
A Model-Agnostic Derivative of Cutout for Image Data Augmentation

by

Nikoo Aghaei

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Nikoo Aghaei, 2022

Abstract

Data augmentation is a strong tool for enhancing the performance of deep learn-

ing models using different techniques to increase both the quantity and diversity of

training data.

Cutout was previously proposed, in the context of image classification, as a simple

regularization technique that increases Convolutional Neural Networks’ robustness

and performance by masking part of the input image. Cutout can also be applied

along with other data augmentation or regularization techniques, further improving

their effectiveness.

We extend the main idea of Cutout, where instead of randomly masking images as

Cutout does, we use a model to identify which part of the image affects the model’s

decision the most. Similar to Cutout, our new approach can be used with other

regularization techniques for better performance.

Our experiments using the CIFAR-10 and CIFAR-100 datasets with the same

ResNet18 and WideResNet models and parameters used in the original Cutout paper

show that we can get slightly higher accuracy but at a higher cost than Cutout. These

results suggest that randomness is an effective driving factor in Cutout, making it

accurate enough and time-efficient. Nonetheless, our approach can be helpful when

accuracy is the main concern and the extra time cost is acceptable for the aimed

application.

ii

To my lovely grandmothers,

for highly valuing education even though they were deprived of it.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Mario A. Nascimento,

for all his guidance and dedicated involvement in this research. I have been extremely

honoured to work under his supervision and learn from him. I would also like to

acknowledge the valuable help of Prof. James R. Wright and his graduate student,

Daniel Chui, for providing us with a GPU. I also acknowledge Jason Cannon’s effort

to initiate the idea of MANGO, explained in this research.

I would also like to thank my boyfriend, Bedir Tapkan, for being the best study

buddy, always patient in listening to my ideas and discussing them with me. This

journey would have been way harder without his company. I am further thankful

to my friend Kiarash Aghakasiri for the helpful conversations about my code and all

other friends and instructors who inspired me during all years of my education.

I must also express my profound gratitude to my parents for believing in me

when I felt the weakest and always being there for me with their endless love and

encouragement to make me confident and ambitious to move forward. I am also

grateful for having a perfect sister, Nafiseh, who has always been my best friend and

strong supporter. I would have never acquired any accomplishments throughout my

life without my family.

Finally, my heartful thanks go to my friends, those who never let the distance

between us lessen their care and support for me, and also those whom I found here,

and they turned out to be my second family. Special thanks to Sana for always

sparing some time for me, and many thanks to all my friends for making my life

warm and colourful.

iv

Table of Contents

1 Introduction 1

2 Background 4

2.1 Image classification . 4

2.2 Neural Network Architecture . 6

2.2.1 Convolutional Neural Network 14

2.3 Data Augmentation . 17

2.4 Related Work . 18

2.4.1 Data Augmentation . 20

2.4.1.1 Cutout . 23

3 Our Approach 28

3.1 MANGO: Model Agnostic explaNation for imaGe classificatiOn . . . 28

3.2 Main Approach . 32

3.3 Summary of Our Approach . 40

4 Experiments 41

4.1 Setup . 41

4.1.1 Datasets . 41

4.1.2 Networks . 44

4.2 Results . 44

4.2.1 Original MANGO . 44

4.2.2 Colored Mask MANGO . 45

v

4.2.3 MANGO with Different Number of Branches 46

4.2.4 Comparing MANGO Variants 47

4.2.5 MANGO’s Effect on Activations 48

5 Conclusion and Future Work 52

5.1 Thesis Summary . 52

5.2 Future Work . 52

vi

List of Tables

2.1 Test errors (%) on CIFAR-10 based on ResNet18 (pre-act) [16] with

four types of erasing value. In all experiments, the standard data

augmentations (random crop + random flip) are applied first. Baseline:

Baseline model, RE-R: Random Erasing model with random value, RE-

M: Random Erasing model with mean value of ImageNet 2012, RE-0:

Random Erasing model with 0, RE-255: Random Erasing model with

255 [18]. 22

2.2 Test errors (%) with ResNet-18-PreAct [16] and WideResNet [15] on

CIFAR-10 and CIFAR-100 [41]. In all experiments, the standard data

augmentations (random crop + random flip) are applied first. RE:

Random Erasing [18]. 23

2.3 Test error rates (%) on CIFAR datasets. In all experiments, the stan-

dard data augmentations (random crop + random flip) are applied

first. Results are averaged over five runs [1]. 24

4.1 CIFAR-100 superclasses and subclasses. 43

vii

4.2 Comparing test error rates (%) and the average time per epoch (s) for

ResNet18 and WRN-28-10 models running on the CIFAR-10 dataset

using baseline, Cutout, and MANGO. Baseline indicates a model trained

with standard augmentations of mirror + crop without using Cutout

or MANGO. Cutout implementation is based on https://github.com/

uoguelph-mlrg/Cutout. Results are with 95% confidence intervals and

averaged over five runs. 45

4.3 Test error rates (%) of two mask colouring approaches in MANGO and

the average time per epoch (s) compared with the original MANGO.

Experiments are on the CIFAR-10 dataset using ResNet18, with 95%

confidence intervals averaged over five runs. 46

4.4 Test error rate (%) and the average time per epoch (s) of MANGO

with N = 9 compared with the original MANGO. Experiments are on

CIFAR-10 dataset using ResNet18. Results are with 95% confidence

intervals averaged over five runs. 47

viii

https://github.com/uoguelph-mlrg/Cutout
https://github.com/uoguelph-mlrg/Cutout

List of Figures

2.1 Image classification challenges [3]. 6

2.2 (a) A sample of fully connected 1-layer Neural Network with an input

of size N . 7

2.3 A sample of fully connected 3-layer Neural Network. The connections

are between neurons of different layers, but not within a layer [3]. . . 8

2.4 Activation functions. 9

2.5 Larger Neural Networks can represent more complicated functions with

a more chance of overfitting. The data are shown as circles colored by

their class, and the decision regions by a trained neural network are

shown underneath [3]. 10

2.6 The effects of regularization strength: Each neural network above has

20 hidden neurons, but changing the regularization strength (λ) makes

its final decision regions smoother with a higher regularization [3]. . . 11

2.7 Dropout Neural Net Model. (a) A standard neural net with 2 hidden

layers. (b) An example of a thinned net produced by applying dropout

to the network on the left. Crossed units have been dropped. [6] . . . 12

2.8 In Convolutional Neural Networks, the input of each layer is arranged

as a 3 dimensional volume transferred to another 3 dimensional output

which will be the input for the next layer [3]. 15

2.9 Residual learning: a building block [14]. 17

ix

2.10 Training curves for residual and wide residual networks on CIFAR-10

and CIFAR-100. Solid lines denote test error (y-axis on the right),

dashed lines denote training loss (y-axis on the left) [15]. X-axes in

both show the epoch number. 17

2.11 (a) An early version of Cutout on CIFAR-10 dataset. This version

mostly masks part-level features of the image, such as heads, legs, or

wheels. (b) Final version of Cutout applied on CIFAR-10 dataset [1]. 25

2.12 Cutout patch length with respect to validation accuracy with 95%

confidence intervals (average of five runs). Tests run on CIFAR-10 and

CIFAR-100 datasets using WRN-28-10 and standard data augmenta-

tion. Baseline indicates a model trained with no Cutout [1]. 26

3.1 An Indian Runner duck1. 29

3.2 First level of the MANGO tree. 29

3.3 Second level of the MANGO tree. 30

3.4 Third level of the MANGO tree. 30

3.5 The tree build by MANGO algorithm. 31

3.6 Confidence with respect to the depth of the tree. The confidence will

decrease by increasing the depth to a minimum point where uncovering

more from the masked part will increase the confidence. 32

3.7 A sample batch of CIFAR datasets after applying Random Crop, Hor-

izontal Flip and Normalization. 36

3.8 A sample batch of CIFAR-10 dataset being masked by MANGO using

a Resnet18 model and following the (a)Rand-Per-Pixel and (b) Faredge

masking. 38

3.9 Applying MANGO with N = 9 on a batch of CIFAR-10 dataset using

Resnet18 model. 39

4.1 CIFAR-10 classes with 10 random examples taken from each class [44]. 42

x

4.2 Accuracy of all versions of MANGOVS Cutout using CIFAR-10 dataset

and ResNet18. Results averaged over 5 runs. 48

4.3 (a) Accuracy of MANGO VS Cutout run over CIFAR-10 dataset using

ResNet18 and averaged over 5 runs. (b) Last 40 epochs of results from

Figure 4.3a. 49

4.4 Feature activations’ magnitude averaged over all test samples, sorted

by descending value. A baseline ResNet18, a ResNet18 trained with

Cutout, and a ResNet18 trained with MANGO are compared at 3

residual blocks of different depths. 51

xi

Chapter 1

Introduction

Deep Learning has proven to have an essential role in the improvement and progress

of Computer Vision in recent years. Most of these advances have happened with the

help of Convolutional Neural Networks (CNNs), capable of learning complex feature

representational spaces [1].

For CNNs, the more complex spaces bring up more resource consumption such

as memory, number of parameters, number of operations, etc. They commonly use

a large number of learned parameters to obtain the needed representational power,

which may lead to less generalization and more chance of overfitting [1]. Overfitting

happens when a model fits the training data too well and fails to model the testing

data. Regularization is one way to combat this issue.

Data augmentation is a vastly used approach in computer vision tasks among

many regularization techniques because of being effective and easy to implement.

Data augmentation improves the generalization in tasks such as image classification

by increasing both the quantity and diversity of training data. Even simple image

augmentations such as cropping or mirroring have been proven effective in enhancing

model robustness and increasing accuracy [1].

Cutout [1] was proposed as a simple regularization technique that aims to improve

model robustness by putting zero square masks in random sections of the input image.

The authors of [1] claim that masking out contiguous regions of input will encourage

1

the model to consider the full context of the image instead of focusing only on a

small set of specific visual features. Implementing Cutout to be applied to the data

points while loading them, in parallel with the main training task, will have no extra

computational cost. Also, Cutout can be combined with other regularization tech-

niques such as dropout or other data augmentations to improve their results further.

Several evaluations using popular image classification datasets such as CIFAR-10 and

CIFAR-100 show Cutout’s capability to regularize and increase model accuracy. More

details on Cutout are provided later in Section 2.4.1.1.

As described above, data augmentation has become a powerful tool to combat

the overfitting problem. Among data augmentation techniques, Cutout has shown

noticeable efficiency in terms of accuracy, considering its simplicity and ease of imple-

mentation. Randomly choosing a point inside the image and setting it as the center

of a fixed-sized mask increases robustness and accuracy in Cutout. However, we con-

jecture there are more informed ways to choose the location of the mask, which may

even perform better than Cutout.

In this thesis, we propose a data augmentation technique similar to Cutout, but

instead of randomly choosing the mask location, we use the model itself to decide

where to put the mask. In this method, we cover the part of the image that affects

the model prediction the most. By following this approach, we will force the model

to see other parts of the image and not focus only on some certain features, which in

the end, should help the model to generalize well.

We hypothesize that by letting the model decide on the location of the mask, we

will encourage the model to be more robust to the noise and changes in data, and we

may be able to beat Cutout efficiency. Also, we think that the colour of the mask

could be a factor in making the masking more effective. In order to evaluate different

settings of our method and have a fair comparison between them and the original

Cutout, we run experiments on CIFAR-10 and CIFAR-100 datasets using ResNet18

and WideResNet networks with the same parameters as those stated in the Cutout

2

paper [1]. Our evaluations show that using the model for masking the image yields

better accuracy than Cutout, but the cost will increase. We will detail our approach

in Chapter 3.

The main contributions of this thesis can be listed as follows:

• We improve the results of previously proposed Cutout by answering this ques-

tion: Which part of the image, if not seen by the model, might affect the model’s

prediction result?

• We introduce a new approach for augmenting the data set with better accuracy

than Cutout.

• We propose a framework that makes it possible to use the power of a model to

improve the prediction accuracy of the same model.

• Finally, we evaluate the new approach and compare it with Cutout through

several experiments.

This chapter proposed the problem we want to address and the approach we want

to follow to solve it. The remainder of the thesis is organized as follows: Chapter 2

provides an overview of Machine Learning concepts and methods used in our research,

followed by a literature review of previous related works to our method. In Chapter 3

we explain our approach in detail. Also, we will discuss over affecting parameters and

different possibilities of choosing them. Chapter 4 provides details on each experiment

with its parameters and results. Finally, in Chapter 5 we make a conclusion based on

our experimental results from Chapter 4 and discuss potential future developments

on the idea proposed in this research.

3

Chapter 2

Background

In this chapter, we explain some Machine Learning concepts used to implement our

classification framework and review some research related to our proposed method.

We have completed this chapter with the help of many useful resources, among which,

[1–4] are the most used ones.

2.1 Image classification

Image classification, as one of the core problems in the computer vision domain, is

the task of assigning a label from the fixed set of classes to an input image. A concise

form of Image classification pipeline consists of:

• Input: A set of images, each labelled as one of the classes. This dataset is

referred to as training data.

• Learning: Training a classifier or learning a model in order to learn members of

classes based on the training data.

• Evaluation: Use of a classifier model to predict labels of the test data. The goal

is to match as many predicted labels with the true labels of the test data as

possible.

In a mathematical notation we can describe the above concepts as follow: The input

dataset is shown as X = {x1, x2, .., xN} with its corresponding true labels as Y =

4

{y1, y2, .., yN} where N is the size of dataset. In this notation yis for 1 ≤ i ≤ N are

not necessarily unique, as many xis can have a same label. We want to model the

conditional distribution P (y|x,X, Y) to be used to make inferences to find the optimal

predicted label y for a test data point of x. One way is to have a parameterized

function like fω(x) = P (y|x,X, Y) to approximate the discriminative distribution

where ω is the set of function’s parameters. One of the most successful approximation

functions in discriminative distributions is deep neural networks. Section 2.2 will

expand on the architecture of these models.

Challenges

From the perspective of a classification algorithm, each image is a 3-dimensional array

of integer brightness values. For example, each image in the CIFAR-10 dataset is of

32 pixels width, 32 pixels height, and 3 colour channels: red, green, and blue (RGB).

In total, each image of this dataset consists of 32×32×3 or 3, 072 pixels. Each pixel is

an integer number ranging between 0 (black) to 255 (white). The Image Classification

task is to find a single image label based on these numbers. Image classification can

involve many challenges from the perspective of a computer model. Some of these

problems are listed below:

• Intra-class variation: When there are many different kinds of class types with

nuanced differences in their appearance. For instance, the superclass tree in the

CIFAR-100 dataset, which divides into five classes of maple, oak, palm, pine,

and willow.

• Background clutter: When an object blends into its background, making it

harder to be recognized.

• Viewpoint variation: When an object is posing in many different ways with

respect to the camera.

5

• Illumination conditions: When there are huge effects of illumination on the pixel

values.

• Occlusion: When the objects of interest can be partially or completely occluded.

A good classification model has adequate sensitivity to the inter-class (between

different classes) variations while being invariant to the intra-class (within the classes)

variations. Examples of these challenges are shown in Figure 2.1.

Viewpoint variation Illumination conditions

Background clutter OcclusionIntra-class variation

Figure 2.1: Image classification challenges [3].

2.2 Neural Network Architecture

The idea of Neural Network architecture comes from the brain’s biological neural

system. Stimulus provokes neurons from their dendrites connections, and this signal

passes through the axon to other neurons’ dendrites. Similar to the neurological

system, Neural Networks consist of layers of neurons connected like an acyclic graph

known as a feedforward network. Each neuron of a layer gets inputs from neurons of

the previous layer, combines them as an affine transformation based on the weights

assigned to the connections, passes the result through an activation function, and

6

finally sends the activation function’s output to the next layer. The mathematical

representation of a single layer neural network for an input vector of x ∈ RN is:

y = f(Wx+ b) (2.1)

which maps the input to the scalar output y ∈ R1. In Equation (2.1) W is a weight

matrix, b is a bias vector and function f() is the nonlinear activation function which is

explained later in this section. By applying functions composition on the function f()

from Equation (2.1) we can formalize a multilayer neural net with two hidden layer

as y = f3(W3f2(W2f1(W1x+ b1) + b2) + b3) in which fis are the activation functions,

Wis are weight matrices, and bis are the biases for each layer i ∈ {1, 2, 3}. Figure 2.2

shows an example of a one-layer network and Figure 2.3 shows a multilayer neural

network with 2 hidden layers of size 4. Layers in these two networks are called fully-

connected as all neurons in one layer are pairwise connected to the neurons from the

previous layer, but they share no connections within the same layer.

Inputs Weights Summation
and Bias Activation Output

Figure 2.2: (a) A sample of fully connected 1-layer Neural Network with an input of
size N .

Activation Function

The non-linearity of activation functions is the key point enabling neural networks

to have the approximation power of modelling complex transformations. Activation

functions apply a fixed certain of operations on an input number. Many types of

7

Figure 2.3: A sample of fully connected 3-layer Neural Network. The connections are
between neurons of different layers, but not within a layer [3].

these functions are used in practice, such as sigmoid, tanh, softmax, ReLU, and leaky

ReLU. We explain those related to our research:

• ReLU: The Rectified Linear Unit is a piecewise linear function defined as

f(x) = max(0, x). Unlike some activation functions such as tanh and sigmoid,

ReLU is easy to implement without using any costly operation.

• Softmax: Softmax activation function is mostly used as an activation function

in the output layer. Unlike other scalar activation functions, softmax gets a

vector of N values (output of a layer) as input and output a vector of normalized

probability distributions. Softmax is formalized as:

softmaxi(x) =
exp(xi)∑︁N
n exp(xn)

(2.2)

Figure 2.4 plots these activation functions.

In order to model the conditional distribution P (y|x,X, Y) mentioned in the previ-

ous section, the output of the classification neural network must be a valid probability

function. A valid probability function outputs probabilities in the range of [0, 1] with

their sum equal to 1. A common choice to achieve this is to use softmax activation

function in the last layer of the neural network.

8

(a) ReLU (b) Softmax

Figure 2.4: Activation functions.

Loss Function

As explained above, given a dataset, our goal is to build a model with a set of weights

leading the model to predict labels consistent with actual labels in the training data.

Loss functions determine how well a model performs the classification task in each

step and help to improve the results using the loss from the previous training step.

One of the commonly used loss functions for a model with probability output values

in the range of [0, 1] is cross-entropy loss [5]. Suppose for a given input there are N

possible classes. ŷ is a vector of the model’s predicted probabilities for all classes that

sum up to 1, and y is the actual probability vector for all classes. Cross-entropy loss

of the data point for each class n where 0 ⩽ n < N is calculated as:

− ynlog(yn̂) (2.3)

The final cross-entropy loss for the data point will be the sum of the losses for all

classes from the above equation:

H(y, ŷ) =
N−1∑︂
n=0

ynlog(yn̂) (2.4)

In multi-class classification, a special case of cross-entropy loss named categorical

cross-entropy loss is used where y is a one-hot vector, meaning it is 1 only at the true

label index and 0 everywhere else. As a result, the categorical cross-entropy loss for

9

the data point is:

H(y, ŷ) = −log(yĉ) (2.5)

Where yĉ is the predicted probability for the actual label c. If multiple samples

in a batch are processed simultaneously, then the total loss of neural network will be

the average cross-entropy loss of all samples in the batch. Batch size is the number

of training samples utilized in one training iteration and is a hyperparameter usually

set based on the memory constraints or some values in powers of 2. Many vectorized

operations work faster when having inputs of size powers of 2.

Regularization

Increasing the number of layers and their size in a neural network (i.e. increasing

the network capacity) results in growing the representable functions space and model

ability to express more diverse functions. Figure 2.5 shows an example of three neural

networks with different capacities in a binary classification problem. All these models

have one hidden layer of different sizes.

Figure 2.5: Larger Neural Networks can represent more complicated functions with a
more chance of overfitting. The data are shown as circles colored by their class, and
the decision regions by a trained neural network are shown underneath [3].

As is clear from Figure 2.5, higher capacity gives the network the ability to model

more complicated functions. Even though this might seem an absolute advantage, it

might result in a higher chance of overfitting. Overfitting happens when a model fits

10

too closely to the training data in a way that fits the noise as well or fails to predict

future unseen data reliably. In the example shown in Figure 2.5, even though the

model with 20 hidden units models all data points perfectly, it divides the data space

into many separate prediction regions, which can lead to overfitting. Regularization is

one solution to control network capacity, prevent learning a more complex or flexible

model and help to avoid overfitting. Figure 2.6 shows the changes in the network with

one layer of size 20 from Figure 2.5 after applying L2 regularization with three differ-

ent values of strength (λ). In the following, we mention some popular regularization

techniques related to our research.

Figure 2.6: The effects of regularization strength: Each neural network above has 20
hidden neurons, but changing the regularization strength (λ) makes its final decision
regions smoother with a higher regularization [3].

• L2 regularization is the sum of squared magnitudes of all weights added as a

penalty to the loss function:

Loss(Data|Model) + λ
D−1∑︂
i=0

w2
i (2.6)

In above equation, D is the input data dimension and λ is the regularization

strength. L2 regularization penalizes large weights and prefers deffuse weight

vectors which means it has the advantage of encouraging the model to use all

the inputs a little instead of using some of them a lot.

11

• Dropout [6], as a simple and extremely effective regularization technique, zeros

out the activation value of a neuron (hidden or visible) with some probability

p during the training process. As a result, it will change the layer’s size and

connections to other layers in each layer update, making the dropout have the

effect of approximately averaging over many smaller sub-networks. Dropout

discourages the situations where layers of a network co-adapt to correct previous

layers’ mistakes, forcing the model to learn more robust features. Figure 2.7

shows the method’s idea.

(a) (b)

Figure 2.7: Dropout Neural Net Model. (a) A standard neural net with 2 hidden
layers. (b) An example of a thinned net produced by applying dropout to the network
on the left. Crossed units have been dropped. [6]

• Batch normalization [7] can be considered as a popular regularization tech-

nique used to initialize neural networks properly. At the beginning of training,

batch normalization makes all network’s activations take a unit gaussian dis-

tribution, i.e. a normal distribution with mean µ = 0 and standard deviation

σ = 1. Batch normalization layer is mostly inserted after fully connected layers

and before non-linearities. As normalization is a differentiable operation, batch

normalization can be seen as a preprocessing at each layer but integrated into

the network itself.

• Transfer learning is another technique helping neural networks faster conver-

12

gence. Transfer learning [8, 9] is about using the weights of a model trained

on a big dataset, such as ImageNet [10], to initialize weights in a model for a

new task. Instead of copying the weights in the whole network, usually, only

the weights in convolutional layers are transferred. Deep neural models learn

a hierarchical representation of the image data points [11] and also low-level

geometric attributes such as corners or lines are pretty common among image

datasets. As a result, transfer learning becomes a successful method as feature

extractors trained on larger datasets can be transferred to train classifiers on

smaller datasets, solving the problem of lacking enough images and speeding up

training a new model on a different but relevant task. There is ongoing research

on understanding the relationship between transferred domains [12].

• Pretraining [13] conceptually close to transfer learning is to initialize the

weights using models trained on a big dataset. The difference between transfer

learning and pretraining is that in transfer learning, the model architecture is

transferred as well as the weights. However, in pretraining, there is the flexibil-

ity of having a different architecture design.

Optimization

While the loss function determines the quality of a particular set of weights for the

network, the optimizer aims to update the weights in a way that the overall network

loss is minimized.

Gradient Descent is a simple optimization method that updates each parameter

using its gradient. One common version of Gradient Descent is Stochastic Gradient

Descent (SGD). SGD calculates the gradient for one sample data instead of whole

data, making it efficient for large datasets that cannot be held in RAM entirely. Also,

SGD makes it possible to jump out of local minimums. Learning rate hyperparameter

determines at which pace the weights get updated. Monitoring loss function during

training can help analyze the neural network training process. The number of epochs

13

necessary for the model convergence is determined based on the data and the network

design. Number of epochs is the total number of iterations needed to process each

image from the training dataset.

Backpropagation

One of the main steps in neural network training is computing the loss function gradi-

ent with respect to the network parameters. Backpropagation is a way of calculating

these gradients by moving backwards through the layers recursively and applying the

chain rule from calculus to compute the gradients at each layer. Chain rule helps to

express the derivative of a function f(x) = g(h(x)) which is the composition of two

differentiable functions g and h. Equation (2.7) shows a simple reminder of this rule.

df

dx
=

df

dg
.
dg

dx
(2.7)

In summary, the process of updating the weights is a recursion of performing

forward propagation through the network on a batch of data to obtain the loss, then

backpropagating the obtained loss to calculate the gradients and finally using the

gradients to update the weights.

Evaluation

Among several techniques used for evaluating classification models, we use one of the

simplest and most popular methods, called prediction accuracy. Prediction accuracy

is defined as:

Accuracy =
Number of correct predictions

Total number of predictions
(2.8)

2.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is an important class of deep neural networks

with the assumption of getting images as input. This assumption enables the im-

plementation of some properties into the architecture, making the forward function

14

more efficient and significantly reducing the number of parameters.

Assume a dataset with images of size 200 × 200 × 3 (width, height, number of

channels, respectively). A fully-connected neuron in a regular neural network would

have 200 × 200 × 3 = 120, 000 weights. Clearly, a fully-connected structure is not

scalable to these sorts of large images. This issue is tackled in CNNs by having three

dimensions (width, height, depth) neurons. Also, each neuron in a CNN, unlike a

fully-connected manner, is only connected to a small region of the previous layer. For

example, each image in the CIFAR-10 dataset is an input volume of activations with

a height and weight of 32 and a depth of 3. The last layer (output layer) for an image

from CIFAR-10 is a volume with dimensions of 1× 1× 10 made by reducing the full

image into a vector of class scores. Figure 2.8 is a sample visualization of a CNN.

Depth

Width H
eight

Figure 2.8: In Convolutional Neural Networks, the input of each layer is arranged as
a 3 dimensional volume transferred to another 3 dimensional output which will be
the input for the next layer [3].

In a classification task, a sequence of layers in a CNN transfers an image from

its original pixel values to the final class score. There are three main types of CNN

layers. We will explain these layers through an example network, consisting of layers

[Input - Convolutional - ReLU - Pooling - Fully-connected] for a classification task

on the CIFAR-10 dataset.

• Input layer consists of the image raw pixel values. In our example, data points

are of the size 32× 32× 3 so the input layer is of dimensions 32× 32× 3.

• Convolutional layer calculates the dot product between the input and the

15

weights of the neurons connected to them. For example, if we use 8 filters, the

output volume of this layer would be of dimensions 32× 32× 8.

• ReLU layer applies the ReLU activation function elementwise, without chang-

ing the volume size.

• Pooling layer performs downsampling along width and height (spatial dimen-

sions), changing the volume to a size such as 16× 16× 8.

• Fully-Connected layer is similar to the fully-connected layer in regular net-

works which all neurons from the fully-connected layer connect to all units in

the previous layer. The fully-connected layer will output the class score with a

volume of size 1× 1× 10.

There are several known CNN architectures such as AlexNet, VGG-16, DenseNet,

etc., among which ResNet and WideResnet are used in our experiments.

• ResNet: Residual Network [14] has special “skip connections” which enables

training much deeper networks. As shown in Figure 2.9 the model can skip

training of some layers using skip connections. In this way, an identity mapping

is applied, and then its result (x) will be added to the outputs of the stacked

layers (F(x) + x). These operations do not increase the computational cost or

the number of parameters. As a result, the model will backpropagate through

an identity function, and the gradient value will be maintained in the first layers

of the network. Using skip connections can help the model to tune the number

of layers while training.

• WideResNet: Wide Residual Networks were proposed [15] to prevent Diminish-

ing Feature Reuse in Residual networks, which happens due to the possibility

of the model skipping all residual blocks and ending up not learning anything

or just learning little useful representations. WRN-n-k is a denotation of a

16

Figure 2.9: Residual learning: a building block [14].

WideResNet with a total number of n convolutional layers and a widening fac-

tor of k. k = 1 will be the ResNet block. Figure 2.10 [15] shows the comparison

of training curves between ResNet and WideResNet networks.

Figure 2.10: Training curves for residual and wide residual networks on CIFAR-10
and CIFAR-100. Solid lines denote test error (y-axis on the right), dashed lines denote
training loss (y-axis on the left) [15]. X-axes in both show the epoch number.

In later chapters, we will run experiments using these models and show how they

will improve classification accuracy with the help of data augmentation techniques.

2.3 Data Augmentation

Convolutional Neural Networks (CNN) have shown growing learning ability in com-

plex representational spaces. These deep neural networks perform better when they

are trained on large and varied datasets. However, more complex models, larger

training datasets, and more parameters lead to a higher chance of overfitting, which

raises the importance of regularization.

17

We reviewed some regularization techniques that have been introduced to overcome

the mentioned problem. Another technique is Data Augmentation, a data-space

solution approaching the problem by enhancing the size and quality of the training

datasets by adding slightly different copies of existing data or synthetically created

data to the dataset to extract more information from them. Data augmentation is

vastly used in vision tasks due to its ease of implementation and effectiveness [11,

15–18].

As mentioned before, issues such as occlusion, viewpoint, lighting, background,

and more are extremely common in image classification, image recognition, and other

vision tasks. These issues can affect the model’s performance. Data Augmentation

aims to add these invariances to the dataset by enlarging the dataset in principled

ways so that the model can extract more information from augmented data. It should

be noted that while we want the augmented data to be reasonably dissimilar to the

original data, we still want them to be a correct representation of the original label.

Some of these label-preserving transformations are called data warping augmenta-

tions. Other augmentations, called oversampling, create new instances with the help

of some techniques such as generative adversarial networks (GANs), feature space

augmentation, and mixing images. These two groups are not mutually exclusive. We

will talk more about these augmentations in Section 2.4.1.

2.4 Related Work

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) started in 2010 to

evaluate algorithms for image classification and object detection at a large scale [19].

This competition led to the development of many significant models and algorithms.

In 2012, the winner of the ILSVRC was ALexNet [11], the first deep convolutional

neural network which had a crucial impact on further researches in the usage of

deep CNNs in classification tasks. The 2014’s winner was the Inception network, an

innovative CNN with kernels of different sizes processing in parallel [20]. A Residual

18

neural network (ResNet) with 152 layers was the winner of ILSVRC in 2015 [14].

These networks have residual blocks to extend the depth of the network using the

core idea of identity shortcut connection that skips one or more layers. In 2016

DenseNet, following the same idea as ResNet residual blocks, used dense blocks to

achieve a trainable model with more than 200 layers [21]. MobileNet was proposed

in 2017 as a lightweight deep neural network with far fewer parameters than most

neural networks [22]. MobileNet showed competitive performance on the ImageNet

dataset with the possibility of being used on low-power devices such as mobile phones

embedded vision applications [4].

In the previous section we discussed different regularization techniques such as

those focusing on models architectures leading to introduce a series of more complex

models including AlexNet [11], VGG-16 [23], ResNet [14], Inception-V3 [24], and

DenseNet [21], and also some of the functional solutions helping deep learning models

in tasks with smaller datasets. Dropout regularization, batch normalization, transfer

learning and pretraining were of this type.

Dropout seemed to be less effective in convolutional layers in comparison with

fully-connected layers [25]. This inefficiency has roots in two main factors: First,

convolutional layers with far fewer parameters than fully-connected ones need less

regularization. Second, when some pixels of an image data are dropped, it is likely

that their information still is passed on by their neighbouring pixels, which are still

active and usually share the same information with them. As a result, dropout

does not have the model averaging effect same as in the fully-connected layers but

instead makes convolutional layers robust to noisy inputs [1]. Many variations of

dropout were introduced in order to increase its effectiveness in convolutional layers.

SpatialDropout [25] randomly drops the whole feature map instead of individual

pixels to combat the issue of passing the same information by neighbouring pixels.

Considering a probability, max-drop [26] discards the maximal activation of feature

maps or channels. This approach performed better than dropout in convolutional

19

layers, but in CNNs with batch normalization, standard dropout outperformed both

max-drop and SpatialDropout. PatchShuffle [27] shuffles the pixels in local patches

while keeping the structures of the original images. This approach increased CNN

generalization, especially with small datasets and can be applied along with dropout

for better results.

In the following section, we will expand on the history of data augmentation as the

main focus of our research and another regularization technique that addresses the

overfitting from the perspective of the dataset.

2.4.1 Data Augmentation

This section will review the history of data augmentation techniques related to our

focus, i.e. improving Image Recognition models. Image Recognition models predict

an output label for each input image. However, results are extendable between other

Computer Vision tasks such as Object Detection or Semantic Segmentation [28, 29].

As mentioned in Section 2.3, data augmentation techniques can be divided into two

groups: data warping augmentations and oversampling augmentations. Data warping

augmentations are a group of label-preserving transformations such as adversarial

training, neural style transfer, geometric and colour transformations, and Random

Erasing. However, even data warping augmentations could be a non-label preserving

transformation in some applications, such as using Random Erasing in handwritten

digit recognition task. In that case, there is not any difference between an ‘8’ and a ‘6’

if the top part of the ‘8’ is randomly cropped out. Therefore, some domain expertise

and manual intervention may be needed depending on the dataset and task. Later

we will discuss more on Random Erasing.

Data augmentation is vastly used in practice when training convolutional neural

networks. In LeNet5 [30] data warping augmentations, including squeezing, scaling,

and horizontal shearing, is used to improve one of the first use of CNNs in handwritten

digit classification.

20

The two most popular data warping augmentations in deep CNNs training are

RandomCrop and HorizontalFlip. RandomCrop extracts random sub-patch from

the input image and, depending on the cropping reduction threshold, might not be

a label-preserving transformation. HorizontalFlip randomly flips the input image

horizontally. It is not a label-preserving transformation on datasets such as MNIST

or The Street View House Numbers (SVHN), which involves text recognition.

Bengio et al. show in [31] that data augmentation is more beneficial for deep ar-

chitectures than shallow ones. Oversampling augmentations are mainly to help the

model not be biased in labelling instances as the majority class. Random Oversam-

pling (ROS) and Intelligent Oversampling are two of these techniques approaching

class imbalance [32]. In the 2012 ILSVRC, AlexNet [11] was enhanced by applying

random crop, horizontal flip, mirroring, and PCA colour augmentation to randomly

adjust colour and intensity. These augmentations increased the training dataset size

by a magnitude of 2048.

Goodfellow et al. introduced Generative Adversarial Networks (GANs) in 2014

[33] as an approach to Generative Modeling using deep learning methods. In Genera-

tive Modeling, the model is used unsupervised to generate new samples with the same

characteristics as the input data by automatically learning the patterns in the original

set. GANs train generative models using two sub-models in a supervised manner: the

generator model trained to generate new examples and the discriminator model clas-

sifying generated examples as real (from the input data) or fake (generated). When

the generator model starts generating plausible examples, it will fool the discrimina-

tor model about half the time. That is when the adversarial training of both models

ends. Many works were published as GAN extensions [34–36].

Neural Style Transfer [37] is a great tool for Data Augmentation by manipulating

the CNN representations of the images so that the style of one image is transferred

to another one while keeping its original content. Neural Architecture Search (NAS)

[38] proposed a novel approach to meta-learning architectures using Reinforcement

21

Learning to train a recurrent neural network to design architectures with the highest

accuracy. In some later works [39, 40] meta-learning concepts from NAS is used in

Data Augmentation.

One of the interesting Data Augmentation techniques is Random Erasing (RE) [18]

which is inspired by the dropout regularization technique except being applied on the

input data instead of being used in the network architecture. RE randomly chooses a

rectangular patch of an image and erases its pixels with 0s, 255s, mean pixel values,

or random values. According to Table 2.1, using RE with random values outperforms

other versions.

Types of erasing value Baseline RE-R RE-M RE-0 RE-255

Test error value (%) 5.17± 0.18 4.31± 0.07 4.35± 0.12 4.62± 0.09 4.85± 0.13

Table 2.1: Test errors (%) on CIFAR-10 based on ResNet18 (pre-act) [16] with four
types of erasing value. In all experiments, the standard data augmentations (random
crop + random flip) are applied first. Baseline: Baseline model, RE-R: Random
Erasing model with random value, RE-M: Random Erasing model with mean value
of ImageNet 2012, RE-0: Random Erasing model with 0, RE-255: Random Erasing
model with 255 [18].

RE forces the model to pay attention to all parts of the image and not only a part

of it. It also combats the visual challenge of occlusion, when some parts of the object

are unclear, by preventing the model from overfitting to a specific visual feature in

the image. RE is easy to implement without the need for parameter learning. RE

reached some improvements over the previous baselines in image classification, object

detection and person reidentification domains. Table 2.2 shows results of using RE

for image classification task.

A similar study called Cutout Regularization [1] conducted contemporary with RE.

We follow Cutout in our research because of better performance and easier implemen-

tation than RE. The following section elaborates more on Cutout regularization as

the main technique inspiring our proposed approach.

22

Model CIFAR-10 CIFAR-100

ResNet-18-PreAct 5.17± 0.18 24.50± 0.29

ResNet-18-PreAct + RE 4.31± 0.07 24.03± 0.19

WRN-28-10 3.80± 0.07 18.49± 0.11

WRN-28-10 + RE 3.08± 0.05 17.73± 0.15

Table 2.2: Test errors (%) with ResNet-18-PreAct [16] and WideResNet [15] on
CIFAR-10 and CIFAR-100 [41]. In all experiments, the standard data augmenta-
tions (random crop + random flip) are applied first. RE: Random Erasing [18].

2.4.1.1 Cutout

Cutout [1] is one of the popular regularization techniques in Convolutional Neural

Networks, typically used as a baseline in image classification experiments. Cutout

augments each data point and creates different occluded versions of them by randomly

covering a rectangular area in them.

To some extent, Cutout is similar to dropout in adding noise to the dataset, but

there are two main differences. First, in Cutout, a contiguous part of the image is

dropped out instead of scattered pixels. Second, dropping units in Cutout happens

only in the input layer rather than intermediate layers, resulting in removing the

masked parts from all subsequent feature maps. In contrast, when a feature is re-

moved from one feature map in dropout and its variations, it may not be removed

from the other feature maps. This happens because each feature map is considered

individually. These inconsistencies among feature maps result in a noisy representa-

tion of the images making the model more robust to noisy inputs. Based on these

differences, Cutout is more of a data augmentation technique than a dropout variant

as it generates novel images for the network.

Table 2.3 from the Cutout paper shows the test error results of ResNet18 [16] and

WRN-28-10 [15] models on CIFAR-10 and CIFAR-100 datasets with and without

applying Cutout. Cutout has increased their accuracies in a setting with other regu-

23

larization techniques such as data augmentation, dropout, and batch normalization.

Model CIFAR-10 CIFAR-100

ResNet18 4.72± 0.21 22.46± 0.31

ResNet18 + Cutout 3.99± 0.13 21.96± 0.24

WRN-28-10 3.87± 0.08 18.80± 0.08

WRN-28-10 + Cutout 3.08± 0.16 18.41± 0.27

Table 2.3: Test error rates (%) on CIFAR datasets. In all experiments, the stan-
dard data augmentations (random crop + random flip) are applied first. Results are
averaged over five runs [1].

Cutout Motivation

The primary motivation comes from the object occlusion problem, one of the common

issues in the Computer Vision domain. In order to understand what features the CNN

detects, they [1] visualized feature maps for input images after applying Cutout on

them. The visualization results show that masked regions in Cutout will be dropped

out from all the feature maps, which means no trace of the occluded parts remains

in the final representation. As a result, the model cannot see the occluded parts in

each epoch and is forced to learn from all image contexts rather than focusing only on

certain visual features. This is how Cutout helps to regularize the model and increase

the test accuracy.

Cutout originally intended to remove the prominent visual features of the images to

help the model consider the less important ones. In order to accomplish this purpose,

similar to maxdrop [26], they extracted and sorted the most activated features from

the activation maps (i.e. feature maps) of the images in each epoch. Then they

upsampled each feature map to the input resolution and made a binary mask out

of them by setting the mean feature map value as a threshold. These binary masks

were laid over the original images in the next epoch before passing them through the

network. Despite the good results of this earlier version, the authors of the paper [1]

24

chose to randomly mask a fixed-size part of the images in all their experiments due

to the same satisfying results with less complexity and computational cost. Figure

2.11 shows the first and final versions of Cutout.

(a)
(b)

Figure 2.11: (a) An early version of Cutout on CIFAR-10 dataset. This version
mostly masks part-level features of the image, such as heads, legs, or wheels. (b)
Final version of Cutout applied on CIFAR-10 dataset [1].

Cutout Implementation Details

Cutout is applied on a normalized dataset as a Dataloader’s transform, following

RandomCrop and HorizontalFlip augmentations on each data point in each epoch.

In order to mask an image randomly, Cutout chooses one point inside the image

(including the borders) as the center of the fixed-size black mask. This way of masking

may result in laying some parts of the mask outside of the image, which is shown to

be crucial in achieving high performance because the model gets the chance to see

bigger and more diverse areas of the image in some epochs. The original paper claims

that an alternative approach is to apply border-constrained masks, i.e. the whole

mask should lay inside the image, with a probability of 50% so that model can see

the whole original image in some epochs.

The paper performs a grid search to find the optimal side length for the square

mask. As it is shown in Figure 2.12 the model accuracy has a parabolic behaviour

with respect to the Cutout size. The accuracy increases with the increase in Cutout

size up to an optimal point, and then accuracy decreases until it gets below that of

25

the baseline model. This grid search is done on the validation set of CIFAR datasets

resulted in choosing a mask size of 16×16 and 8×8 pixels when training on CIFAR-10

and CIFAR-100 datasets, respectively. This results can be observed in Figures 2.12a

and 2.12b which are obtained from CIFAR-10 and CIFAR-100 datasets respectively.

(a) CIFAR-10 (b) CIFAR-100

Figure 2.12: Cutout patch length with respect to validation accuracy with 95% con-
fidence intervals (average of five runs). Tests run on CIFAR-10 and CIFAR-100
datasets using WRN-28-10 and standard data augmentation. Baseline indicates a
model trained with no Cutout [1].

According to the above experiment, with the increase of the number of classes, the

optimal mask size decreases. The reasoning can be that when we have more classes,

i.e. the more fine-grained detection is required, the nuanced details are more useful

than the context of the image in identifying the classes.

Algorithm 1 shows the Cutout method with arguments of X as the input tensor

image of size c× h×w (channel× height×width), Nh as the number of the masks,

and L is the mask size. Tensor is a multi-dimensional matrix containing elements of

a single data type. M is a tensor of ones that keeps Nh masks created in the for loop

(starting at line 2). Cy and Cx are the mask center chosen randomly as a point inside

or on the image’s border, and xis and yis are the mask four corners calculated based

on the chosen center (Cx, Cy) and the mask size (L×L). As Cutout uses zero masks,

it sets pixels’ values in the mask location to zero (line 9). Finally, M is expanded

to be the same size as the original image, and by elementwise multiplication, masked

26

pixels are set to zero in the original image.

Algorithm 1 Cutout

Input: (X ∈ Rc×h×w, Nh, L)
1: M ← tensor of ones sized c× h× w
2: for i← 1 to Nh do
3: Cy ← random(0, h)
4: Cx ← random(0, w)
5: y1 ← max(Cy − ⌊L/2⌋, 0)
6: y2 ← min(Cy + ⌊L/2⌋, h)
7: x1 ← max(Cx − ⌊L/2⌋, 0)
8: x2 ← min(Cx + ⌊L/2⌋, w)
9: M [(x, y)]← 0 , x1 ≤ x < x2 and y1 ≤ y < y2 and all channels
10: end for
11: return X ∗M

While loading the data, Cutout is performed on the CPU as a data transform along

with other augmentations. “Hiding” the Cutout computational cost by running it on

the CPU, parallel with the main training task running on the GPU, increases the

performance virtually free [1].

As explained above, DeVries and Taylor claim that removing features with high

activations neither improves the performance nor the computational cost compared

to randomly masking out the images. That is why they follow the latter approach.

As another attempt to substitute the random approach of randomly masking the

images, we propose to use the model itself to find and mask the most prominent part

of the images. We conjecture that by choosing the size and location of the masks

more wisely, we can improve the performance of Cutout regularization. Next chapter

will expand on our idea.

27

Chapter 3

Our Approach

This chapter will first introduce MANGO, the approach from which our core idea

comes, and then explain our system design and modifications to the original Cutout.

3.1 MANGO: Model Agnostic explaNation for im-

aGe classificatiOn

MANGO1 is a model-agnostic tool developed to answer this important question: In

a classification task, which parts of the image are relevant to the model’s prediction?

Or, in other words, which parts of the image, if not seen by the model, would mostly

affect its decision? [42] Considering MANGO as a model-agnostic approach means

it can be used for any trained machine learning algorithm because MANGO will use

them as a black-box to address the question above.

Given an image, MANGO tries to answer the above questions by building a tree

with nodes containing a properly masked version of the original image. Nodes at

the same level have a mask of the same size, and the mask size will decrease while

moving down the tree. We will elaborate on how MANGO decides on expanding a

tree at each level by following the example image in Figure 3.1 representing an Indian

Runner duck.

A pre-trained ResNet50 model on ImageNet is used to see the changes in the model

1The initial framework was developed by Jason Cannon and Mario Nascimento at Huawei Canada
(Distributed Data Storage and Mgmt Lab)

28

Figure 3.1: An Indian Runner duck1.

accuracy while covering some parts of the image. Note that, MANGO being model

agnostic, any other model could be plugged in instead. The model initially predicts

the Figure 3.1 to be a “goose” with 95% confidence. As we cover different parts of

the image, the classifier’s confidence decreases by different amounts. For instance,

Figure 3.2 shows that covering the up-right quarter of the image, i.e. Figure 3.2b,

causes the largest drop in confidence. This drop in confidence might be due to the

higher importance of this part to the classifier compared to the other parts. Having

this assumption, we want to see if there is any subpart in the up-right corner which

matters even more than the whole up-right corner to the model and so forth.

(a) goose 85% (b) goose 10% (c) goose 70% (d) goose 40%

Figure 3.2: First level of the MANGO tree.

According to Figure 3.3, covering just the bottom-left corner of the initial corner

results in the highest accuracy drop. Even though the accuracy increases a bit from

10% to 20%, still 20% accuracy has a significant difference with other accuracies from

Figure 3.3.

1Image from https://wildacres.ca/indian-runner-ducks/

29

https://wildacres.ca/indian-runner-ducks/

(a) goose 70% (b) goose 60% (c) goose 20% (d) goose 85%

Figure 3.3: Second level of the MANGO tree.

As shown in Figure 3.4, in the next level of the tree, uncovering some parts of a

previously covered part of the image results in confidence gain for the model, which

means uncovering more is not helpful for our purpose. The complete MANGO tree

for this example is depicted in Figure 3.5.

(a) goose 80% (b) goose 80% (c) goose 70% (d) goose 80%

Figure 3.4: Third level of the MANGO tree.

Considering a confidence threshold to determine when to uncover more parts of a

masked section can change the MANGO result. Without any thresholds, the most

affecting part of the image ends up being the red area in Figure 3.2b whereas it seems

what distracted the model to predict the Indian Runner duck as a goose is specifically

its long neck. As a result, it seems to be helpful to have a threshold in some examples.

Figure 3.6 shows the relation between model confidence and the depth of the tree.

The confidence will decrease by increasing the depth to a minimum point where the

model starts gaining confidence. Different thresholds will determine which point in

the diagram is chosen to be the minimum confidence.

The conjecture about these steps is that when the model starts to gain confidence,

the (sub-)parts getting uncovered are the most effective part of the image with respect

30

70 % 80 %80 %80 %

20 % 85 %60 %70 %

70 %

95 %

40 %10 %85 %

Figure 3.5: The tree build by MANGO algorithm.

to the model’s first prediction (which is “goose” in our example). This is the main

idea we are following in our proposed approach, i.e. using the model itself to find the

most determining part of the image and cover it. We conjecture that by applying the

idea taken from MANGO to replace the randomness used in the Cutout to choose the

location of the masks, we can train a more generalized model with higher accuracy.

In the following section, we will expand on our approach and the reasoning behind

31

Co
nf

id
en

ce

Depth

10%
Confidence

20%
Confidence

Figure 3.6: Confidence with respect to the depth of the tree. The confidence will
decrease by increasing the depth to a minimum point where uncovering more from
the masked part will increase the confidence.

our assumption of being effective.

3.2 Main Approach

As explained in the previous chapter, the authors of [1] claim that relying on random-

ness in choosing the mask locations is helpful enough without any extra cost. Despite

their claim, we hypothesize that we can improve the accuracy by changing the ran-

dom approach in Cutout for masking images to an approach using the MANGO idea

to ask the model which part to mask.

According to 2.4.1.1, Cutout is set as a data transformation of a data loader and in

each epoch is applied to each data point while loading the data with the data loader.

We define a new function described in Algorithm 2 and instead of applying Cutout,

we apply this new method on the data points.

According to Algorithm 2, given the inputs of an image tensor (X), training model

(MODEL), number of the branches at each level (N), initialized mask size (L), and

minimum mask size (lmin) MANGO will return target, a copy of the input image

which might be partially masked. The decision of whether to mask the input image

or not and where to put the mask is made in the while loop starting at line 3. First,

32

Algorithm 2 MANGO

Input: (X ∈ Rc×h×w,Model,N, L, lmin)
1: probability, label← Model(X)
2: target← X
3: while L ⩾ lmin do
4: Masked Imgs← Matrix of size N × c× h×w containing masked versions of

the image with masks of size L× L
5: b← 0
6: for n← 1 to N do
7: probabilityn ← Model(Masked Imgsn)[label]
8: if probabilityn < probability then
9: probability ← probabilityn
10: b← n
11: target←Masked Imgsn
12: end if
13: end for
14: if b is not 0 then
15: L← L/N
16: else
17: return target
18: end if
19: end while
20: return target

the label and the probability of the label are predicted using the given MODEL (line

1). Creating child nodes, calculating the model confidence for the root label for each

child, and deciding on which branch to expand at the next level, is done in the while

loop.

In all our experiments, the initial mask size L is set to 16, and it will get updated

at each level. The while loop will go on to a depth where mask size L at that level

gets to lmin. N child nodes with a square-shaped masked part of size L × L are

created in each iteration. In order to create the child nodes, N tensors of ones with

the same shape as the input image will be created. Then according to the size of

the mask in that depth of the tree, a square part of each of these N tensors will be

filled with the colour of the mask, which will be 0 (or black) following the Cutout.

Then the output probability of the model for each masked child given the root label

33

is calculated in line 7. The child with minimum probability will be the branch (b) to

be expanded in the next iteration with a mask of size (L/N)× (L/N). This loop will

go on till none of the children has a smaller probability than the parent node, or we

reach the lmin mask size. In the first case, the parent node of that level which also was

last assigned to target, will be returned (lines 16, 17). The returned target can even

be the original image without any masked part. In the second case, the last image

assigned to target, which is the one with minimum confidence up until the depth we

went down, will be returned (line 20).

As with Cutout, our approach can be used with other regularization techniques for

better performance. However, we consider our proposed approach of potential because

it allows us to use any powerful pre-trained models leading to possible improvements.

According to the above explanations, some parameters or factors are important in

the algorithm’s performance. In the rest of the section, we will go over these factors,

see the possible choices, and argue which are intuitively best to choose.

What is the Model() inside Algorithm 2 and how is it chosen?

The Model() can be either a pre-trained model or a newly initialized model. In

both cases, the model is updated and passed to the MANGO function. In each call

to MANGO, the latest update of the training model decides where to put the masks

on each image.

If we use a fixed pre-trained model without any updating, in almost all epochs for

a specific image data point, the model’s decision on the location and size of the mask

will be the same. As a result, for almost all the epochs, a fixed masked version of

the data points will be used as the training data leading to a very low data diversity

which is against one of the main goals of using data augmentation. However, passing

the training model to the MANGO function every epoch after updating it produces

many more different versions of each data point, increases data quantity and diversity,

and hopefully results in higher accuracy and a more generalized model.

34

How is the threshold being applied while comparing confidences?

As explained in the previous section, a confidence threshold can be considered when

comparing the probability of children to their parents. Adding such a threshold will

change the if condition in line 8 of Algorithm 2 to a condition like:

probabilityn < τ × probability (3.1)

Where τ is the threshold which can be a fixed number or can vary depending on the

level of the tree. Later we will show that running experiments with a fixed threshold

of 1 and a minimum limit on mask size is efficient enough for our purpose. That is

why we do not bring τ in our algorithm.

Why do we limit the height of the tree?

The while condition in line 3 is the condition limiting the height of the tree with the

help of variable lmin as the minimum size of the masks. The reason behind setting

a limit for the mask size, and thus the depth we get to, is that by minimizing the

mask length, the ratio of the masked area to the image area ((lmin × lmin)/(w × h))

is minimized as well. If this ratio becomes too small to not be distinguishable in the

original image, the masking can lose its effectiveness.

This issue specifically may happen when applying zero masks on CIFAR datasets

where images have a small size of 32× 32 and in most of the images, the main parts

of the images are black or dark-coloured after normalizing. As a result, such a small

masked area is not distinguished or does not change most images. Figure 3.7 shows a

random batch of images from both CIFAR-10 and CIFAR-100 datasets after applying

the standard augmentations (random crop and horizontal flip) and being normalized

using standard deviation and per-channel mean.

On the other side, increasing the depth adds to the algorithm cost by making the

while loop longer, resulting in more calls to the model for each new child node at the

new level.

35

(a) CIFAR-10 (b) CIFAR-100

Figure 3.7: A sample batch of CIFAR datasets after applying Random Crop, Hori-
zontal Flip and Normalization.

Due to all the above reasonings, we will limit the depth of the tree instead of letting

the algorithm go down to really small and impractical mask sizes such as 1× 1 (one

pixel) for CIFAR images.

What is the mask colour?

Another important parameter is the colour of the masks. Even though Cutout only

relies on zero masks, i.e. masks filled with zero value pixels, which will be an all-

black mask, we hypothesize that MANGO can benefit from having masks of different

36

colours.

Each mask can still be mono-colour, but instead of being black, the colour can

be chosen randomly for each image each time running MANGO. This approach will

decrease the chance of a zero mask getting lost between many zero pixels of a nor-

malized CIFAR image. However, there is still a possibility of the mask and the part

of the image mask being laid on to be matched or be close in colours causing the

same previous problems lessening the effect of the mask. Following the idea of the

most efficient version of Random Erasing from Table 2.1, we can choose a random

colour between 0 and 255 for each pixel of the mask to combat the mentioned issue.

As a result, the probability of all mask’s pixels matching with the masked area is

almost zero, solving the issue mentioned above. We will refer to this approach as

“Rand-Per-Pixel”.

Intuitively, masking a portion of the image with a mask that contrast the original

pixels’ colours the most, seems to be the best practise. In order to apply this idea,

we can calculate the average pixel values ranging from 0 (black) to 255 (white) for

each channel of Red, Green and Blue, and then for each mask convert the pixel values

below the average to 255 and those above the average to 0. This approach will result

in having 8 different pixel values which will result in having pixels of colour black (R

=0, G = 0, B = 0), red (R =255, G = 0, B = 0), green (R =0, G = 255, B = 0),

blue (R =0, G = 0, B = 255), yellow (R =255, G = 255, B = 0), magenta (R =255,

G = 0, B = 255), cyan (R =0, G = 255, B = 255), and white (R =255, G = 255,

B = 255). We will refer to this approach as “Faredge” method. Figure 3.8 shows

a random batch from CIFAR-10 dataset which is masked by MANGO with each of

above different colouring approaches.

37

(a) (b)

Figure 3.8: A sample batch of CIFAR-10 dataset being masked by MANGO using a
Resnet18 model and following the (a)Rand-Per-Pixel and (b) Faredge masking.

How does the number of branches at each level affect the algorithm per-

formance?

N is the parameter determining the number of child nodes or branches at each level.

Increasing N will increase the cost of the algorithm exponentially. If number of the

branches is multiplied by a constant variable k, then number of the nodes at level l

of the tree will be kl times more. Moreover, having more branches means having a

smaller mask size at each level which needs close observation in order not to pass the

threshold for the mask size and height of the tree (mentioned in previous paragraphs).

38

On the other hand, increasing N can be beneficial in dividing the image (or a

sub-part of the image) into smaller areas and increasing the mask coverage diversity,

which will increase the chance of covering and only covering the most determining

part of the image. Figure 3.9 shows an example of setting N = 9.

Figure 3.9: Applying MANGO with N = 9 on a batch of CIFAR-10 dataset using
Resnet18 model.

We conjecture that increasing the number of branches might be helpful in terms

of defining more fine-grained masks as far as it does not surpass our computational

resources and does not push our limits for the size of the masks.

39

3.3 Summary of Our Approach

This chapter proposed an approach using the main idea behind the MANGO algo-

rithm to see if replacing it with the randomness in Cutout can beat its efficiency.

Instead of randomly masking as Cutout does, we use a model to identify which por-

tion of the image affects the model decision the most, and then we will mask out those

regions while training. The goal behind our approach is to encourage the model to

pay attention to the entire image and not only a subset of it. Also, it combats the

visual challenge of occlusion. We also propose to apply some modifications to the

size and colour of the masks to see if they can increase the accuracy of the original

MANGO.

In the next chapter, we will design, run, and analyze experiments to evaluate

our approach and to see what modifications can make it better and whether we can

surpass Cutout’s efficiency or not.

40

Chapter 4

Experiments

4.1 Setup

We run our experiments on a TITAN RTX GPU and report the average result over

5 runs. We follow all the settings mentioned in the original Cutout paper [1] for the

sake of fair comparison. In the two following sections, we explain our settings for the

datasets and the models we use in detail.

4.1.1 Datasets

We use two well-known natural image datasets of CIFAR-10 and CIFAR-100 in our ex-

periments and evaluations. CIFAR datasets are collected by Alex Krizhevsky, Vinod

Nair, and Geoffrey Hinton from 80 million Tiny Images dataset [43][41] consisting

of 60000, 32 × 32 colour images used to train and test different Machine Learning

models.

CIFAR-10 consists of 10 classes, each with 5000 training and 1000 testing im-

ages. Figure 4.1 shows 10 randomly chosen pictures from each class in this dataset.

CIFAR-10 divides into five training batches and one testing batch, each of size 10000

images. Test batches include 1000 randomly selected images from each of 10 classes,

but training batches may not include the same number of images from each class.

However, the total number of images from each class in all batches is the same.

CIFAR-100 has 100 classes grouped into 20 superclasses giving each image a fine

41

Figure 4.1: CIFAR-10 classes with 10 random examples taken from each class [44].

label (actual class) and a coarse label (superclass). Each class of CIFAR-100 has

500 training images, and 100 testing images [41, 44]. Because of the visual similarity

between subclasses of each superclass, CIFAR-100 needs a more fine-grained recog-

nition compared to CIFAR-10. Table 4.1 lists 20 superclasses and 100 subclasses in

CIFAR-100.

The Criteria for assigning a label to an image of CIFAR datasets were as follows:

• The class name should stand high on the list of probable answers to the question

of “What is in this picture”?

• Labellers rejected any line drawings as the images should be photo-realistic.

• Only one prominent instance of the class object should be in the image.

• The viewpoint from which the object is being seen may be unusual, or the object

could be partially occluded, but its identity should remain clear to the labeller.

Following the Cutout settings, in our experiments and evaluations, images are first

42

Superclass Classes

aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips

food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers

household electrical devices clock, computer keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf

large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk

non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman

reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel

trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train

vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 4.1: CIFAR-100 superclasses and subclasses.

zero-padded by 4 pixels meaning adding 4 zero (black) pixels on each side to make

them a 40×40 image, and then we randomly crop a 32×32 part of it. Next, we apply

the Random Horizontal Flip on the images with the probability of 50%. Finally, the

datasets are normalized using the standard deviation and mean value per channel.

43

4.1.2 Networks

We use two architectures in our experiments on CIFAR datasets: ResNet18, which

is a deep residual network with a depth of 18 [14], and WRN-28-10 which is a wide

residual network with a depth of 28 [15] and a widening factor of 10. Also, we apply

dropout with a drop probability of p = 0.3. All the settings for the training process

are the same as the training phase in Cutout [1], i.e. the models are trained for 200

epochs using batches of size 128. The learning rate starts from 0.1 and is divided by

5 after epochs 60, 120, and 160. As for the loss function, we use cross-entropy loss.

Also, Stochastic Gradient Descent is used for optimization with Nesterov momentum

of 0.9 and weight decay of 5e-4. In the testing phase, we calculate the prediction

accuracy using Equation (2.8).

4.2 Results

4.2.1 Original MANGO

In all experiments, we apply MANGO on each batch of training data with the proba-

bility of 50%. Our preliminary results suggest that by doing so, we enhance the time

efficiency without affecting the accuracy (taking the idea from [1] as mentioned in

Section 2.4.1.1). We present the results of applying MANGO on the training data

in Table 4.2. The results are averaged over 5 runs. As shown before in Table 2.3,

Cutout beats the base models on CIFAR datasets using WRN-28-10 and ResNet18

models. According to Table 4.2, MANGO slightly outperforms Cutout by decreasing

the error of ResNet18 by 0.08% and 0.40% when applied on CIFAR-10 and CIFAR-

100 datasets, respectively. Also, the result for the WRN-28-10 model is improved by

0.04% on CIFAR-10 and by 0.40% on CIFAR-100.

One drawback of MANGO compared to Cutout is the time efficiency. As shown in

Table 4.2, MANGO is more than twice slower than Cutout. This is due to the several

calls to model to pass the test data in order to find the mask location. Depending

44

on our application, this extra cost might be tolerable considering the improvement in

the results.

Model CIFAR-10 CIFAR-100 Time / Epoch

ResNet18 (Baseline) 4.81± 0.13 22.00± 0.09 20.2

ResNet18 + Cutout 3.89± 0.28 22.00± 0.14 22.8

ResNet18 + MANGO 3.81± 0.11 21.60± 0.28 53.1

WRN-28-10 (Baseline) 3.83± 0.02 18.80± 0.17 83.0

WRN-28-10 + Cutout 3.02± 0.11 18.20± 0.17 83.0

WRN-28-10 + MANGO 2.98± 0.02 17.80± 0.05 204.2

Table 4.2: Comparing test error rates (%) and the average time per epoch (s) for
ResNet18 and WRN-28-10 models running on the CIFAR-10 dataset using baseline,
Cutout, and MANGO. Baseline indicates a model trained with standard augmenta-
tions of mirror + crop without using Cutout or MANGO. Cutout implementation is
based on https://github.com/uoguelph-mlrg/Cutout. Results are with 95% confi-
dence intervals and averaged over five runs.

In the following sections of this chapter, we will evaluate different versions of the

MANGO using the ResNet18 model on the CIFAR-10 dataset. We concentrate only

on one pair of model and dataset in these experiments, assuming that different vari-

ations will affect qualitatively the same other models and datasets.

4.2.2 Colored Mask MANGO

As mentioned previously in Section 3.2, we follow two approaches for choosing the

colour of the mask: Rand-Per-Pixel and Faredge. The results of colouring the masks

with both mentioned methods while applying the MANGO on the CIFAR-10 dataset

using the ResNet18 model are shown in Table 4.3. The results are averaged over 5

runs.

According to Table 4.3, using the Rand-Per-Pixel or Faredge approach to colour

the masks is not improving the result of MANGO. Among these two approaches,

Rand-Per-Pixel has slightly better performance than Faredge, but both approaches

45

https://github.com/uoguelph-mlrg/Cutout

have considerably more cost than Cutout. One reason for the difference between

the two colouring approaches could be the full coverage of the Rand-Per-Pixel mask

over the masking area compared to the Faredge coloured mask. As it is shown in

Figure 3.8 when using Faredge, the masked area tends to maintain the content just

with different colouring, whereas Rand-Per-Pixel hides the content of the masked area

completely. We can justify the superiority of the black masks in Cutout and original

MANGO over Faredge masks with the same reasoning.

Method Error Time / epoch

Original MANGO 3.81± 0.11 53.1

Rand-Per-Pixel 3.97± 0.11 71.4

Faredge 4.11± 0.12 142.0

Table 4.3: Test error rates (%) of two mask colouring approaches in MANGO and the
average time per epoch (s) compared with the original MANGO. Experiments are on
the CIFAR-10 dataset using ResNet18, with 95% confidence intervals averaged over
five runs.

4.2.3 MANGO with Different Number of Branches

In all above mentioned experiments the variable lmin from Algorithm 2 is set to be

8 and the threshold τ from Equation 3.1 is set to be 1. As described in Section 3.2,

we want the ratio of the masked area over the image area to stay at a reasonable

amount. Setting the lmin < 8 results in the possibility of having a mask of size 4× 4

or less, which, considering the small size of CIFAR images, makes the mentioned ratio

very small (less than 1.5%). Also, having a threshold with the same idea of MANGO

explained in Section 3.1 will encourage the algorithm to increase the depth and thus

decrease the mask size. As a result, we set the threshold τ = 1, and we control the

depth of the tree by thresholding the mask size and using the variable lmin = 8. In

this section, we will analyze an experiment that is the only one with lmin = 3.

As mentioned in Section 3.2, MANGO may benefit from having more branches at

46

each level. In order to verify this, we run experiments on the CIFAR-10 dataset using

ResNet18 and setting the N = 9 from Algorithm 2. As we want to divide each side

of the image (i.e. h and w) equally, instead of dividing each side to 2 as it is in the

original MANGO, we divide each side to 3, which results in N = 9. The lmin is set

to 3 and the initial mask size is L = 11. Table 4.4 shows the result of this version

of MANGO averaged over 5 runs. As the results suggest, increasing the number

of branches did not help the model’s performance or time efficiency. The nuanced

difference in error between this version and the original MANGO could be due to the

different mask sizes. As mentioned in Section 2.4.1.1, according to [1] the optimum

mask size for CIFAR-10 dataset is 16 × 16 and in the original MANGO the masks

are either 16× 16 or 8× 8. Thus, the original version shares more similarity with the

Cutout’s optimum mask size than the latter version where masks are either 11 × 11

or 10 × 10 in the first level and 5 × 5 or 3 × 3 in the second level. The increase in

time is due to the increase in the number of the nodes at each level which will result

in a higher cost for MANGO with N = 9 as explained in Section 3.2.

Method Error Time / Epoch

Original MANGO 3.81± 0.11 53.1

MANGO with N = 9 3.89± 0.08 91.2

Table 4.4: Test error rate (%) and the average time per epoch (s) of MANGO with
N = 9 compared with the original MANGO. Experiments are on CIFAR-10 dataset
using ResNet18. Results are with 95% confidence intervals averaged over five runs.

4.2.4 Comparing MANGO Variants

As it is shown in Figure 4.2, all versions of MANGO have comparable performance

to Cutout. Even though all versions of MANGO showed comparable results in our

experiments, none of them have superiority over the original one. We plot Cutout

versus original MANGO in Figure 4.3 during all 200 epochs of training and also in

the last 40 epochs in order to see the final improvements of MANGO over Cutout

47

more clearly. According to these two figures, with little difference, MANGO reaches

a higher accuracy than Cutout.

Figure 4.2: Accuracy of all versions of MANGO VS Cutout using CIFAR-10 dataset
and ResNet18. Results averaged over 5 runs.

4.2.5 MANGO’s Effect on Activations

In this section, we plot and compare the magnitude of feature activations to clarify

and compare the effects of the different augmentation approaches on the data.

In Figure 4.4 we use a ResNet18 model trained on CIFAR-10 to calculate and

compare the magnitude of feature activations in all residual blocks of the model,

averaged over all test samples from CIFAR-10 and sort them in descending order.

The plotting is done in three settings: applying Cutout, applying MANGO, and

applying none of them, represented as the baseline model. We apply the standard

data augmentations (mirror + crop) before any other augmentation method in all

settings. The configurations for MANGO are the same as those mentioned in Section

4.1, and configurations for Cutout are the same as the default settings from [1].

According to Figure 4.4 in the first layers of the network, we have more differences

in the magnitude of the activations compared to the deeper layers. Using MANGO

48

(a)

(b)

Figure 4.3: (a) Accuracy of MANGO VS Cutout run over CIFAR-10 dataset using
ResNet18 and averaged over 5 runs. (b) Last 40 epochs of results from Figure 4.3a.

strengthens the activations more than Cutout and both more than the base model.

In [1], the authors claim that the greater improvement of activations in shallow layers

compared to the deeper layers proves the fact that Cutout encourages the model to

consider more diverse features instead of focusing only on a small subset of features.

49

This might be due to the fact that shallower layers in deep neural networks usually

detect the more general features of the images, e.g. corners, colours conjunctions etc.,

whereas the last layers detect more invariant class-specific features [45]. Figure 4.4

shows that MANGO makes the difference between the activations of the first and

last layer even more than the Cutout. With the same reasonings from [1] we can say

MANGO performs better than Cutout in encouraging the model to take into account

more diverse features, thus helping it to generalize better.

(a) Average of activations magnitude in the 2nd residual block.

50

(b) Average of activations magnitude in the 3rd residual block.

(c) Average of activations magnitude in the 4th residual block.

Figure 4.4: Feature activations’ magnitude averaged over all test samples, sorted
by descending value. A baseline ResNet18, a ResNet18 trained with Cutout, and a
ResNet18 trained with MANGO are compared at 3 residual blocks of different depths.

51

Chapter 5

Conclusion and Future Work

5.1 Thesis Summary

In this thesis, we proposed MANGO, a new data augmentation method that follows

the idea of the Cutout regularization technique. In our method, we use the model

to find the location of the mask on each training data point based on the effect

of the covered area on the model’s prediction result. By doing so, we aimed at

encouraging the model to pay attention to the full context of the image and not only

focus on prominent features. Our experiments on CIFAR datasets using WRN-28-10

and ResNet18 networks proves that MANGO improves the model’s performance in

the image classification task by increasing the network generalization and making it

more robust to issues such as occlusion.

Our experiments show that Cutout is more efficient in time with slightly less accu-

racy than MANGO. This observation can validate that a computationally cheaper and

conceptually simpler approach of randomly choosing the mask locations as Cutout

does, is efficient enough.

5.2 Future Work

Our experiments only focus on the Image Classification domain. It will be interesting

to see how MANGO will perform in other vision tasks such as Object Detection

or Person Re-identification (re-ID). Also, it might be helpful to parameterize some

52

elements in the MANGO algorithm, such as the shape or number of the masks and

find an optimal setting for them. For instance, we will have two masked areas in circle

and triangle shapes on one image. In all these possible future studies, the challenge

of making the MANGO more cost-efficient remains to be addressed.

53

Bibliography

[1] T. DeVries and G. W. Taylor, Improved regularization of convolutional neural
networks with cutout, 2017. arXiv: 1708.04552 [cs.CV].

[2] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[3] Cs231n convolutional neural networks for visual recognition. [Online]. Available:
https://cs231n.github.io/.

[4] C. S. Nielsen, Improving image classification through generative data augmen-
tation, 2019. doi: 10.11575/PRISM/10182. [Online]. Available: https://prism.
ucalgary.ca/handle/1880/110365.

[5] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks
in classification,” arXiv preprint arXiv:1702.05659, 2017.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[7] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015. arXiv: 1502.03167 [cs.LG].

[8] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

[9] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization: A
survey,” IEEE transactions on neural networks and learning systems, vol. 26,
no. 5, pp. 1019–1034, 2014.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 2009, pp. 248–255. doi: 10.1109/CVPR.2009.
5206848.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing
systems, vol. 25, pp. 1097–1105, 2012.

[12] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese, “Taskon-
omy: Disentangling task transfer learning,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 3712–3722.

54

https://arxiv.org/abs/1708.04552
https://cs231n.github.io/
https://doi.org/10.11575/PRISM/10182
https://prism.ucalgary.ca/handle/1880/110365
https://prism.ucalgary.ca/handle/1880/110365
https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

[13] D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why does unsupervised
pre-training help deep learning?” In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, JMLR Workshop and Con-
ference Proceedings, 2010, pp. 201–208.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[15] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[16] K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual net-
works, 2016. arXiv: 1603.05027 [cs.CV].

[17] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, Cutmix: Regularization
strategy to train strong classifiers with localizable features, 2019. arXiv: 1905.
04899 [cs.CV].

[18] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data aug-
mentation,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, 2020, pp. 13 001–13 008.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115, no. 3,
pp. 211–252, 2015.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9.

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 4700–4708.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp. 2818–2826.

[25] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object
localization using convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2015, pp. 648–656.

55

https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1905.04899
https://arxiv.org/abs/1905.04899

[26] S. Park and N. Kwak, “Analysis on the dropout effect in convolutional neural
networks,” in Asian conference on computer vision, Springer, 2016, pp. 189–
204.

[27] G. Kang, X. Dong, L. Zheng, and Y. Yang, Patchshuffle regularization, 2017.
arXiv: 1707.07103 [cs.CV].

[28] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[29] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, Springer, 2015, pp. 234–241.

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[31] Y. Bengio, F. Bastien, A. Bergeron, N. Boulanger–Lewandowski, T. Breuel, Y.
Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache, X. Glorot, X. Muller,
S. Pannetier Lebeuf, R. Pascanu, S. Rifai, F. Savard, and G. Sicard, “Deep
learners benefit more from out-of-distribution examples,” in Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, G.
Gordon, D. Dunson, and M. Dud́ık, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 15, Fort Lauderdale, FL, USA: PMLR, 2011, pp. 164–172.
[Online]. Available: http://proceedings.mlr.press/v15/bengio11b.html.

[32] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, 321–357, 2002, issn: 1076-9757. doi: 10.1613/jair.953. [On-
line]. Available: http://dx.doi.org/10.1613/jair.953.

[33] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014.

[34] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[35] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2223–2232.

[36] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196,
2017.

[37] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,”
arXiv preprint arXiv:1508.06576, 2015.

56

https://arxiv.org/abs/1707.07103
https://doi.org/10.1109/5.726791
http://proceedings.mlr.press/v15/bengio11b.html
https://doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953

[38] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[39] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart augmentation learning an
optimal data augmentation strategy,” Ieee Access, vol. 5, pp. 5858–5869, 2017.

[40] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment:
Learning augmentation policies from data,” arXiv preprint arXiv:1805.09501,
2018.

[41] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[42] C.-H. Chang, E. Creager, A. Goldenberg, and D. Duvenaud, “Explaining im-
age classifiers by counterfactual generation,” arXiv preprint arXiv:1807.08024,
2018.

[43] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A large
data set for nonparametric object and scene recognition,” IEEE transactions
on pattern analysis and machine intelligence, vol. 30, no. 11, pp. 1958–1970,
2008.

[44] A. Krizhevsky, Cifar-10 and cifar-100 datasets. [Online]. Available: https://
www.cs.toronto.edu/∼kriz/cifar.html.

[45] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision, Springer, 2014, pp. 818–
833.

57

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Background
	Image classification
	Neural Network Architecture
	Convolutional Neural Network

	Data Augmentation
	Related Work
	Data Augmentation
	Cutout

	Our Approach
	MANGO: Model Agnostic explaNation for imaGe classificatiOn
	Main Approach
	Summary of Our Approach

	Experiments
	Setup
	Datasets
	Networks

	Results
	Original MANGO
	Colored Mask MANGO
	MANGO with Different Number of Branches
	Comparing MANGO Variants
	MANGO's Effect on Activations

	Conclusion and Future Work
	Thesis Summary
	Future Work

