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Abstract

We investigate theoretically the impact of introducing convective dissolution

along the interface of a (dense) miscible gravity current propagating up- and

downdip along a permeability jump in a saturated, layered porous medium.

Emphasis is placed on three different dissolution scenarios, namely constant

dissolution, dissolution with simultaneous shutdown and dissolution with se-

quential shutdown. The last two modes are book-end opposite cases that

make different assumptions concerning the mixing that arises along the gravity

current-ambient interface. In the case of simultaneous shutdown, all portions

of the interface experience the same rate of convective dissolution. Thus the

point of shutdown, the instant at which the rate of dissolution begins to de-

crease, is everywhere the same. Simultaneous shutdown is associated with a

rapid mixing of ambient fluid contaminated through dissolution in both the

horizontal and vertical directions. By contrast, and in sequential shutdown,

we neglect horizontal mixing in the ambient such that, in general, the rate of

dissolution depends on position. In all three dissolution scenarios, we apply

a sharp interface model and consider that the permeability jump separating

the upper and lower layer of the porous medium makes an angle θ to the

horizontal.

To gauge the effectiveness of dissolution as a long-term trapping mecha-

nism, e.g. for supercritical CO2 or acid-gas, we consider the temporal evolution

of the storage efficiency and examine the impact of changing the dissolution

strength, the (possibly infinite) time, t1, for the onset of shutdown and, for
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t1 < ∞, the e-folding decay time, t2, which prescribes the rate at which disso-

lution terminates. The along-jump distances traveled by the up- and downdip

gravity currents fall as the dissolution strength increases. This observation has

special importance when characterizing gravity current intermediate run-out

lengths, defined (for not small t1) as the along-jump propagation distances

where there exists a balance between the fluid supplied to the gravity cur-

rent vs. that lost by a combination of dissolution and basal draining. The

run-out lengths so defined are classified as intermediate because, for t > t1,

shutdown decreases the rate of dissolution. The associated readjustment leads

to a remobilization of previously-arrested gravity current fronts and the sub-

sequent (though not indefinite) elongation of these along-jump flows. In turn,

the distances traveled between intermediate and terminal run-out are shown

to depend on the dissolution strength and t1. Contrasting sequential vs. si-

multaneous dissolution models, the former is associated with a high degree of

injectate retention in the upper layer and is therefore associated with com-

paratively large storage efficiencies, E∗
h. A more general comparison between

dissolution models reveals regions of the parameter space where horizontal

mixing in the ambient fluid plays a dynamically significant vs. minor role.
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Chapter 1

Introduction

1.1 Motivation

The level of carbon dioxide (CO2) in the air has risen on average from 315 ppm

measured in 1960 to 408.53 ppm measured today and is estimated to rise to 450

ppm by 2040. From data gathered from air trapped in ice cores in Antarctica,

it was reported that the lowest carbon dioxide concentration 650,000 years and

750,000 years before present was 170 ppm (Lüthi et al. 2008). In 2018 alone, it

was estimated that fossil-fuel related emissions of CO2 hit a record high 37.1

billion metric tons. To make matters worse, the average global temperature

at the Earth’s surface albeit with some variation has closely followed this

rising trend of average CO2 concentration: varying from roughly 9◦C colder

than present day readings to 6◦C hotter (Lüthi et al. 2008). Following suit

with rising global temperatures, sea levels are also projected to increase and

this in conjunction with the emission of unsustainable amounts of CO2 to

the atmosphere, is leading towards catastrophe. However, the rising trend

of temperature shows greater fluctuations than CO2 concentrations and has

generally increased by 0.8◦C in the last 150 years (Huppert and Neufeld 2014).

The atmosphere’s most abundant of gases namely nitrogen and oxygen do

not contribute to global warming. However, this cannot be said in the cases

of water vapor, methane and CO2, which combined constitute the majority
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of the greenhouse effect (Huppert and Neufeld 2014). Although methane is

70 times more potent per unit mass than CO2 in the absorption of infrared

radiation that is reflected from the Earth’s surface, its effectiveness declines

quickly. Currently, the largest sources of methane pollution to the atmosphere

is through wetlands and cattle (Khalil and Shearer 2000). However, the extent

of methane emissions (0.6 gigatons per year) is small when faced with the 34.81

gigatons per year annual addition of CO2 from anthropogenic sources (Tiseo

n.d.) measured in 2020.

Globally, 25% of the world’s energy use is derived from burning of the

conventional fossil fuels like natural gas and coal in stationary sources like

power plants with activities from industrial processes and motorized transport

contributing 20% and 13%, respectively (Huppert and Neufeld 2014). These

activities when combined release a tremendous amount of pollutant gases like

CO2 into the atmosphere. Any additional contribution of CO2 into the atmo-

sphere could result in severe damage to the atmosphere.

The residence time, τ of CO2 in the atmosphere is stated in the initial

1990 IPCC Climate report to be in the range of 50 to 200 years (Essenhigh

2009). Given this large value of τ , it is generally concluded among many

researchers that CO2 emissions from burning fossil fuels should be curbed.

Recognizing that there are limits (economic and otherwise) to the amount

of reduction, remediation efforts are also be considered. An example of one

such remediation effort is geoengineering. This is defined as the intentional

large scale manipulation of the Earth’s climate, aimed at maintaining a desired

environmental condition against changes made by perturbations, either natural

or from human activities (Keith 2000). Extreme applications of geoengineering

to limit additional warming of the Earth’s atmosphere include the installation

of space mirrors to reflect and scatter incoming solar radiation. However,

these approaches are extremely controversial and might result in irrevocable
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Figure 1.1: Overview of residual and convective dissolution trapping in the
geological sequestration of CO2 and the associated fluid mechananics namely:
buoyancy driven spreading and dissolution of CO2 in aquifer brine

damage to the Earth (Keith 2000). Further, the definition of geoengineering is

still ambiguous and the solutions that include low-mass space-based scattering

systems for altering the planetary albedo (Keith 2000) and the addition of

sulfur dixoide to the Earth’s atmosphere does not address the need for large

scale CO2 mitigation.

A less controversial (though not yet fully accepted) solution is to sequester

or capture the CO2 generated e.g. by stationary sources. Indeed, the 2018

IPCC report concludes that, approximately 5 gigatons of CO2 should be se-

questered using Carbon Capture and Storage (CCS) technology in order to cap

the rate of global temperature rise to 1.5◦C/year (Allen et al. 2018). Possible

injection sites include depleted oil and gas reservoirs, empty coal seams and
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deep saline aquifers. Of the three, saline aquifers have the most voluminous

storage capacities (Huppert and Neufeld 2014).

When the CO2 is injected below a depth of 800 m, it becomes supercritical

with an average density of about 600 kg/m3. In this state, CO2 behaves like a

liquid and thus its dynamics can be modelled with fluid mechanics (Huppert

and Neufeld 2014). Nordbotten et al. (2005) examined the characteristics of

brine and supercritical CO2 in aquifers where surface temperatures vary from

10 to 20◦C, with temperature gradients that fall in the range 25 to 45◦C/km.

In shallow aquifers located at depths of 1000 m below sea level, the sc-CO2

density lies in the range 266 to 714 kg m−3. Correspondingly the density of

brine, which a function of the saline concentration in addition to temperature,

lies in the range 998 to 1230 kg m−3. In contrast, deep aquifers, envisaged at

3000 m below sea level have a sc-CO2 density between 470 to 733 kg m−3 and

brine density in the range 945 to 1202 kg m−3. Additionally, the viscosity of

sc-CO2 varies between 0.023 to 0.0611 mPa·s while the viscosity of brine lies in

the range of 0.195 to 1.58 mPa·s. This leads to a mobility ratio of 0.026-0.22

between the sc-CO2 and brine.

This section will summarise the behavior of CO2 at supercritical states:

namely flow models that capture the essential dynamics, the containment

and leakage mechanisms of CO2 and the trapping mechanisms (residual trap-

ping, minearilization, and convective dissolution) exploited to keep the CO2

sequestered below ground. The associated fluid mechanics are illustrated in

fig. 1.1. With brine densities ranging between 945 and 1,202 kg/m3 at these

depths where temperature gradients can reach a maximum value of 45◦Ckm−1

(Huppert and Neufeld 2014), the density contrast between sequestered CO2

and ambient brine is large and this gives rise to buoyant plumes of injected

CO2 which must be arrested by impermeable cap rocks and the aforementioned

mechanisms of trapping.
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Residual trapping which results from capillary snap-off of the CO2 phase

is parameterized through multiphase flow models.. These models incorporate

the effect of surface tension by considering changes in relative permeability of

both phases and the effective porosity (Huppert and Neufeld 2014). Capillary

forces are expressed using the Bond number, B = (∆ρgLH)/pe where LH is

the unconfined aquifer length scale and pe is the capillary pressure for CO2

breakthrough. To capture the combined effect of permeability ratio, injection

pressure and temperature, the gravity number, Ngv = (kvL∆ρg)/(Huµbrine)

is used (Ide et al. 2007). Here u is the average Darcy velocity, L is the de-

fined as the length of the aquifer, H is the height of the aquifer, µbrine is the

dynamic viscosity of the aquifer brine, and ∆ρ is the density difference. An-

alytical studies (Kochina et al. 1983) of gravity currents comprised of CO2

through brine saturated strata used similarity analysis to model the evolution

of the volume and the nose extent, xN ∝ tβ where the exponent is obtained

by resolving an eigenvalue problem. The simulation results (see Figure 3 in

Ide et al. (2007)) show that the addition of capillary pressure to flow models

of CO2 in porous aquifers and the presence of a finite aquifer inclination re-

sults in a higher fraction of CO2 trapped. The latter is explained by the fact

that residual trapping is driven by migration which exposes larger areas for

trapping of saturated CO2. Furthermore, a downward trend of injected gas

trapped is obtained for high values of Ngv. The results further reveal that

brine imbibition immediately after injection of CO2 considerably increased

the amount of trapping. Based on these studies, an advanced approach (Qi

et al. 2009) to increase storage efficiency involves injecting chase brine imme-

diately after the injection of CO2. This leaves over 90% of the CO2 trapped as

immobile pore scale droplets. In addition to a reduced need of constant mon-

itoring, the method does not depend on cap to contain CO2 and the presence

of favourable mobility ratios, defined as the ratio of the viscosity of injected
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fluid to displaced fluid enables a more uniform sweep of the aquifer leading to

higher storage efficiencies.

The other form of curbing atmospheric emissions highlighted in figure 1.1

is through convective dissolution, which is a prospective long-term trapping

mechanism of sequestering CO2 in saline aquifers since the CO2 once dissolved

remains permanently trapped. The modelling problem is nuanced since it

involves the interaction of three phases namely: ambient fluid phase, super-

critical CO2 phase and the porous media phase. The supercritical CO2 is

less dense than the ambient brine and so rises as a buoyant plume. In addi-

tion, CO2 partially dissolves in the brine and this might trigger convective or

fingering instabilities. The instabilities are triggered when the porous media

Rayleigh number of the boundary layer Rabl = Raδ/H, exceeds a critical value,

Rac (Huppert and Neufeld 2014). Here Ra = (g∆ρcKH)/(µwϕD) where K

is the permeability of the medium, H is the aquifer depth, ϕ is the porosity,

D is the diffusivity of CO2 in water and ∆ρc is the density difference between

the ambient and CO2-saturated brine. Fingers may appear anywhere between

10 days and 2000 years (Huppert and Neufeld 2014). The Nusselt number

(Nu = FcH/ϕD∆C), the non-dimensional equivalent of convective flux Fc, is

used to evaluate the efficacy of the fingers in removing CO2 from the gravity

current. Here ∆C is the difference in concentration between CO2-staurated

water and the ambient.

Various pilot and full scale studies into the geological sequestration of CO2

have already been started and have shown appreciable progress over the years.

Perhaps the best studied CO2 injection site is the Sleipner project located in

the North Sea. Here, supercritical CO2 (sc-CO2) has been sequestered at a

depth of 1 km below the sea bed at a rate of 1 Mt/year since 1996 (Huppert

and Neufeld 2014). Other notable projects include the In Salaah injection site

in Algeria and an injection project in Weyburn, Canada where the CO2 is
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used for enhanced oil recovery (EOR). With large scale sequestration of CO2

into subsurface reservoirs and brine filled aquifers, the geomechanical response

of reservoirs to supercritical CO2 needs be considered. The large volumes of

fluid injected into the subsurface at critically stressed regions of the Earth’s

crust can induce seismic activity (Zoback and Gorelick 2012). Key concerns

from a fluid dynamics standpoint include the type of leakage associated with

seismicity, how the pressure field varies with reservoir properties and geomet-

ric heterogeneities and the possibility of monitoring and controlling aquifer

pressure (Huppert and Neufeld 2014). For instance, interferometric synthetic

aperture radar (InSAR) data from three injection wells at the previously men-

tioned In Salaah CO2 sequestration site in Algeria show an average of 1.5 cm of

vertical uplift of the desert floor (Rinaldi et al. 2015). Besides the geomechan-

ical ramifications, the issue of cost also needs to be considered. The cost of

trapping CO2 beneath the subsurface is influenced largely by the capture and

storage cost. For instance, in the design of the CO2 storage system employing

residual trapping using chase brine injection (Qi et al. 2009), it is approxi-

mated that 4 × 10−7 kg of CO2 is produced when 1 kg of brine is injected

which is considerably less than the amount of CO2 trapped (< 0.0001%) (Qi

et al. 2009). Capital costs largely include the setting up of wells, pumps, trans-

port systems and injection parts. Moreover, the associated sunk costs are but

a small fraction of the entire project cost (< 3%) (Leonenko and Keith 2008).

For these and other projects, besides the financial concerns associated with

initial start-up, migration (particularly vertical migration) poses a risk that

injectate may return to the surface. Within a heterogeneous formation or a

reservoir already punctured by multiple injection and production wells, there

exists some likelihood that leakage might occur through isolated fissures, cap

rock edges, or old, poorly-sealed boreholes. As the sc-CO2 spreads by buoyancy

over long lateral distances, it continuously samples the underside of the cap
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rock for possible leakage pathways. To this end, a variety of studies have

been conducted considering confined (Nordbotten and Celia 2006; Zhao and

Ioannidis 2007) vs. unconfined layers (Pritchard 2007). In the latter case

especially, the rate of leakage increases with the gravity current thickness.

Thus, more leakage is associated with lower overall storage efficiencies though

the precise details are obviously a strong function of the geometric properties

of the formation.

The other possibility is that injectate leakage is distributed. In the large

Bond number limit, this problem has been investigated by, among others,

Goda and Sato (2011), Sahu and Flynn (2015) and Bharath et al. (2020).

Goda and Sato (2011) and Bharath et al. (2020) assume that high- and low-

permeability layers are infinite in vertical extent. Key to their analysis is

to quantify the run-out length, defined as the terminal horizontal distance

travelled by the gravity current. When run-out is achieved, the influx to the

gravity current balances draining via leakage. Run-out lengths can also be

defined when the depth of the low permeability layer is finite. Here, however,

run-out is later followed by a remobilization of the (primary) gravity current

as a result of the formation and propagation of secondary gravity currents

along the (impermeable) boundaries characterizing the low permeability layer

(Bharath and Flynn 2021). In the present study, we examine a complementary

problem and make the high- rather than the low-permeability layer of finite

thickness. Making this change does not directly alter the draining dynamics

but it is crucially important when one considers the additional influence of

convective dissolution. To this end, we demonstrate below that the variation of

convective dissolution with time, t, provides a second, independent mechanism

by which a previously arrested gravity current front may become remobilized.

Convective dissolution was studied experimentally by MacMinn and Juanes

(2013) in a sloping Hele Shaw cell with an impermeable upper boundary. They
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found that the updip migration of the buoyant injectate was halted as a re-

sult of convective dissolution and the formation and vertical propagation of

(comparatively dense) fingers resulting from the mixing of the injectate and

the ambient fluid. Szulczewski et al. (2013) extended MacMinn and Juanes

(2013) by categorizing the different dissolution regimes of which they counted

seven, i.e. early diffusion, fingering, shutdown/fingering, shutdown/slumping,

shutdown/Taylor slumping, Taylor slumping, and finally late diffusion. In the

fingering stage, the rate of convective dissolution is constant because the fin-

gers descend at a constant speed. As the fingers strike the bottom boundary,

a layer of contaminated fluid begins to accumulate. Eventually, the thickness

of this layer becomes large enough to arrest convective dissolution. Therefore,

and as the ambient becomes saturated with contaminated fluid, the rate of

dissolution asymptotically reaches zero. In the long term the effectiveness of

the dissolution depends on the depth of the lower layer of the aquifer. If the

aquifer depth is small, shutdown will initiate early on and the fraction of the

injectate that is dissolved will diminish quickly. This will limit the long-term

storage efficiency which will drop quickly on account of the dissolution being

switched off. Hence by integrating various regimes of dissolution, the iden-

tification and selection of favourable locations for sequestering CO2 can be

accomplished.

Despite the inherent complexity of the different regimes of convective disso-

lution, the overall process can be parameterized according to figure 1 (MacMinn

et al. 2011). In this figure, t0 signifies a delay time during which are estab-

lished the hydrodynamic instabilities that feed finger growth. The constant

dissolution regime characterized by the time t1 corresponds to fingers falling

at a constant velocity. When t = t0 + t1, dissolution begins to slow because

the fingers make contact with an impermeable boundary. Thereafter, fluid

discharged by the fingers ascends as a curtain of dissolved fluid, depressing
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Decay time, ✞☛
✆

✞�
✆

✁✂
✆

✞✄
✆ = Time for which 

the dissolution rate is 

constant

✞�
✆ = Delay time for 

onset of dissolution

Figure 1.2: Time variation of the convective dissolution rate, Qd; Qd is defined
mathematically by (3.20).

the dissolution rate. The time t = t0 + t1 represents the onset of the so-called

shutdown regime, a regime during which the rate of dissolution decreases with

an e-folding time t2.

1.2 Thesis Objectives

In light of all of the above, we propose to explore, theoretically, the compli-

cated interplay between injectate up- vs. downdip spreading, draining and

dissolution. Thereby, our work simultaneously extends MacMinn and Juanes

(2013) (spreading and dissolution but no draining) and Bharath et al. (2020)

(spreading and draining but no dissolution). In so doing, we shall refer to

the flow depicted schematically in figure 1.3, which situates a (discrete) source

some vertical distance away from an inclined permeability jump. Here, and

in contrast to Goda and Sato (2011), MacMinn and Juanes (2013) and Szul-

czewski et al. (2013), we assume a dense rather than a buoyant injectate.

This choice is made for mathematical convenience and also to make our anal-
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Figure 1.3: [Color online] Schematic showing the spatial-temporal evolution
of discharged plume fluid in the up- and downdip directions along the perme-
ability jump. Also illustrated are dissolution and draining. Here, the vertical
dimension of the up- and downdip gravity currents has been exaggerated for
emphasis and clarity.

ysis consistent with select seminal works on gravity currents in porous media

e.g. Huppert and Woods (1995), Vella and Huppert (2006), and Lyle et al.

(2005). Note, however, that the choice of orientation is immaterial provided

that density contrasts are small so that the Boussinesq approximation applies.

In performing our analysis, reference will be made to two different shut-

down modes, one local and the other global. In the latter case, we assume

that contaminated fluid propagates with relative ease through the ambient in

the upper layer. Therefore, in the space above the up- and downdip gravity

currents, concentration gradients are relatively weak (see figure 1 of Bolster

(2014)) suggesting that all points along the exposed upper surface of the grav-

ity currents begin to experience shutdown at the same time. We refer to this

scenario as simultaneous shutdown. At the bookend opposite extreme is a case

where the lateral motion of contaminated fluid is slow. Here, different portions

of the gravity current surface experience contaminated fluid having different
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concentrations of the injectate. Shutdown is therefore experienced at differ-

ent times with those regions proximal to the source shutting down well before

those regions further away from the source. This latter scenario is referred to

as the sequential shutdown regime. Neither of the simultaneous or sequential

descriptions is strictly correct. However, the solutions afforded by these two

limiting cases must bound the true solution. In regions where the bound is

tight we therefore enjoy good insights into the true nature of the flow.

1.3 Thesis Outline

In this thesis, we utilize theory to address the knowledge gaps outlined in

section 1.2. The rest of this thesis is organized as follows. In chapter 3, we

incorporate into the theoretical equations of the flow just described, a means

of superposing convective dissolution (including the possibility of simultane-

ous or sequential shutdown) and predict both the transient and steady state

solutions as the gravity current migrates along the inclined permeability jump.

In section 4.1, we study the effect of the dissolution strength assuming con-

stant dissolution, and consider the significance of a deep upper layer on the

storage and runout. Here, a prolonged injection period is considered with a

constant flux output. The key aspects such as the (i) the influence of dis-

solution strength on the dynamics of the gravity current in the upper layer,

(ii) priority between up- and downdip asymmetry (iii) storage as a function

of dissolution strength and inclination angle of the permeability jump (iv) dif-

ferences between up- vs. downdip runout lengths due to asymmetric volume

fractions are the highlights of this section.

Sections 4.2 and 4.3 respectively consider simultaneous and sequential shut-

down and examine the influence of e.g. t1, t2 and the permeability jump angle

on the dynamics of the flow. Specifically, we quantify the time taken to reach

95% of the runout length in the t1 − θ parameter space and likewise in the
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domain of t2 − θ.

In chapter 5, we extend the study of gravity current in shallow layers whilst

having a steady source and predict the dynamics for short term injection in

shallow layers. For this, we modify the source influx boundary conditions used

in chapter 3 and explore the transient dynamics of the gravity current with

particular emphasis on the post-injection phase. Model results that calculate

the time taken for the gravity current to fully dissppear from the upper layer

and the maximum distance traversed before source influx curtailment are then

displayed as functions of t1 and θ. The pattern of flow behavior for unsteady

sources forms a key observation of this study

Building on the results from chapter 5, we investigate in chapter 6 the re-

gions of the parameter space considered where the solutions from simulatneous

vs. sequential shutdown are similar and where they are radically different. In

doing so, the regions observed allow us to target conditions for similar flow

dynamics, thus enabling us to uncover the true nature of the flow from the

two dissimilar regimes of shutdown.

In chapter 7, we summarize key conclusions and present avenues for future

work.

Several parts of this thesis have been submitted for as Khan, M.I, K.S.

Bharath & Flynn, M.R. The effect of buoyant convection on the buoyancy-

driven spreading band draining of porous media gravity currents along a per-

meability jump. (submitted to Transport in Porous Media) and is currently

under review. The results have been presented in the IGR Symposium organ-

ised by the Department of Physics at the University of Alberta on November

2020. Additionally, parts of this thesis have been presented in the Interpore

2020 conference held online.
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Chapter 2

Review of porous media gravity
currents

2.1 Flow along an impermeable bottom bound-

ary

In outlining the objectives for this thesis, reference was made to the compli-

cated interplay between dissolution, advection and draining. While it remains

to present and discuss the associated governing equations, it is instructive to

consider, for illustrative purposes, the less cumbersome problem of a grav-

ity current that propagates through a porous medium without experiencing

either draining or dissolution. Once the associated dynamics are well under-

stood, the business of adding additional terms to account for other effects

becomes more straightforward. To this end, this chapter presents an analy-

sis of a porous media gravity current traveling down an impermeable, sloping

boundary. Throughout, we follow the derivation presented by Huppert and

Woods (1995) and therefore consider a gravity current fed by an isolated source

located along the boundary – see fig. 2.1.

Our analysis begins by considering the mass continuity equation, which is

written as:

∇ · u = 0 (2.1)

Darcy’s law is then used to obtain the equation of motion along the slope
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Figure 2.1: Schematic of a gravity current propagating through a sloping
porous layer with an impermeable bottom boundary.

(Bear 1988; Phillips 1991) which is given as:

u = −k(ϕ)

µ
[∇P + ρg(− sin θ, cos θ)] (2.2)

Here, µ is the dynamic viscosity, g is the acceleration due to gravity and ρ is

the density of the gravity current, and finally k is defined as the permeability

which is a function of the porosity, ϕ, The porosity is the ability of a medium

to transmit fluid. k also depends on the interconnection of the pores and on

the average grain size.

The pressure variation within the gravity current fluid is hydrostatic in

nature and is thus given by:

P (x, y, t) = −g cos θ∆ρy + p(x, t) (2.3)

where ρ is the excess density of the gravity current over the surrounding am-

bient. In addition, the hydrostatic pressure, p(x, t) along the slope is defined

as:

p(x, t) = (ρ−∆ρ)gx sin θ +∆ρgh(x, t) cos θ + P1 (2.4)
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Here, P1 is a constant. Using Darcy’s law from 2.2, the alongslope velocity as

derived by Huppert and Woods (1995) is given as:

u(x, y, t) = −k(ϕ)

µ
∆ρg

(︃
∂h

∂x
cos θ − sin θ

)︃
(2.5)

The depth averaged continuity equation (Huppert and Woods 1995) for the

flow is given as follows:

∂

∂x

[︂ ∫︂ h(x,t)

0

u(x, y, t) dy
]︂
= −ϕ(h)

∂h

∂t
(2.6)

Inserting eq. (2.5) into eq. (2.6), we get the integral form of the governing

equation to solve for the gravity current thickness:

g∆ρ

µ

∂

∂x

[︂(︂∂h
∂x

cos θ − sin θ
)︂∫︂ h(x,t)

0

k(ϕ) dy
]︂
= ϕ(h)

∂h

∂t
(2.7)

which is subject to the following global mass balance:

∫︂ L(t)

0

dx
(︂∫︂ h(x,t)

0

ϕ(y) dy
)︂
=

∫︂ t

0

q(t′) dt′ = V (t) (2.8)

Here L is the horizontal extent of the gravity current, V (t) is the volume of the

dense fluid at time t and q(t) is the source volume flux. k, which is a function

of the porosity can typically be expressed as:

k(ϕ) = k0ϕ
n (2.9)

where n lies between 2 and 3 in natural rocks (Phillips 1991). Also, k0 which

scales as the square of the mean grain diameter is determined experimentally

and is found from the Kozeny-Carman equation, which is given as

ki,0 =
d2i,0

180(1− ϕ)2
(2.10)

(Dullien 2012). Here i = 1, 2 and di,0 is the mean grain diameter. Another

predictive model for permeability is presented in Rumpf and Gupte (1975)

which is given as follows:
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k =
ϕ5.5d2

5.6
(2.11)

Huppert and Woods (1995) made the assumption that the porosity varies

linearly in a direction perpendicular to the boundary such that:

ϕ = ϕ0 + ϕ1y (2.12)

Inserting this last expression in (2.7) with ϕ0 being non-zero, we get:

R
∂

∂x

[︂(︂(︂
1 +

ϕ1h

ϕ0

)︂n+1

− 1
)︂(︂∂h

∂x
cos θ − sin θ

)︂]︂
=

(︂
1 +

ϕ1h

ϕ0

)︂∂h
∂x

(2.13)

Here, R = ϕn
0∆ρgk0/[ϕ1(n + 1)µ]. Likewise the global mass conservation

equation can be reduced to:∫︂ L(t)

0

(ϕ0 + ϕ1h)
2 − ϕ2

0

2ϕ1

dx = Q(t) (2.14)

As the gravity current migrates outward on the impermeable bottom bound-

ary, it becomes long and thin and thus the ration ϕ1h/ϕ0 becomes negligible,

implying that the porosity across the current is constant. Thereafter, Huppert

and Woods (1995) derived a non-linear advection equation to calculate the

temporal evolution of the gravity height, h(x, t) while assuming that the up-

per layer is sufficiently deep that any secondary motion induced by the current

is negligible.

ϕ
∂h

∂t
=

kg′

ν

[︂ ∂

∂x

(︂
h
∂h

∂x

)︂
cos θ − ∂h

∂x
sin θ

]︂
(2.15)

Here, the reduced gravity, g′ is defined as g′ = g∆ρ/ρ. Equation 2.15 shows

that as the gravity current elongates, h gets progressively smaller, causing the

gravity current to become long and thin. Also, the equation is based on the

assumption that the interface between the gravity current and the ambient

is sharp. Similar equations for an axisymmetric gravity current were later

derived by Lyle et al. (2005), where the authors demonstrated that in the case

of a constant flux source, the areal extent of the gravity current is directly
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proportional to t2/3 for a two dimensional rectangular geometry while it varies

as t1/2 for a an axisymmetric one.

2.2 Flow along a permeable bottom boundary

By making the bottom boundary permeable to source fluid, leakage or drainage

through the bottom boundary takes place. The source fluid is now divided

between advection which takes places along the top surface of the permeable

boundary vs. leakage that occurs across the boundary. From early studies that

were conducted in this configuration, drainage was modelled as either a point

sink or fissure (Farcas and Woods 2013a) or as a local line sink (Neufeld et al.

2009; Neufeld et al. 2011). Distributed leakage was modelled by Pritchard et

al. (2001) and Neufeld and Huppert (2009),Woods and Farcas (2009),Yu et al.

(2017),Farcas and Woods (2013b) and Bharath et al. (2020). By including

leakage, the governing equation for the gravity current thickness, h, becomes

ϕ
∂h

∂t
=

kg′

ν

[︂ ∂

∂x

(︂
h
∂h

∂x

)︂
cos θ − ∂h

∂x
sin θ

]︂
− wdrain (2.16)

Here, wdrain is the draining velocity of the source fluid leaking into the lower

layer of the model configuration. In the present study, the primary focal point

of leakage through the draining boundary will be that of distributed leakage.

This form of leakage was investigated in early work by Pritchard et al. (2001)

along a horizontal permeability jump, where the permeability of the draining

layer is considered to be very small in comparison to the permeability of the

upper layer. Additionally the depth of the draining layer is taken to be small

as well. Hence the draining velocity is given as follows:

wdrain =
k2g

′

ν

(︂h
b

)︂
(2.17)

Here, b is defined as the depth of the draining layer. Model results from

Pritchard et al. (2001) predict that as the influx to the gravity current bal-
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ances the draining at its base in its steady state, a finite runout distance

is reached. In work the followed, Goda and Sato (2011) also considered a

horizontal permeability jump, modelled a deep draining layer of semi-infinite

thickness in contrast to a shallow layer. In their work, the authors derived an

equation for the draining layer velocity which is as follows:

wdrain =
k2g

′

ν

(︂
1 +

h

l

)︂
(2.18)

where l is defined as the transient draining layer depth. In the long term limit

as l becomes very large such that h/l ≪ 1, wdrain → k2g
′/ν. This is termed

as the steady state draining velocity and is similar to the predictions made by

Pritchard et al. (2001). After reaching a steady state draining velocity, the

gravity current migrating along the horizontal permeable boundary comes to

a halt as the rate of basal outlfux matches the source influx and the gravity

current at this point has been said to traverse a finite runout length. Both

Pritchard et al. (2001) and Goda and Sato (2011) consider a zero entrainment

condition in the draining fluid, which leads to the gravity current and the

draining fluid having the same value for the reduced gravity.

Simulations involving inclinded boundaries were conducted by Vella and

Huppert (2006) and De Loubens and Ramakrishnan (2011). In theses studies,

the boundary is considered to be impermeable. In contrast, recent investiga-

tions considering inclined permeability jumps with permeable lower boundaries

have been carried out by Bharath et al. (2020) and Bharath and Flynn (2021)

in which the draining layer is taken to be deep in vertical extent. In current

study, we limit our focus to deep draining layers of semi infinite thickness as op-

posed to a thin, permeable draining boundary as in Woods and Farcas (2009)

and Farcas and Woods (2009), where the authors have additionally considered

capillary entry pressure and the effect of drainage on capillary retention of

CO2 in a layered permeable rock.
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2.3 Layered Porous Formations

The study of density driven flows in porous media with a constant perme-

ability has been investigated by numerous researchers (Sahu and Flynn 2015;

Vella and Huppert 2006; Lyle et al. 2005) in the past. However, this is an

idealized scenario which differs in large extents when compared to the actual

configurations found within porous rocks. In a realistic scenario, there ex-

its multiple layers of different permeabilities within geological formations that

can be modelled theoretically by the addition of deep or shallow layers in the

model configuration. This provides a means to simplify large scale hetero-

geneities found in typical reservoirs which vary in depth between 1 and 10 m

(Cowton et al. 2016). In sedimentary formations, the presence of multiple lay-

ers is rather ubiquitous. Pritchard et al. (2001) studied the advection of dense

gravity current fluid across a horizontal permeable layer, which is separated

from a thin underlying layer of very low permeability. Their analytical results

in both planar and axisymmetric geometries predict that at early times, the

motion of the gravity current follows a self similar solution but as the draining

to the underlying regions matures, the velocity of the gravity current in the

upper layer falls and it ultimately gets arrested before being fully drained into

the lower layer. A complementary experimental investigation involving planar

gravity currents is also carried out by Pritchard et al. (2001) which supports

their theoretical model. Following this last publication, several investigations

involving the addition of a thin layer beneath the gravity current layer have

been carried out (Neufeld and Huppert 2009; Woods and Farcas 2009; Yu et al.

2017; Hewitt et al. 2020). By contrast, the study of gravity current dynamics

and storage by adding layers of deep vertical extent is far less prevalent. We

have previously mentioned that Goda and Sato (2011) and Sahu and Flynn

(2017) have considered a deep lower layer, through which the gravity current
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drains to the underlying ambient. Goda and Sato (2011) consider two injection

modes namely: a constant flux release and a finite volume release and study

the associated dynamics with capillary retention combined. The solutions de-

pend on the permeability ratios and injection times considered in Goda and

Sato (2011) and are generally considered to be unique in each case.
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Chapter 3

Mathematical Model

3.1 Problem Definition and Assumptions

To model the flow dynamics, we consider a two-layer porous medium with a

permeability jump inclined at an angle θ to the horizontal (see figure 1.3). The

upper and lower layer permeabilities and porosities are, respectively, (k1, ϕ1)

and (k2 ≪ k1, ϕ2 = ϕ1 = ϕ). The two-dimensional co-ordinate system is

represented by (X,Z ). The up- and downdip gravity currents are fed by a

plume whose source is located a vertical height Z = H above the permeability

jump at the point where X = 0.

The theoretical model is based on several underlying assumptions. In ad-

dition, the lower layer is considered infinitely deep while the upper layer is, in

most of the analysis to follow, assumed finite in vertical extent. Although the

source fluid has a density, ρs, that is moderately larger than the density, ρ0,

of the ambient fluid, we assume that the viscosity contrast is small. Likewise,

we ignore capillary effects and so perform our analysis is performed in the

large Bond number limit and without reference to the possibility of residual

trapping. We also ignore spatial variations of the density within the up- and

downdip gravity currents assuming these to be small by comparison to the

density contrast between the gravity current and the ambient. The gravity

currents are assumed to be long and thin such that a hydrostatic (sharp in-
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terface) analysis of the type described by Huppert and Woods (1995) applies.

Finally, and as regards the descending (and entraining) plume, we assume,

consistent with Sahu and Flynn (2015), a moderate Péclet number, here de-

fined as Pe = d0Uτ

Dd
where Dd is the molecular diffusion coefficient, d0 is the

mean grain diameter and Uτ is the average transport velocity. As a result of

this last assumption, plume entrainment, which results in an increase of plume

volume flux, qp, with depth, is set less by diffusion and more by dispersion.

The plume source volume flux per unit width is denoted as qs. Correspond-

ingly, the source buoyancy flux per unit width is given by Fs = qsg
′
s where the

reduced gravity is defined by g′s = g(ρs − ρ0)/ρ0 ≪ g.

The evolution of the up- and downdip gravity currents is given by a balance

between inflow from the plume and outflow resulting from convective disso-

lution along the upper surface and draining along the lower surface. As we

explain in subsection 2.4, and due to the slow but steady increase of the grav-

ity current thickness (e.g. at X = 0), the volume flux supplied to the gravity

current by the plume very gradually decreases. (By similar reasoning, the den-

sity of the fluid supplied to the gravity current very gradually increases.) The

combined volumetric inflow (per unit width) to the up- and downdip gravity

currents is qp(h0) and the corresponding density is ρp(h0) where h0 is the time-

variable height of the gravity current at X = 0. Compared to a real flow where

internal stratification is possible, at least theoretically, the spatially uniform

density approximation is made for simplifying the computational model and

supposes that the vertical distance of the nozzle from the permeability jump

is not large. Accordingly, the density contrast between the up- and downdip

gravity currents and the surrounding ambient is given by ∆ρc = ρc−ρo, where

ρc = ρp(h0) is the gravity current density. The associated reduced gravity is

then defined as g′c = g(∆ρc/ρo).

The dissolution of gravity current fluid into resident ambient fluid yields con-
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taminated fluid that rises towards the source. As noted earlier, basal draining

is the other route by which fluid discharged by the plume may exit the up-

or downdip gravity current. In modeling this draining, we assume, consistent

with Bharath et al. (2020), the across-jump pressure variation is approximately

hydrostatic such that the (vertical) draining velocity is determined from the

local gravity current height, h. Furthermore, and consistent with our treat-

ment of dynamics in the upper layer, a sharp interface assumption is supposed

to apply in the lower layer. By this assumption, ρd = ρc in which ρd is the

(spatially-averaged) density of the so-called draining fluid.

3.2 Gravity Currents

To model the macroscopic evolution of each of the up- and downdip gravity

currents, a sharp interface model is utilized that takes into account the com-

bined effects of advection, draining to the lower layer and dissolution to the

upper layer. Dissolution is dynamically significant only along the upper inter-

face because its onset is controlled by forced or buoyancy driven flow at the

early stages of injection (Huppert and Neufeld 2014). Although dissolution

may likewise occur along the lower interface, this effect is immaterial to the

dynamics of interest because of the speed at which discharged plume fluid falls

through the lower layer.

Following the derivation presented in Bharath et al. (2020), the flow within

the gravity current is assumed to obey Darcy’s law and is treated as incom-

pressible. Accordingly, the Darcy velocity of the gravity current is written

as u c ≡ (uc,wc) where uc and wc denote the along- and across-jump velocity

components, respectively. For a permeability jump inclined at an angle θ to

the horizontal, the hydrostatic pressure variation1 in the across-jump direction

1We assume throughout our discussion that the Dupuit approximation applies such that
the gravity current is long and thin such that pressure variations are indeed hydrostatic.
We defer to a future study an exhaustive characterization of the range of p values for which
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is given by

Pc(x, z, t) = pc(x, t)− ρcgz cos θ (3.1)

where pc(x, t) is defined as

pc(x, t) = Po + (ρc −∆ρc)gx sin θ +∆ρcgh cos θ (3.2)

Here, P0 is the pressure measured along the permeability jump at the origin

and g is gravitational acceleration. Darcy’s law yields expressions for the flow

velocities in the along jump direction, i.e.

uc = −k1∆ρc̄g

µ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂h

∂x
cos θ + sin θ, [Updip, −xNu < x < 0]

∂h

∂x
cos θ − sin θ, [Downdip, 0 < x < xNd

]

(3.3)

Here, µ is the dynamic viscosity. Additionally xNu and xNd
respectively rep-

resent the gravity current nose positions in the up- and downdip directions.

The spatio-temporal evolution equation for the gravity current thickness, h, is

then obtained by substituting (3.3) into the depth-averaged continuity equa-

tion, which considers dissolution along the upper surface and basal draining

along the lower surface. After some straightforward algebra, it can be shown

that

ϕ
∂h

∂t
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1g

′
c
¯

ν

∂

∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
+ wdrain − qd, [Updip, −xNu < x < 0]

k1g
′
c
¯

ν

∂

∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
+ wdrain − qd, [Downdip, 0 < x < xNd

]

(3.4)

where ν is the kinematic viscosity. Also qd (> 0) specifies the rate of convective

dissolution and has units (m3/s)/m2 where the denominator corresponds to the

area of the upper surface. (We will define the convective dissolution rate more

precisely in section 3.6). Meanwhile, wdrain (< 0) is the draining velocity whose

functional form is prescribed in the following subsection.

the Dupuit approximation can be formally justified. Suffice it to say here that a slender
aspect ratio benefits from p values that are comparatively large.
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3.3 Basal Draining

We now examine the dynamics associated with the draining of gravity current

fluid into the lower layer whose depth we assume to be very large. We utilize

Darcy’s equation and define a Darcy velocity, ud ≡ (ud,wd) where ud and wd

respectively point along- and across-dip. Here, ud is the along slope component

of the Darcy velocity while wd is the velocity component in the across-jump

direction. In the special case of a horizontal permeability jump, ud depend

upon ∂h/∂x while wd depends on h (Acton et al. 2001). More generally, the

across-jump velocity is defined by equation 3.5 (Bharath et al. 2020)

wd = −k2∆ρdg

µ

(︂
1 +

h

l′

)︂
cos θ (3.5)

Here, l′ = lcos θ is the perpendicular distance between the permeability jump

and the (bottom) edge of the draining fluid – see figure 1.3. When θ ̸= 0◦,

|ud| ≈
⃓⃓
wd

⃓⃓
tan θ, and thus we can disregard ud for small and moderate jump

angles. If the thickness of draining fluid is significantly larger than the gravity

current thickness such that l′ > h, wdrain remains oriented in the vertical

direction.

Combining the expression for draining velocity with an expression of mass

balance for the fluid draining into the lower layer, we get

ϕ
∂l

∂t
= −wdrain = −

√︂
u2
d + w2

d =
k2∆ρdg

µ

(︂
1 +

h

l
cos θ

)︂
, [−xNu < x < xNd

]

(3.6)

where wdrain is the vertical draining velocity defined in figure 1.3. Unlike

Bharath et al. (2020), we do not suppose any mixing between the draining

and ambient fluids and thus ρ0 = ρd.
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3.4 Gravity current source

Because of the gradual thickening of the gravity currents, the plume entrains

ambient fluid over a vertical distance that slowly decreases in time. The plume

volume flux per unit width at the upper surfaces of the up- and downdip gravity

currents is given by (2.24) of Sahu and Flynn (2015), i.e.

qp =
[︂(︂16Fsk1

πν

)︂2

ϕα(H + Zs − h0 cos θ)
]︂ 1

4
(3.7)

Here α is the transverse dispersivity, which depends on the mean grain diam-

eter (Delgado 2007). Analogous to (3.7), and consistent with (2.25) of Sahu

and Flynn (2015), we write

g′c =

[︄(︂πFsν

16k1

)︂2 1

ϕα(H + Zs − h0 cos θ)

]︄ 1
4

(3.8)

where Zs =
1

ϕα

(︂ πν

16Fsk1

)︂2

q4s is defined as the finite source correction term and

is calculated with reference to the source volume flux per unit width, qs, and

the source buoyancy flux per unit width, Fs. Applying (3.7) and (3.8), (3.4)

and (3.6) can be respectively re-written as

∂h

∂t
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β(1− χh0− cos θ)−
1
4

[︂ ∂

∂x

(︂
h
∂h

∂x
cos θ + h sin θ

)︂
−K

(︂
1 +

h

l
cos θ

)︂]︂
− qd

ϕ
,

[Updip, −xNu < x < 0]

β(1− χh0+ cos θ)−
1
4

[︂ ∂

∂x

(︂
h
∂h

∂x
cos θ − h sin θ

)︂
−K

(︂
1 +

h

l
cos θ

)︂]︂
− qd

ϕ
,

[Downdip, 0 < x < xNd
]

(3.9)

and

∂l

∂t
= βK

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− χh0− cos θ)−

1
4

(︂
1 +

h

l
cos θ

)︂
, [Updip, −xNu < x < 0]

(1− χh0+ cos θ)−
1
4

(︂
1 +

h

l
cos θ

)︂
, [Downdip, 0 < x < xNd

]

(3.10)
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where K = k2/k1 is the ratio of lower- to upper-layer permeability, and β is a

velocity parameter defined as

β =
k1
ϕν

[︂(︂πFsν

16k1

)︂2 1

ϕα(H + Zs)

]︂ 1
4

(3.11)

3.5 Initial and Boundary Conditions

At t = 0, the porous medium is fully saturated with ambient fluid such that

h = l = 0. For t > 0, (3.9) and (3.10) require specification of an influx

boundary condition such that the combined time rate of volume increase of

the up- and downdip gravity currents matches qp as specified by (3.7). For the

simple case of a horizontal permeability jump with θ = 0◦, discharged plume

fluid is divided equally between the up- and downdip directions. For θ > 0◦,

we denote the dimensionless volume fraction of the flow propagating downdip

as fa. The influx boundary conditions then read as follows (Bharath et al.

2020):

β2
(︂
h
∂h

∂x
cos θ + h sin θ

)︂⃓⃓⃓
0−

= −(1− fa)Γ(1− χh0− cos θ)
1
2

β2
(︂
h
∂h

∂x
cos θ − h sin θ

)︂⃓⃓⃓
0+

= −faΓ(1− χh0+ cos θ)
1
2

(3.12)

Here Γ = (k1Fs)/(ϕ
2ν) is defined as the buoyancy flux factor. The left hand

side terms signify the time rate of increase of gravity current volume while

the terms on the right hand side denote the volume of fluid discharged by

the plume along the up- and downdip directions. In solving the governing

equations (3.9) and (3.10), (3.12) is applied in conjunction with the following

28



condition of height continuity:

h0− = h0+ (3.13)

This last result allows us to solve for fa at each time step. Meanwhile, the

noses of the gravity currents in the up- and downdip directions are subject to

the boundary conditions

h−xNu
= l−xNu

= 0 and hxNd
= lxNd

= 0 (3.14)

3.6 Non-dimensionalization

Similar to Goda and Sato (2011), we define the following space and time scales

to non-dimensionalise the governing equations:

Πx =
qp|h=0

ϕβ
and Πt =

qp|h=0

(1− δ cos θ)−
1
4ϕβ2

(3.15)

Here,

δ =
16

π

(︂ ϕα

H + Zs

)︂ 1
2

(3.16)

Thus do we define non-dimensional (starred) parameters, i.e.

x∗ =
x

Πx

, h∗ =
h

Πx

, l∗ =
l

Πx

, t∗ =
t

Πt
(3.17)

Accordingly, (3.4) and (3.6) can respectively be rewritten as

∂h∗

∂t∗
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︂1− δh∗
0− cos θ

1− δ cos θ

)︂− 1
4
[︂ ∂

∂x∗

(︂
h∗∂h

∗

∂x∗ cos θ + h∗ sin θ
)︂
−K

(︂
1 +

h∗

l∗
cos θ

)︂]︂
−Qd,

[Updip, −x∗
Nu

< x∗ < 0](︂1− δh∗
0+ cos θ

1− δ cos θ

)︂− 1
4
[︂ ∂

∂x∗

(︂
h∗∂h

∗

∂x∗ cos θ − h∗ sin θ
)︂
−K

(︂
1 +

h∗

l∗
cos θ

)︂]︂
−Qd,

[Downdip, 0 < x∗ < x∗
Nd
]

(3.18)
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and

∂l∗

∂t∗
= K

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︂1− δh∗
0− cos θ

1− δ cos θ

)︂− 1
4
(︂
1 +

h∗

l∗
cos θ

)︂
, [Updip, −x∗

Nu
< x∗ < 0]

(︂1− δh∗
0+ cos θ

1− δ cos θ

)︂− 1
4
(︂
1 +

h∗

l∗
cos θ

)︂
, [Downdip, 0 < x∗ < x∗

Nd
]

(3.19)

Here, Qd specifies the non-dimensional convective dissolution rate. For the

purposes of this study and with reference to figure 1, Qd is assumed to take

the following functional form (Szulczewski et al. 2013):

Qd = 10−p

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 < t∗ < t∗0

1, t∗0 ≤ t∗ < t∗0 + t∗1

e−(t∗−t∗1−t∗0)/t
∗
2 , t∗ ≥ t∗0 + t∗1

(3.20)

in which p modulates the strength of the convective dissolution. In the context

of real geological flows, p depends on reservoir conditions such as temperature,

pressure and saline concentration in the groundwater (MacMinn et al. 2011;

Zhang and Xu 2003). During the early diffusion phase (Bolster 2014), a fi-

nite amount of onset time is incurred for the convective instabilities to arise

which is negligible compared to typical migration time scales (MacMinn et al.

2011). Consistent with MacMinn et al. (2011), we have considered a constant

dissolution rate after the onset period which lasts until t∗ = t∗0 + t∗1. Once the

buoyant fingers reach the ultimate extent of the finite upper layer, a curtain

of contaminated fluid begins to sink down which then causes the rate of disso-

lution to decay in an exponential fashion (Szulczewski et al. 2013). The mode

of decay is similar to the one explored in figure 5 on Hewitt et al. (2013).

Equation 3.20 does not consider any flux loss from the gravity current due

to residual trapping as witnessed in figure 1.1. Additionally, the complicated
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dynamics of the fingering instabilities are simplified with macroscopic values

of the dissolution rate in eq. (3.20).

At t∗ = 0, the initial condition is h∗ = l∗ = 0. The dimensionless influx

boundary conditions are

(︂
h∗∂h

∗

∂x∗ cos θ + h∗ sin θ
)︂⃓⃓⃓

0−
= −(1− fa)(1− δh∗

0− cos θ)
1
2

(︂
h∗∂h

∗

∂x∗ cos θ − h∗ sin θ
)︂⃓⃓⃓

0+
= −fa(1− δh∗

0+ cos θ)
1
2

(3.21)

By utilizing Πx and Πt, the factor Γ that appears in (3.12) gets cancelled

out and is thus absent in the dimensionless equations. Equations (3.21) are

applied subject to

h∗
0− = h∗

0+ (3.22)

Finally, and at the gravity current fronts, we require that

h∗
−x∗

Nu
= l∗−x∗

Nu
= 0 and h∗

x∗
Nd

= l∗x∗
Nd

= 0 (3.23)
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Chapter 4

Model Results

4.1 Constant Dissolution Rate

The principal focus of this study is cases where the dissolution rate decreases

with time in the manner suggested by figure 1.2. However, and for compar-

ison’s sake, it is helpful to generate a series of “baseline” solutions having a

constant dissolution rate. In the context of figure 1.2, we therefore consider the

limit t∗1 → ∞. Analogously, and consistent with the medium geometry studied

by Goda and Sato (2011) and Bharath et al. (2020), we suppose that the up-

per layer depth is very large. We solve the dimensionless governing equations

(3.18) and (3.19) numerically using a forward finite difference scheme with a

grid size ∆x∗ = 6× 10−2 and a time step ∆t∗ = 9× 10−4. The source volume

flux is assumed constant suggesting a continual (if very moderately decreasing)

supply of fluid to the up- and downdip gravity currents.

Figure 4.1 considers the effect of the exponent p from (3.20). The figure

exhibits snapshot images showing the temporal evolution for a case where

θ = 20◦. For such a large value of θ, there exists a pronounced asymmetry

between the up- and downdip flows. So although h∗ varies linearly with x∗

for x∗ < 0 and x∗ > 0 (Pritchard 2007; Goda and Sato 2011), there is a

significant difference of run-out length up- vs. downdip. When p = ∞, the

dissolution strength is vanishingly small and thus the gravity currents travel
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(a) (b)

(c) (d)

✞ ✌ ✄ ✞ ✌ �

✁ ✂ ☎ ✁ ✂ ✆☎ ✝

Figure 4.1: Spatial-temporal evolution of the gravity currents and draining
flow for an inclined permeability jump characterized by a jump angle of θ =
20◦. The time increment between gravity current profiles measures the gravity
current height, h∗ and draining layer depth, l∗. Panels a, b, c and d respectively
consider p = ∞, p = 2, p = 1 and p = 1/2.
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✞ ✌ ✄� ✞ ✌ ✁✄�(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Gravity current nose position vs. time for (a) θ = 5◦ and (b)
θ = 15◦. Downdip volume fraction vs. time for (c) θ = 5◦ and (d) θ = 15◦.
Storage efficiency vs. time for (e) θ = 5◦ and (f) θ = 15◦.
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the greatest distances. Increasing the dissolution strength by decreasing p

reduces the run-out lengths in a monotone fashion.

The significance of p is further explored in figure 4.2. Figures 4.2 a,b depict

for θ = 5◦ and θ = 15◦, respectively, the time evolution of the nose positions,

x∗
N , of the up- and downdip gravity currents. In both panels, a range of

values for p are considered. Not unexpectedly, a greater up- vs. downdip

flow asymmetry is seen for the larger value of θ. Also, and consistent with

figure 4.1, the gravity currents travel greater distances along the permeability

jump as p is increased and the relative importance of dissolution is curtailed.

Stated differently, increasing the dissolution strength facilitates rapid mixing

of discharged plume fluid with the overlying ambient leading to shorter run-

out lengths. Solutions exhibit the greatest sensitivity to p on the downdip side

for relatively large permeability jump angles. By contrast, dissolution has a

weaker influence on the updip side where gravity is often as or more important

in arresting the gravity current flow. Considering the same range of p as in

figures 4.2 a,b, figures 4.2 c,d show for θ = 5◦ and θ = 15◦, respectively, the

time evolution of fa. In both panels, fa increases sharply at first and then

later plateaus as the up- and downdip flows approach their respective run-out

lengths.

To gauge the effectiveness of dissolution as a long-term storage mechanism

in an unconfined layer of infinite depth, reference is drawn to the storage

efficiency, E∗
h. Consistent with MacMinn et al. (2011) and at any particular

instant in time, we define the storage efficiency as the ratio of the discharged

plume fluid volume retained in the upper layer to the cumulative volume of

plume fluid discharged by the source. So defined, the storage efficiency is a key

parameter in assessing the storage capacity of e.g. aquifers: the larger E∗
h, the

greater the volume of injectate that can be securely sequestered. In symbols,

35



E∗
h is expressed as follows:

E∗
h =

Vretained(t)

Vinjected(t) + Ventrained(t)
(4.1)

Here Vretained is the net volume of discharged plume fluid retained in the upper

layer as a result of dissolution and up- and downdip advection. Meanwhile,

Vinjected =
∫︁ t

0
Qsource dt in which Qsource is the plume source volume flux. Fi-

nally, Ventrained is the volume of upper layer ambient fluid entrained into the

descending plume. Because Vretained = Vinjected + Ventrained − Vdrained, it can be

shown that

E∗
h = 1− Vdrained(t)

Vinjected(t) + Ventrained(t)
(4.2)

Given the sharp interface approximation applied to the draining flow, the

numerator of the latter right-hand side term is straightforward to calculate

as compared to the numerator of (4.1). Figures 4.2 e,f show for θ = 5◦ and

θ = 15◦, respectively, the variation of E∗
h with time for different dissolution

strengths. For small p, the storage efficiency displays a decrease at early times

after which it rebounds then plateaus in the long time limit. The shape of

the curves is explained as follows: at early times, the thickness of the gravity

currents remain modest as a result of which there is comparatively little drain-

ing into the lower layer. Over time, the gravity current thickness increases,

drainage into the lower layer becomes more robust and consequently E∗
h falls.

Simultaneously, however, the gravity current elongates thereby providing more

surface area along which dissolution can take place. This causes dissolution

to dominate over draining as a result of which the storage efficiency increases

for sufficiently large t∗. In essence, thickness is punished by draining (which

decreases E∗
h) whereas large lateral extents are punished by dissolution (which

increases E∗
h). When p is large, by contrast, dissolution remains subordinate

to draining even when the gravity currents have extended to long lengths. As

a consequence, and for p ≳ 1.5, E∗
h is a monotone decreasing function of time.
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(a) (b)

Figure 4.3: Gravity current spreading velocity, v∗N vs. time for (a) θ = 5◦ and
(b) θ = 15◦

Accordingly, we observe from figures 4.2 e,f an inverse relationship between E∗
h

and p. As expected from (4.1), stronger dissolution leads to larger storage

efficiencies both in the short and long term. Additionally, and in contrast to

the panel pairs figure 4.2 a,b and 4.2 c,d, the storage efficiency is largely un-

affected by the permeability jump angle: as θ increases, the downdip gravity

current elongates but the updip gravity current shortens, i.e. the total surface

area available for dissolution is comparable whether θ is large or small.

Utilizing data from figure 4.2 a,b, figure 4.3 a,b depicts the temporal evo-

lution of the gravity current spreading velocity, v∗N = dx∗
N/dt

∗. Initially the

dynamics of the gravity current are fast paced, owning to the small degree of

drainage as a result of low thickness and likewise small dissolution because of

the gravity current’s small areal footprint. These losses from the gravity cur-

rent fluid even when combined is dwarfed largely by the predominant advection

rate, which leads to large initial velocities. Later on, as the gravity currents

experiences further lateral extension due to high initial spreading velocities,
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its elongated interface opens up further areas for dissolution to the ambient.

As a consequence the amount dissolution quickly picks up. Notwithstanding

the aforementioned phenomena, the draining to the lower layer becomes more

pronounced and the combined increases in these system losses serves to rapidly

deplete the gravity current’s forward momentum. This is shown in the graph

as a period of rapid deceleration during which time the high initial velocities

decrease in a monotone fashion to zero at the point of terminal run-out. The

rate of decrease of velocity falls over time since the deceleration rate is a direct

function of fresh areas opening up for dissolution, which near the point of ter-

minal run-out is trivial. From the figure we observe that convective dissolution

limits the maximum nose velocity, both in the up- and downdip direction of the

gravity current flow. Further, decreasing p which signifies an increase in the

dissolution strength, reduces the nose velocity of the gravity current through-

out until it comes to a complete stop. Comparing fig. 4.3 b with fig. 4.3 a, a

higher tilt angle θ = 15◦ in the former, leads to large dissimilarities in the

flow velocities. Because of gravity assist, during the early time dynamics the

downdip flows are faster compared to the updip case. However the time taken

for the gravity current to become stationary remains a strong function of the

dissolution strength. A decrease in p results in the gravity current stopping

more quickly.

Synthesizing data from figures like figures 4.2 a,b, figure 4.4 shows a surface

plot of gravity current run-out lengths as a function of the dissolution strength,

p, and the permeability jump angle, θ. Here θ in the range from θ = −20◦ to

θ = 0◦ shows run-out lengths measured updip while θ in the range from θ = 20◦

to θ = 0◦ shows run-out lengths measured downdip. When θ = 0◦ and the

permeability jump is horizontal, the run-out lengths in the up- and downdip

directions are equal. Asymmetry is obviously introduced by considering θ ̸= 0◦,

however significant differences between the up- and downdip directions arise
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Figure 4.4: [Color online] Run-out lengths, up- and downdip as a function
of the dissolution strength, p, and permeability jump angle, θ (measured in
degrees).

only for sufficiently large p. In such cases, dissolution is comparatively weak

and so differences between the up- and downdip flows are not masked by mass

loss to the upper layer ambient. In the p → 0 limit, by contrast, the dissolution

rate is large, therefore the run-out lengths show a relative insensitivity to θ

and the gravity currents travel relatively short distances along the permeability

jump. In this regime of small p, dissolution dominates over advection such that

gravity current motion along the permeability jump is hindered.

4.2 Convective Dissolution with Simultaneous

Shutdown

In this subsection, we consider the case where t∗1 is finite and, after a time

t∗1 the dissolution rate decreases in a spatially uniform way. Throughout this

subsection, t∗0 is assumed to be 0. Figures 4.5 a,c compare the temporal evolu-

tion of the gravity current nose for θ = 5◦ and θ = 15◦, respectively. In both

panels, we consider t∗2 = 50 and a range of values for t∗1. When t∗1 = 0, we

implicitly assume an upper layer that is thin so that the rate of dissolution

39



✞ ✌ ✄�

✞ ✌ ✁✄�

(a) (b)

(c) (d)

Figure 4.5: Nose positions, both up- and downdip, for p = 1, t∗2 = 50 and
various values of t∗1 (a, b) θ = 5◦, (c, d) θ = 15◦. The left- and right-hand side
panels respectively consider simultaneous and sequential shutdown.
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begins to slow immediately. Conversely, large t∗1 corresponds to an upper layer

of sufficient depth that a constant rate of dissolution is realized for nontrivial

time. Similar to the results of the previous subsection and considering the

downdip flow, curves of x∗
N increase in a monotone fashion and later plateau

provided t∗1 is not small. For t∗ > t∗1, the front is remobilized and there appears

a second regime of gravity current advance. In the long-time limit, all of the

curves in figure 4.5 a or in figure 4.5 c approach the same limiting value. This

coincidence is expected because all of the cases considered share the same dis-

solution strength, p = 1, and permeability jump angle, θ. As such, the same

volume of discharged plume fluid is ultimately dissolved into the upper layer,

irrespective of the varying intermediate dynamics associated with different t∗1.

We refer to the plateaus experienced at moderate and late times as interme-

diate and terminal run-out, respectively. In the former case, the sum of the

rates of draining and dissolution matches the rate at which fluid is supplied to

the gravity current by the descending plume. Once t∗ > t∗1, some fraction of

the fluid that would have dissolved into the upper layer instead accumulates

in the gravity current. As a result, the gravity current height increases leading

to front remobilization (and additional draining). Although the surface area

available for dissolution increases as the gravity current elongates, dissolution

decreases overall as required by figure 1. When, in the long-time limit, the

gravity current stops for a second time, there is a balance between the rates

of influx and mass loss due to draining.

To better characterize the flow asymmetries arising from the previous cases,

we plot in figures 4.6 a,c, respectively, the time variation of fa for θ = 5◦ and

15◦. During re-mobilization, fa increases more rapidly with time than for

t∗ < t∗1. As terminal run-out is approached, fa approaches a constant, the

precise value of which depends, at least in part, on θ: as θ increases, so too

does the downdip volume fraction.
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(a) (b)

(c) (d)

✞ ✌ ✄�

✞ ✌ ✁✄�

Figure 4.6: As in figure 4.5 but considering the downdip volume fraction, fa.
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Complementing figures 4.5 and 4.6, figure 4.7 shows the time variation of

the storage efficiency. At early times when the rate of draining is relatively

small, a sizeable fraction of the fluid discharged by the plume is retained in

the upper layer. Relative to the semi-log axes used in figure 4.7, the storage

efficiency experiences an almost linear decrease as the gravity current continues

to spread. When t∗1 > 0, the storage efficiency gradually plateaus as the gravity

current reaches intermediate run-out in which case there is a fixed balance

between drainage and dissolution (not yet diminished). Once t∗ = t∗1, this

balance is disrupted so as to favor draining; correspondingly, E∗
h again begins

to fall. In the shutdown regime, larger values of t∗1 lead to larger values of the

storage efficiency. Note, however, that whatever the (finite) value of t∗1 and, by

extension, whatever the thickness of the upper layer, E∗
h must approach zero

in the long time limit. Furthermore and consistent with figures 4.2 e,f, there

is little variation of the storage efficiency with θ.

Figure 4.8 a illustrates, in the t∗1-θ parameter space, a surface plot showing

the non-dimensional time, t∗95, to reach 95% of terminal run-out. Similar to

figure 4.4, results are displayed for up- and downdip flow. For fixed θ, figure

4.8 a indicates that t∗95 increases with t∗1: larger t
∗
1 delays the onset of shutdown

and, by extension, extends the time spent in intermediate run-out.

Till now, our emphasis has been to characterize the influence of t∗1, the time

over which the dissolution rate is constant. We have therefore considered a

fixed value for t∗2, the e-folding decay time that characterizes the rate at which

dissolution eventually diminishes. In the interests of presenting a balanced

discussion, we shall now assume a fixed value for t∗1 and explore the influence of

t∗2. To this end, figure 4.9 shows the time variation of the up- and downdip nose

positions for various t2 and θ = 0◦ (panel a) and θ = 15◦ (panel c). We observe

in figure 4.9 a that the nose advances rapidly at early times but then decelerates

and very nearly stops by t∗ = t∗1 = 50. For t∗ ≥ 50, the rate of convective
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(a) (b)

(c) (d)

✞ ✌ ✄�
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Figure 4.7: As in figure 4.5 but considering the storage efficiency, E∗
h

(a) (b)

Figure 4.8: [Color online] Time, t∗95, to reach 95% of terminal run-out vs. t∗1
and θ (measured in degrees) for (a) simultaneous shutdown and (b) sequential
shutdown.
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(a) (b)

(c) (d)

Figure 4.9: As in figure 4.5 but for various t∗2 and t∗1 = 50. The inset images in
panels a and b provide snapshots of the discharged plume fluid at t∗ = 50, 100
and 150.
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(a) (b)

(c) (d)

✞ ✌ ✄�
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Figure 4.10: As in figure 4.6 but for various t∗2 and t∗1 = 50.

dissolution begins to decrease. When t∗2 is comparatively small, convective

dissolution falls sharply leading to a more rapid remobilization of the gravity

current. For larger t∗2, convective dissolution arrests more slowly and the up-

and downdip propagation of the gravity currents during remobilization is more

leisurely. Figures 4.9 a,c confirm that the terminal run-out lengths, though

dependent on θ, do not vary with t∗2.

To characterize the extent of flow asymmetry before and during shutdown,

fig. 4.10 shows the time variation of fa as a function of t∗2 for θ = 5◦ (panel

a) and θ = 15◦ (panel c). Figures 4.10 a,c exhibit similar behavior to that
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(a) (b)

(c) (d)

Figure 4.11: As in fig. 4.6 but for various t∗2 and t∗1 = 50.

observed in figures 4.6 a,c, i.e. fa increases so long as the gravity currents are

propagating but plateaus when the gravity currents become arrested, either

temporarily or permanently. Not surprisingly then, and for 50 < t∗ < ∞, fa

is larger for smaller t∗2.

Similar to figure 4.7, figure 4.11 shows the variation of the storage efficiency,

E∗
h, with t∗2. Because E∗

h characterizes the ability to store discharged plume

fluid in the upper layer, the volume retained changes significantly with t2 in the

shutdown regime. When t∗2 is large, the rate of convective dissolution remains
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(a) (b)

Figure 4.12: [Color online] As in figure 4.8 but with t∗2 rather than t∗1 (= 50)
as an independent variable.

elevated for comparatively long periods of time and hence E∗
h is likewise large.

Also consistent with figure 4.7, we observe from figure 4.11 that E∗
h → 0 in

the long time limit, regardless of the value of t∗2.

Figure 4.12 illustrates the time, t∗95, taken to reach 95% of terminal run-out

as a function of t∗2 and θ. When the latter variable is fixed, and consistent with

figure 4.9, t∗95 increases with t∗2. For prescribed t∗2, there is a general, if modest,

increasing trend of t∗95 with the permeability jump angle: as θ increases, the

downdip gravity current travels comparatively long distances and so requires

more time to reach terminal run-out.

4.3 Convective Dissolution with Sequential Shut-

down

A defacto assumption of the previous subsection was one of very rapid hor-

izontal mixing of the solute through the upper layer ambient such that the

rate of dissolution was spatially uniform along the gravity current length. In

this subsection, we examine the bookend opposite limit, i.e. one where the
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rate of horizontal mixing is slow such that significant spatial variations of the

dissolution rate may arise.

Similar to figures 4.5 a,c, figures 4.5 b,d show, for various t∗1, the up- and

downdip evolution of the gravity current nose but for the sequential shutdown

case. In contrasting the panel pairs figure 4.5 a,b and c,d, similar behavior

is observed with two notable exceptions. Firstly, and because the cessation

of dissolution is now more gradual, gravity current remobilization is more

measured, both up- and downdip. Thus the kinks in the curves of figures

4.5 b,d that arise when t∗ ≃ t∗1 (t
∗
1 = 0 excepted) are less sharp. Secondly, and

because remobilization is associated with the generation of new interfacial area

directly below virgin ambient fluid, additional convective dissolution will occur

after intermediate run-out. In general, such dissolution after-the-fact is more

modest than that which occurred initially, i.e. for t∗ ≤ t∗1. On the other hand, if

t∗1 is sufficiently large, dissolution after-the-fact may be enough to again arrest

the up- and downdip gravity currents. In figure 4.5 b,d, this behavior is most

evident when t∗1 = 200. Here, the curves in question show an intriguing “stop-

start” pattern whereby the gravity current is remobilized multiple times over

as new interfacial area is created, dissolution disrupts the dynamical balance

between draining and advection, dissolution then slows and stops all in a

repetitive cycle. The sequence just described is arrested only by the approach

to terminal run-out. Not surprisingly, terminal run-out lengths are the same

in figures 4.5 b,d and figures 4.5 a,c, respectively. However, because the overall

dissolution rate declines more gradually in the former two figures, the time to

reach this asymptotic state is correspondingly larger, particularly for large t∗1.

Similar to figures 4.6 a,c, figures 4.6 b,d show, for various t∗1, the time vari-

ation of the downdip volume fraction, fa. Consistent with the comparison

between the figure pairs 4.5 a,b and 4.5 c,d, we note from figure 4.6 that se-

quential shutdown is associated with a more gradual remobilization process,
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remobilization being associated with a sudden increase in fa when t∗ ≃ t∗1

(t∗1 = 0 excepted). Also, the stop-start signatures evident in figures 4.5 b,d

reappear in figures 4.6 b,d: as expected, gravity current remobilization and

arrest impact the fraction of discharged plume fluid flowing up- vs. downdip.

Similar to figures 4.7 a,c, figures 4.7 b,d show, for various t∗1, the time vari-

ation of the storage efficiency, E∗
h. Here, the differences between the left- and

right-hand side panels are not as dramatic as observed in figures 4.5 and 4.6.

Most obviously, figure 4.7 does not exhibit any manifestations of the stop-start

behavior that are so prominent for large t∗1 in figures 4.5 and 4.6. Following

intermediate run-out, the process of sequentially remobilizing then arresting

the gravity current involves, first and foremost, a trade-off between advection

and dissolution. Because both processes retain contaminated fluid in the up-

per layer (as compared to draining, which transports contaminated fluid to the

lower layer), the start-stop impact on E∗
h is subdued and the inflections that

characterize the large-t∗1 curves of figures 4.5 and 4.6 for sufficiently large t∗

are absent in figure 4.7. We observe that, for t∗ ≃ t∗1 and excepting t∗1 = 0, the

storage efficiencies predicted in figures 4.7 b,d decline less dramatically than do

their counterparts from figures 4.7 a,c. Stated differently, and over the range

of times considered in figure 4.7, fluid retention in the upper layer is larger

for sequential shutdown, which culminates in higher storage efficiencies. For

instance, and for sequential shutdown, E∗
h for t∗1 = 200 is 61.5% higher than

the corresponding E∗
h value for simultaneous shutdown.

Similar to figure 4.8 a, figure 4.8 b shows the time, t∗95, required for the up-

and downdip gravity currents to reach 95% of their terminal lengths. Consis-

tent with our discussion of figures 4.5 b,d, the time to reach terminal run-out

is extended in the case of sequential shutdown, characterized as it is, for large

t∗1, by intermediate stages of arrested movement of varying intensity. To this

end, t∗95 values are much larger for t∗1 = 200 where multiple starts and stops
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are encountered as opposed to the case t1 = 0 where the advance of the gravity

currents is more regular.

Focusing now on the impact of the dissolution decay rate, figures 4.9 b,d

show, similar to figures 4.9 a,c, the up- and downdip evolution of the grav-

ity current nose for fixed t∗1 but different t∗2. Similar to figures 4.5 b,d, and

4.6 b,d, inflections arise also in figures 4.9 b,d, i.e. for sufficiently small t∗2. In

this low-t∗2 limit, dissolution terminates quickly, leading to a more abrupt re-

mobilization of the up- and downdip gravity currents. In turn, new interfacial

area is likewise created relatively quickly thereby allowing new opportunities

for dissolution, which ultimately arrest the gravity currents for a second time.

For fixed (small) t∗2, the intensity of the resulting behavior depends on the

permeability jump angle. For instance, this intensity is relatively weak when

considering large values of θ and updip flows (figure 4.9 d). On the other hand,

and regardless of the permeability jump angle, no stop-start behavior is ob-

served when t2 surpasses a critical value of approximately 20 in which case

new interfacial area is created too slowly to cause the up- and downdip grav-

ity currents to stop a second time. Comparing the two regimes of convective

dissolution, remoblization takes place more gradually for sequential shutdown

for the same value of t∗2.

In figure 4.9 a and figure 4.9 b, snapshot images showing the gravity currents

and draining fluid are plotted for t∗2 = 10 at t∗ = 50, t∗ = 100 and t∗ = 150.

When t∗ = 50 (= t∗1), the snapshot images pertaining to the two regimes are

identical. Such equivalence is lost, however, once t∗ > t∗1. When t∗ = 100

or, more especially, t∗ = 150, figures 4.8 a and figure 4.8 b confirm that the

gravity currents travel greater along-jump distances in the case of simultaneous

shutdown.

Similar to figures 4.10 a,c, figures 4.10 b,d show, for various t∗2, the time

variation of the downdip volume fraction, fa. For t∗ > t∗1, the curves of fig-
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ures 4.10 b,d have gentler slopes than do their counterparts in figures 4.10 a,c,

respectively. Figure 4.10 thereby provides more evidence that sequential shut-

down is associated with a more gradual remobilization process. Also, and as

expected, signatures of the stop-start behavior described in conjunction with

figure 4.8 reappear in figure 4.10, most prominently when t∗2 is small and θ is

large.

Similar to figures 4.11 a,c, figures 4.11 b,d show, for various t∗2, the time

variation of the storage efficiency, E∗
h. As with figure 4.7, the differences

between the left- and right-hand side panels are relatively minor with the

curves of panels b and d exhibiting, for t∗ > t∗1, gentler slopes. Also consistent

with figure 4.6, the permeability jump angle has only a very minor impact on

the storage efficiency, i.e. there is little difference between figures 4.11 a and

4.11 b or between figures 4.11 b and 4.11 d. This observation is again attributed

to the fact that the combined length of the up- and downdip gravity currents

remains largely unchanged as the permeability jump angle is varied. Thus

as θ is increased, the along-jump distance travelled updip decreases while the

corresponding distance propagated downdip increases in approximately equal

measure.

Similar to figure 4.12 a, figure 4.12 b shows the time, t∗95, required for the

up- and downdip gravity currents to reach 95% of their terminal lengths. In

contrasting the surface plot of figure 4.12 b with that of figure 4.12 a, we find

that for prescribed θ, t∗95 increases more rapidly with t∗2 in the former case.

This effect can be attributed to the slower rate of decay for dissolution in the

shutdown regime when the shutdown regime is of sequential type.
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Chapter 5

Unsteady source

Up until now, we have assumed a steady source having a buoyancy and mass

flux that is time-invariant. In industrial practice, there are many instances

where, by contrast, the source is unsteady, e.g. with alternating periods of

activity and inactivity. Here we explore the associated dynamics with a par-

ticular emphasis on the evolution (and disappearance) of the gravity current

post-injection, i.e. after the source has been “switched off”. We therefore ex-

amine the spreading, draining and dissolution dynamics for t∗ > t∗inj where t
∗
inj

is the (non-dimensional) time over which the source supplies contained fluid

at a non-zero rate. When t∗ > t∗inj, influx boundary conditions specified by

(3.21) must be modified such that the equations become homogeneous with

zero right-hand side. More precisely, and whether t ≤ t∗inj or t > t∗inj, (3.21) is

rewritten as(︂
h∗∂h

∗

∂x∗ cos θ + h∗ sin θ
)︂⃓⃓⃓

0−
= −H(t∗inj − t∗)(1− fa)(1− δh∗

0− cos θ)
1
2

(︂
h∗∂h

∗

∂x∗ cos θ − h∗ sin θ
)︂⃓⃓⃓

0+
= −H(t∗inj − t∗)fa(1− δh∗

0+ cos θ)
1
2

(5.1)

Here H denotes the Heaviside step function.

Referencing (5.1), figure 5.1 shows the temporal evolution of the gravity

current nose for simultaneous shutdown vs. sequential shutdown. In contrast

to our previous analysis, here we select a comparatively small value of t∗2 = 10
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(a) (b)

Figure 5.1: [Color online] Nose positions for t∗inj = 50, θ = 0◦, p = 1, t∗2 =
10 and various values of t∗1. (a) Simultaneous shutdown and (b) sequential
shutdown.

so as to better highlight the flow behavior in the period post-injection dur-

ing which the gravity current is observed to recede relatively quickly. In like

fashion, we likewise select relatively modest values for t∗1. Figure 5.1 exhibits

similar overarching behavior in either panel, i.e. for t∗ < t∗inj, the gravity

current front advances quickly at first, then slows as intermediate run-out is

approached. For t∗1 ≤ 45, intermediate run-out is followed by a remobiliza-

tion of the gravity current front. However, once t∗ = t∗inj = 50, the source is

switched off and no new contaminated fluid is supplied to the back of the grav-

ity current. So although the front may travel some small additional distance

downstream for t∗ just larger than t∗inj, there follows a period of rapid reces-

sion driven primarily by basal draining. In turn, the gravity current rapidly

depletes from the upper layer. For example, and assuming t∗1 = 0 for simul-

taneous shutdown, no contaminated fluid remains for t∗ > t∗f = 56.84 where

t∗f indicates the time required for the complete disappearance of contaminated

fluid from the upper layer (except in dissolved form). At the opposite end of
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the t∗1 spectrum, note that both x∗
N curves collapse when t∗1 > t∗inj in which

case the gravity current begins to recede before the flow ever exits intermediate

run-out.

Consistent with the above discussion, the time interval between t∗inj and the

instant where x∗
N achieves its maximum value is, owing to the limited inertia

of the flow, comparatively small. This observation is especially true for large

t∗1 where the maximum value of x∗
N is likewise small. In a similar spirit, the

time, t∗f − t∗inj, required for gravity current fluid to disappear after the source

is switched off is also small when t∗1 is large.

Comparing the left- and right- panels of figure 5.1, we find that gravity

current remobilization evolves at a more leisurely pace when the dissolution

mode is sequential in which case gravity currents tend not to propagate as

far. Hence curves of x∗
N start at comparatively lower maximum values than do

the counterpart curves corresponding to simultaneous shutdown. By repeating

the analysis leading to figure 5.1 for other values of t∗inj (not shown), we find

that differences between the sequential and simultaneous shutdown regimes

are more pronounced for smaller t∗inj. When, by contrast, t∗inj is large such that

terminal run-out is approached, gravity current recession occurs in a nearly

identical manner for the two different modes of shutdown.

So as to further highlight similarities and differences between the two dif-

ferent shutdown regimes in the context of t∗inj, figure 5.2 shows surface plots

of t∗f − t∗inj. Increasing the injection time increases the time to fully drain.

Although this observation applies to both simultaneous and sequential disso-

lution, it is slightly more pronounced in the former. For sequential shutdown,

incomplete shutdown means that comparatively less time is required for the

gravity current fluid to disappear from the upper layer. When t∗inj comfortably

exceeds t∗1, a terminal run-out plateau is approached, and differences between

the left- and right-hand side surfaces decrease. The surface plots of figure 5.2
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exhibit a second (low-level) plateau where t∗1 ≥ t∗inj: with short injection times,

the gravity current drains completely into the lower layer before the onset of

shutdown. In such a scenario, differences between simultaneous vs. sequential

shutdown again disappear.

Whereas figures 5.2 a,b consider a flat permeability jump, figures 5.2 c,d

assume instead θ = 10◦. Although strong qualitative similarities are evident

in comparing figures 15 a,c and figures 5.2 b,d, we note that t∗f − t∗inj values

are typically smaller when the permeability jump is inclined. When θ > 0◦,

a greater fraction of the source fluid is directed downdip, i.e. in an elongated

gravity current whose thickness is less than when the permeability jump is

horizontal. Correspondingly, and once the source is switched off, it takes less

time for this gravity current fluid to disappear, either by dissolution or by

draining into the lower layer.

The high- and low-level plateaus observed in figure 5.2 are reproduced in

figure 5.3, which shows surface plots of x∗
Nmax, the maximum distance traversed

by the gravity current nose. Not surprisingly, we find from figures 5.2 and 5.3

that parametric combinations that yield large t∗f − t∗inj are also associated with

large values for x∗
Nmax. Thus x∗

Nmax is comparatively large when t∗1 is small

in which case shutdown is realized early on and the gravity current has the

opportunity to elongate following intermediate run-out. Furthermore, and as

expected, x∗
Nmax is large when source fluid is supplied for a long time such that

t∗inj is large.

Analogous to figures 5.2 c,d, the last four panels of figure 5.3 show, for

θ = 10◦, the maximum extent of the gravity current in either the down-

(x∗
Nmax,d, panels c, d) or updip (x∗

Nmax,u, panels e, f) directions. For both

dissolution modes, we find that x∗
Nmax,u < x∗

Nmax < x∗
Nmax,d. Note also that,

in the case of x∗
Nmax,u, there exists a comparatively broad high-level plateau,

particularly for simultaneous shutdown: on the updip side, the gravity current
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Figure 5.2: [Color online] Time, t∗f − t∗inj, taken for gravity current fluid to
completely disappear following the injection period as a function of t∗1 and
t∗inj with p = 1, t∗2 = 10. (a,c) Simultaneous shutdown and (b,d) sequential
shutdown. The top row of panels show the case of a horizontal permeability
jump while the bottom row of panels show θ = 10◦.
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Figure 5.3: [Color online] Maximum along-jump distance traversed by the
gravity current nose as a function of t∗1 and t∗inj for p = 1, t∗2 = 10. (a,c,e)
Simultaneous shutdown and (b,d,f) sequential shutdown. The top row shows
the case of a horizontal permeability jump while the bottom four panels con-
sider θ = 10◦.
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front often becomes arrested well before t∗ = t∗inj due to the retarding influence

of gravity. No such impediment exists on the downdip side, of course, and

so the high-level plateau of figure 5.3 c is, by comparison, smaller than that

observed in either of figures 5.3 a or, more especially, e.
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Chapter 6

Solution bounds

In chapter 1, we remarked that sequential and simultaneous shutdown repre-

sent idealizations and that the true convective dissolution behavior must lie

somewhere in between these limiting cases. It is necessary, therefore, to iden-

tify those regions of the parameter space where the bounds imposed by the

simultaneous vs. sequential solutions are tight vs. loose. Such is the purpose

of this section.

We begin by reexamining the steady source analysis of chapter 4 and use

as the key variable of reference t∗95, which is defined in figures 4.8 and 4.12.

Synthesizing data from figure 4.8, we show in figure 6.1a the difference, ∆t∗95,

of t∗95 values for the sequential case vs. the simultaneous case. Where ∆t∗95 is

small, the bound imposed by our previous analysis is tight. From the surface

plot of figure 6.1a we observe that, for prescribed θ, the sequential and simul-

taneous solutions show greater differences when t∗1 is large and the onset of

terminal run-out is delayed. This is the range of parameter space where the

sequential shutdown mode exhibits the most pronounced stop-start behavior,

a pattern of advance that is absent for simultaneous shutdown (see figures 4.5,

4.6, 4.9 and 4.10).

Similar to figure 6.1a, figure 6.1b shows ∆t∗95 as a function of t∗2 and θ.

Consistent with figure 6.1 a and the variation of ∆t∗95 with t∗1, we find from
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(a) (b)

Figure 6.1: [Color online] Difference of t∗95 values for sequential vs. simulta-
neous shutdown. (a) ∆t∗95 vs. θ and t∗1 for t∗2 = 50, (b) ∆t∗95 vs. θ and t∗2 for
t∗1 = 50. The angle θ is measured in degrees.

figure 6.1 b that ∆t∗95 likewise increases with t∗2, small t∗2 being associated with

pronounced stop-start behavior in the case of sequential shutdown.

Figure 18 shows a similar kind of comparison but with reference to an un-

steady source and x∗
Nmax rather than t∗95. From figure 6.2 a, we observe that

∆x∗
Nmax is small in two opposite limits: large t∗1/small t∗inj and small t∗1/large

t∗inj. In the former case and consistent with figure 5.1, the source is switched

off before the onset of shutdown. Consequently, the flow remains in a state of

intermediate run-out such that there is no difference between the simultaneous

vs. sequential regimes. In the opposite limit of small t∗1/large t∗inj, the disso-

lution rate begins to fall almost immediately and there is ample opportunity

for the gravity currents to approach terminal run-out. Although this limit

admits some differences between simultaneous vs. sequential dissolution, these

differences are small and likewise the values of ∆x∗
Nmax. In between the large

t∗1/small t∗inj and small t∗1/large t∗inj limits, the flow lies between intermediate

and terminal run-out and the two dissolution modes admit more significant

differences given that gravity current fluid travels greater horizontal distances
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Figure 6.2: [Color online] Difference in the maximum nose position, ∆x∗
Nmax,

between sequential and simultaneous shutdown for (a) θ = 0◦ and p = 1. The
bottom row of panels correspond to θ = 10◦ and (b) downdip flow, ∆x∗

Nmax,d.
and (c) updip flow, ∆x∗

Nmax,u.
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along the permeability jump when the shutdown mode is simultaneous.

Similar to figure 6.2 a, figure 6.2 b,c respectively indicate x∗
Nmax in the down-

and updip directions for θ = 10◦. In the downdip direction, the gravity current

speed increases with θ, which has the effect of amplifying the trends docu-

mented in figure 6.2 a. By comparison, we expect the aforementioned trends

to be subdued when considering the updip direction for which gravity retards

the forward advance of the flow. Figure 6.2 c confirms this expectation.
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Chapter 7

Conclusions, Recommendations
and Future Work

7.1 Conclusions

In the present study, we superpose convective dissolution instabilities on the

advancing front of a gravity current that propagates along the permeability

jump between a high permeability upper layer and a low permeability lower

layer. The permeability jump makes an angle θ to the horizontal and the

upper layer is, except for the analysis of section 4.1, considered to be finite

in vertical extent. The primary contribution of this investigation is to incor-

porate convective dissolution into a mathematical model that describes, in a

sharp-interface, large Bond number framework, the spatio-temporal evolution

of a plume-fed, leaky gravity current. We consider dissolution rates that are

either constant (section 4.1) or time-variable (section 4.2 and section 4.3). In

the latter case, section 4.2 considers a scenario where the lateral mixing of con-

taminated fluid within the ambient is relatively rapid; thus the dissolution rate

is everywhere the same along the gravity current length. We refer to this case

as “simultaneous shutdown.” By contrast, section 4.3 considers the bookend

opposite scenario where lateral mixing within the ambient is slow such that

different segments of the gravity current experience dissolution shutdown at

different instants in time. We refer to this case as “sequential shutdown.”
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Neither of the scenarios just described is a true representation of the dissolu-

tion process, however, they provide helpful limiting cases that bound the true

behavior of the system under investigation. In either case, dissolution is pa-

rameterized with reference to variables t∗1 and t∗2, which respectively represent

the non-dimensional time for which the dissolution rate is constant and the

e-folding decay time in the shutdown regime – see figure 1.2.

Of key interest in this study is to explore the up- and downdip gravity

current evolution as a function of θ, t∗1, t
∗
2 and the dissolution strength, p.

To this end, we show the time evolution of the gravity current shape (figure

4.1), nose position (figures 4.2, 4.5 and 4.9), downdip flow fraction (figures

4.2, 4.6 and 4.10) and storage efficiency (figure 4.2, 4.7 and 4.11). We also

characterize, in figures 4.8 and 4.12, the time, t∗95, required to reach 95% of

the terminal run-out length. On the basis of the results just described, a

number of significant conclusions follow. For constant dissolution, p plays a

significant role in limiting the maximum extent of the gravity current, both

up- and downdip. Stated differently, the arrest of the along jump migration is

most prominent for small p, which signifies strong dissolution. In other words,

small p is associated with short run-out times and lengths and also with large

storage efficiencies.

Solutions from the simultaneous vs. sequential shutdown models demon-

strate that once the dissolution rate begins to fall, the balance between dis-

solution, draining and plume inflow is disrupted such that previously-arrested

gravity current fronts may remobilize. Up- and downdip propagation therefore

resumes until such time as the rate of plume inflow matches the rate of basal

draining. Only then is terminal run-out is realized. The stop-start motion

just described is reminescent of that described in Bharath et al. (2020). In

that paper, the authors consider a lower, rather than an upper layer, of finite

depth. As a consequence, a secondary gravity current is generated once the
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draining fluid comes into contact with an impermeable bottom boundary. This

secondary gravity current ultimately “tugs” upon the previously-arrested pri-

mary gravity current, causing it to resume its up- and downdip propagation.

On the other hand, and whereas the along-jump gravity current is arrested at

most one time in the study of Bharath et al. (2020), sequential shutdown offers

richer dynamical behavior, at least in the limit of large t∗1 or small t∗2. More

precisely, several intermediate stops of the gravity current front are witnessed

during the remobilization phase.

Considering the impact of t∗2, a decrease in t∗2 increases the aggressiveness

of remobilization and increases the degree of up- vs. downdip flow asymmetry,

an effect that is especially prominent for simultaneous shutdown. In the case

of sequential shutdown, the start stop motions become prominent for small t∗2.

In the case of an unsteady sourse, the gravity currently rapidly recedes and

ultimately disappears from the upper layer following an injection period, t∗inj.

Further, the maximum nose distance, x∗
Nmax and the time, t∗f−t∗inj taken to fully

drain following the injection period increases rapidly as t∗1 is decreased. This

effect is somewhat suppressed for sequential shutdown on account of residual

dissolution experienced for t∗ > t∗inj. Comparing the regions of the parameter

space where simultaneous and sequential shutdown yield comparable predic-

tions, we such similarities in the opposing limits of large t∗1/small t∗inj and small

t∗1/large t
∗
inj. Consistent with the steady source scenario, the solutions from the

simultaneous shutdown and sequential shutdown models are similar for small

t∗1 but begin to diverge as t∗1 increases owning chiefly to the more leisurely

remobilization speed experienced for sequential shutdown.
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7.2 Primary Contributions from the Present

Work

The primary findings of this thesis can be highlighted below with the following

points:

• We have successfully superimposed into the governing equation for buoy-

ancy driven flow in a two layered porous medium a term describing

transient convective dissolution, where the concentration of the gravity

current fluid being dissolved into the ambient varies with time nonlin-

early. In contrast to previous studies that consider an impermeable top

seal (MacMinn and Juanes 2013; Szulczewski et al. 2013; MacMinn et al.

2011), the incorporation of a less permeable lower layer in addition to

the retention effects of dissolution leads to more nuanced and compli-

cated dynamics. Stated differently, dissolution provides a means for the

discharged plume fluid to remain permanently dissolved and build up in

the upper layer until the point of where it’s fully saturated. We have

analyzed and investigated the nuanced interplay between advection, dis-

solution and draining in this setting in both the short and the long term

limit. For shallow layers, short term equilibrium is reached when source

influx equals draining and dissolution. The time after which dissolution

fails to remain constant and its rate starts to diminish, a remobiliza-

tion of the previously arrested front is observed which in the long-term

limit establishes a secondary equilibrium point where source influx bal-

ances draining only. Whereas in Bharath et al. (2020), remobilization is

achieved once the draining draining fluid strikes an impermeable bottom

boundary, re-mobilization in this thesis is manifested as a result of the

diminishing rate of dissolution owning to the gradual saturation of the

upper layer with contaminated fluid.
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• Using simple analytical models of convective dissolution, we have demon-

strated that the up- and downdip migration of the gravity current is

significantly curtailed in the case of strong dissolution. Considering a

steady source in a two layer porous medium with the upper layer having

an infinite depth, a significant increase in storage efficiency is observed

as the dissolution strength increases. Thus the long term fate of the

injectate will be not be a cause for concern as the injectate will remain

permanently sequestered under such conditions. The interplay between

advection, draining and dissolution is quantified in the sense that at the

point of terminal run-out in these deep aquifers, the gravity current stops

advecting as source influx equals the flux losses associated with draining

and dissolution. Also to note is that the aquifer slope only marginally

alters the storage efficiency in these cases chiefly because the exposed

interface subjected to dissolution has a total area that varies little with

the tilt angle, θ. The time taken to reach terminal runout is primarily

a function of the dissolution strength. As the dissolution strength in-

creases, the time taken for the gravity current to become fully arrested

falls. Our findings reveal that deeper formations are far superior in re-

taining injected contaminants than shallower formations/aquifers and

that the value of the inclination angle of abrupt permeability changes in

these strata is largely immaterial considering a long term injected period.

• By bounding all flow possibilities within two extremes, namely dissolu-

tion with simultaneous and sequential shutdown in the case of a finite

upper layer, we have quantitatively highlighted regions of the parameter

space where similar solutions from both regimes of dissolution can be

enjoyed. In considering the theoretical models utilized here, the order

one predictions about the spreading dynamics in conjunction with ex-
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periments performed in a Hele-Shaw or layers can provide insights into

real sequestration flows. Our models have laid sufficient groundwork for

designing complex experiments with two layers to include vertical plume

migration combined with lateral movement along a permeability jump

with dissolution. If measurements made in the laboratory supported

the predictions of the current theoretical model, one would have even

greater confidence in extrapolating model output to field-scale engineer-

ing flows. Once this is achieved, predictions from these simple models

may be incorporated through parameterization into more computation-

ally demanding computer algorithms.

• We have identified that for finite injection periods, an additional reces-

sion zone occurs after the source is switched off. This region of rapid

backwards movement exists for short time scales and so serves to elimi-

nate the gravity current. Where mixing between the gravity current and

ambient occurs only in the vertical direction (sequential shutdown), the

recession velocities are low and thus the gravity current enjoys a compar-

atively larger amount of time in the upper layer before being completely

drained into the lower layer.

• For shallow aquifers, the effectiveness of dissolution is largely limited

by its depth and its retentiveness for the discharged plume fluid that is

trapped by dissolution. If the upper cap rock seal is less permeable than

what is considered in the inverted geometry of this study, the gravity

current will be able to travel further distances, specifically updip along

the permeability jump and thus be able to cover a more expansive area.

Although this might open up possibilities for leakages through isolated

fissures or cracks, the larger migration distance will expose the current

to more groundwater, thereby increasing the amount of fluid dissolved
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by dissolution.

7.3 Future Work

A few topics that can be tackled in future are as follows:

• In the present study, we have considered a zero entrainment condition

for the draining fluid. In doing so, we have set G′ = 1 in the governing

equation 3.4 for the gravity current height. This variable plays a non-

trivial role in determining the up- and downdip run-out lengths atop the

permeability jump. Specifically, G′ dictates the degree of ambient fluid

entering the draining fluid as it descends further into the lower layer of

the porous formation. In recent work by Bharath et al. (2020), a value of

G′ < 1 is used to indicate a gradual thickening of the draining fluid as it

engulfs fresh ambient fluid in its descent. Indeed, experiments conducted

by the authors reveal that there exists an empirical relationship between

G′ and the plume source parameters. Incorporating the empirical rela-

tionship into the existing theoretical models or developing a theoretical

relationship between said independent source parameters and G′ might

unveil further insights into the true nature of the flow and thus remains

to be investigated.

• In chapter 3, we have incorporated into the governing equation for grav-

ity current thickness, a convective instability without taking into ac-

count the effects caused by residual trapping and eventual long-term

mineralization. The key assumption for ignoring residual trapping here

is that the capillary forces are small compared to gravitational and vis-

cous forces. Although, the mineralization is associated with extremely

large timescales that will not be suited for numerical simulation of short

term injection, capillary effects can be combined in the existing model
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using either a constant term such as the volumetric fraction of resid-

ual gas trapping or other time varying parameters that rely on relative

saturation (Goda and Sato 2011). The parameter associated with the

volumetric fraction of residual gas trapping when included will appear in

the partial differential equations for solving h∗ and l∗. This will lead, in

the associated solutions, to the formation of a receding interface of the

trapped fluid in the evolution of the plume profile, simulating bubbles

of CO2 trapped as ganglia in the pore spaces of the reservoir formation.

Some additional factors that can be considered to add to the complex-

ity of the numerical model will include surface tension, capillary pressure

and as previously mentioned the relative amount of pore saturation. The

superposition of such effects will lead to the development of a multiphase

flow model that can predict the fluid retained in the injection layer as a

result of residual trapping, with additional retention caused by convec-

tive dissolution (MacMinn et al. 2011; Bickle 2009).

• Although fingering instabilities associated with vigorous dissolution have

not been explicitly considered in the present investigation, a challenge

still remains in modelling their occurrence in configurations where hy-

drodynamics instabilities might be large enough to trigger such phenom-

ena. The fingers are visible in experiments conducted by MacMinn and

Juanes (2013) and Szulczewski et al. (2013), and appear shortly after

the onset of early diffusion. A straightforward approach can involve seg-

menting the shutdown regime into its respective stages consistent with

Szulczewski et al. (2013). Thus the third region of 3.20 can be modified

to implement each phase of shutdown as it appears in trials conducted

in a Hele-Shaw cell. Thus preliminary forays into this study will lead

to the development of semi-empirical equations of the various shutdown
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regimes namely: shutdown/fingering, shutdown/slumping, shutdown/-

Taylor slumping, Taylor slumping and finally late diffusion which results

in near perfect saturation.

• Complementary to the theoretical investigation conducted in the present

study, a series of experiments can be carried out using fresh water as the

primary plume fluid with the ambient fluid being either propylene glycol

(MacMinn and Juanes 2013) or ethylene glycol and methanol (Neufeld

et al. 2010) mixed together. Noting the experimental limitations from

Raad and Hassanzadeh (2017), a large viscosity ratio between the am-

bient and plume fluid is required to trigger convective dissolution in a

system that is initially stably stratified, which fits nicely with the chosen

fluid mentioned above. In the case of glycerol and water as the ambient

fluid, mixing between the ambient and plume fluid is only by a process

of dispersion and diffusion, which does not drive convective dissolution

(MacMinn et al. 2011). We expect that in such a system, the buoyant

plume of fresh water will rise through the viscous glycol ambient whilst

simultaneously being being dissolved in it leading to dense fingers of

water rich glycol trickling down to the bottom of the testing cell. By

tracking the nose position of the gravity current using shadowgraphy and

measuring the nose’s front speed, the analytical model developed here

can be validated.
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