the tip breaks up from the upper part
(d), the fine tip is made. The magnetic pulling machine was set up at 4 A on the
magnetic meter and 7 A on the current meter.

The cutting of the tips is done by scribing the tips at the position desired with a
disc with a diamond edge under a microscope and applying a bending and pulling force
to break it up. Then the tip was polished on the polishing apparatus by gently holding the
tip end. The polishing apparatus has a rotating disk with 8" in diameter covered by 400
silicon carbide grinding paper and was manufactured by Buehler Ltd., 2120 Greenwood
St., Evanston., llinois, USA.
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Figure A.1 The process of the pulling of the nozzle tip.
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APPENDIX B TESTING THE LASER-DOPPLER ANEMOMETER

B.1 Testing the Opto-Electronic System

The LDA system was calibrated with a mexke! spherical air bubble. The air bubble
was embedded in a rectangular block of transparent silicone elastomer which was placed
on the edge of a motor driven rotating vertical disk. The disk was then put on a top of
the three-dimensional traversing mechanism. The model simulated a rising bubble moving
through the LDA measuring volume. The linear velocity of the model air rising bubble

can be determined by:
V4 =2tNR (B.1.1)

where R(= 0.0964 m) is the distance from the centre of rotation to the centre of the
scattering sphere. N is the disk rotational speed (rps) which can be obtained accurately
by placing the disk with several adjacent holes along a circle between a light and a
detector. The light beam can only go through the disk and reach the detector to produce
signals when the holes pass by. While the disk rotates one rotation, the light beam goes
through the adjacent holes once and produces one set of signals. The time delay between
two sets of signals on the oscilloscope is the time needed for the disk to rotate one cycle.
Its reciprocal is the disk rotational speed.

The model air bubble linear velocity determined from the program LDAVEL
(Varty, 1991b) is V... The relationship between Vg, and V,, (see figure B.1.1) is:

V,=(1.00:0.02)V _+(0.00:0.005) (B.1.2)

pro

which was used for calculating the experimental error bar.

B.2 Testing the Signal-Processing Program

The signal processing program was tested by finding the relationship between
model bubble velocity calculated from the Doppler frequency from equation 3.3.2.1 and
bubble velocity directly determined from the LDAVEL program. The velocity of the
model air bubble was calculated from the equation below:
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JpxA
V = , (B.2.1)
o€ 2xsina

where: f; is the Doppler frequency, which was obtained by counting the cycles and
reading the time per division on the oscilloscope, A (=632.8x10° m) is the wavelength

of the laser beam in vacuum, a (=5.532 deg) is the half of beam intersection angle in
vacuum,

The relationship between V. and V,,, (see figure B.2.1) is:

V5, =(1.00:001)V,, . (B.2.2)

B.3 Bubble Size Measurement Using LDA

B.3.1 Introduction

In this appendix, two theories on which bubble size measurement using LDA is
based are discussed. One theory is called the fringe method of particle sizing, first
proposed by Durst and Zaré (1975). This theory involves the calculation of fringe
spacing which is related to the surface curvature (or radius) of the scattering particle. The
other theory is the Sellens’ theory (Sellens, 1989) which is based on the measurement of
the phase shift between two Doppler signals at different positions in space. It used the
fact that the phase shift is related to the surface curvature of the particle.

Experiments were conducted using both model bubble specimens and real gas
bubbles whose size was measured by photography. Using the above discussed two
theories, the bubble size was calculated. Comparison was made of the bubble size

between the calculated value and the actual or measured size.
B.3.2 Theories

B.3.2.1 The Fringe Method of Particle Sizing
The fringe method of particle sizing has been studied by Durst and co-workers
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(Durst and Zaré, 1975; Durst, 1978,1982). The method was discussed and applied by
Varty (1986).
The fringe spacing (d;) for refraction of laser beams passing through the particle
is given by Varty (1986):
LA(m™-1)

d, =

(B.3.1)

asina cos(-;-ﬁ(m -nh

where (figure B.3.1(a)):

a is the radius of the bubble,

o is the half-angle of beam crossing,

m is the refraction index of the sphere relative to the surrounding medium,

0 is the scattering angle,

A is the wavelength of the laser beam,

L is the distance between the centre of the sphere and the photodetector.
From equation 3.3.2.1, we obtain the bubble crossing velocity U, as:

A
2sine

(B.3.2)

Uy =fp

For a signal with a period of T, = 1/fp, the velocity at which the fringes cross the
detector is:

94 ®.3.3)
T,

V, =
When two detectors are separated by an effective distances S which is measured
perpendicularly to the scattering direction in the vertical plane (figure B.3.1(b)), the time

required for a fringe to move from detector 1 to detector 2 (T,) is computed from the
time delay between signal 1 (from detector 1) and signal 2 (from detector 2):
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-3, (B.3.4)
Vs
Substituting equation B.3.3 into equation B.3.4, yields
T
g -0 (B.3.5)
A

From figure B.3.1(b), we have S=Ssind, , where S, (=5.05 mm in the present case) is
the distance between detectors 1 and 2. 0, is the angle of the photodetector pair turned
relative to the horizontal plane. Therefore,

d - S,sinb, 7,
Y T

3

(B.3.6)

where T, and T, can be obtained from the oscilloscope (T}, can also be calculated from
equation B.3.2 if U, is known). For a given 6, and a given U, (or Tp), only one value
of T, can be measured from the oscilloscope. Once d; is determined from equation B.3.6,
the bubble radius (a) can be calculated from equation B.3.1. For small 6,, we have sind,

= §,, and equation B.3.6 can be written in the following form:

SoTp
df

(B.3.7(a))

@S

With the substitution of d; from equation B.3.1, equation B.3.7(a) can also be written as:

asinacos(%e(m 1), T,

T (B.3.70))
LA(m-1) 6,

B.3.2.2 Sellens’ theory
Sellens’ theory was based on the determination of phase shift between two
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Doppler signals at different points in space to calculate the particle size (Sellens, 1989).
It was derived for an arbitrary geometry, which means that the receiving system does not
have to be symmetric about the plane normal to the plane of the sending system. In the
present study, two detectors were used. The schematic diagram of the two reference
beams passing through a bubble in water is shown in figure B.3.2(a). The illustration of
a reference beant can be seen in figure B.3.2(b). The angles are defined as follows:

a,, is the half angle of the sending beam intersection in water,

B, is the half angle of the receiving beam intersection in water,

By, is the scattering angle for light from beam 1 striking detector 1,

B,, is the scattering angle for light from beam 1 striking detector 2,

B,, is the angle between the sending beam 2 and the scattering beam 1,

B,, is the angle between the sending beam 2 and the scattering beam 2.
Because of the symmetry, B,, = B), = «,, - .,

B, = By = a, + B..

The half-angle of beam crossing in vacuum (o) is 5.532°. The half angle of the sending

beam intersection in the continuous phase (water or silicone) is therefore:

aw=sin"(%sin¢) , (B.3.8)

The half angle of receiving beam intersection in air is:

S, .
- sind, (B.3.9)

B =tan"}( I ).

The half angle of receiving beam intersection in the continuous phase (water or silicone)
is:

Zesin,
B, sinHintan (2 B30

(5
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From Snell’s law (Sellens, 1989), the striking angles A; (i=1,2; j=1.2.) are given:

1 ool
A= —tan-l(L_EZ_) (B.3.11)
12
2

where m is the refraction index of the sphere relative to the surrounding medium.
The difference between the refracted path length and the reference path length is:

sin'y 3 B3.13
AL,=AL,=Dy(nf1-—2)*-ncosA,,) (B.3.13)
m

e 2 1
smA" 3

ALy =ALy,=Dy(n{1-—=)-ncosA,) (B.3.14)
m

where ny (=1) is the refractive index of air and n, is the refractive index of the
continuous phase (1.33 for water, 1.43 for silicone).
The phase shift between the two Doppler signals was given:

A¢12=ZT"(AL,Z+AL2,-AL“-ALH) . (B.3.15)

It can be written in the time delay form in the present case:

i
'I;—D

-T(AL,2+AL2,-AL,,-AL22) . (B.3.16)

Substituting AL; into equation B.3.12, we have:



sin’4 in’d,, *
DDb( A(l 12)2 (1 mz )2) (B,3.l7)

m
n‘:(cosAlz cosd, ) .

When the positions of the sending system and detectors are known, the scattering angle
between any combination of sending beam and receiving detector can be determined by
basic trigonometry. A; can be calculated from equations B.3.11 and B.3.12. As
mentioned, T, and Ty, can be obtained from experiments. Since all the other parameters
in equation B.3.17 are known by now, the bubble diameter (D,) can be calculated from
the equation.

B.3.3 Experimental Apparatus

The experimental apparatus for bubble size measurement was similar to that used
for bubble velocity measurement (see figure B.3.3). When the light passed through the
transmitting optics into the flow column, it was received by a photodetector pair which
was mounted on a rotatable housing. Then the signals from the detectors were transmitted
to two low pass filters and then to a digital storage oscilloscope. From the oscilloscope,
the phase difference or time delay between the two signals can be obtained.

Two different sizes of air bubble model specimens were used for testing the
photodetector pair. They are spherical voids in a transparent silicone elastomer which
were used to simulate an air bubble crossing the laser beams. The model specimen was
mounted on the edge of a motor-driven rotating disk. The description of these models can
be found in the paper by Varty (1986). These two medel specimens with radius of 2.36
mm and 4.36 mm (in radius) have also been used for testing the opto-electronic system
and the signal-processing program. More details about the model specimens can be found
in Appendix B.1 and B.2.

B.3.4 The Testing Results

B.3;4.l<l"l'inge Spacing
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For calibration purposes, the model bubble can be held still and the spacing of the
produced interference fringe can be measured directly from a screen. This was conducted
by placing the specimen on the edge of a rotatable disk and letting two laser beams cross
the centre of the specimen. By adjusting the position of the specimen, the two scattered
beams produce fringes on a screen at the detector location. About 40 fringes was counted
and used to calculate the average fringe spacing. These measured values are compared
with the theoretical values calculated from equation B.3.1 using =0°, L=493mm, as
shown below,

Table B.3.1 Comparison fringe spacing between theory and measurement.

o e omw mmm e eme St GEr EEE SR IR G S S M M G S S R G — — — — — — —— vy W R e e S G e ww — d—
e S e S D —— . T m — ——— ———— e R R A NSNS oSS SN =e

Fringe Spacing(d;) mm

Radius(a) mm Measured Theoretical
2.3610.06 0.85+0.01 0.847+0.02
4,3610.06 0.45510.04 0.45610.01

Therefore, the measured values of d; agree very well with the calculated values.

B.3.4.2 Signal Properties and Bubble Size

~ For a model bubble with radius a = 2.36 mm, the signal period Ty, from the
oscilloscope is 2.28 x 10° s. figure B.3.4 shows the experimental results of T, versus 6,.
Due to the equipment error, when 6, equals to 1 deg., time delay T, is zero. In the two
theories discussed in section B.3.2, when 0, equals to zero, time delay T, is zero.
Therefore, from this plot, we obtain the experimental value of dT,/df, (the slope)
expressed as (dT,/d6)p. The value of T,/0, can also be calculated from the above
mentioned two theories, namely, equation B.3.7(b) and equation B.3.17 (knowing the
model bubble size, a=2.36 mm). The two calculated values are denoted as (dT,/dé,); and
(dT,/d6,)s, because they come from the fringe method of particle sizing and Sellens’
theories, respectively. Comparison of dT,/dd, between the experimental value and the



62
calculated values gives a direct indication about the properties of the signals and

- consequently, the accuracy of the theories.
The bubble size can thus be calculated from either equation B.3.7(b) or equation
B.3.17 from the LDA measurement of (dT,/d6,)e. The respective calculated bubble radii
are denoted as a; (equation B.3.7(b) and a (equation B.3.17). All the above calculated
results are summarized in table B.3.2 :

Table B.3.2 Comparison of signal properties between theories and measurement and
comparison of bubble sizes calculated from two different theories with the
known model bubble size for the radius a=2.36 mm.

e Gmm . Gm S S . G S G e —— — O — — S — — — — — S E— — —— — — A W S S Sum— —
RS —8 " 2 R RN 5 2SR5 A5 B35 5525 BB &

a=2.36 mm Tp =2.28x10%s 0=0° L=452 mm

(dT,/d0,)ex10° (dT,/d6,)px10° (dT,/d0,)sx10° ap ag
(s/rad) (s/rad) (s/rad) (mm) (mm)
13.92 14.95 14.78 2.21 2.22

It can be seen that the two calculated values for dT,/dd, are very close. However, the
percent deviations between the experimental value (dT,/d6); and the calculated values
{(dT,/df,)pand (dT,/d6,)s} are 7.4% and 6.2%, respectively. Similarly, the two calculated
values for bubble radius are very close, but each results in a 6.4% and 5.9% error
compared with the bubble size (@a=2.36 mm).

Similar calculations are conducted for a model bubble size of a=4.36 mm, and
the results are summarized in table B.3.3. |

Table B.3.3 Comparison of signal properties between theories and measurement and
comparison of bubble sizes calculated from two different theories with the
known model bubble size for the radius a=4.36 mm.



a=4.36 mm Tp =0.64x 10°s 6=0° L=452 mm

(dT,/d6)ex10° (dT./d6)x10° (dT,/d6,)sx10° ag ag
(s/rad) (s/rad) (s/rad) (mm) (mm)
7.8 7.7 1.7 441 4.44

Real gas bubbles rising from the flow column were also used for the calibration.
Three bubble sizes were tested, namely, a=0.52 mm, 0.62 mm, 0.625 mm. The
calculated results are shown in table B.3.4.

Table B.3.4 Comparison of signal properties between theories and measurement and
comparison of bubble sizes calculated from two different theories with the
photographically measured bubble sizes.

(a) a==0.52 mm

ST Tt S SR ME ey emm T Sme EWe SE YD GEE SV L T . S AP S Mt G D G S S M . Gmm n T WD e G G S G — o
- WS Sy S N G — — — —n e e S Y . e T e T e B - e e T N D S =

=0.52 mm Tp = 1.30x 10°s 6=0° L=452 mm

(dT,/d0)ex10° (dT,/d6,)px10° (dT,/d8)x10° ap  a
(s/rad) (s/rad) (s/rad) (mm) (mm)

1.95 2.68 2.58 0.38 0.39

(b) 0.625 mm

a=0.625 mm T, = 1.18 x 105s 6=0° L=452 mm

(dT./d6)ex10° (dT,/d6,)px10° (dT,/d6)sx10° a 2
(s/rad) (s/rad) (s/rad) (mm) (mm)
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1.6 2.86 2.83 0.350 0.353
(¢) a=0.62 mm
@ Lelmaws 00 Lamem
T
(s/rad) (s/rad) (s/rad) (mm) (mm)
2.58 3.29 3.26 0.486 0.490

It can be seen that in all the cases the two calculated values for dT,/d6, are very close.
However, the deviations between the experimental value (dT,/dd,); and the calculated
values (dT,/dd,); and (dT,/df,)s are quite larger. Simi'arly, the two calculated values for
bubble radius are close. However, there is a larger difference between the calculated
value and the measured bubble size by photography. In view of this apparent error of as
much as 44.0%, this method was not used for bubble size measurement.

The discrepancy in bubble size measurement may be due to the fact that the gas
bubble size is very small and the bubble is not able to scatter enough light, because a
smaller error is involved in the case of model bubble calibration, where the bubble sizes
are relatively larger.
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Figure B.1.1 Variation of the mode! air bubble rising velocity (calculated from the

rotating speed of the disk) with the model air bubble rising velocity
(measured from the LDAVEL program).
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Figure B.2.1 Variation of the model air bubble rising velocity (calculated from the
signal frequency) with the model air bubble rising velocity (measured
from the LDAVEL program).
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Figure B.3.4 Variation of time delay with photodiode orientation {(turning angle).
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APPENDIX C DETERMINATION OF THE DIMENSIONLESS GROUPS

Two dimensionless groups were used for correlating experimental data in Chapter
4. One dimensionless group (z-2,,)8/Uy> was derived by Dr.Varty in one of our
meetings. It is based on the analytic solution of spherical-bubble motion using C,=K/Re
derived by Varty (1991a), which can be written as:

-2, K2 K
Gak | KU, +(p-p)Vg 1n(1-——‘—709 (C.1)
_(pb+_;2_)_)v (p-p)Ve

where K,=K=xuD,/8.
The terminal velocity of a spherica! bubble can be derived from equation 4.7.1
using Cp,=K/Re:

(p-p)Ve

U. = (C.2)
bT K,
and equation C.2 can 2iso be written as:
(p-p)V8 = KUy . (C.3)
Substituting equation C.3 into equation C.1, we obtain:
@,z )K: U,
—_ - Klub+KlUb1ln(l_?]'—) . (C.4)
_(pb+_p.)y bT
2
Substituting K, from equation C.3 and rearranging yields:
22, (P-pp8 U, U,
= g d-2E) (C.5)
T bT

UZT (P;{"%)

For p > > p,, equation C.5 becomes:
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- U U
2(zb z:o)g - b n(1-—2
Upr Upr bT

(C.6)

therefore, U,/Uyy and (z,-z,,)8/U,r” appear to be relevant dimensionless groups. (z,-
2,0)8/Uyr? can also be written as p(z,-z,.)/(ApD,Fr) which again can be approximated as
(z5-240)/ (D, Fr) (in the present study, D, was used because the bubble shapes are close to
spherical), where Fr is the Froude number which was defined in section 2.1, based on
Uyr. Alternatively, (z,-2,,)g/Uy;” could be described as the inverse Froude number based
on Uy and (z,-z,,).



